
COMMITEE : An Efficient and Secure Commit-Chain Protocol using TEEs

Andreas Erwig
TU Darmstadt

andreas.erwig@tu-darmstadt.de

Sebastian Faust
TU Darmstadt

sebastian.faust@tu-darmstadt.de

Siavash Riahi
TU Darmstadt

siavash.riahi@tu-darmstadt.de

Tobias Stöckert
TU Darmstadt

tobias.stoeckert@stud.tu-darmstadt.de

Abstract

Permissionless blockchain systems such as Bitcoin or
Ethereum are slow and expensive, since transactions are pro-
cessed in a distributed network by a large set of parties. To
improve on these shortcomings, a prominent approach is given
by so-called 2nd-layer protocols. In these protocols parties
process transactions off-chain directly between each other,
thereby drastically reducing the costly and slow interaction
with the blockchain. In particular, in the optimistic case, when
parties behave honestly, no interaction with the blockchain
is needed. One of the most popular off-chain solutions are
Plasma protocols (often also called commit-chains). These
protocols are orchestrated by a so-called operator that main-
tains the system and processes transactions between parties.
Importantly, the operator is trustless, i.e., even if it is mali-
cious users of the system are guaranteed to not lose funds.
To achieve this guarantee, Plasma protocols are highly com-
plex and require involved and expensive dispute resolution
processes. This has significantly slowed down development
and deployment of these systems.

In this work we propose COMMITEE – a simple and effi-
cient Plasma system leveraging the power of trusted execution
environments (TEE). Besides its simplicity, our protocol re-
quires minimal interaction with the blockchain, thereby dras-
tically reducing costs and improving efficiency. An additional
benefit of our solution is that it allows for switching between
operators, in case the main operator goes offline due to sys-
tem failure, or behaving maliciously. We implemented and
evaluated our system over Ethereum and show that it is at
least 2 times (and in some cases more than 16 times) cheaper
in terms of communication complexity when compared to
existing Plasma implementations. Moreover, for protocols
using zero-knowledge proofs (like NOCUST-ZKP), COM-
MITEE decreases the on-chain gas cost by a factor ≈ 19
compared to prior solution.

1 Introduction

Over the past decade cryptocurrencies such as Bitcoin [31]
and Ethereum [38] have gained increasing popularity by intro-
ducing a new financial paradigm. Unlike traditional financial
systems these cryptocurrencies do not rely on a central author-
ity for transaction validation and accounting, but instead build
upon a decentralized consensus protocol which maintains a
distributed ledger that tracks each single transaction. How-
ever, maintaining such a ledger in a distributed fashion comes
at the cost of poor transaction throughput and confirmation
time. For example, in Ethereum the transaction throughput
is limited to a few dozen transactions per second and final
confirmation of a transaction can take up to 6 minutes. On
the contrary, traditional centralized payment providers offer
almost instantaneous transaction confirmation while being
able to support orders of magnitude higher throughput. These
scalability issues hinder cryptocurrencies from being used at
larger scale.

One particularly promising solution to address these scala-
bility problems are off-chain protocols. Off-chain protocols
work by taking the massive bulk of transactions off-chain, and
at a high-level proceed as follows. After an initial on-chain
transaction to join the system, transactions between partici-
pants can be carried out off-chain (without interaction with
the underlying blockchain). Only when a user wants to exit
the system, or when other parties of the system try to cheat,
honest users need to carry out on-chain transactions again.
Important examples of this concept include payment chan-
nel networks (or hubs) [1, 28, 34], and more recently Plasma
protocols, where the latter is the focus of this work.

The original idea of Plasma protocols (often also known as
commit-chains1) was first introduced by Poon et al. in 2017
[33]. Soon after, countless variants of Plasma emerged such
as Loom, Bankex, NOCUST and OmiseGO (see, e.g., [24,
30, 36]). While all these systems differ in certain aspects, at
a high-level they all follow the off-chain approach described
above and outsource transaction execution to a second layer

1In this work we use the terms Plasma and commit-chain interchangeably.

1

(we will explain in more detail how Plasma systems work
in Sec. 3). A key role in any Plasma system plays the op-
erator, who maintains the system, and ensures that all off-
chain transactions among the users are processed correctly.
It is important to note, however, that the operator is not as-
sumed to be trusted, and merely ensures an efficient and
well-functioning system. Since the operator is not trusted,
but essentially “confirms” all transaction processing, Plasma
protocols use a highly involved mechanism which ensures
that the user’s funds remain secure even when the operator is
malicious.

The design of such mechanism poses non-trivial challenges
that existing Plasma systems attempt to solve by employing ei-
ther heavy cryptographic machinery such as zero-knowledge
proofs or complex challenge-response protocols for resolving
disputes on-chain. Neither of these approaches is optimal for
the following two reasons: (1) both approaches significantly
increase the communication complexity with the blockcahin
which increases costs and undermines the original purpose
of Plasma as an off-chain protocol; (2) the security analysis
of the resulting protocols becomes cumbersome, and hence
to-date there is no Plasma-like system that has been formally
proven secure. While there has been significant research ef-
forts to address these problems [9], [8], [21], the community
has not yet come up with a suitable solution that can readily
be implemented.

In this paper, we address the before mentioned shortcom-
ings. To this end, we first propose a general security model for
Plasma systems, and introduce COMMITEE – a simple and
efficient Plasma-like protocol. COMMITEE leverages trusted
execution environments (TEE) in order to overcome the above
mentioned downsides of existing Plasma systems. In COMMI-
TEE, the operator uses a TEE for all necessary computation,
which limits the operator’s role in the protocol to merely
relaying messages between the TEE and the outside world
(blockchain, users of the system, etc.). This significantly lim-
its the operator’s ability to misbehave, which in turn allows
for a simpler protocol design. An immediate consequence of
COMMITEE’s simplicity is that it becomes easier to analyze
and verify its security. We analyze COMMITEE in our model
and show that it achieves the three security properties deposit
security, balance security and operator security, which in a
nutshell guarantee that no honest party in the system loses her
coins even if all other parties are malicious.

Another crucial benefit of our simple protocol design
is that COMMITEE requires minimal interaction with the
blockchain, which significantly reduces on-chain costs and
improves efficiency. Unlike payment channels, all existing
Plasma/commit-chain protocols require periodic commit-
ments to the blockchain and logarithmic size messages to
withdraw coins from the system. COMMITEE overcomes
these two drawbacks of conventional commit-chains, which
brings the efficiency on par with payment channel net-
works/hubs [1, 28, 34].

We evaluated our system over Ethereum and compared the
results to the two most common (and partially in prototype-
status available) Plasma protocols, namely Plasma MVP [15]
and Plasma Cash [20], as well as to the most prominent
commit-chain protocol NOCUST and NOCUST-ZKP [24].
The evaluation shows that COMMITEE is between 2 to 16
times cheaper in terms of communication complexity when
compared to Plasma MVP and Cash. For systems using zero-
knowledge proofs (e.g., NOCUST-ZKP), COMMITEE outper-
forms previous work with respect to on-chain communication
by a factor of≈ 19. Furthermore, asymptotically the on-chain
communication complexity of COMMITEE is O(1), while
for all the above mentioned protocols the communication
complexity grows logarithmically in the number of users.

Finally, we propose two extensions for COMMITEE,
namely (1) to support multiple operators, and (2) to handle
TEE compromise. The first extension to a multi-operator
system allows to switch between operators, in case the main
operator behaves maliciously or goes offline, which is a highly
desirable feature for Plasma systems as it makes them more
robust to operator failures, and thus increases their reliability
significantly. We emphasize that until now there has not been
any full specification of a Plasma-like system that supports
multiple operators due to the complexity of designing such
a system. This gap is closed by our work leveraging again
the power of TEEs. Likewise, our second extension to handle
TEE compromise significantly increases the reliability and
practicality of COMMITEE as it guarantees the security of
user’s funds even in case a malicious party is able to influence
the computation inside the TEE.

1.1 Our Contribution
In a nutshell, our contributions can be summarized as follows:

• Secure and Efficient Plasma with TEE: We propose
COMMITEE – a simple and efficient Plasma proto-
col, which minimizes costly communication with the
blockchain. To this end, we are the first to leverage TEE
for Plasma in order to achieve improved efficiency and
security guarantees.

• Extensions to COMMITEE: Our protocol can be ex-
tended to support multiple operators and to handle TEE
corruptions, which are both highly desirable features to
ensure reliability and practicality of COMMITEE. The
multi-operator extension allows users to swap operators
in case the main operator behaves maliciously, while
the extension of handling TEE compromise allows users
to detect and publicly prove that the TEE has been cor-
rupted, such that users can switch to the next operator.

• Evaluation: We provide an evaluation of our protocol
and compare the results to NOCUST, NOCUST-ZKP
[24] and other prominent Plasma solutions. We show
that our protocol is more efficient than these solutions in

2

terms of communication complexity and gas cost, when
implemented over Ethereum.

• Plasma Framework and Model: We propose a generic
framework for analyzing the security of Plasma proto-
cols, and formaly prove the security of our construc-
tion. Our model gives an abstract design specifcation of
a Plasma protocol, as well as an appropriate adversar-
ial model and desirable properties that Plasma systems
should fulfill. We believe that our modeling approach
is of independent interest and may be useful to analyze
other existing Plasma systems.

1.2 Outline
In Section 2 we recall the necessary background. In Section 3
we give a high level overview of our solution and discuss the
challenges which COMMITEE must overcome. Afterwards
in Section 4 we introduce our model and in Section 5 we
describe our protocol and discuss its security. In Section 6 we
compare our experimental implementation of COMMITEE in
terms of communication and computation complexity with
other state-of-the-art Plasma protocols, while we we discuss
how to extend COMMITEE in order to support multiple op-
erators and to handle TEE compromise in Section 7. Finally,
in Section 8 we discuss related work, before concluding in
Section 9.

2 Preliminaries

In this section we give a brief overview of the main con-
cepts our protocol depends on, namely digital signatures,
blockchain and trusted execution environment.

2.1 Digital Signature Scheme
Transactions that are sent to the blockchain and smart contract
must be digitally signed in order to determine the identity of
the sender of the transaction. To this end digital signature
schemes are used. A digital signature scheme is a tuple of
algorithms Σ = (Gen,Sign,Vrfy) where Gen gets as input the
security parameter 1κ and outputs the public and secrecy keys
(sk, pk), Sign gets as input the secret key sk and a message m
and outputs a signature σ and Vrfy gets as input the public key
pk, a message m and a signature σ and outputs 1 if σ is a valid
signature for m under public key pk and 0 otherwise. A signa-
ture scheme must be correct i.e. Vrfy(pk;m,Sign(sk;m)) = 1
and secure i.e. it must be computationally hard for an adver-
sary to forge a signature σ on a fresh message m without
knowing the secret key sk even after seeing multiple signa-
tures on messages of her choice.

2.2 Blockchain and Cryptocurrencies
Blockchain Structure A blockchain is a data structure that
enables all parties in a distributed network to obtain a consis-

tent view on the state of the system. It is maintained by all
or a subset of the parties in the network and the correctness
of its state is agreed upon using a consensus protocol. On
a high level, a blockchain consists of data chunks (blocks)
which store information about the state of the system (e.g.
transactions in cryptocurrencies). These blocks are chained
together using a cryptographic hash function, i.e. each block
contains the hash value that results from hashing the previous
block. The blockchain plays a central role in cryptocurrencies,
where it serves as a distributed ledger which accounts for all
issued transactions in the system.

Blockchain Model Throughout this paper we model a
blockchain b as a sequence of individual blocks (b1, · · · ,bm)
where bm is the latest confirmed block, meaning that it is the
latest block that the network reached consensus on. We use the
terms blockchain and ledger (denoted by L) interchangeably
in this paper. Users participating in the blockchain network
have an account which stores their current balance in the sys-
tem. The account of a party Pi is identified by her public key
pki and it consists of a tuple (pki,vi) where vi is the current
balance of Pi. Furthermore, the blockchain network can exe-
cute Turing complete programs referred to as smart contracts.
Similar to parties, a smart contract has an account which is
identified by a unique address addr, however in contrast to
parties, each contract consists of a set of functions (f1, · · · , fl)
which might optionally take parameters param as input.

In order to transfer funds from a party Pi to another party Pj,
Pi must submit a transaction tx of the form to the blockchain
network: tx := (pki, pk j,v). Such a transaction is valid if it is
signed under the public key pki, and Pi’s balance exceeds v.

A party Pi can call a function f on input param of a smart
contract with the address addr by submitting a transaction tx
of the form: tx :=(pki,addr,v, f ,param). A transaction of this
form is valid if it is signed under the public key of the sender,
i.e., pki, Pi’s balance exceeds v and a smart contract with the
address addr with function f exists on the blockchain.

A smart contract can send transactions of the above forms
as well, with the difference that the sender’s public key pki
is replaced by the contract’s address addr. Since the smart
contract does not maintain a signing secret key, a signature is
not required in order for the transaction to be valid.

A blockchain maintains an internal block counter c which
is increased on average after t time units2. A new block is
produced and added to b every time c is increased and parties
in the network are notified about the new block. Upon a party
Pi sending a valid transaction to the blockchain network, Pi
is guaranteed that the transaction will be included in one
of the next l blocks. Furthermore, the blockchain offers the
following functionalities:

post(tx): this functionality gets as input a transaction tx and
checks if it is valid. If so tx is included in one of the

2A time unit can be any measure of time like seconds, minutes, hours etc.

3

blocks (bc, · · · ,bc+l).

get(k): this functionality gets as input an index k and returns
the latest k blocks of b i.e., (bm−k+1, · · · ,bm).

Modeling Blockchain Validation Any blockchain system
inherently requires a validation algorithm that allows to check
if a sequence of blocks was computed correctly. This valida-
tion includes checks for the validity of transactions in indi-
vidual blocks and checks that two consecutive blocks form
a valid chain. In order to verify the whole blockchain a user
has to start the verification with the very first block (genesis
block) of the blockchain. This results in a potentially huge
amount of storage and computation cost since the user has
to download and store the entire blockchain. Therefore, in
practice nodes often verify new blocks based on so-called
checkpoints instead of the entire blockchain. A checkpoint is
a confirmed block on the chain. Let us define the notation for
the validation algorithm we use in this work.

Let b = (b1, · · · ,bm) be a blockchain and let bcp ∈ b be
a single block serving as a verification checkpoint. The
validation algorithm VrfyChain on input the checkpoint and
a chain of blocks b̄ = (b̄1, · · · , b̄k), outputs 1 if b̄ is a valid
blockchain extending the checkpoint bcp and 0 otherwise.

Note that throughout this paper we assume that a polyno-
mially time bounded adversary can forge a chain of blocks
b̄ with |b̄| ≥ k such that VrfyChain(bcp, b̄) = 1 at most with
negligible probability.

2.3 Trusted Execution Environments
Modeling the TEE Our TEE modeling follows the one of
Das et al. [18] and Pass et al. [32]. As in [18], we only ex-
plain a simplified version of the model and refer the reader
to Figure 1 in [32] for the complete formal definition. When
the TEE is initialized it creates a signing keypair (msk,mpk)
called master public key and master secret key of the TEE.
The master keypair is used to authenticate the installation
of a program on the TEE. The TEE functionality offers two
operations for an enclave: install and resume. Calling an op-
eration on the TEE is denoted as TEE.operation_name. The
operation TEE.install stores a given program p under the en-
clave identifier eid. A program that is stored on an enclave
is executed via the enclave operation TEE.resume. It takes
the identifier of the enclave eid, a function f, and the function
input in as input. TEE.resume returns the output of the pro-
gram operation denoted as out and the quote ρ over the tuple
(eid, p,out). This quote serves as the verifiable statement in
the remote attestation process (see below for further details).
As our protocol will only use one enclave instance E of the
program p, we use a simplified version of the resume com-
mand [out,ρ] := TEE.resume(eid, f, in) and replace it with
the following definition: [out,ρ] := E.f(in)

In order to model remote attestation, there has to exist a
function VrfyQuote(mpk, p,out,ρ) for every attestable TEE.

The function outputs 1 if the quote is correct and the out-
put out was created by an enclave with the master public
key mpk that loaded the program p. A TEE is considered
secure if an adversary cannot forge a valid quote ρ such that
VrfyQuote(mpk, p,out,ρ) outputs 1.

We note that making TEEs secure against side-channel [37],
memory-corruption [12] and architectural vulnerabilities [14]
is an ongoing research direction which is orthogonal to our
work [10], [37], [35]. In COMMITEE we consider a TEE
which is secure against such vulnerabilities. However, in Sec-
tion 7.2, we propose an extension to COMMITEE, that allows
users to detect TEE corruption such that user’s funds remain
secure even in case a malicious party can influence the com-
putation inside the TEE.

3 Solution Overview

In this section, we provide a brief overview of our solution and
discuss its main design challenges that had to be overcome.

Plasma protocols have first been introduced in order to mit-
igate the issues of payment channel hubs (PCHs), namely the
problem that intermediaries in PCHs are required to lock a
significant amount of collateral. This is needed in payment
channel hubs in order to punish the intermediary in case of
malicious behavior. In contrast, Plasma protocols do not uti-
lize a punishment mechanism but instead require the operator
to periodically submit a short commitment of the latest state
of the system to the blockchain. This avoids the need for col-
lateralization. In case the operator behaves maliciously, users
can simply exit the system based on the last commitment.

In a nutshell, users in a Plasma protocol can dynamically
join and leave the system by making deposits or exiting their
funds from the Plasma contract. They can submit their transac-
tions off-chain to the operator, who collects these transactions
and updates the balances of the users accordingly. In addition,
the operator stores these transactions and balances in a data
structure, which enables her to generate a short commitment
to the state of the system. The operator can then publish this
commitment on the blockchain and provide a proof of balance
to each user, which is required if the user wishes to exit the
system. Traditionally, the data structure used by the operator
in order to store balances and transactions is a Merkle tree,
and the commitment is the root of this tree. In order to exit
the system, users must prove to the contract that they own
some coins in the system. This proof is in fact a Merkle proof
where the leaves store the balances of the users in the system.

As it can be seen, a malicious operator can misbehave by
publishing an incorrect commitment (i.e. Merkle root). As
an example, the operator can allow users to double spend or
“print money” by maliciously increasing the balance of users.
In order to mitigate such attacks, existing Plasma protocols
employ either of the following two strategies: (1) a complex
challenge-response mechanism or (2) a zero-knowledge proof
of the operator’s correct behavior. These approaches require

4

additional communication or expensive computation on the
blockchain, which undermines the original goal of designing
an off-chain solution.

Our protocol mitigates the above mentioned issues in two
ways: (1) the operator employs a TEE which does all the
necessary computation while the operator simply has to relay
messages between the TEE and the users and the blockchain
and (2) our protocol allows for efficient extension to a multi-
operator system, in which a different operator can take over
as soon as the current operator acts maliciously.

Since by definition the TEE executes all computations cor-
rectly, neither expensive zero-knowledge proofs nor complex
challenge-response mechanisms are required in order to guar-
antee correct behavior of the operator. Instead, a single sig-
nature from the TEE is sufficient as a proof of correct com-
putation. In a bit more detail, the proof of balance consists
merely of a message signed by the TEE, which is not only
much shorter than a Merkle proof but also less expensive to
verify on the blockchain. Note that asymptotically the size of
a Merkle proof grows logarithmically in the number of users,
while a signature size is constant. This difference shows it-
self clearly in Section 6 where we present the evaluation of
our protocol. Furthermore, other Plasma systems require pe-
riodic commitments of the operator to the blockchain such
that users can verify their balance proof. Conventionally, this
commitment is a Merkle root. Yet we observe that in order to
verify signatures from the TEE, only the TEE’s public key is
required and hence there is no need for the operator to publish
a commitment. Instead, the public key of the TEE is part of
the public parameters of the contract.

This efficiency improvement directly translates to the
challenge-response mechanism of our protocol. Due to the
use of a TEE, many of the scenarios where the operator can
act maliciously are mitigated (e.g., changing balances, dou-
ble spending etc.) and hence the only possible way for the
operator to misbehave is by withholding data, i.e., balances
signed by the TEE. Due to this limited attack vector, we only
need a simple challenge-response mechanism to deal with
data unavailability. Note that even this challenge-response
mechanism is more efficient compared to traditional Plasma
systems, since only a signature needs to be published on the
blockchain (instead of a Merkle proof).

3.1 Design Challenges
In the following, we describe the design challenges for Plasma
protocols. Even when utilizing a TEE the operator acts as a
relay between the TEE and the Plasma system and hence can
still act maliciously by dropping the messages sent to and
from the TEE. The aim of our protocol is to ensure security
even in presence of a malicious operator.

Malicious Operator Since the operator runs the TEE, she
controls all interactions with it. This implies that she may

send false requests to the enclave or refuse to forward requests
made by users. The operator may also abort executions on the
enclave or delay inputs and outputs.

At the very beginning, an operator can set up the TEE in
a malicious way which would compromise the Plasma sys-
tem right from the start. Hence, before joining the Plasma
network, it is crucial that the users verify the correct initializa-
tion of the TEE via remote attestation. This ensures that the
correct program has been loaded into the enclave and hence
the initialization has indeed been correct.

Since an operator may go offline, crash or act maliciously
at any point, users must always be able to withdraw their
coins from the system. To this end all users receive a message
signed by the TEE which informally says “this user owns v
coins in epoch e3” and can be sent to the ledger L if they wish
to exit. However, a malicious operator can avoid delivering
this message to the users. Yet, the fact that these users did
not receive this message from the operator does not have
digital footprint and hence they cannot prove to the contract
that the operator misbehaved. Even worse the operator can
avoid forwarding the messages produced by the TEE to only
a subset of users. This would fragment the system into users
who have the latest state of the system and users who do not.
This means that from the point of view of some users the
balances are updated yet for others this is not the case. Since
users cannot have two different balances at the same time,
our solution must provide a method in order to solve this
fragmentation. To this end, the affected users can challenge
the operator on the ledger L and request an exit.

If the operator responds honestly to the on-chain challenge
the user will receive her funds via L . Otherwise, the contract
switches to a “malicious” state indicating that the operator
acts dishonestly. In this state all users withdraw their funds
based on the last epoch (for which all users do have an exit
message signed by the TEE, since otherwise they would have
started a challenge in the previous epoch).

A natural question would be whether or not one can ex-
tend Plasma protocols in order to support multiple operators
and mitigate this single point of failure. Unfortunately, this
is not possible in a straightforward way since all operators
must be aware of the latest state of the system and agree on it.
This would require them to run a consensus algorithm which
would hinder the efficiency of the system. We take a different
approach by allowing the users to switch to a new operator
in presence of a malicious one. A trivial solution to do so
would be posting the latest state of the system on-chain in
order to inform the new operator of the user’s latest balances.
Yet this approach would require huge communication with
the blockchain and is not much different than users exiting
and depositing their coins in a new Plasma system. COMMI-
TEE offers a cheap solution in order to switch operators. In a
nutshell, instead of sending the exit message to the contract,

3An epoch is a time interval where the duration is defined by a fixed
number of blocks.

5

the users submit the same message to the backup operator.
We emphasize that this solution is not applicable to other
Plasma systems that do not offer valid state transition since
exit messages in such protocols can be invalid. We further
note that in our solution, the backup operator does not need to
communicate with the original operator at all and only takes
an active role if the main operator is proven to be malicious.

Blockchain Verification In order to process deposits or
exits that happen on-chain, the TEE must be informed about
the latest state of the ledger every epoch. Hence, we need a
secure blockchain verification algorithm on the TEE to ensure
that the operator cannot provide incorrect or tampered blocks.
We tackle this challenge similar to [18] in the following way.

In order to verify that a deposit (or exit) has been included
in the smart contract, the block in which the deposit list is
stored, has to be confirmed k-times on-chain. The parame-
ter k is part of the security parameter in the enclave. This
requirement ensures that it is computationally infeasible for a
malicious operator to forge a valid chain of blocks which pre-
vents potentially malicious deposit attempts by the operator.4

Furthermore, in order to make the verification algorithm
more efficient, the TEE uses checkpoints in order to avoid
validating the entire blockchain each time.

Minimizing Blockchain Interaction Since interacting
with the blockchain is slow and expensive, it is crucial to
minimize all communication with the blockchain. In Plasma
protocols, the operator has to prove at the end of every epoch
to all users that she processed all transactions correctly. This
is often done by requiring the operator to provide a zero-
knowledge proof on-chain such that every user can verify the
operator’s computation or by allowing users to challenge the
operator’s behavior on-chain. In our protocol, we make use of
the fact that all computation done in the TEE is by definition
correct. As mentioned before a user’s exit message is of the
form “this user owns v coins in epoch e” which is signed
by the TEE. As we can see, a single signature verification is
sufficient in order to verify this statement and no additional
Merkle proof or zero-knowledge proof validation is required.
In other words, the only on-chain communication happens
when a party wishes to join (deposit) or leave (exit) the sys-
tem5. This is a significant efficiency improvement compared
to other Plasma solutions.

Mass actions and exit size In case the operator is behaving
maliciously by performing a data unavailability attack and not
responding (or responding incorrectly) to on-chain challenges,
users have to exit the system. This often requires the need

4Additionally, this ensures that the block containing the deposit list is not
part of a fork on the blockchain.

5Note that in Ethereum contracts do not activate on their own and in order
to indicate that an epoch or phase has ended, a single transaction must be
sent to the contract.

for mass actions, where all users exit the system at the same
time. In COMMITEE we do not remove the possibility for
mass actions, but the users do not need to exit immediately
(unlike Plasma MVP). We achieve this via a smart contract
which detects data unavailability attacks when the malicious
operator is challenged and does not respond to this challenge
with valid values. In this case the contract enters a “malicious”
state, which halts the entire Plasma system such that users
can withdraw their last valid balance at any time or switch to
a backup operator. This implies that a user does not have to
exit immediately to ensure its balance security.

4 The Plasma Framework Model

In a nutshell, a Plasma protocol Π is a protocol executed
between a set of users P , an operator O and the ledger L
which executes the Plasma contract. The execution of the
Plasma protocol consist essentially of three phases i.e., de-
posit, transaction and exit phase. In the deposit phase users
can deposit coins on the ledger into the Plasma contract, in
the transaction phase users can transfer coins (off-chain) to
one another and in the exit phase users can withdraw coins
from the Plasma contract on-chain. These phases are executed
in order and after the exit phase the protocol continues by exe-
cuting the deposit phase again. Each consecutive execution of
these three phases is referred to as an epoch. More formally,
the following messages are exchanged during each epoch:

Deposit phase: In this phase any user Pi can send a message
of the form (deposit,v) to the contract, where v denotes the
amount of coins that the user wants to deposit into the Plasma
contract. Pi eventually outputs (deposited,v′,Pi) where either
v′ = v if the deposit was successful or v′ = 0 otherwise. If the
deposit was successful and Pi 6∈ P , then set P = P ∪{Pi}.
Transaction phase: In this phase each user Pi ∈ P can send
a message of the form (Pi,Pj,v) to the operator O. This mes-
sage indicates that Pi wants to send v coins to user Pj. At
the end of this phase each user receives a message which
indicates its balance in the current epoch from the operator.
A protocol might (optionally) require O to send the message
(submit,commite) to the contract.6 The contract eventually
outputs a message m ∈ {success, failed}.
Exit phase: In this phase each user Pi ∈ P can send a mes-
sage of the form (exit) to the contract. The contract eventually
outputs (exited,Pi,v), where v denotes the user’s latest bal-
ance in the Plasma system. Pi is then removed from P , i.e.
P = P \{Pi}.

Intuitively, a transaction is valid if the sender owns more
coins than the transaction amount and the transaction is au-
thorized by the sender (which is commonly checked using
digital signatures). The operator is responsible for processing

6commite is a commitment to the updated balances in epoch e, e.g., it can
be a Merkle root or a zero-knowledge proof.

6

the transactions and updating the balances of the users. In
addition, O might need to submit a short digest (also called
commitment) of all transactions (or the new balances of the
users) in one epoch to the Plasma contract.

4.1 Communication and adversarial assump-
tions

We now discuss the communication and adversarial assump-
tions in our modeling. In our model, all parties have access to
a ledger L which supports the execution of Turing complete
programs as described in Section 2.2.

A Plasma protocol is executed in presence of an adver-
sary who can corrupt parties. The corrupted parties are “con-
trolled" by the adversary and can deviate from the protocol
description. Furthermore, the adversary can delay messages
sent by honest users to the ledger by up to t−1 time units.

All parties are connected via authenticated channels
i.e., the adversary can read the messages sent between parties
and can drop them, yet the adversary is not able to modify the
messages that are being sent.

4.2 Properties
We now discuss the properties that a Plasma protocol must
fulfill. These properties can be divided into three categories,
namely correctness, security and efficiency. The correctness
properties describe the protocol’s behavior in the optimistic
case where parties behave honestly and the security properties
describe what the protocol guarantees to honest parties in the
pessimistic case, i.e., in presence of malicious parties.

Deposit and Transaction Phase Correctness During the
deposit phase if an honest user successfully deposits v coins
in the Plasma contract and the operator is honest, the balance
of this user in the Plasma system is increased by v. During the
transaction phase if the sender and the receiver of a transaction
and the operator are honest, the transaction is processed cor-
rectly, i.e., upon making a transaction of the form (Pi,Pj,v′)
the balance of the sender Pi is decreased by the amount v′ and
the receiver’s balance is increased by v′. We note that a user
might send/receive coins to/from multiple users during this
phase. Naturally, all these transactions must be processed cor-
rectly if the parties involved are honest. We note that balances
of the users must be updated by the end of the transaction
phase and not immediately. This feature is usually referred to
as late finality or eventual finality.

Exit Phase Correctness If an honest user exits the Plasma
system, her balance and the user set P are updated accordingly.
For simplicity we assume that a user always exits with all her
coins, and hence her balance is set to 0 and the user is removed
from the Plasma user set.

Deposit Security In presence of malicious parties, an honest
user does not lose the coins she deposited. In other words, an

honest user is able to get her deposits back if they are not pro-
cessed correctly and her balance is not updated accordingly.

Balance Security In presence of malicious parties, an honest
user does not lose any coins at any stage of the protocol, i.e., an
honest user is able to always exit her entire balance. We note
that due to the late finality feature, this property essentially
states that users will either be able to exit with their balance
from the previous or current epoch.

Operator Balance Security An honest operator does not
lose the coins she deposited in the Plasma contract, even in
presence of malicious users.

Efficiency Let δ denote the duration of an epoch. A Plasma
protocol is efficient if δ ∈ O(1), i.e., the duration of an epoch
is independent of the number of users or transactions.

We note that in practice the duration of an epoch can be
dynamically changed based on the number of transactions
that are received. For instance, if none of the users issues
any transaction, the duration of an epoch can be extended.
However, asymptotically the duration of an epoch will always
be constant.

5 COMMITEE Protocol

We now give a description of our Plasma protocol which
makes use of the fact that the operator runs a TEE. Let us first
give an overview of the protocol execution.

5.1 Architecture and Protocol Overview
On a high level, the execution of COMMITEE can be sepa-
rated into the following phases: (1) Initialization of the system,
(2) Verification of the TEE, (3) Depositing coins into the sys-
tem, (4) Transferring coins off-chain between the participants
and (5) Exiting the system (see Figure 1). Note that the phases
(3), (4) and (5) occur repeatedly. The execution of the protocol
starts with O initializing the TEE by installing the program
pCT and calling its GENKEYS function. This function will
initialize all the necessary variables and generates the key pair
(skE , pkE). pkE is hard coded on the contract Γ and is used to
verify messages which are signed by the TEE. At this point
the contract Γ is deployed on the blockchain and users can
join the system by depositing coins on-chain on the contract.
However, before joining, users first verify that the TEE and Γ

are initialized correctly. After a successful verification users
can deposit coins on Γ which will increase their balance off-
chain in the system at the end of this epoch. Users who have
already deposited some coins can make off-chain transactions
by submitting their transactions to O. The operator gathers
these transactions and submits them to the TEE, which then
updates the balances of the users according to the issued trans-
actions. Furthermore, the TEE signs the updated balances of
the users and outputs the list of signed balances which the

7

blockchain b

...

block bl

block bl+1

block bl+2

...

Operator O

TEE

Enclave

Pi

(1)Init

(1) Deploy Γ

(5) Exit Response

(2)V
erify

T
E

E

(4)M
ake

Transaction

(3) Deposit

(5) Exit or Exit Challenge

Architecture of COMMITEE

Figure 1: The architecture of COMMITEE.

operator forwards to the users. This signed message can be
used as evidence of user’s balance, if a party wishes to exit
the system. Finally, users who wish to leave the system can
submit the signed balance to Γ.

However, if the users did not receive their signed balance
from O, they will not be able to exit the system. To mitigate
this, users can request an exit (called exit challenge) on Γ.
This challenge essentially forces the operator to submit the
signed balance to the blockchain. If the request is correctly
responded to, the user exits normally with her latest balance.
However, if the operator continues to behave maliciously and
resists responding to the challenges, the affected users do
not have any possibility of exiting their latest balance. In
this case Γ will deem O as malicious and all users must exit
according to their balance from the previous epoch. We note
that all users have indeed received their signed balance from
the previous epoch, otherwise they would have challenged the
operator during the exit phase of the previous epoch.

5.2 Protocol Description
We now give the description of COMMITEE . Due to lack
of space, we present the pseudo-code of the protocol and the
enclave program in Appendix A, Figures 2 and 3.

Notation In the rest of this work we use the value epochX
which denotes the current epoch counter stored by party
X ∈ P ∪{O}∪ {Γ}. The term epoch refers to the duration
of executing the phases (3), (4) and (5). In our protocol an
epoch has a fixed duration which is measured by the num-
ber of blocks produced on the blockchain. Furthermore each
phase of the protocol has a fixed duration. For simplicity we
assume that this duration is the same for all three phases and
is equal to the time required to publish t blocks. We refer

to the protected memory in the TEE where the program is
installed and executed as enclave which we denote as E. For
simplicity, from this point on, we use the terms enclave and
TEE interchangeably. When we say that a tuple of values is
valid, we mean that the tuple has been created according to
an honest protocol execution.

Initialization The first step of our protocol is the initializa-
tion of the TEE by the operator O. In this stage the TEE first
creates its master (signing) key pair (msk,mpk) and outputs
the master public key mpk. Afterwards, the operator installs
the enclave program pCT with the parameters (κ,Γ,bcp) on
the TEE, where κ is the security parameter used by the en-
clave, Γ is the address of the Plasma contract on L and bcp
is the latest block on L . This block acts as checkpoint for
the verification of future blocks. In order to prevent O from
submitting forged blocks or unconfirmed blocks to the en-
clave, the enclave also derives the parameter k from the se-
curity parameter κ. Essentially, the enclave only considers a
block bl as confirmed if it receives a valid chain of blocks
b̄ := (bl , · · · ,bl+k).
Upon the completion of the initialization step, the operator
calls the key generation function in the enclave, in order to cre-
ate a second key pair and to initialize internal values specific
to the program pCT . The TEE returns ((pkE ,σ),ρ) where
(pkE ,σ) is the generated public key and σ is a signature for
this public key under the TEE’s master secret key msk. Fi-
nally, the value ρ is the quote from the enclave which allows
other users to verify the correct initialization of the installed
program. We note that the public key pkE is hard coded on
the contract Γ. The generation of the additional key pair guar-
antees that even if a malicious O re-installs the program on
the TEE, Γ will reject messages signed under the new key pair
and therefore O cannot reset the system or revert the balances
of the users to 0. This is because the key generation algorithm
is probabilistic and will not generate the same key pair except
with negligible probability.
Verifying the Enclave Before joining the Plasma system,
the users must get convinced that the correct program is in-
stalled on the TEE of the operator and that it is registered
with the Plasma contract. Otherwise the operator might have
installed a different program on the TEE which maliciously
increases or decreases the balances of the users. To this end,
the user verifies the quote ρ which ensures that the program
pCT (κ,Γ,bcp) has been initialized correctly on the TEE. Af-
terwards, the signature σ is verified using the master public
key mpk of the TEE. Naturally, the users check that the public
key stored on the contract is the same public key as the one
that the enclave has created for the program pCT .
If all verification steps were successful, the user proceeds to
the deposit phase. Otherwise, the user aborts and does not
participate in the Plasma protocol.
Deposit Phase In order to deposit coins a user Pi with public
key pki sends a transaction to the Plasma smart contract (let vi

8

be the amount of coins sent by this transaction). The contract
adds the tuple (deposit, pki,vi) to a list DΓ, called deposit list,
which stores all deposits made in the current epoch.

At the end of the deposit phase the operator sends the newly
confirmed blocks to the enclave. The enclave processes the
deposits, signs the deposit list DΓ and outputs both, the list
and its signature. The operator forwards the signed list to all
parties who deposited coins in the current epoch. If a user
who made a deposit does not receive a valid tuple at the end
of the deposit phase, she will exit in the following exit phase.

Transaction Phase In order to transfer coins, a user Pi only
needs to submit a transaction tx = (pki, pk j,v,epochPi) with a
signature σpki← Sign(ski, tx), off-chain to the operator, where
pki, pk j are the public keys of the sender and receiver, respec-
tively, v is the transaction’s value and epochPi is the current
epoch counter. The operator collects all received transactions
during this phase and then executes the transaction processing
function on the enclave by giving the set of received transac-
tions as input (see the enclave program 5.3 for more details).
At the end of the transaction phase the enclave processes all
transactions and returns a list of signed balances vE , where
vE [i] is the new, signed balance of user Pi. The operator sends
vE [i] = ((vi,epochE , pki),σi) to user Pi where σi is a signa-
ture for the tuple (vi,epochE , pki) under the TEE’s public
key pkE . If a user does not receive a correct tuple from the
operator, she will exit in the next exit phase.

Exit Phase In order to withdraw money from the system a
user Pi sends the signed balance value ((vi,epochE , pki),σi)
that she received at the end of the transaction phase to Γ. The
contract verifies that the received values are valid and that the
user did not exit before, i.e., pki 6∈ eΓ, where eΓ is the exit list,
which stores the public keys of all users who exited in the
last two epochs. If the verification was successful the contract
stores the exit in eΓ. At the end of the exit phase the contract
returns vi coins to the exiting user Pi.

Exit Challenge If the user did not receive a valid tuple of the
form ((vi,epochE , pki),σi) at the end of the transaction phase,
she has to challenge the operator by sending the message
(exit_challenge, pki) to the contract. The contract stores this
message which indicates that the operator has been challenged
and adds the user to the list of challenging parties cΓ. In order
to respond to the challenge, the operator sends the balance
value ((vi,epochE , pki),σi) to the contract. This tuple is in
fact the message which a user sends when she wishes to exit
the system. Therefore, upon receiving this response from the
operator, the contract processes this message as a regular exit
made by Pi and removes the challenge from the list cΓ.

However, if the operator does not post a valid response from
the TEE until the end of the exit phase, the contract deems
the operator malicious and halts the system7. Parties can then

7Note that the operator needs to be given enough time to reply to all
challenges. In practice this can be achieved by dividing the exit phase into

only send exit based on messages of the previous epoch. In
a bit more detail, the contract reverts its state to the previous
epoch by decrementing the epoch-counter and it announces a
message indicating that the operator is malicious. The contract
also returns all deposited values from the latest epoch stored
in the deposit list DΓ back to the depositing parties.

Simplifying Assumptions In our protocol description we
assumed that the contract can actively check if a phase has
ended or not (which is done by checking the number of blocks
produced by the blockchain). Yet in Ethereum a contract must
be manually called for it to get activated and be able to check
the time. Naturally, the contract checks whether or not a phase
has ended whenever it receives a message but one must also
add a function which can be called by any party and which
checks the current time and determines if the current phase or
epoch has ended.

In our protocol when a user challenges the operator in case
of data unavailability, she will exit the system even if the
operator responds to the challenge correctly. We note that
the valid response to a challenge is in fact the signed balance
which the user did not receive from O. Hence, we can extend
our protocol in order to allow users to stay in the system if O
responds to the challenge correctly i.e., a user Pi can indicate
in her challenge message whether or not she wishes to exit
upon O publishing ((vi,epochE , pki),σi).

5.3 Enclave Program
Let us now describe the enclave program pCT executed on the
TEE. As mentioned above, the TEE is initialized with a master
key pair (msk,mpk). To install the program on the TEE and
to initialize the enclave, the operator provides the contract
address Γ, the security parameter κ and the checkpoint of
the ledger bcp as parameters. In the following, we give an
overview of the functions in the enclave program.

Generating Keys This procedure is used for the initializa-
tion of the enclave. It generates the program-specific key pair
(skE , pkE) for the TEE which the enclave uses to authenticate
all messages with regard to pCT . The key pair is also signed
with the master secret key msk, which allows parties to verify
it under the master public key mpk. Additionally, all internal
variables, such as the list of deposits D, list of balances v,
list of signed balances vE etc., are initialized. We note that
the program does not allow to execute KEYGEN again af-
ter this point in order to prevent the operator from resetting
the system. The function returns the tuple (pkE ,σE) where
σE := Sign(msk; pkE).

Deposit In this procedure, the TEE adds the deposits made
on-chain to the balances of the users on the enclave. This
function receives as input a list of blocks b, which is the chain
of blocks since the last checkpoint.

two subphases, a challenge and a response phase.

9

The enclave verifies that (1) the chain b is a valid extension
of the checkpoint and (2) the chain consists of t + k blocks.
We require t + k blocks, since t is the duration of the phase
and k are the necessary blocks to confirm the last block of
the phase. If both conditions are met, the enclave extracts the
deposit list from the last bock of the deposit phase, i.e., the
t-th block and updates the balances of the parties. Finally, the
enclave signs and returns the list of deposits (DΓ,σE) to O.

Process Transactions This procedure is used to process
transactions made by the users and to update the balances
of the affected users. The parameter passed to this function is
the list of transactions TO .

For each transaction the enclave verifies that the transaction
is of the form (pki, pk j,v,epochPi ,σpki) and that σpki is a
valid signature under pki. In addition, epochPi must be the
current epoch and the balance of the sender must be greater
or equal to v. If all these conditions are satisfied the balances
of the sender and the receiver are updated according to the
transaction amount.

At this point the latest balance of the users in this epoch can
be updated and the epoch must be finalized. To this end, the
TEE creates and returns the list vE which consists per user
of a tuple of the form ((vi,epochE , pki),σi), where σi is a
signature under the public key of the enclave and epochE is
the enclave’s epoch counter.

Exit The exit procedure is used to set the balance of the users
who exited to 0. The operator provides a chain of blocks
b. If the chain is valid, extends the last checkpoint and has
2t + k blocks (the last checkpoint was made at the end of the
deposit phase, therefore at this point both transaction and exit
phase are finished and hence 2t + k blocks must be sent to
the enclave), the enclave extracts the exit list from the 2tth
block, removes all exiting parties from the system and sets
their balance to 0.

5.4 COMMITEE Security Analysis
Due to the limited space we present the formal security prop-
erties and prove that COMMITEE is secure in Appendix B
and C. Here, we briefly discuss why our protocol achieves the
security properties from Section 4.

Theorem 5.1 (informal). The COMMITEE protocol as de-
scribed in Section 5 satisfies the correctness, security and
efficiency properties as described in Section 4.

The most challenging property to prove is security as it
involves a malicious operator who can behave arbitrarily. We
first shortly discuss why correctness and efficiency are satis-
fied.

It is easy to see that COMMITEE satisfies correctness,
since in case the operator is honest, she will honestly provide
the list of deposits, transactions and exits to her TEE which
honestly updates and returns the signed balances of the users.

All users receive their respective signed balances since the
operator is honest. Hence, deposit, transaction and exit phase
correctness is satisfied. Further, as each phase of the protocol
has a constant duration, the efficiency property is satisfied.

Let us now discuss the three security properties. Due to the
usage of a TEE which acts as a trusted entity, a malicious op-
erator can only mount data unavailability attacks, i.e., refuse
to forward data between users and the TEE. The problem
of data unavailability is a general issue in Plasma protocols
and can never be prevented. However, we show that COMMI-
TEE provides sufficient mechanisms to protect honest parties
in this case. Assume an operator who does not send the signed
balances from the TEE to users after a transaction phase. In
this case, the users will challenge the operator on-chain and
exit the system. If the operator responds to the challenge with
a signed balance tuple generated by the TEE, the user exits
based on her latest balance. Otherwise, the users exit based
on their balance from the previous epoch. In this case, the
contract returns all coins which were deposited in this epoch.
Note that as commit-chain protocols satisfy late finality, users
should be able to exit either with their balance from the previ-
ous or current epoch. Hence, balance and deposit security are
satisfied. Finally, as our protocol does not require the operator
to lock any collateral, operator balance security is satisfied.

6 Evaluation

We evaluated COMMITEE’s costs both in terms of gas costs
and on-chain communication complexity. In order to evaluate
the gas costs we used Ganache-cli [3] to simulate full client
behaviour. The contract itself is written for Solidity version
0.5.3. Our implementation can be found at [2]. To evaluate the
communication complexity we analyzed the size (in bytes) of
the parameters sent for each function call of the contract. In
this evaluation (Table 2), we did not include the size overhead
of sending a transaction, i.e., for function calls without any
parameters we assume a size of 0 bytes.

We compare the results of our evaluation with the most
widely known commit-chain protocol namely NOCUST and
NOCUST-ZKP [24] and with the most common Plasma pro-
tocols, namely Plasma MVP and Plasma Cash.8 We use the
evaluation results from [24] in order to compare COMMI-
TEE with NOCUST/NOCUST-ZKP in terms of gas costs.
On the other hand most implementations of Plasma MVP
and Plasma Cash are experimental and neither optimized in
terms of gas cost nor do they execute flawlessly without errors.
Therefore our comparison with Plasma Cash and MVP is with
respect to the message size of all (potential) interaction that
occurs during the protocol execution. Note that our protocol
is fundamentally different to both Plasma MVP and Plasma
Cash. In Plasma MVP and Plasma Cash, a malicious user

8For comparison we used the omiseGO and loom network implementation
respectively [4, 5].

10

can attempt to exit another user’s coins by sending an exit
request of an already spent UTXO or coin respectively. Hence,
users must constantly observe the blockchain and challenge
malicious behavior on-chain which might be expensive or
problematic in case of blockchain congestion. On the other
hand, in our protocol users only challenge the operator in
case of data unavailability (which is unavoidable according
to the work of Dziembowski et.al., [19]), i.e., in case the op-
erator does not provide the signed balances to all users. We
would like to point out that there are many different propos-
als (other than Plasma MVP and Cash) on how to design a
Plasma protocol such as Plasma Snapp [8], Plasma Debit [7],
More Viable Plasma [6] etc. Yet these are only proposals
mentioned on https://ethresear.ch forums which are not
fully specified. Therefore, we do not compare our protocol
with them.

6.1 Comparison with NOCUST(-ZKP)

Let us first compare COMMITEE with the most well known
commit-chain protocol namely NOCUST and NOCUST-ZKP
[24]. The main difference between NOCUST and NOCUST-
ZKP is that NOCUST-ZKP utilizes zero knowledge proofs
in order to guarantee valid state transitions where NOCUST
allows users to challenge the operator in case the state trans-
action is invalid. Therefore, NOCUST-ZKP is from a design
perspective closer to COMMITEE. However, since COMMI-
TEE uses a TEE there is no need to submit and verify expen-
sive zero knowledge proofs on-chain in order to guarantee
that the state transition is valid. The full comparison can be
found in Table 1. As we can see COMMITEE is almost 3 times
cheaper when finalizing an epoch compared to NOCUST and
more than 19 times cheaper than NOCUST-ZKP. We would
like to point out that our evaluated gas cost does not increase
with the number of users n or transactions v. Furthermore, the
reported gas cost for NOCUST is with respect to a system
where there are only 10 users in the system and the users
make 20 transaction i.e., n = 10 and v = 20.

6.2 Comparison with Plasma MVP and Cash

Table 2 shows the comparison of the message size in bytes for
each of the protocols COMMITEE, Plasma MVP and Plasma
Cash and for each respective phase of an epoch. We give a
more detailed explanation on how Plasma MVP and Cash
work in comparison to COMMITEE in Appendix D.

7 Extensions to COMMITEE

In this section, we discuss two extensions to COMMITEE,
namely we show how to add support for multiple operators
and how to deal with TEE compromise. This increases secu-
rity and applicability of COMMITEE, as users can continue

using the system even in presence of a malicious operator or
a compromised TEE.

7.1 Supporting Multiple Operators
Most previous works on commit-chain or Plasma protocols
[15, 16, 24] assume that only one operator maintains the sys-
tem. This, however, creates a single point of failure, i.e., once
the operator turns malicious or unresponsive, all parties are
required to exit the system. The reason why most Plasma
protocols do not consider a system with multiple operators is
that this would either require to establish consensus among
all operators on the latest state of the system, or it would
require users to publish the latest state of the system (e.g.,
their individual latest balances) on-chain. The first approach
introduces huge communication overhead on the operators
and also requires an honest majority assumption among the
operators. The second approach, however, is not much differ-
ent to requiring all users to exit the protocol and deposit their
coins into a new Plasma system.

By leveraging a TEE, COMMITEE can support multiple
operators and avoid the above mentioned challenges. In our
solution the backup operators (i.e., all operators except for
the currently active one) remain idle until the active operator
is deemed malicious by the contract Γ.

We now elaborate on how to extend our system to a multi-
operator setting. For simplicity, we consider the setting of two
operators, as it is straightforward to extend our approach to
more than two operators. Assume O1 is the active operator,
while O2 is a passive backup operator. Upon setup of the
contract Γ, O1 and O2 register their public keys in a list L
in the contract, such that O1’s public key is the first element
in L. O1 acts as described in our protocol description from
Section 5; O2 on the other hand only needs to monitor Γ every
epoch and check if Γ marks O1 as malicious. As long as O1
is not marked as malicious, O2 can stay inactive.9

However, when Γ announces O1 as malicious, it extracts
the public key of O2 from L (i.e., the next element in L) and
registers O2 as the next active operator. The contract addi-
tionally removes the public key of O1 from L. Upon being
announced as the new active operator, O2 first has to send a
confirmation message to Γ within a pre-defined time period
∆. If Γ does not receive this confirmation from O2 within ∆

time, then all users have to exit the system as described in
the exit protocol of COMMITEE by submitting the message
(exit,(vi,epochE , pki),σi)) to Γ.10

Otherwise, if O2 confirms the operator switch, users have
two options, namely either to exit or stay in the system. In
the latter case, users first verify that the enclave in O2’s
TEE has been initialized correctly (i.e., that the correct pro-

9We emphasize that O2 does not need to interact with O1 at any stage of
the protocol.

10Note that if there was a third operator in L, the contract would register
her as the next active operator.

11

https://ethresear.ch

Function Gas Cost Paid By Complexity
COMMITEE NOCUST(-ZKP) COMMITEE NOCUST(-ZKP)

Deposit 69 815 64 720 User O(1) O(1)
Exit 118 601 169 238 User O(1) O(log(n))

Exit Challenge 66 548 225 642 User O(1) O(log(n)+ log(v))
Exit Response 74 580 68 152 Operator O(1) O(log(n)+ log(v))

Total Exit Challenge/Response 141 128 293 794 User and Operator O(1) O(log(n)+ log(v))
Finalization 32 363 96 073 Operator O(1) O(1)
ZK-proof - >523 618 Operator - O(1)

Total Finalization cost 32 363 >619 691 Operator O(1) O(1)
State Challenge - 281 786 User - O(log(n))
State Response - 80 769 Operator - O(log(n))

Table 1: Comparison of COMMITEE with NOCUST and NOCUST-ZKP with regard to gas cost and on-chain communication
complexity. The gas cost in row “ZK-proof” is only relevant for NOCUST-ZKP, while the gas costs in rows “State Challenge”
and “State Response” are only relevant for NOCUST. The parameters n and v represent the amount of users and the amount of
transactions respectively. The evaluated gas cost for NOCUST(-ZKP) are for n = 10 and v = 20.

Function COMMITEE MVP Cash

Deposit 0 0 105
Exit 117 ≥ 266 ≥ 449 ·n

Exit Challenge 20 ≥ 323 ≥ 253
Exit Response 117 - ≥ 285
Epoch Finalize 0 32 64

Table 2: Sizes in bytes. Only counting function parameters,
while abstracting from constant transaction size. n represents
the balance of a user in Plasma Cash.

gram is installed on the TEE of O2), which can be done in
the same way as described in Section 5.2. Upon success-
ful verification, each user Pi signs and sends the message
((swapO ,(vi,epochE , pki),σi),σpki) to O2, where the tuple
((vi,epochE , pki),σi) represents the user’s balance in epoch
epochE and σpki is a signature under Pi’s public key pki. Note
that this tuple also contains a valid signature σi of O1’s TEE
which serves as proof for Pi’s balance.

Upon receiving these messages, O2 (by using its TEE)
checks if the signatures σi and σpki are valid under the
public key of O1’s TEE and pki respectively. If so, the
TEE stores the balance of this user and outputs a mes-
sage ((vi,epochE , pki),σi

′) to Pi, where σi
′ is a valid sig-

nature with respect to the public key of O2’s TEE. Nat-
urally, if the user does not receive this message from O2
(i.e., O2 is also malicious), she submits the exit message
(exit,(vi,epochE , pki),σi) to Γ.

At the end of this epoch, O2 forwards the list of parties who
exited on Γ to its TEE. The TEE checks if any of the users who
agreed to swap the operator have exited and if so deletes their
information. Note that a party cannot exit twice (by submit-
ting both ((vi,epochE , pki),σi) and ((vi,epochE , pki),σi

′))

because Γ does not allow the same pki to exit twice.
We note that in our security model all operators may be

malicious, hence it is important to allow a user to exit in
case the backup operator does not provide a signature for her
most recent balance. However, in case the backup operator
is honest, changing the operator can be done without any
additional on-chain transaction by the users.

7.2 Handling TEE Compromise

This extension requires that a transaction in COMMITEE is
signed by both, the sender and the receiver. Under this re-
quirement an honest user Pi can compute her finale balance
vi,e after the transaction phase of an epoch e, since she knows
the list of transactions T X i,e consisting of all transactions that
she sent and received in epoch e and she knows her starting
balance vi,e−1 from the previous epoch. As such, if Pi receives
a finale balance ṽi,e 6= vi,e from the operator after the trans-
action phase, she can draw one of the following conclusions:
(1) the operator did not forward some of the transactions in
T X i,e to the TEE or (2) the integrity of the TEE has been
compromised. As mentioned before, the former case is a form
of data unavailability attack from the operator, which cannot
be prevented. However, Pi can distinguish cases (1) and (2),
as she is able to compute all possible combinations of transac-
tions in T X i,e and check if any of these combinations results
in the balance ṽi,e. In case she finds such a combination, she
concludes that case (1) happened (notice that even if this was
a result of a compromised TEE, the effect is the same as in
case of a data unavailability attack). Otherwise, Pi concludes
that the TEE must be corrupted.11 In this case, the user can
challenge the operator on-chain, which requires the operator

11This follows from the fact that the operator cannot forge signatures under
the Pi’s public key.

12

to publish the set of transactions which results in the finale
balance ṽi,e as output by the TEE. If the operator cannot do
so, the contract Γ announces that the TEE has been compro-
mised and users can switch to another operator as previously
described. If the operator can answer the challenge correctly,
it is evident that the user is malicious.

While this solution works well for applications with mod-
erate transaction rate per epoch, it does not scale to use cases
with high transaction frequency per epoch as the computation
of all possible finale balances grows significantly with large
transaction sets.

8 Related Work

We briefly discuss the most important related works on
commit-chains and off-chain solutions using TEEs.

Plasma protocols There are many different variants of
Plasma protocols. Some of the most well known are Plasma
MVP [15], Plasma Cash [20] Plasma Debit [7] and Plasma
Snapp [8]. Yet most of these protocols are mentioned
and discussed only on some forums, e.g., the https://
ethresear.ch website and there has not been any academic
work that formalizes them. One of the other well known
commit-chain/Plasma protocols are NOCUST and NOCUST-
ZKP by Khalil et al. [24], where the latter provides provably
correct executions via zero-knowledge proofs. As we have
argued in the previous section, COMMITEE is a simple yet
efficient Plasma system which offers significant benefits in
terms of on-chain computation and communication. In a re-
cent work, Dziembowski et al. [19] give a lower bound for
the communication complexity in Plasma protocols, showing
that any secure Plasma protocol requires significant commu-
nication with the blockchain. Our protocol does not violate
this lower bound, but shows how to significantly reduce the
concrete communication complexity with the blockchain. As
we show in this work such a system can be quite efficient
and cheap in terms of blockchain interaction and on-chain
computation complexity.

Off-Chain TEE Solutions In a recent work, Das et al. [18]
proposed the FastKitten protocol which allows parties to exe-
cute arbitrary complex smart contracts off-chain even if the
underlying blockchain does not support smart contracts. To
this end they use an operator who has access to a TEE which
allows efficient and correct execution of smart contracts off-
chain. Yet the set of parties who participate in the smart con-
tract is fixed for the entire lifetime of the contract execution.
In addition, the operator must make a security deposit called
collateral which is as large as the initial balance of all users
combined. In contrast our Plasma protocol allows users to dy-
namically join and leave the system and the operator does not
need to deposit any collateral. A similar solution to [18] has
been proposed by Cheng et al. [17], which considers confiden-
tiality preserving off-chain smart contract executions using a

TEE. Similarly, [13], [23] propose solutions for private off-
chain function execution with the help of TEEs. However,
the main goal of these works is to move complex contract
executions off the chain, while they do not focus on reducing
the communication complexity with the blockchain. In fact,
they publish the encrypted state of a contract execution on the
blockchain after each function call, which results in significant
interaction with the blockchain. Our work on the other hand
aims at reducing on-chain communication complexity. Two
other works [25], [22] present privacy preserving off-chain
executions of contracts using TEEs, yet both of them rely on
zero-knowledge proofs which we avoid in our solution.

Lind et al. [27] proposed the Teechain in order to improve
the transaction throughput of payment channels and payment
channel networks. They utilize TEEs in order to process trans-
actions and reduce blockchain interaction in case of disputes.
In order to deal with TEE failures or compromises, a commit-
tee of TEEs is used who must agree on the latest state of the
balances. As this work focuses on payment channel networks,
parties that do not have a direct channel must find a path in the
network through some intermediaries who must have enough
balance in order to facilitate such transaction.

There has been a considerable amount of work on the us-
age of TEEs in conjunction with a blockchain in order to
enhance existing blockchain applications ([11, 29, 39–41]
and many more), which, however, does not focus on off-chain
applications and is hence not closely related to our work.

9 Conclusion

In this work we have designed COMMITEE, an efficient and
secure Plasma protocol which requires minimum on-chain in-
teraction. By using zero-knowledge proofs, the on-chain cost
of the most prominent existing Plasma solution NOCUST-
ZKP increases by a factor of 19 when compared to our pro-
tocol. Furthermore, compared to other well-known protocols
such as Plasma MVP or Cash our protocol reduces the on-
chain communication complexity by at least 2 times (and in
some cases more than 16 times). As an additional contribu-
tion, we present the first model for Plasma/Commit-Chain
protocols, which paves the way for rigorous security analyses
of existing and future Plasma protocols.

Finally, we have shown how to extend COMMITEE in
order to incorporate multiple operators in the system, which
allows users to switch from a malicious operator to an honest
one. Our approach does not require the operators to run a
consensus mechanism, in fact the backup operators do not
need to communicate with the active operator at all. This
extension improves the usability of COMMITEE in case the
active operator acts maliciously, crashes or loses connection.

There are multiple directions in which our work can be
extended. As the technology of TEEs gets more and more
mature and ready for widespread use, it might be interesting
to consider a Plasma protocol where not only the operators

13

https://ethresear.ch
https://ethresear.ch

but also all users operate a TEE. This might be a great way to
reduce blockchain interaction even further or to provide even
stronger security guarantees.

Acknowledgments

This work is funded by the German Research Foundation
(DFG) Emmy Noether Program FA 1320/1-1, by the Ger-
man Research Foundation DFG - SFB 1119 - 236615297
(CROSSING Projects S7), by the German Federal Ministry of
Education and Research (BMBF) iBlockchain Project (grant
nr. 16KIS0902), by the German Federal Ministry of Educa-
tion and Research and the Hessian Ministry of Higher Educa-
tion, Research, Science and the Arts within their joint support
of the National Research Center for Applied Cybersecurity
ATHENE.

References

[1] Bitcoin wiki: Payment channels. https:
//en.bitcoin.it/wiki/Payment_channels.

[2] Commitee. https://github.com/CommiTee-
Commit-Chain/CommiTEE.

[3] Ganache-cli. https://github.com/trufflesuite/
ganache-cli.

[4] loom network. https://github.com/loomnetwork/
plasma-cash.

[5] omisego. https://github.com/omgnetwork/
plasma-mvp.

[6] More viable plasma, June 2018. https:
//ethresear.ch/t/more-viable-plasma/2160.

[7] Plasma debit: Arbitrary-denomination pay-
ments in plasma cash, June 2018. https:
//ethresear.ch/t/plasma-debit-arbitrary-
denomination-payments-in-plasma-cash/2198.

[8] Plasma snapp - fully verified plasma chain, Septem-
ber 2018. https://ethresear.ch/t/plasma-snapp-
fully-verified-plasma-chain/3391.

[9] Zk rollups, Febraury 2020. https://medium.com/
plutusdefi/zk-rollup-scaling-ethereum-for-
the-long-term-287aa95e3ba9.

[10] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay
Ligatti. Control-flow integrity principles, implementa-
tions, and applications. ACM Transactions on Informa-
tion and System Security (TISSEC), 13(1):1–40, 2009.

[11] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach,
Philip Daian, and Ari Juels. Tesseract: Real-time cryp-
tocurrency exchange using trusted hardware. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’19, page
1521–1538, New York, NY, USA, 2019. Association
for Computing Machinery.

[12] Andrea Biondo, Mauro Conti, Lucas Davi, Tommaso
Frassetto, and Ahmad-Reza Sadeghi. The guard’s
dilemma: Efficient code-reuse attacks against intel
{SGX}. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1213–1227, 2018.

[13] Mic Bowman, Andrea Miele, Michael Steiner, and
Bruno Vavala. Private data objects: an overview. ArXiv,
abs/1807.05686, 2018.

[14] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure:{SGX} cache at-
tacks are practical. In 11th {USENIX} Workshop on
Offensive Technologies ({WOOT} 17), 2017.

[15] Vitalik Buterin. Minimal viable plasma, January
2018. https://ethresear.ch/t/minimal-viable-
plasma/426.

[16] Vitalik Buterin. Plasma cash: Plasma with much
less per-user data checking, March 2018. https:
//ethresear.ch/t/plasma-cash-plasma-with-
much-less-per-user-data-checking/1298.

[17] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He,
Nicholas Hynes, Noah M. Johnson, Ari Juels, Andrew
Miller, and Dawn Xiaodong Song. Ekiden: A platform
for confidentiality-preserving, trustworthy, and perfor-
mant smart contracts. 2019 IEEE European Symposium
on Security and Privacy, pages 185–200, 2019.

[18] Poulami Das, Lisa Eckey, Tommaso Frassetto, David
Gens, Kristina Hostáková, Patrick Jauernig, Sebastian
Faust, and Ahmad-Reza Sadeghi. Fastkitten: Practical
smart contracts on bitcoin. Cryptology ePrint Archive,
Report 2019/154, 2019. https://eprint.iacr.org/
2019/154.

[19] Stefan Dziembowski, Grzegorz Fabiański, Sebastian
Faust, and Siavash Riahi. Lower bounds for off-chain
protocols: Exploring the limits of plasma.

[20] Karl Floersch. Plasma cash simple spec, March 2018.
https://karl.tech/plasma-cash-simple-spec/.

[21] Madhumitha Harishankar, Dimitrios-Georgios
Akestoridis, Sriram V. Iyer, Aron Laszka, Carlee
Joe-Wong, and Patrick Tague. Payplace: A scalable
sidechain protocol for flexible payment mechanisms in
blockchain-based marketplaces, 2020.

14

https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://github.com/CommiTee-Commit-Chain/CommiTEE
https://github.com/CommiTee-Commit-Chain/CommiTEE
https://github.com/trufflesuite/ganache-cli
https://github.com/trufflesuite/ganache-cli
https://github.com/loomnetwork/plasma-cash
https://github.com/loomnetwork/plasma-cash
https://github.com/omgnetwork/plasma-mvp
https://github.com/omgnetwork/plasma-mvp
https://ethresear.ch/t/more-viable-plasma/2160
https://ethresear.ch/t/more-viable-plasma/2160
https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198
https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198
https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198
https://ethresear.ch/t/plasma-snapp-fully-verified-plasma-chain/3391
https://ethresear.ch/t/plasma-snapp-fully-verified-plasma-chain/3391
https://medium.com/plutusdefi/zk-rollup-scaling-ethereum-for-the-long-term-287aa95e3ba9
https://medium.com/plutusdefi/zk-rollup-scaling-ethereum-for-the-long-term-287aa95e3ba9
https://medium.com/plutusdefi/zk-rollup-scaling-ethereum-for-the-long-term-287aa95e3ba9
https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/minimal-viable-plasma/426
https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-user-data-checking/1298
https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-user-data-checking/1298
https://ethresear.ch/t/plasma-cash-plasma-with-much-less-per-user-data-checking/1298
https://eprint.iacr.org/2019/154
https://eprint.iacr.org/2019/154
https://karl.tech/plasma-cash-simple-spec/

[22] Ari Juels, Ahmed Kosba, and Elaine Shi. The ring of
gyges: Investigating the future of criminal smart con-
tracts. pages 283–295, 10 2016.

[23] Gabriel Kaptchuk, Matthew Green, and Ian Miers. Giv-
ing state to the stateless: Augmenting trustworthy com-
putation with ledgers. In 26th Annual Network and
Distributed System Security Symposium, NDSS 2019,
San Diego, California, USA, February 24-27, 2019. The
Internet Society, 2019.

[24] Rami Khalil, Pedro Moreno-Sanchez, Alexei Zamyatin,
Arthur Gervais, and Guillaume Felley. Commit-chains:
Secure, scalable off-chain payments.

[25] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papaman-
thou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In 2016 IEEE Sym-
posium on Security and Privacy (SP), pages 839–858,
2016.

[26] Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. In Concurrency: the
Works of Leslie Lamport, pages 203–226. 2019.

[27] Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert,
Emin Gün Sirer, and Peter Pietzuch. Teechain: A se-
cure payment network with asynchronous blockchain
access. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles, SOSP ’19, page 63–79,
New York, NY, USA, 2019. Association for Computing
Machinery.

[28] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate,
Matteo Maffei, and Srivatsan Ravi. Concurrency and
privacy with payment-channel networks. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan
Xu, editors, ACM CCS 17, pages 455–471. ACM Press,
October / November 2017.

[29] Sinisa Matetic, Karl Wüst, Moritz Schneider, Kari Kos-
tiainen, Ghassan Karame, and Srdjan Capkun. BITE:
bitcoin lightweight client privacy using trusted execu-
tion. In Nadia Heninger and Patrick Traynor, editors,
28th USENIX Security Symposium, USENIX Security
2019, Santa Clara, CA, USA, August 14-16, 2019, pages
783–800. USENIX Association, 2019.

[30] Rajarshi Mitra. Plasma breakthrough: Omisego
(omg) announces the launch of ari. https:
//www.fxstreet.com/cryptocurrencies/news/
plasma-breakthrough-omisego-omg-announces-
the-launch-of-ari-201904120245. (Accessed on
02/08/2020).

[31] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[32] Rafael Pass, Elaine Shi, and Florian Tramer. Formal
abstractions for attested execution secure processors.
In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 260–
289. Springer, 2017.

[33] Joseph Poon and Vitalik Buterin. Plasma: Scalable
autonomous smart contracts. 2017.

[34] Joseph Poon and Thaddeus Dryja. The Bitcoin
Lightning Network: Scalable Off-Chain Instant Pay-
ments, January 2016. Draft version 0.5.9.2, avail-
able at https://lightning.network/lightning-
network-paper.pdf.

[35] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus
Peinado. T-sgx: Eradicating controlled-channel attacks
against enclave programs. In NDSS, 2017.

[36] Trustnodes. Ethereum transactions fall off the cliff, three
plasma projects close to release says buterin, 2018.

[37] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the intel {SGX}
kingdom with transient out-of-order execution. In 27th
{USENIX} Security Symposium ({USENIX} Security
18), pages 991–1008, 2018.

[38] Gavin Wood. Ethereum: A secure decentralised gen-
eralised transaction ledger. Ethereum project yellow
paper, 151:1–32, 2014.

[39] Karl Wüst, Sinisa Matetic, Moritz Schneider, Ian Miers,
Kari Kostiainen, and Srdjan Capkun. Zlite: Lightweight
clients for shielded zcash transactions using trusted ex-
ecution. In Ian Goldberg and Tyler Moore, editors, Fi-
nancial Cryptography and Data Security - 23rd Interna-
tional Conference, FC 2019, Frigate Bay, St. Kitts and
Nevis, February 18-22, 2019, Revised Selected Papers,
volume 11598 of Lecture Notes in Computer Science,
pages 179–198. Springer, 2019.

[40] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels,
and Elaine Shi. Town crier: An authenticated data feed
for smart contracts. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’16, page 270–282, New York, NY, USA,
2016. Association for Computing Machinery.

[41] Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and
Ari Juels. Paralysis proofs: Secure dynamic access
structures for cryptocurrency custody and more. In
Proceedings of the 1st ACM Conference on Advances in
Financial Technologies, AFT ’19, page 1–15, New York,
NY, USA, 2019. Association for Computing Machinery.

15

https://www.fxstreet.com/cryptocurrencies/news/plasma-breakthrough-omisego-omg-announces-the-launch-of-ari-201904120245
https://www.fxstreet.com/cryptocurrencies/news/plasma-breakthrough-omisego-omg-announces-the-launch-of-ari-201904120245
https://www.fxstreet.com/cryptocurrencies/news/plasma-breakthrough-omisego-omg-announces-the-launch-of-ari-201904120245
https://www.fxstreet.com/cryptocurrencies/news/plasma-breakthrough-omisego-omg-announces-the-launch-of-ari-201904120245
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf

A Protocol and Enclave Code

In this section we present the protocol and enclave program
pseudo-code corresponding to the explanation in section 5.3.
The protocol code can be found in Figure 2 and the enclave
pseudo-code can be found in Figure 3.

We note that in order to prevent a user who exited in epoch
epochΓ−1 from exiting again if the operator is deemed ma-
licious in epoch epochΓ (as we just explained) the contract
must store the list of users who exited in the previous epoch
and stop such exits. Yet after epoch epochΓ is successfully
concluded, the users who exited in epoch epochΓ−1 can be
removed from the exiting list since they cannot exit again
by submitting their balance from epochΓ− 1. This reduces
the size of the list which is stored on the contract and allows
such users to later rejoin the system by making a deposit. For
simplicity, we did not mention this in the protocol code.

B Formal Properties

B.1 Formal Properties
In this section we formally define the properties that a Plasma
protocol must satisfy.

First let us define some notation. We denote the set of hon-
est parties as H ⊆ P ∪{O}, the set of all finished epochs is
referred to as E and a single epoch from the set in the set of
finished epochs is denoted as ε ∈ E . The formal definition of
the properties depend on the input and output of the users dur-
ing each phase of the epochs. Therefore, we use the following
notation for a protocol execution. Note that for the protocol
description we omitted mentioning these input output behav-
ior (which is only required in our security analysis) for clarity
and in order to be concise.

Protocol execution
A protocol is executed between the users, the operator, and
the contract. Therefore, we consider every protocol as a n +
2 party protocol π where n denotes the total number of users.
For every protocol we first define an input domain Din-π. This
domain specifies which values may be used as inputs to the
protocol. Similarly we use an output domain Dout-π which
specifies the possible outputs for a protocol execution.

In order to model the presence of an adversary A who
can corrupt parties, we introduce the following notation for a
protocol execution during an epoch ε similar to the notation
used in [18].

(O,accnew,P new)← REALπ,A ,ε(I,accold ,P old)

I ∈ Dn
in-π is the input vector and I[i] is the input of Pi ∈ P .

O ∈Dn+2
out-π is defined analogously where O[O] and O[Γ] de-

fines the output of the operator and contract respectively. Note
that parties may have a set of inputs or outputs (e.g., a party

might make multiple transactions in an epoch). accnew,accold

denote the balance vectors before and after the protocol execu-
tion. Concretely accold [i] defines the balance of Pi before the
protocol execution. The values P old and P new denote the set
of parties in the Plasma network before and after the protocol
execution.

Let us now define the input and the output behavior for the
deposit, transaction, and exit phases.

Deposit Phase The input domain Din-d :=
{∅,(deposit,v)} denotes the input values each user
may provide. ∅ indicates that a user did not deposit coins
during the protocol execution. (deposit,v) specifies the
amount v which was requested as deposit. The output
domain is denoted as Dout-d := {∅,(deposited,Pi,v)} where
(deposited,Pi,v) indicates that the deposit of Pi with the
amount v was processed. For simplicity we assume that a
user makes at most one deposit during the deposit phase.

Transaction Phase The input domain for the transaction
phase is defined as Din-t := {∅,{tx}}where tx := (pki, pk j,v)
denotes the transaction that party pki submitted to O and
∅ indicates that no transaction was submitted. The output
domain is denoted as Dout-t := {∅,{tx}} where {tx} is the
set of transactions that were processed.

Exit Phase The input domain for the exit phase is de-
fined as Din-e := {∅,(exit)} where exit indicates that
an exit was requested. The output domain is defined as
Dout-e ⊆ {(exited,Pi,v),(deposit-returned,Pi,v′)} with the
output (exited,Pi,v) indicating that Γ processed an exit by Pi
and sent the amount v to Pi on L and (deposit-returned,Pi,v′)
indicating that Γ returned the deposit that was made on
L . The output domain of Γ can be a set of exited and
deposit-returned messages.

Correctness Properties
The correctness properties describe how the balances of
the users are updated. There are two correctness properties,
namely (1) deposit and transaction phase correctness (2) exit
phase correctness

B.1.1 Deposit and Transaction Phase Correctness

Intuitively deposit phase correctness ensures that if an honest
party deposits coins on the contract and the operator is hon-
est, the balance and the set of users is updated accordingly.
Transaction phase correctness ensures that if the sender of a
transaction and the operator are honest, the transaction is in-
cluded and the user’s balance are updated accordingly. Since
Plasma protocols achieve late finality, both these properties
must hold at the end of the transaction phase. More formally
we have:

16

COMMITEE Protocols

Enclave Verification Protocol

Pi verifying the Enclave
1. Send the message (Verify_enclave) to O

O upon (Verify_enclave) from Pi

2. Send the message (mpk, pkE ,σ,ρ) to Pi

Pi upon (mpk, pkE ,σ,ρ) from O

3. Abort if VrfyQuote(mpk, pCT (κ),(pkE ,σ),ρ) 6= 1 or
Vrfy(mpk, pkE ,σ) 6= 1 or Γ.pkT EE 6= pkE

Deposit Phase Protocol

Pi depositing vi coins
1. Send (deposit, pki,vi) to Γ

O at the end of deposit phase

2. Let b̄ := b.get(t + k)
3. (DΓ,σE)← E.DEPOSIT(b̄)
4. Send (DΓ,σE) to all parties enlisted in DΓ

Pi at the end of the deposit phase

5. Exit during the exit phase If (DΓ,σE) is not received or
Vrfy(pkE ,DΓ,σE) 6= 1

Γ upon (deposit, pki,vi) from Pi

If pki 6∈ eΓ then add DΓ := DΓ ∪{(deposit, pki,vi)}

Transaction Phase Protocol

Pi sending v coins to Pj

1. Let tx := (pki, pk j,v,epochPi) and sign σpki ← Sign(ski, tx)
2. Send (transaction, tx,σpki) to O

O upon (transaction, tx,σi) from Pi

3. Store (transaction, tx,σi) in the list of transactions made in this epoch,
denoted as TO

O at the end of transaction phase

4. Execute the process transactions function on the enclave and let (vE)←
E.PROCESS_TX(TO)

5. Send (vE [i]) to each Pi ∈ P

Pi at the end of transaction phase

6. If ((vi,epochE , pki),σi) is not received or epochE 6= epochPi
+ 1 or

Vrfy(pkE ,(vi,epochE , pki),σi) 6= 1 then execute the challenge proce-
dure during the exit phase
else store the tuple ((vi,epochE , pki),σi) and set epochPi := epochE

Γ at the end of transaction phase

Set epochΓ := epochΓ + 1, DΓ := /0 and announce
(new_block_submitted)

Variable Description

mpk TEE master public key
pkE Enclave public key used in COMMITEE (stored on Γ)
pki User Pi’s public key
DΓ List of deposits stored on Γ

cΓ List of challenges stored on Γ

eΓ List of submitted exits stored on Γ

stateΓ State of Γ (set to malicious if O misbehaves)
b̄ Subset of blocks from the blockchain b
vE List of signed user’s balances (generated by E)
epochE E’s epoch counter
epochΓ Γ’s epoch counter
epochPi Pi’s epoch counter
t Duration of a phase
k Required number of confirmed blocks
ρ Quote generated by the the enclave

Exit Protocol

Pi requesting an exit
1. Send (exit,((vi,epochE , pki),σi)) to Γ

O at the end of exit phase

2. Let b̄ := b.get(2t + k)
3. Execute E.EXIT(b̄)

Γ upon (exit,((vi,epochE , pki),σi)) from Pi

If epochE = epochΓ and Vrfy(pkE ,(vi,epochE , pki),σi)= 1 and pki 6∈
eΓ then Set eΓ = eΓ ∪{(pki,vi)}

Γ at the end of exit phase

If cΓ 6= /0 then set stateΓ := malicious and epochΓ := epochΓ− 1,
remove all the exit requests made in this phase from eΓ, announce the
message malicious and repeat the exit phase
else, if stateΓ = malicious then send vi + vi

′ via L to Pi for every
tuple (pki,vi) ∈ eΓ which was added to eΓ in the current epoch where
(deposit, pki,vi

′) ∈DΓ

else If stateΓ 6= malicious then send vi via L to Pi for every tuple
(pki,vi) ∈ eΓ which was added to eΓ in the current epoch

Exit Challenge Protocol

Pi requesting an exit challenge
1. Send (challenge_exit) to Γ

O upon (exit_challenge, pki) announced by Γ

2. Send (respond,vE [i]) to Γ

Γ upon (respond,vE [i]) from O during exit phase

3. Parse vE [i] as ((vi,epoch, pki),σi).
4. If epochE = epochΓ and Vrfy(pkE ,(vi,epoch, pki),σi) = 1 then cΓ :=

cΓ \{pki} and eΓ := eΓ ∪{(pki,bi)}

Γ upon (challenge_exit) from Pi during the exit phase

If stateΓ 6= malicious and pki 6∈ cΓ and pki 6∈ eΓ then cΓ := cΓ ∪
{pki} and announce (exit_challenge, pki)

Figure 2: Description of COMMITEE protocols.

17

COMMITEE ’s Enclave Code

Variable Description
msk,mpk TEE master secret and public keys
skE , pkE Enclave secret and public keys for COMMITEE
s Name of the next function that can be called
v List of user’s balances
vE List of signed user’s balances
P Set of users
epochE E’s Epoch counter
bcp Blockchain checkpoint stored on E

Algorithm 1 Enclave Program pCT Key Generation, Deposit
Transaction and Exit Phases

1: s= keyGen
2: procedure GENKEYS(κ)
3: if s= keyGen then
4: (skE , pkE)← Gen(1κ)
5: σE ← Sign(msk; pkE)
6: v := []
7: vE := []
8: P := /0

9: epochE := 0
10: s := deposit
11: return (pkE ,σE)
12: end if
13: end procedure
14: procedure DEPOSIT(b̄ = (bl , ...,bl+t , ...,bl+t+k))
15: if VrfyChain(bcp, b̄) = 1 and s= deposit then
16: Extract the deposit list DΓ from bl+t
17: for each d ∈DΓ do
18: parse d as (deposit, pki,vi)
19: P := P∪{pki}
20: v[i]= v[i]+ vi
21: end for
22: σE ← Sign(skE ,DΓ)
23: bcp := bl+t+k
24: s := transaction
25: return (DΓ,σE)
26: end if
27: end procedure

28: procedure PROCESS_TX(TO)
29: if s= transaction then
30: for each tx in TO do
31: Parse tx as (pki, pk j,v,epochPi ,σpki)
32: if Vrfy(pki,(pki, pk j,v,epochPi),σpki) = 1

and epochPi +1 = epochE and v≤ v[i] then
33: v[i] := v[i]− v
34: v[j] := v[j]+ v
35: end if
36: end for
37: epochE := epochE +1
38: vE := /0

39: D := /0

40: for each Pi ∈ P do
41: σi← Sign(skE ;(v[i],epochE , pki))
42: vE := vE ∪{((v[i],epochE , pki),σi)}
43: end for
44: s := exit
45: return (vE)
46: end if
47: end procedure
48: procedure EXIT((b̄ = (bl , ...,bl+2t , ...,bl+2t+k)))
49: if VrfyChain(bcp, b̄) = 1 and s= exit then
50: Extract the exit list eΓ from bl+2t
51: for each (pki, ·) in eΓ do
52: v[i] := 0
53: P := P\{pki}
54: end for
55: bcp := bl+2t+k
56: s := deposit
57: end if
58: end procedure

Figure 3: Pseudo-code of COMMITEE ’s Enclave program.

18

For all epochs ε∈E , input vectors Id ∈Dn
in-d and It ∈Dn

in-t
and balance vectors accold , let the output of the deposit pro-
tocol be (·,accold ,P new)← REALπd ,A ,ε(Id ,accold ,P old) and
the output of the transaction protocol be (O,accnew,P new)←
REALπt ,A ,ε(I,accold ,P new). Furthermore let Txs

Pi
⊆O[O] be

the set of transaction of the form (pki, ·,v) (i.e., transaction
sent by Pi) and let Txr

Pi
⊆O[O] be the set of transaction of the

form (·, pki,v) (i.e., transaction received by Pi). If Pi,O ∈H
the following must hold:

I[i] =O[i] = Txs
Pi

accnew[i] =accold [i]+ x+ ∑
(·,·,v)∈Txr

Pi

v− ∑
(·,·,v′)∈Txs

Pi

v′

where if Id [i] = (deposit,d) then x = d and otherwise x = 0.

B.1.2 Exit Phase Correctness

On a high level exit phase correctness states that if an honest
party exits and the operator is also honest the balance and the
user set will be updated accordingly. This means that balance
of the exiting party is set to 0 and that the party is removed
from the user set. More formally we have:

For all epochs ε ∈ E , input vectors I ∈Dn
in-e and balance

vectors accold , let the protocol output be (O,accnew,P new)←
REALπe,A ,ε(I,accold ,P old), then ∀Pi ∈H : I[i] = exit if O ∈
H it must hold that:

accnew[i] = 0

P new = P old \{Pi}

Security
We now describe the security properties that a plasma protocol
must satisfy.

B.1.3 Deposit Security

Intuitively, deposit security states that if the deposit of an
honest user is not processed correctly, then the user receives
the deposited value at the end of the exit phase.

For all epochs ε ∈ E , input vectors I ∈Dn
in-d and balance

vectors accold , let the protocol output be (O,accold ,P new)←
REALπd ,A ,ε(I,accold ,P old), then ∀Pi ∈H : I[i] = (deposit,v)
where O[i] 6= (deposited,Pi,v), it must hold that:

(deposit-returned,Pi,v) ∈Oe[i]

∧(deposit-returned,Pi,v) ∈Oe[Γ]

where Oe is the output of the protocol at the of the exit phase.

B.1.4 Balance Security

On a high level Balance Security states that an honest user
can always either exit her balance from the current epoch or

the previous epoch. We note that if the user exits accordion to
her balance from the previous epoch, she will also receive the
amount of coins that she deposited in this epoch.

For all epochs ε ∈ E , input vectors I ∈ Dn
in-e and bal-

ance vectors accold ∈ Nn, let the exit protocol output be
(O,accnew,P new) ← REALπe,A ,ε(I,accold ,P old), the ∀Pi ∈
H : I[i] = exit one of the following holds:

(exited,Pi,accold [i]) = O[i] ∈O[Γ]

or

exited,Pi,accold′ [i]) ∈O[i]

∧(exited,Pi,accold′ [i]) ∈O[Γ]

where accold′ [i] is the balance of the user at the beginning of
the depost phase of epoch ε.

B.1.5 Operator Security

Operator Security states that an honest operator does not lose
the money she deposited on the contract. This implies that for
any protocol where the operator has to provide a collateral an
exit mechanism to withdraw that collateral has to be provided.

More formally, let ε0 denote the first epoch and let v de-
note the initial balance stored on Γ in ε0, then for all epochs
ε ∈ E , input vectors I ∈ Dn

in-e and balance vector, accold ∈
Nn, let the exit protocol output be (O,accnew,P new) ←
REALπe,A ,ε(I,accold ,P old), then if O ∈ H , I[O] = exit and
P new = /0, the following holds:

O[O] = (exited,O,v′) ∈O[Γ]

Where v′ ≥ v.

Efficiency

B.1.6 Protocol Efficiency

Let the duration of an epoch ε ∈E be denoted as δ. A Plasma
protocol is efficient if it holds that δ ∈ O(1) for every ε ∈ E .

C Proof of Plasma Properties (formal version)

C.1 Security Analysis

In this section we argue that COMMITEE as described in
section 5 satisfies the properties defined in Appendix B. We
show that the correctness, security, efficiency, properties are
satisfied (except with negligible probability) in our model.

We analyze the relevant steps of each protocol and argue
why these steps result in satisfying the required properties.

19

Assumptions
Let us shorty recall our assumptions and model. First we
assume the adversarial model of the Plasma framework which
we introduced in section 4.1. I other words we consider a
byzantine adversary [26], a secure underlying ledger which
can execute smart contracts and a stable network in which the
parties are connected via authenticated channels.

We assume that the TEE is secure as described in section
2.3. This implies that it is infeasible for an adversary to forge a
valid quote ρ or mount any attacks which would compromise
the TEE.

Furthermore, we assume that the signature scheme Σ =
(Gen,Sign,Vrfy) used in the protocol is existentially unforge-
able under chosen message attack.

Correctness
In order to prove that our protocol satisfies correctness, we
show that deposit and transaction phase correctness and exit
phase correctness are satisfied.

C.1.1 Deposit and Transaction Phase Correctness

We will go through the execution of deposit and transaction
phases and show that deposit and transaction phase correct-
ness is satisfied.

When an honest user Pi deposits coins, the deposit will be
included in the list of deposits DΓ on the contract. At the
end of the deposit phase the honest operator will wait until k
blocks have been published on L . k is the parameter derived
from the security parameter κ ensuring that a chain of k blocks
cannot be forged by an adversary. The honest operator will
provide all blocks since the last phase to the enclave. The
enclave then stores all deposits in D and updates the set of
parties as P∪{pki} for each depositing user.

An honest user Pi only submits transactions of the form
tx := ((pki, pk j,v,epochPi),σpki) if she has enough balance
and also signs the transactions correctly. Furthermore the
honest operator stores all valid transactions in the list TO
and will forward them to the TEE. Therefore the set of
transactions made by the user Pi in this phase is a sub-
set of the transaction which the operator outputs, in other
words it holds that I[i] = O[i] = Txs

Pi
. Furthermore since the

operator is honest, the set of transactions outputted by her
are all processed by the TEE. Hence we have accnew[i] =
accold [i] + x + ∑(·,·,v)∈Txr

Pi
v−∑(·,·,v′)∈Txs

Pi
v′ where x is the

amount of coins deposited by this user during this epoch.
Therefore transaction phase correctness holds

C.1.2 Exit Phase Correctness

If an hones user submits an exit message to Γ, the exit is added
to the list eΓ by Γ. At the end of the exit phase an honest
operator will forward eΓ and the chain b confirming the exit

list to the enclave. Note that in case of an honest operator
non of the challenges will remain un answered at the end of
the exit phase and therefore the operator ill not be announced
malicious by Γ. The balance on the enclave is then updated
such that v[i] = 0 for each exiting user Pi. Furthermore, the
enclave will also update the set of participating parties as
P = P \ {pki}. Therefore, the requirements for exit phase
correctness are fulfilled and exit phase correctness holds.

Security

In order to prove that our protocol satisfies security, we show
that Deposit Security and Balance Security are satisfied.

C.1.3 Deposit Security

According to the enclave program, the operator must pro-
vide t + k blocks to the deposit function of the enclave in
order to proceed to the next phase (see deposit function of
1). If the operator does so the deposit is processed correctly.
However, the operator can refuse to forward the blocks to
the enclave which would effectively halt the system since
the enclave program would not proceed to the transaction
phase or exit phase. This means that the users will not re-
ceive their balance at the end of the transaction phase i.e., the
message vE [i] = ((vi,epochE , pki),σi), since it will not be
produced by the enclave and the operator cannot forge such a
message (except with negligible probability) because of the
unforgeability of the underlying signature scheme. Therefore
the honest users will challenge the operator on-chain (see
the transaction phase and exit challenge protocol of COM-
MITEE in Figure 2) and the operator cannot answer to the
challenges of the honest users since she cannot forge a mes-
sage of the form ((vi,epochE , pki),σi) (except with negligible
probability). Finally the contract will deem the operator mali-
cious and therefore the users will be able to exit their deposit
and balance. In other words an honest user Pi will receive
vi + v′i, where vi is the initial balance of the user at the be-
ginning of this epoch and v′i is the value Pi deposited in this
epoch. Hence, it hold that (deposit-returned,Pi,v) ∈ Oe[i]
and (deposit-returned,Pi,v) ∈ Oe[Γ] if user Pi made a de-
posit in this epoch.

C.1.4 Balance Security

For balance security we assume that the user Pi is honest and
we require that this user receives her whole balance from
the contract when exiting. We separate our analysis in to
two cases, (1) Honest operator and (2) dishonest operator.
Furthermore we do not assume that other users are honest.

Remark 1. The total amount of balances stored on the en-
clave after a successful transaction phase is never greater
than the funds deposited on the Plasma contract Γ.

20

In order to increase the total amount of balances, the en-
clave has to process a deposit. To this end at the end of the
deposit phase, the operator submits the chain b̄ which consist-
ing of the last t + k blocks on the ledger where the tth block
of b̄ has to contain the requested deposit list. The security
parameter k ensures that it is infeasible for the operator to pro-
vide a valid forged chain except with negligible probability.
The enclave can hence extract all deposits from b̄ and include
them in the deposit list DΓ. The enclave does not include
the same list of deposits more than once in the same epoch.
Therefore, the total balance on the enclave cannot be greater
than the funds on the contract at the end of the transaction
phase.

Remark 2. If an honest user requests an exit from
the Plasma contract Γ i.e., by submitting the message
(exit,(vi,epochE , pki),σi)), she will receive the value she de-
posited in this epoch as part of the exit procedure.

The contract stores the deposits of the current epoch epoch
in the list D. If the operator is honest the deposits of each
honest user were included in the Plasma system and are part
of the balance value vi that the user receives when exiting. If
the operator is malicious the contract sends additionally the
stored deposits of the exiting user via the ledger. Altogether
an honest user Pi will receive the correct deposit amount when
exiting. In order to show that balance security is satisfied, we
analyze the case of an honest and a malicious operator.

Case 1 Honest Operator In case the operator is honest, the
user Pi receives the tuple ((vi,epochE , pki),σi) at the end of
the transaction phase. In order to exit the user forwards this
value to the contract which adds the exit request to the list
eΓ. At the end of the exit phase the contract will send the
amount vi to Pi for each exiting user. The correctness of vi
follows from Remark 2 and the fact that TEE processes the
transactions made in this epoch correctly. As discussed in
remark 1, Γ has enough funds to send vi to Pi (note that the
sum of all balances signed by the TEE is not greater than
the total balance of the contract). Lastly, since the operator
is honest she will answer all challenges submitted by other
(malicious) users. Altogether we can conclude that vi coins
will be retired to the user on the ledger and vi = accold [i] and
therefore balance security is satisfied in the honest operator
case.

Case 2 Malicious Operator In case of a malicious opera-
tor, the operator may deviate from the COMMITEE protocol.

If the operator does not send the balance value to an honest
user Pi, this user will start an exit challenge. Consequently, if
the operator responds to the challenge correctly, Pi will exit
as in case 1. Therefore balance security is satisfied.

However, if the operator does not respond with valid values
to this or any other challenge she is deemed malicious by the

contract Γ. In this case the users exit based on their balance
from the previous epoch i.e., by submitting ((v′i,epochE −
1, pki),σi). We note that the users do have this value since
otherwise they would have challenged the operator in the
previous epoch. Therefore, the amount of coins returned to
the users is v′i = accold′ [i] = out[i] and hence balance security
is satisfied.

C.1.5 Operator Security

Since the operator does not deposit money on the Plasma
contract, operator security is trivially satisfied.

C.1.6 Efficiency

Since all protocol phases, (namely deposit, transaction and
exit phases) of COMMITEE have a fixed constant length on
Γ and the honest parties will challenge the operator and exit
the system if the operator does not proceed to the next phases
on the enclave in any epoch (i.e., by not submitting the trans-
action list in the transaction phase or the new blocks in the
deposit and exit phase to the enclave), the duration of an
epoch, δ is constant (δ ∈ O(1)) and efficiency is satisfied.
Note that in the situation described above users will not re-
ceive their balance value (since it must be produced by the
enclave) and as discussed before honest users will challenge
and exit the system. In other words the off-chain execution
of the system is synchronized with the epoch length that is
enforced by Γ (otherwise the users challenge and exit) and
hence the duration of an epoch is constant time.

D Detailed Comparison with Plasma MVP
and Cash

Deposit For depositing in Plasma MVP and COMMITEE,
a party only has to send a transaction with the amount of
coins that it wants to deposit into the contract, which then
can extract and store the sender identifier and the transaction
value. On the other hand, when depositing in Plasma Cash,
a user must send some additional information such as a coin
identifier and a user address to the contract, resulting in an
overhead of 105 bytes.

Exit and Finalize Exits In order to implement the exit
mechanism, Plasma contracts require two functions, namely
an initiating and finalizing Exit function.

1. Initiating Exit. In order to initiate an exit, a user first
has to send an exit request to the Plasma contract. In
COMMITEE the user sends the signed balance value to
the contract to request an exit. In contrast, in Plasma
MVP to initialize an exit the user needs to send the
position of the UTXO, the UTXO itself, the signature
of the UTXO, a signature confirming the inclusion of

21

the UTXO and a Merkle proof for this inclusion. In
Plasma Cash the exit request consists of the token to be
exited, two Merkle proofs (for the current owner of the
token and the previous owner of the token [20]) together
with two signatures and the position in the Plasma chain,
i.e., the epoch counter. This exit request is stored in the
contract and can be challenged while the exit phase is
running.

2. Finalizing Exit. At the end of the exit phase the contract
is called again, in order to process all stored exit requests.
In COMMITEE the exit finalization does not require any
additional information, however Plasma MVP and Cash
require an additional list which indicates the exit requests
that should be finalized in this epoch. This is because in
Plasma MVP and Cash an exit request does not need to
be processed in the same epoch. In fact, the challenge
period is usually set to 7 days [15] in order to give honest
users enough time to challenge malicious exit requests.

Exit Challenge and Response As mentioned before, all
three Plasma systems allow parties to submit a challenge in
case they suspect malicious behavior. We emphasize that there
is a fundamental difference between the challenges in COM-
MITEE and Plasma MVP or Cash. In COMMITEE the users
challenge the operator in case of data unavailability, in order

to exit the system. In comparison, in Plasma MVP or Plasma
Cash users issue a challenge when a malicious user attempts
to steal their coins. Furthermore, in both Plasma MVP and
Plasma Cash parties need to exit in case of data unavailabil-
ity, where in Plasma MVP this must be done immediately
while in Plasma Cash users do not need to rush and it suffices
to eventually exit. Hence, in practice our protocol does not
require users to monitor other user’s exits in order to save
their coins, which is a significant improvement over the other
variants of Plasma.

Finalize Finally, in both Plasma MVP and Cash the operator
must submit additional information such as the Merkle root
(of the Merkle tree which commits to the transactions or coins)
on the ledger. In contrast, in COMMITEE the operator does
not have to submit such a message to the contract, thus saving
additionally on communication with the ledger.

Overall, our protocol substantially reduces the communi-
cation complexity with the ledger. In order to evaluate our
implementation, we estimated the gas costs for deposits, exits
in the honest and malicious cases and for the finalization. We
also analyzed the size of the parameters that are needed to call
the different functions on the contract and compared them to
other implementations (Plasma MVP and Plasma Cash). The
overview of our results can be found in tables 1 and 2.

22

	Introduction
	Our Contribution
	Outline

	Preliminaries
	Digital Signature Scheme
	Blockchain and Cryptocurrencies
	Trusted Execution Environments

	Solution Overview
	Design Challenges

	The Plasma Framework Model
	Communication and adversarial assumptions
	Properties

	CommiTEE Protocol
	Architecture and Protocol Overview
	Protocol Description
	Enclave Program
	CommiTEE Security Analysis

	Evaluation
	Comparison with NOCUST(-ZKP)
	Comparison with Plasma MVP and Cash

	Extensions to CommiTEE
	Supporting Multiple Operators
	Handling TEE Compromise

	Related Work
	Conclusion
	Protocol and Enclave Code
	Formal Properties
	Formal Properties
	Deposit and Transaction Phase Correctness
	Exit Phase Correctness
	Deposit Security
	Balance Security
	Operator Security
	Protocol Efficiency

	Proof of Plasma Properties (formal version)
	Security Analysis
	Deposit and Transaction Phase Correctness
	Exit Phase Correctness
	Deposit Security
	Balance Security
	Operator Security
	Efficiency

	Detailed Comparison with Plasma MVP and Cash

