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Abstract. Sigfox is a popular communication and security protocol which allows
setting up low-power wide-area networks for the Internet of Things. Currently, Sigfox
networks operate in 72 countries, and cover 1.3 billion people. In this paper, we make
an extensive analysis of the security mechanisms used to protect the radio interface.
We describe news attacks against data authenticity, which is the only mandatory
security property in Sigfox. Namely we describe how to replay frames, and how to
compute forgeries. In addition, we highlight a flaw in the (optional) data encryption
procedure. Our attacks do not exploit implementation or hardware bugs, nor do they
imply a physical access to any equipment (e.g., legitimate end-device). They rely
only on the peculiarities of the Sigfox security protocol. Our analysis is supported by
practical experiments made in interaction with the Sigfox back-end network. These
experiments validate our findings. Finally, we present efficient counter-measures
which are likely straightforward to implement.
Keywords: Sigfox · Security protocol · Internet of Things · Low-power Wide-area
Network · Cryptanalysis.

1 Introduction
1.1 Overview
Sigfox is a communication system used in the Internet of Things (IoT). It allows establishing
a low-power wide-area (LPWA) network between a set of remote end-devices and a central
back-end network (see Figure 1). The back-end network, owned by the Sigfox company,
is an intermediary between a service provider and its fleet of end-devices (e.g., sensors,
actuators). The messages sent by an end-device is received on the Sigfox’s back-end network
where they are made available to the service provider. Conversely, the service provider
can send messages to its end-device through the back-end network managed by Sigfox.
Different kind of subscriptions are proposed by Sigfox, from the “One” subscription (which
allows 1-2 daily uplink messages, 0 downlink message), up to the “Platinum” subscription
(101-140 daily uplink messages, 4 downlink messages).

The Sigfox system enables different services such as asset tracking, geolocation, sensitive
site monitoring, smart home, smart metering, healthcare. Sigfox uses free but regulated
frequency bands (e.g., 868-869 MHz in Europe, 902-905 MHz in North America, 922-923
MHz in Japan and South Korea). Supplied with an autonomous battery, a Sigfox end-
device is supposed to communicate through several kilometers. Its lifespan is expected to
be up to five or ten years. With respect to the radio specificities, Sigfox can be compared,
up to some point, to LoRaWAN [8, 23] and NB-IoT.

Currently, Sigfox operates in more than 72 countries on all continents [16]. The
∗This is the full version of the paper “Sigforgery: Breaking and Fixing Data Authenticity in Sigfox”
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multiple networks cover 1.3 billion people, and represent 56 million daily messages from 17
million IoT devices. Figure 2 depicts the coverage of Sigfox networks in several geographic
areas [15].

Figure 1: Sigfox architecture (source: [19])

1.2 Contributions
In this paper we present different flaws and attacks that are practicable against Sigfox,
and describe counter-measures that are straightforward to implement. More precisely, our
contributions are the following.

Unified Description of the Security Mechanisms. For several years, the precise security
mechanisms implemented in Sigfox remained undisclosed. Several past official technical
documents have presented some security features, but with very few details. It is only
recently that a (incomplete) official specification was published. With the help of unofficial
technical documents, we provide in this paper a unified and detailed description of the
security mechanisms used in Sigfox, confirmed by our own experiments.

Recap and Extension of Previous Attacks. We recall and describe with details the
attacks that have been formerly proposed by other authors (and which we deem valid):
Lifchitz [7], Euchner [5], and Coman, Malarski, Petersen, and Ruepp [1]. We extend several
of these attacks with scenarios that have not been considered so far.

These attacks break data authenticity, and hinder availability of the system. We also
recall another type of attack (key extraction), which is not directly related to the way the
security mechanisms are defined and used in Sigfox. Yet, this attack still poses a threat
which, according to us, must be considered.

New Attacks against Sigfox. We present a flaw in the Sigfox encryption procedure, and
two news attack against Sigfox. These two attacks break data authenticity.

The flaw in the encryption procedure allows to passively get access to the plaintext
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(a) Europe

(b) South Africa (c) Taiwan, South Korea and Japan

Figure 2: Sigfox coverage in several geographic areas (source: [15]). Actual deployments
appear in blue, ongoing deployments appear in purple.
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data in a specific case when encryption is activated.
Regarding the attacks, we first explain how to replay previous downlink encrypted

frames to an end-device (even once encryption is deactivated). Then, we describe how to
forge a valid uplink frame (i.e., with a correct MAC tag) from a genuine uplink frame. We
describe how to forge such frames with encrypted and clear frames. The complexity of
this attack is O(1) (in contrast to previous attacks against Sigfox), and it allows deceiving
the back-end network.

The attacks that we propose do not exploit potential implementation or hardware
bugs. They do not imply a physical access to any equipment (in particular a legitimate
end-device). They are independent of the means used to protect the secret parameters (e.g.,
a secure element in the end-device). These attacks depend exclusively on the peculiarities
of the Sigfox MAC and encryption functions. The adversary needs only to act on the air
interface (i.e., to eavesdrop on legitimate frames, and to send the forged frames to the
back-end network).

Table 1 summarises the different attacks presented in this paper.

Table 1: Attacks against Sigfox. The context indicates if the frames are encrypted (“ENC”)
or not (“MAC only”). The direction indicates if the uplink frames (“UL”) or the downlink
frames (“DL”) are targeted. The symbol “∗” indicates that the corresponding attack is
doable under conditions, or probabilistic.

Attack Description Security property Context Direction

Frame replay [7, 5]
Section 3.1.3 Data authenticity MAC only,

ENC∗ UL, DL

Denial of service
[5]

Section 3.2.3
Section 3.2.4

Availability MAC only,
ENC∗ UL, DL

Forgery: exhaustive
search

[5]
Section 3.3.3 Data authenticity MAC only,

ENC UL, DL∗

Lack of encryption Section 4.1 Data confidentiality ENC UL
Replay of downlink
encrypted frames Section 4.2 Data authenticity ENC DL

Forgery: comple-
tion attack Section 4.3 Data authenticity MAC only,

ENC UL

Key extraction [5]
Entity authentication,
data authenticity,
data confidentiality

MAC only,
ENC UL, DL

Practical Experiments. We have validated the MAC tag forgeries that we describe in
two ways. First “offline”, with the librenard library developed by Euchner [3]. This library
implements the same cryptographic functions as a legitimate Sigfox end-device (except
the encryption function). Euchner has validated librenard with practical experiments
done in interaction with the Sigfox back-end network. In addition, librenard provides a
function which takes as input an uplink frame, and verifies it (including the MAC tag).
We have completed the librenard library in order to support encryption, and used it to
successfully validate the MAC tag forgeries that we describe. Secondly, we have made
real-life experiments, and we have observed that the forged frames were accepted on the
Sigfox back-end network.

Efficient Counter-measures. We present efficient counter-measures which are likely
straightforward to implement for most of them. They allow thwarting all the aforementioned
attacks.
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1.3 Responsible Disclosure
We reported the results of our analysis (attacks and counter-measures) to Sigfox (August
19, 2020). Sigfox acknowledged receipt of our paper. At the time of writing this extended
version, and despite new messages sent to Sigfox, we have received no further news.

1.4 Outline
Section 2 presents the security mechanisms used in Sigfox. The previously known attacks
against Sigfox are presented in Section 3. The new attacks are described in Section 4. The
counter-measures are presented in Section 5. Finally, we conclude in Section 6.

1.5 Notation
0x This prefix indicates an hexadecimal format (e.g., 0x4D).
0b This prefix indicates a binary format (e.g., 0b10).
x‖y Concatenation of values x and y.
|x| Size of x.
msb(x, n) n most significant bits of x.
lsb(x, n) n least significant bits of x.
max(a, b) Maximum value between a and b.
min(a, b) Minimum value between a and b.
x[i] Byte i of x.
x[i · · · j] Bytes i to j, i ≤ j, of x.
selfpad(B) The function selfpad takes as input a byte string B, and pads B with

itself until the length of the resulting string is a multiple of 16 bytes. If
B’s length is a multiple of 16 bytes, then selfpad(B) = B.

2 Description of the Sigfox Security Protocol
This section presents the cryptographic mechanisms used in the Sigfox system in order to
protect the radio interface (i.e., between an end-device and the back-end network). More
specifically, it focuses on the cryptographic and security mechanisms used to compute
uplink (from the end-device to the back-end network) and downlink messages.

A partial description of the security and cryptographic mechanisms used in Sigfox
can be found in the official specification [21]. This specification can be completed by
explanations provided by Euchner in his “open Sigfox specification” [5]. The latter is the
result of reverse engineering, validated by practical experiments made with a legitimate
Sigfox end-device. To the best of our knowledge, there exists no official specification
describing the Sigfox encryption function which is publicly available. Pinault has presented
this encryption function [14]. We have corrected Pinault’s description through the reverse
engineering of the X-CUBE-SFOX package [24] done with the Ghidra tool [12]. Our
findings have been validated with practical experiments made in interaction with the
back-end network.

We provide the technical details that are necessary and sufficient for the remainder
of the paper. We skip the description of the operations done on the PHY layer (error
correction, “whitening”, etc.) prior to transmitting a frame, as well as the optional use
of replicas in the case of an uplink frame. We refer the interested reader to the Sigfox
specification [21].

The security mechanisms used on the radio interface are based on the AES block cipher
[11], and a static symmetric key called “Network Access Key” (NAK). The NAK key is
shared between the end-device and the back-end network. No session key derivation is
made, and the same static NAK key is used by the end-device for its whole lifetime.



6 (In)security of the Radio Interface in Sigfox

2.1 Frame Format
2.1.1 Uplink Frame.

The format of an uplink frame (i.e., sent by the end-device to the back-end network) is
the following (length in bit)

ft (13)‖hdr (48)‖payload (0-96)‖mac (16-40)‖crc (16)

where hdr corresponds to

li (2)‖bf (1)‖rep (1)‖cnt (12)‖devid (32)

The frame type ft depends mainly on the nature of the frame (application, control),
and its length. The payload field carries the (optionally encrypted) data, which size ranges
from 0 to 12 bytes, or is 1-bit long (in such a case the data is carried in the header hdr,
and payload is empty). The field mac carries the frame’s MAC tag (which length ranges
from 2 to 5 bytes – see Section 2.4), and crc carries the CRC tag.

In the hdr field, the parameter li is used to indicate the size of the MAC tag, or to carry
the 1-bit data. The parameter bf indicates if a downlink frame is expected in response
to the uplink frame. rep is always set to 0. The 12-bit parameter cnt is a frame counter,
incremented each time a new uplink frame is sent (see Section 2.2). The parameter devid
corresponds to the end-device’s identifier (encoded in little endian format).

2.1.2 Downlink Frame.

The format of a downlink frame is the following (length in bit)

ft (13)‖ecc (32)‖payload (64)‖mac (16)‖crc (8)

The frame type ft is constant. The parameter ecc is an error correction code computed
over payload‖mac‖crc. The (optionally encrypted) data is carried in payload, which is
8-byte long. The fields mac and crc carry respectively the frame’s MAC tag and CRC tag.

2.2 Frame Counter
The purpose of the frame counter cnt is to detect frame replays. Although, the length
of the cnt field is 12 bits, the maximum value of this parameter is 2i − 1, i ∈ {7, . . . , 12}.
Presumably, i depends on the Sigfox subscription (i.e., the maximum of allowed daily
uplink frames). When the maximum value of cnt is reached, this parameter must be set
to 0.

A new uplink message is accepted by the back-end within an acceptance interval (see
Figure 3). Let cnt = n be the counter value of the last (valid) received uplink message,
and cnt = n′ be counter value of the newly received message. Assuming that all other
parameters are correct, especially the MAC tag mac, the following rules are applied by the
back-end [17]:

• If n′ ≤ n then the message is silently discarded.

• If n < n′ ≤ n + mi then the message is accepted, and a warning is raised.

• If n′ > n + ma then the message is not delivered, and an error is raised.

The values mi and ma depend on the number of elapsed days d between the two frames
n and n′ (sliding day; reception the same day accounts for 1), and the maximum amount
of daily uplink messages c (defined per contract):
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n n + mi n + ma

reject
(warning)
accept accept

(error)
reject

Figure 3: Acceptance interval

• mi = min(300× d, c× (d + 2)),

• ma = max(300× d, c× (d + 2)).
The warning and the error events mean that a corresponding information is notified on

the back-end side (but no specific message is sent to the end-device).
If a desynchronisation occurs with respect to the message counter between the end-

device and the back-end network (error case), the delivery of the incoming messages is
interrupted. This issue can be fixed through a “disengage” procedure. It implies for the
end-device’s owner to log into the back-end network. Eventually the delivery of uplink
messages by the back-end network to the end-device’s owner is resumed [18]. Yet the uplink
messages sent in the meantime are discarded by the back-end network, hence lost [17].1

2.3 Encryption Function
The format of encrypted and clear frames is the same. Encryption is (de)activated on the
back-end side, upon request of the end-device’s owner. Encryption cannot be done on a
per frame basis. That is, either all the frames are encrypted or none. Then, the back-end
acts accordingly. This implies in particular that, if encryption is activated, the downlink
frames are also encrypted.

The encryption of a frame is made with AES-CTR. From the NAK key K, and two
16-byte values V0, V1, an encryption key Ke and a value W for the counter mode are
computed.

The value Vb, b ∈ {0, 1}, is the concatenation of the bit b, followed by the 4-byte
end-device’s identifier devid, and 95 zero bits:

V0 = 0‖devid‖0 · · · 0
V1 = 1‖devid‖0 · · · 0

The encryption key Ke and the value W are computed as

Ke = AES(K, V0)
W = AES(K, V1)

A counter ctr is computed by concatenating the first 104 bits of W , a 4-bit direction
value dir, the 1-byte counter rc, and the 12-bit frame counter cnt:

ctr = msb(W, 104)‖dir‖rc‖cnt

The parameter rc is an implicit counter which is incremented any time cnt wraps
around. The value dir indicates the direction: if uplink, then dir = 0, otherwise dir = 1.

Let ptxt be some n-bit plaintext data (n ≤ 96) to be sent in a frame corresponding to
counter cnt. The encryption of ptxt is done as follows:

1. msk = msb(AES(Ke, ctr), n)

2. ctxt = msk ⊕ ptxt

The encrypted data ctxt is carried in the payload field.
1Regarding the interpretation and the consequences of the error event see Section A.
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2.4 MAC Function
The message authentication code (MAC) is based on AES in CBC-MAC mode [6] with a
null IV. The key used to compute a MAC tag is the static NAK key K. The MAC function
outputs a tag which length (ranging from 2 to 5 bytes) depends on the size of the input
data. The MAC tag of a downlink frame is 2-byte long.

In order to get an input which length is a multiple of 16 bytes, the data to be authenti-
cated is padded with itself. For instance, if the data corresponds to 7 bytes B0‖ · · · ‖B6,
the input to the inner CBC-MAC computation is then B0‖ · · · ‖B6‖B0‖ · · · ‖B6‖B0‖B1. If
the length of the data is a multiple of 16 bytes, then the data is unchanged.

Let data be a byte string. Let selfpad be the function that pads the input byte string
with itself, and outputs a byte string which length is a multiple of 16 bytes. A MAC tag t
(carried in the field mac) is computed as follows:

1. ˜data = selfpad(data)

2. C = AES-CBC-MAC(K, ˜data)

3. t = msb(C, n)

with n ∈ {16, 24, 32, 40}.
The MAC tag of an uplink frame is computed with the following data as input:

• hdr‖payload = li‖bf‖rep‖cnt‖devid‖payload if the Sigfox encryption function is not
used;

• rc‖hdr‖payload = rc‖li‖bf‖rep‖cnt‖devid‖payload if the Sigfox encryption function is
used (then payload carries the encrypted data).

The MAC tag of a downlink frame is computed with the following data as input (length
in bit):

devid (32)‖lsb(cnt, 8)‖0b0000 (4)‖msb(cnt, 4)‖payload (64)‖msb(devid, 16)

where devid is encoded in little endian format.

3 Known Vulnerabilities in Sigfox
This section presents the vulnerabilities and attacks against Sigfox previously published
(that we are aware of).

3.1 Frame Replay
3.1.1 Issue

The security in Sigfox is based on a static symmetric key shared between the end-device
and the back-end network. This same key is used to compute a MAC tag for all frames.
In order to forbid replays, counters are involved in the MAC tag computation:

• the at most 12-bit counter cnt when the frame is not encrypted,2

• cnt and the 8-bit counter rc when the frame is encrypted.

When cnt reaches its highest value, it is reset to 0. Therefore, the ability to replay
frames is natural in Sigfox due to the short size of the message counter cnt. Yet, two cases
must be considered depending on whether the frame is encrypted or not.

2The parameter cnt is encoded as a 12-bit field. Yet its maximum value varies. In the remainder of
this document, we write |cnt| = i bits to indicate that the maximum value of cnt is 2i − 1.
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3.1.2 Clear Frame

The maximum value for the message counter cnt is 2i − 1, i ∈ {7, 8, 9, 10, 11, 12}. Once
cnt reaches its highest value, it is reset to 0. When cnt wraps around, the counter rc
is also incremented. Nonetheless, this latter parameter is not involved in the MAC tag
computation when encryption is not applied. Therefore when frames are protected only
with a MAC tag, past frames become cryptographically valid anew when cnt is reset.
Hence these previous frames can be replayed by an adversary to the back-end network
as indicated by Lifchitz [7] and Euchner [5]. In addition, as mentioned by Euchner [5],
the adversary can also replay downlink frames (to the end-device) if the bidirectional
procedure is applied by the targeted end-device.

An end-device can send at most 140 frames per day with the “Platinum” subscription.
This means that cnt wraps around every 212/140 ' 29.26 days. Therefore, in such a case,
roughly every month at most 4096 new uplink messages, and at most 29.26× 4 ' 117 new
downlink messages become available to the adversary for this replay attack.3

With this scenario, the adversary can deceive the end-device’s owner (who receives the
replayed uplink frames), or the end-device which can be an actuator, and executes actions
upon reception of a downlink frame. In addition, each replayed uplink frame lowers the
number of remaining frames (which is bounded per contract) that the legitimate end-device
is allowed to send daily.

3.1.3 Encrypted Frame

The ability to replay uplink encrypted frames is questionable. Indeed, when encryption is
applied, the 8-bit counter rc is involved in the MAC tag computation, in addition to cnt.

Let us consider |cnt| = 7 bits, and assume that the end-device can send no more
than c = 2 uplink frames per day with such a size for cnt. Then the maximum value for
rc‖cnt is reached after 2|rc|+|cnt|/c = 214 days ' 45.5 years. Yet, if the adversary is able
to compel the end-device to send messages at a higher frequency (e.g., the end-device
sends frames constantly), this amount can be reached much faster. For instance, the
shortest uplink frame is 112-bit long. If the end-device uses a 600-baud symbol rate
to send a frame, then the number of messages sent in one day at this speed reaches
24× 3600× 600/112 ' 218.8 > 215 = 2|rc|+|cnt|.

Likewise, let us assume that c = 140 uplink frames per day when |cnt| = 12 bits.
Then the maximum value for rc‖cnt is reached after 2|rc|+|cnt|/c = 212.9 days ' 20.8 years.
Nonetheless, at a speed of 112/600 second per frame, the maximum value for rc‖cnt is

reached after 2|rc|+|cnt|

24× 3600× 600/112 ' 21.2 days (if uplink frames are sent continuously).
Therefore, assuming that the adversary is able to force a legitimate end-device to

send more frames than allowed, the adversary is able to replay encrypted frames. This is
possible either if rc wraps around, or if rc gets stuck to its highest value once the latter is
reached, because cnt still wraps around.

3.2 Denial of Service
3.2.1 Issue

As explained in Section 2.2, the back-end network verifies the frame counter cnt according
to an acceptance interval. The natural ability provided by Sigfox to replay previous (non
encrypted) frames can be used to twist these rules, and harm the availability of the system.

Below we present a scenario and its variant from [5, 1] that allow performing a denial
3The time necessary for the counter to wrap around depends on the number of maximum daily uplink

frames. The best case for the adversary corresponds to the “Platinum” subscription. That is, with respect
to this attack, the more expensive the subscription, the less the security level.
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of service attack (DoS). These scenarios rely upon a frame replay, hence are practicable if
encryption is not applied. We later discuss what can be done if the frames are encrypted.

3.2.2 Attack

Let cnt = n be the counter value of the last frame sent by the legitimate (targeted)
end-device, and received by the back-end network. In this scenario, presented by Euchner
[5], the adversary makes use of a previous uplink frame such that

• its counter value cnt = n′ belongs to the acceptance interval defined by n, and

• n′ is as high as possible compared to n.

Since the frame replayed by the adversary is valid (with respect to the MAC tag, and the
counter), n′ becomes the new counter reference on the back-end side. Therefore any new
frame sent by the legitimate end-device is rejected until its counter value exceeds n′.

For instance, let us assume that the adversary acts the same day as the last legitimate
sent uplink frame (i.e., the elapsed time between the two frames is d = 1). If the maximum
daily amount of uplink frames is c = 140 (corresponding to the “Platinum” subscription),
then

300× d = 300
c× (d + 2) = 420

The adversary replays a previous uplink frame which counter is equal to n′ = n + 420.
Since n′ ≤ n + max(300× d, c× (d + 2)), and the MAC tag is valid, the frame is accepted
by the back-end network. All subsequent uplink frames sent by the legitimate end-device
are silently discarded by the back-end network as long as their counter is lower or equal to
n′ = n + 420. The duration of this DoS is at least 420/140 = 3 days. It may be longer if
the legitimate end-device sends less than 140 frames per day.

Now, let us assume that c = 2 (corresponding to the “One” subscription). Then

300× d = 300
c× (d + 2) = 6

The adversary replays a previous uplink frame which counter is equal to n′ = n + 300.
Again, the frame is accepted by the back-end network. In this case, the duration of the
DoS is at least 300/2 = 150 days.

Coman, Malarski, Petersen, and Ruepp [1] describe a variant of the above scenario
where the adversary replays not one but several frames. The adversary uses frames such
that the counter gap between two frames it sends consecutively is the maximum possible.
That is, max(300 × d, c × (d + 2)). Then the duration of the DoS is multiplied by the
number of replayed frames.

For instance, with the same figures as above, in the case of the “Platinum” subscription,
the adversary replays first a frame which counter is equal to n + 420, followed by frames
which counter is respectively equal to n + 840, n + 1260, . . ., n + 3780, and finally n + 4095.
Doing so, the adversary replays the minimum number of frames, and achieves the longest
duration for the DoS. That is, 10 frames are used, which causes an interruption in message
delivery for 4095/140 = 29 days at least.4

4Coman et al. present also another DoS attack based on a previous definition of the acceptance interval
(which is described in [1] as static) [9]. This attack is now thwarted by the use of the evolving interval
(which is computed in particular from the number d of elapsed days). Seemingly, the definition of the
acceptance interval changed at some point in time after the publication of Coman et al.’s paper.
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3.2.3 Downlink Frames

We observe that the scenario described in Section 3.2.2 does not only forbid the back-end
network from receiving uplink frames from the legitimate end-device. It forbids also the
latter from receiving downlink frames from the back-end network.

First, the back-end network sends a downlink frame only upon reception of an uplink
frame (when the bidirectional procedure is applied). Therefore, if the adversary does not
send further uplink frames, the back-end network will not transmit downlink frames. In
addition, a downlink frame does not carry a frame’s counter (presumably the downlink
frame is computed from the corresponding uplink frame’s counter, although this is not
explicitly stated in the Sigfox specification [21]). It is highly likely that, upon reception of
a downlink frame, the end-device verifies the MAC tag based on its current value of the
frame’s counter (that is, the uplink frame’s counter). In the DoS scenario, the legitimate
end-device and the back-end network are desynchronised with respect to the frame’s
counter (the back-end network takes as new reference a value which is much higher that
the current counter value stored by the end-device). Consequently, even if the back-end
network sends a downlink frame, the verification of its MAC tag by the end-device yields
an error. Hence the downlink frame is rejected by the end-device. This shows that the DoS
attack impacts not only on the back-end network but also on the legitimate end-device.

3.2.4 Encrypted Frames

The same scenario and variant presented in Section 3.2.2 may be practicable with encrypted
frames under condition. This is possible if the adversary succeeds in forcing a legitimate
end-device to send frames at a higher frequency (i.e., more daily frames than allowed) so
that the extended 20-bit counter rc‖cnt wraps around (see Section 3.1.3).

With respect to the variant described by Coman et al., the adversary can then replay
much more than 10 frames, and each replayed frame extends the DoS by 420/140 = 3 days
at least.

3.3 MAC Tag Forgery: Exhaustive Search
In this section, we describe a scenario aiming at forging a valid uplink frame. That is,
producing a valid MAC tag. This scenario holds whether encryption is applied or not.

3.3.1 Issue

This scenario is based on the fact that the frame’s MAC tag in Sigfox is rather short (down
to 2 bytes).

3.3.2 Uplink Frame

As indicated by Euchner [5], an adversary can try to forge a valid MAC tag by successive
trials. The complexity of this scenario is O(2t) where t is the bit length of the MAC tag.

Sigfox allows two different symbol rates to transmit an uplink frame: 100 and 600
bauds. Let us consider an uplink frame with an empty payload (possibly with 1-bit data
stored in the “length indicator” parameter li). In such a case the MAC tag is 2-byte long.
The size of such a frame is 14 bytes = 112 bits (be the frame encrypted or not). In order
to find a correct value for the MAC tag, 2t = 216 trials must be done by the adversary on
average. That is, the adversary must choose a 2-byte value, build a frame, and send it to
the back-end network. This translates into 216 × 112/600 ' 12233 seconds ' 3.4 hours.
With a 100-baud symbol rate, the duration of the attack is roughly 20.4 hours.

Likewise, a frame carrying a 12-byte payload is 26-byte long, with a 2-byte MAC tag.
The duration of the same kind of attack corresponds to 6.3 (resp. 37.9) hours at 600 (resp.
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100) bauds.
These figures correspond to an attack made with one end-device. Yet, the attack can be

paralleled with multiple end-devices, which reduces its duration in proportion. Moreover,
these figures are regulation respecting in regard to the transmission speed. Nonetheless,
the adversary does not have to comply with these rules, and may push its end-devices to
their speed limit.

According to [2], if the back-end network receives two many invalid frames, the
corresponding end-device is blocked. Therefore, if the MAC forgery is not successful, this
scenario can turn to a DoS attack.

3.3.3 Downlink Frame

The adversary can also try to forge a valid MAC tag for a downlink frame, as briefly
mentioned by Euchner [5]. First the adversary must expect an uplink frame which bf
parameter is set to 1 (which triggers a bidirectional exchange).

When the end-device sends such an uplink frame, it waits for some time for a downlink
frame. The duration Trx of the reception window depends on the geographic area. For
instance, in Europe Trx = 25 seconds [21].

Let v be the time needed by the end-device to receive and process a downlink frame,
and t = 16 bits be the (fixed) size of a MAC tag in a downlink frame. The number of
trials allowed to the adversary is Trx/v, and the probability of success is p = 2−t × Trx/v.
For instance, assuming that v = 1 second, we have that p ' 2−11.4. The back-end network
uses a 600-baud symbol rate to send a downlink frame. Let us assume that the end-device
is able to receive and process a frame at this corresponding speed.5 A downlink frame is
28-byte long. Therefore, a downlink frame is sent in 224/600 second, and the probability
of success is then p = 2−t × Trx × 600/224 ' 2−9.9.

3.4 Key Extraction
In this section, we present yet another attack, although it is not related to the way the
security mechanisms are defined and used in Sigfox. However, it poses a threat which,
according to us, is worth to consider.

3.4.1 Issue

As indicated by Euchner [5], the static symmetric key NAK shared between the back-end
network and the end-device is not always protected when it is stored in the end-device.

3.4.2 Attack

An adversary able to get a physical access to the end-device may extract the NAK key. For
instance, Euchner validated such a possibility with a pycom SiPy 1.0 hardware module.

With the end-device’s symmetric key, the adversary can passively decrypt encrypted
uplink and downlink frames. It can also forge uplink and downlink frames. That is, it can
impersonate the end-device to the back-end network, and conversely.

4 New Attacks against Sigfox
In this section we present two new attacks against Sigfox, and highlight a flaw in the
encryption procedure.

The attacks that we present break data authenticity. The first attack allows replaying
5This implies in particular that the cryptographic computations are negligible compared to the

communication process, which is likely the case in such a context.
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downlink encrypted frames. The second attack allows forging uplink (clear or encrypted)
frames.

4.1 Lack of Encryption: Single-bit Case
4.1.1 Issue

In Sigfox, data authenticity is mandatory. Sigfox provides also an optional encryption
scheme.

Variable length data can be transmitted in an uplink frame: 1 to 12 bytes, and 1 bit.
If the length is 1-byte long at least, data is carried in the payload field. If the data is
1-bit long (single-bit case), the payload field is empty, and data is carried in the “length
indicator” li field, which is located in the frame’s header hdr.

When encryption is activated, data is encrypted if it is carried in the payload. However,
our experiments show that, in the single-bit case (i.e., empty payload), data is not encrypted.

It is unclear to us if the lack of encryption in the single-bit case is a choice or a bug. It
may be possible that computing 128 bits in order to encrypt 1 bit is deemed to energy
costly. In the other hand, it is also possible that the encryption function reads the data to
be encrypted in the payload field, which would yield nothing when this field is empty.

4.1.2 Consequence

When encryption is activated, data is not always encrypted. In the single-bit case the
plaintext data remains accessible to a passive eavesdropper.

The fact that a single bit be not encrypted may appear as not very significant. However,
according to us, one should not presume which purpose the final user intends to achieve
with a security mechanism. If a security protocol claims to provide some property (in that
case, confidentiality), it must ensure the latter. Here, Sigfox does not achieve the intended
security level.

4.2 Replay of Downlink Encrypted Frames
4.2.1 Issue

As explained in Section 3.1, Sigfox allows “naturally” frame replays because the message
counter cnt is rather short, and wraps around when it reaches its maximum value. The size
of this counter is at most 12 bits. Nonetheless, when encryption is activated, an additional
8-bit counter rc is involved in the MAC tag computation of an uplink frame. In such a
case the possibility for this extended counter rc‖cnt to wrap around is questionable (see
Section 3.1.3). However, according to the Sigfox specification [21], the parameter rc is not
involved in the MAC tag computation of a downlink frame even when it is encrypted.

4.2.2 Attack

Since only cnt is involved in the MAC tag computation of a downlink (encrypted or clear)
frame, it is possible to replay downlink encrypted frames when the counter cnt wraps
around. In addition, such encrypted frames can be replayed even if encryption is later
deactivated. Indeed, the MAC tag is valid (anew), and the encrypted data will be accepted
as clear data. In such a case, this may lead the end-device to adopt an incoherent (possibly
harmful) behaviour because what is then taken as plaintext data is essentially random data.
Conversely, the adversary can replay a previous clear frame once encryption is activated.
The end-device will use the plaintext data as input to the decryption function, which yields
pseudo-random data.

In response to the ability to replay (MAC only) uplink frames, Sigfox indicates (to
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Euchner [2]) that activating encryption extends the frame’s counter from 12 to 20 bits with
the use of the 8-bit implicit counter rc, and thwarts frame replays. We observe that the
way downlink encrypted frames are computed contradicts this argument raised by Sigfox.

4.3 MAC Tag Forgery: Completion Attack
In this section we present a scenario that allows an adversary to forge valid uplink frames
(encrypted or not). Although this attack is an existential forgery (rather than universal),
its complexity is O(1) (in contrast to the attack described in Section 3.3). We describe
unconditional and conditional forgeries.

We have experimentally validated the MAC tag forgeries first with the librenard
library provided by Euchner [3]. We recall that librenard has been validated by Euchner
with practical experiments done in interaction with the Sigfox back-end network. These
experiments confirm in particular that librenard implements correctly the Sigfox MAC
function. Secondly, we have validated the forgeries with real-life experiments done in
interaction with the back-end network.

This attack scenario does not apply to downlink frames because they all have the same
fixed size.

4.3.1 Issue

The MAC tag is computed in CBC-MAC mode (with AES). This mode is insecure for
variable length inputs, and yet, in Sigfox, the data to be authenticated in an uplink frame
may have different sizes (in a downlink frame, the length of payload is fixed to 8 bytes).

In order to extend the input data up to a multiple of 16 bytes, the data is padded with
itself. For instance, if the input to the MAC function corresponds to seven bytes m =
B0‖ · · · ‖B6, the data in input to the inner CBC-MAC computation is then B0‖ · · · ‖B6‖B0‖
· · · ‖B6‖B0‖B1 (16 bytes). Now, if the input to the MAC function corresponds to the
following 14 bytes m′ = B0‖ · · · ‖B6‖B0‖ · · · ‖B6, then, after padding, the data in input
to the inner CBC-MAC computation is B0‖ · · · ‖B6‖B0‖ · · · ‖B6‖B0‖B1. That is, the same
data as for m. Consequently, the MAC tag of m′ is equal to that of m (see Figure 4). This
allows completion attacks against the MAC function in Sigfox.

Due to the constraints that bind the data length, the MAC tag length, and the value
of the “length indicator” field li, not all kinds of modification are possible. Nonetheless,
several are doable.

m = B0‖ · · · ‖B6

selfpad

B0‖ · · · ‖B6‖B0‖ · · · ‖B6‖B0‖B1

CBC-MAC

t

m′ = B0‖ · · · ‖B6‖B0‖ · · · ‖B6

selfpad

B0‖ · · · ‖B6‖B0‖ · · · ‖B6‖B0‖B1

CBC-MAC

t′

=

=

Figure 4: Basic principle of the completion attack against the Sigfox MAC function
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4.3.2 Overview

The goal of the adversary is to forge an uplink frame with a valid MAC tag. To do so, the
adversary reuses an existing valid uplink frame. Such a frame can be picked from the set
of previous frames when they can be replayed (this excludes an encrypted frame), or can
be a fresh uplink frame eavesdropped and blocked by the adversary (i.e., not received by
the back-end network). In the latter case, the frame used can be encrypted or not. The
constraints in order for the adversary to be successful are the following.

1. The “length indicator” parameter li must be the same in the forged frame and in the
original frame used by the adversary. This guarantees also that the size of the MAC
tag in the forged frame is equal to the size of the tag in the original frame.

2. The 16-byte blocks used as inputs to the inner CBC-MAC computation must be the
same for the forged and the original frames. That is, when padded with itself the
data of the forged frame must be equal to the data of the original frame when also
padded with itself.

3. The payload length of the forged frame must be at most 12-byte.

There are two cases: when the frame is encrypted and when it is not (clear frame).
Table 2 lists the different values for the “length indicator” parameter li, and the cor-

responding length of the MAC tag mac in an uplink frame (encrypted or not). Table 3
summarises the different forgeries that we present next.

Table 2: li values and MAC tag sizes for an uplink frame

data |hdr‖payload| (byte)
(clear frame)

|rc‖hdr‖payload| (byte)
(encrypted frame) li |mac| (byte)

0b0 6 7 0b10 2
0b1 6 7 0b11 2

(empty) 6 7

0b00 2
1 byte 7 8
4 bytes 10 11
8 bytes 14 15
12 bytes 18 19
3 bytes 9 10

0b01 37 bytes 13 14
11 bytes 17 18
2 bytes 8 9

0b10 46 bytes 12 13
10 bytes 16 17
5 bytes 11 12

0b11 59 bytes 15 16

4.3.3 Clear Frame

Let us consider first how the adversary can produce a forgery from a non-encrypted uplink
frame.

The sizes |hdr‖payload| ∈ {7, 8, 12} corresponding to |payload| ∈ {1, 2, 6} are of interest
to the adversary.
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Table 3: Summary of the forgeries for uplink frames. The “Cond.” field indicates if some
(probabilistic) condition must be fulfilled in order for the forgery to be possible. The sizes
are given in byte.

Type of
frame

Original
frame Forged frame Cond. (li, |mac|)

Clear |pld| = 1 pld′ = pld‖hdr‖pld |pld′| = 8 no (0b00, 2)
Clear |pld| = 2 pld′ = pld‖hdr‖pld |pld′| = 10 no (0b10, 4)
Clear |pld| = 6 pld′ = pld‖hdr[0 · · · 3] |pld′| = 10 no (0b10, 4)
Encrypted (empty) pld′ = rc‖hdr‖rc |pld′| = 8 no (0b00, 2)
Encrypted |pld| = 1 pld′ = pld‖rc‖hdr |pld′| = 8 yes (0b00, 2)
Encrypted |pld| = 4 pld′ = pld‖rc‖hdr[0 · · · 2] |pld′| = 8 yes (0b00, 2)
Encrypted |pld| = 5 pld′ = pld‖rc‖hdr[0 · · · 2] |pld′| = 9 no (0b11, 5)

Type “clear_1”. Let us first consider a genuine frame

frame = ft‖hdr‖payload‖mac‖crc
= ft‖hdr‖pld‖mac‖crc

such that |payload| = |pld| = 1 byte (ft, hdr, etc., correspond respectively to the current
values of the parameters ft, hdr, etc.).

From frame, the adversary computes

frame′ = ft‖hdr‖payload‖mac‖crc
= ft′‖hdr′‖pld′‖mac′‖crc′

as follows:

1. hdr′ = hdr

2. pld′ = pld‖hdr‖pld (and |pld′| = 8 bytes)

3. The adversary chooses the frame type ft′ in accordance with |pld′|.

4. mac′ = mac

5. The adversary computes crc′ from hdr′‖pld′‖mac′.

Since |pld| = 1 byte, we have that (li, |mac|) = (0b00, 2) in frame. Since |pld′| = 8 bytes,
(li, |mac|) in frame′ must be, and is indeed, equal to (0b00, 2) (because hdr′ = hdr).

The MAC tag mac′ = mac is a valid tag for frame′. Indeed this tag is valid for frame.
This means that the data used as input to the inner CBC-MAC computation for frame is
(size in byte)

hdr (6)‖pld (1)‖hdr (6)‖pld (1)‖‖hdr[0 · · · 1] (2)

In turn, the data used as input to the inner CBC-MAC computation in order to verify
the MAC tag mac′ in frame′ is

hdr′ (6)‖pld′ (8)‖hdr′[0 · · · 1] (2)
=

hdr (6)‖pld (1)‖hdr (6)‖pld (1)‖‖hdr[0 · · · 1] (2)

Since the MAC tag is computed with the same key, and the same input data in either case
(frame and frame′), we have that mac′ = mac is a valid MAC tag for frame′. Hence,
frame′ is a valid uplink frame forged by the adversary.
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Type “clear_2”. The same holds with a genuine frame frame = ft‖hdr‖pld‖mac‖crc
with |pld| = 2 bytes. The adversary forges a frame frame′ carrying a payload (size in
byte)

pld′ (10) = pld (2)‖hdr (6)‖pld (2)
(with the corresponding frame type and CRC value). The frame frame′ is a valid frame
for the MAC tag mac′ = mac. Indeed, (li, |mac|) = (0b10, 4) in frame and frame′, and

hdr′ (6)‖pld′ (10) = hdr (6)‖pld (2)‖hdr (6)‖pld (2)

This corresponds to the data in input to the inner CBC-MAC computation for frame′ and
frame.

Type “clear_6”. Another forgery is possible with an original frame frame = ft‖hdr‖pld‖
mac‖crc such that |pld| = 6 bytes. The adversary forges a frame frame′ carrying a payload
(size in byte)

pld′ (10) = pld (6)‖hdr[0 · · · 3] (4)
(with the corresponding frame type and CRC value). The frame frame′ is a valid frame
for the MAC tag mac′ = mac. Indeed, (li, |mac|) = (0b10, 4) in frame and frame′, and

hdr′ (6)‖pld′ (10) = hdr (6)‖pld (6)‖hdr[0 · · · 3] (4)

which is the data in input to the inner CBC-MAC computation for frame′ and frame.

4.3.4 Encrypted Frame

Now let us consider how the adversary can produce a forgery from an encrypted uplink
frame.

Unconditional Forgeries. We present first two unconditional forgeries.

Type “encrypted_5”. Let us first consider a genuine encrypted frame

frame = ft‖hdr‖pld‖mac‖crc

with |pld| = 5 bytes. The MAC tag mac is computed with the following input data to the
inner CBC-MAC function (size in byte)

rc (1)‖hdr (6)‖pld (5)‖rc (1)‖hdr[0 · · · 2] (3)

where rc is the current value of the counter rc.
The adversary computes frame′ = ft′‖hdr′‖pld′‖mac′‖crc′ as follows:

1. hdr′ = hdr

2. pld′ = pld‖rc‖hdr[0 · · · 2] (and |pld′| = 9 bytes)

3. The adversary chooses the frame type ft′ in accordance with |pld′|.

4. mac′ = mac

5. The adversary computes crc′ from hdr′‖pld′‖mac′.

In order to verify the MAC tag mac′, the data used as input to the inner CBC-MAC
function is

rc (1)‖hdr′ (6)‖pld′ (9) = rc (1)‖hdr (6)‖pld (5)‖rc (1)‖hdr[0 · · · 2] (3)

Moreover, (li, |mac|) = (0b11, 5) in frame and frame′. Therefore mac′ = mac is a valid
MAC tag for frame′. Hence frame′ is a valid encrypted frame forged by the adversary.
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Type “encrypted_empty”. A second unconditional forgery is the following. Let us
consider an original empty encrypted frame frame = ft‖hdr‖mac‖crc. In such a case
(li, |mac|) = (0b00, 2), and the data in input to the inner CBC-MAC function is (size in
byte)

rc (1)‖hdr (6)‖rc (1)‖hdr (6)‖rc (1)‖hdr[0] (1)

The adversary computes frame′ = ft′‖hdr′‖pld′‖mac′‖crc′ with hdr′ = hdr, and pld′ =
rc‖hdr‖rc. The values ft′ and crc′ are computed in accordance with the other fields of
frame′. The payload pld′ is 8-byte long, which corresponds also to (li, |mac|) = (0b00, 2).

The data used as input to the inner CBC-MAC function in order to verify mac′ is

rc (1)‖hdr′ (6)‖pld′ (8)‖rc (1) = rc (1)‖hdr (6)‖rc (1)‖hdr (6)‖rc (1)‖rc (1)

Hence, mac′ = mac is a valid MAC tag for frame′ if hdr[0] = rc.
The first byte of the header hdr corresponds to (length in bit)

li (2)‖bf (1)‖rep (1)‖msb(cnt, 4)

Since frame carries no data, li = 0b00. The parameter bf can be equal to 0 (unidirectional
procedure) or 1 (bidirectional procedure), and rep is always equal to 0. Therefore rc =
hdr[0] implies that

rc
=

li bf rep msb(cnt, 4)
b7 b6 b5 b4 b3 b2 b1 b0

=
0 0 · 0 · · · ·

where cnt, li, bf , rep are respectively the current values of the message counter cnt, the li,
bf, and rep parameters in frame.

Therefore, the adversary can forge a valid frame frame′ with any original frame frame
which fulfils the following characteristics:

• frame carries an empty payload (i.e., li = 0b00), and

• cnt = j × 28 + i, and

• rc = bf × 25 + j,

with (i, j) ∈ {0, . . . , 255} × {0, . . . , 15}, and bf ∈ {0, 1}.
The number of such encrypted uplink frames that the adversary can forge for a given

end-device is at most 24 × 28 = 212 (bf takes only one value in {0, 1} for each possible
value rc‖cnt). This figure does not take into account the number of times the counter cnt
is reset, which multiplies in proportion the number of usable uplink frames.

Conditional Forgeries. Now we describe two conditional forgeries.

Type “encrypted_1”. The first conditional possibility is the following. From a gen-
uine encrypted frame frame with |pld| = 1 byte, the adversary computes frame′ =
ft′‖hdr′‖pld′‖mac′‖crc′ with hdr′ = hdr, and pld′ = pld‖rc‖hdr. The values ft′ and crc′

are computed in accordance with the other fields of frame′. We have that |pld| = 1 byte
and |pld′| = 8 bytes, which both correspond to (li, |mac|) = (0b00, 2). The MAC tag mac
in frame is computed with the following input data to the inner CBC-MAC function (size
in byte)

rc (1)‖hdr (6)‖pld (1)‖rc (1)‖hdr (6)‖pld (1)
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The MAC tag mac′ in frame′ is verified with the following input data to the inner
CBC-MAC function

rc (1)‖hdr′ (6)‖pld′ (8)‖rc (1) = rc (1)‖hdr (6)‖pld (1)‖rc (1)‖hdr (6)‖rc (1)

Therefore, mac′ = mac is a valid MAC tag for frame′ if pld = rc. Since pld corresponds
to encrypted data, the probability of success in this case is roughly 2−8.

Type “encrypted_4”. The second conditional possibility is the following. From a gen-
uine encrypted frame frame with |pld| = 4 bytes, the adversary computes frame′ =
ft′‖hdr′‖pld′‖mac′‖crc′ with hdr′ = hdr, and pld′ = pld‖rc‖hdr[0 · · · 2]. The values ft′

and crc′ are computed in accordance with the other fields of frame′. We have that
|pld| = 4 bytes and |pld′| = 8 bytes. Both cases correspond to (li, |mac|) = (0b00, 2). The
MAC tag mac in frame is computed with the following input data to the inner CBC-MAC
function

rc (1)‖hdr (6)‖pld (4)‖rc (1)‖hdr[0 · · · 3] (4)

The MAC tag mac′ in frame′ is verified with the following input data to the inner
CBC-MAC function (size in byte)

rc (1)‖hdr′ (6)‖pld′ (8)‖rc (1)
=

rc (1)‖hdr (6)‖pld (4)‖rc (1)‖hdr[0 · · · 2] (3)‖rc (1)

Therefore, mac′ = mac is a valid MAC tag for frame′ if rc = hdr[3] = devid[1], where
devid is the value of the (targeted) end-device’s identifier (encoded in little endian format).

The end-device’s identifier is fixed, and the parameter rc is a counter. Therefore, in
this case, for each end-device, the adversary can forge as many uplink encrypted frame
as distinct values for cnt (unless rc wraps around). For instance, with respect to the
“Platinum” subscription, the number of forgeries is 212.

Other Types of Forgery. Other kinds of forgery are possible but with stronger constraints
(i.e., equality between two bit strings which length is higher than 8 bits), hence lower
probability of success.

4.3.5 Consequence

The ability to forge a valid uplink frame allows the adversary to impersonate the legitimate
end-device to the back-end network. Moreover, each forgery lowers the number of remaining
uplink frames (which is bounded per contract) that the end-device is allowed to send (the
same holds regarding the forgery presented in Section 3.3). This is all the more problematic
as this number can be rather low.

The back-end network accepts the forged frame and relays it (i.e., the data included
therein) to the service provider because it is cryptographically valid. What happens to
that point depends on the application layer. For instance a format check may detect a
discrepancy and reject the application data. Yet, we point out that the first bytes in the
forged frame correspond to the application data of the genuine frame it originates from, as
shown in Table 3 (when encryption is activated, these genuine first bytes in the forged
frame decrypt correctly).6 The format check can be based on some header within the
application data (e.g., equality test with an expected byte string). This header in the
forged frame being then the same as in the genuine frame, the data carried in the forged
frame may be accepted by the service provider in the end.

6Except if the genuine frame is an encrypted empty frame.
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4.3.6 Experiments

We have validated the MAC tag forgeries that we describe in two ways.

“Offline” Experiments. First, we have used the librenard library developed by Euchner
[3]. Librenard implements the Sigfox cryptographic functions (except the encryption
function). We have completed librenard in order to support encryption. That is, this
library implements the same cryptographic functions as a legitimate Sigfox end-device.

Euchner has validated librenard with practical experiments done in interaction with
the Sigfox back-end network [5]. With the NAK key of a legitimate end-device, he has
computed uplink frames for all possible payload length, but an empty content.7 The
computed frames have been sent to the Sigfox back-end network and accepted by the
latter. This confirms in particular that librenard implements correctly the Sigfox MAC
function. In addition, librenard provides a function which takes as input an uplink frame,
and verifies it (including the MAC tag). We have used this function to successfully validate
all the MAC tag forgeries that we describe.

Figure 5: Experiment bench

Real-life Experiments. Secondly, we have conducted experiments in real conditions of use
in interaction with the Sigfox back-end network. For each forgery type, we have generated
several genuine uplink (clear or encrypted) frames with the NAK key corresponding to our
legitimate end-device. From these frames, we have computed forgeries (without the NAK
key). Each forged frame has been transmitted to the back-end network. The latter has
accepted all the forged frames.

The only forgery type that we have not been able to test in interaction with the back-
end network is the “encrypted_4” type (i.e., from a 4-byte genuine encrypted payload).

7An empty content corresponds to an uplink frame with no application data. In a single-bit frame, the
payload is empty, and the 1-bit application data is included in the frame’s header.
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Table 4: Samples of forged frames. If the uplink frame is encrypted, the data received on
the back-end is first decrypted, and then stored. The type “encrypted_4” has not been
tested in real-life experiments.

Forgery type
Genuine frame
Forged frame
Data stored on the back-end network
clear_1
08d0046895e410100f9b12ac8
6110046895e4101000046895e410100f9b1dff7
000046895e410100
clear_2
35f8049895e41010000b9a169493c11
94c8049895e410100008049895e41010000b9a169493657
00008049895e41010000
clear_6
611804c895e4101000000000000a749be547739
94c804c895e4101000000000000804c895ea749be5448f3
000000000000804c895e
encrypted_empty
06b0001895e4101adcf6d5f
6110001895e4101000001895e410100adcfe183
81879dc719010339
encrypted_1
08d0014895e4101006ddc072e
6110014895e410100000014895e41016ddccbe0
731180c554618155
encrypted_4
[35f0001895e4101e20095ebbb465029]
[6110001895e4101e20095eb5e000189bb463b0d]
[00000000697f3bd5]
encrypted_5
611e063895e410182d8c8538ff49fb6d41c149e
94ce063895e410182d8c8538f00e06389f49fb6d41c4356
0000000000e4bd138d
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Indeed, in order for this forgery to be possible, it must hold that rc = devid[1] where rc
is the value of the counter rc, and devid is the end-device’s identifier (encoded in little
endian format). In order for rc to be equal to some value x, the counter cnt must wrap
around x times. That is, the number of uplink frames which must be sent is x× 212 (for
a “Platinum” subscription with at most 140 daily uplink messages). This corresponds to
x× 212/140 days at least. Given the devid value attributed to our end-device, this would
have taken too long in order to reach the corresponding value for rc. Nonetheless, we stress
that even this forgery type has been successfully validated with the verification function
provided in librenard.

Figure 6 corresponds to screen shots made, from top to bottom, of two forged frames of
type “clear_6” (the first original frame is made of 6 zero bytes, the second one of random
bytes), and two forged frames of type “encrypted_5” (the first original frame is made of 5
zero bytes, the second one of random bytes) received on the back-end network. Table 4
lists an example of each forgery type.

Figure 6: Screen shots of forged frames accepted by the Sigfox back-end network. From
top to bottom, the two pairs of frames correspond respectively to the forgery types
“clear_6” and “encrypted_5”. For each forgery type, the pair of genuine frames corresponds
respectively to zero bytes and random bytes in the payload.

Experiment Bench. The experiments have been done with a laptop Dell Latitude E6430
running Debian 10.5 with the (completed) librenard library installed on it. The radio
communication has been managed with the module HackRF One [13], and the renard-phy
scripts from Euchner [4] (see Figure 5).

5 Counter-measures
In this section we present the counter-measures that we propose in order to thwart the
attacks described in Sections 3 and 4. Table 5 summarises the different counter-measures.

5.1 Frame Replay
The frame replays presented in Sections 3.1 and 4.2 are possible because the maximum
value for the cnt counter can be rather low. A simple way to fix this issue is to extend this
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Table 5: Proposed counter-measures
Attack Counter-measure

Frame replay
Extended (implicit) message counterDownlink encrypted frame replay

DoS
Forgery: exhaustive search Longer MAC tag
Forgery: completion attack CMAC mode
Lack of encryption Encryption
Key extraction Secure element

counter. To do so, we can use the rc counter. First we recommend the parameter rc to be
involved in the MAC tag computation in any case (i.e., be the frame encrypted or not).
That is, the input data to the Sigfox MAC function is prepended with rc, and becomes

• for an uplink frame: rc‖hdr‖payload = rc‖li‖bf‖rep‖cnt‖devid‖payload;

• for a downlink frame:

– rc‖devid‖lsb(cnt, 8)‖0b0000‖msb(cnt, 4)‖payload‖msb(devid, 16), or
– lsb(rc, 4)‖devid‖lsb(cnt, 8)‖msb(rc, 4)‖msb(cnt, 4)‖payload‖msb(devid, 16).

Now we estimate how long the size of rc must be.
Let us assume that the bit length of cnt goes with the maximum amount c of daily

uplink frames. That is, we can have (|cnt|, c) = (12, 140) at most (corresponding to
the “Platinum” subscription), or (|cnt|, c) = (7, 2) at least (corresponding to the “One”
subscription), but not (|cnt|, c) = (7, 140). Let n be the lifespan of an end-device. Then,
the maximum number of uplink messages an end-device may send during its whole lifetime
is n× c. Therefore we must have

2|rc|+|cnt| ≥ n× c

That is,
|rc| ≥ log2 (n× c)− |cnt|

This implies

• |rc| ≥ 7 if (|cnt|, c) = (12, 140),

• |rc| ≥ 6 if (|cnt|, c) = (7, 2).

with n = 10 years.
The current size of rc (8 bits) seems then already sufficient. But this result assumes

that the end-device respects the limitation in the number of daily uplink frames. Yet, it
may be possible that an adversary succeed in forcing an end-device to send uplink frames
at will. That is, possibly at a frequency higher than c = 140 frames per day.

Let v be the minimum time to transmit one uplink frame that an adversary may impose
to an end-device. The number of uplink frames is then at most n/v. For instance, if
n = 10 years and v = 112/600 second, then n/v < 231. In such a case, |rc| = 31− |cnt| ∈
{19, . . . , 24}.

5.2 DoS
The attack scenario presented in Section 3.2.2 is based on the fact that frames can be
replayed in Sigfox. Therefore the mitigation is the same as for the replay attacks (see
Section 5.1).
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5.3 MAC Tag Forgery: Exhaustive Search
In order to mitigate the MAC tag forgery possible by exhaustive search, and described in
Section 3.3 (or the possible DoS attack against the end-device if the forgery is unsuccessful),
we recommend to increase the lowest size of the MAC tag for the uplink frames.

If we assume that the maximum symbol rate used by the adversary to send an uplink
frame is 600 bauds, the duration of the attack is 2t × 112/600 seconds for the shortest
uplink frame, and a t-bit MAC tag. This translates into 25.42 years if t = 32. Yet, the
adversary can parallel its attack with multiple end-devices. Therefore, being conservative,
we would recommend a 4 or 5-byte MAC tag for an uplink frame, whatever its length.

In such a case, the blocking procedure against an end-device which sends too many
invalid frames can be removed (unless it is still necessary in order to mitigate DoS attacks
targeting the back-end network).

5.4 MAC Tag Forgery: Completion Attack
The attack described in Section 4.3 is possible because the end-device uses the same static
NAK key, and the Sigfox MAC function is based on the CBC-MAC mode, which is insecure
for variable length inputs.

This issue can be easily fixed. Instead of using the CBC-MAC mode, the MAC function
can rely upon the CMAC mode [22]. CMAC is built upon the same underlying CBC
operation as CBC-MAC but makes use of two additional sub-keys (which would be static
in the case of Sigfox), and an optional specific padding. This allows variable length inputs
to the MAC function, and thwarts the completion attack.8

5.5 Lack of Encryption
When encryption is activated, in the single-bit case (i.e., empty payload with 1-bit data in
the frame’s header), data must be encrypted in the same way as when data is carried in
the payload field.

5.6 Key Extraction
As indicated by Sigfox [20], in order to mitigate the possibility that the end-device’s static
key NAK be extracted, the key can be stored in a secure element (e.g., STMicroelectronics
STSAFE-A1SX [25], WISeKey VaultIC184 [26]).

6 Conclusion
Sigfox is a communication and security protocol which allows setting up low-power wide
area networks for the IoT. Currently, Sigfox operates in 72 countries on all continents. The
multiple networks cover 1.3 billion people, and represent 56 million daily messages from 17
million IoT devices.

In this paper, we have first provided a unified and detailed description of the security
mechanisms used in Sigfox. Such a description remains, to the best of our knowledge,
incomplete in the official Sigfox radio specification, and scattered over several other (official
and unofficial) documents.

Next, we have recapitulated and described with details the attacks that have been
proposed formerly by other authors. We have also extended several of these attacks with
scenarios that have not been considered so far.

8In previous Sigfox documents, it is indicated that the MAC function is based on HMAC [10, 19].
Assuming that the wording used in these documents is correct, the change from HMAC to CBC-MAC
results then in a reduction of the security level.
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Furthermore, we have made a security analysis of the radio interface in Sigfox. That
is, the security mechanisms used to protect data exchanged back and forth between a
remote end-device and the back-end network. We have presented a flaw that affects the
encryption procedure, and is detrimental to data confidentiality. In addition, we have
described new attacks against Sigfox. Namely, we have described how to replay downlink
encrypted frames, and forge valid (encrypted or clear) uplink frames. These attacks break
data authenticity with complexity O(1) (in contrast to previous attacks against Sigfox),
and allow deceiving the end-device or the back-end network. We have validated the MAC
tag forgeries that we describe with practical real-life experiments.

The attacks that we have proposed do not exploit potential implementation or hardware
bugs. They do not imply a physical access to any equipment (in particular a legitimate
end-device). They are independent of the means used to protect the secret parameters
(e.g., a secure element in the end-device). They depend exclusively on the peculiarities
of the Sigfox MAC and encryption functions. The adversary needs only to act on the air
interface.

Finally, we have presented efficient counter-measures which are likely straightforward
to implement for most of them. They allow thwarting all the aforementioned attacks.

We responsibly disclosed our findings (attacks and counter-measures) to Sigfox.
The theoretical principle of the attacks that we have described is well-known within

the cryptographic community. The detailed specifications of the Sigfox system remained
confidential for many years even after the deployment of several Sigfox networks. According
to us, more openness while designing the security mechanisms would have highly likely
prevented the flaws that harm the system. This paper illustrates, if still necessary, that
one can hardly expect better than insecurity through obscurity.
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A Error Event with the Frame Counter
Sigfox technical documents describe the error case as follows: “The “out of message
sequence” error event will cause an interruption in message delivery [...] Incoming
messages will be discarded until the disengage sequence number feature is used.” [17],
and: “When the error event has been raised by the cloud, the only way to resume message
delivery is to use the Disengage sequence number feature. [...] disengaging the sequence
number will cause the sequence number received along the next message to be recorder by
the cloud as the reference for future comparisons, whatever its value might be.” [18]
(highlighted in the original text).

These explanations seem to imply that, as soon as the frame counter cnt is higher
than the maximum value allowed (cnt = n′ > n + ma), any incoming frame is discarded,
including a frame which counter belongs to the acceptance interval (n < n′ ≤ n + ma).
The experiments that we did do not confirm this understanding.

More precisely we have sent a frame which counter is well above the acceptance interval
(n′ > n + ma). Then an error was raised on the back-end side, and the frame discarded.
Next, we have sent a frame which counter is valid (n < n′ ≤ n + ma). This frame was
accepted, and the corresponding data appeared on the back-end side. Therefore it seems
that these technical documents consider only the case when the end-device’s counter
reaches suddenly a value higher than the acceptance interval, and keeps increasing. Then
all subsequent frames are computed based on an invalid counter (n′ > n + ma) on the
back-end perspective. Hence these frames are all discarded by the latter. In such a case,
the disengage procedure allows resetting the frame counter on the back-end side. The
latter takes then this value as the new reference for the counter, which indeed resumes the
message delivery.

If the error event would interrupt the delivery of any subsequent frames (whatever their
counter), then this would enable a simple DoS attack, again based on the ability to replay
(clear) frames. The scenario is the following. The adversary chooses a previous frame such
that its counter cnt is strictly higher than the acceptance interval defined by the counter
cnt = n of the last uplink frame received by the back-end network. That is, the counter of
the replayed frame is chosen as n′ > n + ma. When the back-end network receives this
frame by the adversary, it raises an error which would then interrupt the delivery of the
subsequent (legitimate) uplink frames. This DoS would last until the end-device’s owner
executes the “disengage” procedure. However, all uplink frames sent in the meantime
would have been lost. We stress that our experiments do not show that this scenario is
practicable.
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