©IACR 2020. This article is a minor revision of the version presented at Asiacrypt 2020 and published by
Springer-Verlag. This is the full version, and available as entry 2020/148 in the IACR eprint archive.

Determining the Core Primitive for Optimally
Secure Ratcheting

Fatih Balli!, Paul Rosler?, Serge Vaudenay!

! LASEC, Ecole polytechnique fédérale de Lausanne
{firstname.lastname}@epfl.ch
2 Chair for Network and Data Security, Ruhr University Bochum
paul.roesler@rub.de

Abstract. After ratcheting attracted attention mostly due to practi-
cal real-world protocols, recently a line of work studied ratcheting as
a primitive from a theoretic point of view. Literature in this line, pur-
suing the strongest security of ratcheting one can hope for, utilized for
constructions strong, yet inefficient key-updatable primitives — based on
hierarchical identity based encryption (HIBE). As none of these works
formally justified utilizing these building blocks, we answer the yet open
question under which conditions their use is actually necessary.

We revisit these strong notions of ratcheted key exchange (RKE),
and propose a more realistic (and slightly stronger) security definition. In
this security definition, both the exposure of the communicating parties’
local states and the adversary’s ability to attack the executions’ random-
ness are considered. While these two attacks were partially considered in
previous work, we are the first to unify them cleanly in a natural game
based notion.

Our definitions are based on the systematic RKE notion by Poetter-
ing and Rosler (CRYPTO 2018). Due to slight (but meaningful) changes
to regard attacks against randomness, we are ultimately able to show
that, in order to fulfill strong security for RKE, public key cryptography
with (independently) updatable key pairs is a necessary building block.
Surprisingly, this implication already holds for the simplest RKE vari-
ant (which was previously instantiated with only standard public key
cryptography).

Hence, (1) we model optimally secure RKE under randomness ma-
nipulation to cover realistic attacks, (2) we (provably) extract the core
primitive that is necessary to realize strongly secure RKE, and (3) our
results indicate under which conditions this primitive is necessary for
strongly secure ratcheting and which relaxations in security allow for
constructions that only rely on standard public key cryptography.

1 Introduction

The term “ratcheting” as well as the underlying concept of continuously updat-
ing session secrets for secure long-term communication settings originates from
real-world messaging protocols [16,18,5,21,17]. In these protocols, first forward-
secrecy [18,5,21] and later security after state exposures [17] (also known as

https://asiacrypt.iacr.org/2020/
https://eprint.iacr.org/2020/148
https://eprint.iacr.org

future secrecy, backward secrecy, or post-compromise security) were aimed to be
achieved as the exposure of the devices’ local states was considered a practical
threat. The main motivation behind this consideration is the typical lifetime
of sessions in messaging apps. As messaging apps are nowadays usually run on
smartphones, the lifetime of messaging sessions is proportional to the ownership
duration of a smartphone (typically several years). Due to the long lifetime of
sessions and the mobile use of smartphones, scenarios, in which the local storage
— containing the messaging apps’ secret state — can be exposed to an attacker,
are extended in comparison to use cases of other cryptographic protocols.

PRrRACTICAL RELEVANCE OF RANDOMNESS MANIPULATION

In addition to exposures of locally stored state secrets, randomness for generat-
ing (new) secrets is often considered vulnerable. This is motivated by numerous
attacks in practice against randomness sources (e.g., [11]), randomness genera-
tors (e.g., [23,7]), or exposures of random coins (e.g., [22]). Most theoretic ap-
proaches try to model this threat by allowing an adversary to reveal attacked
random coins of a protocol execution (as it was also conducted in related work
on ratcheting). This, however, assumes that the attacked protocol honestly and
uniformly samples its random coins (either from a high-entropy source or using
a random oracle) and that these coins are only afterwards leaked to the attacker.
In contrast, practically relevant attacks against bad randomness generators or
low-entropy sources (e.g., [11,23,7]) change the distribution from which random
coins are sampled. Consequently, this threat is only covered by a security model if
considered adversaries are also allowed to influence the execution’s (distribution
of) random coins. Thus, it is important to consider randomness manipulation
(instead of reveal), if attacks against randomness are regarded practically rele-
vant.

The overall goal of ratcheting protocols is to reduce the effect of any such
non-permanent and/or non-fatal attack to a minimum. For example, an ongoing
communication under a non-fatal attack should become secure as soon as the
adversary ends this attack or countermeasures become effective. Examples for
countermeasures are replacing bad randomness generators via software updates,
eliminating state exposing viruses, etc. Motivated by this, most widely used
messaging apps are equipped with mechanisms to regularly update the local
secrets such that only a short time frame of communication is compromised
if an adversary was successful due to obtaining local secrets and/or attacking
random coins.

REAL-WORLD PROTOCOLS

The most prominent and most widely deployed real-world ratcheting protocol is
the Signal protocol (used by the Signal Messenger, WhatsApp, Facebook Mes-
senger, Skype, and others). The analysis of this protocol in a multi-stage key
agreement model! [8] was the first theoretic treatment of ratcheting in the lit-
erature. Cohn-Gordon et al. [8], however, focus on grasping the precise security

! Please note our distinction between key agreement and ratcheted key exchange proto-
cols. The former is run by parties to obtain a symmetric key for a subsequent session

that Signal offers rather than generically defining ratcheting as an independent
primitive. While the security provided by Signal is sufficient in most real-world
scenarios, we focus in this work on the theoretic analysis of the (optimally se-
cure) primitive ratcheting with respect to its instantiability by smaller building
blocks.

GENERIC TREATMENT OF RATCHETING AS A PRIMITIVE

In the following we shortly introduce and review previous modeling approaches
for strongly secure ratcheting. We thereby abstractly highlight modeling choices
that crucially affect the constructions, secure according to these models respec-
tively. Specifically, we indicate why some models can be instantiated with only
public key cryptography (PKC) — bypassing our implication result — and others
cannot. In Table 1 we summarize this overview.

pk .
1 geng init®
Pkl lsk SA sB
ad = ad ad = c — ad
$
o P i | snd eve,
A B] -
ad | - ad ad | c k- ad
$
RE EE i « snd v
A B] -
c d = c — ad
i o enc® 1 dec L ak o snd® ——) rev _)Z
1 1 1 1

Fig. 1: Conceptual depiction of kuKEM™* (on the left) and unidirectional RKE (on the
right). ‘¢’ in the upper index of an algorithm name denotes that the algorithm runs
probabilistically and ad is associated data.

The initial generic work that considers ratcheted key exchange (RKE) as a
primitive and defines its syntax, correctness, and security (in a yet impractical
variant) is by Bellare et al. [4]. Abstractly, their concept of ratcheted key ex-
change, depicted in the right part of Figure 1, consist of an initialization that
provides two session participants A and B with a state that can then be used by
them to repeatedly compute new keys in this session (e.g., for use in higher level
protocols). In their restricted communication model, A is allowed to compute
new keys with her state and accordingly send ciphertexts to B who can then
compute (the same) keys with his state. During these key computations, A’s and
B’s states are updated respectively (to minimize the effect of state exposures).
As B can only comprehend key computations from A (on receipt of a cipher-
text) but cannot actively initiate the computation of new keys, this variant was

protocol. The latter is the session protocol that might utilize the initial key and that
continuously outputs symmetric keys in the session independent of long-term keys.

later called unidirectional RKE [20]. Beyond this restriction of the communica-
tion model, the security definition by Bellare et al. only allows the adversary
to expose A’s temporary local state secrets, while B’s state cannot be exposed
(which in turn requires no forward-secrecy with respect to state updates by B).
Following Bellare et al., Poettering and Rosler [20,19]% propose a revised secu-
rity definition of unidirectional RKE (URKE: allowing also the exposure of B’s
state) and extend the communication model to define syntax, correctness, and
security of sesquidirectional RKE (SRKE: additionally allows B to only send
special update ciphertexts to A that do not trigger a new key computation but
help him to recover from state exposures) and bidirectional RKE (BRKE: de-
fines A and B to participate equivalently in the communication). With a similar
instantiation as Poettering and Rosler, Jaeger and Stepanovs [13] define security
for bidirectional channels under state exposures and randomness reveal.

All of the above mentioned works define security optimally with respect to
their syntax definition and the adversary’s access to the primitive execution
(modeled via oracles in the security game). This is reached by declaring secrets
insecure iff the adversary conducted an unpreventable/trivial attack against
them (i.e., a successful attack that no instantiation can prevent). Consequently,
fixing syntax and oracle definitions, no stronger security definitions exist.

RELAXED SECURITY NOTIONS

Subsequent to these strongly secure ratcheting notions, multiple weaker formal
definitions for ratcheting were proposed that consider special properties such
as strong explicit authentication [10], out of order receipt of ciphertexts [2], or
primarily target on allowing efficient instantiations [15,6].

While these works are syntactically similar, we shortly sketch their different
relaxations regarding security — making their security notions sub-optimal. Du-
rak and Vaudenay [10] and Caforio et al. [6] forbid the adversary to perform
impersonation attacks against the communication between A and B during the
establishment of a secure key. Thus, they do not require recovery from state
exposures — which are a part of impersonation attacks — in all possible cases,
which we denote as “partial recovery” (see Table 1). Furthermore, both works
neglect bad randomness as an attack vector. In the security experiments by Jost
et al. [15] and Alwen et al. [2] constructions can delay the recovery from attacks
longer than necessary (Jost et al. therefore temporarily forbid the exposure of the
local state). Additionally, they do not require the participants’ states to become
incompatible (immediately) on active attacks against the communication.

INSTANTIATIONS OF RATCHETING
Interestingly, both mentioned unidirectional RKE instantiations that were de-
fined to depict optimal security [4,20] as well as bidirectional real-world exam-

2 We explicitly cite the extended version [19] for results that are not captured in the
CRYPTO 2018 proceedings [20].

! “Unnecessary’ refers to restrictions beyond those that are immediately implied by
optimal security definitions (that only restrict the adversary with respect to unpre-
ventable/trivial attacks).

(a) Interaction|(b) State Exposure|(c) Bad Randomness|(d) Recovery
C+ [8 > Always allowed Reveal Delayed
B+ [4 — Only allowed for A |Reveal Immediate
PR [20] |— Always allowed Not considered Immediate
— Always allowed Not considered Immediate
< Always allowed Not considered Immediate
JS[13] |+ Always allowed Reveal Immediate
DV [10] |+ Always allowed Not considered Partial
JMM [15] |— Partially restricted |Reveal (Immediate)
— Partially restricted |Reveal (Immediate)
“ Partially restricted |Reveal (Immediate)
ACD [2] |« Always allowed Manipulation Delayed
CDV [6] |+ Always allowed Not considered Delayed
This work|— Always allowed Manipulation Immediate

Table 1: Differences in security notions of ratcheting regarding (a) uni- (—), sesqui-
(), and bidirectional (+») interaction between A and B, (b) when the adversary is
allowed to expose A’s and B’s state (or when this is unnecessarily restricted), (c) the
adversary’s ability to reveal or manipulate algorithm invocations’ random coins, and
(d) how soon and how complete recovery from these two attacks into a secure state
is required of secure constructions (or if unnecessary delays or exceptions for recovery
are permitted).! Recovery from attacks required by Jost et al. [15] is immediate in so
far as their restrictions of state exposures introduce delays implicitly. Gray marked
cells indicate the reason (i.e., relaxations in security) why respective instantiations can
rely on standard PKC only (circumventing our implication result). Rows without gray
marked cells have no construction based on pure PKC.

ples such as the Signal protocol (analyzed in [8]), and instantiations of the above
named relaxed security notions [10,15,2,6] only rely on standard PKC (cf. rows
in Table 1 with gray cells).

In contrast, both mentioned optimally secure bidirectional ratcheting vari-
ants (i.e., sesquidirectional and bidirectional RKE [20], and bidirectional strongly
secure channel [13]) are based on a strong cryptographic building block, called
key-updatable public key encryption, which can be built from hierarchical iden-
tity based encryption (HIBE). Intuitively, key-updatable public key encryption
is standard public key encryption that additionally allows to update public key
and secret key independently with respect to some associated data (a conceptual
depiction of this is on the left side of Figure 1). Thereby an updated secret key
cannot be used to decrypt ciphertexts that were encrypted to previous (or dif-
ferent) versions of this secret key (where versions are defined over the associated
data used for updates).

We emphasize a significant difference between key-updatable public key en-
cryption and HkuPke (introduced by Jost et al. [15] and recently used by Alwen
et al. [3,1]): in HkuPke key updates rely on interactive communication between
holders of public key and secret key, and associated data for key updates is not
fully adversary-controlled. These two differences make it a strictly weaker prim-
itive, insufficient for optimal security of RKE (on which we further elaborate in
Section 3).

NECESSITY FOR STRONG BUILDING BLOCKS

Natural questions that arise from this line of work are, whether and under which
conditions such strong (HIBE-like) building blocks are not only sufficient but
also necessary to instantiate the strong security of (bidirectional) RKE. In or-
der to answer these questions, we build key-updatable public key cryptography
from ratcheted key exchange. Consequently we affirm the necessity and provide
(sufficient) conditions for relying on these strong building blocks. We there-
fore minimally adjust the syntax of key-updatable key encapsulation mechanism
(kuKEM) [20] and consider the manipulation of algorithm invocations’ random
coins in our security definitions of kuKEM and RKE.?

Bad randomness
kuKEMgyowr URKExkinpr < - BRKExkinpr

HIB-KEMow-1p-cca 20] '

m‘ kuKEMkuow SRKEkIND %’ BRKExkiND
Xy Y, [20] |
iff (x-secure X [20] tr
= y-secure Y) KEMIND-1-ccA = - —— 2 URKEkInD

Fig. 2: The contributions of this paper (bold arrows) and their connection to previous
work (thin arrows) involving RKE (uni-, sesqui-, and bidirectional) and KEM (stan-
dard, hierarchical-identity-based, and key-updatable) primitives. ROM indicates that
the proof holds in the random oracle model. kuKEMyuyowr =roMm SRKEkIND is not
formally proven in this paper, but we point out that the proof of kuKEMkuow =rom
SRKEkinD from [20] can be rewound. Gray dashed connections indicate trivial impli-
cations (due to strictly weaker syntax or security definitions).

While, despite these changes of syntax and security towards prior definitions,
we prove that RKE can still be built from kuKEM, we also prove that kuKEM
can be built from RKE (see Figure 2). As a result we show that:

— kuKEM* (with one-way security under manipulation of randomness)? =rom
Unidirectional RKE (with key indistinguishability under manipulation of
randomness),

— Unidirectional RKE (with key indistinguishability under manipulation of
randomness) = kuKEM”* (with one-way security under manipulation of ran-
domness).

2 Recall that randomness manipulation was not considered in a security definition that
aimed for optimal security in the literature of ratcheting yet (cf. Table 1).

3 The asterisk at kuKEM* indicates the minimal adjustment to the kuKEM syntax
definition from [20]. For the kuKEM" we consider one-way security as it suffices to
achieve strong security for RKE. It is obvious that the same results hold for key
indistinguishability.

Given the security notions established in honest randomness setting and their
connections to each other, one would also expect

— Group RKE = Bidirectional RKE = Sesquidirectional RKE = Unidirec-
tional RKE

to follow. Hence, our results indicate that stronger RKE variants also likely
require building blocks as hard as kuKEM*. Furthermore, due to our results,
it becomes clear that: One-way security under manipulation of randomness of
kuKEM* =gRom Key indistinguishability of sesquidirectional RKE. Interest-
ingly, these results induce that (when considering strong security) ratcheted key
exchange requires these strong (HIBE-like) building blocks not only for bidi-
rectional communication settings, but already for the unidirectional case. Both
mentioned previous unidirectional RKE schemes can bypass our implication be-
cause they forbid exposures of B’s state [4] or assume secure randomness [20]
(see Table 1). We describe attacks against each of both constructions in our secu-
rity definition in Appendix C. Since the mentioned relaxed security definitions
of ratcheting [8,10,15,2,6] restrict the adversary more than necessary in expos-
ing states, solving (potentially valid) embedded game challenges, manipulating
the communication between the session participants, or attacking invocations’
random coins (and thus violate either of our security definition’s conditions),
it remains feasible to instantiate them with standard public key primitives as
well (see Table 1). Although our analysis was partially motivated by the use of
kuKEM in [20,13], we do not ultimately answer whether these particular con-
structions necessarily relied on it. Rather we provide a clean set of conditions
under which RKE and kuKEM clearly imply each other as we do not consider
the justification of previous constructions but a clear relation for future work
important.

Thus, we show that sufficient conditions for necessarily relying on kuKEM
as a building block of RKE are: (a) unrestricted exposure of both parties’ local
states, (b) consideration of attacks against algorithm invocations’ random coins,
and (c) required immediate recovery from these two attacks into a secure state
by the security definition (i.e., the adversary is only restricted with respect to
unpreventable/trivial attacks).?

CONTRIBUTIONS
The contributions of our work can be summarized as follows:

— We are the first who systematically define optimal security of key-updatable
KEM and unidirectional RKE under randomness manipulation (in sections 3
and 4) and thereby consider this practical threat in addition to state expo-
sures in an instantiation-independent notion of RKE. Thereby we substan-
tially enhance the respective models by Poettering and Rosler [20].

4 Note that there may exist further sets of sufficient conditions for relying on kuKEMs
since, for example, sesqui- and bidirectional RKE by Poettering and Rosler [20,19] vi-
olate condition (b) but base on kuKEMs as well. We refer the reader to Appendix B.2
in [19] for a detailed explanation of why their scheme presumably also must rely on
a kuKEM. We leave the identification of further sets of conditions as future work.

— In Section 5, we construct unidirectional RKE generically from a kuKEM*
to show that the latter suffices as a building block for the former under
manipulation of randomness.

— To show that kuKEM™ is not only sufficient but also necessary to build unidi-
rectional RKE (under randomness manipulation), we provide a construction
of kuKEM™ from a generic unidirectional RKE scheme in Section 6.

With our results we distill the core building block of strongly secure ratcheted
key exchange down to its syntax and security definition. This allows further
research to be directed towards instantiating kuKEM* schemes that are more
familiar and easier in terms of security requirements, rather than attempting to
construct seemingly more complex RKE primitives.® Simultaneously, our results
indicate the cryptographic hardness of ratcheted key exchange and thereby help
to systematize and comprehend the security definitions and different dimensions
of ratcheting in the literature. As a consequence, our results contribute to a
fact-based trade-off between security and efficiency for RKE by providing re-
quirements for relying on heavy building blocks and thereby revealing respective
bypasses.

2 Preliminaries

2.1 Notation

By x < y we define the assignment of the value of variable y to variable x and
thus for a function X, z < X(y) means that x is assigned with the evaluation
output of X on input y. We define T, F as Boolean values for true and false. The
shortcut notion w < x ? y : z means that ‘if x = T, then w < y, otherwise
w < z. For a probabilistic algorithm Y, x <5 Y(y) denotes the probabilistic
evaluation of Y on input y with output « and z < Y(y;r) denotes the deter-
ministic evaluation of Y on y with output x where the evaluation’s randomness
is fixed to r. For a set X, x +—5 X is the uniform random sampling of value x
from X. We use the shortcut notion X <=) to denote the union X + X U of
sets X and).

Symbol ‘€’ denotes an empty string and symbol ‘1’ denotes an undefined
element or an output that indicates rejections (thus it is not an element of
explicitly defined sets).

By X*, we denote the set of all lists of arbitrary size whose elements belong
to X. We abuse the notation of empty string ‘e’ by writing L = e for an empty

5 For example, the bidirectional channel construction in the proceedings version of [13]
is not secure according to the security definition (but a corrected version is published
as [14]), in the acknowledgments of [19] it is mentioned that an early submitted
version of their construction was also flawed, and for an earlier version of [10] we
detected during our work (and informed the authors) that the construction was
insecure under bad randomness such that the updated proceedings version (also
available as [9]) disregards attacks against randomness entirely. Finally, we detected
and reported that the construction of HkuPke in [15] is not even correct.

list L. If an element € X is appended to list L then we denote this by L < L||x
(or simply L <= z). Thus, ‘|’ denotes a special concatenation symbol that is
not an element of any of the explicitly defined sets. We define relations prefix-
or-equal < and strictly-prefix < over two lists. For instance, for lists L, Ly =
L)z, L, = L||y where x,y € X,z # y we have that L < L,L £ L,L < Lo, L <
Ly,Log A Li,Ly A Ly meaning that L is a prefix of Ly and L; but neither of
Lo, Ly is a prefix of the other. By X|[-] we denote an associative array.

In our security experiments, that we denote with Game, we invoke adver-
saries via instruction ‘Invoke’. These adversaries are denoted by A, B. Adversaries
have access to the security experiment’s interface, which is defined by oracles
that are denoted by the term Oracle. Games are terminated via instructions
‘Stop with 2’ (meaning that z is returned by the game) or ‘Reward b’ (meaning
that the game terminates and returns 1 if b = T). In procedures that we denote
by Proc and in oracles, we use the shortcut notion ‘Require x’. Depending on
the procedure’s or oracle’s number of return values n, that means ‘If x = F, then
return 1™

2.2 Message Authentication Code

We define a message authentication code to be a set of algorithms M = (tag, viyy)
over a set of symmetric keys I, a message space M, and a tag space 7. The
syntax is defined as:

KxM—tag =T
KxMxT —viyy = {T, L}

Please note that we define the tag algorithm explicitly deterministic.

For correctness of a MAC we define that for all k£ € K and all m € M it is
required that viy,,(k, m, tag(k,m)) =T.

We define a one-time multi-instance strong unforgeability notion SUF for
MAC security — that is equivalent with standard strong unforgeability — for
which the formal security game is depicted in Appendix E Figure 14. That is,
for a game in which an adversary can generate instances ¢ (with independent
uniformly random keys k; <5 K) via an oracle Gen, the adversary can query
a Tag oracle on a message m from message space M for each instance at most
once to obtain the respective MAC tag. Additionally, the adversary can verify
MAC tags for specified messages and instances via oracle Vfy and obtain an
instance’s key by querying an Expose oracle for this instance. The adversary
wins by providing a forgery (m,7) for an instance i to the Vfy oracle if there
was no Tag(i,m) query before with output 7 and if i’s key was not exposed
via oracle Expose. We define the advantage of winning the SUF game against a
MAC scheme M as Adviif(A) = Pr[SUFm(A) — 1].

3 Sufficient Security for Key-Updatable KEM

A key-updatable key encapsulation mechanism (kuKEM) is a key encapsulation
mechanism that provides update algorithms for public key and secret key with

respect to some associated data respectively. Prior to our work, this primitive
was used to instantiate sesquidirectional RKE. In order to allow for our equiva-
lence result, we minimally adjust the original kuKEM notion by Poettering and
Rosler [20] and call it kukKEM™. The small, yet crucial changes comprise allowed
updates of public and secret key during encapsulation and decapsulation (in our
syntax definition) as well as the adversary’s ability to manipulate utilized ran-
domness of encapsulations (in our security definition). In Section 6 the rationales
behind these changes are clarified. In order to provide a coherent definition, we
not only describe alterations towards previous work but define kuKEM™ entirely
(as we consider our changes to be a significant contribution and believe that this
strengthens comprehensibility).

Syntax A kuKEM™ is a set of algorithms K = (geng, up, enc, dec) with sets of
public keys PK and secret keys SK, a set of associated data AD for updating
the keys, a set of ciphertexts C (with AD N C =), and a set of encapsulated
keys K. Furthermore we define R as the set of random coins used during the
encapsulation:

genyg —s PK x SK

PK x AD — up — PK

SK x AD — up — SK

PK xR —enc—PKxKxCorPK—enc—g PCXKxC
SK xC —dec — (SKxK)u{(L,L1)}

Please note that the encapsulation and decapsulation may modify the public key
and the secret key respectively — as a result, the kuKEM™ is stateful (where the
public key is a public state).5

Correctness The correctness for kuKEM* is (for simplicity) defined through
game CORRk (see Figure 3), in which an adversary A can query encapsulation,
decapsulation, and update oracles. The adversary (against correctness) wins if
different keys are computed during decapsulation and the corresponding encap-
sulation even though compatible key updates were conducted and ciphertexts
from encapsulations were directly forwarded to the decapsulation oracle.

Definition 1 (kuKEM* correctness). A kaKEM* scheme K is correct if for
every A, the probability of winning game CORRk from Figure 3 is PrfCORRk(A)
— 1] =0.

Security Here we describe KUOWR security of kuKEM™ as formally depicted
in Figure 4. KUOWR defines one-way security of kuKEM™ under randomness
manipulation in a multi-instance/multi-challenge setting.

5 As kuKEM* naturally provides no security for encapsulated keys if the adversary
can manipulate the randomness for gen, already, we only consider the manipulation
of random coins for enc.

10

Game CORRk(A) Oracle Upg(ad) Oracle Dec(c)
00 (pk, sk) <—s genyg 09 Require ad € AD 17 Require ¢ € C

01 key[-] + L 10 sk < up(sk, ad) 18 (sk, k) < dec(sk,c)

02 trs <€ trr + ¢ 11 trr < ad 19 trr < ¢

03 Invoke A 12 Return 20 If trr < trs:

04 Stop with 0 21 d k # keylt
Oracle Enc() 99 Relﬁz:;ar 7 keylrr]

Oracle Upg(ad) 13 (pk, k, c) < enc(pk)

05 Require ad € AD 1, 40" .
06 pk < up(pk,ad) 15 peylprs k

07 trs <+ ad 16 Return (pk,c)
08 Return

Fig. 3: The correctness notion of kuKEM™ captured through game CORR.

Intuitively, the KUOWR game requires that a secret key can only be used
for decapsulation of a ciphertext if prior to this decapsulation all updates of this
secret key and all decapsulations with this secret key were consistent with the
updates of and encapsulations with the respective public key. This is reflected
by using the transcript (of public key updates and encapsulations or secret key
updates and decapsulations) as a reference to encapsulated “challenge keys” and
secret keys.

In order to let the adversary play with the kuKEM™’s algorithms, the game
provides oracles Gen, Upg, Upg, Enc, and Dec. Thereby instances (i.e., key pairs)
can be generated via oracle Gen and are referenced in the remaining oracles by
a counter that refers to when the respective instance was generated.

For encapsulation via oracle Enc, the adversary can either choose the invoca-
tion’s random coins by setting rc to some value that is not the empty string € or
let the encapsulation be called on fresh randomness by setting rc = e (line 16).
In the former case, the adversary trivially knows the encapsulated key. Thus,
only when called with fresh randomness, the encapsulated key is marked as a
challenge key in array CK (line 20).

The variables CK, SK, and XP (the latter two are explained below) are
indexed via the transcript of operations on the respective key pair part. As
public keys and secret keys can uniquely be referenced via the associated data
under which they are updated and via ciphertexts that have been encapsulated
or decapsulated by them, the concatenation of these values (i.e., sent or received
transcripts trs, trr) are used as references to them in the KUOWR, game.

On decapsulation of a key that is not marked as a challenge, the respective
key is output to the adversary. Challenge keys are of course not provided to the
adversary as thereby the challenge would be trivially solved (line 36).

Via oracle Expose, the adversary can obtain a secret key of specified instance ¢
that results from an operation referenced by transcript ¢r. As described above,
the transcript, to which a secret key refers, is built from the associated data of
updates to this secret key (via oracle Upg) and the ciphertexts of decapsulations
with this secret key (via oracle Dec) as these two operations may modify the

11

Game KUOWRk(A) Oracle Solve(i, tr, k)

00 n+0 22 Require 1 <i<n
01 Invoke A 23 Require tr ¢ XP;
02 Stop with 0 24 Require CK;[tr] # L
Oracle Con 25 Reward k = CK,[ir]
26 Return
03 n<n+1
04 (pk,, skn) < geng Oracle Upg(2, ad)
05 CKy[]+ L; XP, + 0 27 Require 1 <i<nAade AD
06 trsp < € trrp <+ € 28 sk; < up(sks, ad)
07 SKu[] <+ L 29 trr; < ad
08 SKn[trTn] < skn 30 SKl[tT'T'l] <« sk;
09 Return pk, 31 Return
Oracle Upg (4, ad) Oracle Dec(i, c)
10 Require 1 <i<nAad € AD 32 Require1<i<nAc€eCl
11 pk; < up(pk;, ad) 33 - (ski, k) + dec(sk;,c)
12 trs; <~ ad 34 . trr; £ ¢
13 Return pki 35 - SKi[tTTi] < sk;

36 - If CKi[t'I‘T‘i} 75 1:

Oracle Enc(i, rc) 3 Ret
: eturn

14 Require 1 <i<n

15 - Require 7c € R U {¢} 38 - Return k

16 - Ifrc=e mr<F,rc<sR Oracle Expose(s, tr)

17 - Else: mr < T 39 Require 1 <i<n

18 - (pk;, k, ¢) < enc(pk;; rc) 40 - Require SK;[tr] € SK

19 - trs; < ¢ 41 - XP; <2 {tr* € (ADUC)* :
20 - If mr =F: CK[trs;] + k tr < tr}

21 - Return (pk;, c) 42 Return SK;[tr]

Fig. 4: Security experiment KUOWR, modeling one-way security of key-updatable
KEM in a multi-instance/multi-challenge setting under randomness manipulation.
Lines of code tagged with ‘-’ are (substantially) modified with respect to KUOW secu-
rity in [19]. Line 41 is a shortcut notion that can be implemented efficiently. CK: chal-
lenge keys, XP: exposed secret keys, trs, trr: transcripts.

secret key. As all operations, performed with an exposed secret key, can be
traced by the adversary (i.e., updates and decapsulations; note that both are
deterministic), all secret keys that can be derived from an exposed secret key
are also marked exposed via array XP (line 41).

Finally, an adversary can solve a challenge via oracle Solve by providing a
guess for the challenge key that was encapsulated for an instance i with the
encapsulation that is referenced by transcript ¢r. Recall that the transcript,
to which an encapsulation refers, is built from the associated data of updates
to the respective instance’s public key (via oracle Upg) and the ciphertexts
of encapsulations with this instance’s public key (via oracle Enc) as these two
operations may modify the public key for encapsulation. If the secret key for
decapsulating the referenced challenge key is not marked exposed (line 23) and

12

the guess for the challenge key is correct (line 24), then game KUOWR, stops
with ‘1’ (via ‘Reward’) meaning that the adversary wins.

Definition 2 (KUOWR Advantage). The advantage of an adversary A against
a kuKEM* scheme K in game KUOWR from Figure 4 is defined as Advi™®™" (A) =
Pr[KUOWRk(A) — 1].

We chose to consider one-way security as opposed to key indistinguishability
for the kuKEM"* as it suffices to show equivalence with key indistinguishability
of RKE (in the ROM). It is evident that all proofs in this work also hold for
key indistinguishability of kuKEM™ and one can generically derive key indistin-
guishability for kuKEM™ via the FO transform by Hofheinz et al. [12].

Differences compared to previous Security Definition In Figure 4 we denote
changes from KUOW security (cf., Figure 1 [19]) by adding ‘-~ at the begin-
ning of lines. Below we elaborate on these differences.

The main difference in our definition of KUOWR security compared to
KUOW security is that we allow the adversary to manipulate the execution’s
random coins. As we define encapsulation and decapsulation to (potentially) up-
date the used public key or secret key, another conceptual difference is that we
only allow the adversary to encapsulate and decapsulate once under each public
and secret key. Thus, we assume that public and secret keys are overwritten on
encapsulation and decapsulation respectively. In contrast to our security defini-
tion, in the KUOW security game only the current secret key of an instance can
be exposed. Even though we assume the secret key to be replaced by its newer
versions on updates or decapsulations, there might be, for example, backups
that store older secret key versions. As a result we view the restriction of only
allowing exposures of the current secret key artificial.” An important notational
choice is that we index the variables with transcripts trs, trr instead of integer
counters. This notation reflects the idea that public key and secret key only stay
compatible as long as they are used correspondingly and immediately diverge
on different associated data or tampered ciphertexts.

We further highlight the fundamental difference towards HkuPke by Jost et
al. [15]. Their notion of HkuPke does not allow (fully adversary-controlled) asso-
ciated data on public and secret key updates and additionally requires (authen-
ticated) interaction between the holders of the key parts thereby. Looking ahead,
this makes this primitive insufficient for diverging the public key from the secret
key (in the states) of users A and B during an impersonation of A towards B in
(U)RKE (especially under randomness manipulation). This is, however, required
in an optimal security definition but explicitly excluded in the sub-optimal RKE
notion by Jost et al. [15]. Since the syntax of HkuPke is already inadequate to re-
flect this security property, we cannot provide a separating attack. Nevertheless,
we further expound this weakness in Appendix D.

" It is important to note that the equivalence between KUOWR security of kuKEM*
and KINDR security of URKE is independent of this definitional choice — if either
both definitions allow or both definitions forbid the exposure of also past secret keys
or states respectively, equivalence can be shown.

13

Instantiation A kuKEM® scheme, secure in the KUOWR game, can be generi-
cally constructed from an OW-CCA adaptively secure hierarchical identity based
key encapsulation mechanism (HIB-KEM). The construction — the same as
in [19] — is provided for completeness in Figure 5. The update of public keys
is the concatenation of associated data (interpreted as identities in the HIB-
KEM) and the update of secret keys is the delegation to lower level secret keys
in the identity hierarchy. The reduction is immediate: After guessing for which
public key and after how many updates the challenge encapsulation that is solved
by the adversary is queried, the challenge from the OW-CCA game is embedded
into the respective KUOWR challenge.

Proc geny Proc up(sk, ad)

00 (pkp, skip) <—s genp 10 sk < delip(sk, ad)
01 id <€ 11 Return sk

02 pk + (pkp, id)

03 sk sk|D|D Proc up(pk, ad)

04 Return (pk, sk) 12 (phip, id) < pk

13 id < ad
Proc enc(pk) 14 pk < (pkyp, id)
05 (pkip, id) + pk 15 Return pk
06 (c, k) <5 encip(pkp, id)
07 id <" ¢ Proc dec(sk, c)

16 k < decip(sk,c)
17 sk < delip(sk, c)
18 Return (sk, k)

08 pk + (pkp, id)
09 Return (pk, k, c)

Fig. 5: Generic construction of a kuKEM™ from a hierarchical identity based KEM
HK = (gen,p, delip, encip, decip) (slightly differing from construction in [19] Figure 2 by
adding an internal key update in encapsulation and decapsulation respectively).

Sufficiency of KUOWR, for SRKFE Before proving equivalence between security
of key-updatable KEM and ratcheted key exchange, we shed a light on impli-
cations due to the differences between our notion of kuKEM™ and its KUOWR
security and the notion of kuKEM and its KUOW security in [19].

Remark 1. Even though the KUOWR game provides more power to the adver-
sary in comparison to the KUOW game by allowing manipulation of random
coins, exposures of past secret keys, and providing an explicit decapsulation or-
acle (instead of an oracle that only allows for checks of ciphertext-key pairs; cf.,
Figure 1 [19]), the game also restricts the adversary’s power by only allowing
decapsulations under the current secret key of an instance (as opposed to also
checking ciphertext-key pairs for past secret keys of an instance as in the KUOW
game). One can exploit this and define protocols that are secure with respect
to one game definition but allow for attacks in the other game. Consequently,
neither of both security definitions implies the other one.

14

Despite the above described distinction between both security definitions,
KUOWR security suffices to build sesquidirectional RKE according to the KIND
definition in [20] — which was yet the weakest notion of security of RKE for which
a construction was built from a key-updatable public key primitive. The ability
to check ciphertext-key pairs under past versions of secret keys of an instance
is actually never used in the proof of Poettering and Rosler [19]. The only case
in which this Check oracle is used in their proof is B’s receipt of a manipulated
ciphertext from the adversary. Checking whether a ciphertext-key pair for the
current version of a secret key of an instance is valid, can of course be conducted
by using the Dec oracle of our KUOWR notion. For full details on their proof
we refer the reader to Appendix C in [19].

Consequently, for the construction of KIND secure sesquidirectional RKE
(according to [20] Figure 8) from Poettering and Résler [20], the used kuKEM
must either be KUOW secure (see [20] Figure 1) or KUOWR secure (see Fig-
ure 4), which is formally depicted in the following observation. Thus, even though
these notions are not equivalent, they both suffice for constructing KIND secure
sesquidirectional RKE.

Observation 1 The sesquidirectional RKE protocol R from [20] Figure 6 of-
fers key indistinguishability according to [20] Figure 8 if function H is modeled
as a random oracle, the kuKEM™ provides KUOWR security according to Fig-
ure 4, the one-time signature scheme provides SUF security according to [19]
Figure 22, the MAC scheme M provides SUF security according to Figure 1/,
and the symmetric-key space of the kuKEM”™ is sufficiently large.

4 Unidirectional RKE under Randomness Manipulation

Unidirectional RKE (URKE) is the simplest variant of ratcheted key exchange.
After a common initialization of a session between two parties A and B, it
enables the continuous establishment of keys within this session. In this unidi-
rectional setting, A can initiate the computation of keys repeatedly. With each
computation, a ciphertext is generated that is sent to B, who can then com-
prehend the computation and output (the same) key. Restricting A and B to
this unidirectional communication setting, in which B cannot respond, allows to
understand the basic principles of ratcheted key exchange. For the same reasons
we provided the whole definition of kuKEM™ before (i.e., we see our changes as a
significant contribution and aim for a coherent depiction), we fully define URKE
under randomness manipulation below.

Syntaz We recall that URKE is a set of algorithms UR = (init, snd,rcv) de-
fined over sets of A’s and B’s states Sy and Sp respectively, a set of associated
data AD, a set of ciphertexts C, and a set of keys K established between A
and B. We extend the syntax of URKE by explicitly regarding the utilized ran-
domness of the snd algorithm. Consequently we define R as the set of random
coins r¢ € R used in snd. To highlight that A only sends and B only receives

15

in URKE, we may add ‘A’ and ‘B’ as handles to the index of snd, and rcv
respectively.

init -4 S4 X Sp
SAXAD X R —snd -S4 x K XxCor Sy Xx AD — snd —5 Sa x K xC
Sp X AD xC —rev — Spx KU{(L, 1)}

Please note that de-randomizing (or explicitly considering the randomness of)
the initialization of URKE is of little value since an adversary, when controlling
the random coins of init, obtains all information necessary to compute all keys
between A and B.

Correctness Below we define correctness for URKE. Intuitively a URKE scheme
is correct, if all keys produced with send operations of A can also be obtained
with the resulting ciphertext by the respective receive operations of B.

Definition 3 (URKE Correctness). Let {ad; € AD};>1 be a sequence of as-
sociated data. Let {sa,;}i>0,{sB,i}i>0 denote the sequences of A’s and B’s states
generated by applying snd(-, ad;) and rev(-, ad;,) operations iteratively fori > 1,
that is,

(SA,i; ki, Ci) s SHd(SAJ'_l7 ad,»)
(SB,ia k;) “— TCV(SB,Z‘,l7 adi, Ci).

We say URKE scheme UR = (init, snd, rcv) is correct if for all sa 0, SB,0 s init,
for all associated data sequences {ad;};>1, and for all random coins used for snd
calls, the key sequences {k;};>1 and {k}}i>1 generated as above are equal.

Security For security, we provide the KINDR game for defining key indistinguish-
ability under randomness manipulation of URKE in Figure 6. In this game, the
adversary can let the session participants A and B send and receive ciphertexts
via SndA and RcvB oracle queries respectively to establish keys between them.
By querying the Reveal or Challenge oracles, the adversary can obtain these
established keys or receive a challenge key (that is either the real established
key or a randomly sampled element from the key space) respectively. Finally,
the adversary can expose A’s and B’s state as the output of a specified send or
receive operation respectively via oracles ExposeA or ExposeB.

When querying the SndA oracle, the adversary can specify the random coins
for the invocation of the snd algorithm from the set R or indicate that it wants
the random coins to be sampled uniformly at random by letting ¢ = €. By
allowing the adversary to set the randommness for the invocations of the snd
algorithm and exposing past states (which was not permitted in the definition
of Poettering and Rosler [20]), new trivial attacks arise.

Below we review and explain the trivial attacks of the original URKE KIND
game, map them to our version, and then introduce new trivial attacks that arise
due to randomness manipulation.

A conceptual difference between our game definition and the games by Po-
ettering and Rosler [20] is the way variables (especially arrays) are indexed.

16

Game KINDR{R(A) Oracle RevB(ad, ¢)

00 XPa <+ 0; MR + 0 25 Require ad € ADAc€CAsp # L
01 KN+ 0; CH«+ 0 26 - If trr||(ad, c) A trs

02 trs< € trr <€ ALCP(trs, trr) € XPa:

03 Sa[]+ L; Se[]+ L 27 - KN < {trr||(ad,c)}

04 key[] < L; 28 (sm,k) + rev(ss,ad, c)

05 (sa,sB) s init 29 If k=