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Abstract—We present a modification to RingCT protocol with
stealth addresses that makes it compatible with Delegated Proof
of Stake based consensus mechanisms called Delegated RingCT.

Our scheme has two building blocks: a customised version
of an Integrated Signature and Encryption scheme composed
of a public key encryption scheme and two signature schemes
(a digital signature and a linkable ring signature); and non-
interactive zero knowledge proofs. We give a description of the
scheme, security proofs and a prototype implementation whose
benchmarking is discussed.

Although Delegated RingCT does not have the same degree
of anonymity as other RingCT constructions, we argue that the
benefits that the compatibility with DPoS consensus mechanisms
brings constitute a reasonable trade-off for being able to develop
an anonymous decentralised cryptocurrency faster and more
scalable than existing ones.

Index Terms—Anonymity, Privacy, Monero, RingCT, Dele-
gated Proof of Stake

I. INTRODUCTION

Bitcoin appeared in 2008 [1] and is widely considered to be
the first decentralised cryptocurrency. Its ingenious design, that
uses a blockchain as a distributed ledger to store the transac-
tions that happen on the network and Nakamoto consensus [2]
(which centres around the proof-of-work mechanism and the
“longest-chain-win” rule) to reach a decentralised consensus
about the state of that blockchain, was revolutionary at the
time. Even today Bitcoin is the most well known and most
valuable cryptocurrency.

Since then, the industry has grown and the term cryptocur-
rency is not solely a synonym of currency anymore, but has
extended to other use cases (e.g. smart contracts). Still, more
than ten years later, we do not have a cryptocurrency that is
widely used as a currency, as Bitcoin was supposed to be as
the title of its original paper states: a peer-to-peer electronic
cash system.

One can argue that this is due to external factors, such as
government regulations, lack of knowledge or necessity by
societies, ideological motives, etc. But we can also argue that
the intrinsic technical limitations of current cryptocurrencies,
due to their design, have contributed to this situation. These
design flaws include the inability to scale, insufficient maxi-
mum throughput, slow confirmation times, ledger size or lack
of anonymity.

A. Motivation

In our opinion, the ideal cryptocurrency is decentralised,
fast, scalable, anonymous, has a transparent monetary policy
and is environmentally friendly. Many cryptocurrencies have
been created in the last few years that have tried to fulfil these
goals but, so far, none of them has been able to reach them
all.

Some, like Monero [3] and ZCash [4], solve the anonymity
issue but still share the same other limitations of Bitcoin. Other
cryptocurrencies based on Delegated Proof of Stake (DPoS),
like Tezos [5] (Liquid Proof of Stake) and Nano [6] (Open
Representative Voting), improve on the maximum throughput
and slow confirmation times but are only pseudo-anonymous,
meaning that anonymity is only maintained as long as a node
on the network is not associated to a ”real world” identity.

These consensus mechanisms are typically faster than others
that use hashrate power competition to select the node that
proposes the new transactions, like Bitcoin, allowing for a
greater throughput of transactions, and have a much lower
carbon footprint.

The goal of this paper is to bring together some of the
strengths of these designs and develop a protocol that can be
used as a building block for a cryptocurrency with the proper-
ties mentioned above, specifically an anonymous decentralised
cryptocurrency faster and more scalable than the current ones.

B. Contributions

We present an extension to the base protocol of Monero,
RingCT with stealth addresses, that makes it compatible with
Delegated Proof of Stake, a family of consensus mechanisms
where the weight of a node in the consensus for validating
transactions is proportional to its delegated stake on the
network, called Delegated RingCT.

We first present a generic version of Delegated RingCT
constructed from two cryptographic primitives: a customised
version of an Integrated Signatures and Encryption scheme
(ISE) [7], which is composed of a public key encryption
scheme (PKE) and two signature schemes, a digital signature
(DS) [8] and a linkable ring signature (LRS) [9]; and non-
interactive zero knowledge proofs (NIZK).

We, then, give a concrete efficient instantiation of Delegated
RingCT and a prototype implementation whose benchmarking
shows that the scheme can be used to build a faster and more
scalable anonymous decentralised cryptocurrency.



Our scheme has some limitations and, despite being secure
according to our security model, our definition is somewhat
weaker than other RingCT constructions. We argue that the
benefits outweigh the cons, as we will discuss later.

C. Overview and Intuition
For completeness, we give a brief summary of the RingCT

protocol and the DPoS based consensus mechanisms. We
explain the reasoning behind our modifications to combine
the two and construct Delegated RingCT.

On a basic level, a transaction has a sender, a receiver
and a transferred amount. To achieve anonymity of all three
components, RingCT protocol uses the following:
• Linkable ring signature to obfuscate the real sender of

a transaction within a ring of possible senders and the
linkability to detect double spends, since each transaction
must have a unique linkable tag (also called key image
or serial number).

• Confidential transactions to obfuscate the transaction
amount, typically using an additive homomorphic com-
mitment scheme like Pedersen commitments [10]. These
are used to make a range proof, proving that the balance
lies within a certain range, and a balance proof, proving
that the total balance of the input accounts spent is equal
to the total amount of the created output accounts.

• Stealth addresses to obfuscate the receiver of a transac-
tion. Every node has a pair of long term keys (a long
term public key and a long term secret key) and every
transaction as a one-time pair of keys (a one-time public
key and a one-time secret key). The sender can derive
a one-time public key and a public auxiliary information
from the receiver’s long term public key. The receiver can
recover the one-time secret key of the account created in
the transaction using his long term secret key and the
auxiliary information.

Delegated Proof of Stake is a family of consensus mecha-
nisms that is based on two basic concepts:
• The weight that a node has on the consensus of the

network is proportional to his stake (balance) on the
network.

• The stake of a node can be delegated to another node,
transferring its weight on the consensus to that node.

With this in mind, we first need to introduce the concept
of stake delegation in RingCT. We follow the terms used in
Nano [6], and call representative a node to which has been
assigned some stake by another node. This concept is distinct
from the owner of an account, but they can be the same.

We do this by switching the representation of a coin in
RingCT from a commitment of an additive homomorphic
commitment scheme (e.g., Pedersen commitments [10]) to
a ciphertext of an additive homomorphic public encryption
scheme (e.g., exponential ElGamal [11]). This allows the
owner of an account, that initially has no representative, to
encrypt its balance with a long term public key of a node,
making him the representative of that account. The represen-
tative can then prove by decryption that a certain amount of

stake was delegated to him using his long term secret key. A
NIZK proof is required to prove that the encryption is well
formed.

Since the PKE is additive homomorphic and the consensus
algorithm only needs to know the total amount of delegated
stake to a given node, the representative reveals the total
amount of delegated balance to him without revealing the
individual balances of the accounts delegated to him, otherwise
there would be no obfuscation of balances.

A node can redelegate the stake of an account at anytime
proving he knows the one-time secret key of that account
(digital signature), by reencrypting the balance with a new long
term public key and proving with a NIZK that both ciphertexts
are equivalent, i.e., encrypt the same balance.

Transactions are modified from standard ring confidential
transactions and, because of that, the ciphertext needs to be
compatible with the range proof protocol and the balance
proof. The linkable ring signatures and the stealth addresses
remain the same.

We construct a customised version of an Integrated Sig-
nature and Encryption scheme to express the fact that the
same keys are used for the encryption/decryption, the digital
signature and the linkable ring signature.

D. Related Work

Since Monero and ZCash are the two most valuable anony-
mous cryptocurrencies by market capitalisation, research in
this area is mostly based on the two different technologies
they use.

The base protocol used by Monero was first described in
[3]. Since then, it has evolved into a ring of confidential
transactions, which combines linkable ring signatures [9], [12]
with confidential transactions [13]. Reference [14] gives the
first formal syntax of RingCT and improves it with a new
version and [15]–[18] improve on the size and the efficiency
of the linkable ring signature component and [19] on the
range proof. Compatibility with smart-contracts was achieved
in [20].

ZCash uses zero-knowledge Succinct Non-interactive AR-
guments of Knowledge (zk-SNARKs) to construct a decen-
tralised payment scheme [4], but requires a trusted setup. Since
then, other zero-knowledge proofs for arithmetic circuits were
developed by improving on efficiency, decreasing the amount
of ”trust” required or increasing the scope of use [21]–[25].

Another relevant approach to anonymous cryptocurrencies
is Zerocoin protocol [26], improved in [27].

II. PRELIMINARES

A. Basic Notation

We use additive notation and define G as a cyclic group
of prime order p in which the discrete logarithm problem is
hard and F as the scalar field of G. Let H : {0, 1}∗ → F be
a cryptographic hash function and G a generator of G with
unknown discrete logarithm relationship.

A function is negligible in the security parameter λ, written
negl(λ), if it vanishes faster than the inverse of any polynomial



in λ. A probabilistic polynomial time (PPT) algorithm is a
randomised algorithm that runs in time poly(λ).

In a randomised algorithm A, the input randomness r ∈ F
is explicit and we write z ← A(x1, ..., xn; r). We use x r←
X to denote sampling x uniformly at random from X . For
readability, we denote the set of elements {xn}N−1n=0 by just
xn when is clear in the context that we are referring to a set
of elements instead of a single element.

B. Integrated Signatures and Encryption Scheme

The concept of combining public key schemes was first
introduced by [7]. Reference [28], inspired by [29], combines
one signature scheme with one encryption scheme.

In this work we go a little further and use a combination of
a public key encryption scheme with two signatures schemes,
a standard digital signature and a linkable ring signature. It is
composed of the following polynomial time algorithms.
• pp← Setup(1λ) on input a security parameter 1λ, output

public parameters pp.
• KeyGen: this algorithm is divided in three steps to capture

the concept of stealth addresses, in the following way.
- (ltpk, ltsk) ← LongTermKeyGen(pp). On input pub-
lic parameters pp, it randomly generates a keypair
(ltpk, ltsk).
- (pk, aux) ← OneTimePKGen(ltpk; r). On input a long
term public key ltpk, it outputs a random one-time public
key pk and the auxiliary information aux.
- sk/⊥← OneTimeSKGen(pk, aux, ltsk). On input a one-
time public key pk, an auxiliary information aux and a
long term secret key ltsk, it outputs the one-time secret
key sk if ltsk is valid. If not, it returns ⊥.

• C ← Encrypt(pk,m; r): on input a public key pk and a
plaintext m, it outputs a random ciphertext C.

• m ← Decrypt(sk, C): on input a secret key sk and a
ciphertext C, output a plaintext m.

• σ ← Sign(sk,m): on input sk and a message m, output
a signature σ.

• 0/1 ← Verify(pk,m, σ): on input pk, a message m, and
a signature σ, output “1” if the signature is valid and “0”
if it is not.

• σring ← Signring(sk,m,R): Generates a linkable ring
signature σring on a message m with respect to a ring R
of one-time public keys, provided that sk is a one-time
secret key corresponding to some pk in the ring.

• 0/1 ← Verifyring(σring,m,R): Verifies a signature σ on
a message m with respect to a ring of public keys
R. Outputs ”0” is the signature is rejected, and ”1” if
accepted.

• 0/1 ← Link(σring, σ′ring): Determines if signatures the
linkable ring signatures σring and σ′ring were signed using
the same private key. Outputs ”0” if the signatures were
signed using different private keys and ”1” if they were
signed using the same private key.

Since each component being individually secure does not
imply that the composition of all the components is also
secure, we need to have a joint security model, i.e., a model

that evaluates the security of each component in the presence
of the others, which are simulated by oracles. The only
component that does not need to be simulated by an oracle
in the public key setting is the PKE, since an adversary can
easily do it.

Definition 1 (Joint Security for ISE). We say an ISE is jointly
secure if:

• Its PKE component is IND-CPA secure (1-plaintext/2-
recipient) in the presence of two signing oracles, one for
the DS and the other for the LRS.

• Its DS component is EUF-CMA secure in the presence
of a signing oracle simulating the LRS component.

• Its LRS component is secure, following the security
model of [18], in the presence of a signing oracle
simulating the DS component.

C. Non-Interactive Zero-Knowledge Proof

A NIZK proof system in the CRS model consists of the
following four PPT algorithms [30]:
• pp← Setup(1λ): on input 1λ, outputs public parameters
pp.

• crs ← CRSGen(pp): on input pp, outputs a common
reference string crs.

• π ← Prove(crs, x, w): on input a crs and a statement-
witness pair (x,w), outputs a proof π.

• 0/1 ← Verify(crs, x, π): on input crs, a statement x, and
a proof π, outputs “0” if rejects and “1” if accepts.

III. DEFINITION OF DELEGATED RINGCT

A. Data Structures

We begin by describing the data structures used by a
Delegated RingCT system.

Blockchain. A Delegated RingCT protocol operates on top
of a blockchain B, which is a publicly accessible and append-
only database. At any given time t, all users have access to
Bt, which is a sequence of transactions. If t < t′, state of Bt
is anterior to the state of Bt′ .

Public parameters. A trusted party generates the public
parameters pp, which are used by the protocol’s algorithms.
These include the group in which the algorithms perform op-
erations, generators of the group, cryptographic hash functions
and parameters regarding transactions, namely:
• V , which specifies the maximum possible number of

coins that the protocol can handle. Any balance and
transfer must lie in the integer interval V = [0, vmax].

• N , the maximum size of the ring used in a delegated ring
confidential transaction DRingCTx, i.e., the maximum
number of input accounts.

• M , the maximum number of spend accounts in a
DRingCTx, such that M ⊂ N .

• T , the maximum number of output accounts of a
DRingCTx.

Keys. There are two pairs of keys: long term keys, which
are composed of a long term public key ltpk, and a long



term secret key ltsk and are associated with a unique node
on the network; and one-time keys, which are composed of a
one-time public key pk and a one-time secret key sk and are
associated with a unique account. One-time keys are derived
from long term keys and one node on the network can have
multiple accounts.

Account. Each account is associated with a one-time key-
pair (pk, sk) and a coin C, which is a ciphertext of an additive
homomorphic PKE scheme and encrypts an amount/balance a
with randomness k, also known as coin key. The one-time
public key pk acts as a stealth address and can only receive
one transaction. The secret key sk is kept privately and is used
to spend the balance of the account once.

Delegated ring confidential transaction. A delegated ring
confidential transaction DRingCTx consists of a ring of input
accounts, a linkable ring signature, output accounts with zero-
knowledge proofs of encryption, range and balance, and an
auxiliary information to help the owners of the destination
addresses recover the one-time secret keys of the output
accounts. Typically, one of the output accounts belongs to the
sender and its balance is the ”change” of a transaction.

Change representative transaction. A change representa-
tive transaction CRx consists of a digital signature based on
the one-time secret key of the account and a zero-knowledge
proof of equivalence between the old ciphertext C and the new
ciphertext C ′, assuring that the balance is the same.

B. Algorithms

A Delegated RingCT scheme is a tuple of polynomial-time
algorithms defined as below:
• pp← Setup(1λ): on input a security parameter λ, output

public parameters pp.
• (act, aux) ← CreateAccount(a, ltpk): on input an

amount a and a long term public key ltpk, outputs an
auxiliary information aux and an account act = (pk,C),
composed of a one time public key pk and a coin C.

• a← RevealBalance(ltsk, C): on input a long time secret
key ltsk and a coin C, outputs the balance a in plaintext.
This algorithm is used by the representative of an account.

• DRingCTx = (actn, σring, aux, actt, πrange, πenc, πbal)
/⊥← CreateDRingCTx(actn, askm, at, ltpkt,m): on in-
put a ring of N input accounts, M account secret
keys corresponding to some of those accounts, T out-
put amounts, T destination addresses and a transaction
message m, it outputs the input accounts actn, a linkable
ring signature σring, auxiliary information aux, T output
accounts, a range proof πrange, an encryption proof πenc
and a balance proof πbal, if the accounts secret keys are
valid. It outputs ⊥ otherwise.

• 0/1/-1 ← VerifyDRingCTx(DRingCTx): on input a del-
egated ring confidential transaction DRingCTx, outputs
“0” if the transaction is valid, “1” if it is invalid and
”-1” if the transaction is linked to a previous valid
transaction, i.e., if any of actn has been spent previously.
If DRingCTx is valid, it is recorded on the blockchain B.
Otherwise, it is discarded.

• CRx = (σ, act′, πequal)/ ⊥←CreateCRx(ask, act, ltpk,m):
on input an account act with the corresponding account
secret key ask, a long term public key ltpk and a
transaction message m, it outputs a digital signature σ,
a new account act′ with the same amount a encrypted
with the new ltpk and a proof of equivalence πequal, if
the account secret keys is valid. It outputs ⊥ otherwise.

• 0/1← VerifyCRx(CRx): on input a change representative
transaction CRx and a digital signature σ, it outputs ”0”
if its invalid. Otherwise, it outputs ”1” and the CRx
transaction is appended to the blockchain B.

C. Correctness

Correctness of Delegated RingCT requires that:
• A valid delegated ring confidential transaction DRingCTx

will always be accepted and recorded on the blockchain
B.

• A valid change representative transaction CRx will always
be accepted and recorded on the blockchain B.

D. Security Model

We focus only on the transaction layer of a cryptocurrency,
and assume that network-level and consensus-level attacks are
out of scope.

Intuitively, a Delegated RingCT protocol should have the
following properties.

Unforgeability. This property captures the idea that only
someone who knows the secret key of an account can spend
it and change its representative.

Anonymity. This property captures the idea that an outside
party, other than the owner or the representative of the sender
account, cannot know who is the real sender, who is the
receiver or what is the amount of a DRingCTx transaction.

Linkability. This property captures the idea that you can
only spend once from an account, i.e., you cannot double
spend.

Non-frameability. This property captures the idea that a
malicious party cannot construct a transaction that invalidates
a valid transaction.

We formalise the above intuitions into a game-based secu-
rity model between an adversary A and a challenger CH. The
capabilities of the adversary are modelled by the queries that
he can make to oracles implemented by the challenger, which
are described bellow.
• ltpki ← KeyOracle(i): on the ith query, the challenger
CH runs (ltski, ltpki) ← ISE.LongTermKeyGen(ppise)
and returns ltpki to A.

• acti ← AccountOracle(ltpki, a): the challenger CH runs
acti ← CreateAccount(a, ltpki) if ltpki was generated
by a query to KeyOracle. Returns the acti to A.

• ski ← CorruptOracle(acti): on input an account acti that
corresponds to a query to AccountOracle, it runs ski ←
ISE.KeyGen.OneTimeSK(pki, aux, ltski) and returns the
associated account secret key ski.

• DRingCTx ← TransOracle(actn, actm, at, ltpkt,m): on
input a set of N input accounts, M spend accounts, T



amounts, T destination addresses and a transaction mes-
sage m, CH runs DRingCTx ← CreateDRingCTx(actn,
askm, at, ltpkt,m) and returns DRingCTx to A.

• CRx ← ChangeOracle(acti, ltpki,m): on input an ac-
count acti, a ltpki and a transaction message m, it runs
CRx← CreateCRx (aski, acti, ltpki,m) and returns CRx
to A.

Definition 2 (Unforgeability). The probability of an adversary
being able to forge a valid delegated ring confidential trans-
action DRingCTx or a valid change representative transaction
CRx without knowing any secret key of the public keys of
the ring, is negligible. This property is captured by a game
between a challenger CH and a probabilistic polynomial-time
adversary A, where A can query all oracles and outputs:

• DRingCTx = (actn, σring, aux, actst, πrange, πenc, πbal),
such that all of the N input accounts were generated by
queries to AccountOracle and none was used as input to
CorruptOracle or TransOracle.

• CRx = (σ, act′i, πequal), such that ChangeOracle was not
queried with (acti, ·) and acti was not corrupted by
CorruptOracle.

• A wins if Pr[VerifyDRingCTx(DRingCTx) = 1] ≥
negl(λ) or if Pr[VerifyCRx(CRx) = 1] = ≥ negl(λ).

Definition 3 (Anonymity). As long as a ring of a transaction
contains two uncorrupted input accounts, an adversary can do
no better than guessing at determining the sender of a valid
transaction. This property is captured by the following game
between a challenger CH and a probabilistic polynomial-time
adversary A:

• A has access to all oracles. He chooses a ring of input
accounts actn, where all the accounts are generated by
AccountOracle, and two indices i0, i1, such that acti0
and acti1 were not corrupted by the CorruptOracle. The
challenger CH picks the sender of the transaction by
selecting a uniformly random bit b ∈ {0, 1} and outputs
a DRingCTx. A tries to guess which account is the real
sender with b′ and wins if |Pr[b′ = b]| > 1

2 .

Definition 4 (Linkability). An adversary is unable to produce
k+1 non-linked valid transactions on a combined anonymity
set of k input accounts. This property is captured in a game
between a challenger CH and a probabilistic polynomial-time
adversary A, where A has access to all oracles and, for i ∈
[0, k − 1], produces a delegated ring confidential transaction
DRingCTxi. He then produces another DRingCTx(DRingCTx
and sends them all to the challenger. A wins if the following
checks:

• |K| = k, where K ≡ ∪k−1i=0Ri.
• Each acti ∈ K.
• Each Ri ⊂ K.
• VerifyDRingCTx(DRingCTxi) = 1 for all i.
• VerifyDRingCTx(DRingCTx) = 1.

Definition 5 (Non-frameability/Non-slanderability). An adver-
sary is unable to generate a valid transaction that links with

another previous valid transaction that was generated honestly.
This property is captured by the following game between a
challenger CH and a probabilistic polynomial-time adversary
A:
• A has access to all oracles pre and pos-challenge. In the

challenge stage he chooses an uncorrupted account acti∗
that was generated by a query to the AccountOracle, and
a ring actn such that acti∗ ∈ actn, and sends them to
the challenger. CH responds with a DRingCTx.
In the forge stage A produces another DRingCTx’ and
wins if DRingCTx’ links with DRingCTx with non-
negligible probability.

IV. DELEGATED RINGCT PROTOCOL

A. A Generic Construction

We present a generic construction of Delegated RingCT
from ISE and NIZK, in the following way:
• Let ISE = (Setup, KeyGen, Sign, Signring, Verify,

Verifyring, Encrypt, Decrypt) be an ISE scheme whose
PKE is additively homomorphic and used to encrypt
the balance of an account. The LRS component is used
to authenticate a DRingCTx and the DS component to
authenticate a CRx.

• Let NIZKcorrect = (Setup, CRSGen, Prove, Verify) be a
NIZK proof system for Lcorrect. It is used to construct a
valid DRingCTx, is composed of:

Lenc = {(pk,C) | ∃ a, k s.t. C = ISE.Encrypt(pk, a; k)}

Lrange = {C | ∃ a s.t. a ∈ V }

Lbal = {(Cm, Ct) | ∃ am, at s.t.
M−1∑
m=0

am =

T−1∑
t=0

at}

• Let NIZKequal = (Setup, CRSGen, Prove, Verify) be a
NIZK proof system for Lequal. It is used to make a valid
CRx:

Lequal = {(pk1, pk2, c1, c2) | ∃ a1, a2 s.t. a1 = a2}

A Delegated RingCT contruction is composed of the fol-
lowing algorithms.
• pp ← Setup(1λ): on input a security parame-

ter 1λ, it runs ppise ← ISE.Setup(1λ), ppnizk ←
NIZK.Setup(1λ), crs ← NIZK.CRSGen(ppnizk), outputs
pp = (ppise, ppnizk, crs).

• (act, aux) ← CreateAccount(a, ltpk). On input a one-
time public key ltpk and an amount a, it runs (pk, aux)←
ISE.KeyGen.OneTimePKGen(ltpk; r) and computes the
coin C ← ISE.Encrypt(pk, a; k). It outputs the account
act = (pk, C) and the auxiliary information aux.

• a ← RevealBalance(ltsk, C). On input a ciphertext C
and a long time secret key ltsk, it runs:



- a← ISE.Decrypt(sk, C).
• DRingCTx = (σring, aux, actt, πrange, πenc, πbal)
← CreateDRingCTx(actn, askm, at, ltpkt,m): on input
a ring of N accounts, M spend accounts, T amounts, T
long term public keys and a transaction message m, it
creates a ring confidential transaction via the following
steps:

– run (actt, auxt) ← CreateAccount(at, ltpkt) to gen-
erate the output accounts.

– run πcorrect ← NIKZcorrect.Prove for all output ac-
counts to generate a zero-knowledge proof πcorrect
for Lcorrect.

– compute σring ← ISE.Signring(pkn, skm).
– output the delegated ring confidential transaction

DRingCTx.

• 1/0/ − 1 ← VerifyDRingCTx(DRingCTx, actn)): on
input a DRingCTx and the corresponding ring of input
accounts, it outputs ”1” if both the following algorithms
output ”1”. It outputs ”-1” if ISE.Link outputs ”1” and
”0” otherwise.

– ISE.Verifyring(σring,m, pkn): on input a LRS σring, a
message m and N input public keys, it outputs ”1”
if the signature is valid and ”0” if it is invalid.

– NIZKcorrect.Verify(crs, x, πcorrect): on input crs, a
statement x and a proof πcorrect, it outputs ”1” if the
proof is valid and ”0” if it is invalid.

• CRx = (σ, πequal)/ ⊥ ← CreateCRx(act, sk, ltpk,m). On
input an account act, the corresponding account secret
key ask, the long term public key ltpk as the new
representative and a transaction message m, it outputs:
- σ ← ISE.Sign(sk), which outputs a digital signature
proving the knowledge of sk.
- πequal ← NIZKequal.Prove, which outputs a proof of
equivalence of ciphertexts.
- it returns (σ, πequal).
If ask is invalid, it returns ⊥.

• 1/0← VerifyCRx(CRx) = (σ, πequal)).
- check if ISE.Verify(σ) = 1 and NIZKequal.Verify
(πequal) = 1.
- if both the above tests pass, return 1.
- else, return 0.

1) Analysis: Correctness of our generic Delegated RingCT
construction follows from the correctness of ISE and the
completeness of all the NIZK used and security is captured
by the following theorem and lemmas.

As defined in our security model, our Delegated RingCT is
secure if it satisfies four properties: unforgeability, anonymity,
linkability and non-frameability.

In order to prove that the scheme satisfies each one of
these properties, we assume the security of ISE and the zero-
knowledge of NIZK. We then simulate a game in which an
adversary A tries to break the property in question. This game
can be simulated by another adversary B, which acts as the
challenger in A’s game.

B himself wants to break the security of ISE in its own
game, so he only needs to make sure that A’s response to the
challenge can be used as an answer to B’s challenge. If A has
a non-negligible advantage in his game, then B will have it
as well. However, we assumed that the ISE is secure, so, we
prove by contradiction that A cannot have a non-negligible
advantage in his game and that the property of Delegated
RingCT he wants to break is satisfied.

Theorem 1. Assuming the security of ISE and NIZK, the above
Delegated RingCT construction is secure.

Proof. We prove this theorem via the following four lemmas.

Lemma 1.1. Assuming the security of the ISE and the zero-
knowledge property of NIZK, our Delegated RingCT construc-
tion satisfies unforgeability.

Proof. We proceed via a sequence of games.

Game 1.1.1. The real experiment. CH interacts with A as
below.

1) Setup: CH runs ppise ← ISE.Setup(1λ), ppnizk ←
NIZK.Setup(1λ), crs ← NIZK.CRSGen(ppnizk) and
sends pp = (ppise, ppnizk, crs) to A.

2) Queries: Throughout the experiment, A can make
queries to all oracles. The challenger CH answers these
queries as defined in the security model.

3) Forge: A outputs a ring confidential transaction
DRingCTx, such that all the input accounts are generated
by the AccountOracle and uncorrupted (A does not
know any of the accounts secret keys) and were not used
as a query to TransOracle; and a change representative
transaction CRx for an uncorrupted account that was
generated by AccountOracle. A wins if any of the
transactions is valid with non-negligible probability.

Game 1.1.2. Same as Game 1.1.1, except that CH uses a
simulator to generate πcorrect for the TransOracle queries and
πequal for the ChangeOracle queries without knowing any
of the accounts secret keys. The zero-knowledge proofs are
indistinguishable from the real ones, by definition. By a direct
reduction to the zero-knowledge property of the underlying
NIZK, we have:

|Pr[S1]− Pr[S0]| ≤ negl(λ)

We now argue that no PPT adversary has non-negligible
advantage in Game 1.1.2.

Claim 1.1.1. Assuming the unforgeability of the ISE’s link-
able ring signature component, Pr[S1] ≤ negl(λ) for all PPT
adversary A.

Proof. Suppose there exists a PPT adversary A that has non-
negligible advantage in Game 1.1.2. We can build an adversary
B that breaks the security of the the ISE with the same
advantage. Given the public parameters ppise by its challenger,
B simulates Game 1.1.2 as follows:



1) Setup: B runs (crs, τ) ← S(ppnizk) and sends
(crs, τ, ppise) to A, where S is a simulator.

2) Queries: A can query all oracles and B answers them
in the following way:
• ltpki ← KeyOracle(i): B computes the ltpki ac-

cording to the pki given by its challenger.
• acti ← AccountOracle(ltpki, a): B queries the

GenOracle of its own game to get pki, runs C ←
ISE.Encrypt(pki, a; k) and responds with acti =
(pki, C).

• ltski ← CorruptOracle(acti): B queries the Corrup-
tOracle of its own game with pki to get ski, and
returns (ski, a, k) to A.

• DRingCTx← TransOracle(actn, actm, at, ltpkt,m):
B queries the SignringOracle of its own game with
(pkm,m, pkn) to get σring and runs the simulator
to get πcorrect. It returns DRingCTx = (actn, σring,
aux, actt, πcorrect) to A.

• CRx← ChangeOracle(acti, ltpki,m): B queries the
SignOracle of its own game with (pki,m) to get σ
and runs the simulator to get πequal. It returns CRx
= (σ, act′, πequal) to A.

3) Forge: A submits a delegated ring confidential trans-
action DRingCTx and a change representative CRx.
B forwards the linkable ring signature and the digital
signature to its own challenger and breaks the ISE
security with the same advantage as A (if any of the
two is valid).

B’s simulation of Game 1.1.2 is perfect. The claim imme-
diately follows.

This proves Lemma 1.1.

Lemma 1.2. Assuming the anonymity property of ISE’s link-
able ring signature component, the zero-knowledge property of
NIZK, our Delegated RingCT construction satisfies anonymity.

Proof. We proceed via a sequence of games.

Game 1.2.1. The real experiment. CH interacts with A as
below.

1) Setup: CH runs ppise ← ISE.Setup(1λ), ppnizk ←
NIZK.Setup(1λ), crs ← NIZK.CRSGen(ppnizk) and
sends pp = (ppise, ppnizk, crs) to A.

2) Pre-challenge queries: Throughout the experiment, A
can query all oracles. B answers them as defined in the
security model.

3) Challenge: A picks a ring of input accounts actn,
chooses two indices i0, i1 and sends it to CH,
such that acti0 and acti1 are uncorrupted. CH
chooses one of the two accounts to be the sender
by selecting a uniformly random bit b ∈ {0, 1},
runs CreateDRingCTx(actn, actib , at, ltpkt) and sends
DRingCTx to A.

4) Post-challenge queries: A can query all oracles in the
same way as in the pre-challenge stage, except querying
the CorruptOracle with actib .

5) Guess: A chooses a bit b′ ∈ {0, 1} and wins if: |Pr[b′ =
b]| ≥ 1

2 .

Game 1.2.2. Same as Game 1.2.1, except CH makes a ring
guess of random N indexes out of Q, the maximum number of
queries that A can make to the AccountOracle, and a guess
of the two indices i0, i1. If A picks a different ring for the
DRingCTx or different spend accounts, CH aborts.

Let E be the event that CH does not abort and S0 the event
that A wins in Game 1.2.2. The probability that E occurs is
Pr[E] ≥ N !(Q−N)!

Q · 1
N2 , where N is the size of the ring of the

DRingCTx. Conditioned on CH does not abort, A’s view in
Game 1.2.1 is identical to that in Game 1.2.2. Therefore, we
have:

Pr[S1] ≥ Pr[S0] ·
N !(Q−N)!

Q!
· 1

N2

Game 1.2.3. Same as Game 1.2.2, except that CH generates
the necessary zero-knowledge proofs for the TransOracle
queries without knowing the secret keys via running the sim-
ulator. By a direct reduction to the zero-knowledge property
of the underlying NIZK, we have:

|Pr[S2]− Pr[S1]| ≤ negl(λ)

We now argue that no PPT adversary has non-negligible
advantage in Game 1.2.3.

Claim 1.2.1. Assuming the anonymity property of the ISE’s
linkable ring signature component, Pr[S2] ≤ negl(λ) for all
PPT adversary A.

Proof. Suppose there exists a PPT adversary A has non-
negligible advantage in Game 1.2.3, we can build an adversary
B that breaks the anonymity property of the ISE’s linkable
ring signature component with the same advantage. Given
(ppise, LRSib ) by its challenger, B simulates Game 1.2.3 as
follows:

1) Setup: B runs (crs, τ) ← S(ppnizk) and sends
(crs, τ, ppise) to A, where S is a simulator. B randomly
picks N indices ∈ [Q] and two indices j0, j1 ∈ [N ].

2) Pre-challenge queries: Throughout the experiment, A
can query all oracles. B answers them as defined in the
security model, except for:
• ltpki ← KeyOracle(i): B computes the ltpki ac-

cording to the pki given by its challenger.
• acti ← AccountOracle(ltpki, a): B queries the

GenOracle of its own game to get pki, runs C ←
ISE.Encrypt(pki, a; k) and responds with acti =
(pki, C).

• ltski ← CorruptOracle(acti): B queries the Corrup-
tOracle with pki and returns (ski, a, k) to A.

• DRingCTx← TransOracle(actn, actm, at, ltpkt,m):
B queries the SignringOracle of its own game
with (pkm,m, pkn) to get σring and runs the
simulator to get πcorrect. It returns DRingCTx =
(actn, σring, aux, actt, πcorrect) to A.



• CRx← ChangeOracle(acti, ltpki,m): B queries the
SignOracle of its own game with (pki,m) to get σ
and runs the simulator to get πequal. It returns CRx
= (σ, act′, πequal) to A.

3) Challenge: A picks a ring of input accounts {actn}N−1n=0

and two of those accounts. If any of the ring accounts
contains a different public key than the ones chosen by
B or any of the two is corrupted or have been used
as spend account in queries to TransOracle, B aborts.
Otherwise, B uses the LRSib given by its challenger
to construct the delegated ring confidential transaction
DRingCTx and sends it to A.

4) Post-challenge queries: A can query all oracles in the
same as in the pre-challenge stage, except querying the
CorruptOracle with actib .

5) Guess: A guesses which account is the real sender of
DRingCTx with b′ ∈ {0, 1} and B forwards the guess to
its own challenger to try to guess which pk is the real
signer of the linkable ring signature. B wins with the
same advantage as A.

B’s simulation for Game 1.2.3 is perfect. The claim imme-
diately follows.

This proves Lemma 1.2.

Lemma 1.3. Assuming the linkability property of ISE’s link-
able ring signature component and the zero-knowledge prop-
erty of NIZK, our Delegated RingCT construction satisfies
linkability.

Proof. We prove via a sequence of games.

Game 1.3.1. The real experiment. CH interacts with A as
below.

1) Setup: CH runs ppise ← ISE.Setup(1λ), ppnizk ←
NIZK.Setup(1λ), crs ← NIZK.CRSGen(ppnizk) and
sends pp = (ppise, ppnizk, crs) to A.

2) Queries: Throughout the experiment, A can query all
oracles and CH answers as defined in the security model.

3) Forge: A produces, for i ∈ [0, k − 1], a delegated ring
confidential transaction DRingCTxi. He then produces
another DRingCTx and sends them all to the challenger.
A wins if the following checks:
• |K| = k, where K ≡ ∪k−1i=0Ri.
• Each acti ∈ K.
• Each Ri ⊂ K.
• VerifyDRingCTx(DRingCTx)i) = 1 for all i.
• VerifyDRingCTx(DRingCTx) = 1.

Game 1.3.2. Same as Game 1.3.1, except that CH generates
the necessary zero-knowledge proofs for the TransOracle
queries without knowing the secret keys via running the sim-
ulator. By a direct reduction to the zero-knowledge property
of the underlying NIZK, we have:

|Pr[S1]− Pr[S0]| ≤ negl(λ)

We now argue that no PPT adversary has non-negligible
advantage in Game 1.3.2.

Claim 1.3.1. Assuming the linkability property of the ISE’s
linkable ring signature component, Pr[S1] ≤ negl(λ) for all
PPT adversary A.

Proof. Suppose there exists a PPT adversary A has non-
negligible advantage in Game 1.3.2, we can build an adversary
B that breaks the linkability property of the ISE’s linkable ring
signature component with the same advantage. Given ppise, B
simulates Game 1.3.2 as follows:

1) Setup: B runs (crs, τ) ← S(ppnizk) and sends
(crs, τ, ppise) to A, where S is a simulator.

2) Queries: Throughout the experiment, A can query all
oracles. B answers them in the same way as in the
security model, except for:
• ltpki ← KeyOracle(i): B computes the ltpki ac-

cording to the pki given by its challenger.
• acti ← AccountOracle(ltpki, a): B queries the

GenOracle of its own game to get pki, runs C ←
ISE.Encrypt(pki, a; k) and responds with acti =
(pki, C).

• ltski ← CorruptOracle(acti): B queries the Corrup-
tOracle with pki and returns (ski, a, k) to A.

• DRingCTx← TransOracle(actn, actm, at, ltpkt,m):
B queries the SignringOracle of its own game
with (pkm,m, pkn) to get σring and runs the
simulator to get πcorrect. It returns DRingCTx =
(actn, σring, aux, actt, πcorrect) to A.

• CRx← ChangeOracle(acti, ltpki,m): B queries the
SignOracle of its own game with (pki,m) to get σ
and runs the simulator to get πequal. It returns CRx
= (σ, act′, πequal) to A.

3) Forge: A submits k + 1 ring confidential transaction
DRingCTx. B forwards linkable ring signatures of the
transactions to its own challenger and wins with the
same advantage as A.

B’s simulation for Game 1.3.2 is perfect. The claim imme-
diately follows.

This proves Lemma 1.3.

Lemma 1.4. Assuming the non-frameability property of ISE’s
linkable ring signature component and the adaptive zero-
knowledge property of NIZK, our Delegated RingCT construc-
tion satisfies non-frameability.

Proof. We prove via a sequence of games.

Game 1.4.1. The real experiment. CH interacts with A as
below.

1) Setup: CH runs ppise ← ISE.Setup(1λ), ppnizk ←
NIZK.Setup(1λ), crs ← NIZK.CRSGen(ppnizk) and
sends pp = (ppise, ppnizk, crs) to A.

2) Pre-challenge queries: Throughout the experiment, A
can query all oracles and CH answers these queries as
described in the security model.



3) Challenge: A chooses a ring of accounts actn and an
uncorrupted account acti∗ , from the ring and generated
by the AccountOracle, to be the spend account. CH runs
DRingCTx ← CreateDRingCTx(actn, acti∗ , at, ltpkt)
and returns DRingCTx to A.

4) Post-challenge queries: The same as the pre-challenge
queries.

5) Forge: A outputs a delegated ring confidential transac-
tion DRingCTx that was not queried by the TransOracle
and wins if the transaction is linked with the previous
valid transaction produced by CH in the challenge stage
with non-negligible probability.

Game 1.4.2. Same as Game 1.4.1, except CH makes a ring
guess of random N indexes out of Q, the maximum number
of queries that A can make to the AccountOracle, and a guess
of the index of the spend account. If A picks different indices,
CH aborts.

Let E be the event that CH does not abort and S0 the event
that A wins in Game 1.4.2. The probability that E occurs is
Pr[E] ≥ N !(Q−N)!

Q · 1
N , where N is the size of the ring of the

DRingCTx. Conditioned on CH does not abort, A’s view in
Game 1.4.1 is identical to that in Game 1.4.2. Therefore, we
have:

Pr[S1] ≥ Pr[S0] ·
N !(Q−N)!

Q!
· 1
N

Game 1.4.3. Same as Game 1.4.2, except that CH generates
the necessary zero-knowledge proofs for the TransOracle
queries without knowing the secret keys via running the sim-
ulator. By a direct reduction to the zero-knowledge property
of the underlying NIZK, we have:

|Pr[S2]− Pr[S1]| ≤ negl(λ)

We now argue that no PPT adversary has non-negligible
advantage in Game 1.4.3.

Claim 1.4.1. Assuming the non-frameability property of the
ISE’s linkable ring signature component, Pr[S2] ≤ negl(λ) for
all PPT adversary A.

Proof. Suppose there exists a PPT adversary A has non-
negligible advantage in Game 1.4.3, we can build an adversary
B that breaks the non-frameability property of the ISE’s
linkable ring signature component with the same advantage.
Given the (ppise, σring) by its challenger, B simulates Game
1.4.3 as follows:

1) Setup: B runs (crs, τ) ← S(ppnizk) and sends
(crs, τ, ppise) to A, where S is a simulator.

2) Pre-challenge queries: Throughout the experiment, A
can query all oracles. B answers them in the following
way:
• ltpki ← KeyOracle(i): B computes the ltpki ac-

cording to the pki given by its challenger.
• acti ← AccountOracle(ltpki, a): B queries the

GenOracle of its own game to get pki, runs C ←

ISE.Encrypt(pki, a; k) and responds with acti =
(pki, C).

• ltski ← CorruptOracle(acti): B queries the Corrup-
tOracle with pki and returns (ski, a, k) to A.

• DRingCTx← TransOracle(actn, actm, at, ltpkt,m):
B queries the SignringOracle of its own game
with (pkm,m, pkn) to get σring and runs the
simulator to get πcorrect. It returns DRingCTx =
(actn, σring, aux, actt, πcorrect) to A.

• CRx← ChangeOracle(acti, ltpki,m): B queries the
SignOracle of its own game with (pki,m) to get σ
and runs the simulator to get πequal. It returns CRx
= (σ, act′, πequal) to A.

3) Challenge: A chooses an uncorrupted account acti∗ that
was generated by a query to the AccountOracle, and a
ring actn such that acti∗ ∈ actn, and sends them to the
challenger. CH responds with a DRingCTx constructed
from the σring of its own challenge and the simulated
zero-knowledge proof πcorrect.

4) Pre-challenge queries: The same as pre-challenge
queries.

5) Forge: A submits a ring confidential transaction
DRingCTx’ that was not produced by the TransOracle.
B forwards the the linkable ring signature of the trans-
action to its own challenger and wins with the same
advantage as A.

B’s simulation of Game 1.4.3 is perfect. The claim imme-
diately follows.

This proves Lemma 1.4.

Lemma 1.1, Lemma 1.2, Lemma 1.3 and Lemma 1.4 prove
Theorem 1.

B. A Concrete Instantiation

We use the following instantiations for ISE and NIZK
components of Delegated RingCT:
• Setup: On input security parameter 1λ, it outputs public

parameters pp. The cyclic group G used is the elliptic
curve Curve25519 [31] and the corresponding scalar field
F is Zp, where p = 2255− 19. The hash function used is
SHA-3 and vmax = 232.

• ISE.Keygen: we use the instantiation of [15].
- LongTermPKGen: The user picks his long term secret
key ltsk = (x1, x2) ∈ Z2

p and computes his long term
public key ltpk = (x1G, x2G).
- OneTimePKGen: On input a long term public key
ltpk = (x1G, x2G), it picks a random r ∈ Zp and
computes a one-time public key pk = x1G · H(x2rG)G.
It outputs pk and the auxiliary information R = rG.
- OneTimeSKGen: On input a one-time public key pk,
an auxiliary information R and a long term secret key
ltsk = (x1, x2), it checks if pk = x1G · H(x2R)G. If it
is correct, then it outputs the one-time secret key sk =
x1 +H(x2R).

• ISE.PKE: Twisted ElGamal [28].



• ISE.DS: Schnorr [32].
• ISE.LRS: Triptych [18].
• NIZK for Lenc: πenc of [28].
• NIZK for Lbal: Balance proof from [15].
• NIZK for Lrange: Bulletproofs [19].
• NIZK for Lequal: πequal of [28].
1) Analysis: Correctness follows from the correctness

of ISE components instantiations and the completeness of
NIZK’s intantiations.

Regarding security, we want to prove that each component
of the ISE instantiation is secure in the presence of one or
two signing oracles (the PKE oracle can be easily simulated
by the adversary in the public setting).

First, we assume the standalone security of that component.
Then, we construct a challenger CH that is able to simulate
the signing oracle(s) without the knowledge of the secret keys
and an adversary A that can query the oracle(s) and tries to
break the security of the ISE.

Then, we construct another adversary B that acts as the
challenger CH in A’s game and wants to break the standalone
security of one of the components of the ISE in his own game.
B can use the attempt of A for his own attempt, and, so, he
will have the same advantage as A. If A has a non-negligible
advantage in winning his game, B will have too.

However, we assume that the component in question is
secure, thus, we prove by contradiction, that the game A is
trying to break is also secure, which is indistinguishable from
the real experiment.

Theorem 2. The obtained ISE scheme is jointly secure if the
twisted ElGamal is IND-CPA secure (1-plaintext/2-recipient),
the Schnorr signature is EUF-CMA secure and the Triptych
LRS is secure.

Proof. We prove this theorem via the following three lemmas.

Lemma 2.1. The PKE component is IND-CPA secure in the
presence of two signing oracles, one for the Schnorr signature
and the other for the Triptych LRS.

Proof. We prove via a sequence of games.

Game 2.1.1. The real security experiment for ISE’s PKE
component. Challenger CH interacts with A as below:

1) Setup: CH runs pp← ISE.Setup and sends pp to A.
2) Queries: the adversary A can make queries to the

following oracles:
• pki ← KeyOracle(i): CH runs (ltpki, ltski) ←

LongTermKeyGen(pp) and (pki, auxi) ←
OneTimePKGen(ltpki; r) and returns pki to
A.

• ξ ← HashOracle(data): CH emulates a random
oracle by using the lazy sampling technique. He
maintains an initially empty list Lhash, an on a given
query with some data, if there is an entry (data, ξ)
in the list, CH returns ξ. Else, CH picks ξ r← Zp
and inserts (data, ξ) in Lhash, then returns ξ.

• σ ← SignOracle(pki,m): on input a public key pki
and a message m, CH runs ISE.Sign(ski, m) → σ
and returns σ to A.

• σring ← SignringOracle(pki,m,R): on input a public
key pki, a message m and a ring R of public
keys, CH runs ISE.Signring(ski, m, R)← σring and
returns σring to A.

3) Challenge: A submits two public keys pk1 and pk2
generated by the KeyOracle and two messages m1 and
m2. CH picks a random bit β and randomness r,
computes X1 = pkr1, X2 = pkr2, Y = grhmβ and sends
C = (X1, X2, Y ) to A.

4) Guess: A outputs its guess β′ for β and wins if β′ = β.
According to the definition of Game 2.1.1, we have:

AdvA(λ) = Pr[S0]− 1/2

Game 2.1.2. Same as Game 2.1.1, but CH picks two indices
from [Q], being Q the maximum queries A can make to the
KeyOracle. If A picks a public key with a different index, CH
aborts.

Let E be the event that CH does not abort and S1 the
event that A wins in Game 2.1.2. Conditioned on CH does
not abort, A’s view in Game 2.1.2 is identical to that in Game
2.1.1. Therefore, we have:

Pr[S1] ≥ Pr[S0] · (
2!(Q− 2)!

Q!
)

Game 2.1.3. The same as Game 2.1.2 except that CH simu-
lates the signing oracles by programming a random oracle H,
rather than using the real secret keys, in the following way.

1) Queries: the adversary A can make queries to the
following oracles:
• pki ← KeyOracle(i): CH picks picks random el-

ements Ji = jiG (such that ji is known), ξi,
{Pj}m−1j=0 and zi. He computes pki = (ziG +∑m−1
j=0 Pjξ

j) · ξ−mi and U = j · pki. Finally, he
sends pki to A.

• ξ ← HashOracle(data): CH emulates a random
oracle by using the lazy sampling technique. He
maintains an initially empty list Lhash, an on a given
query with some data, if there is an entry (data, ξ)
in Lhash, CH returns ξ. Else, CH picks ξ r← Zp and
inserts (data, ξ) in Lhash, then returns ξ.

• σ ← SignOracle(pki,m): on input a public key
pki and a message m, CH picks z, ξ r← Zp , sets
A = zG − ξpki) and returns σ = (A, z) to A.
Else, CH aborts to avoid possible inconsistency in
programming.

• σring ← SignringOracle(pki,m,R): on input a public
key pki, a message m and a ring R of public keys,
CH runs returns σring = (ai, zi, Ji) to A, where ai is
computed from the other elements. Else, CH aborts
to avoid possible inconsistency in programming.

Denote the event that CH aborts in Game 2.1.3 by E. Condi-
tioned on E does not occur, A’s view in Game 2.1.2 and Game



2.1.3 are identical. This follows from the fact that CH perfectly
mimics the hash oracle and signing oracle. Let Qhash, Qsign and
Qsignring be the maximum number of hash queries and signing
queries that A makes during security experiment. By the
union bound, we conclude that Pr[E] ≤ (QhashQsignQsignring)/p,
which is negligible in λ. In summary, we have:

|Pr[S2]− Pr[S1]| ≤ Pr[E] ≤ negl(λ)

We now argue that no PPT adversary has non-negligible
advantage in Game 2.1.3.

Claim 2.1.1. Assuming the IND-CPA security (1-plaintext/2-
recipient) of twisted ElGamal PKE, Pr[S1] is negligible in λ
for any PPT adversary A.

Proof. We prove this claim by showing that if there exists a
PPT adversary A has non-negligible advantage in Game 2.1.3,
we can build a PPT adversary B that breaks the IND-CPA
security (single-message, two-recipient) of twisted ElGamal
PKE with the same advantage, since CH can simulate the
signing oracles without using the secret keys. B forwards the
guess of A to its own challenger and wins with the same
advantage. The claim immediately follows.

This proves Lemma 2.1.

Lemma 2.2. The DS component is EUF-CMA secure in the
presence of a signing oracle for the Triptych LRS.

Proof. We prove via a sequence of games.

Game 2.2.1. The real security experiment for ISE’s DS
component. The challenger CH interacts with A as below:

1) Setup: CH runs ppise ← Setup(1λ) and sends it to A.
2) Queries: the adversary A can make queries to the

following oracles:
• pki ← KeyOracle(i): CH runs (ltpki, ltski) ←

LongTermKeyGen(pp) and (pki, auxi) ←
OneTimePKGen(ltpki; r) and returns pki to
A.

• ξ ← HashOracle(data): CH emulates a random
oracle by using the lazy sampling technique. He
maintains an initially empty list Lhash, and on a
given query with some data, if there is an entry
(data, ξ) in Lhash, CH returns ξ. Else, CH picks
ξ

r← Zp and inserts (data, ξ) in Lhash, then returns
ξ.

• σring ← SignringOracle(pki,m,R): on input a public
key pki, a message m and a ring R of public
keys, CH runs ISE.Signring(ski, m, R)← σring and
returns σring to A.

• Forge: A outputs a signature σ and wins if
Verify(pk,m, σ) = 1.

Game 2.2.2. The same as Game 2.2.1 except that CH simu-
lates signing oracle by programming a random oracleH, rather
than using the real secret keys, in the following way.

1) Setup: CH runs ppise ← Setup(1λ) and sends it to A.

2) Queries: the adversary A can make queries to the
following oracles:
• pki ← KeyOracle(i): CH picks picks random el-

ements Ji = jiG (such that ji is known), ξi,
{Pj}m−1j=0 and zi. He computes pki = (ziG +∑m−1
j=0 Pjξ

j) · ξ−mi and U = j · pki. Finally, he
sends pki to A.

• ξ ← HashOracle(data): CH emulates a random
oracle by using the lazy sampling technique. He
maintains an initially empty list Lhash, an on a given
query with some data, if there is an entry (data, ξ)
in Lhash, CH returns ξ. Else, CH picks ξ r← Zp and
inserts (data, ξ) in Lhash, then returns ξ.

• σring ← SignringOracle(pki,m,R): on input a public
key pki, a message m and a ring R of public keys,
CH runs returns σring = (ai, zi, Ji) to A, where ai is
computed from the other elements. Else, CH aborts
to avoid possible inconsistency in programming.

Denote the event that CH aborts in Game 2.2.2 by E.
Conditioned on E does not occur, A’s view in Game 2.2.1 and
Game 2.2.2 are identical. This follows from the fact that CH
perfectly mimics the hash oracle and signing oracle. Let Qhash
and Qsignring ring be the maximum number of hash queries and
signing queries that A makes during security experiment. By
the union bound, we conclude that Pr[E] ≤ (QhashQsignring)/p,
which is negligible in λ. In summary, we have:

|Pr[S1]− Pr[S0]| ≤ Pr[E] ≤ negl(λ)

We now argue that no PPT adversary has non-negligible
advantage in Game 2.2.2.

Claim 2.2.1. Assuming the EUF-CMA security of Schnorr
digital signature, Pr[S1] is negligible in λ for any PPT adver-
sary A.

Proof. We prove this claim by showing that if there exists
a PPT adversary A has non-negligible advantage in Game
2.2.2, we can build a PPT adversary B that breaks the the
EUF-CMA security of Schnorr digital signature with the same
advantage, since CH can simulate the signing oracle for the
LRS component without using the secret keys. B forwards the
digital signature σ forged by A to its challenger and wins with
the same advantage. The claim immediately follows.

This proves Lemma 2.2.

Lemma 2.3. The LRS component is secure in the presence of
a signing oracle for the Schnorr signature.

Proof. We prove via a sequence of games.

Game 2.3.1. The real security experiment for ISE’s LRS
component. Challenger CH interacts with A as below:

1) Setup: CH runs ppise ← Setup(1λ) and sends it to A.
2) Queries: the adversary A can make queries to the

following oracles:



• pki ← KeyOracle(i): CH runs (ltpki, ltski) ←
LongTermKeyGen(pp) and (pki, auxi) ←
OneTimePKGen(ltpki; r) and returns pki to
A.

• ξ ← HashOracle(data): CH emulates a random
oracle by using the lazy sampling technique. He
maintains an initially empty list Lhash, an on a given
query with some data, if there is an entry (data, ξ)
in Lhash, CH returns ξ. Else, CH picks ξ r← Zp and
inserts (data, ξ) in Lhash, then returns ξ.

• σ ← SignOracle(pki,m): on input a public key pki
and a message m, CH runs ISE.Sign(ski, m) → σ
and returns σ to A.

3) Forge: A outputs a signature σring and wins if
Verify(pk,m, σring) = 1.

Game 2.3.2. The same as Game 2.3.1 except that CH simu-
lates signing oracle by programming a random oracleH, rather
than using the real secret keys, in the following way.

1) Setup: CH runs ppise ← Setup(1λ) and sends it to A.
2) Queries: the adversary A can make queries to the

following oracles:
• pki ← KeyOracle(i): CH runs (ltpki, ltski) ←

LongTermKeyGen(pp) and (pki, auxi) ←
OneTimePKGen(ltpki; r) and returns pki to
A.

• ξ ← HashOracle(data): CH emulates a random
oracle by using the lazy sampling technique. He
maintains an initially empty list Lhash, an on a given
query with some data, if there is an entry (data, ξ)
in Lhash, CH returns ξ. Else, CH picks ξ r← Zp and
inserts (data, ξ) in Lhash, then returns ξ.

• σ ← SignOracle(pki,m): on input a public key
pki and a message m, CH picks z, ξ r← Zp , sets
A = zG − ξpki) and returns σ = (A, z) to A.
Else, CH aborts to avoid possible inconsistency in
programming.

Denote the event that CH aborts in Game 2.3.2 by E.
Conditioned on E does not occur, A’s view in Game 2.3.1
and Game 2.3.2 are identical. This follows from the fact that
CH perfectly mimics the hash oracle and signing oracle. Let
Qhash and Qsign be the maximum number of hash queries and
signing queries that A makes during security experiment. By
the union bound, we conclude that Pr[E] ≤ (QhashQsign)/p,
which is negligible in λ. In summary, we have:

|Pr[S1]− Pr[S0]| ≤ Pr[E] ≤ negl(λ)

We now argue that no PPT adversary has non-negligible
advantage in Game 2.3.2.

Claim 2.3.1. Assuming the security of Triptych LRS, Pr[S1]
is negligible in λ for any PPT adversary A.

Proof. We prove this claim by showing that if there exists
a PPT adversary A has non-negligible advantage in Game
2.3.2, we can build a PPT adversary B that breaks the security

of Triptych LRS with the same advantage, since CH can
simulate the signing oracle for the DS component without
using the secret keys. B forwards the LRS forged by A to
its own challenger and wins with same advantage. The claim
immediately follows.

This proves Lemma 2.3.

Lemma 2.1, Lemma 2.2 and Lemma 2.3 prove Theorem
2.

2) Performance: We implemented DelegatedRingCT in
Ubuntu 18.04, Intel Core i7-4790 3.60GHz, 16GB RAM. We
used the dalek cryptography repository1, which has implemen-
tations for Curve 25519, Bulletproofs and ed25519 signatures
in Rust, and where each element in G and Zp are represented
by 32 bytes.

The benchmarking results for the proving time, verification
time and size2 of DRingCTx for a typical transaction of M = 2
spend accounts and T = 2 output accounts are in Figures 1, 2
and 3, respectively. CRx has a size of 352 bytes, a verification
time of 660 us and a proving time of 261.89 us.

Fig. 1. Running time of CreateDRingCTx

V. DISCUSSION AND FUTURE WORK

On one hand, our Delegated RingCT can vastly improve on
the verification times of a transaction and, consequently, on the
scalability of a cryptocurrency that implements this protocol,
as shown in the previous section.

Even though we have not implemented any distributed
consensus mechanism, validation times are not expected to
increase too much and will mostly depend on the type of
ledger used and the blocks time interval (asynchronous vs
synchronous) .

On the other hand, anonymity of Delegated RingCT is not
as strong as in RingCT, since, if you delegate an account to a

1https://github.com/dalek-cryptography
2We used offsets, like Monero, for the input accounts and assumed a size

of 3 bytes each.

https://github.com/dalek-cryptography


Fig. 2. Running time of VerifyDRingCTx

Fig. 3. Size of DRingCTx

representative, a malicious actor can easily know the balance
of that individual account by decrypting the ciphertext, so
some amount of trust in the representative is required.

Besides that, we do not capture in our security model the
possibility of the receiver changing the representative of the
output accounts of a transaction. If the representative is the
same as of the sender account, he would be able to decrypt
both accounts and see that balances match, revealing the real
sender of the transaction.

However, even if the representative knows which account is
the real sender, he will not know what other accounts belong
to the same master address or what the master address is.

Moreover, delegation is optional and you can delegate to
yourself, increasing your anonymity, or even not delegate at all
(even though your stake will not contribute to the consensus).
Nevertheless, further investigation and formal security proofs
are required regarding anonymity against its own representa-
tive.

Another limitation of our scheme is that the balance size
cannot be too large if using a variation of additive ElGamal,
because, after decryption, the discrete logarithm problem must
be solved to reveal the balance.

We used 32 bits in our implementation, which seems
reasonable for the total amount of coins of a cryptocurrency,
but can be insufficient if the market capitalisation becomes too
high. However, if necessary, two concatenated ciphertexts can
be used instead of just one, which come at a cost of greater size
of transaction and higher verification times. Still, this approach
is more efficient than other additive homomorphic public key
encryption schemes.

Future work will focus on choosing a Delegated Proof of
Stake consensus mechanism, as well as the ledger structure,
and investigate how and when the stake weights will be
updated. If it is too frequent it can hinder anonymity. If too
infrequent, it can create new attack vectors.
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