
Binary Tree Based Forward Secure Signature
Scheme in the Random Oracle Model

Mariusz Jurkiewicz

Military University of Technology, 2 Gen. S. Kaliski St., Warsaw, Poland
mariusz.jurkiewicz@wat.edu.pl

Abstract. In this paper we construct and consider a signature scheme
with evolving secret key, where there is used Type 3 pairing. The idea
is based on some properties of binary trees, with a number of leaves
being the same as a number of time periods in the scheme. This lets us
to gain such conditions, that allows to prove the forward-security of the
considered scheme in the random oracle model. The proof is conducted
by reducing the security of the scheme to the difficulty of solving a certain
counterpart of the Weak `-th Bilinear Diffie-Hellman Inversion problem.
In addition to that, we construct an interactive signature scheme with
evolving private key and justify that it is forward-secure blind scheme.

Keywords: forward security · bilinear pairing of Type 3 · random-oracle
model · bilinear DH inversion problem · blindness

1 Introduction

The concept of forward-secure signature schemes refers to the security model
in which leaking the private key related with a certain time frame does not
essentially influence on the unforgeability of the scheme within the time periods
prior to this leakage [1]. More precisely, this model is strictly connected with
so called signature schemes with evolving private key [1, 5]. These schemes are
characterized by the fact that, roughly speaking, the lifetime of a public key is
split into a some number of subperiods with associated different secret keys. It
means that, at the beginning, both a public key and an initial secret key are
generated and assigned to the first period, next the initial key is updated to the
next period and so on until reaching the last period. Note that the updating
mechanism is of crucial importance in the forward-security model, namely next
to obvious explanation of unforgeability within separated time frames, it must be
proven, above all, that disclosure of a certain secret key reveals nothing about the
past periods. In other words, this mechanism has to fulfill a nontrivial property
which can be called a ,,memory loss”, meaning that a secret key associated with
a given time frame must store nothing but data required for both making current
signatures and generating a key for the next period, moreover this data must be
useless with regard to the previous periods.

As for blind signature schemes, they were introduced by David Chaum in
[8, 9] and have been widely studied since then (see [6, 14, 17, 19], for instance).



2 M. Jurkiewicz

Roughly speaking, this primitive was created in order to enable obtaining mes-
sage signature with no leakage any information about this message. Blind signa-
tures play a crucial role in electronic cash systems [19], ensuring that the bank
will not be able to track the usage of signed e-money, and electronic voting, pre-
venting votes against being read by a signing authority [17]. In fact the ground
for the notion of blind signature is blindness, which was formalized in [15]. Ex-
cept for an intuitive requirement that a user obtains signatures without revealing
the message, it provide much stronger property, namely that the signing site is
not able to statistically distinguish signatures.

Taking into account potential applications and importance of forward-security
and blindness property, it seams to be an obvious idea to combine both of these
security models to get forward-secure blind signature schemes. Various aspects
of this topic was examined by different authors, see for example [11, 21].

2 Contribution

In this paper we construct a signature scheme with evolving secret key, which is
based on Type 3 pairing, defined in [12], and prove that it is forward-secure in
the random oracle model. Further, we exploit this scheme to construct a next
forward-secure scheme which additionally satisfies the blindness property.

The security proof is conducted by reducing the entire analysis to consider-
ations regarding difficulty of some kind of computational problem that we call
(`, 1)-wBDHI∗3, and define formally in Section 3.1. This problem constitutes a
natural generalization of Weak `-th Bilinear Diffie-Hellman Inversion one, which
has been defined by Boneh and Boyen in [3]. Although the cited paper is devoted
to a certain HIBE system, it is well known that there is a natural correspondence
between both IBE and HIBE and induced by these systems signature schemes,
see for instance [7, 10, 4]. The reduction itself, which provides justification for
forward-security of the presented scheme is conducted using the random oracle
model.

Due to using a concept and some properties of binary trees, we were able
to create an updating mechanism in such a way that it was possible to gain all
the requirements described above. Namely, having given a positive integer `, it
induces a binary tree of height ` and with 2` leafs. These leaves can be numbered
from 0 to 2`−1, besides, it is well known that for every leaf there is a unique path
joining the root with this leaf. If we adopt a rule, that for a given node, choosing
its left (x)or right child means to assign 0 or 1, respectively, then this path can
be viewed as a binary string of the length `, being a binary representation of the
index assigned to the leaf. Obviously, the same observation is for every node,
where we identify the index of this node with the binary representation of the
unique path between this node and the root. The binary representation itself is
obtained after applying the introduced rule. Such idea allows as to equate the
leafs with successive time periods and use the rule of making paths to generate
a secret key associated with a leaf related to a given time frame. Furthermore,
as we have already stated, secret keys must carry data needed for both making



Title Suppressed Due to Excessive Length 3

current signatures and generating a key for the next period. In our scheme these
tasks are split into two separated components, namely a signing one and a stack,
consisting of at most ` nodes such that they enable generation of keys only for
future periods. It means that none of the elements of this stack may be used to
obtain any of the previous keys. It is because each node from the stack lies on the
right-hand side of the path joining the root with the leaf referring to the current
time period. Moreover, it must be stress that the algorithm which is intended
to fill in the stack has been design in such a way so as to guarantee its minimal
content. Minimality here means that if even one element of the stack has been
removed, then it is not possible to generate at least one future key. Although
the concept of using binary-trees is not new, the presented approach seams to
be new, according to the best knowledge of the author.

3 Preliminaries

3.1 Weak Bilinear Diffie-Hellman Inversion Type Assumption

Assume that G1,G2 and GT are three multiplicative cyclic groups of prime order
p. Let us remind that if G1 6= G2 and no efficiently computable isomorphism is
known between G1 and G2, in either direction, then a map ê : G1×G2 → GT is
called a pairing of Type 3 if it satisfies the following properties:

bilinearity, i.e., for all u ∈ G1, v ∈ G2 and a, b ∈ Fp we have

ê
(
ua, vb

)
= ê (u, v)

ab
;

non-degeneracy, i.e.,

(i) if for all u ∈ G1 we have ê(u, v) = 1GT then it is equivalent to v = 1G2
;

(ii) if for all v ∈ G2 we have ê(u, v) = 1GT then it is equivalent to u = 1G1 .

Let g1, g2 be generators of G1 and G2, respectively, and let α, β
$← F∗p. We

introduce the following problem, called (`, 1)-wBDHI∗3:

(`, 1)-wBDHI∗3 : given Gi(α, β) := {gi, gαi , . . . , g
(α`)
i , gβi }, i = 1, 2,

compute ê(g1, g2)β(α`+1).

Definition 1. Suppose that params := (G1,G2,GT , p, g1, g2, ê) ← G (1n). The
(`, 1)-wBDHI∗3 problem is hard relative to G if for all PPT adversaries A, the
following probability is negligible

Pr

[
params← G (1n);

α, β
$← F∗p

: ê(g1, g2)β(α`+1) ← A (1n, params, Gi(α, β))

]
.

This probability is called the advantage of the adversaryA in solving (`, 1)-wBDHI∗3
problem, and is denoted by Adv(`,1)-wBDHI∗3

params,n (A).



4 M. Jurkiewicz

Note that (`, 1)-wBDHI∗3 is a natural generalization of so-called the Weak `-
th Bilinear Diffie-Hellman Inversion problem, denoted by `-wBDHI∗ and defined
in [3] for pairings of Type 1. Indeed, remind that if e : G × G → GT is Type 1
pairing, G,GT are cyclic groups of prime order p and g is a random generator

of G and α, β
$← F∗p, then `-wBDHI∗ is as follows (obviously, since p is a prime

then h = gβ is a generator too):

`-wBDHI∗ : given g, h := gβ , gα, g(α2), . . . , g(α`) compute e(g, g)β(α`+1).

Substituting a := g(α`) and γ := α−1, δ := β(α`)−1, we see that a(γi) =

g(α`−i), i ∈ [`] and aδ = gβ . Thus, taking (a, b := aδ, aγ , a(γ2), . . . , a(γ`)) as an
input to `-wBDHI∗, we immediately conclude that `-wBDHI∗ is polynomially
reducible to to the following problem known as `-wBDHI and introduced in [3]:

`-wBDHI : given g, h := gβ , gα, g(α2), . . . , g(α`) compute e(g, h)
1
α .

In the same manner as above, we show the existence of a polynomial transfor-
mation, acting in the other direction. In consequence, both problems `-wBDHI∗

and `-wBDHI are equivalent under polynomial time reductions. Furthermore, it
turns out that there is a strict connection between these problems and the com-
monly known `-BDHI (see [2, 18], for instance). Namely, D. Boneh, X. Boyen
and E.-J. Goh proved in [3] that an algorithm for `-wBDHI or `-wBDHI∗ in G
gives an algorithm for `-BDHI with a tight reduction.

To sum up, all this information provided above lead us to the conclusion it
is highly likely that (`, 1)-wBDHI∗3 is at least as hard as `-BDHI. In fact, if there
was a method making possible to break (`, 1)-wBDHI∗3 then this one should be
able to be applied to break easier case with Type 1 pairing. This means that
`-wBDHI∗ would be broken as well, what eventually would imply weakness of
`-BDHI.

3.2 Forward-Secure Signature Schemes

Signature schemes are among the most important cryptographic primitives, so
it is not surprising that its general definition as a quadruple (G ,Gen,Sign,Vrfy)
of PPT algorithms is not enough to cover all specific cases. Most of this cases
occurs in a natural way as a consequence of more general considerations. In
this section we are going to focus on one of them, namely signature scheme
with evolving private key. These schemes are connected with the security model,
which is called the forward-security. Private key evolving signature schemes in
this model are called forward-secure schemes.

A signature scheme with evolving private key is composed of five algorithms
Πfu = (G ,KGen,KUpd,Sign,Vrfy) along with an associated message space M,
such that:

System parameters generation G is a PT algorithm, which takes as an input
the value 1n of a security parameter and maximum number of time periods
T . It outputs the system parameters params.



Title Suppressed Due to Excessive Length 5

Key generation KGen is a PPT algorithm. It takes as input the system pa-
rameters params and maximum number of time periods T and outputs a
public verification key pk along with an initial secret signing key sk0 for the
time period t = 0.

Key update KUpd is a PPT algorithm. It takes as input the secret key skt for
time period t < T − 1 and outputs the secret key skt+1 for the next time
period t+ 1.

Signing Sign is a is a PPT algorithm. It takes as input the current secret key
skt and a message m ∈M and outputs a signature σ.

Verification algorithm Vrfy is a DPT algorithm. It takes as input a public key
pk, a message m ∈M, the proper time period t and a (purported) signature
σ. It outputs a single bit b, with b = 1 meaning accept and b = 0 meaning
reject.

In addition to that, we assume the correctness, meaning that for all messages
m ∈M and for all time periods t ∈ {0, 1, . . . T − 1} it holds that
Vrfypk(t,m,Signskt(m)) = 1 with probability one if (sk0, pk)← KGen(params, T )
and ski+1 ← KUpd(ski) for i = 0, . . . t− 1.

Below we provide with a generalization of well known euf-cma security, ded-
icated to signature schemes with evolving private key. This model was taken
from Bellare-Miner paper [1]. Let A be an adversary. Consider the following ex-
periment Expfu-cma

A,Πfu
, which depends on the system parameters and a number of

periods. We assume that the system parameters have been generated and they
are known to the adversary.

1. Generate params← G (1n, T ) and (sk0, pk)← KGen(params, T ).

2. The adversary A is given pk and access to three oracles, signing oracle Sign,
key update oracle KUpd and break in oracle Break.

3. t← 0.

4. while t < T

4.1. Sign : For current secret key skt the adversary A requests signatures on
as many messages as it like (analogously to euf-cma it is denoted by

ASignskt (·)(pk)).

4.2. KUpd : If the current time period t < T − 1 then A requests update:
t← t+ 1, skt+1 ← KUpd(skt).

4.3 If Break then break the loop while;

Break : If A is intended to go to the forge phase then it launches Break.
Then the experiment records the break-in time t̄ = t and sends the
current signing key skt̄ to A. This oracle can only be queried once, and
after it has been queried, the adversary can make no further queries to
the key update or signing oracles.

5. Eventually (t?,m?, σ?)← A(1n, state).

6. If t? < t̄ and Vrfypk (t?,m?, σ?) = 1 and the signing oracle Signskt? has been
never queried about m? within the time period t?, then output 1, otherwise
output 0.



6 M. Jurkiewicz

We refer to such an adversary as an fu-cma-adversary. The advantage of the
adversary A in attacking the scheme Πfu is defined as

Advfu-cma
Πfu,n

(A) = Pr[Expfu-cma
A,Πfu

(1n, T ) = 1].

A signature scheme is called to be forward-secure if no efficient adversary can
succeed in the above game with non-negligible probability.

Definition 2. A signature scheme with evolving private key Πfu = (G ,KGen,
KUpd,Sign,Vrfy), is called to be existentially forward unforgeable under a chosen-
message attack or just forward-secure if for all efficient probabilistic, polynomial-
time adversaries A, there is a negligible function negl such that

Advfu-cma
Πfu,n

(A) = negl(n).

In a well known and widely cited paper [13], the authors provide a classifi-
cation of security strength for signature schemes. Except commonly used notion
of existential forgery they also indicate some weaker notions, like the second on
the top list, namely a selective forgery where a signature must be forged for a
particular message chosen a priori by the adversary. This idea was exploited
by Canetti, Halevi, Katz [7] and Boneh, Boyen [2], who define security against
selective forgery for IBE and HIBE. Therefore, it is not surprising that it can
be also adopted for scheme with evolving private key regarding their forward
security. Formally, we start with a description of a proper experiment, which
will be referred to as Expsfu-cma

A,Πfu
. This experiment differs from Expfu-cma

A,Πfu
in such

a way that an adversary A outputs a message together with the associated time
parameters (m∗, t∗, t̄) that are intended to be forged, before receiving the public
key. Next, the experiment is conducted in the same manner as Expfu-cma

A,Πfu
, with

this difference that only if the time period t̄ is reached then the oracle Break is
launched. The adversary wins if it has been able to output a valid signature σ∗

for m∗ in the period t∗. This lead us to the following definition.

Definition 3. A signature scheme with evolving private key Πfu = (G ,KGen,
KUpd,Sign,Vrfy), is called to be selectively forward-secure if for all efficient prob-
abilistic, polynomial-time adversaries A, there is a negligible function negl such
that

Advsfu-cma
Πfu,n

(A) = negl(n).

3.3 Forward-secure Blind Signature Schemes

In this section we introduce the syntax and the security model for forward-secure
blind signatures. The definition related to blindness is adopted from the [11] and
[20].

An interactive signature scheme with evolving private key consists of four
algorithms Πb-fu = (G ,KGen,KUpd,Sign,Vrfy) along with an associated message
space M, such that:



Title Suppressed Due to Excessive Length 7

System parameters generation , Key generation and Key update are
the same as defined in Section 3.2

Signing Sign is a PPT algorithm that is defined over two PPT algorithms U and
S, which interact with each other. It has the form Sign(params, pk, skt, t,m) =
〈U(params, pk, t,m, ),S(params, skt1 , pk, t)〉, U and S are called a user and a
signer, respectively. At a time t, the user blinds the message m and sends it
to the signer. The signer sends back a signature of the blinded message to
the user. If the interactions are successful, the user gets a signature Σ of the
message m at the time t and S outputs S = complete. Otherwise, the user
and signer output Σ =⊥ and S =⊥.

Verification algorithm Vrfy is a DPT algorithm. It takes as input a public key
pk, a message m ∈M, the proper time period t and a (purported) signature
Σ. It outputs a single bit b, with b = 1 if Σ is a valid signature and Σ 6=⊥
and b = 0 otherwise.

A natural security model connected with interactive signature schemes is
blindness. This condition says that it should be infeasible for a (malicious) signer
S∗ to decide which of two messages m0 and m1 has been signed first in two
executions with a (honest) user U . If one of these executions has returned ⊥,
then the signer is not informed about the other signature. Therefore, blindness
ensures that it is negligibly likely for the signer to learn anything about messages
which are signed. Below we give a generalization of this notion to the case of
interactive forward-secure signature schemes. We must stress the assumption of
forward security here follows from the goals to gain in this paper in the sense
that this definition can be formulated with no changes for interactive signature
schemes with evolving private key.

Let us consider the experiment Expb-fu-cma
A,Πb-fu

, where the adversary takes on a
role of a signer and the challenger on a role of a user

1. Generate params← G (1n, T ) and (sk0, pk)← KGen(params, T ).

2. The adversary S∗ is given params, pk and initial secret key sk0.

3. (m0,m1)← S∗(params, pk, sk0) and hands m0,m1 to the challenger C.
4. The challenger C chooses a bit b uniformly at random and initiates two

signing interactions with S∗ on two inputs mb and m1−b (The interactions
may or not be conducted with different time periods, i.e. t1 = t2 or t1 6= t2).

5. Finally, (Cb, σb)← 〈C(params, pk, t1,mb, ),S∗(params, skt1 , pk, t1〉 and
(C1−b, σ1−b)← 〈C(params, pk, t2,m1−b, ),S∗(params, skt2 , pk, t2〉.

6. The adversary S∗ outputs a bit b′ ∈ {0, 1}.
7. If b′ = b then experiment returns 1. Otherwise it outputs 0.

We call such an adversary an b-fu-cma-adversary. The advantage of the ad-
versary S∗ in attacking the scheme Πb-fu is defined in the following way

Advb-fu-cma
Πb-fu,n

(S∗) = Pr[Expb-fu-cma
A,Πb-fu

(1n) = 1].



8 M. Jurkiewicz

Definition 4. An interactive forward-secure signature schemeΠb-fu = (G ,KGen,
KUpd,Sign,Vrfy) is called to be blind, if for all efficient probabilistic, polynomial-
time adversaries S∗, there is a negligible function negl such that

Advb-fu-cma
Πb-fu,n

(S∗) ≤ 1

2
+ negl(n).

Definition 5. If an interactive signature scheme with evolving private key is
both blind and forward-secure then it is called a forward-secure blind signature
scheme.

4 Construction of Forward-Secure Scheme

In this section we construct a signature scheme with evolving private key Πfu =
(G ,KGen,KUpd,Sign,Vrfy), which is in the spotlight of considerations conducted
herein. We will show that the scheme is forward secure in the random oracle
model with only assumed hardness of (`, 1)-wBDHI∗3 problem for pairings of
Type 3. To this end, let M = {0, 1}∗ be the message space associated with the
scheme and H :M→ {0, 1}l·` be a collision resistant hash function. Obviously,
the length of the hash values is not accidental, because the point here is that
output hashes are split into l blocks, where a single block is a `-bit string.

Before going to the formal description, we briefly explain the idea of the
scheme, which is based on the geometry and some properties of binary-trees.
Let us adopt a rule, that for a given node, if we choose its left or right child
then it means to assign 0 or 1, respectively (see Fig. 1). On the other hand, it
is commonly known that for every node there is a unique path joining the root
with this node (in particular including leaves). Therefore, applying described
rule, we see that this path is represented by the following bit-string t`t`−1 · · · th,
h ∈ [`], with h being the height of a node. Moreover, this bit-string provide the
node with the unique identification, thus may be viewed as an identifier of this
node. As we mentioned in the introduction, the goal is to make a binary tree
with a number of leaves being the same as the number of time periods i.e. 2`,
therefore a high of this tree must be `. Let us choose u0,0, u1, . . . , u` from G and

define Ht(h) := u0,0

∏`
i=h ui, for h ∈ [`]. Then, it is obvious that every node

indexed by id = t` · · · th can be uniquely connected with Ht(h)id = u0,0

∏`
i=h u

ti
i

(see Fig. 1). Furthermore, note that if P is the path linking the root with a leaf
t` · · · t1 and id1 = t` · · · th, id2 = t` · · · th−1 ∈ P are indexes of two successive
nodes, then there is the following relation between Ht(h)id1 and Ht(h)id2 , namely

Ht(h− 1)id2 = Ht(h)id1 · uth−1

h−1 .
Next, suppose that the root is related to mk, which should be viewed as

a master-key. This key controls the entire scheme, meaning that knowing mk
we are able to generate a valid secret key for each period. Let us remind that



Title Suppressed Due to Excessive Length 9

mk

0 10 1

0 1

0 10 1

0 1

0 1

Ht(`)

Ht(`-1)

Ht(1)

id = 0

id = 01

id = 010

Fig. 1. Visualization of some basic ideas standing behind the scheme.

what we are trying to gain is forward-security, thus revealing a secret key as-
signed to a period t must not leak nothing about secret keys of prior periods.
This implies, in particular, that master-key ought not to be recovered from
any period’s secret key or what is worse not be a plain part of these keys,
keeping simultaneously in minds that all these keys must strictly depend on
the master key. In addition to that, all the knowledge regarding prior secret
keys has to be lost. These are reasons why we say about ,,memory loss” by
the key updater. To obtain these requirements, we encapsulate mk by random-
ization Hts, according to the following iterative method. At first, we pick r`
uniformly at random from Fp, and compute mk · (Ht(`)t`)r` ; note that to
keep the randomness under control we must save ur`−1, . . . , u

r
1. We also have

to keep an additional element gr2, which is required for verification. Taking all
of these into account we obtain nodet` =

(
mk · (Ht(`)t`)r` ;ur``−1, . . . , u

r`
1 ; gr`2

)
.

Next, if nodet`···th =
(
mk · (Ht(h)t`···th)rh ;urhh−1, . . . , u

rh
1 ; grh2

)
is a node at height

h and t` · · · th−1 is the index of a successive node of height h − 1, lying on
a same path which links the root with a leaf, then to get nodet`···th−1

, we
compute mk · (Ht(h)t`···th)rh · (urhh−1)th−1 = mk · (Ht(h − 1)t`···th−1)rh , next we

choose r′h−1 uniformly at random from Fp and calculate (Ht(h− 1)t`···th−1)r
′
h−1 ;

having this, we do mk · (Ht(h − 1)t`···th−1)rh · (Ht(h − 1)t`···th−1)r
′
h−1 = mk ·

(Ht(h − 1)t`···th−1)rh−1 , with rh−1 = rh + r′h−1; in the same way we obtain

u
rh−1

i = urhi · u
r′h−1

i , i ∈ [h-2], and g
rh−1

2 = grh2 · g
r′h−1

2 ; eventually nodet`···th−1
=(

mk · (Ht(h− 1)t`···th−1)rh−1 ;u
rh−1

h−2 , . . . , u
rh−1

1 ; g
rh−1

2

)
. Following this method, we

get in the end to the last node on the path, namely leaft`···t1 = (mk · (Ht(1)t`···t1)r1 ;
gr12 ). It must be emphasized that even though rh = rh(rh+1, . . . , r`), all of
rh, rh−1, . . . , r` are equally likely. It is a consequence of an easy and well-known
fact, namely if we take a probability measure µ(A) := #A/p defined on the
σ-field 2Fp , then for every A ∈ 2Fp and fixed γ ∈ Fp we have µ(A) = µ(γ + A)
(see [16], for instance).



10 M. Jurkiewicz

mk

0 10 1

0 1

0 10 1

0 1

0 1

sign. comp.
for period t = 2

on stack

on stack

Stack
node011

node1

Fig. 2. Content of a secure key associated with a period t.

These considerations lead us to the conclusion that having a node nodeid at
height h it is easy to determine nodes at lower heights, that lie on root-to-leaves
paths and pass through nodeid. On the other hand, if DLP is hard in G, then it
is hard to figure out a form of nodes at higher heights. Furthermore, all these
nodes encapsulate ,,master-key” mk. Finally, it is seen that to guarantee the
,,memory loss” property, secret keys associated with periods must consists both
components needed for making signatures and nodes being roots of maximal
sub-trees that let to compute leaves associated with future periods. The latter
is made by the function StackFilling, defined through Algorithm 1 (see Section
4.2). More precisely, nodes required for generating secret keys for future periods
are gathered on a stack, which any time consists of at most ` elements. As we
indicated above, the content of the stack is optimal, meaning that if at least one
element of the stack has been removed, then it would not be possible to generate
at least one future key. Algorithm 1 is depicted in Fig. 2.

4.1 System parameters generation

Let n be a security parameter. An efficient and polynomial time system param-
eters generator G takes on input both a value of the security parameter 1n and
a maximum number of time periods T , to then output (G1,G2,GT , p, g1, g2, ê),
where:

– G1,G2,GT are three cyclic groups of prime order p, where group operations
can be performed efficiently and no efficiently computable isomorphism is
known between G1 and G2, in either direction .

– g1 ∈ G1, g2 ∈ G2 are chosen uniformly at random from the set of all gener-
ators of G1 and G2 respectively.

– ê : G1 ×G2 → GT is an efficiently computable Type 3 pairing.

4.2 Key generation

Before we go to the description of the initial keys generation process, we will
present the other algorithm, namely StackFilling. This algorithm plays the crucial



Title Suppressed Due to Excessive Length 11

role in our construction, because it is directly responsible for ,,memory loss” of
our keys updater, meaning in particular that it allows us to gain the desired
security requirements.

For the formal reasons, let us define

i2∏
i=i1

uαii =

{
u
αi1
i1
· · ·uαi2i2

for i1 ≤ i2
1G1 for i1 > i2

.

Assume there is a stack Stack, that will be filled with pairs (node, h), where
node and h are a node and its height on the binary tree, respectively. We stress
that height h varies from 1 to `+ 1, where `+ 1 is assigned to the root. Besides,
it must be kept in mind that a node, being on a height of h have the specific
form, namely

node :=

(
τx1 ·

(
u0,0

∏̀
i=h

utii

)r
;urh−1, . . . , u

r
1; gr2

)
=
(
A; (bi)i∈[h−1];C

)
, (1)

where r is an element of Fp, meaning that each element of Fp is equally likely.

Algorithm 1 Function StackFilling
Input: params, Stack, t = t` · · · t1
Output: Stack, scp
1: (node, h)← Stack.pop() . node =

(
A; (bi)i∈[h−1];C

)
2: h← h− 1
3: . After reindexing, node =

(
A; (bi)i∈[h];C

)
4: while h > 0 do

5: r
$← Fp

6: tmp←
(
A · b1h ·

((
u0,0

∏`
i=h+1 u

ti
i

)
· u1

h

)r
; bh−1 · ur

h−1, . . . , b1 · ur
1;C · gr2

)
7: . A := node.A, bi := node.bi, C := node.C, i.e. tmp = tmp(node).
8: Stack.push ((tmp, h))

9: r
$← Fp . A new randomness, i.e. independent of r picked in 5

10: node←
(
A ·
(
u0,0

∏`
i=h+1 u

ti
i

)r
; bh−1 · ur

h−1, . . . , b1 · ur
1;C · gr2

)
11: h← h− 1
12: end while
13: scp← node

Now we are ready to provide with the description of the algorithm KGen,
generating both an initial private key sk0 and a long term public key pk. It
depends on two variables, namely system parameters, which has been generated
by G , and a maximal number of time periods T . Let us suppose that, we have
been taken params := (G1,G2,GT , p, g1, g2, ê) ← G (1n). The formal definition
of the algorithm is as follow:

1. Choose τ1
$← {g ∈ G1 | 〈g〉 = G1}/{g1}.



12 M. Jurkiewicz

2. Pick x
$← F∗p and set τ2 := gx2 ∈ G2, which is the crucial component of pk.

3. Choose (u0,i)
l
i=0, u1, . . . , u`

$← G1.

4. Pick r
$← Fp and compute node←

(
τx1 u

r
0,0; ur` , u

r
`−1, . . . , u

r
1; gr2

)
=:
(
A; (bi)i∈[`];C

)
.

5. Initialize an empty stack Stack, next do Stack.push ((node, `+ 1)).
6. Run (scp,Stack) ← StackFilling (params,Stack, t = 0). After the function

StackFilling has output the value, Stack consists of ` elements.
7. The initial secret key is sk0 = (scp,Stack, t = 0) and the public key is

pk = (τ1, τ2, (u0,i)
l
i=0, u1, . . . , u`).

mk

0 10 1

0 1

0 10 1

0 1

0 1

scp on Stack

on Stack

on Stack

Stack
node001

node01

node1

Fig. 3. The initial secret key sk0 = (scp,Stack, t = 0) and output from StackFilling.

Note that the signing component scp of sk0 has the following form

scp =
(
τx1 u

r
0,0; gr2

)
= (A;C). (2)

We stress that r in the above formula only express randomness and it is highly
probable to be different from the other randomness r, appearing in 4. It can
be confusing at the first glimpse, so we focus on this for a while. Taking into
account the method of generating scp, we see from 4. and Algorithm 1 that there
are (` + 1) random elements of Fp, required to generate r appearing in (2). To
be more accurate r = r(r0, r1, . . . , r`), where for instance r0 describe r from 4..
In fact, the relation between these r’s is linear and r = r0 + . . .+ r`.

4.3 Key update

KUpd takes as an input the secret key, assigned to the period t < T − 1 and
updates this key for the next period t+1. Below we describe the successive steps
of the algorithm.

1. Parse skt = (scp,Stack, t). Obviously it is the current secret key, which is
dedicated to the period t, and is going to be updated.



Title Suppressed Due to Excessive Length 13

2. Update a variable carrying a time period, namely conduct t ← t + 1. After
this step the variable t stores a value of the new time period.

3. If t ≡ 1 (mod 2), then the following steps are carried out.

3.1 (node, h) ← Stack.pop() and scp ← node. It is easily seen, that here
the highest element is popped from the stack and passed to the signing
component scp.

3.2 The secret key for the new period has the form skt = (scp,Stack, t).

4. If t ≡ 0 (mod 2), then the following steps are conducted.

4.1 Run (scp,Stack)← StackFilling (params,Stack, t).
4.2 The secret key for the new period has the form skt = (scp,Stack, t).

This time the signing component scp of skt has the form

scp =

(
τx1 ·

(
u0,0

∏̀
i=1

utii

)r
; gr2

)
= (A;C). (3)

We strongly recommend keeping in mind the remarks regarding randomness,
that are pointed out after (2).

4.4 Signing

Here we explain how the procedure of making signature looks like. It is obvious
that Sign depends on the secret key skt associated with a period t < T , meaning
that for a fixed t, the signatures are made by Signskt , taking as an argument a
message that is going to be signed, and outputting a value of the signature. As
we have seen above each secret key skt consists of two components, namely a
signing component scp and a stack Stack. Both play an important role in the
scheme simultaneously, having completely different tasks. The latter is of crucial
importance with regard to updating a key to the next period and is not used
in the signing process, while the signing component is not needed in updating a
key but it is essential in making a desired signature.

Below we describe the consecutive steps of computing a signature on a given
message m, belonging to the message space M.

1. Compute the hash value m = H(m).
2. Parse skt = (scp,Stack) and next parse scp = (A;C).
3. Write t in the binary form t = (t` · · · t1)2. Split m into concatenation of l

blocksm1‖ · · · ‖ml and write each blockmi in the binary form (mi,` · · ·mi,1)2.

4. Pick r
$← Fp and si

$← Fp, i ∈ [l], independently and uniformly at random.
5. Let us compute

σ1 ← A ·

(
u0,0 ·

∏̀
i=1

utii

)r
·

l∏
j=1

(
u0,j ·

∏̀
i=1

u
mj,i
i

)sj
. (4)



14 M. Jurkiewicz

σ2 ← C · gr2 (5)

σ3,j ← g
sj
2 , j = 1, . . . , l.

Output a signature σ =
(
σ1, σ2, (σ3,j)j∈[l]

)
.

Remark 1. Let the hash m be presented as the following binary matrix

M :=


m1,` m1,`−1 · · · m1,1

m2,` m2,`−1 · · · m2,1

...
...

. . .
...

ml,` ml,`−1 · · · ml,1


The i-th row and the i-th column of M are denoted by M(i, ·) = mi and M(·, j),
respectively. Furthermore, the former can be treated as a vector in F`p, whilst

the latter as a vector in Flp. Let us put s = [s1, . . . , sl] ∈ Flp and compute the

following inner products in Flp

s̄i := 〈s,M(·, i)〉 =

l∑
j=1

mj,isj , for i = 1, . . . , `. (6)

Then σ1 can be written in the form

σ1 ← A ·

(
u0,0 ·

∏̀
i=1

utii

)r
·

l∏
j=1

u
sj
0,j ·

∏̀
i=1

us̄
i

i

4.5 Verification

1. Compute m = H(m) and parse pk as (τ1, τ2, (u0,j)
l
j=0, u1, . . . , u`).

2. Write t in the binary form t = (t` · · · t1)2 and split m into l blocks of
`-bits each, as described above, i.e. m = m1‖m2‖ · · · ‖ml, where mi =
(mi,` · · ·mi,1)2.

3. Output 1 if and only if the following condition holds

ê(σ1, g2)
?
= ê(τ1, τ2) · ê

(
u0,0 ·

∏̀
i=1

utii , σ2

)
·
l∏

j=1

ê

(
u0,j ·

∏̀
i=1

u
mj,i
i , σ3,j

)
. (7)

Otherwise, output 0.

To justify the correctness of the verification algorithm, we use (4). Due to the
fact that both the time part and mj-parts of σ1 keep the same randomness as
σ2 and σs,j , respectively, we have that



Title Suppressed Due to Excessive Length 15

ê(τ1, τ2) · ê

(
u0,0 ·

∏̀
i=1

utii , σ2

)
·

l∏
j=1

ê

(
u0,j ·

∏̀
i=1

u
mj,i
i , σ3,j

)

= ê(τx1 , g2) · ê

((
u0,0 ·

∏̀
i=1

utii

)r
, g2

)
· ê

 l∏
j=1

(
u0,j ·

∏̀
i=1

u
mj,i
i

)sj
, g2


= ê

τx1 ·
(
u0,0 ·

∏̀
i=1

utii

)r
·

l∏
j=1

(
u0,j ·

∏̀
i=1

u
mj,i
i

)sj
, g2

 = ê(σ1, g2).

This yields (7).

5 Security proof

The goal of this section is to show that the presented scheme is forward-secure.
The proof itself is conducted in the random oracle model, and is split into two
parts. Namely, we firstly deal with the special case, when the hash function is the
identity on {0, 1}l`, and we prove that the scheme is selectively forward-secure
then. Having done this, we are able to consider the general case, guessing both
the proper time period and the query to the random oracle, what finally provides
us with the desired full fu-cma security of the scheme.

Theorem 1. Let Πsfu = (G ,KGen,KUpd,Sign,Vrfy) be the scheme defined above
with the associated message space M = {0, 1}l` and H = idM. If (`, 1)-wBDHI∗3
is hard relative to G , then Πsfu is selectively forward-secure.

Proof. At the beginning we provide an algorithm, which is connected with Al-
gorithm 1 and computes indexes of nodes stored in Stack within a time frame
t < T .

Algorithm 2 Function StackFillingID

Input: stackID, t = (t` · · · t1)2
Output: stackID,
1: (nodeID, h)← stackID.pop() . nodeID = t` · · · th
2: h← h− 1 . After reindexing, nodeID = t` · · · th+1

3: while h > 0 do
4: tmp← t` · · · th+11 . i.e. th = 1
5: stackID.push ((tmp, h))
6: end while

Suppose that A is an adversary which attacks the scheme. Without loss of
generality, we can assume that for every time period the adversary A makes q



16 M. Jurkiewicz

queries to the signing oracle. Having this, we construct an algorithm B which
solves the (`, 1)-wBDHI∗3 problem.

Algorithm B

The algorithm is given params = (G1,G2,GT , p, g1, g2, ê) and

Gi(α, β) = {gi, gαi , . . . , g
(α`)
i , gβi }, i = 1, 2.

1. The parameters params are sent toA, which chooses and outputs (m∗, t∗, t̄) ∈
{0, 1}(l`,`,`) with t∗ < t̄; i.e (m∗, t∗, t̄)← A(params).

2. Uniformly at random select y, y0,j , yi
$← Fp, j = 0, . . . , l, i = 1, . . . ` and put

x := α, τ2 ← gα2 ,

τ1 ← gy1 · g
(α`)
1 , (8)

u0,0 ← g
y0,0

1 ·
∏̀
i=1

(
g

(αi)
1

)−t∗i
, (9)

u0,j ← g
y0,j

1 ·
∏̀
i=1

(
g

(αi)
1

)−m∗j,i
, for j = 1, . . . l, (10)

ui ← gyi1 · g
(αi)
1 , for i = 1, . . . `. (11)

For t < T and m = m1‖m2‖ · · · ‖ml, define the functions

Y0(t) = y0,0 +
∑̀
i=1

yiti,

Yj(mj) = y0,j +
∑̀
i=1

yimj,i.

3. If Y0(t∗) = 0 in Fp then abort.

4. Otherwise, set t ← 0 and send pk = (τ1, τ2, (u0,j)
l
j=0, u1, . . . u`) to A. As-

sign nodeID ← null, initialize stackID.push ((nodeID, `+ 1)) and launch
stackID← StackFillingID (stackID, t) (see Algorithm 2).

5. If A requests to update the current key and t < T − 1, then do t ← t + 1
and next if t ≡ 1 (mod 2) then do stackID.pop(), else do stackID ←
StackFillingID (stackID, t). Otherwise output ⊥.

6. When A requests a signature on a message m 6= m∗, then do:



Title Suppressed Due to Excessive Length 17

6.1. If t 6= t∗ then pick ξ, η1, . . . , ηl
$← Fp, compute i0 ← max{i ∈ [`] | ti 6= t∗i }

and provide A with a desired signature σ = (σ1, σ2, (σ3,j)j∈[l]), where

σ1 =
(
g

(α)
1

)y
· gξY0(t)

1 ·

(
i0∏
i=1

(
g

(αi)
1

)(ti−t∗i )
)ξ
·
(
g

(α`+1−i0 )
1

)− Y0(t)

ti0
−t∗
i0

·
i0−1∏
i=1

(
g

(α`+1+i−i0 )
1

)− ti−t
∗
i

ti0
−t∗
i0 ·

l∏
j=1

(
g
Yj(mj)
1 ·

∏̀
i=1

(
g

(αi)
1

)(mj,i−m∗j,i)
)ηj

,

σ2 = g
ξ−(ti0−t

∗
i0

)−1·(α`+1−i0 )

2 ,

σ3,j = g
ηj
2 .

6.2. If t = t∗, then choose ξ, η1, . . . , ηl
$← Fp and return a required signature

σ = (σ1, σ2, (σ3,j)j∈[l]) to A, where

σ1 = (gα1 )y · gξY0(t∗)
1 ·

l∏
j=1

(
g
Yj(mj)
1 ·

∏̀
i=1

(
g

(αi)
1

)(mj,i−m∗j,i)
)ηj

,

σ2 = g
ξ−Y0(t∗)−1·(α`+1)
2 ,

σ3,j = g
ηj
2 .

7. When the break-in time t̄ is reached then the following steps are carried out.

7.1 Set i0 = max{i ∈ [`]} | t̄i 6= t∗i } and choose ξ
$← Fp uniformly at random.

Compute scp = (A;C), where

A = (gα1 )
y · gξY0(t̄)

1 ·

(
i0∏
i=1

(
g

(αi)
1

)(t̄i−t∗i )
)ξ (

g
(α`+1−i0 )
1

)−(t̄i0−t
∗
i0

)−1Y0(t̄)

·
i0−1∏
i=1

(
g

(α`+1+i−i0 )
1

)−(t̄i0−t
∗
i0

)−1·(t̄i−t∗i )

;

C = gξ2 ·
(
g

(α`+1−i0 )
2

)−(t̄i0−t
∗
i0

)−1

.

7.3 Let L← stackID.len() and initialize two empty stacks Stack, Stack.

7.4 while L > 0 do

7.5 ((t`, . . . , th), h)← stackID.pop() .

7.6 Set i0 = max{i ∈ {h, . . . , `} | ti 6= t∗i } and pick ξ
$← Fp. Compute



18 M. Jurkiewicz

node = (A′; b′h−1, . . . , b
′
1;C ′), where

A′ = (gα1 )
y · gξ(y0,0+

∑`
i=h yiti)

1 ·
h−1∏
i=1

(
g

(αi)
1

)−ξt∗i
·
i0−1∏
i=h

(
g

(αi)
1

)ξ(ti−t∗i )

· g
−(y0,0+

∑`
i=h yiti)·α

(`+1−i0)

ti0
−t∗
i0

1 ·
i0−1∏
i=h

(
g

(α`+1+i−i0 )
1

)− ti−t
∗
i

ti0
−t∗
i0 ;

b′i = gξyi1 ·
(
g

(αi)
1

)ξ
·
(
g

(α`+1−i0 )
1

)− yi
ti0
−t∗
i0 ·

(
g

(α`+1−i0+i)
1

)− 1
ti0
−t∗
i0 ;

C ′ = g
ξ−(ti0−t

∗
i0

)−1·(α`+1−i0 )

2 .

7.7 Push node onto the top of the stack Stack, i.e. Stack.pop(node, h).
7.8 Decrement L← L− 1.
7.9 end while

7.10 Put L← Stack.len()
7.11 while L > 0 do
7.12 tmp← Stack.pop() and next Stack.push (tmp).
7.13 Decrement L← L− 1
7.14 end while

8. Sent skt̄ = (scp,Stack) to A.
9. Eventually, A outputs a signature σ∗ = (σ∗1 , σ

∗
2 , (σ3,j)

∗
j∈[l]). If it is a valid

forgery of m∗ in the time period t∗, output

ê
(
σ∗1 , g

β
2

)
·

ê((gα1 )y, gβ2

)
· ê
(
gβ1 , σ

∗
2

)Y0(t∗)

·
l∏

j=1

ê
(
gβ1 , σ

∗
3,j

)Yj(m∗j,i)−1

.

At first, note that the signatures given to A are correctly distributed. Indeed,
according to (5) and (4) it is seen that the real signature of m ∈ {0, 1}l` for a
given time period t = (t` · · · t1)2 has the following form

σ1 = τx1 ·

(
u0,0 ·

∏̀
i=1

utii

)r
·

l∏
j=1

(
u0,j ·

∏̀
i=1

u
mj,i
i

)sj
,

σ2 = gr2, σ3,j = g
sj
2 , j = 1, . . . , l,

where r and sj are selected uniformly at random from Fp. Therefore, choosing ξ
and ηj uniformly at random from Fp, next setting r = ξ − λ and sj = ηj , where
λ is an element of Fp, we see that ξ, ηj and r, sj are equally likely, respectively.

Assume that t 6= t∗. Obviously in this case there exists at least one i ∈ [`]
such that ti 6= t∗i . Let i0 := max{i ∈ [`] | ti 6= t∗i }, then ti = t∗i for i > i0 if

such exist, meaning that if i0 6= `. Choosing ξ
$← Fp uniformly at random and



Title Suppressed Due to Excessive Length 19

putting r = ξ − (ti0 − ti∗0 )−1 · α`+1−i0 , we obtain after taking (8), (9) and (11)
into account, that

τx1 ·

(
u0,0 ·

∏̀
i=1

utii

)r
x=α
= (gα1 )

y · g(α`+1)
1 ·

(
g
Y0(t)
1 ·

i0∏
i=1

(
gα

i

1

)(ti−t∗i )
)r

= (gα1 )
y · g(α`+1)

1 · gξY0(t)
1 ·

(
i0∏
i=1

(
gα

i

1

)(ti−t∗i )
)ξ

·
(
g

(α`+1−i0 )
1

)− Y0(t)
ti0
−ti∗0 ·

i0−1∏
i=1

(
g

(α`+1+i−i0 )
1

)− ti−t
∗
i

ti0
−t∗
i0 · g(α`+1)

1 (12)

= (gα1 )
y · gξY0(t)

1 ·

(
i0∏
i=1

(
gα

i

1

)(ti−t∗i )
)ξ

·
(
g

(α`+1−i0 )
1

)− Y0(t)
ti0
−ti∗0 ·

i0−1∏
i=1

(
g

(α`+1+i−i0 )
1

)− ti−t
∗
i

ti0
−t∗
i0 .

It is immediately seen that the maximal power of α in the last equality is i0 ≤ `,
thus this formula can be explicitly computed, as we know G1(α, β).

Further, selecting ηj
$← Fp and assigning sj = ηj and taking (10)-(11) into

account, we get for every m 6= m∗

(
u0,j ·

∏̀
i=1

u
mj,i
i

)sj
=

(
g
y0,j

1

∏̀
i=1

(
g

(αi)
1

)−m∗j,i
·
∏̀
i=1

(
gyi1 g

(αi)
1

)mj,i)ηj

=

(
g
Yj(mj)
1 ·

∏̀
i=1

(
gα

i

1

)(mj,i−m∗j,i)
)ηj

.

Combining this with (12), we obtain the form of σ1 as in 6.1 of Algorithm B.

Let us go to the stage break in. According to the model, when the time
t̄ is reached, then the secret key skt̄ is handed to A. In the considered scheme
skt̄ = (scp,Stack), where scp serves for making signatures related to the current
time period t̄, whereas Stack keeps data needed only for updating the key.

The signing component is given by (3). Therefore, there exists r ∈ Fp such that

A = τx1 ·
(
u0,0

∏`
i=1 u

t̄i
i

)r
and C = gr2. If we select ξ

$← Fp and put r = ξ− (t̄i0 −
ti∗0 )−1 · α`+1−i0 , then we obtain the proper distribution, as r and ξ are equally
probable. Analogously as above, there is i0, such that i0 := max{i ∈ [`] | ti 6= t∗i }



20 M. Jurkiewicz

thus, carrying out the same steps as above, we obtain

A
x=α
= (gα1 )

y · gξY0(t̄)
1 ·

(
i0∏
i=1

(
gα

i

1

)(t̄i−t∗i )
)ξ

·
(
g

(α`+1−i0 )
1

)− Y0(t̄)

t̄i0
−ti∗0 ·

i0−1∏
i=1

(
g

(α`+1+i−i0 )
1

)− t̄i−t
∗
i

t̄i0
−t∗
i0 ,

and C = gξ2 ·
(
g

(α`+1−i0 )
2

)−(t̄i0−t
∗
i0

)−1

. This justifies 7.1 of Algorithm B.

Now, let us examine the second component, Stack. We start with a general
remark, noting that each node being on the stack skt.Stack associated with a
time period t < T has the form (node, h), where node is of the form (1) and h
is its height on the binary tree. Therefore, such nodes are uniquely determined
by the binary strings t` · · · th called indexes, which in turn are contained in
stackID. Besides, a position of (node, h) on skt.Stack is the same as a position
of its index on stackID, for every fixed t < T . This means that B, simulating
behavior of Πsfu regarding a time period t, still keeps knowledge about indexes
of nodes, where these nodes are originally from skt.Stack. Further, as all nodes
create a binary tree, there is a unique path between any different two of them.
In particular, there exists the unique path P , joining the root and the leaf at
index t∗ = (t∗` · · · t∗1)2. Therefore, taking any (node, h) ∈ skt̄.Stack, we know by
Section 4.3 and the assumption t∗ < t̄, that node /∈ P . It is because, in other
case the index of node would be t∗` · · · t∗h, what contradicts the construction of
the algorithm KUpd. This implies that if t` · · · th is the index of node, then
there is i0 ∈ {h, . . . , `} such that i0 := max{i ∈ {h, . . . , `} | ti 6= t∗i }. By (1)

we know that node =
(
A′; (b′i)i∈[h−1];C

′), where A′ = τx1 ·
(
u0,0

∏`
i=h u

ti
i

)r
,

b′i = uri and C ′ = gr2. Choosing ξ
$← Fp uniformly at random and putting

r = ξ − (t̄i0 − ti∗0 )−1 · α`+1−i0 , we get after having regard to the substitutions
(8), (9) and (11), that

A′
x=α
= (gα1 )

y · g(α`+1)
1 ·

(
g
y0,0

1 ·
∏̀
i=1

(
g

(αi)
1

)−t∗i
·
∏̀
i=h

gyiti1

(
g

(αi)
1

)ti)r

= (gα1 )
y · g(α`+1)

1 ·

(
g
y0,0+

∑`
i=h yiti

1 ·
h−1∏
i=1

(
g

(αi)
1

)−t∗i
·
∏̀
i=h

(
g

(αi)
1

)(ti−t∗i )
)r

= (gα1 )
y · gξ(y0,0+

∑`
i=h yiti)

1 ·
h−1∏
i=1

(
g

(αi)
1

)−ξt∗i
·
∏̀
i=h

(
g

(αi)
1

)ξ(ti−t∗i )

· g
− y0,0+

∑`
i=h yiti

ti0
−t∗
i0

·(α`+1−i0 )

1 ·
i0−1∏
i=h

(
g

(α`+1+i−i0 )
1

)− ti−t
∗
i

ti0
−t∗
i0 .



Title Suppressed Due to Excessive Length 21

Moreover, we have

b′i =
(
gy1 · gα

i

1

)r
= gξyi1 ·

(
g

(αi)
1

)ξ
·
(
g

(α`+1−i0 )
1

)− yi
ti0
−t∗
i0 ·

(
g

(α`+1−i0+i)
1

)− 1
ti0
−t∗
i0 ,

for i = 1, . . . , h− 1 and obviously C ′ = g
ξ−(ti0−t

∗
i0

)−1·(α`+1−i0 )

2 .

Finally, let σ =
(
σ1, σ2, (σ3,j)j∈[l]

)
be a forged signature of m∗ in the time

period t∗, then according to (7) we know that

ê(σ∗1 , g2) = ê
(
gy1g

α`

1 , gα2

)
· ê
(
g
Y0(t∗)
1 , σ∗2

)
·

l∏
j=1

ê
(
g
Yj(m

∗
j,i)

1 , σ∗3,j

)

= ê ((gα1 )y, g2) · ê
(
g

(α`+1)
1 , g2

)
· ê
(
g
Y0(t∗)
1 , σ∗2

)
·

l∏
j=1

ê
(
g
Yj(m

∗
j,i)

1 , σ∗3,j

)
.

It is easy to see that the above formula can be written in the following form

ê(σ∗1 , g
β
2 )β

−1

=

ê((gα1 )y, gβ2

)
· ê
(
g

(α`+1)
1 , gβ2

)
· ê
(

(gβ1 )Y0(t∗), σ∗2

)
·

l∏
j=1

ê
(

(gβ1 )Yj(m
∗
j,i), σ∗3,j

)β−1

.

This in conjunction with the fact that p is a prime number lead us to the con-

clusion that the formula in 9 of Algorithm B essentially equals ê
(
g

(α`+1)
1 , gβ2

)
.

In conclusion, we have showed that if A is able to make sfu-cma forgery and
independently Y0(t∗) 6= 0 in Fp, then B solves (`, 1)-wBDHI∗3 problem. Therefore,
the following estimation is satisfied

Advsfu-cma
Πsfu,n

(A) ≤ p

p− 1
·Adv(`,1)-wBDHI∗3

params,n (B) = negl(n).

This finishes the proof.

Now we are ready to formulate the main result of this paper.

Theorem 2. Let Πfu = (G ,KGen,KUpd,Sign,Vrfy) be the scheme defined in
Section 4 with the associated message space M = {0, 1}∗. If (`, 1)-wBDHI∗3 is
hard relative to G , then Πfu is forward-secure in the random-oracle model .

Proof. The proof of this theorem immediately follows from Theorem 1. It is
because, if H : M → {0, 1}l` is modeled as a random oracle, then given an
adversary A, attacking fu-cma security in the random oracle model, it is possible
to break sfu-cma security. To be more precise, we are able to construct an sfu-cma



22 M. Jurkiewicz

adversary B, that guesses the time frame t∗ and the index of A’s random oracle
query for H(m∗). Note that, if B has chosen a proper t∗ then it can set t̄← t∗+1
and use skt̄ to simulate oracles KUpd and Break after the time period t̄ and up
to the point when A requests to launch the oracle Break.

Finally, if B has correctly guessed the index of H(m∗), then a forgery output
by A is a valid forgery for B. This means that intersection of three independent
events, namely making a forgery by A and the proper choice of both t∗ and
the random oracle query, implies the event that B breaks the sfu-cma security.
Therefore, we get the estimation

Advfu-cma
Πfu,n

(A) ≤ qH(T − 1) ·Advsfu-cma
Πsfu,n

(B),

where qH is the number of random-oracle queries made by A. Hence, Theorem
1 then yields Advfu-cma

Πfu,n
(A) = negl(n). This completes the proof.

6 Construction of Forward-Secure Blind Signature
Scheme

On the basis of the considerations conducted in the above sections, we shall
construct a forward-secure blind signature scheme. The construction of this new
scheme Πb-fu = (G ,KGen,KUpd,Sign,Vrfy), is based on the scheme we defined
and analyzed above. Besides, the crucial point is that fulfilling the desired secu-
rity requirements turns out to be an immediate consequence of both Theorem 2
and a proper probability distribution.

Assume that M = {0, 1}∗ is the message space and H : M → {0, 1}l·` a
collision resistant hash function. The scheme Πb-fu is defined in the following
way:

System parameters generation G = G .

Key generation KGen = KGen.

Key update KUpd = KUpd.

Signing The signer and the user interact so as to produce a blind signature for
a message m at time period t. We assume the signer has generated skt of the
form skt = (scp,Stack, t) where scp is as in (3). The interaction consists of
three steps:

Step 1: The user computes m = H(m), splits m into concatenation of l
blocksm1‖ · · · ‖ml and write each blockmi in the binary form (mi,` · · ·mi,1)2.

Next, it picks xj
$← Fp, j ∈ [l] uniformly at random, parses

pk = (τ1, τ2, (u0,j)
l
j=0, (ui)

`
i=1) and derives

µj = τ
xj
1 · u0,j ·

∏̀
i=1

u
mj,i
i (13)



Title Suppressed Due to Excessive Length 23

The user sends (µj)
l
j=1 to the signer.

Step 2: The signer is only able to sign a messages that have a unique repre-
sentation with elements of G. Thus without loss of generality we can assume
that it signs elements of G. If it is sent a message that does not belong to
G, then it outputs S =⊥.

After receiving (µj)
l
j=1, the signer chooses r

$← F∗p and sj
$← F∗p, j ∈, [l], in-

dependently and uniformly at random. Next, it parses skt and scp, obtaining
A,C as in (3) and computes

A←A ·

(
u0,0 ·

∏̀
i=1

utii

)r
;

σ1 ←A ·
l∏

j=1

µ
sj
j ;

σ2 ←C · gr;
σ3,j ←g

sj
2 , j ∈ [l]

σ4,j ←τ
sj
1 , j ∈ [l].

Finally, the signer sends
(
σ1, σ2, (σ3,j)j∈[l], (σ4,j)j∈[l]

)
to the user and out-

puts S = complete.

Step 3: The user chooses r
$← Fp and si

$← Fp, i ∈ [l], independently and
uniformly at random and computes

σ1 ←σ1 ·

 l∏
j=1

(σ4,j)
xj

−1

·

(
u0,0 ·

∏̀
i=1

utii

)r
·

l∏
j=1

(
u0,j ·

∏̀
i=1

u
mj,i
i

)sj
;

σ2 ←σ2 · gr2;

σ3,j ←σ3,j · g
sj
2 , j ∈ [l].

If Vrfypk,
(
M, t,

(
σ1, σ2, (σ3,j)j∈[l]

))
= 0 then output Σ =⊥ otherwise output

Σ =
(
σ1, σ2, (σ3,j)j∈[l]

)
.

Verification Vrfypk outputs 1 if Vrfypk, (M, t,Σ) = 1, otherwise it outputs 0.

Firstly, note that forward-security of Πb-fu is immediately reduced to the
forward-security of Πfu. This is because the assumptions of Theorem 2 guarantee
Πb-fu to be a forward-secure interactive signature scheme with evolving private
key. Secondly, it is easily seen that there is αj ∈ Fp such that

∏`
i=1 u

mj,i
i = τ

αj
1 .

Thus (13) can be viewed as τxj+αj with uniformly random xj . This together
with the fact, which was mentioned in Section 4 as for the property of probability
measure µ, means that τxj+αj can be viewed as a random element of G. The
same remark is for content of Σ, if it is different form ⊥. Consequently, all of



24 M. Jurkiewicz

non-private elements being subjected to interactions between a user and a signer
are indistinguishable. This leads us to the conclusion that the blinding property
is fulfilled and justifies the following theorem:

Theorem 3. Let Πb-fu = (G ,KGen,KUpd,Sign,Vrfy) be the scheme defined above
with the associated message spaceM = {0, 1}∗. If (`, 1)-wBDHI∗3 is hard relative
to G , then Πb-fu is forward-secure blind signature scheme in the random-oracle
model .

References

1. Bellare, M., Miner, S.K.: A Forward-Secure Digital Signature Scheme. In: Wiener,
M.J. (ed.) Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999, Pro-
ceedings. Lecture Notes in Computer Science, vol. 1666, pp. 431–448. Springer
(1999). https://doi.org/10.1007/3-540-48405-1 28

2. Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption
Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) Advances in
Cryptology - EUROCRYPT 2004. pp. 223–238. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

3. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical Identity Based Encryption with
Constant Size Ciphertext. Cryptology ePrint Archive, Report 2005/015 (2005),
https://eprint.iacr.org/2005/015.pdf

4. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward Secure Signatures with
Untrusted Update. In: Wright, R. (ed.) Proceedings of CCS 2006. pp. 191–200.
ACM Press (2006)

5. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - A Practical Forward Secure
Signature Scheme Based on Minimal Security Assumptions. In: Yang, B.Y. (ed.)
Post-Quantum Cryptography. pp. 117–129. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2011)

6. Camenisch, J., Groß, T.: Efficient Attributes for Anonymous Credentials. In: Pro-
ceedings of the 15th ACM conference on Computer and communications security.
pp. 345–356 (2008)

7. Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme.
In: Biham, E. (ed.) Advances in Cryptology — EUROCRYPT 2003. pp. 255–271.
Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

8. Chaum, D.: Blind Signatures For untraceable Payments. In: Advances in Cryptol-
ogy. pp. 199–203. Springer (1983)

9. Chaum, D.: Blind Signature System. In: Advances in Cryptology. pp. 153–153.
Springer (1984)

10. Cui, Y., Fujisaki, E., Hanaoka, G., Imai, H., Zhang, R.: Formal Security Treat-
ments for Signatures from Identity-Based Encryption. In: Susilo, W., Liu, J.K.,
Mu, Y. (eds.) Provable Security. pp. 218–227. Springer Berlin Heidelberg, Berlin,
Heidelberg (2007)

11. Duc, D.N., Cheon, J.H., Kim, K.: A Forward-Secure Blind Signature Scheme Based
on the Strong RSA Assumption. In: Qing, S., Gollmann, D., Zhou, J. (eds.) In-
formation and Communications Security. pp. 11–21. Springer Berlin Heidelberg,
Berlin, Heidelberg (2003)



Title Suppressed Due to Excessive Length 25

12. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for Cryptographers. Discrete
Applied Mathematics 156(16), 3113 – 3121 (2008), Applications of Algebra to
Cryptography

13. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017

14. Hanzlik, L., Kluczniak, K.: A Short Paper on Blind Signatures from Knowledge
Assumptions. In: International Conference on Financial Cryptography and Data
Security. pp. 535–543. Springer (2016)

15. Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures. In: Annual
International Cryptology Conference. pp. 150–164. Springer (1997)

16. Jurkiewicz, M.: Improving Security of Existentially Unforgeable Signature
Schemes. International Journal of Electronics and Telecommunications 66(3), 473–
480 (2020)

17. Kucharczyk, M.: Blind Signatures in Electronic Voting Systems. In: International
Conference on Computer Networks. pp. 349–358. Springer (2010)

18. Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE transactions
on fundamentals of electronics, communications and computer sciences 85(2), 481–
484 (2002)

19. Pointcheval, D., Stern, J.: Provably Secure Blind Signature Schemes. In: Interna-
tional Conference on the Theory and Application of Cryptology and Information
Security. pp. 252–265. Springer (1996)

20. Schröder, D., Unruh, D.: Security of Blind Signatures Revisited. Journal of Cryp-
tology 30(2), 470–494 (2017)

21. Yu, J., Kong, F., Cheng, X., Hao, R., Chen, Y., Li, X., Li, G.: Forward-secure
Multisignature, Threshold Signature and Blind Signature Schemes. Journal of Net-
works 5(6), 634 (2010)


