Quantum Search for Lightweight Block Ciphers:
GIFT, SKINNY, SATURNIN

Subodh Bijwe', Amit Kumar Chauhan® 4, and Somitra Kumar Sanadhya?

! Indian Institute of Technology Ropar, India
{2019aim1011, 2017csz0008} @iitrpr.ac.in
2 Indian Institute of Technology Jodhpur, India
somitra@iitj.ac.in

Abstract. Grover's search algorithm gives a quantum attack against block
ciphers with query complexity O(\/ﬁ) to search a keyspace of size N,
when given a sufficient number of plaintext-ciphertext pairs. A recent result
by Jaques et al. (EUROCRYPT 2020) presented the cost estimates of
quantum key search attacks against AES under different security categories
as defined in NIST's PQC standardization process. In this work, we extend
their approach to lightweight block ciphers for the cost estimates of quantum
key search attacks under circuit depth restrictions. We present quantum
circuits for the lightweight block ciphers GIFT, SKINNY, and SATURNIN.
We give overall cost in both the gate count and depth-times-width cost
metrics, under NIST's maximum depth constraints. We also provide Q#
implementation of the full Grover oracles for all versions of GIFT, SKINNY,
and SATURNIN for unit tests and automatic resource estimations.

Keywords: Quantum cryptanalysis, quantum search, lightweight block
ciphers, GIFT, SKINNY, SATURNIN, Q# programming language.

1 Introduction

Recent advances in quantum computing technologies has prompted the viability of
a large-scale quantum computer. Shor’s seminal work [16] showed that a sufficiently
large quantum computer would allow to factor numbers and compute discrete
logarithms in polynomial time, which can be devastating to many traditional
public-key schemes such as RSA, ECDSA, ECDH. On the other hand, symmetric
cryptosystems like block ciphers and hash functions are generally believed to be
quantum-immune. The only known principle is the quadratic speed-up over the
exhaustive search attacks due to Grover's algorithm [9] when attacking symmetric
ciphers, and thus doubling the key length addresses the concern.

In 2016, Grassl et al. [8] studied the quantum circuits of AES and estimated
the cost of quantum resources with minimizing the overall circuit width, i.e., the
number of qubits needed needed when applying Grover's algorithm to break AES.
Almazrooie et al. [1] improved the quantum circuit of AES-128 by reducing the
number of Toffoli gates. Amy et al. [2] also estimated the cost of generic quantum
pre-image attacks on SHA-2 and SHA-3. Later, Langenberg et al. [13] proposed an

optimized quantum circuit of S-box based on the different S-box design approach
by Boyar and Peralta [5], which improved the previous works [1, 8] by reducing the
total number of Toffoli gates. Recently, Zou et al. [20] improved greatly the required
number of qubits in designing quantum circuit of AES by introducing an optimized
implementation of inverse S-box operation.

Since quantum computers are still in the early stage of its development, it is
difficult to decide the exact cost for each gate. The previous works [1,8,13,19,20]
focused on reducing the number of T gates and the number of qubits in
their circuit construction. In contrast, Kim et al. [12] discussed the time-space
trade-offs for quantum resources needed for key search on block ciphers. They
also proposed various parallelization strategies for Grover's algorithm to address
the depth constraint. Nevertheless, NIST has also initiated a process to solicit,
evaluate, and standardize one or more quantum-resistant public-key cryptographic
algorithms [14]. NIST also suggests various security categories where quantum
attacks are restricted to a fixed quantum circuit depth, by a parameter named
MAXDEPTH. The limitations from NIST motivated the need to provide better
resource estimations for the number of qubits, the number of Clifford+7 gates
required to break either AES or SHA-3.

Recently, Jaques et al. [10] studied the quantum key-search attacks against
AES under NIST's MAXDEPTH constraint [14] at the cost of few qubits. As
a working example, they implemented the full Grover's oracle for key search on
AES and LowMC in Q# quantum programming language. They offer a specific
implementation that gives precise cost estimates of resources that would be required
to run the algorithm on quantum computer. They also reviewed the time-space
trade-offs of parallelization strategies to overcome the MAXDEPTH constraint
from NIST. They proposed quantum circuits of AES and LowMC while minimizing
the gate-count depth-times-width cost metrics, under the MAXDEPTH constraint.

Our contributions. In this work, we present quantum circuits for lightweight block
ciphers — GIFT, SKINNY, and SATURNIN. To implement the full quantum circuits
of these ciphers, we separately present the quantum circuits for S-box, SboxLayer,
and the permutation layer. For the invertible linear maps, we adopt an in-place PLU
decomposition method as implemented in SageMath [18]. We derive the lower cost
estimates for the number of qubits, the number of Clifford+71" gates, the T-depth
and overall circuit depth. We also provide the precise cost estimates for quantum
key search attacks in both the gate count and depth-times-width cost metrics.

We implement the full Grover oracles for GIFT-64, GIFT-128, SKINNY-64,
SKINNY-128, and SATURNIN-256 in Q# quantum programming language [17]
for unit tests and automatic resource estimations. We then derive the Grover
based key-search cost estimates against all the versions of these ciphers under
different security categories as defined by the NIST-PQC standardization process.
The source code of Q# implementations of Grover oracles for GIFT-64, GIFT-128,
SKINNY-64, SKINNY-128 and SATURNIN-256 is publicly available®> under a free

3 https://github.com/amitcrypto/LWC-Q

https://github.com/amitcrypto/LWC-Q

license to allow independent verification of our results.

Organization. In Section 2, we review basic facts concerning quantum computation
and quantum search. In Section 2.3, we examine how the Grover search works with
parallelization improving upon the generic Grover-based attacks. Sections 3, 4 and
5 describe the quantum circuits for block ciphers GIFT, SKINNY and SATURNIN,
and also provide the cost estimates for each of their components. In Section 6,
we estimate the resources needed for quantum key search attack against GIFT,
SKINNY and SATURNIN in both the gate count and depth-time-width cost models.
In Section 7, we conclude this work.

2 Preliminaries

2.1 Quantum computation

A quantum computer acts on quantum states by applying quantum gates to its
quantum bits (qubits). A qubit (]0) or |1)) is a quantum system defined over a finite
set B = {0,1}. The state of a 2-qubit quantum system |¢)) is the superposition
defined as [¢)) = «|0) + B]1), where a, 3 € C and |a|? + |3|> = 1. In general, the
states of an n-qubit quantum system can be described as unit vectors in C2" under
the orthonormal basis {|0...00),]0...01),...|1...11)}, alternatively written as
{]i) : 0 < i < 2™}. Any quantum algorithm is described by a sequence of gates in
the form of a quantum circuit, and all quantum computations are reversible. The
algorithms we analyze are considered in a fault-tolerant era of quantum computing,
where quantum error correction enables large computations. As surface codes are
the most promising error correction candidate today [7], we focus on costs relevant
to surface codes. We pay special attention to the number of T-gates, which are the
most expensive gate on surface codes.

We use the universal fault-tolerant Clifford+7" gate set. The Clifford group for
any number of qubits can be generated by the Hadamard gate H, the phase gate
S = T2, the controlled not-gate (CNOT), and unit scalars. As usual, we write X,
Y, and Z for the Pauli operators.

500 56
S () IR A}

To design quantum circuits for block ciphers, we use only Pauli-X (NOT), CNOT,
SWAP, Toffoli, and AND gates, together with measurements (denoted throughout
as M gates). These gates act like classical bit operations on bitstrings, hence they
are efficient to simulate. A SWAP gate can be implemented using three CNOT gates,
though we assume that its implementation is free as it can be executed via rewiring
only. A quantum AND gate has the same functionality as a Toffoli gate, except
the target qubit is assumed to be in the state |0), rather than an arbitrary state.
The Toffoli and AND gates are further decomposed into Clifford+7" gates, and only

Toffoli and AND require T gates. Figure 1 illustrates the quantum gates we use to
implement reversible classical circuits.

> a > a >
la > la> la > b> fa> la> ‘ ‘
la>—P—lao1> [b> [b> [b> [b>
|b> la®b> [b> la > le> e @nb) > lanb>

(a) Pauli-X gate
(b) CNOT gate (c) SWAP gate (d) Toffoli gate (e) AND gate

Fig. 1: Quantum gates used in quantum implementations of classical circuits

For the implementation of Toffoli gate, we adopt Selinger's approach [15] which
considers that the Toffoli gate is equivalent to a doubly-controlled Z-gate via a basis
change (see Figure 2a). Let |xyz) be a computational basis state, where z,y,z €
{0,1}. The effect of the doubly-controlled Z-gate is to map |zyz) to (—1)*¥* |zyz).
Figure 2 shows the implementation of Toffoli gate of T-depth 1 and overall depth 7
with 7 T' gates, 16 CNOT gates, 2 single-qubit Clifford gates and 4 ancillas.

b Z . ous

BEEEEEE

lr@z>

(a) Toffoli gate via change of basis o>
(b) Doubly-Controlled Z-gate

Fig. 2: T-depth 1 representation of the Toffoli gate [15]

We use Q# programming language [17] to implement the block ciphers. For the
Q# simulator to run, we are required to use the Microsoft QDK standard library’s
Toffoli gate for evaluating both Toffoli and AND gates, which results in deeper than
necessary circuits. The AND gate designs we chose use measurements, hence CNOT,
single-qubit Clifford, measurement and depth counts are probabilistic. As mentioned
in [10], we remark that Q# simulator does not currently support PRNG seeding
for de-randomizing the measurements (see https://github.com/microsoft/
gsharp-runtime/issues/30), which means that estimating differently sized
circuits with the same or similar depth (or re-estimating the same circuit multiple
times) may result in slightly different numbers.

2.2 The key-search problem for block ciphers

Let E: {0,1}* x {0,1}™ — {0,1}" be a block cipher with block size n and a key
size k for a key K € {0,1}*. Given a sufficient number of plaintext-ciphertext pairs,

https://github.com/microsoft/qsharp-runtime/issues/30
https://github.com/microsoft/qsharp-runtime/issues/30

our goal is to recover the unknown key K by exhaustive search methods. Formally,
these plaintext-ciphertext pairs are given in the following set:

{(P1,C4),...,(P.,Cy) €{0,1}" x {0,1}" : E(K, P;) = C;} (1)

for some unknown user's key K € {0,1}*. The exhaustive search method can be
modelled by a special Boolean function f : {0,1}* — {0, 1} which is defined as

, fEK,P)=C; forall 1<i<r)
0, otherwise.
so that we can evaluate f,. upon elements of the domain {0, 1}* until we find the
unique element (the user's key) for which we are searching.

For a fixed plaintext P, the encryption function E(-, P) : {0,1}* — {0,1} is
expected to act as a pseudorandom function. Now let K be the correct key that is
used for the encryption. It follows that for a single plaintext block of length n, we
have Pr[E(K, P) = E(K’, P)] = 2™ For r plaintext blocks given in equation (1),
we have

r—1
Pr(E(K,Py),...,E(K,P,)) = (E(K',P),...,E(K', P,))| =]
=0

1

z—i O
which is 27" for 2 < 2. Since the number of keys different from K is 2k — 1, we
expect number of spurious keys for an t-block plaintext to be (28 —1).27™ ~ 2k=n
Therefore, we must choose 7 such that the chance of obtaining such a spurious key
is negligible if we are performing a search via evaluating f,.. The probability that K
is the unique key consistent with 7 plaintext-ciphertext pairs is 2" (see Section
2.2 of [10]). Thus, if rn = k+ 10 gives the probability 0.999 for correctly identifying
the key. When rn = k, the probability for identifying a unique key is % ~ 0.37.
Hence, r must be at least [£].

The classical exhaustive search for the user's key would require on average O(2F)
classical evaluations of £, : {0,1}* — {0,1}. On the other hand, Grover's quantum
search algorithm [9] gives us the user's key with high probability if we implement
fr :{0,1}* — {0, 1} as a quantum circuit and then we need to execute this quantum
circuit O(2%/2) times. This quantum circuit is referred as a quantum oracle and has
a non-trivial cost to implement, and can be constructed out of r quantum circuits
which each evaluate GIFT, SKINNY, and SATURNIN.

2.3 Grover’s search algorithm

We briefly recall the interface that we need to provide for realizing a key search,
namely Grover's algorithm [9]. Given a search space of 2¥ elements, say {z : = €
{0,1}*} and a Boolean function or predicate f : {0,1}" — {0,1}, the Grover's
algorithm requires about O(\/QT) evaluations of the quantum oracle Uy that outputs

Y o»0z|2) |y ® f(x)) upon input of > a,|z)|y). First, we construct a uniform
superposition of states

1
M:ﬁ Y o),

z€{0,1}*

by applying the Hadamard transformation H®* to |0>®k. We prepare the joint state
1) @ |¢) with [¢) and |¢) = (|0) — [1))/v/2. We define the Grover operator G as

G = (2) (| = DUy,

where (2 |1) (¢)| — I) can be viewed as an inversion about the mean amplitude.
We then iteratively apply the Grover operator (2|1) (¢)| — I)Uy to |1)) such that
the amplitudes of those values @ with f(x) = 1 are amplified. Each iteration can
be viewed as a rotation of the state vector in the plane spanned by two orthogonal
vectors; the superposition of all indices corresponding to solutions and non-solutions,
respectively. The operator GG rotates the vector by a constant angle towards the
superposition of solution indices. Let 1 < M < N be the number of solutions and
let 0 < 6 < /2 such that sin?(6) = M/N.

When measuring the first qubits after j > 0 iterations of G, the success
probability p(j) for obtaining one of the solutions is p(j) = sin®((2j + 1)#), which

is close to 1 for j ~ 15+ Hence, after E %l iterations, measurement vyields a

solution with overwhelming probability of at least 1 — % The exact complexity of
the Grover search can be estimated by implementing the oracle circuit efficiently.
It is thus essential to have a precise estimate of the quantum resources needed to
implement the oracle.

2.4 Grover oracle

As explained above in subsections 2.2 and 2.3, we need to design a Grover oracle to
implement the Grover's algorithm and we also need a sufficient number of known
plaintext-ciphertext pairs to recover the key successfully. The Grover oracle encrypts
r plaintext blocks under the same candidate key and computes a Boolean value that
encodes whether all 7 resulting ciphertext blocks match the given classical results.
A circuit for the block cipher allows us to build an oracle for any r by simply fanning
out the key qubits to the r instances and running the r block cipher circuits in
parallel. Then a comparison operation with the classical ciphertexts conditionally
flips the result qubit and the r encryptions are uncomputed. The constructions of
such an oracle are shown in Figures 3 and 4 for r = 1 and r = 2 respectively.

2.5 Cost metrics for quantum circuits

In this work, we consider the two cost metrics proposed by Jaques and Schanck [11].
The fist cost metric is the G-cost as the total number of gates. The second cost
metric is the DW-cost as the product of circuit depth and width.

Fig. 3: Grover oracle construction for block cipher using single message-ciphertext
pair. FwEnc represents the ForwardEncryption operator. The middle operator (=)
compares the output of Encryption operation with the provided ciphertexts and flips
the target qubit if they are equal.

| 1
1
|k > — =k >
s > FwEnc FwEnc' = >
HOES o>
1 |
! |
o s D Jany
H0>=p o0~
Im2 > ———— FwEnc FwEnc' 1= lma >
1[0 > o>
1
| 1
[=> 1 =] —->

Fig. 4: Grover oracle construction for block cipher using two message-ciphertext
pairs. FwEnc represents the ForwardEncryption operator. The middle operator (=)
compares the output of Encryption operation with the provided ciphertexts and flips
the target qubit if they are equal.

From the recent work by Jaques et al. [10], we briefly recall the following
discussion on the cost of Grover's algorithm with or without depth restriction.

The cost of Grover’s algorithm. Let the search space have size N = 2% Suppose
we use an oracle G such that a single Grover iteration costs G, gates, has depth Gg,
and uses G,, qubits. Let S = 2° be the number of parallel machines that are used with
the inner parallelization method by dividing the search space in S disjoint parts. In
order to achieve a certain success probability p, the required number of iterations can
be deduced from p < sin?((2j 4 1)6) which yields j, = [(sin™!(,/p)/0 — 1)/2] ~

sin™(/p)/2.4/N/S. Let ¢, = sin~*(\/p)/2, then the total depth of a j,-fold
Grover iteration is

D = j,Gg = cp/N/S.Gg = CPQ%GCI cycles. (4)

Each machines uses j,G, ~ ¢,\/N/S.G, = cﬂ?Gg gates, i.e., the total G-cost
over all § machines is

G =8j,G; ~ c,VN.S.G, = cPZ%Gg cycles. (5)

Finally the total width is W = S.G,, = 2°G,, qubits, which leads to a DW-cost

DW =~ ¢,V N.5.G,G,, = cp2% Gy4Gyy qubit-cycles. (6)
These cost expressions show that minimizing the number S = 2% of parallel

machines minimizes both G-cost and DW-cost. Thus, under fixed limits on depth,
width, and the number of gates, an adversary's best course of action is to use
the entire depth budget and parallelize as little as possible. Under this premise,
the depth limit fully determines the optimal attack strategy for a given Grover oracle.

Optimizing the oracle under a depth limit. Grover's full algorithm does not
parallelize well; thus it is generally preferable to parallelize it within the oracle circuit.
Reducing its depth allows more iterations within the depth limit, hence reducing the
necessary parallelization.

Let D,,q. be a fixed depth limit. Given the depth G4 of the oracle, we are able
to run jmaz = | Dmaz/Ga| Grover iterations of the oracle G. For a target success
probability p, we obtain the number S of parallel instances to achieve this probability
in the instance whose keyspace partition contains the key from

B N.sin~'(y/p) 2 ki
5= ’7(2'|_Dmax/GdJ + I)QW G2 e (7)

max
Using this in equation (5) give the total gate count of

G4G
G= ci?kﬁ gates. (8)

max

The total DW-cost under the depth constraint is

2
mazxr

G3Gy
DW = 22" Tz qubit-cycles. (9)

Therefore, our goal is to minimize GZGU, cost of the oracle circuit to minimize total
DW-cost. In its call for proposals to the post-quantum cryptography standardization
effort [14], NIST introduces the parameter MAXDEPTH as such a bound and
suggests that reasonable values are between 240 and 296, Whenever an algorithm's
overall depth exceeds this bound, parallelization becomes necessary. We assume
that MAXDEPTH constitutes a hard upper bound on the total depth of a quantum
attack, including possible repetitions of a Grover instance.

3 A quantum circuit for GIFT-128

GIFT [3] is family of lightweight block ciphers with SPN structure consists of
two ciphers, namely GIFT-64/128 and GIFT-128/128. GIFT-64/128 uses 64-bit
plaintext, 128-bit initial key and consists of 28 rounds. Whereas GIFT-128/128
uses 128-bit plaintext, 128-bit initial key and consists of 40 rounds. We implement
GIFT in Q# programming language and provide the cost for full quantum circuits

of GIFT-64/128 and GIFT-128/128.

Round function. Each round of GIFT-64/128 and GIFT-128/128 consists of there
major subroutines: SubCells, PermBits and AddRoundKey, which are described as
follows:

e Initialization: The cipher receives an n-bit plaintext b,_1b,_2...bg as
the cipher state S, where n = 64,128 and by being the least significant
bit. The cipher state can also be expressed as s many 4-bit nibbles
S = ws_1||ws—2]|...||wg, where s = 16,32. The cipher also receives a
128-bit key K = kr||ks]| .. .||ko as the key state, where k; is a 16-bit word.

e SubCells: The S-box is applied to each nibble of the cipher state X. The GIFT
S-box is given in Table 1.

zr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
GS(z)1 10 4 126 153 9 2 1311 7 5 0 8 14

Table 1: Specifications of 4-bit S-box of GIFT.

The quantum circuit implementation of GIFT S-box requires 4 Toffoli gates,
2 CNOT gates, and 6 Pauli-X gates. We ignore the SWAP gate as it can be
implemented freely via reshuffling of wires. The quantum circuit for 4-bit S-box
is shown in Figure 5.

) P—{x}——x} q
PN G 0 Wy D o
» S S
q3 a [x} q3

Fig. 5: In-place implementation of 4-bit S-box of GIFT.

e PermBits: The bit permutations used in GIFT-64/128 and GIFT-128/128 maps
bits from bit position ¢ of the cipher state to bit position P(i). As given in [3],
the permutation Ps4(7) and Piog(i) are defined as

Poa(i) = 4 L’(SJ +16 ((3 V”‘TMJ + (i mod 4)) mod 4) + (i mod 4)

Prog(i) = 4 HSJ + 32 ((3 VmdeJ + (i mod 4)) mod 4> + (i mod 4)

The quantum circuit implementation of PermBits operation requires no
quantum gates, since it is just a permutation of qubits which can be taken care
of during the code implementation of wires.

e AddRoundKey: This step consists of adding the round key and round
constants. An n/2-bit round key RK is extracted from the key state, it is
further partitioned into 2 s-bit words RK = U||V = wug;...ugl|vs: ... vo,
where s = 16, 32 for GIFT-64/128 and GIFT-128/128 respectively.

For GIFT-64/128, U and V are xored to by; 1 and by; of the cipher state.
bait1 < bair1 @D u;, ba; < ba; @ v;, Vi € {0,...,15}.
For GIFT-128/128, U and V are xored to by; 2 and by;11 of the cipher state.
byita < baita By, b1 baip1 ®v;, Vi € {0,...,31}.

Furthermore, a single bit “1" and a 6-bit round constant C' = c¢5...cq are
xored into the cipher state at bit position 127, 23, 19, 15, 11, 7 and 3 respectively.

The quantum circuit implementation of AddRoundKey operation requires
32 CNOT gates for one round of GIFT-64/128. While the quantum circuit
implementation of AddRoundKey operation requires 64 CNOT gates for one
round of GIFT-128/128.

Key schedule and round constants. The key schedule and round constants are
the same for both versions of GIFT, the only difference is the round key extraction.
A round key is first extracted from the key state before updating the key state.

For GIFT-64, two 16-bit words of the key state are extracted as RK = U||V.
U<+ k,V + k.
For GIFT-128, four 16-bit words of the key state are extracted as RK = U||V.
U < ks||ka, V < k1|ko.
The key state is then updated as follows:
kzllksl| - - ||ko <= k1 >> 2||ko >> 12||k7]| . . . || ke,
where > ¢ is an ¢ bits right rotation within a 16-bit word.

The round constants are generated using the same 6-bit affine LFSR as SKINNY-128,
whose state is denoted as (cs, ¢4, ¢3, C2, C1, o). Its update function is defined as:

(5, ¢€4,C3,C2,C1,C0) < (Ca,€3,C2,C1,C0,C5 B cg B 1).

10

The quantum circuit implementation of updating the key state requires no quantum
gates since it is just a permutation of wires which can be taken care of during the
code implementation of wires. We precompute the round constants, and thus adding
them to proper qubits in each round requiring only Pauli-X gates. The number of
Pauli-X gates depends on the number of ones in round constants.

3.1 Quantum resource estimates of GIFT-128

Here, we give the precise cost estimates for the quantum circuits of GIFT-64/128
and GIFT-128/128. The GIFT S-box can be naturally implemented using Toffoli
gates. We use the Toffoli gate implementation with no measurements from Selinger’s
work [15], i.e., a Toffoli gate can be implemented using 7 T gates, 16 CNOT gates,
2 single-qubit Clifford gates, and 4 ancillas with having T-depth one and overall
depth 7. We implement all the subroutines: SubCells, PermBits, AddRoundKey,
KeySchedule, and AddRoundConstants operations implemented in Q# programming
language. The cost estimates for one round of GIFT-64/128 and GIFT-128/128 are
given in Tables 2 and 3 respectively. We remark that the number of single-qubit
Clifford gates for AddConstants may vary depending on the number of ones in
round constants. The total cost estimates of full GIFT-64/128 and GIFT-128/128
encryption circuits are given in Table 4. We emphasize that the numbers given in
Table 4 includes the cost estimates for two encryption calls made in Grover oracle
since we need to reverse all the operations executed on the wires (see Figure 3).

Operation #CNOT #1qClifford #T #M T-depth full depth initial width ancillas

In-place S-box 66 14 28 0 4 32 4 4
SubCells 1056 224 448 0 4 32 64 4
PermBits 0 0 0 0 0 0 64 0
AddRoundKey 32 0 0 0 0 1 192 0
KeySchedule 0 0 0 0 0 0 128 0
AddConstants 0 4 0 0 0 1 128 0
Total cost 1088 228 448 0 4 33 192 4

Table 2: Cost of in-place circuits implementing one round of GIFT-64/128.

4 A quantum circuit for SKINNY-128

SKINNY [4] is a family of lightweight tweakable block ciphers, with several block
sizes and tweakey sizes, namely SKINNY-64/64, SKINNY-64/128, SKINNY-64/192
and SKINNY-128/128, SKINNY-128/256, SKINNY-128/384. The internal state
of SKINNY can be viewed as a (4 x 4) square array of cells, where each cell is a
nibble (in the n = 64 case) or a byte (in n = 128 case). The number of rounds
depends upon the tweakey size, for example, SKINNY-64/64 has 32 rounds, and

11

Operation #CNOT #1qClifford #T #M T-depth full depth initial width ancillas

In-place S-box 66 14 28 0 4 32 4 4
SubCells 2112 448 896 0 4 32 128 4
PermBits 0 0 0 0 0 0 128 0
AddRoundKey 64 0 0 0 0 1 256 0
KeySchedule 0 0 0 0 0 0 128 0
AddConstants 0 4 0 0 0 1 128 0
Total cost 2176 452 896 0 4 33 256 4

Table 3: Cost of in-place circuits implementing one round of GIFT-128/128.

Operation #CNOT #1qClifford #T #M T-depth full depth width
GIFT-64/128 61056 12768 25088 0 224 1851 260
GIFT-128/128 174336 36160 71680 O 320 2643 388

Table 4: Cost estimates for the full encryption circuits of GIFT.

SKINNY-128/128 has 40 rounds. We implement SKINNY in Q# programming
language and provide the cost full quantum circuits of all versions of SKINNY-64
and SKINNY-128.

Round function. Each round of SKINNY-128 is composed of five operations:
SubCells (SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and
MixColumns (MC).

e SubCells: A s-bit S-box is applied to every cell of the cipher internal state.
For s = 4,8, SKINNY cipher uses a S-box S4 and Sg respectively. The Sbox is
applied to every cell of the internal state X.

The S-box Sy can be described with four NOR and four XOR operations. If
To,..., T3 represent the eight input bits of the S-box, it basically applies the
following transformation on the 4-bit state:

(w3, 2, 21, T0) — (T3, 22, 21,70 © (T3 V 12)),
followed by a left shift bit rotation.

An 8-bit Sbox is applied to every cell of the internal state X. If xg,..., 27
represent the eight input bits of the Sbox, it basically applies the following
transformation on the 8-bit state:

(.’L‘7, X6, L5, T4, T3,T2,T1, 1'0) — ($77 X6, Ts, fE4€B(.’L‘7 \ mﬁ)v x3,T2,T1, xo@(fs \ x2))a
followed by the bit permutation:

(@7, x6, x5, Ta, T3, T2, T1,To) —> (T2, T1,T7, Te, Ta, T3, T3, T5),

12

repeating this process 4 times, except the last iteration where there is just a bit
swap between x; and xs.

The quantum circuit for 4-bit S-box and 8-bit S-box are shown in Figures 6
and 7 respectively. The quantum circuit implementation of 4-bit S-box
operation requires 4 Toffoli gates and 10 Pauli-X gates. The quantum circuit
implementation of 8-bit S-box operation requires 8 Toffoli gates and 22 Pauli-X
gates. We ignore the count of SWAP gates as these can be implemented freely
via simple reshuffling of wires.

do C) @ @ q0
o X S S o
@ —x] X6 J @
s — (XKD K] b .

Fig. 6: In-place implementation of 4-bit S-box of SKINNY-64.

D Xy (¥ "
o— 5+ x X+ "
g2 —[x] [x] 7
% —x] {x] q3
q4 [x] [x] q
4 [x] [x] 1 s
XX W o
X+ RS "

Fig. 7: In-place implementation of 8-bit S-box of SKINNY-128.

e AddConstants: A 6-bit affine LFSR, whose state is denoted as

(res, req, res,reg,re1,rcg) and is used to generate round constants. lts
update function is defined as

(res,req,res, reg, e, reg) — (req, res, rea, vy, v, ey S reg B 1).

The six bits are initialized to zero, and updated before use in a given round. The
bits from LFSR are arranged into one 4 x 4 array (only the first column of the
state is affected by the LFSR bits), depending on the internal state's size.

co 000
ct 000
c2 000
0 00O

13

with ¢ = 0x2 and
(co, c1) = (0]/0]|0[[0][res||rea||rer[reo, 0[|0][0][0][0f[0]|res |[rea).

The round constants are combined with the state, respecting array positioning,
using bitwise exclusive-or. We precompute all the round constants, and thus
adding constants to proper qubits in each round requires only Pauli-X gates.
The number of Pauli-X gates depends on the the number of ones in each round
constant.

AddRoundTweakey: The first and second rows of all tweakey arrays are
extracted and bitwise exclusive-xored to the cipher internal state X. More
formally, for ¢ = {0,1} and j = {0,1,2, 3}, we have:

[] Xi,j = Xi,j D TKli,j when z =1

[] Xi,j = Xi,j &) TKLLJ D TKQ%J when z = 2

[] Xi,j = A4j &) TK].Z‘J' D TKQi,j D TK?)Z"]' when z = 3.
Tweakey arrays are updated according to a fixed permutation as given in [4].

The quantum circuit implementation of AddRoundTweakey operation for
SKINNY-128 with 128-bit tweakey size requires (8 x 6) = 48 CNOT gates.

ShiftRows: The rows of the cipher state cell array are rotated to the right. The
second, third, and fourth cell rows are rotated by 1, 2, and 3 positions to the
right, respectively. This operation is similar to AES.

The quantum circuit implementation of ShiftRows operation is free, since it
is just a permutation of qubits which can be taken care of during the code
implementation of wires.

MixColumns: Each column of the cipher internal state array is multiplied by
the following binary matrix M :

—_ O = =
O~ OO
=
OO O =

The PLU decomposition of matrix M implemented in SageMath [18] gives

_ O = =
o= O O
=
[eNelS
o OO =
[l e Ne)
oSO RO
_ o oo
— = O
SO RO
o OO
_ o oo
OO O =
oSO RO
O~ =
— = O

The permutation P does not require any quantum gates and instead, is realized
by appropriately keeping track of the necessary rewiring. While the lower- and
upper-triangular components L and U of the decomposition can be implemented

14

using the appropriate CNOT gate. The quantum circuit implementation of
binary matrix M requires 4 x 6 = 24 CNOT gates and 8 x 6 = 48 CNOT
gates for SKINNY-64 and SKINNY-128 respectively. As for the full MixColumns
operation, we need to apply M four times on each column, therefore, we need
(4x24) = 96 and (4x48) = 192 CNOT gates for SKINNY-64 and SKINNY-128
respectively to implement MixColumns operation.

4.1 Quantum resource estimates of SKINNY

Here, we give the cost estimates of the quantum circuits of SKINNY-64 and
SKINNY-128 with various tweakey sizes. The SKINNY S-boxes can naturally be
implemented using Toffoli gates. We use the Toffoli gate implementation with no
measurements from Selinger's work [15]. We implement all the subroutines: SubCells,
AddConstants, AddRoundTweakey, TweakeyUpdate, ShiftRows, and MixColumns in
Q# programming language for automatic resource computations. The complete
cost estimates of one round and full quantum circuits of SKINNY-64/64 and
SKINNY-128/128 are given in Tables 5, 6 and 7 respectively. We remark that the
number of single-qubit Clifford gates for AddConstants may vary depending on the
number of ones in round constants. We also emphasize that the numbers given in
Table 7 includes the cost estimates for two encryption calls made in Grover oracle
since we need to reverse all the operations executed on the wires (see Figure 3).

Operation #CNOT #1qClifford #T #M T-depth full depth initial width ancillas
In-place S-box 64 18 28 0 4 32 4 4
SubCells 1024 288 448 0 4 32 64 4
AddConstants 0 4 0 O 0 1 64 0
AddRoundTweakey 32 0 0 O 0 1 128 0
TweakeyUpdate 0 0 0 o0 0 0 64 0
ShiftRows 0 0 0 o0 0 0 64 0
MixColumns 96 0 0 o 0 5 64 0
Total cost 1152 292 448 0 4 41 128 4

Table 5: Cost of in-place circuits implementing one round of SKINNY-64/64.

5 A quantum circuit for SATURNIN-256

SATURNIN-256 [6] is an SPN based block cipher with an even number of rounds,
numbered with 0. The composition of two consecutive rounds is called super-round.
It uses a 256-bit internal state X and a 256-bit key state K, and both are
represented as a (4 x 4 x 4)-cube of nibbles. Two additional 16-bit words RCy and
RC; are also used for generating the successive round constants.

15

Operation #CNOT #1qClifford #T #M T-depth full depth initial width ancillas

In-place S-box 128 38 5 0 4 33 8 4
SubCells 2048 608 896 0 4 33 128 4
AddConstants 0 4 0 O 0 1 128 0
AddRoundTweakey 64 0 0 0 0 1 256 0
TweakeyUpdate 0 0 0 O 0 0 128 0
ShiftRows 0 0 0 O 0 0 128 0
MixColumns 192 0 0 0 0 5 128 0
Total cost 2304 612 896 0 4 42 256 4

Table 6: Cost of in-place circuits implementing one round of SKINNY-128/128.

Operation #CNOT #1qClifford #T #M T-depth full depth width
SKINNY-64/64 73792 18720 28672 256 2537 196
SKINNY-64/128 85888 21054 32256 288 2851 260
SKINNY-64/192 98624 23396 35840 320 3176 324
SKINNY-128/128 184448 48996 71680 320 3243 388
SKINNY-128/256 228224 58772 86016 384 3891 516
SKINNY-128/384 254720 63666 93184 416 4215 644

O OO O oOo

Table 7: Cost estimates for full encryption circuits of SKINNY.

Round function. Round 0 starts by xoring K to the internal state X. Then each
round applies the internal state by the following transformations:

e Sbox layer: An Sbox layer applies a 4-bit S-box o to all nibbles with an even
index, and a 4-bit S-box o to all nibbles with an odd index. These two S-boxes
are defined in Table 8, and their quantum circuit implementations are shown in
Figures 8 and 9.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15 4 7 13 9 8 125 2 10 3 11
9 13 2 151 1 7 6 4 5 3 8 12 10 14

Table 8: Specifications of SATURNIN-256 S-boxes

Q
o
—~
)
N

ool o
[e)]
=
~
=

The quantum circuit implementation SATURNIN S-boxes requires 10 Toffoli
gates, 4 CNOT gates, and 24 Pauli-X gates. Additionally, we need 4 qubits and
1 ancilla to implement S-boxes. We ignore the count of SWAP gates as these
can be implemented freely via simple reshuffling of wires.

e Nibble permutation: A nibble permutation SR, depends on the round number
r. For all even rounds, SR, is an identity function. For odd rounds of index

16

Go —Xjo—— ., »—1%7 o
a 1 [x}] XHB{X {x} l
. &\ 5 x Speif-
RN X = = "
0 DD B OO DEHEG——o

Fig. 8: In-place implementation of 4-bit S-box oy of SATURNIN-256.

@0 ——15] 5 X = @
@ 5 paleNpu B Ll
il 5 B 5 A
@ B[X X XH—P @
1 —— BEEO-OEE XX HERH—— 0

Fig.9: In-place implementation of 4-bit S-box o7 of SATURNIN-256.

r with » mod 4 = 1, SR, = SRg;ce maps each nibble with with coordinates
(z,y,2) to (x+y mod 4,y,z). For odd rounds of index r with r mod 4 = 3,
SR, = SRsheet maps each nibble with with coordinates (x,y, z) to (x,y,z + ¥y
mod 4).

No quantum gate is required to implement the nibble permutation since it is just
a reshuffling of the wires which can be taken care of during the implementation.

Linear layer: A linear layer MC is composed of 16 copies of a linear operation
M over (F3)* which is applied in parallel to each column of the internal state.
The transformation M is defined as

a(a) (b)) a)®ecdd
a®ad)®bda?(c)Dcda?(d)®ald) dd
a®bda(c)®a?(d) ® ald)

() ®ada?(b)®ad) b cdald) ®d

[O T

where a is the nibble with the lowest index, and « transforms the four bits
g, 1, T2, x3 of each nibble by the following multiplication

o 0100 Zo
o T N 0010 T
i) 0 0 0 1 Xro
T3 1100/ \as

The PLU decomposition of the above binary matrix gives

0100 0100 1000 1100
0010 [001O0 0100 0100
0001 (0001 0010 0010
1100 1000 0001 0001

17

One CNOT gate is required to implement the transformation o and two
CNOT gates are required to implement the transformation o?. Overall, only
(8x44+2x1+4+2x2) = 38 CNOT gates are required to implement
one transformation M. As linear layer needs 16 parallel copies of the linear
transformation M, we need a total of (16 x 38) = 608 CNOT gates to
implement the linear layer MC.

e Inverse of nibble permutation: Apply the inverse of the previous nibble
permutation SR *.

The quantum circuit implementation of the inverse of nibble permutation is
free as well, i.e., no quantum gate is required.

e AddRoundKey: The sub-key addition is performed at odd rounds only.

The quantum circuit implementation of key addition requires 256 CNOT gates
for every two consecutive rounds (one super-round) of SATURNIN-256.

Key schedule and round constants. The subkey is composed of the XOR of a
round constant and either master key or a rotated version of master key:

e Round constant: The round constants RCy and RC; are updated by clocking
16 times two independent LFSR of length 16 in Galois mode with respective
feedback polynomial X1 + X5+ X34+ X241 and X0+ X6+ X4+ X +1.1In
other words, we repeat 16 times the following operation: if the most significant
bit of RC; is 0, then RC; is replaced by RC; < 1, otherwise it is replaced
by (RC; <« 1) A poly, with poly, = 0x1002d and poly; = 0x10053. The
two words RCy, RC; are then xored to the internal state. Bit number 7 in
RCy is added to bit 0 of the nibble with index 4i for 0 < ¢ < 15, and bit
number ¢ in RC; is added to bit 0 of the nibble with index (4i+2) for 0 < ¢ < 15.

We precompute the round constants on a classical computer. Thus, the
quantum circuit implementation of adding round constants to the current states
requires 16 Pauli-X gates only.

e Round key: If the round index 7 is such that » mod 4 = 3, the master key
is xored to the internal state; otherwise a rotated version of the key is added
instead. The nibble with index ¢ receives the key nibble with index (i + 20)
mod 64 for 0 < ¢ < 63.

The quantum circuit implementation of subkey generation requires no quantum
gates, since it is simply a rotation of key bits.

5.1 Quantum resource estimates of SATURNIN-256

Here, we give the precise cost estimates for the quantum circuits of SATURNIN-256.
The SATURNIN S-boxes can naturally be implemented using Toffoli gates. We use

18

the Toffoli gate implementation with no measurements from Selinger's work [15].
We implement SATRUNIN's subroutines: SboxLayer, (Inverse) NibblePermutation,
MixColumns, AddRoundConstants and SubKeyGeneration operations implemented
in Q# programming language. The complete cost estimates for one round and full
SATURNIN-256 are given in Tables 9 and 10 respectively. We emphasize that the
numbers given in Table 10 includes the cost estimates for two encryption calls made
in Grover oracle since we need to reverse all the operations executed on the wires
(refer to Figure 3).

Operation #CNOT #1qClifford #T #M T-depth full depth initial width ancillas
In-place S-box 164 44 70 0 10 86 4 5
SboxLayer 10496 2816 4480 0 10 86 256 5
NibblePerm 0 0 0 0 0 0 256 0
MixColumns 608 0 0 0 0 7 256 0
InverseNibblePerm 0 0 0 0 0 0 256 0
AddRoundKey 256 0 0 0 0 1 512 0
AddConstants 0 16 0 0 0 1 256 0
SubKeyGeneration 0 0 0 o0 0 0 256 0
Total cost 11360 2832 4480 0 10 94 512 5

Table 9: Cost of quantum circuits implementing one round of SATURNIN-256.

Operation #CNOT #1qClifford #T #M T-depth full depth width
SATURNIN-256 455168 112960 179200 O 400 3763 773

Table 10: Cost estimates of full encryption circuit of SATURNIN-256.

6 Quantum key search resource estimates

In this section, we describe the implementations of full Grover oracles for lightweight
block ciphers: GIFT, SKINNY, and SATURNIN. Since Q# implementation provides
cost estimates automatically for these Grover oracles, we provide quantum resource
estimates for full key search attacks via Grover's algorithm. Similar to the work by
Jaques et al. [10], we also consider NIST's MAXDEPTH limit to evaluate the cost
of our algorithms by inner parallelization via splitting up the search space.

6.1 Cost of Grover oracles

As discussed in subsection 2.4, we need a sufficient number of known
plaintext-ciphertext pairs to recover the key successfully. Moreover, the explicit

19

computation of the probabilities in Equation (3) shows that using » = 2 for
GIFT-128 guarantees a unique key with overwhelming probability. If we consider
the key recovery with a success probability lower than 1, it suffices to use
r = [k/n] blocks of plaintext-ciphertext pairs. In this case, it is enough to
use r = 1 for GIFT-64/64, GIFT-128/128, SKINNY-64/64, SKINNY-128/128,
SATURNIN-256. For GIFT-64/128, SKINNY-64/128, SKINNY-128/256, we need
r = 2 plaintext-ciphertext pairs., while we need r = 3 plaintext-ciphertext pairs for
SKINNY-64/192, SKINNY-128/384.

Grover oracle cost for GIFT. The resources for the implementation of full
GIFT-64 and GIFT-128 Grover oracles for the relevant values of r € {1,2} are
shown in Table 11.

Operation r #CNOT #1qClifford #T #M T-depth full depth width
GIFT-64/128 1 61567 13288 25340 63 224 1850 2049
GIFT-128/128 1 175365 37204 72188 127 320 2642 5505
GIFT-64/128 2 123387 26560 50684 127 224 1851 4097
GIFT-128/128 2 350951 74328 144380 255 320 2644 11009

Table 11: Cost estimates for the GIFT Grover oracle operator for » = 1 and 2
plaintext-ciphertext pairs. All operations are performed in-place.

Grover oracle cost for SKINNY. The resources for the implementation of full
SKINNY-64 and SKINNY-128 Grover oracles for the relevant values of r € {1,2, 3}
are shown in Table 12.

Grover oracle cost for SATURNIN. The resources for the implementation of full
SATURNIN Grover oracle for the relevant values of r € {1,2} are shown in Table 13.

6.2 Cost estimates for lightweight block cipher key search

Using the cost estimates for the GIFT-128, SKINNY-128, and SATURNIN-256
Grover oracles from Section 7.1, this section provides cost estimates for full key
search attacks on lightweight block ciphers. Firstly, we provide cost estimates without
any depth limit and parallelization requirements. Table 14 shows cost estimates for
a full run of Grover's algorithm when using EQWQJ iterations of the GIFT-128
Grover operator without parallelization. We only consider the costs imposed by the
unitary operator Uy and ignore the cost of the operator 2 |¢) ()| — I. The G-cost
is the total number of gates, which is the sum of the first three columns in the
table, corresponding to the numbers of 1-qubit Clifford and CNOT gates, T' gates,
and measurements. The DW-cost is the product of full circuit depth and width,
corresponding to columns 6 and 7 in the table.

Tables 15 and 16 show cost estimates for SKINNY-128 and SATURNIN-256
respectively in the same setting as GIFT-128.

20

Operation r #CNOT #1qClifford #T #M T-depth full depth width
SKINNY-64/64 1 74289 19212 28924 63 256 2536 2241
SKINNY-64/128 1 86381 21538 32508 63 288 2850 2561
SKINNY-64/192 1 99113 23872 36092 63 320 3176 2881
SKINNY-128/128 1 185487 50060 72188 127 320 3242 5505
SKINNY-128/256 1 229245 59800 86524 127 384 3890 6657
SKINNY-128/384 1 275311 69560 100860 127 448 4538 7809
SKINNY-64/64 2 148731 38464 57852 127 256 2536 4481
SKINNY-64/128 2 173027 43084 65020 127 288 2850 5121
SKINNY-64/192 2 198657 47828 72188 127 320 3176 5761
SKINNY-128/128 2 371195 100040 144380 255 320 3242 11009
SKINNY-128/256 2 458999 119584 173052 255 384 3890 13313
SKINNY-128/384 2 551421 139172 201724 255 448 4538 15617
SKINNY-64/64 3 223175 57720 86780 191 256 2536 6721
SKINNY-64/128 3 259693 64670 97532 191 288 2850 7681
SKINNY-64/192 3 298137 71656 108284 191 320 3176 8641
SKINNY-128/128 3 556909 150032 216572 383 320 3242 16503
SKINNY-128/256 3 688749 179360 259580 383 384 3890 19969
SKINNY-128/384 3 827499 208720 302588 383 448 4538 23425

Table 12: Cost estimates for the SKINNY Grover oracle operator for r = 1,2,3
plaintext-ciphertext pairs. All operations are performed in-place.

Operation r #CNOT #1qClifford #T #M T-depth full depth width
SATURNIN-256 1 457197 114980 180220 255 400 3762 5889
SATURNIN-256 2 914655 229960 360444 511 400 3764 11777

Table 13: Cost estimates for the SATURNIN Grover oracle operator for = 1 and 2
plaintext-ciphertext pairs. All operations are performed in-place.

Scheme r #CNOT #1qClifford #T #M T-depth full depth width G-cost DW-cost pg

GIFT-64/128 1 1.47-277 1.27.277 1.21-275 1.54-2%9 1.37. 277 1.41.27% 2049 1.19-2%0 1.41.2%° 1/e
GIFT-64/128 2 1.47-280 1.27.27% 1.21.27° 1.55.270 1.37.27! 1.41-27* 4097 1.19-2%! 1.41.2%¢ 1
GIFT-128/128 1 1.05 - 281 1.78 -278 1.73.27° 1.55.27° 1.96- 27! 1.01 .27 5505 1.70-2% 1.35.2%8 1/e
GIFT-128/128 2 1.05 - 252 1.78 -27% 1.73.289 1,56 - 27! 1.96 - 27! 1.01 - 27° 11009 1.70 - 252 1.35 . 2%% 1

Table 14: Cost estimates for Grover's algorithm with | 22%/2| GIFT oracle iterations
for attacks with high success probability, without a depth restriction.

6.3 Cost of Grover search under NIST’s MAXDEPTH limit

Tables 17, 18, 19 and 20 show cost estimates for running Grover's algorithm
against GIFT, SKINNY-64, SKINNY-128, and SATURNIN-256 under a given depth
limit, respectively. This restriction is proposed in the NIST call for proposals
for standardization of post-quantum cryptography [14]. We use the notation and
example values for MAXDEPTH from the call. Imposing a depth limit forces the
parallelization of Grover's algorithm, which we assume uses inner parallelization.

21

Scheme #CNOT #1qClifford #T #M T-depth full depth width ~ G-cost

DW-cost ps

T
SKINNY-64/64 1 1.78-2%7 1.84-2% 1.38.2% 1.54.2%7 1.57-2% 1.94.2%% 2241 1.46-27%
SKINNY-64/64 2 1.78 -2 1.84.2%6 1.38.2%7 1.55.23% 1.57.2%9 1.94.2%% 4481 1.46-2%°
SKINNY-64/128 2 1.03-28' 1.03-27° 1.55.27% 1.55.27° 1.76-27' 1.09.27° 5121 1.67-2%!
SKINNY-64/128 3 1.55-28%1 1.55.27% 1.16-2%° 1.17-27' 1.76-27' 1.09-27° 7681 1.25-2%2
SKINNY-64/192 2 1.19- 2113 1.14. 2111 1.73. 2111 1.55.2102 1.96. 2193 1.21.2%97 5761 1.90-2'13
SKINNY-64/192 3 1.78-2'13 1.71.2111 1.29.2!12 1.17.2103 1.96. 293 1.21.2'97 gea1 1.42.2'!3
SKINNY-128/128 1 1.11-2%' 1.19.279 1.73.27° 1.55.27° 1.96.27' 1.24.275 5505 1.84.25!
SKINNY-128/128 2 1.11-2%2 1.19.28°% 1.73.280 1.56-27' 1.96-27' 1.24-27° 11009 1.84- 28!
SKINNY-128/256 2 1.37 - 2146 1.43 . 2144 1,03 . 2145 1.56 . 2135 1.17. 2136 1.49 . 2139 13313 1.12 . 2147
SKINNY-128/256 3 1.03 - 2147 1.07 - 2!%% 1.55. 2145 1.17. 2136 1.17. 2136 1.49 . 2139 19969 1.68 - 2147
SKINNY-128/384 2 1.65 - 2219 1.66 - 2208 1.20- 229 1.56 - 2199 1.37. 2290 1,74 . 2203 15617 1.33 - 2211
SKINNY-128/384 3 1.23 - 2211 1.25.2209 1.81.2209 1,17.2200 1,37.2200 1,74. 2203 23425 1.99 . 2211

1.06 -
L9551

1.06

1.36 -
.88 1

1.02

1.70 -
1.27 -

1.66

251 1/e
287 1/e

2119 1/¢
2120 1

2287 1/e
1.66 - 1
1.21-
1.81-
1.65 -
1.23 -

288
2193 1 /¢
2153 1

2217 1 /¢
2218 1

Table 15: Cost estimates for Grover's algorithm with &2’“/% SKINNY oracle
iterations for attacks with high success probability, without a depth restriction.

Scheme r #CNOT #1qClifford #T #M T-depth full depth width ~ G-cost

DW-cost pg

SATURNIN-256 1 1.37 - 2776 1.38 . 2™% 1,08 . 2% 1.56 - 2735 1.22. 2736 1.44 . 2739 5889 1.13 - 2T%7 1.03 - 2™°7 1/¢
SATURNIN-256 2 1.37 - 2*47 1.38 . 245 1,08 . 246 1.56. 2136 1.22. 2136 1.44. 239 11777 1.13 - 2148 1.03.2'%% 1

Table 16: Cost estimates for Grover's algorithm with |22%/2] SATURNIN oracle
iterations for attacks with high success probability, without a depth restriction.

7 Conclusion

We explored the Grover key search resource estimates for lightweight block ciphers
GIFT, SKINNY, and SATURNIN under MAXDEPTH limitations as proposed by
NIST's PQC standardization process. First, we implemented the Grover oracle
for GIFT-64, GIFT-128, SKINNY-64, SKINNY-128, and SATURNIN-256 in Q#
quantum programming language. We then presented the concrete cost of quantum
circuits of these ciphers. We also provided the concrete cost estimations for all
ciphers with parallelization of Grover's algorithm under NIST's MAXDEPTH limit.

As future work, it would be interesting to explore other lightweight schemes
submitted to NIST-LWC standardization process for quantum resource estimates
using exhaustive search methods. Since we have studied key search problems for a
single target only, it will be interesting to explore the resource cost of multi-target
attacks. Further, implementing quantum circuits for other block ciphers in any
quantum programming language for concrete cost estimation will be worthwhile
to increase confidence in the post-quantum security of lightweight schemes.

References

1. Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N. Mutter.
Quantum reversible circuit of AES-128. Quantum Information Processing, 17(5):112,
2018.

2. Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent, and
John M. Schanck. Estimating the cost of generic quantum pre-image attacks on

22

scheme MD 7 S log, (SKP) D w G-cost DW-cost
GIFT-64/128 2701 1.01-25% —69.01 1.00-2% 1.01-2%Y 1.70 - 2T™ 1.01 - 272
GIFT-128/128 240 1 1.03-27° —70.04 1.00-2%° 1.38.282 1.73.2!16 1,38 .2122
GIFT-64/128 2% 1 1.01-2?T —21.01 1.00-2°% 1.01-2%% 1.70-2°° 1.01-2°°
GIFT-128/128 2% 1 1.03-2%2 —22.04 1.00-2°* 1.38.23* 1.73.292 1.38.2%
GIFT-64/128 2992 1.00-27 —128.00 1.42-27% 1.00-2™ 1.20-2%F 1.42.2%°
GIFT-128/128 2°° 2 1.00-2° —128.00 1.01-27° 1.34.2"3 1.71.2%% 1.36.2%8

(a) The depth cost metric is the full depth D.

scheme MD r S log, (SKP) T-D W G-cost T-DW-cost
GIFT-64/128 2701 1.89-257 —62.92 1.00 2T 1.89-27° 1.65 - 2T 1.89 . 2113
GIFT-128/128 2%011.93.25% _63.95 1.00-2%° 1.30-276 1.68.2!!% 1.30.2!16
GIFT-64/128 257 21.89-2™ —142.92 1.00-2%7 1.89-2%° 1.65-2 1.89 - 270
GIFT-128/128 2% 21.93.2'5 —143.95 1.00-2%* 1.30-2%° 1.68-2°° 1.30.2%%
GIFT-64/128 2°° 2 1.00-2° —128.00 1.37-27F 1.00-2™ 1.20-28% 1.37.2%3
GIFT-128/128 2°¢ 2 1.00-2° —128.00 1.96-27* 1.34-2'3 1.71.282 1.32.2%°

(b) The depth cost metric is the T-depth T-D only.

Table 17: Circuit sizes for parallel Grover key search against GIFT-64 and GIFT-128
under a depth limit MAXDEPTH with inner parallelization. MD is MAXDEPTH, r is
the number of plaintext-ciphertext pairs used in the Grover oracle, S'is the number of
subsets in which the key-space is divided into, SK P is the probability that spurious
keys are present in the subset holding the target key, W is the qubit width of the full
circuit, D is the full depth, T-D is the T depth, DW cost uses the full depth and
T-DW-cost uses the T-depth. After the Grover oracle is completed, each of the S
measured candidate keys is classically checked against 2 plaintext-ciphertext pairs.

SHA-2 and SHA-3. In Roberto Avanzi and Howard M. Heys, editors, Selected Areas
in Cryptography - SAC 2016 - 23rd International Conference, St. John's, NL, Canada,
August 10-12, 2016, Revised Selected Papers, volume 10532 of Lecture Notes in
Computer Science, pages 317-337. Springer, 2016.

3. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim,
and Yosuke Todo. GIFT: A small present - towards reaching the limit of lightweight
encryption. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference, Taipei, Taiwan,
September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in Computer
Science, pages 321-345. Springer, 2017.

4. Christof Beierle, Jérémy Jean, Stefan Koélbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of
block ciphers and its low-latency variant MANTIS. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part Il, volume 9815 of Lecture Notes in Computer Science, pages 123-153. Springer,
2016.

5. Joan Boyar and René Peralta. A small depth-16 circuit for the AES s-box. In Dimitris
Gritzalis, Steven Furnell, and Marianthi Theoharidou, editors, Information Security
and Privacy Research - 27th IFIP TC 11 Information Security and Privacy Conference,
SEC 2012, Heraklion, Crete, Greece, June 4-6, 2012. Proceedings, volume 376 of IFIP

23

scheme MD
SKINNY-64/64 270
SKINNY-64/128 24°

r S log, (SKP) D w G-cost ~ DW-cost
1 1.91-2° —69.93 1.00-2% 1.04-2™7 1.43.2°T 1.03.2°7
11.19-27° —70.26 1.00-2%° 1.49 .28 1.84.2'1° 1.49.2%2!
SKINNY-64/192 240 1 1.48.2'3% _—70.57 1.00-2%° 1.04 .26 1.16 - 280 1.04 . 2186
SKINNY-64/64 2°71 1.00-2° —64.00 1.95-2™ 1.09-2™" 1.47.2™ 1.06- 2%
SKINNY-64/128 2641 1.19.222 —22.26 1.00-2% 1.49.23% 1.84.291 1.49.2%

1

1

2

2

SKINNY-64/192 2641 1.48.2%¢ 2257 1.00-25% 1.04-2% 1.16-2'°6 1.04 . 2162
SKINNY-64/64 291 1.00-2° —64.00 1.95-2%7 1.09-2'T 1.47-2% 1.06-2%7
SKINNY-64/128 2°¢ 2 1.00-2° —128.00 1.09-27° 1.25.2'2 1.69.28" 1.37.28%7
SKINNY-64/192 2°¢ 2 1.48 .22 —86.57 1.00-2% 1.04-2%° 1.16-2'2% 1.04.2'3!

(a) The depth cost metric is the full depth D.

scheme MD
SKINNY-64/64 270
SKINNY-64/128 240

T S log, (SKP) T-D w G-cost T-DW-cost
1 1.00-2° —64.00 1.57-2%7 1.09.2'T 1.47.2%7 1.72.2%9
1 1.56-2% —63.64 1.00-2% 1.95.27* 1.49.2'12 1.95.2!14
SKINNY-64/192 240 1 1.93-2'27 _63.95 1.00-2%° 1.36-2'3% 1.87.2176 1.36.2!7°
SKINNY-64/64 257 1 1.00-2° —64.00 1.57-2%% 1.09-2'1 1.47.2% 1.72.25°
SKINNY-64/128 2%4 2 1.56 -2'° —143.64 1.00-25% 1.95.227 1.49.2%9 1.95.2%

2

1

2

2

SKINNY-64/192 2°4 2 1.93.279 —143.95 1.00-25% 1.36-2%2 1.88-2!%% 1.36.2!5¢
SKINNY-64/64 291 1.00-2° —64.00 1.57-2%% 1.09-2™" 1.47.2% 1.72.2°0
SKINNY-64/128 2°¢ 2 1.00-2° —128.00 1.77-27' 1.25.2'2 1.69.2%" 1.10.2%
SKINNY-64/192 29¢ 2 1.93.2'% _—79.95 1.00-2% 1.36-2%% 1.88.2'2! 1.36.2!24

(b) The depth cost metric is the T-depth T-D only.

Table 18: Circuit sizes for parallel Grover key search against SKINNY-64 under a
depth limit MAXDEPTH with inner parallelization. MD is MAXDEPTH, r is the
number of plaintext-ciphertext pairs used in the Grover oracle, S is the number of
subsets in which the key-space is divided into, SK P is the probability that spurious
keys are present in the subset holding the target key, W is the qubit width of the full
circuit, D is the full depth, T-D is the T depth, DW cost uses the full depth and
T-DW-cost uses the T-depth. After the Grover oracle is completed, each of the S
measured candidate keys is classically checked against 2 plaintext-ciphertext pairs.

Advances in Information and Communication Technology, pages 287-298. Springer,
2012.

6. Anne Canteaut, Sébastien Duval, Gaétan Leurent, Maria Naya-Plasencia, Léo Perrin,
Thomas Pornin, and André Schrottenloher. Saturnin: a suite of lightweight
symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryptol.,
2020(S1):160-207, 2020.

7. Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland.
Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A,
86:032324, Sep 2012.

8. Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Steinwandt.
Applying grover's algorithm to AES: quantum resource estimates. In Tsuyoshi Takagi,
editor, Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016,
Fukuoka, Japan, February 24-26, 2016, Proceedings, volume 9606 of Lecture Notes in
Computer Science, pages 29-43. Springer, 2016.

9. Lov K. Grover. A fast quantum mechanical algorithm for database search. In Gary L.
Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium on the

24

scheme MD r S log, (SKP) D w G-cost DW-cost
SKINNY-128/128 20 1 1.55-.27° —70.63 1.00-2% 1.04-2% 1.15.217 1.04 . 2™
SKINNY-128/256 240 1 1.11-2'99 _71.15 1.00-2%0 1.81 .22 1.68.2245 1.81 . 2251
SKINNY-128/384 2%° 1 1.51-2%27 _71.60 1.00-2%0 1.44.23%0 1.16.237* 1.44 . 2380
SKINNY-128/128 257 1 1.55.2%2 —22.63 1.00-2%% 1.04-2%° 1.15.2%% 1.04-2%°
SKINNY-128/256 264 1 1.11-2'°' —23.15 1.00-2%* 1.81-2'63 1.68- 222! 1.81.2%%7

1

2

2

2

SKINNY-128/384 264 1 1.51-2279 —23.60 1.00-2%% 1.44.2292 1.16.23%0 1.44 .23%6
SKINNY-128/128 295 2 1.00-2° —128.00 1.24-27° 1.34-2™ 1.85-2%% 1.67-2

SKINNY-128/256 2°6 2 1.11-287 —87.15 1.00-2°% 1.81-2'90 1.68.219° 1.81.21%
SKINNY-128/384 2% 2 1.51-22% _87.60 1.00 2% 1.44-222% 1.16-2519 1.44.232°

(a) The depth cost metric is the full depth D.

scheme MD S log, (SKP) T-D W G-cost T-DW-cost

1.93.2% —63.95 1.00-2% 1.30-27° 1.81.2"18 1.30.2"°
1.14-2'92 _64.19 1.00-2%° 1.85.220% 1.20.2242 1.85.2%%
1.89-2%20 _64.92 1.00-2%° 1.80- 2332 1.84.2370 1.80.2%73
1.93-2 —143.95 1.00-2%% 1.30-2%Y 1.81-290 1.30-2%°
1.14 -2'4* —144.19 1.00-2%* 1.85.2'%7 1.20. 229 1.85.222!
1.89-2%72 14492 1.00-2%* 1.80- 2286 1.84.2347 1.80-23%°
1.00-2° —128.00 1.96-271 1.34.2T% 1.85.2%2 1.32.2%
1.14-28° —80.19 1.00-2°% 1.85-2°% 1.20-2'%7 1.85.2!8°
1.89 -22°% _80.92 1.00-2%% 1.80-2222 1.84.23% 1.80.2%18

SKINNY-128/128 270
SKINNY-128/256 240
SKINNY-128/384 240
SKINNY-128/128 257
SKINNY-128/256 264
SKINNY-128/384 264
SKINNY-128/128 296
SKINNY-128/256 2%6
SKINNY-128/384 296

NN NN = =S

(b) The depth cost metric is the T-depth T-D only.

Table 19: Circuit sizes for parallel Grover key search against SKINNY-128 under
a depth limit MAXDEPTH with inner parallelization. MD is MAXDEPTH, r is the
number of plaintext-ciphertext pairs used in the Grover oracle, S is the number of
subsets in which the key-space is divided into, SK P is the probability that spurious
keys are present in the subset holding the target key, W is the qubit width of the full
circuit, D is the full depth, T-D is the T depth, DW cost uses the full depth and
T-DW-cost uses the T-depth. After the Grover oracle is completed, each of the S
measured candidate keys is classically checked against 2 plaintext-ciphertext pairs.

10.

11.

12.

Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, pages
212-219. ACM, 1996.

Samuel Jaques, Michael Naehrig, Martin Roetteler, and Fernando Virdia. Implementing
grover oracles for quantum key search on AES and lowmc. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, May 10-14, 2020, Proceedings, Part Il, volume 12106 of Lecture Notes in
Computer Science, pages 280-310. Springer, 2020.

Samuel Jaques and John M. Schanck. Quantum cryptanalysis in the RAM model:
Claw-finding attacks on SIKE. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology - CRYPTO 2019 - 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume
11692 of Lecture Notes in Computer Science, pages 32—61. Springer, 2019.

Panjin Kim, Daewan Han, and Kyung Chul Jeong. Time-space complexity of quantum
search algorithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum
Information Processing, 17(12):339, 2018.

25

scheme MD r S log, (SKP) D w G-cost DW-cost
SATURNIN-256 249 1 1.04 - 2'%° —199.06 1.00-24° 1.50.22'! 1.63.2246 1.50 . 225!
SATURNIN-256 264 1 1.04 - 2151 —151.06 1.00-2%% 1.50 - 2%%3 1.63 . 2222 1.50 . 2227
SATURNIN-256 2°6 1 1.04-28%7 —87.06 1.00-2°¢ 1.50-2°° 1.63.2'%0 1.50.2'9°

(a) The depth cost metric is the full depth D.

scheme MD 7 S log, (SKP) T-D w G-cost T-DW-cost
SATURNIN-256 249 1 1.51 2192 —192.59 1.00-2%° 1.08-2295 1.38.2243 1.08.224%
SATURNIN-256 264 1 1.51-2'%* _—144.59 1.00-2%* 1.08 - 2157 1.38.22%19 1.08.2%21
SATURNIN-256 2°6 1 1.51-289 —80.59 1.00-2%% 1.08-2%% 1.38.2!87 1.08.2!8Y

(b) The depth cost metric is the T-depth T-D only.

Table 20: Circuit sizes for parallel Grover key search against SATURNIN-256 under
a depth limit MAXDEPTH with inner parallelization. MD is MAXDEPTH, r is the
number of plaintext-ciphertext pairs used in the Grover oracle, S is the number of
subsets in which the key-space is divided into, SK P is the probability that spurious
keys are present in the subset holding the target key, W is the qubit width of the full
circuit, D is the full depth, T-D is the T depth, DW cost uses the full depth and
T-DW-cost uses the T-depth. After the Grover oracle is completed, each of the S
measured candidate keys is classically checked against 2 plaintext-ciphertext pairs.

13.

14.

15.
16.

17.

18.

19.

20.

B. Langenberg, H. Pham, and R. Steinwandt. Reducing the cost of implementing the
advanced encryption standard as a quantum circuit. /EEE Transactions on Quantum
Engineering, 1:1-12, 2020.

NIST. Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process, 2016. Available at https://csrc.
nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/
call-for-proposals-final-dec-2016.pdf/.

Peter Selinger. Quantum circuits of ¢-depth one. Phys. Rev. A, 87:042302, Apr 2013.
Peter W. Shor. Polynominal time algorithms for discrete logarithms and factoring
on a quantum computer. In Leonard M. Adleman and Ming-Deh A. Huang, editors,
Algorithmic Number Theory, First International Symposium, ANTS-I, Ithaca, NY, USA,
May 6-9, 1994, Proceedings, volume 877 of Lecture Notes in Computer Science, page
289. Springer, 1994.

Krysta M. Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher E. Granade,
Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin
Roetteler. Q#: Enabling scalable quantum computing and development with a
high-level DSL. In Proceedings of the Real World Domain Specific Languages
Workshop, RWDSLO@CGO 2018, Vienna, Austria, February 24-24, 2018, pages
7:1-7:10. ACM, 2018.

William Stein et al. Sagemath, the Sage Mathematics Software System Version 8.1,
2017. https://www.sagemath.org.

Jian Zou, Yongyang Liu, Chen Dong, Wenling Wu, and Le Dong. Observations on the
quantum circuit of the sbox of AES. Cryptology ePrint Archive, Report 2019/1245,
2019. https://eprint.iacr.org/2019/1245.

Jian Zou, Zihao Wei, Siwei Sun, Ximeng Liu, and Wenling Wu. Quantum circuit
implementations of aes with fewer qubits. 2020.

26

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://eprint.iacr.org/2019/1245

	Quantum Search for Lightweight Block Ciphers: GIFT, SKINNY, SATURNIN

