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Abstract. Delegation of signing rights can be useful to promote ef-
fective resource sharing and smooth cooperation among participants in
distributed systems, and in many situations, we often need restricted
delegation such as one-timeness and unlinkability rather than simple full
delegation. Particularly, one-timesness cannot be achieved just by de-
ploying cryptographic measures, and one needs to resort to some form of
tamper-proofness or the assistance from external cloud servers for “key-
disabling”. In this work, we extend the latter such that a delegatee can
sign a message without the delegator’s involvement with the assumption
that there exists at least one honest cloud server with secure erasure to
achieve one-timeness. In this setting, if the delegator just shares their
signing key between the delegatee and cloud servers, it may be problem-
atic. It is because in the worst case, the delegator cannot know whether
or not a signing key theft occurred because the signatures generated ille-
gally are indistinguishable from the ones generated legally. To solve this,
first we propose an efficient one-time delegation scheme of Okamoto-
Schnorr signing. Further we combine the basic delegation scheme with
anonymous credentials such that the delegator can detect the signing
key theft even if one-time delegation is broken while also achieving un-
linkability for both the delegator and cloud servers. Further we show its
application to an e-cash scheme, which can prevent double-spending.
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1 Introduction

Delegation of rights to services and resources is old (e.g., [18, 58, 70]), but still
relevant in distributed applications (e.g., [69, 63]), and it can often be realized via
delegation of signing rights. Signing rights are unlinkable if a delegatee can sign a
message unlinkably, where “unlinkably” means that when a delegator delegated
their signing rights to multiple delegatees, no entities including the delegator
can know which delegatee signed a message from its resulting signature as in
group signatures [14]. This type of delegation is useful in applications need-
ing privacy-preserving access control. Further we consider one-time delegation,
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where “one-time” means that a delegator outsources their one-time signing capa-
bility. More specifically, after the delegator outsources their signing capability to
the delegatee, the following properties hold without the delegator’s involvement:
(1) a delegatee can sign a message, (2) the verifier can verify the signature, and
(3) the delegatee is prevented from signing more than once rather than detected
after the fact. This type of one-timeness is often useful for electronic one-show
tokens such as e-cash. In this work, we aim for such one-time delegation of unlink-
able signing rights. In general, we cannot achieve one-timeness just by deploying
cryptographic measures, and one viable approach is to resort to tamper-proofness
such as smartcards (e.g., [47, 22, 48, 23],[24, Sect.6.3],[16],[25, Sect. 8]), one-time
programs (OTPs) [59, 12, 83], or trusted execution environments (TEEs) (e.g.,
[1, 2, 69, 61]). However, such hardware-based solutions may sometimes be un-
desirable due to various side-channel attacks or cumbersome to use or deploy
in practice (e.g., as pointed out in [31]). As a practical alternative to achieve
one-timeness (except a feasibility result using quantum objects [6]), there is an-
other line of research, e.g., [66, 51, 31, 68, 67, 26] (called password-authenticated
server-aided signatures in [31]). In this line of research, roughly speaking, signing
operations are made more secure by employing threshold signing and external
clouds (or hardware devices), so that signatures can be generated only when
the original signer authenticates to the clouds and cooperate with the clouds
having shares of a signing key. Such a technique can make one-time delegation
possible by letting a delegator secret-share the signing key between a delegatee
and clouds, and the clouds erase the shares (i.e., key-disabling or rate-limiting
the signing requests) after the delegatee accessed the clouds for signing oper-
ations. However, such an existing approach may be insufficient in the context
of delegation (where a delegatee is also a potential adversary) due to the fol-
lowing: When one-timeness is broken in the worst case (i.e., a delegatee signed
more than once illegally, given only the one-time signing right, e.g., via cloud
breaches), it would be desirable for the delegator to be able to detect the fact
from the generated and collected signatures. However, the existing works do not
enable the delegator to detect it because all the signing rights use the same key
and the signatures generated illegally are indistinguishable from the legal ones.
This drawback may deter the delegators from relying on such delegation because
no perfect protection against cloud breaches exists. Further, simply using differ-
ent signing keys for each delegation may make it difficult to realize delegation
of unlinkable signing rights.
Our Contributions. We propose efficient delegation of signing rights such that
it is one-time, unlinkable for clouds as well as the delegator and multi-run-
detectable even if one-timeness is broken, which means that the delegator can
know the fact that one-time signing right was exerted more than once illegally
from the generated and collected signatures1). To this end, we extend the ex-
isting approach using one cloud (e.g., [51, 31, 26]) to the setting with multiple
clouds and Okamoto-Schnorr blind signatures, and combine it with anonymous

1)As in e-cash schemes, we believe that it is a natural assumption that the signatures
generated by the delegatees are eventually collected by the delegator.
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credentials such that no master signing key needs to be shared among the del-
egatee and the clouds. In the setting of one cloud, the delegatee does not need
to check the validity of the response from the cloud because it can be checked
by verifying the resulting signature, but in our setting of multiple clouds, we
need an efficient way of checking the validity of each response, and for that, we
use a variant of the MACs based on secret sharing in [50]. Further we show a
natural application of our one-time delegation to e-cash where double-spending
is prevented and even if one-timeness is broken, double-spenders are identified.
Our scheme does not require clouds to interact with each other, so will enjoy
easy deployment as well.
Other Related Work. Group signatures (e.g., [14, 20, 60, 21]) and its gener-
alized version (also called anonymous proxy signatures, e.g., [55, 56, 53, 54] 2))
can also be viewed as delegation of unlinkable signing rights, but one-timeness
has not been much explored. In the area of (delegatable) anonymous credentials
(e.g., [41, 44, 76, 32, 35, 65, 39, 5, 11, 54, 78, 27, 17]), there exists a notion called
k-times credential (e.g., [81, 71, 28, 82, 7, 49]), which allows a user to show a
credential unlinkably up to k times, but the user is not prevented from showing
the same credential more than k times (although identified after k+1 showings).
Revocation of anonymous credentials is possible (e.g., [33, 30, 4, 3]). For example,
in [33, 4, 3], revocation is realized with accumulators (e.g., [10]) that maintain
non-revoked or revoked users in an anonymous way efficiently, and in [30], an
attribute in the credential corresponds to an expiration date, and the credential
issuer puts update values for each non-revoked user on a public bulletin board
periodically such that only a non-revoked user can retrieve their corresponding
value and update their credential for the new time period. Although this kind
of revocation is useful in many situations, it will be insufficient for our purpose
because we need revocation immediately after one showing of the credential.

The systems like [69, 63] also address delegation of credentials such as pass-
words and signing keys with TEEs 3). In, e.g., [69], a delegator just sends their
credential to a TEE residing on the delegatee’s computer (or TEE on the cen-
trally brokered system) such that the delegatee can later use the delegated cre-
dential inside the TEE with appropriate authentication. Compared with [69, 63],
our approach (1) avoids putting the (master) signing key of a delegator directly
in clouds, and (2) tries to reduce the reliance on TEEs by using distributed
clouds such that the security is guaranteed even if part of clouds are corrupted.

We construct e-cash by applying our one-time delegation scheme. In the
offline e-cash model [46], a bank does not need to be involved in the payment,
but double-spending can only be detected without being prevented. In the online
e-cash model [40, 41, 42], double-spending is prevented by the bank being online
to be involved in the payment. Our e-cash scheme based on one-time delegation

2)In anonymous proxy signatures, anyone can act as a group manager by delegating
its signing rights to others who can then unlinkably sign, and in addition, received
rights can be re-delegated.

3)One-timeness is not a main theme in [69, 63], but it will be possible if the delegator
specifies a delegation policy enforcing one-timeness for TEEs.
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can also prevent double-spending without the online bank in the payment, but
with the increased communication overhead due to payers’ access to clouds 4),
which we believe can be alleviated, e.g., by the emerging 5G technology. In the e-
cash scheme of [23, 22, 24], a tamper-proof device such as smartcards (sometimes
called observer [43]) is issued and delivered to a user by the bank. Roughly
speaking, one-timeness is realized by the fact that spending e-cash needs the
assistance of the device (i.e., part of computation needs to be done by the device
holding partial secret values, and the device is supposed to refuse to reuse the
same e-cash). Although the scheme in [22, 24] is efficient, as pointed out in e.g.,
[9], its core building block, blind signature, does not have a proof of security,
and the exculpability property is not achieved when applied to e-cash.

2 Preliminaries

Notation. We use λ ∈ N as a security parameter. We assume a random oracle
(RO) [13] which can be viewed as an idealized hash function, and denote it by
H : {0, 1}∗ → {0, 1}2λ (actually the range varies according to the context). We
denote string concatenation by ∥.
Bilinear Groups. Bilinear groups consist of three cyclic groups G1,G2, and
GT of prime order p, and have a bilinear pairing e : G1 × G2 → GT with the
properties: (1) ∀g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃ b) = e(g, g̃)ab, (2)
∀g ̸= 1G1

and g̃ ̸= 1G2
, e(g, g̃) ̸= 1G

T
, (3) the pairing e can be computed

efficiently. In this work, we use type-3 pairings where DDH holds in both G1
and G2 [57] 5).
Okamoto-Schnorr (OS) Signature. The OS signature scheme [74] is obtained
by applying the Fiat-Shamir transform [52] to the OS proof of knowledge, and
the OS scheme enjoys witness indistinguishability7). The construction is given
in Fig. 1. We also show the OS blind signatures [75, 74, 36] used in Sect. 3. In
the OS blind signature scheme, OS.KeyGen and OS.Vrfy remain the same, but
OS.Sign is replaced with OS.SigIssue protocol between a signer S and user U
(Fig. 1).
Proof of Knowledge for Pedersen Commitment. We show a proof of
knowledge (PK) of the discrete logarithm representation [45] in a Pedersen com-
mitment [77] in Fig. 2, which is a Σ protocol and can be viewed as a generaliza-
tion of the Schnorr proof of knowledge. We assume that the protocol in Fig. 2 is
made non-interactive in the RO model by applying the Fiat-Shamir transform
[52], and use the Camenisch-Stadler [34] notation such as PK{(x1, . . . , xk) : h =
g

x1
1 · · · g

xk

k } to denote this non-interactive zero-knowledge proof of knowledge of
4)In the context of online e-cash, our approach can be viewed as the bank’s out-

sourcing double-spending checks securely to the clouds.
5)Type-3 pairings are considered to be the most efficient [57, 78].
6)Here we can see that U randomizes gr1 hr2 and c′(= H(s · gα1 hα2 yβ ∥ m)). We

note that the hash function is computed by U instead of S in OS blind signatures.
7)We need this property in the proof of Theorem 2, and this is why we need OS

instead of plain “Schnorr”.
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− OS.KeyGen(1λ) → (sk, pk): Choose a prime p, cyclic group G of order p, and
generators g, h ∈ G. The secret (signing) key sk is (x1, x2) ∈ Z2

p, and public key
is pk = (g, h, p, y) where y = gx1 hx2 .

− OS.Sign(sk, m ∈ {0, 1}∗)→ (c, z1, z2): Choose random r1, r2 ∈ Zp, and compute

s← gr1 hr2 , c← H(s ∥ m), zi ← ri − c · xi mod p for i = 1, 2

where H : {0, 1}∗ → Zp is modeled as an RO. The signature is (c, z1, z2).
− OS.Vrfy(pk, m, (c, z1, z2)): Check whether c

?= H(gz1 hz2 yc ∥ m), and if it holds,
the output is 1, and otherwise 0.

− OS.SigIssue(S(x1, x2), U(pk, m)) : // for blind signatures
1. S chooses random r1, r2 ∈ Zp, and sends s← gr1 hr2 to U .
2. U computes c′ ← H(s · gα1 hα2 yβ ∥ m) with random α1, α2, β ∈ Zp, and

sends c← c′ − β mod p to S 6).
3. S sends zi ← ri − c · xi mod p (for i = 1, 2) to U .
4. If s = gz1 hz2 yc does not hold, U aborts, and otherwise U computes z′

i ←
zi + αi mod p for i = 1, 2, and the signature on m is (c′, z′

1, z′
2).

Fig. 1. Okamoto-Schnorr (Blind) Signature

(x1, . . . , xk). 8). Similarly we use the notation SPK{(x1, . . . , xk) : h = g
x1
1 · · · g

xk

k }(m)
to denote the signature on m (i.e., signature based on a PK like OS signatures).

It is well known that, for this PK, there exist a knowledge extractor EΣ

able to extract witnesses and zero-knowledge simulator SΣ able to generate
indistinguishable views by controlling the RO, which are used in security proofs.
Authenticated Secret Sharing. We explain the MACs we use in the context
of secret sharing (see Sect. 3.1). This was proposed in [50], and it enables us to
efficiently check whether a reconstructed secret is correct. In Fig. 3, we show the
case where parties P1, P2 additively secret-share two secrets r, x, and reconstruct
a linear combination z = c′r + cx mod p of r and x (where c′, c are known to
P1, P2). In Sect. 3.1, we use a variant of this where first the delegator distributes
the shares of secrets, MAC key, and MAC tags, and later the delegatee can check
whether the shares sent by clouds are correct in reconstructing a secret.
Anonymous Credential. An anonymous credential scheme (e.g., [32, 9, 78, 80])
consists of the following algorithms:

− AC.Setup(1λ)→ params: Generate public parameters params.
− AC.IKeyGen(params, w)→ (pkI , skI): Generate a public key pkI and secret

key skI of the credential issuer I where w is the number of attributes. We
implicitly assume that pkI includes params, and skI includes pkI .

8)In the Camenisch-Stadler notation [34], Greek letters are used to represent secret
witnesses (e.g., xi) known only to P, but here we deviate from that convention.

9)The computation of a Pedersen commitment with multiple bases can be done
efficiently by using simultaneous multiple exponentiation [62, Sect. 14.6].
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− Inputs: A prover P has commitment h =
∏k

i=1 g
xi
i and gives the zero-knowledge

proof of knowledge of {xi ∈ Zp}1≤i≤k to a verifier V.
− Auxiliary inputs: The commitment h and generators g1, . . . , gk are public in-

formation and known to V.
− The protocol:

1. P chooses random ri ∈ Zp and sends R←
∏k

i=1 g
ri
i to V 9).

2. V sends random c ∈ Zp to P.
3. P computes and sends zi ← ri + c · xi mod p to V.
4. If Rhc =

∏k

i=1 g
zi
i holds, V accepts the proof, and otherwise rejects.

Fig. 2. Proof of Knowledge for Pedersen Commitment [45]

− Inputs: The secrets r, x, MAC key α, and MAC tags αr, αx are additively
secret-shared as

r = r1 + r2 mod p, x = x1 + x2 mod p, α = α1 + α2 mod p,

α · r = m
(r)
1 + m

(r)
2 mod p, α · x = m

(x)
1 + m

(x)
2 mod p

where p is a prime and the shares with subscript i are held by Pi.
− Output: P1 and P2 reconstruct z = c′r + cx mod p if the MAC verification is

successful, and otherwise abort.
− The protocol:

1. Each Pi publishes its share zi = c′ri +cxi mod p of z (we note that malicious
Pi may publish incorrect zi).

2. Each Pi computes a candidate value z′ = z1 + z2 mod p of z.
3. Each Pi computes vi = αiz

′ − (c′m
(r)
i + cm

(x)
i ) mod p, and publishes the

commitment of vi, Com(vi).
4. Each Pi publishes the opening of Com(vi), and checks whether v1 + v2

?=
0 mod p. If v1 +v2 = 0 mod p, each Pi accepts z′ as a correctly reconstructed
value, and otherwise aborts.

Fig. 3. Reconstruction of Secret in Authenticated Secret Sharing [50]
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− AC.CredIssue(I(skI), U(attU )) is an issuance protocol between I and U . At
the end of the protocol, U obtains the credential crU on attributes attU .

− AC.CredShow(U(attU , crU ), V(pkI)) is a show protocol between U and a ver-
ifier V. At the end of the protocol, if the crU is a valid credential on attU
issued by I, V accepts the fact that U possesses the valid crU . If necessary,
U can also disclose part of attU to V in this protocol.

Ideal Functionality Fca. We assume a public key infrastructure where the
delegator and clouds register their public keys, modeled by Fca [38]. The formal
definition of Fca is given in Appendix A.
Ideal Functionality Fauth. We assume parties communicate via authenticated
(but public) channels modeled by Fauth [37]. The formal definition of the sim-
plified version of Fauth for our use is given in Appendix A.

3 One-Time Delegation of Okamoto-Schnorr Signing

Basic Idea. We consider one-time delegation of Okamoto-Schnorr (OS) signing.
Here the OS signing key itself is shared among the delegatee and clouds, so it is
not multi-run-detectable, but this serves as an important building block for one-
time multi-run-detectable delegation scheme in Sect. 4. Conceptually one-time
delegation can be viewed as if a delegator hands a delegatee a signing program
that can be run only once with a message to be signed. Making abstraction of how
such a signing program is implemented for now, we call it an OS signing one-time
program (OTP), and running the OTP actually involves interaction between the
delegatee and clouds, but does not need interaction with the delegator (i.e., the
delegator can be offline when the OTP is run). In this context, we call a delegator
an OTP generator Gotp, and a delegatee an OTP executor Eotp. We consider how
to construct the OS signing OTP (sOTP) from the algorithm OS.Sign(sk, m)
(Fig. 1). To make the computation performed in the OTP as small as possible,
we avoid simply embedding the whole computation of OS.Sign(sk, m) including
the hash function into the OTP, and embed only the computation part zi ←
ri−cxi mod p into the OTP, thus leading to much better efficiency. Here an input
variable of an OTP specified by Eotp is denoted by, e.g., m̄, and a hardcoded
secret variable is denoted as is. If we let [f ]otp denote the OTP of f , the OTP
of OS.Sign(sk, m) can be like a tuple

[OS.Sign(sk, m̄)]otp = ⟨g, h, y, p, s, {[ri − c̄ · xi mod p]otp}2
i=1⟩

where y = gx1hx2 , s = gr1hr2 , c̄← H(s ∥ m̄).

I.e., Eotp specifies the variable m̄ and obtains the output by:

1. compute c← H(s ∥ m),
2. run [ri − c̄ · xi mod p]otp by substituting c for c̄ for i = 1, 2.

We can notice that actually this can be viewed as an OS blind signing operation
because the hash calculation is not done by the signer (OTP). Therefore, the
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Algorithm 1 [OS.BSign(x1, x2, r1, r2, m̄)]otp

Require: m ∈ {0, 1}∗, ⟨g, h, y = gx1 hx2 , p, s = gr1 hr2 , {[ri − c̄ · xi mod p]otp}2
i=1⟩

Ensure: signature (c′, z′
1, z′

2) on m specified by Eotp under the public key y
1: Eotp chooses random α1, α2, β ∈ Zp, and computes c′ ← H(s · gα1 hα2 yβ ∥ m)
2: Eotp computes c← c′ − β mod p
3: Eotp runs zi ← [ri − c̄ · xi mod p]otp with clouds by substituting c for c̄ for i = 1, 2
4: Eotp computes z′

i ← zi + αi mod p for i = 1, 2, and obtains (c′, z′
1, z′

2)

randomization of s = gr1hr2 and the hash value c is also possible as U does
in OS.SigIssue (Fig. 1). As a result, the basic building block for an OS sOTP
[OS.BSign(x1, x2, r1, r2, m̄)]otp is Algorithm 1.

3.1 Instantiating OS Signing OTP with Clouds

Now we focus on [ri − c̄ · xi mod p]otp in the OS signing OTP (sOTP), and
consider how to instantiate this OTP with clouds. The basic idea is simple and
efficient. The main part [ri − c̄ · xi mod p]otp is just computing ri − cxi mod p
with input c specified later by Eotp, so Gotp can secret-share {ri, xi}2

i=1 with the
delegatee Eotp and clouds, and let them compute ri − cxi mod p distributively
12) with the shares and let the clouds erase the shares later. Although corrupted
clouds will not erase the shares correctly, one-timesness can be achieved if there
exists at least one honest cloud with secure erasure. We construct our protocol
such that Eotp needs to authenticate to clouds by using a password in running
an sOTP. First we define the ideal functionality FBOS

otp (Fig. 4) corresponding to
our real protocol, which allows Eotp to specify c and compute ri− cxi mod p for
i = 1, 2 only once, and for FBOS

otp , we assume the following:

− The existence of clouds {Sj}m
j=1 is public information.

− An (ideal) adversary (i.e., simulator) S is static (i.e., non-adaptive).
− sid is a common globally unique session ID both Gotp and Eotp have previ-

ously agreed upon (i.e., each OTP has its own unique sid) as in [31].
− qidj is a common globally unique query ID both Sj and Eotp have previously

agreed upon each time Eotp tries to retrieve a share from Sj as in [31].

Then we give the full description of OTP generation and OTP execution
in Fig. 5, 6 respectively. For password authentication, we extend the method
in [31] such that Eotp can specify the password for multiple clouds. To let the
simulation-based security proof go through, here we need to use additive secret

10)When we say that a functionality “looks up a record”, we mean that if the record
is not found, the functionality just ignores the input.

11)In this case, S can only prevent Eotp from obtaining correct shares by responding
with incorrect shares.

12)No interaction among clouds is needed here thanks to the simplicity of OS signing.
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1. OTP Generation Request. On input (OTP-GENREQ, sid, Gotp, pwd) from Eotp:
− Record (otpgen-req, sid, Eotp, Gotp, pwd).
− Send (OTP-GENREQ, sid, Eotp, Gotp) to S. Upon receiving ok from S, output

(OTP-GENREQ, sid, Eotp) to Gotp.
2. OTP Generation. On input (OTP-GEN, sid, Eotp, g, h, p, x1, x2) from Gotp:
− Look up a record (otp-genreq, sid, Eotp, Gotp, pwd)10).
− Choose random r1, r2 ∈ Zp and record (otp, sid, Eotp, Gotp, pwd, p, x1, x2, r1,

r2, run-flg), where run-flg = not-run.
− Delete (otp-genreq, sid, Eotp, Gotp, pwd).
− If Eotp is corrupted, send (OTP-GEN-LEAK1, sid, Gotp, Eotp, g, h, p, gx1 hx2 ,

gr1 hr2 ) to S. If at least one Sj is corrupted, send (OTP-GEN-LEAK2, sid,
Gotp, p) to S.

− Send (OTP-GEN, sid, Gotp, Eotp) to S. Upon receiving ok from S, output
(OTP, sid, Gotp) to Eotp.

− For each Sj , send (OTP-GEN, sid, Gotp, Sj) to S. Upon receiving ok from S,
output (OTP-SHARE, sid, Gotp) to each Sj .

3. Running OTP. On input (OTP-RUN, sid, {qidj}m
j=1, pwd’, c′) from Eotp:

− Look up records (otp, sid, Eotp, ∗, pwd, p, x1, x2, r1, r2, run-flg).
− If the record (otp-running, sid, Eotp) already exists, wait until it is deleted.
− Record (otp-running, sid, Eotp).
− Set ath-flg ← pwdok, rslti ← ri − c′xi mod p for i = 1, 2 if pwd = pwd’, and

otherwise ath-flg← pwdwrong, rslti ← ⊥.
− Set otp-finish← true. // Initialization
− // OTP was already run

If run-flg = run, output (OTP-RUN, sid, {qidj}m
j=1,⊥) to Eotp

− Else, if Eotp is corrupted, output (OTP-RUN, sid, {qidj}m
j=1, {rslti}2

i=1) to
Eotp // OTP can be run

− Else, if no Sj is corrupted, // Eotp is honest
• send (OTP-RUN, sid, {qidj}m

j=1, Eotp) to S. Upon receiving ok from S,
output (OTP-RUN, sid, {qidj}m

j=1, {rslti}2
i=1) to Eotp

− Else, send (OTP-RUN-LEAK, sid, {qidj}m
j=1, Eotp, c′, ath-flg) to S11), set

otp-finish ← false, and record (otp-running-wait-share, sid, {qidj}m
j=1, Eotp,

c′, ath-flg). // Eotp is honest and at least one of {Sj}m
j=1 is corrupted

− If otp-finish = true and ath-flg = pwdok, update the record
(otp, sid, Eotp, ∗, pwd, p, x1, x2, r1, r2, run-flg) such that run-flg← run.

− If otp-finish = true, delete (otp-running, sid, Eotp).
4. Corrupted Server Proceeds. On input (OTP-SH-PROC, sid, {qidj}m

j=1, Eotp,
sh-flg) from S where sh-flg ∈ {correct-sh, ⊥}:
− Look up records (otp, sid, Eotp, ∗, pwd, p, x1, x2, r1, r2, run-flg), (otp-running,

sid, Eotp), (otp-running-wait-share, sid, {qidj}m
j=1, Eotp, c′, ath-flg).

− Set rslti ← ⊥ for i = 1, 2. // Initialization
− // At least one Sj is honest, so if the password is wrong, Eotp cannot

// obtain the correct result. Note that S can ignore ath-flg if it wants.
If ath-flg = pwdok and sh-flg = correct-sh, rslti ← ri−c′xi mod p for i = 1, 2.

− Send (OTP-RUN, sid, {qidj}m
j=1, Eotp) to S. Upon receiving ok from S, out-

put (OTP-RUN, sid, {qidj}m
j=1, {rslti}2

i=1) to Eotp.
− If ath-flg = pwdok, update the record (otp, sid, Eotp, ∗, pwd, p, x1, x2, r1, r2,

run-flg) such that run-flg← run.
− Delete (otp-running-wait-share, sid, {qidj}m

j=1, Eotp, c′, ath-flg), (otp-running,
sid, Eotp).

Fig. 4. FBOS
otp for OS Signing OTP (“//” means comments and “∗” is a wildcard)
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sharing rather than Shamir’s secret sharing 13) as in [67, 66, 31, 26, 68]. We
explain the overview of how to adapt and embed the MAC scheme in [50] into
our construction such that Eotp can check the correctness of the shares sent
by the clouds. Suppose the cloud Sj holds the shares {r′

i,j , x′
i,j}2

i=1, and sends
{r′

i,j−c′x′
i,j mod p}2

i=1 to Eotp in response to c′ specified by Eotp. First we outline
the process for Gotp.

1. Gotp chooses a random MAC key α(j) ∈ Zp and prepares its additive sharing
α(j) = α

(j)
Eotp

+ α
(j)
S

j
mod p.

2. Gotp prepares the additive sharings of MAC tags {α(j)r′
i,j , α(j)x′

i,j}2
i=1 as

{α(j)r′
i,j = m

(j,r′
i)

Eotp
+m

(j,r′
i)

S
j

mod p, α(j)x′
i,j = m

(j,x′
i)

Eotp
+m

(j,x′
i)

S
j

mod p}2
i=1.

3. Gotp sends ⟨α(j)
S

j
, {r′

i,j , x′
i,j , m

(j,r′
i)

S
j

, m
(j,x′

i)
S

j
}2

i=1⟩ to Sj , and ⟨α(j)
Eotp

, {m(j,r′
i)

Eotp
,

m
(j,x′

i)
Eotp

}2
i=1⟩ to Eotp.

Next we outline the protocol between Sj and Eotp running an sOTP.

1. Given c′ by Eotp
15), for i = 1, 2, Sj computes z′

i,j = r′
i,j − c′x′

i,j mod
p and similarly vi,S

j
= α

(j)
S

j
z′

i,j − (m(j,r′
i)

S
j
− c′ · m(j,x′

i)
S

j
) mod p, and sends

{z′
i,j , vi,S

j
}2

i=1 to Eotp.

2. For i = 1, 2, Eotp computes v
(j)
i,Eotp

= α
(j)
Eotp

z′
i,j − (m(j,r′

i)
Eotp

− c′ ·m(j,x′
i)

Eotp
), and

checks whether v
(j)
i,Eotp

+ vi,S
j

?= 0 mod p. If 0, Eotp accepts {z′
i,j}2

i=1, and
otherwise aborts.

For malicious Sj to cheat here such that Eotp accepts z′
i,j + ∆ = r′

i,j − c′x′
i,j +

∆ (where ∆ ̸= 0), Sj needs to compute the following v∗
i,S

j
by guessing α

(j)
Eotp

unknown to Sj , but the probability that the guess is correct is only 1/p.

v∗
i,S

j
= −v

(j)
i,Eotp

= −(α(j)
Eotp

(r′
i,j − c′x′

i,j + ∆)− (m(j,r′
i)

Eotp
− c′ ·m(j,x′

i)
Eotp

))

= −α
(j)
Eotp

∆ + α
(j)
S

j
(r′

i,j − c′x′
i,j)− (m(j,r′

i)
S

j
− c′m

(j,x′
i)

S
j

)

Although discrete-log based commitments can also be used to check the response
{z′

i,j}2
i=1 from Sj here, the above MACs are much more efficient in that Eotp

needs only modular addition/multiplication rather than exponentiations.
13)The adversarial Eotp can send different c’s to {Sj}m

j=1 in Step 1 of Fig. 6 maliciously
because we do not require {Sj}m

j=1 to coordinate with each other to reject such requests
(because we tried to keep the protocol as simple as possible). This makes the use of
Shamir’s secret sharing non-trivial in terms of the simulation in the proof.

14)We assume that pwd exists only in Eotp’s brain (not stored in Eotp’s computer).
15)We note that the value c′ does not need to be hidden from {Sj}m

j=1 because it is
randomized in OS blind signing.
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We assume the following:
− Gotp has a signing key (x1, x2) ∈ Z2

p and public key y = gx1 hx2 with a group G
of prime order p and generator g, h ∈ G.

− Each cloud is denoted by Sj where 1 ≤ j ≤ m.
− Gotp and each Sj register their public keys pkGotp

, pkS
j

with Fca at the beginning
of the protocol.

− Gotp and Eotp have already agreed upon generating an sOTP.
− The communication between parties is done via Fauth.

1. On input (OTP-GENREQ, sid, Gotp, pwd), Eotp chooses random seed ∈ {0, 1}λ,
and generates {saltj , hj}m

j=1 such that

saltj ← H(seed ∥ Sj), hj ← H(saltj ∥ pwd).

Eotp obtains pkGotp
, {pkS

j
}m

j=1 from Fca, and sends
(sid, Enc(pkGotp

, pkEotp
, {Enc(pkS

j
, hj)}m

j=1)) to Gotp where Enc(pk, m) de-
notes the ciphertext of m under the key pk.

2. Gotp decrypts and receives (sid, pkEotp
, {Enc(pkS

j
, hj)}m

j=1) from Eotp and out-
puts (OTP-GENREQ, sid, Eotp).
On input (OTP-GEN, sid, Eotp, g, h, p, x1, x2), Gotp chooses random r1, r1 ∈ Zp,
generates s = gr1 hr2 , and splits {ri, xi}2

i=1 into ri = r′
i + r′′

i mod p, xi = x′
i +

x′′
i mod p at random.

3. To (m, m)-secret-share {r′
i, x′

i}2
i=1 among {Sj}m

j=1, Gotp generates the random
shares {r′

i,j , x′
i,j}1≤j≤m

i=1,2 such that

r′
i =

m∑
j=1

r′
i,j mod p and x′

i =
m∑

j=1

x′
i,j mod p for i = 1, 2.

4. For 1 ≤ j ≤ m, Gotp chooses random MAC keys {α(j) ∈ Zp}m
j=1, and prepares

the following additive sharings at random: α(j) = α
(j)
Eotp

+ α
(j)
S

j
mod p,

α(j)r′
i,j = m

(j,r′
i)

Eotp
+m

(j,r′
i)

S
j

mod p, α(j)x′
i,j = m

(j,x′
i)

Eotp
+m

(j,x′
i)

S
j

mod p for i = 1, 2.
5. Gotp obtains {pkS

j
}m

j=1 from Fca, and sends to each Sj

(sid, Enc(pkS
j
, hj), Enc(pkS

j
, ⟨α(j)

S
j

, {r′
i,j , x′

i,j , m
(j,r′

i)
S

j
, m

(j,x′
i)

S
j
}2

i=1⟩)).

6. An OS sOTP P is as follows:

P = ⟨sid, g, h, y︸︷︷︸
gx1 hx2

, p, s︸︷︷︸
gr1 hr2

, {r′′
i , x′′

i }2
i=1, {α(j)

Eotp
}m

j=1, {m(j,r′
i)

Eotp
, m

(j,x′
i)

Eotp
}1≤j≤m

i=1,2 ⟩

Gotp sends (sid, Enc(pkEotp
, P )) to Eotp.

7. Sj receives (sid, Enc(pkS
j
, hj), Enc(pkS

j
, ⟨α(j)

S
j

, {r′
i,j , x′

i,j , m
(j,r′

i)
S

j
, m

(j,x′
i)

S
j
}2

i=1⟩))

from Gotp, stores ⟨sid, hj , α
(j)
S

j
, {r′

i,j , x′
i,j , m

(j,r′
i)

S
j

, m
(j,x′

i)
S

j
}2

i=1⟩, and outputs
(OTP-SHARE, sid, Gotp).

8. Eotp receives (sid, Enc(pkEotp
, P )) from Gotp, stores (seed, P )14), and outputs

(OTP, sid, Gotp).

Fig. 5. Protocol for Generating an OS Signing OTP
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− In this protocol for running an OS sOTP, Eotp interacts with each Sj .
− Eotp has an OS sOTP P (Fig. 5) and is given input c′ where c′ is computed as

c← H(s·gα1 hα2 yβ ∥ m), c′ ← c−β mod p with s in P , random α1, α2, β ∈ Zp
16),

and message m ∈ {0, 1}∗ to be signed.

1. On input (OTP-RUN, sid, {qidj}m
j=1, pwd, c′), to retrieve a share from each Sj ,

Eotp computes, for authentication,

athj ← H(sid ∥ qidj ∥

hj︷ ︸︸ ︷
H(H(seed ∥ Sj)︸ ︷︷ ︸

saltj

∥ pwd)),

and sends (sid, qidj , Enc(pkS
j
, pkEotp

, c′, athj)) to each Sj .
2. Each Sj decrypts and obtains (sid, qidj , pkEotp

, c′, athj) from Eotp. If Sj does not
have a data tuple corresponding to sid or it does not hold that athj = H(sid ∥
qidj ∥ hj), Sj sets rslti ← ⊥ for i = 1, 2. Otherwise Sj computes, for i = 1, 2,

z′
i,j ← r′

i,j − c′ · x′
i,j mod p, vi,S

j
← α

(j)
S

j
z′

i,j − (m(j,r′
i)

S
j
− c′ ·m(j,x′

i)
S

j
) mod p,

erases ⟨sid, hj , α
(j)
S

j
, {r′

i,j , x′
i,j , m

(j,r′
i)

S
j

, m
(j,x′

i)
S

j
}2

i=1⟩ 17)since it is no longer needed,
and sets rslti ← ⟨z′

i,j , vi,S
j
⟩. Sj sends (sid, qidj , Enc(pkEotp

, {rslti}2
i=1)) to Eotp.

3. If Eotp decrypts and receives {rslti}2
i=1 from Sj and rslti ̸= ⊥, Eotp computes

v
(j)
i,Eotp

= α
(j)
Eotp

z′
i,j − (m(j,r′

i)
Eotp

− c′ ·m(j,x′
i)

Eotp
) mod p,

and verifies v
(j)
i,Eotp

+ vi,S
j

?= 0 mod p for i = 1, 2. If the verification fails or
rslti = ⊥, Eotp outputs (OTP-RUN, sid, {qidj}m

j=1, ⊥).
Otherwise Eotp has {z′

i,j}1≤j≤m
i=1,2 , computes, for i = 1, 2,

z′
i = ri − c′xi = (

m∑
j=1

z′
i,j) + (r′′

i − c′x′′
i ) mod p,

and outputs (OTP-RUN, sid, {qidj}m
j=1, {z′

i}2
i=1).

Fig. 6. Protocol for Running an OS Signing OTP
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Theorem 1. The protocol in Fig. 5, 6 securely realizes the functionality FBOS
otp

(Fig. 4) in the (Fca, Fauth)-hybrid and RO model, assuming that the static ad-
versary corrupts Eotp and at most (m − 1) clouds and the unforgeability of the
MAC scheme based on authenticated secret sharing.

We prove the above theorem in Appendix A by following the ideal/real simula-
tion paradigm. I.e., an execution in the real model is compared with an execution
in an ideal model where an incorruptible trusted party computes the function-
ality for the parties, and an entity called environment Z tries to distinguish
between the two models by specifying the initial inputs for the involved parties
and interacting with the execution. In the proof, basically we show that there
exists a simulator S that interacts with FBOS

otp and the adversary A and can gen-
erate an indistinguishable view for A by using only leakage from FBOS

otp without
knowing {ri, xi}2

i=1.

4 One-Time Multi-Run-Detectable Delegation Based on
Anonymous Credentials

Now we construct a one-time multi-run-detectable delegation scheme of unlink-
able signing rights with OS sOTPs and anonymous credentials (ACs) such that
a delegator does not need to embed their master signing key directly into the
OTP. First we construct a one-time AC (OAC) scheme, in which the credential
issuer can issue a one-time unlinkable credential which can be shown to a veri-
fier only once in the sense that the credential holder is prevented from showing
the credential more than once based on the security of our OTPs rather than
detected when multiple shows are performed. As an underlying AC scheme, we
use the PS scheme [78], which consists of the following:

− randomizable blind signatures with the message space of multiple attributes,
− zero-knowledge proof of knowledge of a signature.

Key Idea to combine OS sOTP and PS scheme: In the PS scheme, the
credential requestor U obtains a blind signature on the commitment to attU in
the issuance protocol, and in the show protocol, gives a zero-knowledge proof
of knowledge of attU . In our OAC scheme, the issuer adds hidden extra random

16)This randomizability makes the resulting signature unlinkable even for the clouds
as well as the delegator because c′ (visible to the clouds) is independent of the signature.

17)We assume that while a thread running in Sj is accessing a data tuple
⟨sid, hj , α

(j)
S

j
, {r′

i,j , x′
i,j , m

(j,r′
i)

S
j

, m
(j,x′

i)
S

j
}2

i=1⟩, the access to this tuple (with tuple ID
sid) by other threads is prevented with appropriate mutual exclusion.

18)Depending on applications, U can send part of attU in the clear to I, and I will
judge that U is qualified as the portion of attU . In the underlying non-blind PS multi-
message signature [78, Sect. 4.2], these clear attU corresponds to multiple messages.

19)The details of how running an OTP is combined with a (signature based on a) PK
can be found in Fig. 10, which is similar to this PK of a signature.
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− OAC.Setupotp(1λ): generate public parameters params = (p, G1, G2, GT , e) of a
type-3 bilinear group.

− OAC.IKeyGenotp(params, w): choose generators g ∈ G1, g̃ ∈ G2 and random
values (x, y1, . . . , yw, y1,otp, y2,otp, ys) ∈ Zw+4

p , and compute
(X, Y1, . . . , Yw, Y1,otp, Y2,otp, Ys)← (gx, gy1 , . . . , gyw , gy1,otp , gy2,otp , gys ),
(X̃, Ỹ1, . . . , Ỹw, Ỹ1,otp, Ỹ2,otp, Ỹs)← (g̃ x, g̃ y1 , . . . , g̃ yw , g̃ y1,otp , g̃ y2,otp , g̃ ys )

where pkI = (g, {Yi}w
i=1, Y1,otp, Y2,otp, Ys, g̃, X̃, {Ỹi}w

i=1, Ỹ1,otp, Ỹ2,otp, Ỹs) and
skI = X. The values (Yi, Ỹi) are related to attribute i, and (g, g̃) are said to be
related to dummy attribute 0.

− OAC.CredIssueotp(I(skI), U(attU )) is the following protocol between I and U .
1. To obtain a signature on the attributes attU = (a1, . . . , aw) ∈ Zw

p , U generates
C ← gr · Y sU

s ·
∏w

i=1 Y
ai

i with random r, sU ∈ Zp, and sends C to I.
2. U gives to I the following proof of knowledge PK (Fig. 2) regarding C 18),

PK{(r, sU , a1, . . . , aw) : C = gr · Y sU
s ·

w∏
i=1

Y
ai

i }.

3. If the PK regarding C is valid, I chooses random values
u, a1,otp, a2,otp, r1,otp, r2,otp sI ∈ Zp, and sends U the following:

σ′ = (σ′
1, σ′

2) = (gu, (X · C · Y
a1,otp

1,otp · Y
a2,otp

2,otp · Y sI
s )u),

OTP, P = ⟨{Ỹi,otp}2
i=1, Ỹ

a1,otp
1,otp · Ỹ

a2,otp
2,otp , sI , p, Ỹ

r1,otp
1,otp · Ỹ

r2,otp
2,otp ,

{[ri,otp − c̄ · ai,otp mod p]otp}2
i=1⟩

4. U obtains the signature σ on (attU , a1,otp, a2,otp, sn) where sn = sU + sI as

σ = (σ1, σ2) =
(
σ′

1, σ′
2/σ′

1
r
)

= (gu, (X ·Y
a1,otp

1,otp ·Y
a2,otp

2,otp ·Y
sn

s ·
w∏

i=1

Y
ai

i )u).

The signature on (attU , a1,otp, a2,otp, sn) can be verified as

σ1 ̸= 1G1
and e(σ1, X̃ · Ỹ

a1,otp
1,otp · Ỹ

a2,otp
2,otp · Ỹ sn

s ·
w∏

i=1

Ỹ
ai

i ) ?= e(σ2, g̃).

By viewing σ = (σ1, σ2) as a signature on (0, attU , a1,otp, a2,otp, sn) where the
first entry is the value of dummy attribute 0, U can randomize σ to obtain
another fresh signature on (t, attU , a1,otp, a2,otp, sn) by computing new σ ←
(σs

1, (σt
1 · σ2)s) with random s, t ∈ Zp. We note that the portion corresponding

to (attU , a1,otp, a2,otp, sn) cannot be changed.
⟨σ, (t, attU , a1,otp, a2,otp, sn), P ⟩ corresponds to the credential crU .

− OAC.CredShowotp(V(pkI , σ, sn), U(crU )) is a show protocol between U and
verifier V. What U does is to prove knowledge of a (randomized) signa-
ture σ. Since the verification of the randomized signature σ = (σ1, σ2) on
(t, attU , a1,otp, a2,otp, sn) can be done as

e(σ1, X̃ · g̃ t · Ỹ
a1,otp

1,otp · Ỹ
a2,otp

2,otp · Ỹ sn
s ·

w∏
i=1

Ỹ
ai

i ) ?= e(σ2, g̃),

this verification can also be viewed as

e(σ1, g̃)t ·
2∏

i=1

e(σ1, Ỹi,otp)ai,otp · e(σ1, Ỹs)sn ·
w∏

i=1

e(σ1, Ỹi)ai
?= e(σ2, g̃)

e(σ1, X̃)
,

so with bases {e(σ1, g̃), {e(σ1, Ỹi,otp)}2
i=1, e(σ1, Ỹs), {e(σ1, Ỹi)}w

i=1}, giving the
following PK leads to proving knowledge of a signature:

PK
{

(t, a1, . . . , aw, a1,otp, a2,otp, sn) : e(σ2, g̃)/{e(σ1, X̃) · e(σ1, Ỹs)sn} =

e(σ1, g̃)t ·
w∏

i=1

e(σ1, Ỹi)ai ·
2∏

i=1

e(σ1, Ỹi,otp)ai,otp
}

.

Here V requires U to disclose sn, and U runs the OS sOTP P 19).

Fig. 7. One-Time Anonymous Credential Scheme
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attributes a1,otp, a2,otp ∈ Zp to the commitment before signing it, and also hands
an OS sOTP including {ai,otp}2

i=1 to U20). As a result, U is forced to use the
sOTP to prove knowledge of a signature in the show protocol (as in Fig. 2)
because U cannot know {ai,otp}2

i=1 directly, and thus it leads to a one-time
credential.

Building on the PS scheme and the above idea, our construction is given in Fig.
7. The main differences between the PS scheme and ours are:

− how to issue a credential in OAC.CredIssueotp,

− part of the prover’s process in the show protocol is replaced with a run of
an OS sOTP.

Although an OS sOTP is run in OAC.CredShowotp, the prover’s process is the
same as that of the PS scheme. Thus it is sufficient for us to prove that OAC.CredIssueotp
is a blind signature scheme, i.e., its blindness and unforgeability with the follow-
ing theorem (the proof is given in Appendix B).

Theorem 2. The OAC scheme in Fig. 7 is one-time, blind, and unforgeable
based on the security of OTPs and the underlying PS scheme in the RO model.

Now we can see that the OAC scheme in Fig. 7 can be turned into an sOTP
because the PK in OAC.CredShowotp can be turned into an SPK as OS sig-
natures by using the Fiat-Shamir transform. Thus the credential issuer and
holder can be viewed as a delegator and delegatee respectively. The value sn
in OAC.CredIssueotp cannot be changed by U in OAC.CredShowotp because of the
unforgeability of the PS scheme, and needs to be disclosed in the resulting signa-
ture, so if the delegator finds more than one same sn in the collected signatures,
the delegator can detect the fact that an sOTP was run more than once, thus
achieving multi-run-detectability (if necessary, the delegator can announce that
sn is blocked). The PS scheme and OS sOTPs are unlinkable because of random-
izability, so our resulting sOTP also enjoys unlinkability for both the delegator
and clouds.
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− EC.Setup(1λ) is the same as OAC.Setupotp(1λ), and B obtains params =
(p, G1, G2, GT , e).

− EC.BKeyGen(params): first run OAC.IKeyGen(params, 3), and B obtain the
signing key skB = X, and partial public key

ppkB = (params, g, gv, gu, fu, g1,otp, g2,otp, gs, g̃, X̃, g̃v, g̃u, f̃u, g̃1,otp, g̃2,otp, g̃s).
Next B computes an additional key H(ppkB) → gu′ ∈ G1 with an appropriate
hash function H : {0, 1}∗ → G1,and lets pkB = (ppkB, gu′ ).

− EC.UKeyGen(params, pkB): Ui chooses their secret key skU
i
∈ Zp for EC and

resultant public keys (pkU
i

= g
skU

i
u , pk′

U
i

= g
skU

i
u′ ). Moreover Ui generates

PK{(skU
i
) : pkU

i
= g

skU
i

u ∧ pk′
U

i
= g

skU
i

u′ }

and a signature σ(pkU
i
, pk′

U
i
) on (pkU

i
, pk′

U
i
) under their PKI key pk(pki)

U
i

, and

sends (pkU
i
, pk′

U
i
, pk(pki)

U
i

, σ(pkU
i
, pk′

U
i
), PK) to B 21), which stores them in the

user DB.
− EC.Withdraw(B(skB, pkU

i
), Ui(skU

i
, pkB)) is the following protocol between B

and Ui where Ui obtains an e-coin corresponding to v dollars 22).

1. Ui sends v, pkU
i
, pk′

U
i

to B, and also gives PK{(skU
i
) : pkU

i
= g

skU
i

u } (Fig.
2) 23). B rejects the request if pkU

i
is not found in the user DB.

2. Ui chooses random r, sU
i
, ωu ∈ Zp, computes the following commitment C,

and gives the following PK to B.

PK{(r, sU
i
, ωu) : C = gr · g

sU
i

s · f ωu
u }

3. If the PK is valid, B chooses random u, sB, x1,otp, x2,otp, r1,otp, r2,otp ∈ Zp,
computes

C′ ← C · pkU
i
· gv

v · g
sB
s · g

x1,otp
1,otp · g

x2,otp
2,otp

= gr · gv
v · g

sB+sU
i

s · g
skU

i
u · fωu

u · g
x1,otp
1,otp · g

x2,otp
2,otp ,

σ′ ← (σ′
1, σ′

2) = (gu, (X · C′)u),

and generates the OTP P as follows

P = ⟨g̃1,otp, g̃2,otp, g̃
x1,otp
1,otp · g̃

x2,otp
2,otp , p, g̃

r2,otp
2,otp · g̃

r2,otp
2,otp ,

{[ri,otp − c̄ · xi,otp mod p]otp}2
i=1⟩.

B sends σ′, sB, P to Ui, and debits Ui’s account v dollars.
4. Ui obtains the signature σ′′ on (v, sn, skU

i
, ωu, x1,otp, x2,otp) where sn =

sB + sU
i

(called serial number) as

σ′′ = (σ′′
1 , σ′′

2 ) = (σ′
1, σ′

2/σ′
1

r),

which can be verified as

e(σ′′
1 , X̃ · g̃ v

v · g̃ sn
s · g̃

skU
i

u · f̃ ωu
u · g̃

x1,otp
1,otp · g̃

x2,otp
2,otp ) ?= e(σ′′

2 , g̃).

Ui can obtain a randomized signature σco on (t, v, sn, skU
i
, ωu, x1,otp, x2,otp)

with random s, t ∈ Zp and computing, σco = (σs
1, (σt

1 · σ2)s).
The obtained e-coin co consists of (σco, t, v, sn, skU

i
, ωu, P ).

Fig. 8. E-Cash based on signing OTPs (1/2)
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− EC.Spend(Mj(pkB, σco, v, sn), Ui(pkB, co)) is the following protocol between a
merchant Mj who has a signing key pair (skM

j
, pkM

j
) and Ui where Ui spends

an e-coin co corresponding to v dollars.
1. Mj sends pkM

j
, infoj to Ui where infoj is a random bit string.

2. Ui computes cds ← H(pkM
j
∥ infoj) called double-spending challenge where

H is a hash function (modeled as an RO), and the following commitments

Comco ← e(σ2, g̃)/e(σ1, X̃ · g̃ v
v · g̃ sn

s ) (for proof of knowledge of a signature)
= e(σ1, g̃)t·e(σ1, g̃u)

skU
i ·e(σ1, f̃u)ωu ·e(σ1, g̃1,otp)x1,otp ·e(σ1, g̃2,otp)x2,otp ,

Comds ← g
skU

i
u′ · (g ωu

u′ )cds = g
skU

i
u′ · (g cds

u′ )ωu (called double-spending tag)

and generates the following signature σ(σco, v, sn, Comds, pkM
j
, infoj) on

(σco, v, sn, Comds, pkM
j
, infoj) (Sect. 2) by using the OTP P as well, and

sends (σco, v, sn, σ(σco, v, sn, Comds, pkM
j
, infoj)) to Mj :

σ(σco, v, sn, Comds, pkM
j
, infoj) = SPK{(t, skU

i
, ωu, x1,otp, x2,otp) :

Comco = e(σ1, g̃)te(σ1, g̃u)
skU

i e(σ1, f̃u)ωu e(σ1, g̃1,otp)x1,otp e(σ1, g̃2,otp)x2,otp

∧Comds = g
skU

i
u′ · (g cds

u′ )ωu}(σco, v, sn, Comds, pkM
j
, infoj). 24)

3. Mj accepts the e-coin if σ(σco, v, sn, Comds, pkM
j
, infoj) is a valid signature,

and stores the following tuple which will be deposited later

dpst = ⟨σco, v, sn, Comds, pkM
j
, infoj , σ(σco, v, sn, Comds, pkM

j
, infoj)⟩

where sn is the serial number of this e-coin.
− EC.Deposit(dpst): B does the following after receiving from Mj , dpst =
⟨σco, v, sn, Comds, pkM

j
, infoj , σ(σco, v, sn, Comds, pkM

j
, infoj)⟩.

1. If σ(σco, v, sn, Comds, pkM
j
, infoj) in dpst is invalid, B rejects the deposit.

2. If the verification is successful and the serial number sn is fresh in the
deposit DB, B requires Mj to send a signature σM

j
(dpst) on dpst under

pkM
j
. If σM

j
(dpst) is invalid, B rejects the deposit, and otherwise B stores

(dpst, σM
j
(dpst)) in the deposit DB, and credits v dollars to Mj ’s account.

3. If a tuple exists in the deposit DB which has the same sn, pkM
j
, infoj as

dpst, B rejects this invalid deposit (i.e., Mj is cheating).
4. If dpst′ = ⟨σ′

co, v′, sn, Com′
ds, pkM′

j
, info′

j , σ(σ′
co, v′, sn, Com′

ds, pkM′
j
, info′

j)⟩
exists in the deposit DB which has the same sn as dpst, but different pkM′

j

or info′
j

25), then B can have the proof Πds = (dpst, dpst′) which can be used
to identify the double-spender’s public key in EC.Identify.

− EC.Identify(params, pkB, Πds): B identifies a double-spender as follows:
1. If dpst and dpst′ in Πds have the same serial number, B obtains the double-

spending tags (Comds, cds), (Com′
ds, c′

ds) from Πds.
2. The double-spender’s public key pk′

ds can be computed as

pk′
ds = (Comc′

ds
ds /Com′

ds
cds )1/(c′

ds−cds).

− EC.VrfyGuilt(params, pkB, sn, pk′
ds, Πds): anyone can publicly verify the proof Πds

that the user with pk′
ds is guilty of double-spending the e-coin whose serial number

is sn. The verification can be done by EC.Identify(params, pkB, Πds)
?= pk′

ds.

Fig. 9. E-Cash based on signing OTPs (2/2)
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5 E-Cash based on Signing OTPs

Building on our sOTPs based on OACs (Fig. 7), we construct an e-cash scheme.
In the traditional e-cash originating from [40], the following protocols exist:

− Withdraw protocol: A user U communicates with bank B, and receives elec-
tronic data (called e-coin), and B debits U ’s account the corresponding value.

− Spend protocol: U spends an e-coin by sending it to a merchant M.
− Deposit protocol: M deposits the e-coin spent by U to B, and B credits the

corresponding amount to the M’s account.

Employing our sOTP, our EC (Fig. 8, 9) prevents double-spending26) and further
identifies a double-spender even if sOTPs are broken. We adopt the elegant
framework [29] such that B can issue an e-coin including an sOTP and user’s
ID in the Withdraw protocol without embedding its master signing key, and two
signatures originating from the same e-coin (collected in the Deposit protocol)
can reveal the user’s ID. The scheme in [24, Sect.6.3] takes a similar approach,
but the double-spender’s secret key is revealed, so “exculpability” is not achieved
(i.e., B can frame users), while ours reveals only the double-spender’s public
key according to [29], thus achieving exculpability. Following the e-cash security
model [29, 8, 64, 19], we give the proofs in Appendix C, and discuss the additional
possible extensions.

Batch Spending. What happens in the Spend protocol can be viewed as:

− Ui has an e-coin that can be viewed as a kind of public key certified by B.
− Ui signs the message from Mj with e-coin, and sends the signature to Mj .
− Then the value of the e-coin is transferred to Mj .

Hence, e.g., if Ui has e-coins σco1
, σco2

corresponding to v1, v2 dollars respectively,
and signs σco1

by σco2
, then we can think that the value v2 in σco2

is transferred
to σco1

, and that signing a message with σco1
yields v1 + v2 dollars. This way of

20){ai,otp}2
i=1 corresponding to a signing key in the OS scheme are fresh random and

used only once in our OAC, so the attack [15] on OS blind signatures does not apply
here because [15] needs concurrent polylog(λ) signing queries with the same signing
key.

21)We take the approach similar to group signatures in [78]. This is needed to identify
the user in the real world when disputes related to double-spending occur.

22)We define EC.Withdraw such that Ui can specify v, but in practice, v may be a
constant or chosen from a set of predefined e-coin denominations to reduce linkability.

23)This PK will be interactive or a signature on a fresh nonce to avoid replay attacks.
24)This includes proofs of knowledge of equality of discrete logs (skU

i
, ωu) [47], and

its full description is given in Fig. 10.
25)If this occurs, it means the adversary ran an OTP more than once by breaking the

security of OTPs. In this case, it is possible to distribute a list of blocked sn.
26)Our e-cash is somewhat incomparable to existing e-cash since we assume there

exist distributed partially trusted clouds as in [51, 31], while other schemes do not.



19

thinking can reduce the number of signatures that need to be generated during
the Spend protocol, and we give the overview of this method (which we call batch
spending) as follows:
− Suppose Ui has e-coins, e.g., σco1

, σco2
, σco3

corresponding to v1, v2, v3 dollars
respectively, and wants to spend v1 + v2 + v3 dollars for Mj .

− Then Ui signs σco1
with σco2

, σco3
in advance, obtaining 2 signatures on σco1

.
− In the Spend protocol with Mj , Ui signs the message from Mj with σco1

,
and sends 3 signatures to Mj .

− Mj verifies the 2 signatures on σco1
, and another signature generated by σco1

27). If all the verifications are successful and the amount of e-coins suffices,
Mj accepts the e-coins.

− Similarly B also verifies all the signatures in the Deposit protocol, and checks
freshness of all the serial numbers.

As we can see, Ui has only to generate 1 signature during the Spend protocol
although actually it spends 3 e-coins. To sign σco1

with σco, as in Step 2 of
EC.Spend (Fig. 9), a double-spending challenge cds ∈ Zp is necessary, for which
H(σco1

) can be used here. To make the difference clear between the signature
on the double-spending tag (i.e., σ(σco, v, sn, Comds, pkM

j
, infoj) in Fig. 9) and

signature on the e-coin, we modify the hash calculation of Eq. (1) (Fig. 10) by
adding a simple tag as

c = H(R1 ∥ R2 ∥ σco ∥ v ∥ sn ∥ Comds ∥ 0 ∥ pkM
j
∥ infoj)

(case of signature on (σco, v, sn, Comds, pkM
j
, infoj)),

c = H(R1 ∥ R2 ∥ σco ∥ v ∥ sn ∥ Comds ∥ 1 ∥ σco1
)

(case with additional e-coin σco1
).

Thus if B or Mj receives a signature with H(R1 ∥ R2 ∥ σco ∥ v ∥ sn ∥ Comds ∥
1 ∥ σco1

), B orMj also requires another signature by σco1
to accept the e-coins.

Transferring E-Coin. By further extending batch spending, Ui can transfer
an e-coin to another, but with somewhat less anonymity as mentioned later. In
batch spending, Ui signs its own e-coins, whereas, in transferring Ui’s e-coin σco

i

to another e-coin σco
j

of Uj , Ui signs σco
j

with σco
i
, and the value of σco

i
is

transferred to σco
j
. Here the value of σco

j
can be zero. To receive the transfer

of many e-coins, we assume that Uj can obtain e-coins whose values are zero
(i.e., they function as placeholders of the transferred e-coins) from B for free in
advance. In this case, however, we have incomplete anonymity in the following
sense: Suppose Ui transferred σco

i
to σco

j
, and the several transfers continued,

and the e-coin originating from σco
i

returned to Ui, then Ui can recognize that
Ui used to hold the e-coin. To obtain complete anonymity, the technique from
[8] may be applicable, but its efficient instantiation will be non-trivial.

27)More exactlyMj will also need to check that the serial numbers of σco1
, σco2

, σco3
are all different.
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− In Fig. 9, Ui generates the following SPK in spending v dollars with serial number
sn by running sOTP P ,

σ(σco, v, sn, Comds, pkM
j
, infoj) = SPK{(t, skU

i
, ωu, x1,otp, x2,otp) :

Comco = e(σ1, g̃)te(σ1, g̃u)
skU

i e(σ1, f̃u)ωu e(σ1, g̃1,otp)x1,otp e(σ1, g̃2,otp)x2,otp

∧ Comds = g
skU

i
u′ · (g cds

u′ )ωu}(σco, v, sn, Comds, pkM
j
, infoj),

where cds = H(pkM
j
∥ infoj),

P = ⟨g̃1,otp, g̃2,otp, g̃
x1,otp
1,otp · g̃

x2,otp
2,otp , p, g̃

r1,otp
1,otp · g̃

r2,otp
2,otp ,

{[ri,otp − c̄ · xi,otp mod p]otp}2
i=1⟩.

1. Ui chooses random α1, α2, β, β1, β2, β3 ∈ Zp and computes

R← g̃
r1,otp
1,otp · g̃

r2,otp
2,otp · g̃

α1
1,otp · g̃

α2
2,otp · (g̃

x1,otp
1,otp · g̃

x2,otp
2,otp )β

R1 ← e(σ1, g̃)β1 · e(σ1, g̃u)β2 · e(σ1, f̃u)β3 · e(σ1, R)

(= e(σ1, g̃ β1 · g̃ β2
u · f̃ β3

u ·R))

R2 ← g
β2
u′ · (g

cds
u′ )β3 (here gu′ and g

cds
u′ are bases of the commitment)

c← H(R1 ∥ R2 ∥ σco ∥ v ∥ sn ∥ Comds ∥ pkM
j
∥ infoj) (1)

z1 ← β1 − c · t mod p

z2 ← β2 − c · skU
i

mod p

z3 ← β3 − c · ωu mod p

z4 ← r1,otp − (c− β) · x1,otp + α1 mod p (run with sOTP P )
z5 ← r2,otp − (c− β) · x2,otp + α2 mod p (run with sOTP P )

where {ri,otp− (c−β) ·xi,otp}2
i=1 can be obtained from P by inputting c−β (this

is the same randomization as OS.BSign of Algorithm 1).
2. The signature σ(σco, v, sn, Comds, pkM

j
, infoj) consists of (c, z1, z2, z3, z4, z5)

and can be verified by

c
?= H(e(σ1, g̃)z1 · e(σ1, g̃u)z2 · e(σ1, f̃u)z3 · e(σ1, g̃1,otp)z4 · e(σ1, g̃2,otp)z5 · Comc

co

∥ g
z2
u′ · (g

cds
u′ )z3 · Comc

ds ∥ σco ∥ v ∥ sn ∥ Comds ∥ pkM
j
∥ infoj).

Fig. 10. Signature based on Proof of Knowledge (SPK) in Our E-Cash
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A Proof of Theorem 1

1. Registration. On input (REGISTER, sid, pk) from a party P:
− Send (REGISTER, sid, pk) to adversary A. Upon receiving ok from A, and if

sid = P, and this is the first request from P, record (sid, pk).
2. Retrieve. Upon receiving a message (RETRIEVE, sid) from a party P ′:
− Send (RETRIEVE, sid, P ′) to A. Upon receiving ok from A:

• If a record (sid, pk) exists,
• then, output (sid, pk) to P ′,
• else, output (sid, ⊥) to P ′.

Fig. 11. Functionality Fca for Certificate Authority [38]

The functionalities Fca, Fauth are given in Fig. 11, 13. To prove the security
of the construction in Sect. 3.1, we now proceed to the proof of Theorem 1.

Proof. We give the proof by constructing a simulator S that runs A and can
generate an indistinguishable view for A in the ideal world. We note that we can
assume the probablity that collisions occur for RO calls H(·) or A can predict
correct outputs of H(·) without calling H(·) is negligible because of the random
choice by S controlling H(·).

First we consider the case where A corrupts only a subset of {Sj}1≤j≤m. In
this case, S needs to do the following:

− By playing a role of honest Gotp, S gives corrupted Sj a data tuple including
the shares and data to compute MAC tags without knowing r1, r2, x1, x2.

− By playing a role of honest Eotp, S sends the share retrieval request to and
obtains the computed share and MAC tag from Sj .

− According to the computed share and MAC tag corrupted Sj responded
with, S interacts with FBOS

otp by using the interface OTP-SH-PROC.

The details of how S works are given in Fig. 12. Because additive sharings are
used, the simulation by S is indistinguishable from the real view. Also the prob-
ability that A (corrupted Sj) can send the forged share which can be accepted
by S is negligible (1/p) because of the information-theoretic security of authen-
ticated secret sharing, so the simulation by S is indistinguishable.

Next we consider the case where A corrupts Eotp. S works as in Fig. 14,
which is based on the intuition that in the additive sharing, the shares can be
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Simulator S for FBOS
otp (case for uncorrupted Eotp)

// A receives share retrieval requests from Eotp.
1. S runs A, and generates public key pairs of honest Gotp, Eotp, and Sj ’s. and

receives, as Fca, public keys of corrupted Sj ’s from A.
2. Upon receiving (OTP-GEN-LEAK1, sid, Gotp, p) from FBOS

otp , for each corrupted
Sj , S chooses random α(j), r′

1,j , x′
1,j , r′

2,j , x′
2,j ∈ Zp and hj ∈ {0, 1}2λ, and

prepares the following additive sharings at random

α(j) = α
(j)
Eotp

+ α
(j)
S

j
mod p,,

α(j)r′
i,j = m

(j,r′
i)

Eotp
+m

(j,r′
i)

S
j

mod p, α(j)x′
i,j = m

(j,x′
i)

Eotp
+m

(j,x′
i)

S
j

mod p for i = 1, 2.

S sends to corrupted Sj

(sid, Enc(pkS
j
, hj), Enc(pkS

j
, ⟨α(j)

S
j

, {r′
i,j , x′

i,j , m
(j,r′

i)
S

j
, m

(j,x′
i)

S
j
}2

i=1⟩)).

3. Upon receiving (OTP-RUN-LEAK, sid, {qidj}m
j=1, Eotp, c′, ath-flg) from FBOS

otp ,
for each corrupted Sj , S does the following as Eotp:
(a) S chooses random athj ∈ {0, 1}2λ and if ath-flg = pwdok, S programs

the random oracle such that athj = H(sid ∥ qidj ∥ hj). S sends
(sid, qidj , Enc(pkS

j
, pkEotp

, c′, athj)) to Sj .
(b) S waits for the response (sid, qidj , Enc(pkEotp

, {rslti}2
i=1)) from corrupted

Sj . If rslti = ⟨z′
i,j , vi,S

j
⟩ for i = 1, 2, S computes

v
(j)
i,Eotp

= α
(j)
Eotp

z′
i,j − (m(j,r′

i)
Eotp

− c′ ·m(j,x′
i)

Eotp
) mod p,

and verifies that v
(j)
i,Eotp

+ vi,S
j

= 0 mod p,
(c) If rslti = ⊥ or the verification fails, S sets sh-flgj ← ⊥, and otherwise

sh-flgj ← correct-sh.
4. If all sh-flgj ’s of corrupted Sj are correct-sh, S sets sh-flg ←

correct-sh, and otherwise sh-flg ← ⊥. S calls the interface
(OTP-SH-PROC, sid, {qidj}m

j=1, Eotp, sh-flg) of FBOS
otp .

Fig. 12. Simulator S for Proof of Theorem 1 (case for uncorrupted Eotp)
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just random except the share retrieved last that must be adjusted according to
the output of FBOS

otp if A obtains the correct output. ⊓⊔

1. Send. On input (SEND, sid, S, R, m) from a party S:
− Send (SENT, sid, S, R, m) to adversary A. Upon receiving ok from A, send

(SEND, sid, S, m) to R.

Fig. 13. Functionality Fauth for Authenticated Channel [37]

B Proof of Theorem 2

First we recall the syntax of a signature scheme, which consists of the following
algorithms.

− Sig.Setup(1λ)→ params, on a security parameter λ, outputs public parame-
ters params.

− Sig.KeyGen(params)→ (pk, sk) outputs a pair of verification and signing keys
(pk, sk). We implicitly assume that sk includes pk, and pk includes params.

− Sig.Sign(sk, m) → σ takes a signing key sk and message m, and outputs a
signature σ.

− Sig.Vrfy(pk, m, σ) outputs 1 if σ is a correct signature on m under pk, and
otherwise 0.

Next we give the standard security notion for a signature scheme called existen-
tial unforgeability under chosen message attacks (EUF-CMA).

Definition 1 (EUF-CMA). A signature scheme is EUF-CMA secure if for
every PPT adversary A, the probability that A wins in the following game is
negligible. The game is defined between a challenger C and adversary A.

1. (Setup) C runs Sig.Setup, Sig.KeyGen to obtain pk, sk. A is given pk.
28)Actually S is given A’s input from the environment Z.
29)This simulation is justified as follows. Suppose that there exist at least two honest

clouds Sj′ , Sj and that A queried to Sj last where A retrieved z′
i,j′ = r′

i,j′−c′
j′ x′

i,j′ mod
p, z′

i,j = r′
i,j − c′

jx′
i,j mod p with c′

j′ ̸= c′
j from Sj′ , Sj . When z′

i,j′ is queried, x′
i,j′ is

not determined yet (i.e., S can set free variable x′
i,j′ to be any value later), but r′

i,j′ is
dependent on x′

i,j′ because r′
i,j′ = z′

i,j′ + c′
j′ x′

i,j′ with c′
j′ known to A. Because z′

i,j can
be expressed as
z′

i,j = r′
i,j − c′

jx′
i,j = (r′

i − (other shares)− r′
i,j′ )− c′

j(x′
i − (other shares)− x′

i,j′ )
= r′

i − (other shares)− c′
j(x′

i − (other shares))− z′
i,j′ + (c′

j − c′
j′ )x′

i,j′ ,
z′

i,j can be chosen at random because of the randomness from x′
i,j′ .
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Simulator S for FBOS
otp (case for corrupted Eotp)

// Generating an OTP
1. S runs A with input (OTP-GENREQ, sid, Gotp, pwd)28), generates public key

pairs of honest Gotp, and Sj ’s, and receives, as Fca, public keys of corrupted Eotp
and Sj ’s from A. S initializes Qcor ← ∅.

2. S receives (sid, Enc(pkGotp
, pkEotp

, {Enc(pkS
j
, hj)}m

j=1)) from A (note that S can
obtain hj ’s of honest Sj ’s).

3. S calls the interface (OTP-GENREQ, sid, Gotp, pwd) of FBOS
otp where S sets

pwd =“1” (we note that S does not need to extract the password from A).
4. Upon receiving (OTP-GEN-LEAK1, sid, Gotp, Eotp, g, h, p, gx1 hx2 , gr1 hr2 ) from
FBOS

otp , S chooses random {r′′
i , x′′

i }2
i=1, {α(j)

Eotp
}m

j=1, {m(j,r′
i)

Eotp
, m

(j,x′
i)

Eotp
}1≤j≤m

i=1,2 , and
sends (sid, Enc(pkEotp

, P )) to A (corrupted Eotp) where the simulated OTP P is

P = ⟨sid, g, h, gx1 hx2 , p, gr1 hr2 , {r′′
i , x′′

i }2
i=1, {α

(j)
Eotp

}m
j=1, {m

(j,r′
i)

Eotp
, m

(j,x′
i)

Eotp
}1≤j≤m

i=1,2 ⟩.

5. Upon receiving (OTP-GEN-LEAK2, sid, Gotp, p) from FBOS
otp , for each corrupted

Sj , S chooses random {r′
i,j , x′

i,j}2
i=1, α

(j)
S

j
and computes {m(j,r′

i)
S

j
, m

(j,x′
i)

S
j
}2

i=1 such
that

α(j) = α
(j)
Eotp

+ α
(j)
S

j
mod p, Qcor ← Qcor ∪ {(j, {r′

i,j , x′
i,j}2

i=1)},

α(j)r′
i,j = m

(j,r′
i)

Eotp
+m

(j,r′
i)

S
j

mod p, α(j)x′
i,j = m

(j,x′
i)

Eotp
+m

(j,x′
i)

S
j

mod p for i = 1, 2.

S sends Sj , (sid, Enc(pkS
j
, hj), Enc(pkS

j
, ⟨α(j)

S
j

, {r′
i,j , x′

i,j , m
(j,r′

i)
S

j
, m

(j,x′
i)

S
j
}2

i=1⟩)).
6. S initializes H to be a set of indexes of honest Sj ’s and Qhon ← ∅.

// A retrievs the shares from honest Sj ’s to run an OTP.
// We note that the simulation between corrupted Eotp and Sj is not necessary.

1. S runs A with (OTP-RUN, sid, {qidj}m
j=1, pwd’, c′). Each time A sends

(sid, qidj , Enc(pkS
j
, pkEotp

, c′
j , athj)) to honest Sj , S does the following as Sj :

if j ̸∈ H or athj ̸= H(sid ∥ qidj ∥ hj)
// share was already retrieved or password is wrong
send (sid, qidj , Enc(pkEotp

, ⊥)) to A and return.
if |H| > 1{

choose random {r′
i,j , x′

i,j}2
i=1, and compute, for i = 1, 2,

z′
i,j ← r′

i,j − c′
j · x′

i,j mod p, Qhon ← Qhon ∪ {(j, c′
j , {r′

i,j , x′
i,j}2

i=1)}
} else { // this is the last query to honest Sj (i.e., A collected all the shares)

If A used the same value c′ for all c′
j ’s in Qhon{

call (OTP-RUN, sid, qid, “1”, c′) and, for i = 1, 2, obtain
zi = ri − c′xi mod p from FBOS

otp .

compute z′
i,j ← zi−(

∑
(j′, r′

i,j′ , x′
i,j′ )∈Qcor

(j′, r′
i,j′ , x′

i,j′ ,∗)∈Qhon

(r′
i,j′−c′x′

i,j′ ))−(r′′
i −c′x′′

i ) mod p,

for i = 1, 2 // z′
i,j corresponds to r′

i,j − c′x′
i,j mod p

} else { // S does not need to call (OTP-RUN, . . .)
// This case happens only when at least two honest clouds exist.
// In this case, Eotp cannot obtain the output.
just choose random value for z′

1,j , z′
2,j ∈ Zp

29)

}
}
remove j from H.
vi,S

j
← −(α(j)

Eotp
z′

i,j − (m(j,r′
i)

Eotp
− c′

j ·m
(j,x′

i)
Eotp

)) mod p for i = 1, 2
send (sid, qidj , Enc(pkEotp

, {z′
i,j , vi,S

j
}2

i=1)) to A.

Fig. 14. Simulator S for Proof of Theorem 1 (case for corrupted Eotp)
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2. (Queries) A adaptively requests signatures on at most q messages m1, . . . , mq.
C answers each query by returning σi ← Sig.Sign(sk, mi).

3. (Output) A eventually outputs a message-signature pair (m∗, σ∗) and wins
the game if Sig.Vrfy(pk, m∗, σ∗) = 1 and ∀i ∈ [1, q], m∗ ̸= mi.

Further we give the definition of one-more unforgeability for the sequential
composition case adapted from [9].

Definition 2 (Sequential One-More Unforgeability for Blind Signature
Scheme [9] Adapted to sOTP Setting). A blind signature scheme (used in
the anonymous credential scheme) is one-more unforgeable if for every PPT
adversary A, the probability that A wins in the following game is negligible. The
game is defined between a challenger C and adversary A.

1. C runs params← OAC.Setupotp(1λ), (pkI , skI)← OAC.IKeyGenotp(params, w).
2. A with (pkI , params) engages in polynomially many adaptive, sequential in-

teractive protocols OAC.CredIssueotp with C (signer).
Let ℓ be the number of successful executions of OAC.CredIssueotp.

3. A engages in sequential protocols OAC.CredShowotp with C. We assume that
A does not break the security of sOTPs.
Let ℓ′ be the number of successful executions of OAC.CredShowotp.
Then we say that A wins the game if ℓ′ > ℓ.

Now we prove Theorem 2.

Proof. One-timeness follows immediately because U is forced to run the sOTP
P to prove the knowledge of a1,otp, a2,otp in OAC.CredShowotp. Blindness of
OAC.CredIssueotp also follows immediately because, as mentioned in [78], the
multiple attributes (messages) are information-theoretically hidden from I in the
Pedersen commitment. Regarding unforgeability of OAC.CredIssueotp, we prove
that if A exists which wins the game in Definition 2, we can construct a sim-
ulator S which uses A and breaks the security of the underlying non-blind PS
multi-message signature scheme [78, Sect. 4.2]. Here S acts as an adversary in
the EUF-CMA game with an external challenger Ce, and acts as a challenger in
the one-more unforgeability game with A. The reduction proceeds as follows:

1. S is given pkI from Ce in the EUF-CMA game, and sends it to A in the
one-more unforgeability game.

2. When A engages in OAC.CredIssueotp with S, S extracts (r, attU ) from the
commitment C = gr ·

∏w
i=1 Y

ai
i by using the knowledge extractor EΣ

30).
Then S sends the message (attU , a1,otp, a2,otp) to Ce to obtain a signature σ
on (attU , a1,otp, a2,otp) where S chooses random a1,otp, a2,otp. From (r, σ),
S can generate a signature σ′ on C and returns σ′ and the sOTP P including
a1,otp, a2,otp to A.

30)This involves rewinding of A as in many of the existing anonymous credential
schemes including [29, 9, 64].
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3. Let ℓ and ℓ′ be the numbers of A’s successful executions of OAC.CredIssueotp
and OAC.CredShowotp respectively. If ℓ′ > ℓ, at least one of ℓ′ executions
of OAC.CredShowotp results from the forgery, so S guesses such i (1 ≤ i ≤
ℓ′) at random, and extracts (t′, att′

U , a′
1,otp, a′

2,otp) from the i-th proof of
knowledge of a signature by using EΣ again 31).

4. Because of witness indistinguishability of OS signatures32), the extracted
(t′, att′

U , a′
1,otp, a′

2,otp) is a new message (attributes) with non-negligible
probability (i.e., S did not obtain the signature on the message from Ce

in the EUF-CMA game), and it means that S could forge a new pair of
a message and signature, and wins the EUF-CMA game. This contradicts
the fact that the underlying non-blind PS multi-message signature scheme
is secure. ⊓⊔

C Proof of E-Cash Scheme

We prove the following thereom.
Theorem 3. The e-cash scheme in Fig. 8, 9 realizes the following properties in
the RO model: balance 33), anonymity 34), identification of double-spenders,
strong exculpability, clearing.
We mainly follow the descriptions of security properties in [64, 19]. First we give
the brief explanations about each security property.
balance: This property ensures that no coalition of users and merchants can

spend more e-coins than they withdrew.
anonymity: No coalition of B and merchants {Mj}j should be able to distin-

guish a real execution of Spend protocol from a simulated one where the
simulator S is restrained from accessing the users’ secret keys.

identification of double-spenders: This property requires that, given two
valid double-spent e-coins, B should be able to identify the double-spender.

exculpability: This property captures that no coalition of B and {Mj}j should
be able to frame an honest user U by producing two valid deposits Πds =
(dpst, dpst′) such that EC.Identify(params, pkB, Πds)→ pk′

U although U did
not double-spend.

clearing: This property captures that no coalition of B and {Ui}i should be
able to deposit the e-coin instead of an honest merchant who received the
e-coin.

Definition 3 (balance). An e-cash scheme realizes balance if, for every PPT
A, the probability that A wins in the following game is negligible: (here we assume
all the users and merchants are corrupted)

31)S also controls clouds for sOTPs.
32)This is why we need “Okamoto-Schnorr” instead of plain “Schnorr”.
33)This corresponds to the unforgeability property of e-coins.
34)If B corrupts part of clouds, a coalition of B and merchants may be able to violate

anonymity by knowing when a user accessed the clouds and ran an OTP, and this
seems inevitable, so we will need to assume that clouds do not collude with B.
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1. The challenger C runs params← EC.Setup(1λ), (pkB, skB)← EC.BKeyGen(params).
C gives (params, pkB) to A and initializes the deposit DB and the withdrawal
DB DBdpst, DBwtdr ← ∅.

2. A interacts with the following oracles:
− Qwtdr(skB): Qwtdr acts as B in the Withdraw protocol with A having a

public key pkU
i

35), and invokes EΣ (with rewinding of A) to extract the
serial number snj. After each query, Qwtdr stores (pkU

i
, snj) in DBwtdr.

− Qdpst(pkB): Qdpst acts as B in the Deposit protocol with A acting as a
merchant 36). If the protocol was successful, Qdpst stores the serial number
in DBdpst.

3. After polynomially many queries, A wins the game if there exists a serial
number sn such that sn ∈ DBdpst ∧ sn ̸∈ DBwtdr.

Definition 4 (anonymity). An e-cash scheme realizes anonymity if there
exists an efficient simulator S = (EC.SimSetup, EC.SimSpend) such that every
PPT A has negligible advantage in the following game 37). (here we assume B
and all the merchants are corrupted)

1. C flips a random coin b ← {0, 1}. If b = 0, C runs params ← EC.Setup(1λ)
whereas, if b = 1, it runs params← EC.SimSetup(1λ). C gives params to A.

2. A runs (pkB, skB)← EC.BKeyGen(params), hands pkB to C, and starts adap-
tively invoking the following oracles:
− QGetUKey(i): If no public key has been created for the user Ui, QGetUKey

generates (pkU
i
, pk′

U
i
, skU

i
) ← EC.UKeyGen(params, pkB), and returns

(pkU
i
, pk′

U
i
, PK{(skU

i
) : pkU

i
= g

skU
iu ∧ pk′

U
i

= g
skU

i

u′ }).
− Qwtdr(pkB, i): Qwtdr acts as Ui with skU

i
in the Withdraw protocol with

A acting as B. We denote by coi,j the j-th successful output of Ui.
− Qspnd(pkB, i, j, pkM

k
, info): Qspnd checks if coi,j has been issued to Ui by

B (i.e., A) via Qwtdr(pkB, i). If not, Qspnd outputs ⊥. Otherwise Qspnd
checks if coi,j is already spent. If so, Qspnd outputs ⊥, and otherwise
Qspnd responds as follows where Mk, info are specified by A:
• If b = 0, Qspnd runs EC.Spend(A(pkB, σi,j , v, sn), Ui(pkB, coi,j))

with A acting as a merchant.
• If b = 1, Qspnd runs EC.SimSpend(params, pkB, v, pkM

k
, info) with-

out using coi,j except v which is already known to A during the
Withdraw protocol.

3. When A halts, it outputs a bit b′ ∈ {0, 1} and wins if b′ = b. Here A’s
advantage is defined to be Advanon

A (λ) = 2|Pr[b′ = b]− 1/2|.
35)Here we assume that A can register its public keys to B freely.
36)A can spend its e-coin with itself and after that, A can interact with Qdpst as a

merchant.
37)In our proof, EC.SimSetup is the same as EC.Setup.
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Definition 5 (identification of double-spenders). An e-cash scheme en-
sures identification of double-spenders if, for every PPT A, the following
experiment outputs 1 with only negligible probability: (here we assume all the
users and merchants are corrupted)

1. C runs params← EC.Setup(1λ), (pkB, skB)← EC.BKeyGen(params). C gives
(params, pkB) to A, and initializes the withdrawal DB DBwtdr ← ∅.

2. A is given access to Qwtdr as in Definition 3. At each invocation, Qwtdr stores
the user’s public key of the issued e-coin in DBwtdr.

3. After polynomially many queries, A outputs two valid deposits Πds = (dpst1, dpst2)
having the same serial number for which no cheating of the merchant exists
(i.e., two different double-spending challenges are used). The experiment out-
puts 1 if and only if EC.Identify(params, pkB, Πds) ̸∈ DBwtdr.

Definition 6 (weak exculpability). An e-cash scheme realizes weak exculpability
if every PPT A has only negligible advantage in the following game: (here we
assume B and all the merchants are corrupted)

1. C runs params← EC.Setup(1λ), gives params to A, and initializes the DB of
honest users DBusr ← ∅.

2. A runs (pkB, skB)← EC.BKeyGen(params) as B, and interacts with the fol-
lowing oracles.
− QGetUKey(i): If no public key has been created for the user Ui, QGetUKey

generates (pkU
i
, pk′

U
i
, skU

i
) ← EC.UKeyGen(params, pkB), and returns

(pkU
i
, pk′

U
i
, PK{(skU

i
) : pkU

i
= g

skU
iu ∧ pk′

U
i

= g
skU

i

u′ }), which is added to
DBusr.

− Qcor(i): Qcor returns skU
i
, and removes pkU

i
from DBusr.

− Qwtdr(pkB, i): Qwtdr acts as Ui with skU
i

in the Withdraw protocol with
A acting as B. We denote by coi,j the j-th successful output of Ui, which
is kept secret from A.

− Qspnd(pkB, i, j, pkM
k
, info): Qspnd checks if coi,j has been issued to Ui by

B (i.e., A) via Qwtdr(pkB, i). If not, Qspnd outputs ⊥. Otherwise Qspnd
checks if coi,j is already spent. If so, Qspnd outputs ⊥, and otherwise
Qspnd runs EC.Spend(A(pkB, σi,j , v, sn), Ui(pkB, coi,j)) with A acting as
a merchant. If the protocol fails, Qspnd outputs ⊥.

3. When A halts, it outputs Πds consisting of two valid deposits. A wins the
game if EC.Identify(params, pkB, Πds) ∈ DBusr. Here A’s advantage is de-
fined to be its success probability.

Definition 7 (clearing, [19]). An e-cash scheme realizes clearing if every
PPT A has only negligible advantage in the following game: (here we assume B
and all the users are corrupted)

1. C runs params← EC.Setup(1λ), gives params to A, and initializes the DB of
honest merchants DBmct ← ∅.

2. A runs (pkB, skB)← EC.BKeyGen(params) as B, and interacts with the fol-
lowing oracles.
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− QGetMKey(k): If no signing key pair has been created for the merchantMk,
QGetMKey generates (pkM

k
, skM

k
), and returns pkM

k
, which is added to

DBmct.
− Qcor(k): Qcor returns skM

k
, and removes pkM

k
from DBmct.

− Qrcv(pkB, k, i, j): Qrcv acts asMk with skM
k

in the Spend protocol with
A acting as Ui spending the e-coin coi,j.

− Qdpst(pkB, k, i, j): Qdpst checks if coi,j has been spent via Qrcv(pkB, k, i, j).
If not, Qdpst outputs ⊥. Otherwise Qdpst checks if coi,j is already de-
posited. If so, Qspnd outputs ⊥, and otherwise Qdpst acts as Mk deposit-
ing coi,j with skM

k
in the Deposit protocol with A acting as B.

3. When A halts, it outputs a deposit (dpst, σM
k
(dpst)). A wins the game if the

deposit is valid, pkM
k
∈ DBmct, and the deposit is not the output of Qdpst.

Here A’s advantage is defined to be its success probability.

Remark 1. Definition 6 protects only honest users (who never double-spend)
from being falsely accused. Camenisch et al. [29] define a stronger property called
strong exculpability where A can let Qspnd double-spend (or over-spend) e-
coins. In this case, A wins the game if it can produce a valid Πds = (dpst1, dpst2)
whose serial number is not used more than once by Qspnd.

Now we prove Theorem 3.

Proof (of balance (Definition 3)). This proof is similar to the unforgeability
proof of Theorem 2 where the adversary is used to break the EUF-CMA game.
Suppose that there exists A that wins the balance security game with non-
negligible probability, then it means that A can forge a signature against the
underlying non-blind PS multi-message signature scheme because it submitted
a proof of knowledge of the signature to Qdpst. We can show there exists a
simulator S (acting as C in the balance security game) using A that breaks the
unforgeability of the underlying signature scheme. I.e., for a forged serial number
snfg ∈ DBdpst, S invokes EΣ and extracts the witnesses from A by controlling
the RO and using the standard rewinding technique from [73, 79]. However, this
contradicts the security of the underlying PS signature scheme. ⊓⊔

Proof (of anonymity (Definition 4)). What we need to show here is that there
exists a simulator S that can simulate the SPK in Fig. 10 (which is generated
during the Spend protocol) by controlling the RO and using SΣ (Sect. 2) without
using the e-coin’s secrets except v which is already learned by A acting as B
during the Withdraw protocol. The SPK is based on the Σ protocol, so this is
quite straightforward. S works with SΣ as follows:

1. Given v, cds, SΣ chooses random σco = (σ1, σ2) ∈ G2
1 and sn ∈ Zp.

2. SΣ computes

Comco ←
e(σ2, g̃)

e(σ1, X̃ · g̃ v
v · g̃ sn

s )

and chooses random Comds ∈ GT .
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3. SΣ chooses random c, z1, z2, z3, z4, z5 ∈ Zp.
4. S programs the RO as follows.

c = H(e(σ1, g̃)z1 · e(σ1, g̃u)z2 · e(σ1, f̃u)z3 · e(σ1, g̃1,otp)z4 · e(σ1, g̃2,otp)z5 ·
Comc

co ∥ g
z2
u′ · (g cds

u′ )z3 · Comc
ds ∥ σco ∥ v ∥ sn ∥ Comds ∥ pkM

j
∥ infoj).

5. S accesses clouds to run the OTP P although S actually does not need the
output.

The above outputs of S are indistinguishable from the real ones because
σ1, σ2 are randomized after they are obtained from B, and further sn, ωu can
be chosen at random because they are information-theoretically hidden from B
during the Withdraw protocol, so Comds can also be random. ⊓⊔

Proof (of identification of double-spenders (Definition 5)). From the proof
of balance, no A can deposit forged e-coins, so we can assume that both dpst1 and
dpst2 are generated from legitimately issued e-coins. Further the serial numbers
are the sums of random numbers chosen by B and A, so we can ignore the
probability that two different legitimate e-coins have the same serial number.
Thus we can assume that dpst1 and dpst2 are generated from the same e-coin.
Because A is forced to use different double-spending challenges for EC.Spend
by the RO and the underlying Σ protocol is sound, EC.Identify can compute
the public key of the double-spender from the two double-spender tags with
overwhelming probability. ⊓⊔

Proof (of strong exculpability (Definition 6)). We show if A’s advantage is
non-negligible, then we can construct S that, given g′, g′ρ ∈ G1, can compute ρ
by using A and controlling the RO. If A wins the game, there are two cases:

− (Case 1) A generates one fake deposit which has the same serial number as
the deposit generated by an honest user.

− (Case 2) A generates two fake deposits framing an honest user.

S works as follows:

1. When A acting as B generates gu′ by a hash function, S returns g′u′
with

random u′ ∈ Zp.
2. Let qu be an upper bound on the number of QGetUKey queries. S chooses

1 ≤ i∗ ≤ qu at random, and answers oracle queries as follows:
− QGetUKey(i): If i ̸= i∗, S responds normally, and otherwise S chooses

(pkU
i

= gρ′

u , pk′
U

i
= (g′ρ)u′ = gρ

u′) where ρ′ is random, and simulates a
fake PK although ρ′ ̸= ρ, which is indistinguishable from the real one
because DDH holds in G1.

− Qcor(i): If i ̸= i∗, S responds normally, and otherwise S aborts.
− Qwtdr(pkB, i): If i ̸= i∗, S responds normally, and otherwise S simulates

a fake PK without knowing ρ.
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− Qspnd(pkB, i, j, pkM
k
, info): If i ̸= i∗, S responds normally, and oth-

erwise S simulates a fake SPK as in the proof of anonymity without
knowing ρ.

3. A outputs the SPK with Πds including the double-spending tags (Comds, cds),
(Com′

ds, c′
ds). If Πds does not frame Ui∗ , S aborts. Otherwise, we have two

cases as mentioned earlier:
− (Case 1) We can assume that

Comds = gρ
u′ · (g cds

u′ )ωu (where S knows only ωu),

Com′
ds = gβ′

u′ · (g c′
ds

u′ )γ′
(where A knows β′, γ′),

ρ = β′ + c′
ds · γ′ − c′

ds · ωu (∵ EC.Identify outputs gρ
u′).

Thus by extracting β′, γ′ from A with the standard rewinding technique,
S can compute ρ with non-negligible probability.

− (Case 2) Similarly we can assume that

Comds = gβ
u′ · (g cds

u′ )γ (where A knows β, γ),

Com′
ds = gβ′

u′ · (g c′
ds

u′ )γ′
(where A knows β′, γ′),

ρ = 1
c′

ds − cds
(c′

ds · (β + cds · γ)− cds · (β′ + c′
ds · γ′))

(∵ EC.Identify outputs gρ
u′).

Thus by extracting β, γ, β′, γ′ from A with the standard rewinding tech-
nique, S can compute ρ with non-negligible probability. ⊓⊔

Proof (of clearing (Definition 7)). If A’s advantage is non-negligible non-neg,
we show that we can construct a forger F against the signature scheme used by
merchants. Here F , given pk∗, plays the EUF-CMA game with the challenger C,
and plays the clearing security game with A.

1. F chooses k∗ ∈ [1, qm] at random where qm is an upper bound on the number
of QGetMKey queries made by A.

2. To answer a QGetMKey query made by A, F returns a random signing key
pair to A except F returns pk∗ in response to the k∗-th QGetMKey query.

3. To answer a Qdpst query made by A, F sends a signing query to C to obtain
the corresponding signature under pk∗.

4. At the end of the game, A outputs a valid (dpst, σM
k
(dpst)) with probability

non-neg. If k ̸= k∗, F aborts. Otherwise, F forwards (dpst, σM
k
(dpst)) to C

to win the EUF-CMA game, and the success probability of F is non-neg
qm

. ⊓⊔
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