
Constructing Secure Multi-Party Computation
with Identifiable Abort

On the Correlation Complexity of MPC with Cheater Identification

Nicholas Brandt1 , Sven Maier2 , Tobias Müller3, and Jörn Müller-Quade4 ⋆

1 ETH Zurich, Zurich, Switzerland, nicholas.brandt@inf.ethz.ch
2 CNRS, IRIF, Université de Paris, France, sven.maier@irif.fr

3 muellertobias@outlook.de
4 Karlsruhe Institute of Technology, Germany, joern.mueller-quade@kit.edu

Abstract. Composable protocols for Multi-Party Computation that provide security with Identi-
fiable Abort against a dishonest majority require some form of setup, e.g. correlated randomness
among the parties. While this is a very useful model, it has the downside that the setup’s random-
ness must be programmable, otherwise security becomes provably impossible. Since programmability
is more realistic for smaller setups (in terms of number of parties), it is crucial to minimize the
correlation complexity (degree of correlation) of the setup’s randomness.
We give a tight tradeoff between the correlation complexity β and the corruption threshold t. Our
bounds are strong in that β-wise correlation is sufficient for statistical security while β − 1-wise
correlation is insufficient even for computational security. In particular, for strong security, i.e.,
t < n, full n-wise correlation is necessary. However, for any constant fraction of honest parties,
we provide a protocol with constant correlation complexity which tightens the gap between the
theoretical model and the setup’s implementation in the real world. In contrast, previous state-of-
the-art protocols require full n-wise correlation regardless of t.

Contents

1 Introduction . 2
1.1 Contributions & Techniques . 3
1.2 Related and Concurrent Work . 4
1.3 Technical Overview . 6

A Discussion . 14
B Technical Preliminaries . 15

B.1 Definitions & Notation . 15
B.2 Setting . 18
B.3 Functionalities / Setups . 19

C Trust Graph: Identification via Conflicts . 23
D Full Constructions & Proofs . 26

D.1 Impossibility / Lower Bound . 26
D.2 Constructions / Upper Bound . 32
D.3 Equivalence of FCOT, SFE and Correlated-Randomness . 47

E Trust Graph from Broadcast . 51
F Global Commitment from FCOT . 52
⋆ This is the full version of [11]. It is a merge of a previous version and [10].

https://orcid.org/0000-0002-5120-6346
https://orcid.org/0000-0003-3221-6802

1 Introduction

Secure Multi-Party Computation (MPC) is a powerful notion that allows multiple mutually distrustful
parties to perform a joint computation that—loosely speaking—ensures the privacy of the inputs and
the correctness of the output. The currently strongest security notion—that is not ruled out by some
impossibility result [18]—is called security with Identifiable Abort (IA) [32]. It allows an adversary to
abort the protocol (this is unavoidable) but then the honest parties can identify the common identity of
at least one malicious party. This acts as a deterrent against cheating by coupling cheater identification to
some form of penalty mechanism. This is especially useful in the context of blockchains where one could
require all parties to initially commit to some coins s.t. an identified cheater’s coins are redistributed to
the other parties or the cheater’s coins are rendered void by publishing the evidence of cheating.

In the dishonest majority settings, t ≥ n/2, protocols such as the one of Ishai, Ostrovsky, and
Zikas [32] that achieve IA require a setup that distributes correlation randomness to each party in
the protocol. In fact, for t ≥ n/2, a setup is provably necessary for general MPC protocols that can
be composed arbitrarily, e.g. in the Universal Composability (UC) framework [13]. Moreover, for the
security proof to work the setup needs to be programmable to realize certain functionalities such as
commitments [14]. That is, the setup information may not leak directly to the environment, instead, in
the security proof the simulator must be able to embed a trapdoor into the setup information to extract
or equivocate the committed message. Indeed, if the setup is global, the setup information leaks directly
to the environment, then many functionalities become provably impossible [39, 15]. In particular, if in
practice the setup information is extracted from some public source, like stock market data, then the
security guarantee provided by the ID-MPC protocol is void. This leaves the option to generate the
correlated randomness via some physical means, like noisy or quantum channels, or secure hardware
assumptions. However, for such a means of generating randomness the correlation complexity (CC) is
the most important parameter.
As shown in [32] the correlated randomness setup for n-parties suffices to statistically securely realize any
other functionality (or setup) of cardinality n (with n-participants). Therefore, we equate the correlation
complexity (see Definition 5)with the minimal complete cardinality (MCC)5 as introduced by Fitzi et al.
[25].

For t < n/2 pairwise correlation (even pairwise channels) suffice [40, 5], while for t ≥ n/2 protocols
like [32] are quite conservative in that they require (maximal) n-wise correlation; even for t = n/2. Our
work closes this gap between t = n/2 and t = n− 1 by answering the question:

“What is the correlation complexity of MPC with a dishonest majority?”

We settle this question with tight bounds for the correlation complexity β ≈ 2n/(n − t) depending on
the max. number of corrupted parties t. See Fig. 1 for an exemplary overview.

While theoretically interesting,6 our results offer also two practical insights:
• If one requires maximal security t < n, then n-wise correlation is necessary, i.e., the CC is β = n.

Hence protocols like [32] are optimal w.r.t. the CC.
• If one is willing to accept any constant fraction of malicious parties t ≤ (1 − ε)n for any ε > 0, then

the CC is only constant β ≈ 2/ε.
Especially the latter case has practical implications. Due to the aforementioned provable impossibility
of composable MPC with a global setup, the setups must be realized by non-cryptographic means such
as trusted hardware [29, 41] or noisy/quantum channels [23, 21]. There, the CC (the number of setup
participants) is a critical parameter. To illustrate this, consider the following example: Suppose a group
of people can generate correlated randomness via some trusted hardware in their smartphones while
5 Throughout the paper, we require a setup among each subset of parties of size β.
6 To our knowledge this is the first full characterization of Identifiable Abort in the dishonest majority setting.

2

Max. malicious parties t Max. supported parties n CC / MCC β

n − 1 poly(λ) n

n − 2 poly(λ) n − 2
n − c ≤ n − 3 Θ(ln λ) ≈ 2n/c

n − Θ(ln n) O(ln(λ) ln ln(λ)/ ln ln ln(λ)) Θ(n/ ln n)
n − Θ(

√
n) O(ln2(λ)/ ln2 ln(λ)) Θ(

√
n)

n − Θ(n/ ln n) O(exp
√

ln λ) Θ(ln n)
Θ(n) poly(λ) Θ(1)

(n + 1)/2 poly(λ) 3
≤ n/2(∗) poly(λ) 2

Table 1: Exemplary overview of the correlation complexity (CC) / minimal complete cardinality (MCC) β and
respective supported number of parties n vs. malicious parties t for UC-secure ID-MPC given broadcast. The
limitation of the overall number of parties is only to achieve polynomial-time protocols, for more parties the
protocols remain correct and secure but require the parties to have superpolynomial runtime. The case (∗) also
covers an honest majority of parties treated in early works [5, 40].

being online simultaneously. However, the runtime of this supposed setup computation is exponential in
the number of parties involved. In this scenario, if a protocol relies on a single setup of cardinality n,
then all parties must be online together for an exponential time. In contrast, if a protocol could be based
on (polynomially) many setup instances between a constant number of people (as is the case for our
protocols for any t ≤ (1 − ε)n), then a) being online at the same time as a constant number of parties
much more realistic and b) the runtime is only polynomial in the number of people.

The above example showcases that our results are particularly interesting for applications in which
mobile clients (which are not always online) perform decentralized operations and store a common state
on some form of blockchain (which allows for monetary penalties for cheating).

1.1 Contributions & Techniques

Correlation complexity / ID-MPC from small setups. Due to the completeness of the correlated
randomness setup [32], we can substitute any setup functionality of some cardinality by the correlated
randomness functionality of the same cardinality. To minimize the correlation complexity we concentrate
on constructing n-party ID-MPC from the smallest possible (arbitrary) setups. In other words, we can
answer the question of the CC by determining the minimal complete cardinality (MCC)7 in the sense
of [25], i.e., the number of participants of a setup functionality. As a sidenote, we deal with some defin-
itorial issues in Appendix B.1that arise when the number of parties grows with the security parameter
which is not the case in [25]. As our main result we establish tight bounds on the minimal complete car-
dinality β for general ID-MPC (given broadcast). We assume that each subset of parties (of cardinality
β) has access to a setup functionality. Furthermore, we only require these setups to guarantee security
with Identifiable Abort—unlike many other works which don’t allow the setups to be aborted at all. For
a formal description of our setting see Appendix B.2.

Theorem 1 (Correlation complexity bounds). The correlation complexity for UC-secure Multi-
Party Computation with Identifiable Abort (given broadcast) is β := min(n, ⌊n/(n−t)⌋+⌈n/(n−t)⌉−2) ≈
2n/(n− t) where n is the overall number of parties and t is an upper bound on the number of malicious
7 As a side note we generalize the notion of the minimal complete cardinality (MCC) from [25] to the setting

where the number of parties varies in the security parameter λ. This was not captured by the original definition
of MCC in [25] and—to the best of our knowledge—not formally addressed in previous literature.

3

parties.
In other words, for any n-party functionality with Identifiable Abort there exists a protocol that uses hybrid
functionalities of cardinality β and broadcast, but there exists an n-party functionality with Identifiable
Abort which cannot be realized by any protocol that uses hybrid functionalities of cardinality β − 1 and
broadcast.

Identification via conflicts. Towards our main result we formalize an intuitive mechanism for cheater
identification that is also used in various other works [34, 30, 32, 3, 4, 44, 43] in different contexts. In
our application, all parties maintain a global data structure, namely a graph with one vertex per party
where each party can remove incident edges (we call missing edges “conflicts”) but never add edges.
Following Wan et al. [44] we call this structure “Trust Graph” (TG). With it, we provide a ruleset for
its usage which we call abort-respecting (see Definition 8)that ensures that the Trust Graph exhibits
certain useful properties: On an intuitive level, a disconnected subgraph corresponds to an aborted setup
and vice-versa while a disconnected overall TG corresponds to the honest parties’ ability to abort by
identifying malicious parties.

Lemma 1 (Informal conflict reporting). Any protocol that securely realizes an ideal functionality
F in some hybrid model can be modified such that
1. all honest parties keep a (common) Trust Graph,
2. if the Trust Graph is disconnected, then all honest parties can identify the same malicious parties,
3. upon abort of the protocol its Trust Graph is disconnected,
4. after abort of any setup (hybrid functionality on some subset of parties8) in the protocol the corre-

sponding subgraph of the Trust Graph becomes disconnected,
and the modified protocol still securely realizes the same functionality.

As a consequence, the impossibility of any abort-respecting protocol implies the impossibility of any
protocol. On the other hand, if some protocol for a given functionality exists, then so does an abort-
respecting protocol. In consequence, we only need to consider abort-respecting protocols.

For the lower and the upper bound, we prove two complementing graph-theoretical lemmas that link
the connectivity of the overall TG to the connectivity of its subgraphs. In a nutshell, a connected graph
of cardinality n can have “many” disconnected subgraph of cardinality β−1 but only “few” disconnected
subgraphs of cardinality β.

For our lower bound we devise a strategy for the adversary such that it can abort many setups
of cardinality β − 1 while the overall Trust Graph remains connected. Following the proof strategy
of Canetti and Fischlin [14] we can show that against such an adversary any protocol for a commitment
must violate either the hiding or the binding property. For our upper bound we know that any adversary
can only abort “few” setups. Thus the honest parties can rely on some “guaranteed” setups to perform
the protocol.

1.2 Related and Concurrent Work

There are many works that share common aspects with this paper, among others [25, 26, 34, 30, 44, 31,
32, 3, 4, 43]. Here we pick only the most closely related ones and describe their relation to this work.

• Fitzi et al. [25] initialize the study of the minimal complete cardinality (MCC)—the cardinality of the
smallest setup (least number of participants) that suffices to securely realize any n-party functionality.

• Ishai, Ostrovsky, and Seyalioglu [31] rule out pairwise setups plus broadcast for statistically secure
ID-MPC.

8 Throughout the paper we assume that each subset of parties of the appropriate cardinality has access to a
setup.

4

• Ishai, Ostrovsky, and Zikas [32] formally define Identifiable Abort (IA), introduce the Correlated-
Randomness model for IA and give a computationally secure construction from any adaptively secure
OT protocol.

• Wan et al. [44] use the almost identical idea of maintaining a “Trust Graph” (TG) in the context of
constructing Byzantine broadcast (BB) while we assume a broadcast to construct general ID-MPC.
Specifically, Wan et al. [44] give lower bounds for the round-complexity of BB. From the different
applications arises the slight difference in the two concepts, in [44] each party maintains its own
copy of the TG whereas in our work it is crucial that all parties have a common view of the TG.
Nevertheless, we use very similar graph properties as Wan et al. [44]. Their idea is to limit the distance
that information can travel within a graph in a given number of round, if the graph’s diameter is too
large, then a sender’s message may not be able to reach all other parties. Their upper bound for the
TG’s diameter d matches our tight bound for the CC, i.e., β = ⌊n/(n− t)⌋+ ⌈n/(n− t)⌉ − 2 = d + 1
where t ≥ n− 2 is a lower bound on the number of honest parties.
We think there are interesting connections9 between our paper and [44]. While [44] assumes pairwise
channels, we assume a full broadcast. We maintain the view that both [44] and our paper can be
generalized along the dimension of the setup size, i.e., assuming a partial broadcast of size 2 ≤ k ≤ n.
Regarding the round-complexity of BB, it seems that the round-complexity decreases as k increases
because the sender’s message travels farther in each round. Regarding the correlation complexity, it
seems that the CC increases as k increases because for larger partial broadcasts reaching a consensus
on a identified cheater seems easier.

• Simkin, Siniscalchi, and Yakoubov [43] essentially study the same question as our paper. They give a
weaker upper bound β ≤ t + 2 ≤ n− 2 of the CC/MCC, although in the stand-alone model whereas
our result holds in the UC framework.
They construct n-party MPC from correlation of degree n − 1 and broadcast. For this reason their
work supports polynomially many parties n ∈ poly(λ) only for n − t ∈ Θ(1). For larger expansions
the supported number of parties drops rapidly since the overall runtime grows exponentially in the
number of recursive applications of the protocol. This is not the case for our work; see Appendix Afor
a discussion.
Their approach uses an new form of identifiable secret-sharing with public and private shares. There,
one party P is chosen and the remaining n− 1 parties obtain correlated randomness, i.e., secret-shares
of their randomness, from the setup oracle. Then the parties send their shares to the excluded party P
who reconstructs its randomness. If reconstruction fails to due faulty shares sent by malicious parties,
then party P detects whose shares where faulty and declares conflicts with these parties. These conflicts
are then used in the next iteration. That is, conflicting parties do not obtain shares from the setup.
It seems unclear how the approach of [43] could be generalized to setups of cardinality n− 2 without
the disadvantageous recursion blowup.

• Finally, much work [7, 9, 8, 38, 20] has gone into reducing the necessary length of correlated randomness.
This is highly relevant in practice. Nevertheless, to the best of our knowledge, in these works all parties
need to participate in the correlation generation simultaneously. That is, although the overall length
of the correlated randomness is short, the degree of the correlation is maximal—which is where our
work steps in. We’d like to emphasize that our protocols are compatible with approaches to reduce
the length of the correlated strings, and they can be used in conjuction to reduce both the length as
well as the degree of correlation.

Our results subsume or improve upon all previously listed constructions and impossibilities in a unified
way. For the minimal complete cardinality (MCC) it holds that:

• The lower bound of 3 from [31] for t ≥ 2n/3 is raised to min(n, 5).
• The upper bound of n− 1 from [43] reduced to the optimal n− 2 for t ≤ n− 2.

9 In particular, Claim 3.1 in [44] and our Lemma 3 share the same core idea but are stated in different terms
with different applications in mind. Also, Figure 1 in [44] essentially matches our Fig. 1.

5

No. Reference Model Result Technique

1) [31] SA {F2, Fn
BC}

stat
̸⇝2n/3 Fn

SFE,f Secret-Sharing
2) [32] UC, SA Fn

Corr,D
stat
⇝n Fn

SFE,f Setup+Commit+Prove
3) [32] UC, SA {πOT, Fn

CRS}comp
⇝n Fn

Corr,D Setup+Commit+Prove
4) [43] SA {Fn−1

Corr,D, Fn
BC} stat
⇝n−2 Fn

Corr,D Secret-Sharing
5) This work UC {Fβ

Corr,D, Fn
BC} stat
⇝t Fn

SFE,f Trust Graph

6) This work UC {Fβ−1
Corr,D, Fn

BC}
comp
̸⇝t Fn

COM,1:1 Trust Graph

Table 2: Overview of related work on the foundations of Multi-Party Computation with Identifiable Abort in the
dishonest majority setting with broadcast. SA stands for stand-alone, UC stands for Universal Composability [13],
t is the max. number of corrupted parties, and β := min(n, ⌊n/(n−t)⌋+⌈n/(n−t)⌉−2). πOT denotes any adaptively
secure Oblivious Transfer (OT) protocol, Fn

CRS is the Common Reference String (CRS) functionality from [14],
Fn

Corr,D is the Correlated-Randomness functionality from [32]. Fn
COM,1:1 is a one-to-one commitment and Fn

SFE,f is
the Secure Function Evaluation functionality; both defined in Appendix B.3. Note that the impossibility 6) does
not contradict 3) because 6) does not assume a CRS.

• The upper bound of n from [32] is shown to be tight for t = n− 1.
These (and more) results are summarized in Table 2. In the following we use the short notation F ⇝t F
for the fact that the ideal functionality F can be realized by some protocol in the F -hybrid model with
up to t malicious parties(see Notation 8).

1.3 Technical Overview

We state our results in the standard UC-framework (see Appendix B.2) in terms ideal functionalities and
protocols that realize them. Due to the large notational and conceptual overhead of rigorous statements
about MPC and the given space limitations, we decided to give most of the formal definitions and
statements in the appendices, and instead try to convey the core idea behind our techniques in this
overview and how they are combined to obtain our main results.
The main idea behind the usage of the Trust Graph (TG) is that if the TG is disconnected, then there
are at least two partitions A and B such that all parties in A distrust all parties in B. Now, if honest
parties always trust each other (as is the case throughout this paper), then all honest parties must be in
the same connected component. W.l.o.g. let all honest parties be in A, then they can jointly identify B
and abort with (abort, B). In this sense the disconnectivity of the TG is equivalent to the identification
of malicious parties, and hence the abort of a ID-MPC protocol.

To simplify our analysis we formally introduce an ideal functionality Fn
TG for n parties in Appendix C

(see Definition 7). This functionality stores an (initially complete) graph with one vertex per party.
Any party P can announce “conflicts” by sending (conflict, P′) to Fn

TG. Consequently, the edge (P, P′)
is irrevocably removed from the TG—we say P and P′ are in conflict. Any party can also query the
currently stored graph G = (P, E) (typically at the onset of each round); such that all parties have a
consistent view of the TG in each round. The functionality Fn

TG can be viewed as syntactical sugar, as
it can be perfectly securely realized using only broadcast (see Lemma 6).

Now, we give a high-level intuition of a particular set of protocol rules that will prove useful in our
results for the correlation complexity. We call this set of six rules “abort-respecting” (see Definition 8).
One can view it as a kind of manual for how to utilize the Trust Graph. Informally, abort-respecting
protocols ensure in particular the following properties:

• Honest parties are never in conflict.
• Whenever some party has strictly more than t conflicts, it must be malicious.

6

• Whenever some setup of cardinality β is aborted,10 the subTG on the participants of the setup becomes
disconnected.

• When the protocol aborts (with (abort, C) where C is a set of malicious parties), the overall TG is
disconnected.

• When the overall TG becomes disconnected, the protocol aborts (with (abort, C) where C is a set of
malicious parties).

Intuitively, from these rules and the usage of Fn
TG follows Lemma 1. More formally, it states that any

secure protocol for some functionality in some F -hybrid model can be transformed into a secure and
abort-respecting protocol for the same functionality in the F ∪{Fn

TG}-hybrid model(compare Lemma 7).
As a corollary, we note that to rule out all ID-MPC protocol for some functionality it suffices to rule out
all abort-respecting protocols. We will use this fact in the proof of our lower bound on the CC.

Before, we want to elaborate a bit on the third property. When a setup with Identifiable Abort
is aborted, all participants P obtain the message (abort, C) where C ⊆ P is some set of malicious
participants. Then all honest parties declare conflicts with C via the Fn

TG functionality. In the next
round either a) all parties P \ C declared conflicts with the identified parties C , or b) there are some
“loyalists” L ⊆ P\C who did not declare conflicts with all identified parties C . In the first case the subTG
is clearly disconnected between P \C and C . In the second case b) note that loyalists noticeably deviate
from the abort-respecting rules; thus the honest parties add the loyalists L to the identified parties C
and repeat the procedure. Since in each iteration at least one loyalist gets added to the identified parties,
the overall procedure terminates within at most n iterations.

Lower Bound on the Correlation Complexity Eventually, we show that no protocol in the {Fn
BC,Fβ−1}-

hybrid model for any functionality Fβ−1 of cardinality β − 1 can securely realize an ideal commitment
functionality where n is the overall number of parties, t is a upper bound on the malicious parties and
β := min(n, ⌊n/(n− t)⌋+⌈n/(n− t)⌉−2). Towards this end, we prove a graph-theoretical lemma that re-
lates the connectivity of the overall TG to the connectivity of its subgraphs. More concretely, the lemma
constructs a connected graph that has “many” disconnected subgraphs of the cardinality β−1. With the
intuition that aborts of setups correspond to disconnected subTGs (via the abort-respecting property),
this graph-theoretical lemma translates into a strategy for the adversary to abort many setups in a clever
way such that the overall TG remains connected, i.e., the overall protocol cannot abort. However, after
these many setups are aborted, we follow the idea of Canetti and Fischlin [14] to prove that any protocol
that only relies on the remaining setups must either violate the hiding or the binding property. We note
that this proof strategy only works because we want to rule out composable commitment protocols.
The high-level idea is as follows: Because “many” setups are aborted, the sender cannot “directly” com-
mit towards the receiver via some setup that contains both the sender and the receiver. Consequently, in
order to be committed towards the receiver (binding), the sender has to send the message (information-
theoretically) to intermediate parties—even when all parties act honestly (relative to their view of the
Trust Graph given the aborted setups) in the commitment phase. However, this set of intermediate par-
ties is small enough that an alternative environment can corrupt it (because t ≥ n/2) and thus extract
the message of an honest sender during the commitment phase (not hiding).

Lemma 2 (Connected graph =⇒ many disconnected β − 1-subgraphs). Let n, t ∈ N s.t.
n/2 ≤ t ≤ n − 1, and let β := min(n, ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2). Furthermore, let V be a set of n
vertices and let v, v′ ∈ V : v ̸= v′ be two different vertices. There exist some edges E ⊆

(
V
≤2

)
s.t.

1. G := (V, E) is an undirected, reflexive and connected graph,
2. ∀{u, u′} ∈ E : |NG(u) ∩NG(u′)| ≥ n− t,
3. for each V ′ ∈M the subgraph G′ := (V ′, E ∩

(
V ′

≤2
)
) is disconnected

10 Recall that we only assume setups to have security with Identifiable Abort.

7

where

Nu :=
{
{u} , if t = n− 1
NG(u) , else

is the set of “effective” neighbors of any vertex u, and
M := {V ′ ⊆ V | V ′ ∩Nv ̸= ∅ ∧ V ′ ∩Nv′ ̸= ∅ ∧ |V ′| < β}

is the set of relevant subsets of vertices that contain both an effective neighbor of v and an effective
neighbor of v′.

The proof is contained in Appendix D.1. For t = n − 1 the lemma states that there exists some graph
whose subgraphs G′ that contain both v and v′ are disconnected, yet the overall graph is connected.
For t ≤ n − 2 the lemma states that there exists some graph whose subgraphs G′ that contain both a
neighbor11 of v and a neighbor of v′ are disconnected while the overall graph is connected.

Application to ID-MPC. Throughout, we denote the security parameter by λ. In the context of our
impossibility proof, the graph G takes the role of the Trust Graph, v = S will be the sender, and v′ = R
will be the receiver. As such, the lemma translates to the statement that all setups in which the sender and
the receiver (or their neighbors respectively) participate jointly can be aborted by the adversary without
causing the overall TG to become disconnected, thus evading identification. The proof is essentially
just a constructive description of the graph G alongside a proof of its properties. This graph-theoretic
statement translates into the context of ID-MPC protocols as follows:

Corollary 1. Let n = n(λ), t = t(λ), β = min(n, ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2) s.t. 0 ≤ t < n. For
any security parameter λ ∈ N let Pλ be a set of n parties, and let vλ, v′λ ∈ Pλ be two different parties.
Furthermore, let πF be any abort-respecting protocol for some functionality Fn in some F -model s.t.
Fn

BC ∈ F . An adversary for πF that corrupts t parties can abort all setups of cardinality at most β − 1
in which any effective neighbor of vλ and any effective neighbor of v′λ participate, without disconnecting
the overall Trust Graph G.

For t ≥ n/2 this follows from Lemma 2 and Corollary 5 (aborted setups correspond to disconnected
subgraphs). Also, for t < n/2 it follows that β = 1, hence Corollary 1 follows trivially. Finally, we get
the formal statement.

Theorem 2 (No transmitted commitment). Let n = n(λ), t = t(λ), β := min(n, ⌊n/(n − t)⌋ +
⌈n/(n− t)⌉− 2) s.t. n/2 ≤ t < n and

(
n
β

)
∈ poly(λ). No {F2, ...,Fβ−1,Fn

BC}-hybrid protocol can securely
UC-realize Fn

COM,1:1 against environments that (maliciously) corrupt up to t parties. Formally, we get{
F2, ...,Fβ−1,Fn

BC
}comp
̸⇝t Fn

COM,1:1 (1)

where F2, ...,Fβ−1 stand for arbitrary functionalities of the respective cardinality, and Fn
COM,1:1 is defined

in Appendix B.3.
Consequently, the correlation complexity for UC-secure ID-MPC is at least β.

The proof is contained in Appendix D.1.

Corollary 2. Let n = n(λ). In particular, we find {F2, ...,Fn−3,Fn
BC}

comp
̸⇝ n−2 Fn

COM,1:1 where F2, ...,Fn−3

stand for arbitrary functionalities of the respective cardinality. This shows that the result {Fn−1
Corr,D,Fn

BC}
stat
⇝ n−2

Fn
Corr,D from [43] is tight up to a constant of 1.12

11 Note that is vertex is their own neighbor because the graph is reflexive.
12 We note that [43] state their results in the stand-alone model.

8

Upper Bound on the Correlation Complexity Towards our construction, we first prove a comple-
mentary graph-theoretical lemma that relates the connectivity of the overall TG to the connectivity of
its subgraphs. More concretely, the lemma states that any graph with “many” disconnected subgraphs
of the cardinality β must be disconnected.

Lemma 3 (Connected graph =⇒ few disconnected β-subgraphs). Let n, t ∈ N s.t. n/2 ≤ t ≤
n− 2, and let β := ⌊n/(n− t)⌋+ ⌈n/(n− t)⌉− 2. Let V be a set of n vertices and let v, v′ ∈ V : v ̸= v′ be
two different vertices. Moreover, let E ⊆

(
V
≤2

)
be a set of edges s.t. G := (V, E) is an undirected, reflexive

graph, and let Nu := NG(u) be the set of neighbors of any vertex u, let
M := {V ′ ⊆ V | V ′ ∩Nv ̸= ∅ ∧ V ′ ∩Nv′ ̸= ∅ ∧ |V ′| = β}

be the set of relevant subsets of vertices that contain both a neighbor of v and a neighbor of v′, and let
E∗ := {{u, u′} ∈ E | |Nu ∩Nu′ | ≥ n− t}

be the set of postprocessed13 edges. If for all V ′ ∈ M the subgraph G′ := (V ′, E ∩
(

V ′

≤2
)
) is disconnected,

then G∗ := (V, E∗) is disconnected. Furthermore, the map ϕ : G 7→ G∗ is efficiently computable.

This lemma tightly complements Lemma 2. It states that as soon as all subgraphs G′ that contain both
a neighbor of v and a neighbor of v′ are disconnected, the overall postprocessed graph G∗ must be
disconnected as well. The proof is contained in Appendix D.2.

Application to ID-MPC. In the context of our construction, the graph G takes the role of the TG,
v = S will be the sender, and v′ = R will be some receiver. As such, the lemma translates to the statement
that at least one (not necessarily fixed) setup in which the sender and the receiver (or their neighbors
respectively) participate jointly cannot be aborted by the adversary without causing the overall TG to
become disconnected. This “guaranteed” setup can then reliably perform the commitment (resp. OT)
between the sender and the receiver (resp. their neighbors).

The proof is by contradiction. Suppose all subgraphs G′ are disconnected, yet G∗ were connected.
Then there must be a path W from any neighbor u ∈ Nv to any neighbor u′ ∈ Nv′ with length
∆G∗(u, u′) > β. Note that, by definition of E∗, all adjacent parties in G∗ must have at least n − t
common neighbors. This means that the parties along the path W must have many auxiliary neighbors.
Counting the overall number of parties yields a contradiction. We formalize this in Appendix D.2. For a
visual representation see Fig. 1, note that any shortest path from N1 to Nn always has length β (in the
number of vertices).This graph-theoretic statement translates into the context of ID-MPC protocols as
follows:

Corollary 3. Let n = n(λ), t = t(λ), β := ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2 s.t. n/2 ≤ t ≤ n − 2. For
any security parameter λ ∈ N let Pλ be a set of n parties, and let vλ, v′λ ∈ Pλ be two different parties.
Furthermore, let πF be any abort-respecting protocol for some functionality Fn in some F -model s.t.
Fn

BC ∈ F . If an adversary for πF that corrupts at most t parties aborts all setups of cardinality β in
which any neighbor of vλ and any neighbor of v′λ participate, then the overall Trust Graph becomes
disconnected, i.e., the protocol πF aborts.

This follows from Lemma 3 and Corollary 5 (aborted setups correspond to disconnected subgraphs).
In particular, in our protocols we require all honest parties to locally postprocess G∗ = ϕ(G) from

Lemma 3 when querying the TG G from Fn
TG. Moreover, we require all parties to abort according to

G∗ instead of G. This modification of the abort condition is justified because the additional (specific)
conflicts introduced by the postprocessing ϕ preserve the invariant that no two honest parties are in
conflict, as required by Rule 6 of Definition 8.
13 The postprocessing ϕ corresponds to the (repeated) application of Rule 4 of Definition 8, i.e.,removing edges

from parties with strictly more than t conflicts.

9

Committed Oblivious Transfer. Before we proceed with a more detailed description of our protocols
we have to introduce a committed variant of Oblivious Transfer (OT) [22, 24] where the sender, the re-
ceiver and some witnesses participate. We call this variant Fully Committed Oblivious Transfer (FCOT).
As in the standard 1-out-of-2 OT, the sender inputs two messages and the receiver inputs a choice bit,
then the receiver obtains its chosen message while the receiver remains oblivious to the choice bit. The
committed variant additionally allows the sender and the receiver to later open their inputs to all other
parties (called witnesses).

The purpose of this FCOT can be state as follows.

Lemma 4 (Completeness of committed OT (informal)). There is a protocol in the Fn
FCOT-hybrid

model that realizes any ideal n-party functionality.

We can replace the standard OT setups in the IPS-compiler [33]. The IPS-compiler is an OT-
hybrid protocol in the client-server-model that realizes general MPC guaranteeing security with (non-
identifiable) abort against malicious (active) adversaries. In this protocol each party sets up a watchlist
for each server such that other parties can monitor a small subsets of servers to detect tampering with
overwhelming probability. Once a party detects misbehavior on some server it announces a complaint
and all parties abort the protocol (without identifying malicious parties). For this reason, the standard
IPS-compiler only enjoys security with (non-identifiable) abort. Substituting all calls to classical OT se-
tups with calls to FCOT setups allows the parties to open all messages regarding the server in question.
This way all parties can retrace which party misbehaved, thus identifying at least one malicious party,
hence the resulting protocol enjoys security with Identifiable Abort. (We refer the interested reader to
Appendix D.3 for more details.)

We continue with a high-level overview of our two protocols that utilize the guaranteed setups men-
tioned above. The two constructions are

• n-party commitment from β-party commitments and n-party broadcast, and
• n-party FCOT from β-party FCOT, n-party commitments and broadcast.

Commitment expansion.

Theorem 3 (COM expansion). Let n = n(λ), t = t(λ), β := ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2 s.t.
n/2 ≤ t ≤ n − 2 and

(
n
β

)
∈ poly(λ). There is an efficient protocol πCOM that statistically securely UC-

realizes Fn
COM in the {F2

SMT,Fβ ,Fn
BC}-hybrid model against environments that (maliciously) corrupt up

to t parties. Formally, {
F2

SMT,Fβ ,Fn
BC

} stat
⇝t Fn

COM . (2)

On a high level our one-to-many commitment protocol follows a commit-and-prove approach. Without
going into too much detail, we outline the idea of the protocol. The sender inputs its message m—in
the form of a threshold sharing µ—into all setups14 and gives (secret-shared) masks ξj to its neighbors
Rj ∈ NG(S) who, in turn, also commit to their sharings in all commitment setups. Additionally, the
sender broadcasts the message’s sharing µ masked with the masks’ sharings σ := µ ⊕

⊕
Rj∈N(S) ξj .

Subsequently, all parties broadcast some randomly drawn “probing indices” on which the sender (resp.
neighbors) broadcast the resp. share and open the setup commitment for the resp. share. Then all parties
check for inconsistencies. Indeed, all setups (intended for the same value) contain sharings of the same
(possibly masked) value with overwhelming probability. If shares differ significantly, this discrepancy will
be detected with overwhelming probability; then the affected setup is considered aborted by identifying
the committer as malicious. If shares differ only on a few indices, then the sharing’s error-detection will
allow the parties to notice that the shares are invalid. Again, the affected setup is considered aborted by
identifying the committer as malicious. Moreover, due to the privacy of the secret-sharing opening a few
14 The sender inputs the same shares into each setup that it participates in.

10

shares does not reveal anything about the encoded value.
Lemma 3 guarantees that at least one setup of cardinality β that contains both a neighbor of the sender
and a neighbor of the receiver must succeed. Otherwise, if all such setups are aborted, then the TG
becomes disconnected by Lemma 3 and the honest parties can abort the protocol.

To open the message, all parties open all commitment setups and at least one honest receiver is able
to recover the message either directly from the sender’s sharing µ of the message, or from the opened
masks ξj and the previously broadcasted masked sharing σ. Those receivers then broadcast the recovered
message. Any honest receiver that did not receive any opening information—because all its setups have
been aborted—then it outputs the majority of its neighbors’ broadcasted messages. To see why such
“cut-off” receivers output the correct message we have to see the following fact. Whenever all setups
containing both a neighbor of the sender and a neighbor of the receiver are aborted, then an honest
receiver has a majority of honest neighbors that could reconstruct the message. This statement follows
from graph-theoretical considerationsbest visualized in Fig. 1. An intuitive explanation is that if all such
setups are aborted, then the sender and the cut-off receiver have a large distance of at least β in the TG.
In that case the cut-off receiver cannot have too many malicious neighbors, yet honest parties always
remain neighbors.

Skipping ahead to the proof of security, the simulator will extract the committed message from the
sharings input into the partial commitment setups. As the verification step ensures consistency among
the committed messages the simulator’s extracted message is uniquely defined and correct.

Committed OT expansion.

Theorem 4 (FCOT expansion). Let n = n(λ), t = t(λ), β := ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2 s.t.
n/2 ≤ t ≤ n − 2 and

(
n
β

)
∈ poly(λ). There is an efficient protocol πFCOT that statistically securely UC-

realizes Fn
FCOT in the {F2

SMT,Fβ
SFE,f ,Fn

COM,Fn
BC}-hybrid model against environments that (maliciously)

corrupt up to t parties. Formally, for some specific functionality Fβ we get{
F2

SMT,Fβ ,Fn
COM,Fn

BC
} stat
⇝t Fn

FCOT . (3)

Recall that in the FCOT functionality there exists a sender, a receiver and n − 2 witnesses. Let Fβ
SFE,f

be some Secure Function Evaluation (SFE) setup for β-parties for some function fOT that allows for an
FCOT but whose details we omit at this point. In our FCOT protocol the sender and the receiver try to
perform the global FCOT directly, i.e., via some setup in which both the sender and the receiver and n−β
witnesses (w.r.t. the overall FCOT) are left out. To ensure consistency with the excluded witnesses the
sender and the receiver globally commit to their inputs (again as secret-sharings) via Fn

COM. Accordingly,
the setup Fβ

SFE,f also takes the same sharing as inputs. As in the commitment protocol the sender and
the receiver open their shares, in the Fβ

SFE,f setup and the global commitments, on some random probing
indices to detect inconsistencies.
To open, the sender and the receiver can simply open the global commitments to their respective inputs.

In the security proof the simulator extracts the sender’s messages and the receiver’s choice bit from
their inputs to their global commitments. Again, the verification step (commit-then-prove by probing
random shares) guarantees that the simulator’s extracted inputs match the ones output be the honest
parties in the real protocol execution with overwhelming probability.

As in the previous construction, we leverage Lemma 3 which guarantees essentially that some such
“direct” SFE setup must not be aborted, if the protocol is not to abort. Here lies the technical difficulty
of our protocol because Lemma 3 only guarantees such a setup between a neighbor of the sender and a
neighbor of the receiver (not the sender and the receiver themselves). To remedy this issue we make the
following observation: In the seemingly hopeless scenario where the adversary chooses to abort the setups
in such a way that the sender and the receiver themselves are not able to perform the direct setup, then
one of them (the honest one) has many honest neighbors. In this case the sender and receiver use their

11

neighbors respectively to carry out the OT for them. Here, the sender and the receiver secret-share their
inputs to retain their privacy and distribute them to their neighbors. While for the sender’s messages
the sharing seems straightforward (additive sharing), it may not be obvious how the receiver’s choice bit
can be shared s.t. the receiver obtains its chosen message. To this end we invoke a technique akin to the
one used by Wolf and Wullschleger [45] which they used to show the symmetry of OT. This allows the
receiver to only distribute additive shares of its choice bit (ensuring privacy) but still obtain the chosen
message.

Equivalence of SFE-Complete Setups In Appendix D.3we prove that the setups Fully Commit-
ted Oblivious Transfer (FCOT) Fn

FCOT, Secure Function Evaluation (SFE) Fn
SFE,f , and Correlated-

Randomness from [32] Fn
Corr,D can be efficiently realized from each other with statistical security; so

we can substitute one with the other by the Universal Composability Theorem of [13]. (We include
formal definitions of these functionalities in Appendix B.3.)

Putting the Results Together For brevity we use the short notation F ⇝t F (see Notation 8)to
describe the construction of UC-secure protocols for the ideal functionality F in the F -hybrid model
against at most t corruptions.

Corollary 4 (Composition of constructions). The correlation complexity for UC-secure ID-MPC
is at most β. We observe {

Fβ
FCOT

}
stat
⇝β Fβ

SFE,f (4){
F2

SMT,Fβ
SFE,f ,Fn

BC

}
stat
⇝t Fn

FCOT (5)
stat
⇝n Fn (6)

where Fn is any arbitrary functionality. Equation (5) follows from the combination of Theorems 3 and 4,
and Eqs. (4) and (6) follows from the ID-MPC-completeness of FCOT (see Lemma 8). For statistical
security we get {

Fβ
Corr,D

}
stat
⇝β Fβ

FCOT (7)

=⇒
{
F2

SMT,Fβ
Corr,D,Fn

BC

}
stat
⇝t Fn (8)

where Fn is any arbitrary functionality. Equation (7) follows from the ID-MPC-completeness of the
correlated randomness setup (Theorem 6 in [32]). For computational security we get{

πOT,Fβ
CRS,Fβ

BC

}
comp
⇝β Fβ

FCOT (9)

=⇒
{

πOT,F2
SMT,Fβ

CRS,Fn
BC

}
comp
⇝t Fn (10)

where Fn is any arbitrary functionality, πOT is any adaptively secure OT protocol and Fβ
CRS is the Com-

mon Reference String functionality from [14]. Equation (9) follows from the computational construction
in Theorem 12 in [32].

For ID-MPC with statistical security this reduces the required correlation complexity from n to
β. For ID-MPC with computational security this reduces the required cardinality of the CRS for the
computationally secure offline phase of the construction in [32] from n to β.

Theorem 1 (Correlation complexity bounds). The correlation complexity for UC-secure Multi-
Party Computation with Identifiable Abort (given broadcast) is β := min(n, ⌊n/(n−t)⌋+⌈n/(n−t)⌉−2) ≈
2n/(n− t) where n is the overall number of parties and t is an upper bound on the number of malicious

12

parties.
In other words, for any n-party functionality with Identifiable Abort there exists a protocol that uses hybrid
functionalities of cardinality β and broadcast, but there exists an n-party functionality with Identifiable
Abort which cannot be realized by any protocol that uses hybrid functionalities of cardinality β − 1 and
broadcast.

Proof. The theorem follows directly from Theorem 2 and Corollary 4.

13

Supplementary Material

A Discussion

A note on efficiency. We view this work as taking the first step towards constructing protocols that
resist a dishonest majority with small correlation complexity. As such we did not optimize the concrete
efficiency of our protocols, to keep them as easily accessible as possible. Though, in certain settings the
efficiency considerations in Section 1 still attest a (potentially exponential) advantage of our protocol for
t ≤ (1− ε)n, over protocols that use an n-party setup.
Let us make some high-level remarks. First, our constructions only use information-theoretic tools, e.g.
secret-sharing and some efficient graph operations. As such our protocol is computationally inexpensive,
in particular it does not require any computational assumptions.

On the other hand, the communication complexity is comparatively high because the consistency of
the Trust Graph is ensured by each party broadcasting their conflicts. The abort-respecting property
which is at the heart of our technique requires that—upon abort of a setup—parties gradually declare
conflicts until the corresponding subgraph is disconnected. This gradual declaration of conflicts (abort-
then-disconnect) requires O(β) = O(n/(n−t)) rounds in the worst-case (where β is the cardinality of the
setups). Moreover, the adversary can abort O(n2) setups. This abort-then-disconnect approach leads to
a worst-case round complexity of O(n3/(n− t)). This problem (with a similar bound O(n2)) also seems
to arise in the concurrent work [43] and is thus not specific to our approach. Since it is not clear if this
is an inherent problem when constructing MPC from smaller setups or not, we propose this question for
further research.
At first glance replacing one large setup with many smaller setups may seem like a unfavorable tradeoff.
However, all these smaller setups can be performed concurrently in the same rounds because they are
independent of each other. Thus, while the communication complexity might increase proportional to
the number of setups (polynomial in λ), the number of rounds only incurs an additive overhead.
Overall, in our protocols the computational complexity is low, the communication complexity is high,
and the round complexity is quadratic15 in n for t ≤ (1− ε)n.

On the use of broadcast. To us, it not known if a full broadcast is indeed necessary for all t ≥ n/2.
Cohen and Lindell [19] show that without full broadcast some functionalities are not realizable for
t ≥ n/3 (see Corollary 1.5 in [19]). To some degree this justifies that our technique relies on full n-
wise broadcast. Although we see potential to generalize our technique to partial broadcasts for fewer
corruptions; however, we leave this question for future work. Nevertheless, in light of our lower bound,
we can state that partial broadcasts must have cardinality at least β.

Limitation of the overall number of parties. Our protocols need
(

n
β

)
∈ poly(λ) to have polynomial

runtime. The reason for this is that there are
(

n
β

)
subsets of parties of size β almost all of which might

have to be used, if the adversary aborts the setups in a careful way. Unfortunately, this limitation seems
inherent in all protocols that don’t discriminate between different subsets of parties in any meaningful
way. In other words, to overcome this limitation a protocol would have to never use setups on some
a priori fixed subset of parties of size β although they are not aborted. This gives the adversary more
leeway to abort the other setups in a way that breaks the protocol.

The construction of [43] only supports arbitrary n ∈ poly(λ) for constant expansions n − s ∈ O(1)
(where s is the setup size) because of the exponential composition blowup of the runtime. We have a
different situation; see Table 1 for an overview of the supported number of parties vs. honest parties.
The first intuitive thing to note is that the smaller the fraction of honest parties the less overall parties
15 This is actually the additive overhead on top of the protocol of Ishai, Ostrovsky, and Zikas [32].

14

are supported. The case t = n − 1 is trivial. Somewhat counterintuitive is the case for t = n − 2 which
supports polynomially many parties, the reason for this is that for t = n− 2 the necessary and sufficient
setup encompasses all parties but two, i.e. β = n− 2. Here all but one setup contains at least one honest
party.
Another case worth mentioning is the two-party case n = 2 and t = n − 1 where security with abort is
trivially equivalent to IA; interestingly β = 2 carries over to larger n = 2t ≥ 4 from the honest majority
case.
When an arbitrarily small but constant fraction of parties is honest our protocols are efficient for any
n ∈ poly(λ). However, when less than a constant fraction of parties is honest, e.g. Θ(n/ ln n), then the
overall number parties drops drastically below n ∈ O(exp

√
ln λ) ⊂ λo(1). To relativize, these bounds only

apply when trying to design protocols with IA from minimal setups. It could be the case that slightly
larger setups yield protocols that support many more overall parties.

B Technical Preliminaries

B.1 Definitions & Notation

We use λ for the (statistical) security parameter, n for the overall number of parties, h for the lower
bound on the number of honest parties, and t for the upper bound on number of malicious parties. We
also use negl(λ) and owhl(λ) to denote the set of negligible resp. overwhelming functions w.r.t. λ.

Notation 1 (Order of functions). For any two functions f, g : N→ R we write f ≤ g ⇐⇒ ∀λ ∈ N :
f(λ) ≤ g(λ).

Notation 2 (Subsets). For any set V and k ∈ N we denote the set of subsets of cardinality k by(
V
k

)
:= {V ′ ⊆ V | |V ′| = k}. Also, we use

(
V
≤k

)
:=

⋃k
κ=1

(
V
κ

)
.

Notation 3 (Union of disjoint sets). For the reader’s convenience use a special notation for the
union of two disjoint sets. Whenever we write V ·∪ V ′ instead of V ∪ V ′ for any two sets V and V ′ it
holds that V ∩ V ′ = ∅. In particular, we use the fact that |V ·∪ V ′| = |V |+ |V ′|. To avoid confusion, note
that V ·∪ V does not mean the exclusive union (V ∪ V ′) \ (V ∩ V ′).

Notation 4 (Neighbors). For an undirected graph G = (V, E) we use the following notation for
neighbors: NG(v) := {v′ | {v, v′} ∈ E}.

Notation 5 (Distance). For any undirected graph G = (V, E) and any two vertices v, v′ ∈ V we
denote by ∆G(v, v′) the number of vertices on the shortest path between v and v′ (including v and v′).

Notation 6 (Index sets). For any k0, k1 ∈ N : k1 ≥ k0 we write [k0] := {1, ..., k0} and [k0, k1] :=
{k0, k0 + 1, ..., k1 − 1, k1}.

Notation 7 (Lists). For any list γ := (γi)i∈[l] of length l ∈ N we denote the (filtered) list at index set
ν ⊆ [l] by γν := (γi)i∈ν .

Lemma 5 (Error detection). Let u, w, s ∈ N+ s.t. s, w ≤ u and let W ∈
([u]

w

)
, then

Pr
S←([u]

s)[W ∩ S = ∅] =
s−1∏
i=0

u− w − i

u− i
≤

s−1∏
i=0

u− w

u
= (1− w/u)s ≤ 2−sw/u . (11)

Definition 1 (Threshold secret sharing). For any ℓ1 = ℓ1(λ) and ℓ2 = ℓ2(λ) s.t. ℓ1 ≤ ℓ2 an (ℓ1, ℓ2)-
threshold secret sharing scheme for message space M = (Mλ)λ∈N is defined by a probabilistic algorithm
Shareℓ1,ℓ2 and a deterministic algorithm Recoverℓ1,ℓ2 that compute the following (family of) functions:

15

• Shareℓ1,ℓ2 : Mλ → ({0, 1}λ)ℓ2 : m 7→ µ = (µκ)κ∈[ℓ2]
Shareℓ1,ℓ2 takes a message m ∈Mλ and outputs ℓ2 shares such that Recoverℓ1,ℓ2 reconstruct the message
but ℓ1 − 1 shares perfectly hide the secret. Formally, for all possible shares µ′ ∈ ({0, 1}λ)b output by
Shareℓ1,ℓ2 , for all messages m, m′ ∈Mλ and for all sets of indices ν ∈

([ℓ2]
ℓ1−1

)
it should hold that∣∣∣Prµ←Shareℓ1,ℓ2 (m)[µν = µ′ν]− Prµ←Shareℓ1,ℓ2 (m′)[µν = µ′ν]

∣∣∣ ∈ negl(λ) .

• Recoverℓ1,ℓ2 : ({0, 1}λ)ℓ2 →Mλ ·∪ {⊥} : µ 7→ m

We require error-detection. Formally, for all messages m ∈Mλ and for all sets of indices ν ∈
([ℓ2]

ℓ1

)
it

should hold that

Prµ←Shareℓ1,ℓ2 (m)

[
∀µ′ s.t.
µν = µ′ν

: µ = µ′ ⇐⇒ Recoverℓ1,ℓ2(µ′) = m

µ ̸= µ′ ⇐⇒ Recoverℓ1,ℓ2(µ′) = ⊥

]
∈ owhl(λ) .

For example, we could use Shamir’s secret sharing [42] with ℓ2 = 2ℓ1. The purpose of these threshold
sharing is to ensure that parties input the same shares across multiple setups.16

Definition 2 (Realizing ideal functionalities). Let n = n(λ) and t = t(λ) s.t. t ≤ n. Let F be a
set of setups (ideal functionalities) with cardinality at most n, let πF be any family of protocols in the F -
hybrid model, and let Fn be an ideal functionality. Iff πF securely UC-realizes Fn against environments
that (maliciously) corrupt at most t parties, we write

πF ≥t Fn , or equivalently

∃S ∀Z≤t :
{

REALπF ,AD

(
Z≤t(λ)

(
1λ, ·

))}
λ∈N ≈

{
IDEALFn(λ),S

(
Z≤t(λ)

(
1λ, ·

))}
λ∈N

where Z≤t denotes any environment that maliciously corrupts at most t parties, REALπF ,AD (Z≤t(λ)(1λ, ·))
is the environment’s output when running with the (hybrid) protocol πF on security parameter λ, and
IDEALFn(λ),S(Z≤t(λ)(1λ, ·)) is the environment’s output when running with the simulator on security
parameter λ. Here, AD is the canonical dummy adversary who simply forwards communication from and
to the environment (see Section 4.3.1 in [12]).

Notation 8 (Protocol construction). Let n = n(λ) and t = t(λ) s.t. t ≤ n. For any set of setups F
with cardinality at most n, and any ideal functionality Fn, we write F ⇝t Fn, iff there is a protocol πF

that securely UC-realizes Fn in the F -hybrid model against environments that (maliciously) corrupt up
to t parties. More formally:

F ⇝t Fn ⇐⇒ ∃πF : πF ≥t Fn . (12)

Conversely, we write
F ̸⇝t Fn ⇐⇒ ∀πF : πF ̸≥t Fn . (13)

We furthermore use the additional notation F
stat
⇝t Fn resp. F

comp
⇝t Fn to denote the construction is secure

against a computationally unbounded resp. efficient environment.

Next, we recall the definition of minimal complete functionalities (setups) as introduced by Fitzi et al.
[25]. The notion of a minimal complete cardinality (MCC) is relatively straightforward when considering
any fixed number of parties n ∈ N≥2, i.e., when the number of parties does not depend on the security
parameter. Then, as in the original work [25], for each n, t ∈ N≥2 : t ≤ n there exists exactly one number
κt ∈ {2, ..., n} s.t. κt is the MCC. As such their definition gives a meaningful setup size for each n ∈ N,
i.e., it is not only an asymptotic statement.
16 The idea is conceptually similar to public verifiability [1].

16

Definition 3 (Concrete minimal complete cardinality [25]). Let n ∈ N be any number of parties
and t ∈ N be any corruption threshold s.t. t ≤ n, and let Fn be an ideal functionality. Furthermore, let
F be a set of setups for at most n parties.
Relative to F , we say the cardinality κt,Fn,F ∈ N is (concretely)
• complete, iff ∃Fκt,Fn,F : {Fκt,Fn,F } ∪ F ⇝t Fn, and
• minimal, iff ∀κ′ < κt,Fn,F : (∀Fκ′ : {Fκ′} ∪ F ̸⇝t Fn), i.e., if any setups of any cardinality κ′ are

insufficient for constructing Fn.

However, if the number of parties n = n(λ) scales with the security parameter a more nuanced
definition is necessary.

Definition 4 (Asymptotic minimal complete cardinality (MCC)). Let n = n(λ) be any number
of parties and t = t(λ) be any corruption threshold s.t. t ≤ n, and let Fn be an ideal functionality.
Furthermore, let F be a set of setups for at most n parties.
Relative to F , we say the cardinality βt,Fn,F = βt,Fn,F (λ) is (asymptotically)
• complete, iff ∃Fβt,Fn,F : {Fβt,Fn,F } ∪ F ⇝t Fn, and
• minimal, iff

∀β′ = β′(λ) :
(

lim sup
λ→∞

βt,Fn,F (λ)− β′(λ) > 0 =⇒ ∀Fβ′
:
{
Fβ′

}
∪ F ̸⇝t Fn

)
, (14)

i.e., if any setups of any cardinality β′ (that is less than βt,Fn,F for infinitely many17 λ) are insufficient
for constructing Fn.

Remark 1. Note that, technically, the asymptotic MCC makes no statement about whether setups of
a certain fixed cardinality are sufficient to realize a certain functionality for a fixed number of parties.
Instead, it only makes an asymptotic statement. The intuitive reason is that protocol runs with small
security parameter λ (resp. number of parties n) are irrelevant because the indistinguishability of the
real and the ideal execution is only an asymptotic property.18 To make this point more clear, note that
if βt,Fn,F is an MCC, then so is

β′ : λ 7→

{
βt,Fn,F (λ) λ ≥ λ′

2 λ < λ′
(15)

for any λ′ ∈ N. This demonstrates that the asymptotic MCC is not unique. As such, it only yields an
asymptotic statement.
Though, both definitions coincide for fixed n ∈ N, then we find that the concrete MCC of [25] is equal to
κτ,Fn,F = lim supλ→∞ βt,Fn,F (λ) where βt,Fn,F is any asymptotic MCC and τ = lim supλ→∞ t(λ) ∈ N.

We stress that our results apply both to the case of a fixed n ∈ N≥2 as well as a variable n = n(λ).
In the former case the condition

(
n
β

)
∈ poly(λ) (necessary for our construction) holds trivially. Lastly, we

want to mention that [25] defined the MCC relative to F = ∅ while in this work we consider F = {Fn
BC},

i.e., the broadcast functionality defined in Appendix B.3.

Definition 5 (Correlation complexity (CC)). Let n = n(λ) be any number of parties and t = t(λ)
be any corruption threshold s.t. t ≤ n, and let F be a set of setups for at most n parties. We say β(λ) :=
maxFn βt,Fn,F (λ) is the correlation complexity relative to F and t where Fn is any ideal functionality
for n parties. (In this work we only consider F = {Fn

BC}, i.e., the broadcast functionality defined in
Appendix B.3, and we omit the argument λ.)
17 One can alternatively also define an “all-but-finite”-variant.
18 To the best of our knowledge this issue has not been stated explicitly in previous literature.

17

B.2 Setting

Our constructions enjoy information-theoretic or statistical security, no computational assumptions
are made. We only assume the existence of (ideal) hybrid functionalities—which we call setups to dis-
tinguish them semantically from the (to-be-constructed) ideal functionality. This leaves the means of
the realization of these setups up to the user, e.g. via physical means such as trusted hardware [29,
41] or noisy channels [23, 21]. All functionalities are assumed to be authenticated. We focus on static
corruptions of an arbitrary number of parties at the onset of the protocol. We denote the total number
of parties by n and the upper bound for malicious parties by t ≤ n.

Technically speaking, our results don’t explicitly assume additional pairwise secure channels, since
they can be emulated by setups of size at least 2. Adding pairwise channels does not affect our results,
in fact we use pairwise channels as a conceptual simplification in our protocols. However, in our settings
all parties have access to an n-party broadcast, which we model as ideal functionality Fn

BC. (See a brief
discussion on the broadcast in Appendix A.)

The UC framework. We perform our analysis in the Universal Composability (UC) framework [12,
13], which is a strong version of simulation-based security [28, 27]. The key idea there is to compare a
real protocol execution between mutually distrustful parties to an idealized execution, where a trusted
party performs the computation based on the participants inputs. The behavior of the trusted party is
specified by an ideal functionality F . In the real world, all parties execute a protocol π , which is said to
realize the functionality F , if it can be shown to be indistinguishable from the ideal world. This requires
a simulator who creates a transcript of an execution without knowing the parties’ inputs. More precisely,
the transcripts of both worlds must be indistinguishable for any non-participant, even those who know
the parties’ secret inputs. The transcript includes the output of all parties and the respective adversary.
Indistinguishability of the two worlds implies that the real adversary cannot learn anything from the real
protocol execution that the simulator cannot contrive without knowing the private inputs.

As opposed to the standalone model, where the simulation only has to produce a transcript as a whole,
in the UC framework the simulator interacts continuously with an environment—typically denoted by Z.
This means that the simulator can, in particular, not rewind the environment. As such, the UC framework
provides much stronger security guarantees than the standalone model, but comes with some restrictions.
Without a trusted setup no protocol can securely UC-realize functionalities such as commitments [14],
while computational constructions in the standalone model exist. Constructions in the UC framework
also hold in the standalone model and, conversely, impossibilities in the standalone model extend to the
UC framework.

The synchronous model. We assume a synchronous communication network. In particular, we require
the following properties of the synchronous model, where we use the terms defined by Canetti [12, 2020
version, Section 7.3.3]:
Round Awareness. Each protocol description contains a maximum number of rounds. The round is

monotonically increasing throughout the execution and only increases if all honest parties have been
activated in this round. At each activation, honest parties are aware of the current round.

Guaranteed and Authentic Message Delivery. As mentioned before, we do not assume direct chan-
nels between parties and instead model communication between parties using setup functionalities.
We require these setups to output their messages to the honest parties in a guaranteed and authentic
way.

Note that in a synchronous model the environment still manages the order in which honest parties are
activated.

Remark 2. The second requirement, Guaranteed and Authentic Message Delivery, does not imply Guar-
anteed Output Delivery: Each setup has its own special input and special output tape for interacting

18

https://ia.cr/2000/067/20200212:021048
https://ia.cr/2000/067/20200212:021048

with honest parties. We follow the general convention and model these as inaccessible for the adversary;
neither is it possible for the adversary to suppress the output, nor is it possible to change it in any way.

The only way an adversary can interact in this scenario is by aborting the setup, which requires a
non-empty set of corrupted parties C and changes the originally intended output to (abort, C); but this
output cannot be suppressed or changed by the adversary.

This way of changing the output to (abort, C), such that honest parties do not receive the original
output of the setup, is why our requirements to not imply Guaranteed Output Delivery and thus evade
the impossibility of fairness.

Remark 3. Assuming a synchronous model is necessary to prevent Denial-of-Service attacks because in
an asynchronous model, the adversary can drop all messages [17, 6], resulting in a situation similar
to (non-identifiable) abort. This renders Identifiable Abort essentially useless. The synchronous model,
however, provides guaranteed termination [35]. When additionally assuming Identifiable Abort this means
that the adversary can only either let the functionality terminate, or abort at the cost of revealing the
identity of at least one malicious party.

Identifiable Abort. Unfortunately, fairness and thus guaranteed output is impossible against a dis-
honest majority [18]. On the other hand, the weaker notion of security with (non-identifiable) abort [36,
33], where the adversary can abort the protocol at any time without repercussions, leaves the protocol
vulnerable to Denial-of-Service attacks.

To sidestep this issue we consider security with Identifiable Abort (IA) as formalized by Ishai, Os-
trovsky, and Zikas [32] (see also [2, 31]). Here, abort is possible, but only by revealing the same identity
of (at least) one malicious party to all participants. This property disincentivizes adversaries to cheat,
especially if coupled with some form of penalty mechanism.

Definition 6 (Identifiable Abort [32]). Let n = n(λ) and let Fn be an ideal n-party functionality
with n parties P and malicious parties C ⊆ P. Fn has (Multi-)Identifiable Abort, iff on input
(abort, C ′) s.t. ∅ ≠ C ′ ⊆ C from the adversary Fn sends (abort, C ′) to all parties and terminates. Fn

has Uni-Identifiable Abort, iff Fn has Multi-IA and |C ′| = 1.

Notation 9 (Functionalities with Identifiable Abort). Let n = n(λ). We denote by Fn an n-party
functionality with Identifiable Abort (IA). In contrast, the original work [32] uses the notation F ID

⊥ . To
prevent an overloaded notation we stick to Fn and always assume that all functionality enjoy security
with IA.

Note that functionalities with Identifiable Abort are not well-formed, meaning that they know which
of the parties are corrupted and which are honest. This is inherently necessary to check whether C ′ ⊆ C .

Additional care has to be taken into the protocol design. We generally assume that the protocols
and functionalities are not fair. This means, that the adversary can learn sensitive information in each
protocol run, which it can leverage during the next execution. In our protocols, we mitigate this problem
through the use of appropriate secret-sharings.

B.3 Functionalities / Setups

In this section, we introduce the ideal functionalities we use. We note that all following functionalities
are defined with Identifiable Abort and are inherently unfair. It might be interesting to also consider fair
variants to investigate the connection between fairness and Identifiable Abort for certain functionalities
(for which fairness is not ruled out) in the vein of Cohen and Lindell [19].

19

Broadcast. First, we define a broadcast which is essentially the one from [16], though we only let parties
broadcast messages to all parties not any subset of parties.

Functionality Fn
BC

Fn
BC proceeds as follows, running with security parameter λ, n = n(λ) parties P = {P1, ..., Pn}, malicious

parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (input, m ∈ {0, 1}λ) from party Pi, send (output, Pi, m) to S. Upon the next

activation, send (output, Pi, m) to all parties.
• When receiving (abort, C ′) from S with ∅ ≠ C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

Commitments. Next, we define a (one-to-many) bit commitment, in the spirit of [16], adapted to the
IA setting. We call the one-to-all commitment a global commitment.

Functionality Fn
COM

Fn
COM proceeds as follows, running with security parameter λ, n = n(λ) parties P = {S, R1, ..., Rn−1},

malicious parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (commit, m ∈ {0, 1}λ) from party S, send (receipt commit) to all parties. Ignore

further messages (commit, ·) from S.
• When receiving (open) from party S, send (open, m) to S. Upon the next activation, send (output, m)

to all parties and terminate.
• When receiving (abort, C ′) from S with ∅ ≠ C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

In the proof of Theorem 2 we use a one-to-one variant, which is essentially the same, except that only
one fixed receiver obtains the opened value. We include it for completeness.

Functionality Fn
COM,1:1

Fn
COM,1:1 proceeds as follows, running with security parameter λ, n = n(λ)parties P = {S, R, ...},

malicious parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (commit, m ∈ {0, 1}λ) from party S, send (receipt commit) to all parties. Ignore

further messages of the type (commit, ·) from S.
• When receiving (open) from party S, send (open,⊥) to S (or (open, m) if R is corrupted). Upon the

next activation, send (open, m) to R and send (open,⊥) to all parties, then terminate.
• When receiving (abort, C ′) from S with ∅ ≠ C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

SFE-complete functionalities. We start by providing a formal description of the functionality for
Secure Function Evaluation.

20

Functionality Fn
SFE,f

Fn
SFE,f proceeds as follows, running with security parameter λ, n = n(λ) parties P = {P1, ..., Pn},

malicious parties C ⊆ P, adversary S and (possibly randomized) function f : (x1, ..., xn) 7→ (y1, ..., yn)
with private input xi and output yi for Pi. Messages not covered here are ignored.

• When receiving (input, xi) from Pi with xi ∈ {0, 1}λ, store (i, xi) and send (receipt, Pi) to each
corrupted party Pj and receipt to S. Upon the next activation, send (receipt, Pi) to each honest
party Pj .

• When there are (i, xi) stored for all i ∈ [n], then send (output, yj) to each corrupted party Pj and
(output) to S. Upon the next activation, send (output, yj) to each honest party Pj , then terminate.

• When receiving (abort, C ′) from S with ∅ ̸= C ′ ⊆ C , then output (abort, C ′) to all parties, and
then terminate.

In particular, this functionality allows to instantiate the following functionality Fn
Corr,D where fD ignores

the inputs and samples from the distribution D.

Functionality Fn
Corr,D adapted from [32]

Fn
Corr,D proceeds as follows, running with security parameter λ, n = n(λ) parties P = {P1, ..., Pn},

malicious parties C ⊆ P, adversary A and efficiently samplable distribution D. Messages not covered
here are ignored.

• When receiving start from P or S, sample (r1, ..., rn) ← D, output ri to each corrupted party Pi.
Upon the next activation, send ri to each honest party Pj , then terminate.

• When receiving (abort, C ′) from S with ∅ ̸= C ′ ⊆ C , then output (abort, C ′) to all parties, and
then terminate.

Next, we formulate a variant of OT originally introduced as Verifiable OT [22], which was later described
as Committed Oblivious Transfer [24]. We call our formalization as an ideal functionality Fully Commit-
ted Oblivious Transfer (FCOT), which extends classical OTs in three ways: 1. it includes n−2 witnesses,
which obtain a receipt if the message has been transferred successfully, 2. the sender S is committed to
both m0 and m1, and 3. the receiver R is committed to c.

Functionality Fn
FCOT

Fn
FCOT proceeds as follows, running with security parameter λ, n = n(λ) parties P =
{S, R, W1, ..., Wn−2}, malicious parties C ⊆ P and adversary S. Messages not covered here are ignored.

• When receiving (messages, m0, m1 ∈ {0, 1}λ) from S, store m0, m1 and send (receipt messages)
to all parties and S if (receipt choice) has not been sent. Ignore further messages of the type
(messages, ·, ·) from S.

• When receiving (choice, c ∈ {0, 1}) from R, store c and send (receipt choice) to all parties and S
if (receipt messages) has not been sent. Ignore further messages of the type (choice, ·) from R.

• When both m0, m1 and c are stored, send (receipt transfer) to S (or (output, mc) if R is cor-
rupted). Upon the next activation, send (output, mc) to R, and (receipt transfer) to each party.

• When receiving (open message, b ∈ {0, 1}) from S and m0, m1 are stored, send (open message, b, mb)
to S. Upon the next activation, send (open message, b, mb) and to each party. Ignore further messages
(open message, b) from S.

• When receiving (open choice) from R and c is stored, send (open choice, c) to S. Upon the next
activation, send (open choice, c) and to each party. Ignore further messages from R.

• When receiving (abort, C ′) from S with ∅ ≠ C ′ ⊆ C , then output (abort, C ′) to all parties and
terminate.

Note that this functionality assigns dedicated roles to the participating parties. Because our results are
modeled in the UC framework, multiple instances can be arbitrarily composed to allow OTs between any
two parties.

21

Helper functionalities. Next, we define two helper functionalities whose purpose is to simplify our
protocol descriptions. These variants of the Fn

COM and Fn
FCOT functionalities take as inputs sharings

of the message instead of the message resp. choice bit themselves. Since we study the question of the
minimal complete cardinality (MCC), we assume setups of some size (here β) are given. Recall that for
UC commitments setups are necessary. To determine the MCC, we do not care about how these setups
are realized.

For notational ease, our functionalities allow each party to perform an OT with each other party,
resp. each party can commit to all other parties. First, we define a Shared Oblivious Transfer (SOT)
functionality which enables all participating parties to verify that the inputs encoded in the sharings are
consistent with the inputs of some other (global) setup functionalities, in particular a global commitment
of the shares. The notation Pi → Pj signifies an OT with sender Pi and receiver Pj .

Functionality Fβ
SOT

Fβ
SOT proceeds as follows, running with security parameter λ, sharing parameter ℓ = ℓ(λ), number of

probing shares ρ = ρ(λ), β = β(λ) parties P = {P1, ..., Pβ}, malicious parties C ⊆ P, and adversary S.
Messages not covered here are ignored.

• When receiving (messages, Pi → Pj , µ0, µ1 ∈ ({0, 1}λ)2ℓ) s.t. ∀b ∈ {0, 1} : Recoverℓ,2ℓ(µb) ̸= ⊥ from
Pi, store (Pi → Pj , µ0, µ1) and send (receipt messages, Pi → Pj) to S. Upon the next activation,
send (receipt messages, Pi → Pj) to each party. Ignore further messages of this type from Pi to Pj .

• When receiving (choice, Pi → Pj , γ ∈ ({0, 1}λ)2ℓ) s.t. Recoverℓ,2ℓ(γ) ∈ {0, 1} from Pj , store
(Pi → Pj , γ) and send (receipt choice, Pi → Pj) to S. Upon the next activation, send
(receipt choice, Pi → Pj) to each party. Ignore further messages of this type from Pj to Pi.

• When both (Pi → Pj , µ0, µ1) and (Pi → Pj , γ) are stored, draw some “probing indices” ν ←
([2ℓ]

ρ

)
and decode c← Recoverℓ,2ℓ(γ).
Send (receipt transfer, Pi → Pj , ν, µ0

ν , µ1
ν , γν) to S (additionally (output, Pi → Pj , µc) if Pj

is corrupted). Upon the next activation, send (receipt messages, Pi → Pj) to each party and
(output, Pi → Pj , µc) to Pj .

• When receiving (open message, Pi → Pj , b ∈ {0, 1}) from Pi and µ0, µ1 are stored, send
(open message, Pi → Pj , b, mb) to S where mb ← Recoverℓ,2ℓ(µb). Upon the next activation, send
(open message, Pi → Pj , b, mb) to all parties.

• When receiving (open choice, Pi → Pj) from Pj and γ is stored, send (open choice, Pi → Pj , c) to
S where c← Recoverℓ,2ℓ(γ). Upon the next activation, send (open choice, Pi → Pj , c) to all parties.

• When receiving (abort, C ′) from S with ∅ ≠ C ′ ⊆ C , then output (abort, C ′) to all parties and
terminate.

Next, we define a Shared Commitment (SCOM) functionality that enables the verification of consistency
of inputs across setups. The motivation behind this functionality is that it admits a standard commit-
then-prove technique in our construction. The idea is to commit the same sharing into many (different)
setups and prove the equality (of the encoded message) by opening (sufficiently many) random shares.
In this way a commitment to few parties can be extended to many parties.

22

Functionality Fβ
SCOM

Fβ
SCOM proceeds as follows, running with security parameter λ, sharing parameter ℓ = ℓ(λ), β = β(λ)

parties P = {P1, ..., Pβ}, malicious parties C ⊆ P, and adversary S. Messages not covered here are
ignored.

• When receiving (commit, µi ∈ ({0, 1}λ)2ℓ) from Pi s.t. Recoverℓ,2ℓ(µi) ̸= ⊥, store µi and send
(receipt commit, Pi) to S. Upon the next activation, send (receipt commit, Pi) to each party.
Ignore further messages (input, ·) from Pi.

• When receiving (open, U ⊆ [2ℓ]) from Pi, if the sharing µi is stored, send (output, Pi, U, µi
U) to S.

Upon the next activation, send (output, Pi, U, µi
U) to each party.

• When receiving (abort, C ′) from S with ∅ ≠ C ′ ⊆ C , then output (abort, C ′) to all parties and
terminate.

For our proof we define the two-party functionality Secure Message Transfer (SMT) which usually de-
scribes the underlying communication model. Our construction do not explicitly require pairwise channels
between parties, yet we still use the F2

SMT to simplify our protocols. This does not change the statements
w.r.t. the minimal complete cardinality.

Functionality F2
SMT

Fn
SMT proceeds as follows, running with security parameter λ, parties P = {P1, P2}, malicious parties

C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (input, m ∈ {0, 1}λ) from party P1, send m to P2.
• When receiving (abort, C ′) from S with ∅ ≠ C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

C Trust Graph: Identification via Conflicts

Let us start with the formal definition of the TG.

Definition 7 (Trust Graph). The Trust Graph (TG) is defined as the output of the following func-
tionality.

Functionality Fn
TG

Fn
TG proceeds as follows, running with parties P = {P1, ..., Pn}, malicious parties C ⊆ P and adversary
S. Messages not covered here are ignored.
• Upon first activation, initiate the set of conflict edges E :=

(P
≤2

)
.

• When receiving a message (conflict, Pi ∈ P) from Pj, for i ̸= j remove the edge {Pi, Pj} from the
set of edges E and send (conflict, Pj , Pi) to the adversary.

• When receiving a message (conflict, P ′ ⊆ P) from Pj, for each Pi ∈ P ′ s.t. i ̸= j remove the edge
{Pi, Pj} from E and send (conflict, Pj , Pi) to the adversary.a

• When receiving a message (query) from Pj, output the Trust Graph G := (P, E) to Pj.
• When receiving (abort, C ′) from S with ∅ ̸= C ′ ⊆ C, then output (abort, C ′) to all parties and

terminate.
a This instruction is stated merely for notational ease of conflicts with multiple parties.

The object of the Trust Graph G := (P, E) itself is an undirected reflexive graph on all parties returned
by the Fn

TG functionality.

This functionality internally maintains the graph. Each time a party declares a conflict with another
party, the corresponding edge is removed from the graph. In a given round each party—upon query—the

23

Fn
TG returns the same graph. This implies a consistent view to all parties for any protocol πTG that

realizes Fn
TG. In particular, the Fn

TG can be realized using only broadcast.

Lemma 6. Let n = n(λ). There is an efficient protocol πTG that perfectly securely UC-realizes Fn
TG in

the {Fn
BC}-hybrid model against environments that (maliciously) corrupt up to n parties. Formally,

Fn
BC

perf
⇝n Fn

TG . (16)

We include the proof in Appendix E. To link the abort condition of a protocol to the disconnectivity of
the TG we want the protocol to ensure that honest parties are never in conflict. This is in particular
fulfilled by the following definition. Put simply, the following rules say that the parties should 1) query
the TG from Fn

TG, 2) modify the TG according to aborted setups or an abort of the protocol itself, and
3) report all new conflicts back to Fn

TG.

Definition 8 (Abort-respecting protocols). A protocol with parties P and corrupted parties C ⊆ P
in some F -hybrid model s.t. Fn

TG ∈ F is abort-respecting,19 iff each honest party P ∈ H obeys the
following ruleset. P maintains three sets of parties: P̂ := ∅ is the set of currently “feuding”20 parties,
Ĉ := ∅ is the set of initially accused (identified) parties after a setup-abort, and D̂ := ∅ as the set of
parties that P has currently identified as malicious.

Rule 1 At the onset of each round P sends (query) to Fn
TG to obtain G := (P, E) in the next round.

Rule 2 When P reads (abort, C ′) where ∅ ≠ C ′ ⊆ C ∩P ′ as output from some setup on parties P ′ ∋ P, then
P inputs (conflict, C ′) into Fn

TG and defers processing all other inputs until the subgraph on P ′ is
disconnected. Then P sets P̂ = P ′ and Ĉ = C ′, and continues to Rule 3.

Rule 3 If Ĉ ̸= ∅, P sets D̂ := D̂ ∪ Ĉ , and otherwise skips this rule. The party P extracts the set L of
“loyal” parties in P̂ that are not in conflict with all parties in D̂ and send (conflict, L) to Fn

TG,
then D̂ := D̂∪L. This process is repeated in each following round (only applying Rule 3 and deferring
all other inputs) until the subgraph on P̂ is disconnected. Once the subgraph on P̂ is disconnected P
resets Ĉ = P̂ = ∅ and continues according to the protocol.

Rule 4 After obtaining G := (P, E) from Fn
TG, the party P checks if G is disconnected. If so, P deter-

mines its connected component P ′ ∋ P (e.g. via breadth-first-search) and aborts the computation with
(abort, P \ P ′).
Otherwise, P checks if there are parties with more than t conflicts. If so, P sets Ĉ as the set of parties
with more than t conflicts, and P̂ = P, and continues according to Rule 3.

Rule 5 Whenever P is about to abort the computation with output (abort, C ′) s.t. ∅ ≠ C ′ ⊆ C and the
overall TG is (still) connected, P sets Ĉ = C ′ and P̂ = P, and continues according to Rule 3.21

Rule 6 The party P only declares conflicts with malicious parties. Conflicts declared according to the rules
above are called generic, any other conflicts are called specific.

First, we want to discuss Rule 6, i.e., there are no honest-honest conflicts. In particular, generic
conflicts fulfill this requirement honest parties only declare a conflicts
1. with parties identified in the abort of a setup or the protocol itself, or
2. with parties who stay loyal to such identified parties, or
3. with parties that have more conflicts than are allowed.

First, because the setups and the protocol are secure with Identifiable Abort by assumption, all identified
parties upon abort (of a setup) must be malicious with overwhelming probability. Second, by Rule 2
19 [32] also use the term abort-respecting, we adapt it to the context of Trust Graphs.
20 The parties just that witnessed the abort of a setup are “feuding” because they declare conflicts to eventually

disconnect the corresponding subgraph.
21 If the underlying protocol is secure with Identifiable Abort, then all honest parties will abort with the same

identified parties in the same round, hence Ĉ and P̂ are consistent among all honest parties.

24

honest parties do not stay loyal to identified parties. Third, if a party has strictly more than t conflicts it
must be malicious. For contradiction, suppose the following: In a protocol any honest party P gets more
than t conflicts for the first time in some fixed round ρ. Consequently, all (strictly more than t) parties
in conflict with P must be malicious because before round ρ conflicts were only issued by P due to Rule
2 and Rule 5. This, however, contradicts the assumption that at most t parties are malicious, hence P
must be malicious. In summary, any conflict contains at least one malicious party.
Moreover, the process of gradual conflict declarations terminates within at most n rounds because in
each non-final round at least one loyalist is moved into the set of malicious parties D̂.

We want to elaborate on the notion of specific conflicts. A specific conflict must—by design of the
protocol—ensure that it contains at least one malicious party. That is, whenever presenting an abort-
respecting protocol, one must prove its specific conflict rules indeed cause no honest-honest conflicts. We
do this for our construction in Appendix D.2.
We emphasize that Definition 8 does not dictate which specific conflicts are declared in a protocol but
it dictates which ones may not be declared, namely any conflict that could result in an honest-honest
conflict. For example, consider a protocol where each party broadcasts start in the first round. If any
party P instead broadcasts ⊥ or nothing, then P must be malicious and it is safe to declare a (specific)
conflict with P because P violated the protocol specification in an obvious manner.22 Looking ahead to
the next lemma, we note that a protocol can canonically be made abort-respecting by amending the
protocol with instructions (Rule 1, Rule 2, Rule 5 and Rule 4) corresponding to generic conflicts but
none for specific conflicts.

Now that we have a good intuition of the presented graph properties, we can formally show that the
disconnectivity of the Trust Graph corresponds to the honest parties’ ability for Identifiable Abort.

Corollary 5 (Identifiable Abort ⇐⇒ disconnected Trust Graph). Let n = n(λ) and let F ′ be
a set of setups for at most n parties. Let πF be an abort-respecting protocol that securely UC-realizes a
functionality Fn with Identifiable Abort in the F -hybrid model where F := F ′ ∪ {Fn

TG}.
1. If the TG of πF becomes disconnected, the (honest) parties abort by identifying malicious parties.
2. Upon abort, the TG G of πF must be disconnected.

Proof. The first statement follows directly from Rule 4 in Definition 8. Let P be the set of parties. Note
that all honest parties are in the same connected component ∅ ̸= P ′ ⊂ P of the TG. Hence, all parties
in P \ P ′ must be malicious. As such, an honest party in P ′ aborts correctly with P \ P ′. The second
statement follows from Rule 5 in Definition 8.

Lemma 7 (TG augmentation). Let n be the number of parties P of which at most 0 ≤ t ≤ n are
malicious. Let πF be a protocol that securely UC-realizes a functionality Fn in some model F ̸∋ Fn

TG.
Denote by π̃F,Fn

TG the F ∪{Fn
TG}-hybrid protocol that is identical to πF with the addition that it uses Fn

TG
in an abort-respecting way according to Definition 8. Then π̃F,Fn

TG also securely UC-realizes Fn, i.e.,
π̃F,Fn

TG ≥ Fn.

Proof. Here, the intuition is that the environment can infer the TG from its own behavior without
querying Fn

TG. Furthermore, the additional behavior described in Definition 8 is deterministic and can be
inferred from a transcript of the base protocol πF by adding the appropriate calls to Fn

TG and potentially
aborting, i.e., ending the protocol with abort-messages, if Rule 4 in Definition 8 occurs.

Now, we formally prove the statement. First, note that ∃S ∀Z : REALπF ,AD (Z) ≈ IDEALFn,S(Z)
because πF securely UC-realizes Fn.23 That is, S is the simulator for protocol πF .
Let Z̃ denote an environment for protocol π̃F,Fn

TG . Let [Z̃] be the environment for protocol πF that
22 This is similar to the usage of the Trust Graph in [44].
23 As in Notation 2, AD is the canonical dummy adversary.

25

internally emulates Z̃. As the inner environment Z̃ expects an interface to Fn
TG the outer environment

[Z̃] simulates a Fn
TG setup for it. [Z̃] outputs whatever Z̃ outputs with the following modification: [Z̃]

also simulates the additional behavior of honest parties as described in Definition 8 using the internally
simulated Fn

TG. As such, the output transcript of [Z̃] when running with πF is identical to the output of
Z̃ when playing with π̃F,Fn

TG , i.e.,

REALπF ,AD

([
Z̃

])
≡ REAL

π̃
F,Fn

TG ,AD

(
Z̃

)
. (17)

By the security of πF there exists some simulator S̃ s.t.

REALπF ,AD

([
Z̃

])
≈ IDEALFn,S̃

([
Z̃

])
. (18)

Furthermore, let [S̃] be the simulator that internally emulates S̃ and also simulates an Fn
TG setup.

Analogously to [Z̃], the outer simulator [S̃] outputs whatever the inner simulator S̃ outputs with the
modification that [S̃] also simulates the additional behavior of honest parties as described in Definition 8
using the internally simulated Fn

TG, hence

IDEALFn,S̃

([
Z̃

])
≡ IDEALFn,

[
S̃
](
Z̃

)
. (19)

We can conclude that for any Z̃

REAL
π̃

F,Fn
TG ,AD

(
Z̃

)
≡ REALπF ,AD

([
Z̃

])
≈ IDEALFn,S̃

([
Z̃

])
≡ IDEALFn,

[
S̃
](
Z̃

)
.

(20)

D Full Constructions & Proofs

D.1 Impossibility / Lower Bound

In this section we formally prove our impossibility result as sketched in Section 1.3.

Lemma 2 (Connected graph =⇒ many disconnected β − 1-subgraphs). Let n, t ∈ N s.t.
n/2 ≤ t ≤ n − 1, and let β := min(n, ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2). Furthermore, let V be a set of n
vertices and let v, v′ ∈ V : v ̸= v′ be two different vertices. There exist some edges E ⊆

(
V
≤2

)
s.t.

1. G := (V, E) is an undirected, reflexive and connected graph,
2. ∀{u, u′} ∈ E : |NG(u) ∩NG(u′)| ≥ n− t,
3. for each V ′ ∈M the subgraph G′ := (V ′, E ∩

(
V ′

≤2
)
) is disconnected

where

Nu :=
{
{u} , if t = n− 1
NG(u) , else

is the set of “effective” neighbors of any vertex u, and
M := {V ′ ⊆ V | V ′ ∩Nv ̸= ∅ ∧ V ′ ∩Nv′ ̸= ∅ ∧ |V ′| < β}

is the set of relevant subsets of vertices that contain both an effective neighbor of v and an effective
neighbor of v′.

Proof. The proof24 itself is—by its graph-theoretical nature—quite technical, so we want to give a brief
intuition first. To start, we give a constructive description of the graph G. This might be best visualized
24 This proof is very similar to the one of Claim 3.1 in [44].

26

with Fig. 1; it depicts examples of the graph G for some parameters. Its structure looks somewhat
like a caterpillar path but with triangles. After presenting the description of the graph, we prove all
required properties. The key point to showing that if all relevant subgraphs (on vertex subset in M)
are disconnected, then all such subgraphs contain vertices near each end of the caterpillar. Because the
subgraphs are sufficiently small, some part in the middle of the caterpillar must be missing—dissecting
the caterpillar.

Let h := n− t, let V := {v1, ..., vn} and w.l.o.g. v := v1 and v′ := vn. We define S- and L-segments by
Sj := {vjh+2, ..., v(j+1)h} and Lj := {vjh+1}. There are ⌈n/h⌉ many L-segments, and ⌈(n− 1)/h⌉ many
S-segments if h ≥ 2. Otherwise there are no S-segments, i.e., in case h = 1 the S-segments Sj are empty.
Based on these segments we define the graph G := (V, E) by

E := {{vj , vj+1} | j ∈ [n− 1]} ·∪ {{vj , vj} = {vj} | j ∈ [n]} (21)
if h = 1 and

E :=

{u, u′}

∣∣∣∣∣∣∣
∃j ∈ [0, ⌈n/h⌉ − 1] : u ∈ Sj ∧ u′ ∈ Sj ·∪ Lj ·∪ Lj+1

∨ u ∈ S⌊n/h⌋−1 ∧ u′ ∈ S⌊n/h⌋

∨ u = u′

 (22)

if h ≥ 2. Obviously, G is reflexive. We show the following properties of G:
1. G is connected,
2. ∀{u, u′} ∈ E : |NG(u) ∩NG(u′)| ≥ h,
3. each subgraph G′ on V ′ ∈M is disconnected.

To show Property 1 we notice that all vertices within a given segment are connected in G, i.e.,
(

Sj

≤2
)
⊆ E

and
(

Lj

≤2
)
⊆ E. Furthermore, consecutive segments are also connected in G. For h = 1 this is trivial, for

h ≥ 2 this is ensured by the condition u ∈ Sj ∧ u′ ∈ Sj ·∪ Lj ·∪ Lj+1 in the definition of E.
Next, we show Property 3, i.e., for each V ′ ∈M the subgraph (V ′, E ∩

(
V ′

≤2
)
) is disconnected. To this

end, we prove that there exists a splitting index jV ′ which defines two partitions
X := V ′ ∩

{
v1, ..., vjV ′ h+1

}
and Y := V ′ ∩

{
vjV ′ h+2, ..., vn

}
(23)

s.t. LjV ′ ∩ V ′ = ∅ or SjV ′ ∩ V ′ = ∅. In other words, V ′ is missing all vertices from some segment (in the
middle of the caterpillar graph).
In the case h = 1 ⇐⇒ β = n we find for each V ′ = V \ {vj} = V \ Lj s.t. 1 < j < n that the
splitting index is jV ′ = j − 1. Because the overall graph G is a line graph, the strict subgraph on V ′ is
disconnected.

Henceforth, we consider h ≥ 2 ⇐⇒ β = ⌈n/h⌉ + ⌊n/h⌋ − 2. Define for each V ′ ∈ M the sets of
possible splitting indices for the L- and S- segments respectively

JL
V ′ := {jL ∈ [1, ⌈n/h⌉ − 2] | LjL ∩ V ′ = ∅} (24)

and
JS

V ′ := {jS ∈ [1, ⌊n/h⌋ − 2] | SjS ∩ V ′ = ∅} . (25)

These sets describe which L-/S-segments are missing in V ′. Note that Nv1 = {v1, ..., vh} and Nvn
⊆

{v(⌈n/h⌉−2)h+2, ..., vn} which implies
∀jL ∈ [1, ⌈n/h⌉ − 2] : LjL ∩ (Nv1 ·∪Nvn) = ∅ (26)

and
∀jS ∈ [1, ⌊n/h⌋ − 2] : SjS ∩ (Nv1 ·∪Nvn

) = ∅ . (27)

For intuition, note that Nv1 and Nvn
are the “ends” of the caterpillar graph depicted in Fig. 1. The

segments corresponding to jL ∈ [1, ⌈n/h⌉ − 2] and jS ∈ [1, ⌊n/h⌋ − 2] in the middle of the graph are
disjoint from the ends.

27

N1 N6

1 2 3 4 5 6

L0 L1 L2 L3 L4 L5

(a) Example of the graph G from Lemma 2 with t = 5, n = 6 and β = 6.

N1 N8

1 2

3

4 5

6

7 8

L0 S0 L1 S1 L2 S2

(b) Example of the graph G from Lemma 2 with t = 5, n = 8 and β = 3.

N1 N9

1 2

3

4 5

6

7 8

9

L0 S0 L1 S1 L2 S2

(c) Example of the graph G from Lemma 2 with t = 6, n = 9 and β = 4.

N1 N10

1 2

3

4 5

6

7 8

9

10

L0 S0 L1 S1 L2 S2 L3

(d) Example of the graph G from Lemma 2 with t = 7, n = 10 and β = 5.

Fig. 1: Examples of the graphs from Lemma 2 with V = [n], v = 1 and v′ = n. Segments are represented as
dashed boxes, and “effective neighbors” of v and v′ in grey. Note that any shortest path from Nv to Nv′ (grey to
grey) always has exactly β nodes. The graph structure is the same as the “multi-layer graph” in Figure 1 of [44].

28

Next, we show for each V ′ ∈ M that |JL
V ′ ∪ JS

V ′ | > 0, i.e., a splitting index exists. Suppose for
contraction that no such index existed, i.e.,

∀jL ∈ [1, ⌈n/h⌉ − 2] : LjL ∩ V ′ ̸= ∅ ⇐⇒ |LjL ∩ V ′| ≥ 1 (28)
and

∀jS ∈ [1, ⌊n/h⌋ − 2] : SjS ∩ V ′ ̸= ∅ ⇐⇒ |SjS ∩ V ′| ≥ 1 . (29)
Moreover, we know that Nv1 ∩ V ′ ̸= ∅ and Nvn

∩ V ′ ̸= ∅ by the definition of M ∋ V ′, hence |(Nv1 ·∪
Nvn) ∩ V ′| ≥ 2. Then we can write V ′ as unions of disjoint subsets

V ′ ⊇ ((Nv1 ·∪Nvn
) ∩ V ′) ·∪

⌈n/h⌉−2

·
⋃

jL=1
LjL ∩ V ′

 ·∪
⌊n/h⌋−2

·
⋃

jS=1
SjS ∩ V ′

 (30)

which implies
|V ′| ≥ 2 + (⌈n/h⌉ − 2) + (⌊n/h⌋ − 2) = ⌈n/h⌉+ ⌊n/h⌋ − 2 = β (31)

which contradicts the assumption |V ′| < β. Now, we have shown that such a jV ′ exists. For the sake
of simplicity we choose the minimal jV ′ := min(JL

V ′ ∪ JS
V ′). We go on to show that no vertex in X is

connected to any vertex in Y in the graph G. Suppose for contradiction that {va, vb} ∈ E for some
va ∈ X ⊂ V ′ and vb ∈ Y ⊂ V ′, i.e., a ≤ jV ′h + 1 and b > jV ′h + 1. Because va and vb are connected
in G, they must be in consecutive segments by the definition of E. Consequently, we find va ∈ LjV ′ and
vb ∈ SjV ′ because a ≤ jV ′h+1 and b > jV ′h+1 and va and vb are in consecutive segments. This directly
contradicts the splitting property LjV ′ ∩ V ′ = ∅ ∨ SjV ′ ∩ V ′ = ∅.

Lastly, we show Property 2, i.e., that any pair of connected parties has at least h common neighbors.
For h = 1 this is trivial. Henceforth consider h ≥ 2. Note that for S-segments it holds that j < ⌊n/h⌋ =⇒
|Sj | = h− 1. For each u, u′ ∈ Lj ·∪ Sj s.t. j < ⌊n/h⌋ it holds that NG(u), NG(u′) ⊇ Lj ·∪ Sj , hence

NG(u) ∩NG(u′) ⊇ Lj ·∪ Sj =⇒
|NG(u) ∩NG(u′)| ≥ |Lj ·∪ Sj | = |Sj |+ |Lj | = h− 1 + 1 = h . (32)

For each u, u′ ∈ Lj ·∪ Sj with j = ⌊n/h⌋ it holds that NG(u), NG(u′) ⊇ Sj−1 ·∪ Lj , hence

NG(u) ∩NG(u′) ⊇ Sj−1 ·∪ Lj =⇒
|NG(u) ∩NG(u′)| ≥ |Sj−1 ·∪ Lj | = |Sj−1|+ |Lj | ≥ h− 1 + 1 = h . (33)

For each u ∈ Sj , u′ ∈ Lj+1 with j < ⌈n/h⌉ − 1 it holds that NG(u), NG(u′) ⊇ Sj ·∪ Lj+1, hence

NG(u) ∩NG(u′) ⊇ Sj ·∪ Lj+1 =⇒
|NG(u) ∩NG(u′)| ≥ |Sj ·∪ Lj+1| = |Sj |+ |Lj+1| = h− 1 + 1 = h . (34)

This concludes the proof.

Theorem 2 (No transmitted commitment). Let n = n(λ), t = t(λ), β := min(n, ⌊n/(n − t)⌋ +
⌈n/(n− t)⌉− 2) s.t. n/2 ≤ t < n and

(
n
β

)
∈ poly(λ). No {F2, ...,Fβ−1,Fn

BC}-hybrid protocol can securely
UC-realize Fn

COM,1:1 against environments that (maliciously) corrupt up to t parties. Formally, we get{
F2, ...,Fβ−1,Fn

BC
}comp
̸⇝t Fn

COM,1:1 (1)

where F2, ...,Fβ−1 stand for arbitrary functionalities of the respective cardinality, and Fn
COM,1:1 is defined

in Appendix B.3.
Consequently, the correlation complexity for UC-secure ID-MPC is at least β.

Proof. On a high level the proof proceeds similar to the the impossibility of UC commitments without
setup in [14]. There an environment Z0 corrupts the sender but simulates the sender honestly, i.e.,
according to the protocol specification with input m. Because all parties act honestly, the receiver must

29

eventually output the message m upon opening. However, in the ideal execution, this means that the
simulator must extract the message m from the corrupted (but honestly acting) sender’s message to the
receiver during the commitment phase. Intuitively, this contradicts the hiding property the commitment.
More formally, this simulator (or extractor) can be used by a second environment that corrupts the
receiver, to extract the message m before its opening. This, however, is impossibile for a simulator to
achieve because in the ideal execution the simulator has no information about the honest sender’s message
before obtaining it from the ideal commitment functionality upon opening.

In this proof we proceed similarly but we have to account for the fact that setups are aborted,
hence not all parties can behave objectively honestly, i.e., according to the protocol. We remedy this by
providing the corrupted (simulated) parties with alternative (faux) abort messages, that look legitimate
to them. Thus, the simulated parties act honestly relative to their view of the Trust Graph.

Denote the set of parties by P = {P1 = S, P2, ..., Pn = R} where S is the sender and R is the
receiver. Let h := n − t, and let N1 := {P1, ..., Ph}, Nn := {Pn−h+1, ..., Pn} and I := {Ph+1, ..., Pn−h}
be three partitions of the parties. (Intuitively N1 will be the neighbors of the sender and Nn will be the
neighbors of the receiver.) Furthermore, denote by ηcommit the round number in which the last (honest)
party outputs (receipt commit). Denote by extcommit

P = (η, ι, i, sη,ι,i)η≤ηcommit,ι,i the list of all messages
that party P ∈ P sends to any setup (excluding broadcast) during the commit phase. Here sη,ι,i denotes
the i-th message that P sends to the setup with session id ι in round η. For any set of parties P ′ ⊆ P
let extcommit

P′ := (extcommit
P)P∈P′ . Moreover, let Bcommit := (η, i, wη,P,i)η≤ηcommit,P,i denote all messages that

were broadcasted during the commit phase.
We will prove the impossibility via a series of hybrid games. Suppose for contradiction25 that

{Fβ−1,Fn
BC}

comp
⇝t Fn

COM,1:1, i.e., there exists a protocol πF
β−1,Fn

BC and a simulator S s.t. for all envi-
ronments Z≤t that maliciously corrupt up to t parties it holds that{

REAL
π

Fβ−1,Fn
BC ,AD

(
Z≤t(λ)

(
1λ, ·

))}
λ∈N
≈

{
IDEALFn(λ),S

(
Z≤t(λ)

(
1λ, ·

))}
λ∈N

.

We note that each following environment corrupts either N1 ·∪ I or I ·∪Nn, i.e., at most t parties.
H1 Consider an environment Z0

≤t that initially corrupts I ·∪Nn, and let’s the (simulated) adversary abort
all setups of size at most β − 1 that contain both a neighbor of the sender S and a neighbor of the
receiver R according to Corollary 1. The honest sender S gets a random message m← {0, 1}λ as input.
The malicious parties I ·∪ Nn are simulated honestly with faux aborts. Concretely, the environment
Z0
≤t modifies the internal simulation of the malicious parties as follows: When a setup Fβ−1 on

parties P ′ ⊂ P is aborted with (abort, C), then the environment Z0
≤t provides the simulated parties

with a counterfeit abort message (abort, P ′ \ C). Note that the faux aborts lead to the same Trust
Graph for the honest parties N1 and the malicious parties I ·∪ Nn. Yet, the TG is connected, thus
the protocol cannot abort, as guaranteed by Corollaries 1 and 5. Therefore, in the ideal execution,
after opening, the environment in the name of the malicious receiver learns the opened message m′

from the ideal Fn
COM,1:1. The environment decides ideal iff m = m′, and real otherwise.

H2 Here, we switch to the real execution with the same environment Z0
≤t and the dummy adversary.

This is justified by the security of the assumed protocol πF
β−1,Fn

BC .
H3 Here, we consider a slightly different environment Z1

≤t which behaves the same way as Z0
≤t but

corrupts N1 ·∪ I instead of I ·∪Nn. Now, the malicious parties N1 ·∪ I are provided with faux aborts
analogously to the first hybrid. Still the sender S has the input message m ← {0, 1}λ, and the
environment Z1

≤t decides ideal iff m = m′, and real otherwise. However, now m′ is the honest
receiver’s output instead of the adversary’s output. The output distributions of the environments
Z0
≤t and Z1

≤t are identical because all parties have the same view of the TG and behave exactly the
same way in both games, i.e., they behave honestly relative to their view of the TG.

25 We omit setups of cardinality smaller than β − 1, this does not affect the validity of the proof.

30

H4 Here, we consider a slightly different environment Z2
≤t which behaves the same way as Z1

≤t but Z2
≤t

internally simulates all setups in which only parties from P ′ ⊆ N1 ·∪ I participate. All messages to
such setups that Z1

≤t gives to the adversary in the name of malicious parties are suppressed, and
all messages to malicious parties from such setups are replaced with the messages from the internal
simulation. (From the view of the simulated parties the setups work normally.) In other words, all
inputs to setups that only concern malicious parties are sanitized. Technically, the purpose of this
step is to prevent the simulator from learning any communication between malicious parties via
setups. Intuitively, the environment controls all malicious parties anyway, so malicious parties need
not communicate via setups in the first place. The output distributions of the environments Z1

≤t and
Z2
≤t are identical because the honest parties’ view is identical to the previous hybrid, and hence the

adversary’s output distribution of the opened message m′ is the same.
H5 Here, we switch back to the ideal execution with the same environment Z2

≤t and the simulator. Recall
that the parties N1 ·∪ I are malicious. If the environment’s output is to be indistinguishable from
the previous hybrid—as is dictated by the security of our assumed protocol, the simulator needs to
extract the (malicious sender’s) message m during the commitment phase from the malicious parties’
messages to setups, i.e., from extcommit

N1 ·∪I . In other words, there exists an extractor E that on input
(extcommit

N1 ·∪I , Bcommit) outputs m with some overwhelming probability 1− µ.

Claim 1. In H4 and H5 it holds that extcommit
N1

= ∅, thus extcommit
N1 ·∪I = extcommit

I .

Proof. Recall that all messages from malicious parties to setups exclusively among malicious parties are
suppressed. Furthermore, recall the structure of the TG after aborts according to Corollary 1 (compare
Fig. 1). The crucial point is that the parties N1 only participate in non-aborted setups (excluding
broadcast) that contain exclusively malicious parties, i.e., within N1 ·∪ I. Thus all their setup inputs are
sanitized.
For contradiction, suppose there was a setup of cardinality β − 1 on some parties P ′ ⊂ P s.t. it contains
some party from N1 and some honest party from P \ (N1 ·∪ I) = Nn, i.e.,

P ′ ∩N1 ̸= ∅ ∧ P ′ ∩Nn ̸= ∅ ∧ |P ′| < β . (35)
Exactly this kind of setup is aborted according to Corollary 1. Consequently, only (some) messages from
parties I are not sanitized. ■

Now, consider a final environment Z3
≤t that corrupts I ·∪Nn (the sender is honest) but uses the extrac-

tor E during the commitment phase to obtain some message m′ from the messages (extcommit
I , Bcommit).

Specifically, Z3
≤t activates parties until all (honest) parties output (receipt commit), thus learning

(extcommit
I , Bcommit). Finally, Z3

≤t uses the extractor E on input (extcommit
I , Bcommit) Claim 1= (extcommit

N1 ·∪I , Bcommit)
to extract message m′. The environment Z3

≤t outputs real iff m = m′ where m← {0, 1}λ is the honest
sender’s random input message, and ideal otherwise. In the real execution, Z3

≤t will output real with
overwhelming probability 1 − µ due to the correctness of the extractor E . In the ideal execution, the
simulator has no information about m during the commitment phase (before round ηcommit), thus the
probability for m = m′ is 2−λ, hence Z3

≤t outputs ideal with probability 1 − 2−λ. The environment’s
probability of success is

2
∣∣Pr

[
Z3
≤t correct

]
− 1/2

∣∣ ≥ 1− 2−λ − µ ∈ owhl(λ) (36)
where

Pr
[
Z3
≤t correct

]
= Pr[real] Pr

[
Z3
≤t → real

∣∣ real
]

+ Pr[ideal] Pr
[
Z3
≤t → ideal

∣∣ ideal
]

=
(
Pr

[
Z3
≤t → real

∣∣ real
]

+ Pr
[
Z3
≤t → ideal

∣∣ ideal
])

/2
(37)

31

where the randomness is over the honest parties’ and the environment’s random coins (including the
sender’s message). This contradicts the security of the assumed protocol πF

β−1,Fn
BC .

D.2 Constructions / Upper Bound

In this section we formally prove Lemma 3 and present our two constructions in detail. Obviously, for
t = n− 1 we get β = n which—in light of the universal Correlated-Randomness setup [32]—renders any
other construction redundant, therefore we consider t ≤ n − 2 =⇒ β = ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2
henceforth.

Lemma 3 (Connected graph =⇒ few disconnected β-subgraphs). Let n, t ∈ N s.t. n/2 ≤ t ≤
n− 2, and let β := ⌊n/(n− t)⌋+ ⌈n/(n− t)⌉− 2. Let V be a set of n vertices and let v, v′ ∈ V : v ̸= v′ be
two different vertices. Moreover, let E ⊆

(
V
≤2

)
be a set of edges s.t. G := (V, E) is an undirected, reflexive

graph, and let Nu := NG(u) be the set of neighbors of any vertex u, let
M := {V ′ ⊆ V | V ′ ∩Nv ̸= ∅ ∧ V ′ ∩Nv′ ̸= ∅ ∧ |V ′| = β}

be the set of relevant subsets of vertices that contain both a neighbor of v and a neighbor of v′, and let
E∗ := {{u, u′} ∈ E | |Nu ∩Nu′ | ≥ n− t}

be the set of postprocessed26 edges. If for all V ′ ∈ M the subgraph G′ := (V ′, E ∩
(

V ′

≤2
)
) is disconnected,

then G∗ := (V, E∗) is disconnected. Furthermore, the map ϕ : G 7→ G∗ is efficiently computable.

Proof. Similar to the proof of Lemma 2 this proof quite technical, so we want to give a brief intuition
first. For contradiction we assume that all relevant subgraphs are disconnected, yet the overall graph
is connected. Then there must exist some path between any two vertices. Moreover, to due to the
postprocessing ϕ of the graph, the vertices along such a path must have some auxiliary neighbors that
are not in the path themselves (the legs of the caterpillar graph in the proof of Lemma 2). We reach a
contradiction by counting all vertices along any such path plus their auxiliary neighbors. It turns out
that strictly more than n vertices are necessary to construct such an postprocessed, connected graph.
Again, we recommend to keep Fig. 1 in mind as a visual guide.

First, we note that the map ϕ is computable in time O(n3) by computing |Nu ∩ Nu′ | for each pair
u, u′ ∈ V and removing the appropriate edges {u, u′} from E.
Let h := n− t and let N∗u := NG∗(u). For contradiction we make the following assumptions
1. for each V ′ ∈M the subgraph G′ = (V ′, E ∩

(
V ′

≤2
)
) is disconnected,

2. ∀{u, u′} ∈ E∗ : |N∗u ∩N∗u′ | ≥ h, yet
3. G∗ is connected. (counter assumption)

Because of Assumption 3 there must be a path in G∗ from any vertex u ∈ N∗v to any vertex u′ ∈ N∗v′ .
Consider any shortest path W := {w1 = u, ..., wβ′ = u′} from u to u′ with length β′. Note that W ∩N∗v =
{u} ∧W ∩N∗v′ = {u′} and

∀i ∈ [1, β′ − 3] : N∗wi
∩N∗wi+3

= ∅ (38)
because otherwise a shorter path from N∗v to N∗v′ existed. Any such path W must have length β′ > β.
Otherwise, because of Assumption 3, there existed some V ′ s.t. W ⊆ V ′ ∈M yet V ′ is connected which
contradicts Assumption 1.
For each two consecutive vertices wi, wi+1 on the path W we define joint neighbors Ji := (N∗wi

∩N∗wi+1
)\W

(excluding parties on the path itself) and notice that

Ji ∩ Ji+2 =
(

N∗wi
∩N∗wi+1

∩N∗wi+2
∩N∗wi+3

)
\W ⊆

(
N∗wi
∩N∗wi+3

)
\W = ∅ (39)

26 The postprocessing ϕ corresponds to the (repeated) application of Rule 4 of Definition 8, i.e.,removing edges
from parties with strictly more than t conflicts.

32

and N∗wi
∩N∗wi+1

∩W = {wi, wi+1} due to Eq. (38). From Assumption 2, i.e., ∀{u, u′} ∈ E∗ : |N∗u∩N∗u′ | ≥
h, it follows that

|Ji| =
∣∣∣N∗wi

∩N∗wi+1

∣∣∣︸ ︷︷ ︸
≥h

− |{wi, wi+1}|︸ ︷︷ ︸
=2

≥ h− 2 .
(40)

Note that ∀i ∈ [2, β′ − 1] : N∗wi
∩ (N∗v ·∪N∗v′) = ∅, otherwise there existed some i s.t. W ′ := {wi, ..., wβ′}

or W ′′ := {w1, ..., wi} would be a shorter path from N∗v to N∗v′ in G∗. Moreover
∀i ∈ [2, β′ − 2] : Ji ∩ (N∗v ·∪N∗v′) = ∅ (41)

implies
∀i ∈ [1, ⌊β′/2⌋ − 1] : J2i ∩ (N∗v ·∪N∗v′) = ∅ . (42)

Now we can express the set of all vertices as disjoint sets

V ⊇W ·∪ (N∗v \W) ·∪ (N∗v′ \W) ·∪
⌊β′/2⌋−1

·
⋃
i=1

J2i
(43)

which implies

n = |V | ≥ |W |︸︷︷︸
β′

+ |N∗v \W |︸ ︷︷ ︸
≥h−1

+ |N∗v′ \W |︸ ︷︷ ︸
≥h−1

+
⌊β′/2⌋−1∑

i=1
|J2i|︸︷︷︸
≥h−2

≥ β′ + 2(h− 1) + ⌊β′/2− 1⌋(h− 2)
= β′ + 2 + ⌊β′/2 + 1⌋(h− 2)
≥ β + 3 + ⌊(β + 3)/2⌋(h− 2) .

(44)

For n/h ∈ N ⇐⇒ β = 2n/h− 2 we get
n ≥ 2n/h + 1 + (n/h)(h− 2) = n + 1 . (45)

For n/h ̸∈ N ⇐⇒ β = 2⌊n/h⌋ − 1 we get
n ≥ 2⌊n/h⌋+ 2 + (⌊n/h⌋+ 1)(h− 2) = ⌊n/h⌋h + h = ⌈n/h⌉h > n . (46)

Both cases come to a contradiction which concludes the proof. Note that Eq. (45) poses a “minimal”
contradiction, in the sense that the overall number of vertices exceeds n by just one. This attests that
the setup size β is indeed optimal, matching the tightly complementing Lemma 2.

The above lemma can be understood visually when looking at Fig. 1. There is always a connected
subgraph of G of size β which connects some neighbor (in grey) of the first vertex and some neighbor of
the last vertex.

Next, we give a construction of a global (one-to-many) commitment functionality from commitment
setups of size β and a global broadcast. The basic idea is for the sender to simply input its message into
all setups, and later open all of them. If the sender is honest, all messages will be consistent and all honest
parties will output the correct message. A problem arises when a) the sender is malicious and inputs
different messages into different setups, or b) many setups are aborted s.t. some (honest) receivers don’t
obtain any opening information. For a) the remedy is to let the sender commit to a threshold sharing of its
message such that the receivers can request the opening of some shares—which the sender then also has
to broadcast—because the threshold sharing is robust against a half of manipulated shares any sufficient
inconsistency between the shares obtained from the setup commitment and the ones broadcasted will
be detected with overwhelming probability. For b) we use the structure of the TG to recognize that
whenever a receiver was completely “cut off”, most of its neighbors must be honest, thus such receivers
simply follow the behavior of their neighbors.

33

Theorem 3 (COM expansion). Let n = n(λ), t = t(λ), β := ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2 s.t.
n/2 ≤ t ≤ n − 2 and

(
n
β

)
∈ poly(λ). There is an efficient protocol πCOM that statistically securely UC-

realizes Fn
COM in the {F2

SMT,Fβ ,Fn
BC}-hybrid model against environments that (maliciously) corrupt up

to t parties. Formally, {
F2

SMT,Fβ ,Fn
BC

} stat
⇝t Fn

COM . (2)

Proof. First, note that Fn
TG is realizable using only Fn

BC by Lemma 6, so we explicitly use Fn
TG in the

protocol construction. We require all honest parties to locally compute the postprocessed Trust Graph
G∗ ← ϕ(G) when obtaining G from Fn

TG. Moreover, we require πCOM to be abort-respecting as described
in Definition 8. In particular, whenever a setup is aborted, the honest parties resolve that abort according
to Rule 2 before resuming the protocol s.t. the corresponding subTG is disconnected.
Before we give a formal description we outline the protocol intuitively. Let P = {S, R1, ..., Rn−1} denote
the set of parties where S is the sender and Ri are the receivers. For notational purposes we use the
notation R0 := S. Denote by NP := NG(P) the party P’s neighbors at any given point in time. Let
ℓ := nλ2 be the size of the (ℓ, 2ℓ)-threshold sharing and let ρ := λ be the number of probing shares per
party.27 The commit phase goes as follows:
1. The sender draws a random bits b ← {0, 1}n and secret-shares its message m as µ ← Shareℓ,2ℓ(m)

and each bit of b as ξj ← Shareℓ,2ℓ(bj). Then the sender broadcasts (commit, σ, NS) where σ :=
µ ⊕

⊕
Rj∈NS

ξj is a masked sharing, and sends ξj to the neighboring receiver Rj . Additionally, the
sender inputs the sharing µ into all non-aborted SCOM setups.

2. Each receiver Rj who obtained some sharing ξj inputs it into all non-aborted SCOM setups and
acknowledges with a broadcasted receipt.

3. Each party draws random probing indices νj ←
([2ℓ]

ρ

)
and broadcasts them.

4. Each party opens all its SCOMs on all probed indices U :=
⋃n−1

j=0 νj and additionally broadcasts its
respective shares, i.e., µBC

U or ξBC,j
U .

5. Each party checks the consistency between the probed shares and the broadcasted one. If the shares
opened in a setup are not equal to the broadcasted ones, then the parties that notice the inconsistency
proceed to declare conflicts with the parties whose broadcasted shares are not equal to the ones opened
in the SCOM. Consequently, such setups will become aborted (disconnected) after the application
of Rule 2, because honest parties declare conflicts with the offender and its loyalists. Next, the parties
check consistency of the broadcasted shares themselves, i.e., σU

?= µBC
U ⊕

⊕
Rj∈NS

ξBC,j
U .

• If all shares are consistent, each receiver outputs a receipt.
• Otherwise, the sender must identify which neighbors broadcasted a different ξBC,j ̸= ξj . As such

at least one sender–neighbor conflict arises, the protocol starts again with updated neighbors NS.
If no such conflict is declared, then S must be malicious.

The opening phase goes as follows:
1. Each party opens all SCOM setups in which it committed to some shares.28

2. Each receiver that receives all necessary shares reconstructs the message m and broadcasts it.
3. Each receiver declares a conflict with each receiver that broadcasts another message, and outputs m.
4. Each receiver who did not receive all sufficient shares either abort the protocol if the TG is discon-

nected or they output the majority of what their neighbors broadcasted.
The crux of the protocol can be made intuitive by looking at Fig. 1c). Suppose the malicious sender is
represented as 1 and the honest parties are 7, 8, 9. Now, the adversary can abort setups in such a way
that the sender and honest parties are not jointly in any setup—thus cutting off the honest parties 8 and
9 from obtaining any opening information. However, the party 7 will always be in some setup with each
27 We use these (non-optimal) parameters for simple exposition.
28 Due to the verification step in the commit phase the shares in each setup must reconstruct to the same message

except with negligible probability.

34

neighbor, 2 and 3, of the sender. Recall that the sender gives its neighbors an additive share ξj of the
mask. Because the sender’s neighbors are committed towards party 7, party 7 can recover the message
and parties 8 and 9 can output the same message because they know that 7 is honest as well. On the
other hand, if the sender was honest, then malicious receivers don’t obtain any information about the
message from σ and the ξj ’s because at least one additive share of the mask is held by an honest neighbor
of the sender.

Now, we provide a more formal description of the protocol. Throughout the protocol let I(S) :=
{M ⊆ P | |M | = β ∧ S ⊆M ∧ (M, E∗ ∩

(
M
≤2

)
) connected} be the set of subsets of parties containing the

parties S whose corresponding subgraph is (still) connected, i.e., whose corresponding setup is not (yet)
aborted. In other words, I(S) is the set of subsets of parties with which the parties S can still perform
a setup. Note that this set might dynamically change during the protocol as setups are aborted. We use
the number ι := |NS| as a counter, i.e., everytime ι decreases the protocol restarts—all honest parties
deprecate all previously used information and setups, and the sender behaves as if it received (input, m).
We denote an instance of Fβ

SCOM on some set of parties M ∈ I(∅) with counter ι by CM,ι. As a notational
guide we use the index j for receivers that are neighbors with S while the index i ∈ [0, n− 1] is used for
any receiver.

Protocol πCOM
The protocol πCOM proceeds as follows, running with parties P = {S, R1, ..., Rn−1}, malicious parties
C ⊆ P, adversary A and environment Z. Messages not covered here are ignored.

• In the first round each party G∗ref ← (P,
(P
≤2

)
) and stores ιref ← ι.

• Each round each party P inputs (query) into Fn
TG to obtain the TG in the next round.

• On output G = (P, E) from Fn
TG, the party P computes the current counter ι. If ι < ιref , it deletes

all previously received messages and updates the stored G∗ref ← ϕ(G) and sets ιref ← ι. If the sender
received (commit, m) from Z before, it behaves as if it received it again.

• On input (commit, m ∈ {0, 1}) from Z, the sender S creates a sharing µ← Shareℓ,2ℓ(m), and inputs
(commit, µ) into CM,ι for each M ∈ I({S}). The sender draws bits b ← {0, 1}n−1, shares each bit
ξj ← Shareℓ,2ℓ(bj) and sends (shares, ξj) to Rj via F2

SMT. Then S broadcasts (commit, σ, NS) where
σ := µ ⊕

⊕
Ri∈NS

ξi. The sender ignores further input of this type except when the counter ι is
decreased.

• On output (shares, ξj) from F2
SMT from S, the party Rj stores ξj and inputs (commit, ξj) into all

CM,ι for each M ∈ I({Rj}). The receiver Rj broadcasts (receipt).
• On output (output, S, (commit, σ, N ′)) from Fn

BC, the receiver Ri checks whether N ′ = NS, if not
the message is ignored. Any receiver Rj ∈ N ′ also checks whether it received (shares, ξj) before.
If not, then it inputs (conflict, S) into Fn

TG. (Note that ι decreases by one.) Next, Ri checks if it
received (receipt, Rj) from CM,ι for all Rj ∈ NS and M ∈ I({Ri, Rj}). If so, Ri samples some probing
indices νi ←

([2ℓ]
ρ

)
and broadcasts (probe, νi). Then Ri stores Nfix ← N ′.

• On output (output, Ri′ , (probe, νi′)) from Fn
BC for all i′ ∈ [0, n − 1], each party Ri : i ∈ [0, n− 1]

opens its shares at the probed indices by inputting (open, U) into CM,ι for each M ∈ I({Ri})
where U :=

⋃n−1
i′=0 νi′ . Furthermore, each neighbor receiver Rj ∈ Nfix broadcasts the probed shares

(shares, ξj
U) while S broadcasts (shares, µU).

• On output (output, S, U, µU) from CM,ι, the receiver Ri stores µM
U ← µU .

• On output (output, Rj , U, ξj
U) from CM,ι, the party Ri stores ξj,M

U ← ξj
U .

• On output (output, S, (shares, µBC
U)) from Fn

BC, the receiver Ri checks consistency with the opened
shares. If ∃M ∈ I({S, Ri}) : µM

U ̸= µBC
U , then receiver Ri declares a conflict with S, i.e., it in-

puts (conflict, S) into Fn
TG. In effect, the setup CM,ι is aborted with (abort, S), hence Rule 2 of

Definition 8 applies and the subgraph on M becomes disconnected. (Note that ι decreases.)

35

Protocol πCOM (cont’d)

• On output (output, Rj , (shares, ξBC,j
U)) from Fn

BC for all Rj ∈ N ′, the receiver Ri checks consistency
with the opened shares. If ∃M ∈ I({Ri, Rj}) : ξM,j

U ̸= ξBC,j
U , then receiver Ri declares a conflict with

Rj , i.e., it inputs (conflict, Rj) into Fn
TG. In effect, the setup CM,ι is aborted with (abort, Rj),

hence Rule 2 of Definition 8 applies and the subgraph on M becomes disconnected. For each Rj ∈ N ′

the sender checks whether ξBC,j
U = ξj

U , if not, then S inputs (conflict, Rj) into Fn
TG. (Note that ι

decreases.) Furthermore, if σU ̸= µBC
U ⊕

⊕
Rj∈Nfix

ξBC,j
U , then receiver Ri stores an inconsistency flag

δ ← 1, otherwise δ ← 0. Each party broadcasts OK1.
• On output (output, Ri′ , OK1) from Fn

BC for all i′ ∈ [0, n− 1], then
◦ Ri abortsa with (abort, S), if δ = 1 ∧NS = Nfix,
◦ otherwise Ri broadcasts OK2, if δ = 0 ∧NS = Nfix.

• On output (output, Ri, OK2) from Fn
BC for all i ∈ [0, n − 1], each party outputs (receipt commit)

and stores ιfix ← ι.
• On input (open) from Z, sender S opens all shares by inputting (open, [2ℓ]) into CM,ιfix for each

M ∈ I({S}), and broadcasts open.
• On output (output, S, [2ℓ], µ[2ℓ] = µ) from CM,ιfix , the receiver Ri stores µ.
• On output (output, S, open) from Fn

BC, any receiver Rj ∈ Nfix opens its SCOMs by inputting
(open, [2ℓ]) into CM,ιfix . If receiver Ri obtained µ, i.e., I({S, Ri}) ̸= ∅, then Ri broadcasts and stores
message m← Recoverℓ,2ℓ(µ).

• On output (open, Rj , ξj
[2ℓ] = ξj) from CM,ιfix for all Rj ∈ Nfix, then Ri recovers m← Recoverℓ,2ℓ(σ⊕⊕

Rj∈Nfix
ξj) and broadcasts and stores m.

• On output (output, S, open) and (output, Ri′ , m̃i′) from Fn
BC for all Ri′ ∈ NG(Ri), the receiver

Ri inputs (conflict, Ri′) into Fn
TG for each m̃i′ ̸= m, i.e., Ri declares a conflict with each receiver

broadcasting a message different from its own. Afterwards, Rule 2 of Definition 8 is applied. If the TG
is disconnected, then Ri aborts, otherwise Ri outputs (open, m) and terminates. Either Ri recovered
m itself, or it outputs the majority bit of whatever its neighbors broadcasted.

a Some receiver broadcasted inconsistent shares but the sender did not declare a conflict with them.

Before analyzing the protocol in detail we give a simulator for the canonical dummy adversary. The
simulator runs a simulated protocol where it executes the protocol code for all non-corrupted parties.
Whenever the environment activates an honest dummy party, the simulator is notified and simulates the
party’s protocol code. Any message from and to malicious parties are forwarded to the simulated setup
functionalities.

36

Simulator for πCOM
• On output (receipt commit) from Fn

COM, the simulator S gives input (commit, 0) to the simulated
sender S′.

• On output (receipt commit) from all simulated (honest) R′i, the simulator S sends (commit, m̃) for
m̃ ← Recoverℓ,2ℓ(µ̃) to the ideal Fn

COM in the name of S which previously input the sharing µ̃ into
the setup CM ′,ιfix s.t. M ′ is the canonically smallest set in I({S}).

• On output (open, m) from Fn
COM, the simulator S gives local input (open) to the simulated sender

S′ which will open the remaining setups CM,ιfix for all M ∈ I({S}). Here, the simulator equivocates
each remaining simulated CM,ιfix to a random sharing µ̃← Shareℓ,2ℓ(m) s.t. µ̃U = µU . The simulated
CM,ιfix on input (open, [2ℓ]) from S′ sends (open, S, [2ℓ], µ̃) to the simulated dummy adversary. This
is possible because at most nρ shares have been probed (at least 2ℓ − nρ remain veiled) but the
simulator only needs to equivocate ℓ + 1 = nλ2 + 1 ≤ n(2λ2 − λ) = 2ℓ − nρ. The same strategy
applies for the opening of the ξj ’s of the honest receivers.

• On output (open, m) from all simulated R′j , the simulator S sends (open) to Fn
COM in the name of

S.
• On input (abort, C ′) for any simulated setup session with parties M ⊆ P and ∅ ̸= C ′ ⊂ M ∩ C ,

the simulator aborts that session by forwarding (abort, C ′) to it.
• On output (abort, C ′) from all simulated parties, the simulator S inputs (abort, C ′) into Fn

COM.

From the description of the simulator it is apparent that the honest dummy parties output the receipt
resp. the opened value exactly when the simulated (honest) parties would output the receipt resp. opened
value. It is also clear from the simulator’s description that for an honest party the simulator can equivocate
its input into simulated setup functionalities to let the simulated parties output m̃ which the simulator
receives from Fn

COM at the start of the opening phase.
Henceforth, we focus on proving that honest (simulated) receivers actually output m̃. To see why the

protocol works, we make four observations conditioned on the fact that the protocol does not abort. Let
H ⊆ P denote the honest parties.

Claim 2. When all (honest) parties output (receipt commit) in the real/simulated protocol, for all
M ∈ I({S}) s.t. M ∩ H ̸= ∅ the sharings µ̃M in CM,ιfix encode the same message m̃ with overwhelming
probability. The same holds for the sharings ξ̃M,j for all Rj ∈ Nfix and M ∈ I({Rj}) s.t. M ∩H ̸= ∅.

Proof. We prove Claim 2 by contradiction. Note that all sets M contain at least one honest party.
Therefore, when all (honest) parties output (receipt commit), then there exists a set of (at least ρ
uniformly chosen) indices ν on which the shares µ̃M of all setups must equal the broadcasted shares µ̃BC.
Formally,

∃ν ∈
(

[2ℓ]
ρ

)
∀M ∈ I({S}) : M ∩H ̸= ∅ =⇒ µ̃M

ν = µ̃BC
ν . (47)

Now, suppose for contradiction that there exist two setups M and M ′ whose valid sharings encode
different messages. Because the sharings are valid they must differ on at least ℓ + 1 indices, i.e., ∃ν̃ ∈([2ℓ]

ℓ+1
)
∀κ ∈ ν̃ : µ̃M

κ ̸= µ̃M ′

κ , while also ν ∩ ν̃ = ∅. By Lemma 5 the probability of that event is bounded by

Pr
ν←([2ℓ]

ρ)[ν̃ ∩ ν = ∅] ≤ 2−ρ(ℓ+1)/2ℓ ≤ 2−ρ/2 = 2−λ/2 . (48)

Conversely, with probability at least 1−2−λ/2 two sharings encode the same message. The same argument
holds for the masks ξM,j . By a union bound over all possible commitments (with the maximum of n
restarts) we know that all mask bit and the masked message itself are consistent with probability at least
1− n32−λ/2. ■

37

Recall that the simulator extracts the message m̃ from the malicious sender’s inputs into the setups
during the commitment phase. Claim 2 combined with the fact that (receipt commit) is only output if
σ = µ⊕

⊕
Ri∈Nfix

ξi guarantees that m̃ is equal to whatever message (if any) all honest receivers output
during the opening phase. For an honest sender it obviously holds that m̃ = m.

Next, we show that honest receivers can indeed output the message m̃. To this end we first show that
some honest receiver can output m̃ by recovering it from at least one setup.

Claim 3. For S ̸∈ H, at least one honest receiver is able to reconstruct the message by receiving all
shares: ∃R ∈ H ∃N ∈ NS : I({N, R}) ̸= ∅.

Proof. Again, we prove the observation by contradiction. First, note that the map ϕ : G 7→ G∗ preserves
the “no honest-honest-conflict” property of the TG. That is, for honest parties H ⊂ P, if

(H
≤2

)
⊆ E =⇒(H

≤2
)
⊆ E∗. This follows readily from the fact that honest parties are always in some (possibly many)

h-clique in G whereas the postprocessing ϕ removes edges between exactly those parties that are not
jointly in any h-clique in G. Therefore at least one party of any removed edge must be malicious.

If an honest receiver R is in some setup with S itself or in some setup with each neighbor of the sender,
the receiver R can recover the correct message. In the first case R can directly recover m← Recoverℓ,2ℓ(µ),
in the second case R can recover m ← Recoverℓ,2ℓ(σ ⊕

⊕
Ri∈Nfix

ξi) because R obtains all ξj ’s of all
neighbors of the sender.

Now, suppose for contradiction ∀R ∈ H ∀N ∈ NS : I({N, R}) = ∅. The statement I({N, R}) = ∅
means that all setups on parties M s.t. N, R ∈ M ∧ |M | = β must be aborted. To bring this counter
assumption to a contradiction we use the counting argument from Lemma 3 where V := P, v = S and
v′ = H ∈ H ⊂ P. Note that any NS ∈ NS and NH ∈ H ⊆ NH must have distance at least ∆G(NS, NH) > β
by assumption. We consider the two cases:
1. Some honest party has a large distance to the sender, i.e., ∃H ∈ H ∀NS ∈ NS : ∆G(NS, H) ≥ β + 2.

Then any NS ∈ NS, NH ∈ NH have at least distance β′ := β + 1 > β. Hence, counting the overall
number of parties according to Eqs. (44) to (46) yields a contradiction.

2. All honest parties have small distance to the sender, i.e., ∃NS ∈ NS\{S} ∀H ∈ H : ∆G(NS, H) = β +1.
Let N′H be some neighbor of the honest parties with distance ∆G(S, N′H) = β = ∆G(NS, H). Here, we
can count the overall number of parties in L- and S-segments corresponding to a shortest path from
S to N′H. Overall, we count n ≥ ⌈(β + 1)/2⌉+ ⌊(β + 1)/2⌋(h− 1) + h parties, i.e., the parties in the
L-segments, the parties in the S-segments, plus the honest parties. We find the contradictions

β = 2n/h− 2 =⇒ n ≥ (n/h− 1)(h− 1) + n/h + h = n + 1
β = 2⌊n/h⌋ − 1 =⇒ n ≥ (⌊n/h⌋ − 1)(h− 1) + ⌊n/h⌋+ h > n .

(49)

Consequently, if no abort occurs, at least one honest receiver must obtain m̃. ■

Lastly, we show that any receiver that does not obtain m̃ from some setup can rely on its neighbors
to output m̃.

Claim 4. If an honest “cut-off” receiver does not receive any shares and the TG is connected, it can
output whichever message the majority of its neighbors output.

Proof. Note that for h = 2 a receiver that does not recover the message directly has only one neighbor
who must be honest. For h ≥ 3 at most h − 1 neighbors of an cut-off receiver can recover the message
directly. Furthermore, to the cut-off receiver Ri it is obvious from the TG which ones those are, i.e.,
NG(Ri) ∩

⋃
N∈NG(S)

⋃
M∈I({N}) M . We want to recall Fig. 1b) as a visual aid. Here, suppose 1 is the

sender and 8 is the cut-off receiver, then only 5 and 6 are the receivers that recover the message from
the masked sharing σ and the mask sharings ξj obtained from 2 and 3. If 5 and 6 are honest, they
both broadcast m. If one deviates and broadcasts something else, then 5 and 6 get into a conflict As a
consequence of applying the map ϕ we now also find conflicts between 4 and 5, and 4 and 6, thus the

38

overall TG is disconnected and all (honest) parties can abort.
More generally, if a receiver R is cut off, then the distance between the sender and the receiver is
large. W.l.o.g. the sender is in the first segment, and the cut-off receiver is in the last segments, i.e.,
R ∈ L⌊n/h⌋ ·∪ S⌈n/h⌉−1.
• If |L⌊n/h⌋ ·∪S⌈n/h⌉−1| = h, then all neighbors of an honest R are honest as well because R ∈ L⌊n/h⌋ ·∪

S⌈n/h⌉−1 = H .
• If |L⌊n/h⌋ ·∪S⌈n/h⌉−1| < h, then the parties in S⌈n/h⌉−2 form a majority of the parties R′ := (S⌈n/h⌉−1 ·∪

L⌊n/h⌋ ·∪ S⌈n/h⌉−1) \ {R} ⊇ NR \ {R}. Moreover, all parties in S⌈n/h⌉−2 must have broadcasted the
same message, otherwise they would be in conflict, and hence not in the same segment. Furthermore,
at least one party in S⌈n/h⌉−2 must be honest as well, because h− 1 of the at most 2h− 3 parties in
R′ are honest. As such all parties in S⌈n/h⌉−2 (the majority) must broadcast the correct message.

■

For a malicious sender we have shown that the simulator extracts the message m̃ that the honest
receivers actually output in the opening phase. We make a last observation for the case of an honest
sender.

Claim 5. If the sender is honest and the protocol is not aborted, then all honest receiver will output the
correct message.

Proof. If the sender is honest it will truthfully input its sharing µ into CM,ιfix for all M ∈ I({S}). As such,
if a receiver R recovers the message from some direct setup M ∈ I({S, R}), then it obviously recovers the
correct message. Here the adversary has no way of interfering with the sharing of the message. Lastly,
note that if S is honest and R is honest as well, then I({S, R}) ̸= ∅ because {S, R} plus their extended
neighbors always form a connected subgraph of size β of the complement TG, otherwise the TG would
be disconnected and the protocol aborted. ■

For exhibition, we can now give a series of hybrid games:
H1 This game is the real execution where all parties follow the protocol.
H2 This game is the same as before except that there is an ideal dummy functionality Fn

COM which is
connected to (honest) dummy parties which obtain the same local inputs as the honest parties in the
real protocol. The real adversary A is replaced with a simulator S that behaves exactly as A and, if
the sender is malicious, the simulator S extracts the sender’s input (commit, m) for Fn

COM from the
real protocol execution. If the sender is honest, then the honest dummy sender forwards its input
(commit, m) to Fn

COM.
The output of the dummy parties is ignored, i.e., the game’s output is still exactly the same as before.

H3 This game is the same as before except that this game aborts, iff the (opened) message output by
the honest parties differs from the output of the dummy parties interacting with the ideal dummy
functionality.
This event of differing outputs occurs only negligibly often, as argued in Claims 2 to 5. Hence, the
game’s output behavior is statistically close to the previous one.

H4 This game is the same as before except that now the environment interacts with the the dummy
parties of the ideal functionality instead of the parties in the (real) execution output. (Still the parties
of the protocol execution get the same input as the dummy parties, i.e., they behave as before. The
only difference is that their output is ignored.)
Due to the abort condition established in the previous game these outputs are identical, hence the
output of this game is exactly the same as on the previous game.

H5 This game is the same as before except that the parties in the protocol no longer obtain the envi-
ronment’s input but are instead simulated by the simulator S. In particular, if the simulator gets
(receipt commit) from the ideal Fn

COM it simulates the honest sender with input (commit, 0). This
game is the ideal execution.

39

This game and the previous game have exactly the same output behavior because the (honest)
dummy parties’ output depends solely on the ideal functionality Fn

COM and not on the local input of
the simulated sender.

The protocol requires invocation of at most O(
(

n
β

)
) ⊆ poly(λ) setups per restart (decrease of ι) and can

be restarted at most O(n) ⊆ poly(λ) times because a restart means that the sender lost at least one
neighbor.

Next, we present our protocol for Fully Committed Oblivious Transfer (FCOT). As in the classical
OT the sender holds two messages m0, m1 and the receiver holds a choice bit c. To make the construction
easier to analyze we assume parties to have access to the global commitment setup which is provided by
Theorem 3. The role of the global commitment is to commit both the sender and the receiver to their
input s.t. they cannot change it after the OT phase.

Intuitively, the protocol tries to perform a direct Shared Oblivious Transfer (SOT) via a setup that
contains both the sender and the receiver. If this does not work, then the sender and the receiver use
designated (trusted) neighbors to carry their SOT, or the sender additively shares its message with its
neighbors who perform the SOT on the sender’s behalf. The structure of the TG guarantees that the
neighbors can indeed perform SOTs with each other, i.e., while all direct SOTs may be aborted the
“mediated” SOTs cannot be aborted without causing the overall protocol to abort.

In the proof we use the following multi-sender variant of global commitment which can be constructed
from Fn

COM by the Universal Composability Theorem of [13].

Functionality Fn
MCOM

Fn
MCOM proceeds as follows, running with security parameter λ, parties P = {P1, ..., Pn}, malicious

parties C ⊆ P and adversary S. Messages not covered here are ignored.
• When receiving (commit, m ∈ {0, 1}λ) from party Pi, store (Pi, m) and send (receipt commit, Pi)

to all parties. Ignore further messages (commit, ·) from Pi.
• When receiving (open) from party Pi and (Pi, m) is stored, send (open, Pi, m) to S. Upon the next

activation, send (output, Pi, m) to all parties and terminate. Ignore further input from Pi.
• When receiving (abort, C ′) from S with ∅ ≠ C ′ ⊆ C , then output (abort, C ′) to all parties and

terminate.

Theorem 4 (FCOT expansion). Let n = n(λ), t = t(λ), β := ⌊n/(n − t)⌋ + ⌈n/(n − t)⌉ − 2 s.t.
n/2 ≤ t ≤ n − 2 and

(
n
β

)
∈ poly(λ). There is an efficient protocol πFCOT that statistically securely UC-

realizes Fn
FCOT in the {F2

SMT,Fβ
SFE,f ,Fn

COM,Fn
BC}-hybrid model against environments that (maliciously)

corrupt up to t parties. Formally, for some specific functionality Fβ we get{
F2

SMT,Fβ ,Fn
COM,Fn

BC
} stat
⇝t Fn

FCOT . (3)

Proof. First, note that Fn
TG is realizable using only Fn

BC by Lemma 6, so we explicitly use Fn
TG in the

protocol construction. Moreover, note that {Fn
COM}

stat
⇝n Fn

MCOM by the UC theorem. Thus we use Fn
MCOM

as well, and to reduce the notational complexity of the protocol we omit the session ids when they are
clear from the context.

Denote the set of parties by P = {S, R, W1, ..., Wn−2}. We require all honest parties to locally compute
the postprocessed Trust Graph G∗ ← ϕ(G) when obtaining G from Fn

TG. Moreover, we require πFCOT to
be abort-respecting as described in Definition 8. As such, we condition our analysis on the case where
the overall TG is connected.
Before we give the formal description of the protocol we outline it intuitively. The OT phase goes as
follows:
1. The sender draws two mask bits at random and commits to them globally.
2. The sender creates two threshold sharings of its two masked messages.

40

3. The sender commits globally to each share individually.
4. The sender inputs its shares into the canonically smallest (not yet aborted) SOT-setup that contains

both the sender and the receiver.
5. The receiver creates a threshold sharings of its choice bit.
6. The receiver commits globally to each share individually.
7. The receiver inputs its sharing into the canonically smallest (not yet aborted) SOT-setup that con-

tains both the sender and the receiver.
8. The receiver obtains the chosen (masked) message.
9. All parties in the setup obtain some probing shares of (the sharings of) the masked messages and

the choice bit.
10. The sender and the receiver open the global commitments corresponding to the shares at the probed

indices.
11. The parties which participate in the SOT-setup verify that the opened shares are consistent with the

ones obtained from the SOT-setup.
11.1. If all shares are consistent, the sender opens the masks. The receiver obtains the chosen unmasked

message. The other parties in the setup output a receipt, followed by all other parties (outside
the setup).

11.2. If any shares are inconsistent, then all parties in the setup declare a conflict with the resp. offender
and its loyalists.29 The current setup is aborted, its subgraph disconnected, and the (canonically)
next setup is used with fresh sharings, i.e., the protocol goes back to step 1.

11.3. If no setups containing sender and receiver are left, the protocol goes into fallback mode.
The fallback protocol uses the same basic idea with the following modifications:

• If the sender and the receiver have distance β + 1 in G and the receiver has exactly h neighbors
(including itself), then the sender performs an SOT with the canonically smallest neighbor of the
receiver. (In this case all neighbors of the receiver are honest.) Otherwise, if the receiver has more than
h neighbors, the sender additively secret-shares its messages and gives them to its neighbors (who
have distance β to R) who then perform SOTs with the receiver. The receiver obtains all shares and
reconstructs the chosen message. Moreover, because at least one of the suited neighbors of the honest
sender is honest the privacy of the non-chosen message is guaranteed.
On the other hand, if the sender and the receiver have distance β + 2, the sender creates a somewhat
more intricate secret sharing and also gives the shares to suited neighbors who perform SOTs with
suited neighbors of the receiver instead of the receiver directly.

• If the sender and the receiver have distance β + 1 in G and the receiver has exactly h neighbors, then
the receiver gives its choice bit to its canonically smallest neighbor who then performs an SOT with
the sender. Otherwise, if the receiver has more than h neighbors, then the receiver performs SOTs with
the suited neighbors of the sender who each provide an additive share of the chosen message.
On the other hand, if the sender and the receiver have distance β + 2, the receiver secret-shares it
own choice bit and distributes the shares among suited neighbors who then perform SOTs with the
sender’s neighbors and forward the results to the receiver. Subsequently, the receiver can reconstruct
the chosen message. Again, the privacy of the honest receiver’s choice bit is guaranteed by the fact
that at least one of the suited neighbors of the honest receiver is honest as well.

Furthermore, if the verification step in the fallback mode fails in all setups, then the overall Trust Graph
becomes disconnected. The opening phase goes as follows:
1. The sender opens the global commitments to all shares of the resp. message.
2. The receiver open the global commitments to its shares.

Already the informal description of the protocol is non-trivial. To maintain the readability of the
protocol and we describe the formal protocol only for the case where the sender and the receiver perform

29 Recall this behavior is called abort-respecting in Definition 8, specifically Rule 2.

41

a direct SOT and argue the fallback case separately. We suggest the reader to keep Fig. 1 in mind when
reading the protocol as it makes it easier to follow some arguments with a visual aid.

Now, we provide a more formal version of the proof. Let h := n − t, and let ℓ := nλ2 be the size
of the applied secret sharing and let ρ := λ be the number of probing shares. Throughout the protocol
let I(S) := {M ⊆ P | |M | = β ∧ S ⊆ M ∧ (M, E∗ ∩

(
M
≤2

)
) connected} be the set of subsets of parties

containing parties S and whose subgraph is (still) connected. Note that this set might dynamically change
during the protocol as setups are aborted. We use the number ι := |I({S, R})| as a counter. Everytime ι
decreases the protocol restarts, i.e., the protocol informally goes to step 1. For each two parties P, P′ ∈ P
let MP,P′ := min I({P, P′}) be the canonically smallest set of parties containing P, P′ whose subgraph is
(still) connected. Also, we denote the setup Fβ

SOT on parties MP,P′ with session id ι by TP,P′,ι.

Protocol πFCOT (simplified)
The protocol πFCOT proceeds as follows, running with parties P = {S, R, W1, ..., Wn−2}, malicious parties
C ⊆ P, adversary A and environment Z. Messages not covered here are ignored.

• In the first round each party stores G∗ref ← (P, ∅), ιref ← |I({S, R})| and DS, DR ← ∅.
• Each round each party Pi inputs (query) into Fn

TG to obtain the TG in the next round.
• On output G = (P, E) from Fn

TG, the party P computes the new ι ← |I({S, R})|. If ι < ιref , it
deletes all previously received messages and updates the stored G∗ref ← ϕ(G) and ιref ← ι.

• On input (choice, c) from Z, the receiver R creates a sharing γ ← Shareℓ,2ℓ(c) and commits to
each share γκ by inputting (commit, (choice share, κ, γκ)) into Fn

MCOM. Then R inputs its shares
(choice, S→ R, c) into the SOT-setup TS,R,ι. The receiver ignores further inputs of this type.

• On output (receipt commit, R) from Fn
MCOM for all shares µκ : κ ∈ [2ℓ], the party P outputs

(receipt choice) if it did not output (receipt messages) before.
• On input (messages, m0, m1) from Z, the sender S samples masks w0, w1 ← {0, 1} and commits

globally to (mask, w0, w1). Then S creates a sharing µb ← Shareℓ,2ℓ(mb ⊕ wb) for both b ∈ {0, 1}
and commits to each share µb

κ by inputting (commit, (message share, b, κ, µb
κ)) into Fn

MCOM. Then
S inputs its shares (messages, S → R, µ0, µ1) into the SOT-setup TS,R,ι. The sender ignores further
inputs of this type from Z.

• On output (receipt commit, S) from Fn
MCOM for all sessions containing the shares µb

κ : κ ∈
[2ℓ], b ∈ {0, 1} and the masks w0, w1, the party P outputs (receipt messages) if it did not out-
put (receipt choice) before.

• On output (output, S→ R, µc) from TS,R,ι, the receiver R stores µc.
• On output (output, S → R, ν, µ̃0

ν , µ̃1
ν , γ̃ν) from TS,R,ι, the party P stores (ν, µ̃0

ν , µ̃1
ν , γ̃ν). The sender

and the receiver open all their global commitments corresponding to the probed shares ν by inputting
(open) into Fn

MCOM for each session containing κ ∈ ν.
• On output (open, S, µb

κ) from Fn
MCOM for all κ ∈ ν and b ∈ {0, 1}, then

◦ if µ̃b
ν ̸= µb

ν for some b ∈ {0, 1}, the setup TS,R is effectively aborteda with (abort, S), i.e., the honest
parties apply Rule 2 of Definition 8 to disconnect the subgraph on MS,R,

◦ if γ̃ν ̸= γν , the setup TS,R,ι is effectively abortedb with (abort, R), i.e., the honest parties apply Rule
2 of Definition 8 to disconnect the subgraph on MS,R,

◦ in any of the above cases, the sender and receiver (after the subgraph is disconnected) act as on
input (messages, m0, m1) and (choice, c) respectively, i.e., the protocol restarts,

◦ otherwise Pi broadcasts (receipt transfer).
• On output (output, P, (receipt transfer)) from Fn

BC for all P ∈MS,R, the sender opens the global
commitment to the initial masks w0, w1.

• On output (open, S, (mask, w0, w1)) from Fn
MCOM, any party Pi ̸= R outputs (receipt transfer)

and stores (w0, w1). The receiver reconstructs mc ← wc ⊕ Recoverℓ,2ℓ(µc) (using the previously
obtained µc) and outputs (output, mc).

42

Protocol πFCOT (simplified) (cont’d)

• On input (open message, b) from Z, the sender S opens the global commitments to the shares
(b, κ, µb

κ) for each κ ∈ [2ℓ].
• On output (open, S, (message share, b, κ, µb

κ)) from Fn
MCOM for all κ ∈ [2ℓ], then

◦ Pi aborts with (abort, S), if Recoverℓ,2ℓ(µb) = ⊥, or otherwise
◦ Pi outputs (open message, b, m̃b) where m̃b ← Recoverℓ,2ℓ(µb)⊕ wb.

• On input (open choice) from Z, the receiver R opens the global commitments to the shares (κ, γκ)
for each κ ∈ [2ℓ].

• On output (open, R, (choice share, κ, γκ)) from Fn
MCOMfor all κ ∈ [2ℓ], then

◦ Pi aborts with (abort, R), if Recoverℓ,2ℓ(γ) = ⊥, or otherwise
◦ Pi outputs (open choice, c̃) where c̃← Recoverℓ,2ℓ(γ).

a All participants know that the sender broadcasted inconsistent shares.
b All participants know that the receiver broadcasted inconsistent shares.

Before analyzing the protocol in detail we give a simulator for the canonical dummy adversary. The
simulator runs a simulated protocol where it executes the protocol code for all non-corrupted parties.
Whenever the environment activates an honest dummy party, the simulator is notified and simulates the
party’s protocol code. Any message from and to malicious parties are forwarded to the simulated setup
functionalities.
Note that at most nρ many shares of the sender’s and receiver’s committed sharings are probed.

Simulator for πFCOT (simplified)
• On output (receipt messages) from Fn

FCOT or on output (receipt transfer) from Fn
FCOT after

(receipt choice), simulator S gives input (messages, 0, 0) to the simulated sender S′.
• On output (receipt messages) from all simulated (honest) parties, the simulator S inputs

(messages, m̃0⊕w0, m̃1⊕w1) to the ideal Fn
FCOT in the name of S where m̃b ← Recoverℓ,2ℓ(µ̃b)⊕wb.

Here, (w0, w1) are the masks and µ̃b is the sharing that the malicious sender previously input into
the simulated commitment setup Fn

MCOM.
• On output (receipt choice) from Fn

FCOT or on output (receipt transfer) from Fn
FCOT after

(receipt messages), simulator S gives input (choice, 0) to the simulated receiver R′.
• On output (receipt choice) from all simulated (honest) parties, the simulator S (choice, c̃) to

the ideal Fn
FCOT in the name of R where c̃ ← Recoverℓ,2ℓ(γ̃) and γ̃ is the sharing that the malicious

receiver previously input into the simulated commitment setup Fn
MCOM.

• On output (open choice, c̃) from Fn
FCOT, the simulator S gives local input (open) to the simulated

receiver R′ which will open the remaining setups Fn
MCOM. However, the simulator equivocates the

remaining simulated Fn
MCOM containing share γ̃κ for the indices [2ℓ] \ ν. That is, γ′ ← Shareℓ(c̃)

while γ′ν = γ̃ν where ν is the set of already probed indices. To this end the simulated Fn
MCOM on

input (open) from R sends (open, (κ, γ̃κ)) to all parties and the simulated dummy adversary. This
is possible because at most nρ shares have been probed but the simulator only needs to equivocate
ℓ + 1 = nλ2 + 1 ≤ n(2λ2 − λ) = 2ℓ− nρ shares.

• On output (open choice, c̃) from all simulated parties, the simulator sends (open choice) to the
ideal Fn

FCOT in the name of R.
• On output (open message, b, m̃b) from Fn

FCOT, the simulator S gives local input (open) to the
simulated sender S′ which will open the remaining setups Fn

MCOM. Again, the simulator equivocates
the remaining simulated Fn

MCOM containing share µ̃b
κ for each κ ∈ [ℓ] \ ν. The same argument as for

the equivocation of the receiver’s shares applies.

43

Simulator for πFCOT (simplified) (cont’d)

• On output (open message, b, m̃b) from all simulated parties, the simulator inputs (open message, b)
to the ideal Fn

FCOT in the name of S.
• On input (abort, C ′) for any simulated setup with parties M ⊆ P and ∅ ≠ C ′ ⊂ M ∩ C , the

simulator aborts that instance by forwarding (abort, C ′) to it.
• On output (abort, C ′) from all simulated parties, simulator S inputs (abort, C ′) into Fn

FCOT.

From the description of the simulator it is apparent that the honest dummy parties output the receipt
resp. the opened value exactly when the simulated (honest) parties would output the receipt resp. opened
value. It is also clear from the simulator’s description that for an honest sender resp. receiver the simulator
can equivocate its simulated setup functionalities to let the simulated parties output m̃0, m̃1 resp. γ̃
which the simulator receives from Fn

FCOT at the start of the opening phase. In particular, because the
simulator extracts its inputs m̃0, m̃1 and γ̃ from whatever inputs are encoded in the sharings in the global
commitments and all parties output exactly the opened value from the global commitments, the opened
messages resp. choice bit are equal in the real and ideal run.
Henceforth, we focus on proving that

• When all parties output (receipt transfer), then the inputs of the last used setup TS,R,ι are indeed
equal to the inputs encoded in the sharings contained in the global commitments.

• All (honest) parties eventually output (receipt transfer) or the protocol aborts.
To this end we make some observations.

Claim 6. When all (honest) parties output (receipt transfer) in the real/simulated protocol and the
last used setup TS,R,ι contains some honest party, the inputs encoded in the sharings of TS,R,ι, i.e., µ̃b

and γ̃, and the globally committed sharings µ̂b and γ̂ are equal with overwhelming probability.

We prove Claim 6 similarly to Claim 2. Suppose the choice bit encoded in the sharing of TS,R,ι, i.e., γ̃,
and the globally committed sharing γ̂ differ. Because Recoverℓ,2ℓ(γ̃) ̸= ⊥ and Recoverℓ,2ℓ(γ̂) ̸= ⊥ there
exists a set ν̃ ∈

([2ℓ]
ℓ+1

)
of differing indices s.t. ∀κ ∈ ν̃ : γ̃κ ̸= γ̂κ. Furthermore ν̃ must be disjoint from the

uniformly random probing indices ν ←
([2ℓ]

ρ

)
, otherwise the parties MS,R,ι ∩ H ̸= ∅ would have declared

a conflict with the sender and/or the receiver. Lemma 5 bounds the probability that no differing share
is probed by

Pr
ν←([2ℓ]

ρ)[ν̃ ∩ ν = ∅]
Eq. (48)
≤ 2−ρ(ℓ+1)/2ℓ ≤ 2−λ/2 ∈ negl(λ) . (50)

The same argument applies to the two sharings for the sender’s messages. Consequently, by the union
bound over all possible commitments (for the maximum of n2 restarts) we know that each of the encoded
messages are equal in the SOT-setup and in the global commitments with probability at least 1 −
3n42−λ/2.
For exhibition, we can now give a series of hybrid games:
H1 This game is the real execution where all parties follow the protocol.
H2 This game is the same as before except that there is an ideal dummy functionality Fn

FCOT which is
connected to (honest) dummy parties which obtain the same local inputs as the honest parties in
the real protocol. The real adversary A is replaced with a simulator S that behaves exactly as A
and, if the sender is malicious, the simulator S extracts the sender’s messages (messages, m0, m1)
for Fn

FCOT from the real protocol execution, i.e., from the sharings µ0, µ1 input into the commitment
setup. If the sender is honest, then the honest dummy sender forwards its input (messages, m0, m1)
to Fn

FCOT. If the receiver is malicious, the simulator S extracts the receiver’s choice bit (choice, c)
for Fn

FCOT from the real protocol execution, i.e., from the sharing γ input into the commitment setup.
If the sender is honest, then the honest dummy sender forwards its input (choice, c) to Fn

FCOT.
The output of the dummy parties is ignored, i.e., the game’s output is still exactly the same as before.

44

H3 This game is the same as before except that this game aborts, iff the (opened) message output by
the honest parties differs from the output of the dummy parties interacting with the ideal dummy
functionality.
This event of differing outputs occurs only negligibly often, as argued in Claim 6. Hence, the game’s
output behavior is statistically close to the previous one.

H4 This game is the same as before except that now the environment interacts with the the dummy
parties of the ideal functionality instead of the parties in the (real) execution output. (Still the parties
of the protocol execution get the same input as the dummy parties, i.e., they behave as before. The
only difference is that their output is ignored.)
Due to the abort condition established in the previous game these outputs are identical, hence the
output of this game is exactly the same as on the previous game.

H5 This game is the same as before except that the parties in the protocol now longer obtain the
environment’s input but are instead simulated by the simulator S. In particular, if the simulator
gets (receipt messages), or (receipt transfer) after (receipt choice) from the ideal Fn

COM it
simulates the honest sender with input (messages, 0, 0). If the simulator gets (receipt choice), or
(receipt transfer) after (receipt messages) from the ideal Fn

FCOT it simulates the honest receiver
with input (choice, 0). This game is the ideal execution.
This game and the previous game have exactly the same output behavior because the (honest)
dummy parties’s output depends solely on the ideal functionality Fn

FCOT and not on the local input
of the simulated sender.

It remains to show that all parties eventually output (receipt transfer) if the protocol does not abort.
In the above description of the protocol we have assumed that at least one setup containing both the
sender and the receiver will not be aborted. If this was the case we would already have concluded the
proof.

Fallback protocol. In the remaining part we argue that even if the sender and the receiver cannot
perform a direct SOT—in the fallback case—the protocol still works. The simulator for the fallback
case is essentially the same as for the simplified version except that the protocol code of the sender and
receiver also covers the above cases when their input has to be delegated to suited neighbors. We stress
that in the fallback mode, either the sender, or the receiver, or both are corrupted. We consider the
following cases one by one.
1. The distance between sender and receiver in G is β + 1, and R has exactly h neighbors; then all

neighbors of an honest receiver are honest as well. The receiver simply gives its choice bit to the
smallest neighbor who then performs the SOT with the sender.

2. The distance between sender and receiver in G is β + 1, and the receiver has strictly more than h
neighbors. Then the sender secret-shares its messages and gives one share to each neighbor (with
distance β to R) who then performs an SOT with the receiver.

3. The distance between sender and receiver in G is β + 2. Then the sender secret-shares its messages
and gives one share to each neighbor (with distance β + 1 to R) who then performs an SOT with the
receiver’s neighbors. Similarly, the receiver secret-shares its choice bit and gives one share to each
neighbor (with distance β + 1 to S) who then performs an SOT with the sender’s neighbors.

Furthermore, if all setups containing some neighbor NS ∈ NS and some neighbor NR ∈ NR, then Corol-
lary 3 states that the overall Trust Graph must be disconnected, i.e., the protocol successfully aborts.

Claim 7. The distance between the sender and receiver in G is at most β + 2, i.e., ∆G(S, R) ≤ β + 2.

Proof. For contradiction suppose ∆G(S, R) ≥ β + 3. By recalling Corollary 3 and Fig. 1 we count at
least

n′ := ⌈(β + 3)/2⌉+ ⌊(β + 3)/2⌋(h− 1) (51)
parties, i.e., the L- and S-segments of any shortest path between S and R. Now we show that n′ > n.

45

• If n/h ∈ N, then n′ = (n/h + 1) + (n/h)(h− 1) = n + 1.
• If n/h ̸∈ N, then n′ = (⌊n/h⌋+ 1) + (⌊n/h⌋+ 1)(h− 1) = ⌈n/h⌉h > n.

■

Claim 8. If ∆G(S, R) = β + 1 and |NG(R)| = h, then the receiver gives its choice bit to its canonically
smallest neighbor who then performs the SOT with the sender.

Proof. First, note that if an honest party has h neighbors (including itself), then all neighbors are honest
as well. Hence the privacy of the honest sender’s (resp. receiver’s) input is guaranteed. Moreover, all
neighbors of the sender (resp. receiver) must have distance β to the receiver (resp. sender), i.e., any
neighbor can perform an SOT with the receiver (resp. sender). ■

Claim 9. If ∆G(S, R) ≥ β + 1 and |NG(R)| > h, then |NG(S)| ≤ 2h− 2.

Proof. For contradiction suppose |NG(S)| ≥ 2h− 1, then we count at least
n′ := (2h− 1)︸ ︷︷ ︸

NG(S)

+ ⌈(β − 3)/2⌉︸ ︷︷ ︸
L-segments

+ ⌊(β − 3)/2⌋(h− 1)︸ ︷︷ ︸
S-segments

+ h + 1︸ ︷︷ ︸
NG(R)

= 3h + ⌈(β − 3)/2⌉+ ⌊(β − 3)/2⌋(h− 1)
(52)

parties. Now we show that n′ > n.
• If n/h ∈ N, then n′ = 3h + (n/h− 2) + (n/h− 3)(h− 1) = n + 1.
• If n/h ̸∈ N, then n′ = 3h + (⌊n/h⌋ − 2) + (⌊n/h⌋ − 2)(h− 1) = ⌈n/h⌉h > n.
As a consequence, each subset of at least h− 1 neighbors of the honest sender (resp. receiver, excluding
themselves) contains at least one honest party because the honest sender (resp. receiver) has at least
h− 1 honest neighbors (excluding itself). ■

Claim 10. If ∆G(S, R) = β + 1 and |NG(S)| ≤ 2h − 2, then the sender can additively secret-share its
messages and distribute the shares among its neighbors with distance β to the receiver. These neighbors
can then perform the SOT with the receiver. In other words, at least one neighbor (of the honest sender)
with distance β to the receiver is honest.

Proof. This procedure protects the honest sender’s privacy because—as Claim 9 just established—at
least one additive share is held by an honest neighbor. Because in thefallback case, if the sender is
honest, the receiver must be malicious, we do not not need to worry about the receiver obtaining the
correct chosen message. ■

Claim 11. If ∆G(S, R) = β + 2, then |NG(S)|, |NG(R)| ≤ 2h− 2.

Proof. For contradiction suppose |NG(S)| ≥ 2h− 1, then we count at least
n′ := (2h− 1) + ⌈β/2⌉+ ⌊β/2⌋(h− 1) (53)

parties. Now we show that n′ > n.
• If n/h ∈ N, then n′ = 2h− 1 + (n/h− 1) + (n/h− 1)(h− 1) = n + h− 1 ≥ n + 1.
• If n/h ̸∈ N, then n′ = 2h− 1 + ⌊n/h⌋+ (⌊n/h⌋ − 1)(h− 1) = ⌈n/h⌉h > n.
The analogous argument applies for |NG(R)| ≥ 2h− 1. ■

Claim 12. If ∆G(S, R) = β +2 and |NG(S)|, |NG(R)| ≤ 2h−2, the sender can additively secret-share its
messages and distribute the shares among its neighbors with distance β +1 to R. Moreover, the receiver30

can additively secret-share its choice bit and distribute the shares among its neighbors with distance β +1
to S. These neighbors can then perform the SOTs with each other and forward the results.
30 This setup bares some similarity to the minimal protocol of Wolf and Wullschleger [45] which shows the

symmetry of OT.

46

Proof. More precisely, let

Nβ+1
S := {N ∈ NG(S) | ∆G(N, R) = β + 1} =

{
NS

1, ..., NS
a′

S

}
, a′S :=

∣∣∣Nβ+1
S

∣∣∣
Nβ+1

R := {N ∈ NG(R) | ∆G(N, S) = β + 1} =
{

NR
1 , ..., NR

a′
R

}
, a′R :=

∣∣∣Nβ+1
R

∣∣∣ (54)

be the suited neighbors of the sender (resp. receiver). Note that a′S, a′R ≥ h − 1. The sender creates an
additive sharing µb ∈ {0, 1}a′

S per message s.t. mb =
⊕

iS∈[a′
S] µb

iS
. For each iS ∈ [a′S] the sender sets

randomly
∀iR ∈ [a′R − 1] : z0

iS,iR
← {0, 1}

z0
iS,a′

R
:= µ0

iS
⊕

⊕
iR<a′

R

z0
iS,iR

∀iR ∈ [a′R] : z1
iS,iR

:= µ0
iS
⊕ µ1

iS
⊕ z0

iS,iR

(55)

and gives the sharings z0
iS

, z1
iS

to NS
iS

. In turn, the receiver creates an additive sharing γiR ∈ {0, 1}a′
R for

each neighbor NR
iR

s.t. c =
⊕

iR∈[a′
R] γiR,iS . The neighbor NS

iS
(in the role of the sender) performs an SOT

with each neighbor NR
iR

(in the role of the receiver) where the message sharings are z0
iS,iR

, z1
iS,iR

and the
choice bit sharing is γiR,iS . Consequently, the neighbor NR

iR
obtains the share z

γiR,iS
iS,iR

from the SOT with
NS

iS
and forwards it to R. Finally, R can reconstruct⊕

iS∈[a′
S],iR∈[a′

R]
z

γiR,iS
iS,iR

=
⊕

iS∈[a′
S]

⊕
iR∈[a′

R]

(
γiR,iS

(
µ0

iS
⊕ µ1

iS

)
⊕ z0

iS,iR

)

=
⊕

iS∈[a′
S]

(
µ0

iS
⊕ µ1

iS

) ⊕
iR∈[a′

R]
γiR,iS

⊕ ⊕
iR∈[a′

R]
z0

iS,iR


=

⊕
iS∈[a′

S]

((
µ0

iS
⊕ µ1

iS

)
c⊕ µ0

iS

)
=

⊕
iS∈[a′

S]
µc

iS

= mc

(56)

very efficiently by adding all obtained shares. The privacy of the honest sender’s message (resp. the
honest receiver’s choice) bit is guaranteed by Claim 11 because at least one out of the at least h − 1
suited neighbors is honest.
Naturally, the sender and the receiver commit globally to each of their shares (here z0

iS,iR
, z1

iS,iR
and γiR,iS

instead of µ0, µ1 and γ) to enable the same verification as in the main protocol. ■

In the fallback protocol at most n2 SOTs have to be called per restart, i.e., aborted setup, and at
most n2 setups can be aborted because each abort removes at least one edge from the TG. Overall, we
find that at most O(n4) setups will be called.

D.3 Equivalence of FCOT, SFE and Correlated-Randomness

Lemma 8. Let n = n(λ). The functionalities Fn
SFE,f , Fn

FCOT and Fn
Corr,D are equally powerful. Formally,

Fn
FCOT

stat
⇝n Fn

SFE,f
perf
⇝n Fn

Corr,D
stat
⇝n Fn

FCOT . (57)

47

The first construction is essentially the IPS-compiler with FCOT setups. The second construction
follows directly from the fact that Fn

Corr,D is a special case of Fn
SFE,f . The third construction follows from

the MPC-completeness of the Correlated-Randomness model in [32].

The IPS-compiler. Before showing the construction Fn
FCOT

stat
⇝n Fn

SFE,f we first recall the so-called
IPS-compiler [33] (see also [37] for reference).

The IPS-compiler provides n-party MPC from two-party OT against arbitrarily many malicious par-
ties in the Anonymous Abort setting. Thereby, two separate protocols with different security guarantees
are combined: The so-called outer protocol Π provides security against a malicious adversary but only
for an honest majority (that is, t < n/2), while the inner protocol ρ is secure against arbitrarily many
semi-honest parties. The resulting protocol Φ then inherits the best of both worlds; is remains secure
against any number of malicious parties.

Instead of performing a single n-party MPC directly on their respective inputs, the n parties simulate
the behavior of a larger number m ∈ O(n2) of virtual parties. The high level idea is for the n parties
to engage in a combined protocol Φ that lets them use the outer protocol Π to additively share their
input with the m virtual parties, who then execute the inner protocol ρ based on these inputs. The inner
protocol is only secure against (arbitrarily many) semi-honest parties but their right behavior is ensured
by letting the combined protocol use the outer protocol to deploy a watchlist for each of the m inner
parties. That way each of the n actual parties can pre-compute the to-be-received messages of the m
simulated parties from the inner protocol. Thus misbehavior of any outside party is detected with high
probability.

The m simulated parties of the inner protocol are generally called servers, the n actual parties are
referred to as clients. This is due to the outer protocol Π making black-box use of the inner protocol ρ
reminiscent of a client-server model. For each server, each client draws a long one-time pad. When a party
sends its input to the i-th server, it also encrypts the message with successive parts of the corresponding
one-time pad and broadcasts it on its watchlist broadcast channel of the i-th server. At the beginning of
the combined protocol each client offers each other client a certain fraction of their own one-time pads
via OT. Thus, a client P that is in possession of the one-time pad that another client P′ uses for the i-th
server can read all messages that P′ inputs into the i-th server. If a party is in possession of all one-time
pads used for the i-th server, it can read all messages input into the i-th server. This way the party
knows the complete state of that server and hence can pre-compute the messages that server will receive
in advance. If the messages the i-th server actually received deviate from the own pre-computation based
on the watchlist broadcast channel then the affected server must be corrupted and the party can abort.
This way the watchlist mechanism ensures that the servers execute the inner protocol correctly, hence
it suffices for ρ to be secure only against semi-honest adversaries; either sufficiently many servers are
correct or the computation is aborted.

The parameters for the secret sharing scheme are chosen such that on the one hand side the probability
for unnoticed deviation from the inner protocol is negligible while on the other hand no information from
the watched servers allows reconstruction of the clients actual inputs; for further details we refer to [33].

As an artifact of their security notion a party can notice malicious behavior but neither identify the
cheater, nor convince other parties who do not have that server on their watchlist that misbehavior has
occurred.

While Cohen and Lindell [19] already obtained MPC with IA by making non-black-box use of the
GMW-compiler [27], we claim that the IPS compiler can also be modified so as to yield IA: By replacing
two-party OT F2

OT with Fully Committed Oblivious Transfer Fn
FCOT, any client that detects the mis-

behavior can post hoc request the opening of all communication regarding the affected server and the
corresponding one-time pads such that all parties can retrace the inner protocol and identify which party
made inputs to the affected server that do not match the value on the watchlist broadcast channel:

48

Lemma 9 (FCOT⇝n SFE). Let n = n(λ). Let f : ({0, 1}λ)n → ({0, 1}λ)n be an efficiently uniformly
computable family of functions. There is an efficient protocol πSFE that statistically securely UC-realizes
Fn

SFE,f in the {Fn
FCOT}-hybrid model against environments that (maliciously) corrupt up to t parties.

Formally,

Fn
FCOT

stat
⇝n Fn

SFE,f . (58)

Proof. Here, we prove that there exists a {Fn
FCOT}-hybrid protocol Φ that securely UC-realizes Fn

SFE,f .
Again, for arbitrary n, denote the set of parties by P.

We use the IPS-compiler [33] described above, which compiles two protocols Π and ρ into an {F2
OT}-

hybrid protocol Φ. Their result cannot be directly transferred into the setting of IA. However, we slightly
modify their protocol in the following ways: (1) All communication in the new inner protocol is processed
via FCOTs. (2) We replace F2

OT-calls with to Fn
FCOT. (3) When a client P would abort in the original

protocol [33] due to noticing misbehavior in server i, it instead publicly demands the opening of all
communication corresponding to server i. After the opening, it holds that either there is a set of malicious
parties C ′ that was identified by this procedure or that refused to open their communication,31 then all
honest parties send (conflict, C ′) to Fn

TG. Or the opened messages indicate no malicious behavior on
that server, in which case all honest parties send (conflict, P) to Fn

TG. Note that Item (1) is without
loss of generality as OT (hence also FCOT) suffices to set up authenticated channels, but allows opening
the relevant communication upon accusation of misbehavior. Item (2) also does not change the behavior
of the simulator as the extraction that Ishai, Prabhakaran, and Sahai [33] use for OT is compatible with
the definition of FCOT. To prove security we can hence use essentially the same simulator that was
also used by Ishai, Prabhakaran, and Sahai [33], which only has to be adjusted to incorporate the new
Identifiable Abort criteria from Item (3).

Item (3) only changes behavior with respect to aborts, so if no aborts occur then simulation is exactly
the same and the modified simulator learns as much information as the original simulator from [33]. The
only adaptations to the simulator are with respect to detected misbehavior of parties: instead of merely
forwarding the abort of a single party to the functionality our simulator must provide a set of corrupted
parties C ′ to abort the ideal functionality Fn

SFE,f , and all simulated parties in the protocol must provide
output (abort, C ′). The new protocol ensures this in the following way. The key to the new behavior
is a parties message (challenge, i) which a party can use to receive an explanation of the behavior
regarding the i-th server. This can either be caused by the simulator directly in the name of an honest
party after detecting misbehavior in the i-th server, or by a malicious party who is controlled by the
environment. Yet both scenarios are handled equivalently by the simulator. The challenge causes all
parties to open the FCOTs used to distribute their watchlist one-time pads and explain the messages
that are related to the i-th instance of the inner protocol (that is, the i-th server). More precisely, we
assume that for distributing the watchlist keys a

(
n2λ

λ

)
-FCOT was used for each party which can be

canonically constructed from
(2

1
)
-FCOTs. Then each choice index in the

(
n2λ

λ

)
-FCOT corresponds to

multiple choice bits in the
(2

1
)
-FCOTs in a priori known manner, hence all

(2
1
)
-messages mc neighbored

with the i-th watchlist can be opened.
Consequently, all parties learn the complete in- and outcoming messages of the i-th server but no

additional communication of any other server. Thus each party can retrace the complete computation of
the i-th server and register any deviation from the protocol. Again, either the challenging party indeed
identified a malicious message on the i-th server, then all parties notice this misbehavior and identify the
malicious party P and abort with (abort, P). Or the challenging party lied about receiving a malicious
message on the i-th server, which only happens if the calling party is really malicious; in which case all
other parties will abort with (abort, P′) where P′ corresponds to the party that sent challenged server i.
Thus the simulator can extract the identity of a malicious party, and use it to abort the ideal functionality
31 The synchronous model allows parties to notice when a party denies opening.

49

Fn
SFE,f in the name of that party. Note that even in the original simulator [33], after a misbehavior has

been detected by the simulator it corrupts that server in the inner protocol; hence our induced changes
leak no additional information to the adversary.

However, we must still ensure that opening all inputs of a single server does not violate the privacy
of the clients in the outer protocol Π. In the following, we formalize this idea: Let n be the number of
clients in the outer protocol. In the original paper [33] there are m ∈ Θ(n2λ) servers. Each party gets to
select λ watchlists from each party, such that each party can see all in- and outcoming communication of
λ servers. In total, at most a fraction of nλ/n2λ = 1/n of all servers state is known by any set of parties.
Because the used secret sharing requires a constant fraction of shares to reconstruct the original input,
no coalition of parties can learn the input of another party. Now, if misbehavior occurs and the state of
an additional server is opened any coalition of parties knows at most nλ+1

n2λ ≤
2
n , which is still less than

a constant fraction.
Thus, with the induced changes not violating privacy and with the simulator being able to correctly

simulate the modified protocol in the setting of Identifiable Abort we have proven our claim.

Instantiating the Correlated-Randomness model.

Lemma 10 (SFE ⇝t Correlated-Randomness). Let n = n(λ). Let D be a efficiently uniformly
samplable distribution. There is an efficient protocol πCorr,D that perfectly securely UC-realizes Fn

Corr,D in
the {Fn

SFE,f }-hybrid model against environments that (maliciously) corrupt up to t parties. Formally,

Fn
SFE,f

perf
⇝n Fn

Corr,D . (59)

Proof. Let f := fD be the function that ignores the inputs and samples from the distribution (y1, ..., yn)←
D. Each party Pi ∈ P inputs start into Fn

SFE,fD
to obtain and output yi = ri. When Fn

SFE,f is aborted
with (abort, C ′) then each party outputs (abort, C ′) and terminates.

FCOT in the Correlated-Randomness model.

Lemma 11 (Correlated-Randomness ⇝t FCOT). Let n = n(λ). Let D be the SCP-distribution
from [32] (the corresponding functionality is FSCP

Corr). There is an efficient protocol πFCOT that statistically
securely UC-realizes Fn

FCOT in the {Fn
Corr,D}-hybrid model against environments that (maliciously) corrupt

up to t parties. Formally,

Fn
Corr,D

stat
⇝n Fn

FCOT . (60)

Proof. This follows directly from the MPC-completeness of the Correlated-Randomness model in [32].
The high-level idea of the construction in [32] is that the parties use their correlated randomness to
commit to their inputs and randomness and then to prove via zero-knowledge that each computation step
is consistent with their initial commitments. We refer the reader to [32] for the detailed construction.

50

E Trust Graph from Broadcast

Here we provide the full protocol πTG alongside the proof, that πTG really realizes Fn
TG in the {Fn

BC}-hybrid
model, which proves the following lemma:
Lemma 6. Let n = n(λ). There is an efficient protocol πTG that perfectly securely UC-realizes Fn

TG in
the {Fn

BC}-hybrid model against environments that (maliciously) corrupt up to n parties. Formally,

Fn
BC

perf
⇝n Fn

TG . (16)
Proof. We prove our statement by providing a protocol description for πTG and prove it secure by provid-
ing a simulator. Denote the set of parties by P = {P1, ..., Pn}. The protocol is given as follows:

Protocol Fn
TG

1. At the onset each party Pi ∈ P starts with a graph Gi := (P, Ei) with Ei := ∅.
2. On input (conflict, Pi) from Z to Pj , Pj inputs (input, (conflict, Pi)) to Fn

BC.
3. On output (output, Pj , (conflict, Pi)) from Fn

BC with i ̸= j, all parties P ∈ P add {Pi, Pj} to
Ei.

4. On input (query) from Z to Pi, Pi outputs it own Gi.
5. On output (abort, C ′) from Fn

BC each party outputs (abort, C ′) and terminates.

A simulator for this protocol is straightforward:

Simulator for Fn
TG

1. On input (input, (conflict, Pi)) from a corrupted party Pj to Fn
BC, the simulator ignores the

input if i = j. Otherwise, S inputs (conflict, Pi) into Fn
TG in the name of Pj . Naturally, the

simulator forwards Pj ’s input (conflict, Pi) to Fn
BC.

2. On output (conflict, Pj , Pi) from Fn
TG to S, S inputs (input, (conflict, Pj , Pi)) into Fn

BC in the
name of Pj .

3. On output (abort, C ′) from all simulated parties, the simulator inputs (abort, C ′) into the ideal
Fn

COM.

The simulator provides an indistinguishable view for Z. To prove our claim we provide a series of hybrid
games that start from an honest execution in the real world and ends with the ideal world where the
behavior of honest parties is simulated by a simulator. Intuitively, this is no problem as there are no
secret inputs, but more formally:
H1 This is the real world execution where all honest parties follow the protocol.
H2 In this game there are two major changes from H1: We introduce a dummy functionality F̃n

TG that
forwards all inputs to the simulator, and honest parties are replaced by dummy parties that forward
their inputs to Fn

TG and the corresponding simulator executes the code of the respective party. The
simulator now also simulates the Fn

BC setup, i.e., malicious parties interact with the simulated setup.
This change is purely syntactical, the same code gets executed by the simulator as in the real
execution.

H3 Now the dummy functionality is replaced with the ideal functionality Fn
TG and the simulator is correct

simulator given above.
In particular, whenever a corrupted party Pj inputs (conflict, Pi) into the simulated Fn

BC the
simulator inputs (conflict, Pi) into Fn

TG in the name of Pj .
This game is the ideal world execution; it is indistinguishable from the previous game because when-
ever the simulated honest parties output a new conflict the dummy parties also output that conflict.

Note here that the simulator does not have to manage inputs (query) as it involves no interaction. Honest
parties merely forward the request and obtain the correct Trust Graph G. And corrupted parties query
their local copy.

51

F Global Commitment from FCOT

We present a protocol, which realizes Fn
COM in a (Fn

FCOT)-hybrid model, and thus prove the following
lemma:

Lemma 12. Let n = n(λ). There is an efficient protocol πCOM that statistically securely UC-realizes
Fn

COM in the {Fn
FCOT}-hybrid model against environments that (maliciously) corrupt up to t parties.

Formally,

Fn
FCOT

perf
⇝n Fn

COM . (61)

Proof. We denote the parties by P := {S, R1 = R, R2 = W1, ..., Rn−1 = Wn−2}. We start by sketching
the protocol:

Protocol πCOM
1. At the onset the receiver R inputs (commit, 0) into Fn

FCOT.
2. On input (commit, m) for m ∈ {0, 1}λ from Z to S, S samples a uniformly random m0 ← {0, 1}λ

and computes m1 := m⊕m0. Then S inputs (messages, m0, m1) to Fn
FCOT. Any other party P ̸= S

ignores the message.
3. On input (receipt transfer) from Fn

FCOT, the Ri outputs (receipt commit).
4. On input (open) from Z to S, S inputs (open message, 0) and (open message, 1) into Fn

FCOT.
5. On output (open message, 0, m0) and (open message, 1, m1) from Fn

FCOT to any receiver Ri for
i ∈ [n− 1], Ri outputs (open, (m0 ⊕m1)).

6. On output (abort, C ′) from Fn
FCOT each party outputs (abort, C ′) and terminates.

The protocol simply uses the committed nature of the messages provided by FFCOT.
A simulator for this case is straightforward, since all the secrets are sent to the hybrid functionality

Fn
FCOT:

Simulator for πCOM
1. On input (messages, m0, m1) from a corrupted sender S to Fn

FCOT, S reconstructs m := m0 ⊕m1

and sends (commit, m) to Fn
COM in the name of S.

2. On output (receipt commit) from Fn
COM, S samples two messages m0 $← {0, 1}λ and m1 $← {0, 1}λ

uniformly at random and simulates Fn
FCOT with sender input (messages, m0, m1).

3. On input (choice, c) for c ∈ {0, 1} by a corrupted receiver R1, S stores c and reports
(receipt transfer) to Z and simulates Fn

FCOT accordingly.
4. On output (open message, 0, m0) and (open message, 1, m1) from FFCOT to all simulated parties,
S sends (open) to Fn

COM in the name of the sender.
5. On output (open, m) from Fn

COM, S equivocates the commitment by setting mc := m ⊕ mc for
Fn

FCOT and outputs (open message, 0, m0) and (open message, 1, m1) from Fn
FCOT to all other parties.

6. On output (abort, C ′) from all simulated parties, the simulator inputs (abort, C ′) into the ideal
Fn

COM.

The simulator provides an indistinguishable view:
H1 This is the real world execution where all honest parties follow the protocol.
H2 In this game there are two major changes from H1: We introduce a dummy functionality F̃n

COM that
forwards all inputs to the simulator, and honest parties are replaced by dummy parties that forward
their inputs to Fn

COM and the corresponding simulator executes the code of the respective party.
Again, this change is purely syntactical.

52

H3 In this game we modify the dummy functionality F̃n
COM s.t. when it receives (commit, m) from the

dummy sender or the simulator in the name of the corrupted sender it outputs (receipt commit) to
all other parties.
Moreover, the simulator now recovers m← m0⊕m1 from the corrupted sender’s input (messages, m0, m1)
input into Fn

FCOT and inputs (commit, m) into F̃n
COM.

When the simulator receives (receipt commit) it let’s the simulated sender input (messages, 0, 0)
into Fn

FCOT.
When the simulator receives (open, m) from F̃n

COM it equivocates the simulated setup Fn
FCOT to

(open message, 0, m0) and (open message, 1, m1) for random m0 ← {0, 1} and m1 ← m⊕m0.
As before these modification do not change the output behavior of the game. For a corrupted sender,
the dummy parties output the same value as the simulated honest parties because the simulator
extracts F̃n

COM’s input from the corrupted sender. For an honest sender, the dummy parties output
the same value as the simulated parties because the simulator equivocates the output of the simulated
Fn

FCOT.
H4 In this game the simulator aborts, iff the message extracted from the corrupted sender’s local input

and the opened message output by the (honest) simulated parties differ.
By definition of Fn

FCOT this never happens.
H5 In this game we modify the dummy functionality to be Fn

COM, i.e., when it receives (open) from the
honest sender or from the simulator in the name of the corrupted sender it outputs (open, m) where
m is the previously committed message.
This change is purely syntactical conditioned on the fact that the extracted message (from the
corrupted sender) and the opened message by the simulated resp. dummy parties is the same.

H6 In this game the simulator has no formal abort condition. This is the ideal world execution. Note
that the previous abort condition only happened with negligible probability in the first place.
Thus, the claim follows.

Alternatively, one can also directly use the committed choice bit, removing the need for sharing the
message in the inputs for Fn

FCOT at the cost of only committing to one bit.

References

[1] G. Asharov and C. Orlandi. “Calling Out Cheaters: Covert Security with Public Verifiability”. In: ASI-
ACRYPT 2012. Ed. by X. Wang and K. Sako. Vol. 7658. LNCS. Springer, Heidelberg, December 2012,
pp. 681–698.

[2] Y. Aumann and Y. Lindell. “Security Against Covert Adversaries: Efficient Protocols for Realistic Ad-
versaries”. In: TCC 2007. Ed. by S. P. Vadhan. Vol. 4392. LNCS. Springer, Heidelberg, February 2007,
pp. 137–156.

[3] C. Baum, E. Orsini, and P. Scholl. “Efficient Secure Multiparty Computation with Identifiable Abort”. In:
TCC 2016-B, Part I. Ed. by M. Hirt and A. D. Smith. Vol. 9985. LNCS. Springer, Heidelberg, October
2016, pp. 461–490.

[4] C. Baum et al. “Efficient Constant-Round MPC with Identifiable Abort and Public Verifiability”. In:
CRYPTO 2020, Part II. Ed. by D. Micciancio and T. Ristenpart. Vol. 12171. LNCS. Springer, Heidelberg,
August 2020, pp. 562–592.

[5] D. Beaver. “Multiparty Protocols Tolerating Half Faulty Processors”. In: CRYPTO’89. Ed. by G. Brassard.
Vol. 435. LNCS. Springer, Heidelberg, August 1990, pp. 560–572.

[6] M. Ben-Or, R. Canetti, and O. Goldreich. “Asynchronous secure computation”. In: 25th ACM STOC. ACM
Press, May 1993, pp. 52–61.

[7] E. Boyle et al. “Compressing Vector OLE”. In: ACM CCS 2018. Ed. by D. Lie et al. ACM Press, October
2018, pp. 896–912.

[8] E. Boyle et al. “Correlated Pseudorandom Functions from Variable-Density LPN”. In: 61st FOCS. IEEE
Computer Society Press, November 2020, pp. 1069–1080.

53

[9] E. Boyle et al. “Efficient Pseudorandom Correlation Generators: Silent OT Extension and More”. In:
CRYPTO 2019, Part III. Ed. by A. Boldyreva and D. Micciancio. Vol. 11694. LNCS. Springer, Heidelberg,
August 2019, pp. 489–518.

[10] N. Brandt. Tight Setup Bounds for Identifiable Abort. Cryptology ePrint Archive, Report 2021/684. https:
//eprint.iacr.org/2021/684. 2021.

[11] N. Brandt et al. “On the Correlation Complexity of MPC with Cheater Identification”. In: Financial
Cryptography and Data Security. Ed. by F. Baldimtsi and C. Cachin. Cham: Springer Nature Switzerland,
2024, pp. 129–146.

[12] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic Protocols. Cryptology
ePrint Archive, Report 2000/067. https://eprint.iacr.org/2000/067. 2000.

[13] R. Canetti. “Universally Composable Security: A New Paradigm for Cryptographic Protocols”. In: 42nd
FOCS. IEEE Computer Society Press, October 2001, pp. 136–145.

[14] R. Canetti and M. Fischlin. “Universally Composable Commitments”. In: CRYPTO 2001. Ed. by J. Kilian.
Vol. 2139. LNCS. Springer, Heidelberg, August 2001, pp. 19–40.

[15] R. Canetti et al. “Universally Composable Security with Global Setup”. In: TCC 2007. Ed. by S. P. Vadhan.
Vol. 4392. LNCS. Springer, Heidelberg, February 2007, pp. 61–85.

[16] R. Canetti et al. “Universally composable two-party and multi-party secure computation”. In: 34th ACM
STOC. ACM Press, May 2002, pp. 494–503.

[17] B. Chor and L. Moscovici. “Solvability in Asynchronous Environments (Extended Abstract)”. In: 30th
FOCS. IEEE Computer Society Press, October 1989, pp. 422–427.

[18] R. Cleve. “Limits on the Security of Coin Flips when Half the Processors Are Faulty (Extended Abstract)”.
In: 18th ACM STOC. ACM Press, May 1986, pp. 364–369.

[19] R. Cohen and Y. Lindell. “Fairness versus Guaranteed Output Delivery in Secure Multiparty Computation”.
In: ASIACRYPT 2014, Part II. Ed. by P. Sarkar and T. Iwata. Vol. 8874. LNCS. Springer, Heidelberg,
December 2014, pp. 466–485.

[20] G. Couteau, P. Rindal, and S. Raghuraman. “Silver: Silent VOLE and Oblivious Transfer from Hardness
of Decoding Structured LDPC Codes”. In: CRYPTO 2021, Part III. Ed. by T. Malkin and C. Peikert.
Vol. 12827. LNCS. Virtual Event: Springer, Heidelberg, August 2021, pp. 502–534.

[21] C. Crépeau. “Efficient Cryptographic Protocols Based on Noisy Channels”. In: EUROCRYPT’97. Ed. by
W. Fumy. Vol. 1233. LNCS. Springer, Heidelberg, May 1997, pp. 306–317.

[22] C. Crépeau. “Verifiable Disclosure of Secrets and Applications (Abstract)”. In: EUROCRYPT’89. Ed. by
J.-J. Quisquater and J. Vandewalle. Vol. 434. LNCS. Springer, Heidelberg, April 1990, pp. 150–154.

[23] C. Crépeau and J. Kilian. “Achieving Oblivious Transfer Using Weakened Security Assumptions (Extended
Abstract)”. In: 29th FOCS. IEEE Computer Society Press, October 1988, pp. 42–52.

[24] C. Crépeau, J. van de Graaf, and A. Tapp. “Committed Oblivious Transfer and Private Multi-Party Com-
putation”. In: CRYPTO’95. Ed. by D. Coppersmith. Vol. 963. LNCS. Springer, Heidelberg, August 1995,
pp. 110–123.

[25] M. Fitzi et al. “Minimal Complete Primitives for Secure Multi-party Computation”. In: CRYPTO 2001.
Ed. by J. Kilian. Vol. 2139. LNCS. Springer, Heidelberg, August 2001, pp. 80–100.

[26] R. Gennaro et al. “On 2-Round Secure Multiparty Computation”. In: CRYPTO 2002. Ed. by M. Yung.
Vol. 2442. LNCS. Springer, Heidelberg, August 2002, pp. 178–193.

[27] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental Game or A Completeness Theorem
for Protocols with Honest Majority”. In: 19th ACM STOC. Ed. by A. Aho. ACM Press, May 1987, pp. 218–
229.

[28] S. Goldwasser and S. Micali. “Probabilistic Encryption”. In: Journal of Computer and System Sciences
28.2 (1984), pp. 270–299.

[29] V. Goyal et al. “Founding Cryptography on Tamper-Proof Hardware Tokens”. In: TCC 2010. Ed. by D.
Micciancio. Vol. 5978. LNCS. Springer, Heidelberg, February 2010, pp. 308–326.

[30] Y. Ishai, E. Kushilevitz, and A. Paskin. “Secure Multiparty Computation with Minimal Interaction”. In:
CRYPTO 2010. Ed. by T. Rabin. Vol. 6223. LNCS. Springer, Heidelberg, August 2010, pp. 577–594.

[31] Y. Ishai, R. Ostrovsky, and H. Seyalioglu. “Identifying Cheaters without an Honest Majority”. In: TCC 2012.
Ed. by R. Cramer. Vol. 7194. LNCS. Springer, Heidelberg, March 2012, pp. 21–38.

54

https://eprint.iacr.org/2021/684
https://eprint.iacr.org/2021/684
https://eprint.iacr.org/2000/067

[32] Y. Ishai, R. Ostrovsky, and V. Zikas. “Secure Multi-Party Computation with Identifiable Abort”. In:
CRYPTO 2014, Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617. LNCS. Springer, Heidelberg,
August 2014, pp. 369–386.

[33] Y. Ishai, M. Prabhakaran, and A. Sahai. “Founding Cryptography on Oblivious Transfer - Efficiently”. In:
CRYPTO 2008. Ed. by D. Wagner. Vol. 5157. LNCS. Springer, Heidelberg, August 2008, pp. 572–591.

[34] Y. Ishai et al. “Zero-knowledge from secure multiparty computation”. In: 39th ACM STOC. Ed. by D. S.
Johnson and U. Feige. ACM Press, June 2007, pp. 21–30.

[35] J. Katz et al. “Universally Composable Synchronous Computation”. In: TCC 2013. Ed. by A. Sahai.
Vol. 7785. LNCS. Springer, Heidelberg, March 2013, pp. 477–498.

[36] J. Kilian. “Founding Cryptography on Oblivious Transfer”. In: 20th ACM STOC. ACM Press, May 1988,
pp. 20–31.

[37] Y. Lindell, E. Oxman, and B. Pinkas. “The IPS Compiler: Optimizations, Variants and Concrete Efficiency”.
In: CRYPTO 2011. Ed. by P. Rogaway. Vol. 6841. LNCS. Springer, Heidelberg, August 2011, pp. 259–276.

[38] C. Orlandi, P. Scholl, and S. Yakoubov. “The Rise of Paillier: Homomorphic Secret Sharing and Public-Key
Silent OT”. In: EUROCRYPT 2021, Part I. Ed. by A. Canteaut and F.-X. Standaert. Vol. 12696. LNCS.
Springer, Heidelberg, October 2021, pp. 678–708.

[39] R. Pass. “On Deniability in the Common Reference String and Random Oracle Model”. In: CRYPTO 2003.
Ed. by D. Boneh. Vol. 2729. LNCS. Springer, Heidelberg, August 2003, pp. 316–337.

[40] T. Rabin and M. Ben-Or. “Verifiable Secret Sharing and Multiparty Protocols with Honest Majority (Ex-
tended Abstract)”. In: 21st ACM STOC. ACM Press, May 1989, pp. 73–85.

[41] A.-R. Sadeghi, T. Schneider, and M. Winandy. “Token-Based Cloud Computing”. In: Trust and Trustworthy
Computing. Ed. by A. Acquisti, S. W. Smith, and A.-R. Sadeghi. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 417–429.

[42] A. Shamir. “How to Share a Secret”. In: Communications of the Association for Computing Machinery
22.11 (November 1979), pp. 612–613.

[43] M. Simkin, L. Siniscalchi, and S. Yakoubov. “On Sufficient Oracles for Secure Computation with Identifiable
Abort”. In: Security and Cryptography for Networks. Ed. by C. Galdi and S. Jarecki. Cham: Springer
International Publishing, 2022, pp. 494–515.

[44] J. Wan et al. “Expected Constant Round Byzantine Broadcast Under Dishonest Majority”. In: TCC 2020,
Part I. Ed. by R. Pass and K. Pietrzak. Vol. 12550. LNCS. Springer, Heidelberg, November 2020, pp. 381–
411.

[45] S. Wolf and J. Wullschleger. “Oblivious Transfer Is Symmetric”. In: EUROCRYPT 2006. Ed. by S. Vau-
denay. Vol. 4004. LNCS. Springer, Heidelberg, May 2006, pp. 222–232.

55

	Introduction
	Contributions & Techniques
	Related and Concurrent Work
	Technical Overview

	Discussion
	Technical Preliminaries
	Definitions & Notation
	Setting
	Functionalities / Setups

	TG: Identification via Conflicts
	Full Constructions & Proofs
	Impossibility / Lower Bound
	Constructions / Upper Bound
	Equivalence of FCOT, SFE and Correlated-Randomness

	TG from Broadcast
	Global COM from FCOT

