
New method of verifying cryptographic
protocols based on the process model *

A. M. Mironov

Innopolis University,
Leading reserch center

amironov66@gmail.com

Abstract

A cryptographic protocol (CP) is a distributed algorithm de-
signed to provide a secure communication in an insecure environment.
CPs are used, for example, in electronic payments, electronic voting
procedures, database access systems, etc. Errors in the CPs can lead
to great financial and social damage, therefore it is necessary to use
mathematical methods to justify the correctness and safety of the CPs.
In this paper, a new mathematical model of a CP is introduced, which
allows one to describe both the CPs and their properties. It is shown
how, on the basis of this model, it is possible to solve the problems of
verification of CPs.

1 Introduction

1.1 A concept of a cryptographic protocol

A cryptographic protocol (CP) is a distributed algorithm that describes
the order in which messages are exchanged between agents. Examples of
such agents are computer systems, bank cards, people, etc.

*This research has been financially supported by the Ministry of Digital Development,
Communications and Mass Media of the Russian Federation and Russian Venture Com-
pany (Agreement No.004/20 dated 20.03.2020, IGK 0000000007119P190002)
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To ensure security properties of a CP (such as, for example, the secrecy
of transmitted data), cryptographic transformations (encryption, electronic
signature, hash functions, etc.) can be used in the CP.

We assume that the cryptographic transformations used in CPs are ideal,
i.e. satisfy some axioms expressing, for example, the impossibility of extract-
ing plain texts from encrypted texts without knowing of the corresponding
cryptographic keys.

1.2 Vulnerabilities in cryptographic protocols

Many CP vulnerabilities are related not with poor cryptographic qualities
of the cryptographic primitives used in them, but with logical errors in pro-
tocols. For example, a logical error was found in the CP for logging into a
Google portal that allows a user to identify himself only once and then get
access to various applications (such as Gmail or Google Calendar), allowing
a dishonest service provider to impersonate any of its users.

There are many other examples of CPs (see for example [1]-[5]), which
have been used for a long time in security-critical systems, but then it was
discovered that these CPs contain vulnerabilities of the following type:

∙ participants of these CPs can receive distorted messages (or even lose
them) as a result of interception, deleting or distorting of transmitted
messages by the adversary, which violates the integrity property,

∙ the adversary can discover a secret information contained in the in-
tercepted messages as a result of erroneous or malicious actions of CP
participants.

Vulnerabilities were also detected in one of the most well-known CPsKer-
beros [6]. The absence of vulnerabilities in the patched version of Kerberos
was justified in [4]. There are many other examples of CP vulnerabilities
used to authentication for cell phone providers, ATM cash withdrawals, e-
passports, electronic elections, etc.

All of the above examples justify the fact that an informal analysis of
the required properties is not enough for CPs used in the security critical
systems, it is necessary

∙ to construct a mathematical model of the analyzed CPs,

∙ describe properties of analyzed CPs in the form of a mathematical
objects called specifications of these CPs, and
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∙ to construct proofs of statements that the analyzed CPs meet (or do
not meet) the specifications, the procedure for constructing such proofs
is called verification of the analyzed CPs.

In this work, a new mathematical model of CPs is constructed. In terms
of this model it is possible to express such properties of correctness of CPs
as, for example, integrity of transmitted messages (i.e., justification of the
following property of the analyzed CPs: messages sent by one participant of
a CP to another participant of this CP, reach the recipient in an undistorted
form).

1.3 Historical overview of methods for verifying cryp-
tographic protocols

Historically, first formal approach for CP verifying was the BAN-logic of
Burrows M., Abadi M., and Needham R., [7]. This approach has very large
limitations, in particular, it does not allow considering the case of unlimited
generation of sessions of the analyzed protocol.

A more popular approach to CP verification is the strand spaces for-
malism developed by Joshua D. Guttman, Jonathan C. Herzog, F. Javier
Thayer Fabrega, [8]-[10]. Among the works devoted to the description of
various formalisms designed for modeling and verification of CPs, it should
also be noted articles [11]-[29].

One of the CP verification formalisms is the approach associated with the
use of Horn clauses and Constraint Systems, developed in the works of Abadi,
Blanchet, Cortier and other specialists [30]. Among other CP models, the
most popular ones are logic models (see for example [7], [32], [34]). These
models make it possible to reduce the problems of CP verification to the
problems of constructing proofs of theorems that CPs under analysis meet
their specifications. Algebraic and logical approaches to CP verification are
also considered in [35] - [37].

2 Sequential and distributed processes

In this paper, we outline the concepts of sequential and distributed pro-
cesses. These concepts are basic mathematical objects for building a CP
process model. This model is a development of the Calculus of Crypto-
graphic Protocols of Abadi-Gordon (SPI-calculus, [36]). It can serve as
a theoretical basis for a new method for verifications of CPs, where CP ver-
ification means the construction of a mathematical proof that an analyzed
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CP has the desired properties. Examples of such properties are integrity
and secrecy properties. In the process model described in this text, CPs
and their formal specifications are represented as distributed processes.

One of the most important advantages of the proposed CP process model
is the low complexity of proofs of CP correctness. In particular, this model
eliminates the need to build the sets of all reachable states of the analyzed
CPs. This provides an important advantage when analyzing sets of states
of the analyzed CP in the case when sets of these states are potentially
unlimited. Another important advantage of the proposed CP model is the
high degree of automation of solving the CP verification problem based on
this model.

2.1 Auxiliary concepts

2.1.1 Types, constants, variables, function symbols

We assume that there are given sets 𝑇𝑦𝑝𝑒𝑠, 𝐶𝑜𝑛, Var and 𝐹𝑢𝑛. The ele-
ments of these sets are called types, constants, variables, and function
symbols (FS), respectively. Each element 𝑥 of 𝐶𝑜𝑛, Var and 𝐹𝑢𝑛 is asso-
ciates with some type 𝜏(𝑥) ∈ 𝑇𝑦𝑝𝑒𝑠, and if 𝑥 ∈ 𝐹𝑢𝑛, then 𝜏(𝑥) has the form
(𝜏1, . . . , 𝜏𝑛) → 𝜏 , where 𝜏1, . . . , 𝜏𝑛, 𝜏 ∈ 𝑇𝑦𝑝𝑒𝑠.

2.1.2 Terms

The concept of a term is defined inductively. Each term 𝑒 is associated with
a type 𝜏(𝑒) ∈ 𝑇𝑦𝑝𝑒𝑠. The definition of a term is as follows:

∙ ∀𝑥 ∈ 𝐶𝑜𝑛 ∪ Var 𝑥 is a term of the type 𝜏(𝑥),

∙ if 𝑓 ∈ 𝐹𝑢𝑛, 𝑒1, . . . , 𝑒𝑛 are terms, and 𝜏(𝑓) has the form

(𝜏(𝑒1), . . . , 𝜏(𝑒𝑛)) → 𝜏,

then the notation 𝑓(𝑒1, . . . , 𝑒𝑛) is the term of the type 𝜏 .

We will use the following notations:

∙ 𝑇𝑚 denotes the set of all terms,

∙ ∀ 𝑒 ∈ 𝑇𝑚 Var 𝑒 denotes the set of all variables, occurred in 𝑒,

∙ ∀𝑋 ⊆ Var 𝑇𝑚(𝑋) denotes the set {𝑒 ∈ 𝑇𝑚 | Var 𝑒 ⊆ 𝑋},

∙ ∀𝐸 ⊆ 𝑇𝑚,∀ 𝜏 ∈ 𝑇𝑦𝑝𝑒𝑠 𝐸𝜏 denotes the set {𝑒 ∈ 𝐸 | 𝜏(𝑒) = 𝜏}.
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Let 𝑒, 𝑒′ ∈ 𝑇𝑚. The term 𝑒 is called a subterm of the term 𝑒′, if either
𝑒 = 𝑒′, or 𝑒′ has the form 𝑓(𝑒1, . . . , 𝑒𝑛), where 𝑓 ∈ 𝐹𝑢𝑛, and ∃ 𝑖 ∈ {1, . . . , 𝑛}:
𝑒 is a subterm of the term 𝑒𝑖.

The notation 𝑒 ⊆ 𝑒′, where 𝑒, 𝑒′ ∈ 𝑇𝑚, means that 𝑒 is a subterm of 𝑒′.
Below, for each considered function of the form 𝜙 : 𝐸 → 𝐸 ′, where

𝐸,𝐸 ′ ⊆ 𝑇𝑚, we will assume that ∀ 𝑒 ∈ 𝐸 𝜏(𝜙(𝑒)) = 𝜏(𝑒).

2.1.3 Examples of types

We shall assume that 𝑇𝑦𝑝𝑒𝑠 has the following types:

∙ type A, terms of this type are called agents,

∙ type C, terms of this type are called channels, they denote communi-
cation channels used by agents for communication with each other by
sending messages,

∙ type K, terms of this type are called keys, they denote cryptographic
keys, that agents can use to encrypt or decrypt messages,

∙ type M, terms of this type are called messages, they denote messages,
that agents can send to each other in the work flow,

∙ type P, terms of this type are called processes.

The notations 𝐴𝑔𝑒𝑛𝑡𝑠, 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝐾𝑒𝑦𝑠 and 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 denote the sets
of all agents, channels, keys, and processes, respectively.

We will use the following conventions and notations:

∙ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 has a constant denoted by ∘, and called an open channel,

∙ an occurrence of a key 𝑘 in a term 𝑒 is said to be hidden, if this
occurrence is first occurrence of 𝑘 in a subterm of the form 𝑘(𝑒′) ⊆ 𝑒,

∙ ∀𝐴 ∈ VarA the set Var has the variable 𝐴− ∈ VarK, called the private
key of agent 𝐴,

∙ type M includes any other types from 𝑇𝑦𝑝𝑒𝑠, i.e. a term of any type
is also a term of type M,

∙ ∀𝑛 ≥ 1 set 𝑇𝑦𝑝𝑒𝑠 has type M𝑛, whose values are tuples of length 𝑛,
consisting of values of type M,

∙ set 𝑉 𝑎𝑟 contains shared variables, each such variable has the form
𝑥𝑃1...𝑃𝑛 , where 𝑃1, . . . , 𝑃𝑛 are different constants of the type P.
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2.1.4 Examples of function symbols

We will assume that 𝐹𝑢𝑛 contains the following FSs.

∙ FS 𝑡𝑢𝑝𝑙𝑒𝑛, where 𝑛 ≥ 1 and 𝜏(𝑡𝑢𝑝𝑙𝑒𝑛) = ( M, . . . ,M⏟  ⏞  
𝑛

) → M𝑛.

For each list (𝑒1, . . . , 𝑒𝑛) of terms the term 𝑡𝑢𝑝𝑙𝑒𝑛(𝑒1, . . . , 𝑒𝑛) will be
denoted by a shorter notation (𝑒1, . . . , 𝑒𝑛).

∙ FS 𝑝𝑟𝑛,𝑖, where 𝑛 ≥ 1, 𝑖 ∈ {1, . . . , 𝑛}, and 𝜏(𝑝𝑟𝑛,𝑖) = M𝑛 → M.

∀ 𝑒 ∈ 𝑇𝑚M𝑛 the term 𝑝𝑟𝑛,𝑖(𝑒) is the 𝑖–th component of the tuple 𝑒, this
term will be denoted by the notation (𝑒)𝑖.

∙ FS ℎ (possibly with indices) of type M → M type.

The term ℎ(𝑒) denotes the hash function value of the message 𝑒.

∙ FSs 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡 of type (K,M) → M.

Terms of the form 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑘, 𝑒) and 𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑘, 𝑒) denote messages re-
ceived by encrypting (and decrypting, respectively) the message 𝑒 on
the key 𝑘.

∙ FS 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦 of type A → K.

Term of the form 𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦(𝐴) is called the public key of agent 𝐴.

Terms of the form 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑘, 𝑒) and 𝑒𝑛𝑐𝑟𝑦𝑝𝑡(𝑝𝑢𝑏𝑙𝑖𝑐 𝑘𝑒𝑦(𝐴), 𝑒) will be
denoted by the notations 𝑘(𝑒) and 𝐴(𝑒) respectively, this terms are
called encrypted messages.

∙ FS 𝑑𝑖𝑔 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 of type (M,A) → M.

A term of the form 𝑑𝑖𝑔 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑒, 𝐴) denotes a digital signature
of the message 𝑒, made by agent 𝐴.

The triple (𝑒, 𝐴, 𝑑𝑖𝑔 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒(𝑒, 𝐴)) will be denoted by (𝑒)𝐴.

2.1.5 Expressions

An expression is a notation of one of the following forms:

∙ any set of terms 𝐸 ⊆ 𝑇𝑚,

∙ 𝑋𝑃 , where 𝑃 ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠,

∙ 𝑀𝑐, where 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,
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∙ 𝑘−1(𝐸), where 𝑘 ∈ 𝐾𝑒𝑦𝑠, and 𝐸 is an expression,

∙ 𝐸 ∩ 𝐸 ′, 𝐸 ∪ 𝐸 ′, ¬𝐸, where 𝐸,𝐸 ′ are expressions.

The set of all expressions is denoted by 𝐸𝑥𝑝𝑟. ∀𝐸 ∈ 𝐸𝑥𝑝𝑟 the notation
Var𝐸 denotes the set of all variables occurred in 𝐸.

If 𝐸 = {𝑒}, where 𝑒 ∈ 𝑇𝑚, then such an expression will be denoted
without brackets.

2.1.6 Formulas

An elementary formula (EF) is a notation of one of the following forms:

∙ 𝐸 = 𝐸 ′, 𝐸 ⊆ 𝐸 ′, 𝐸 ⊇ 𝐸 ′, where 𝐸,𝐸 ′ ∈ 𝐸𝑥𝑝𝑟,

∙ 𝑥⊥𝑃 , 𝑥⊥𝐶, where 𝑥 ∈ Var , 𝑃 ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠, 𝐶 ⊆ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,

∙ 𝑘⊥K 𝑃 , 𝑘⊥K𝐶, where 𝑘 ∈ Keys , 𝑃 ∈ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠, 𝐶 ⊆ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠.

Examples of EFs:

𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝑘, 𝑘(𝑒)) = 𝑒, where 𝑘 ∈ VarK, 𝑒 ∈ 𝑇𝑚

𝑑𝑒𝑐𝑟𝑦𝑝𝑡(𝐴−, 𝐴(𝑒)) = 𝑒, where 𝐴 ∈ VarA, 𝑒 ∈ 𝑇𝑚

𝑝𝑟𝑛,𝑖(𝑒1, . . . , 𝑒𝑛) = 𝑒𝑖, where 𝑛 > 0, 𝑖 ∈ {1, . . . , 𝑛},
𝑒1, . . . , 𝑒𝑛 ∈ 𝑇𝑚.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (1)

A formula is a set of EFs. The set of all formulas is denoted by the
notation 𝐹𝑚. ∀ 𝛽 ∈ 𝐹𝑚 the notation Var𝛽 denotes the set of all variables,
occurred in 𝛽.

Each formula 𝛽 ∈ 𝐹𝑚 defines a congruence ∼𝛽 on 𝐹𝑢𝑛 –algebra 𝑇𝑚:
∼𝛽 is an intersection of all congruences ∼ on 𝑇𝑚 satisfying the condition:
∀ (𝑒 = 𝑒′) ∈ 𝛽 𝑒 ∼ 𝑒′.

Below, the equality of terms is understood up to the congruence ∼𝛽,
where 𝛽 consists of EFs whose form coincides with one of the forms in (1).

2.1.7 Bindings

A binding is a function of the form 𝜃 : Var → 𝑇𝑚.
We say that a binding 𝜃 binds the variable 𝑥 ∈ Var with the term 𝜃(𝑥).
We will use the following notations:

∙ the set of all bindings is denoted by the symbol Θ,

∙ 𝑖𝑑 denotes identical binding: ∀𝑥 ∈ Var 𝑖𝑑(𝑥) = 𝑥,
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∙ ∀𝑋 ⊆ Var notation Θ𝑋 denotes the set

{𝜃 ∈ Θ | ∀𝑥 ∈ Var ∖𝑋 𝜃(𝑥) = 𝑥},

∙ a binding 𝜃 ∈ Θ can be denoted by the notations

𝑥 ↦→ 𝜃(𝑥) or (𝜃(𝑥1)/𝑥1, . . . , 𝜃(𝑥𝑛)/𝑥𝑛)

(second notation is used when 𝜃 ∈ Θ{𝑥1,...,𝑥𝑛}),

∙ ∀ 𝜃 ∈ Θ, ∀ 𝑒 ∈ 𝑇𝑚 the notation 𝑒𝜃 denotes a term derived from 𝑒 by
replacing ∀𝑥 ∈ Var 𝑒 each occurrence of 𝑥 in 𝑒 by the term 𝜃(𝑥),

∙ ∀ 𝜃 ∈ Θ, ∀𝐸 ⊆ 𝑇𝑚 the notation 𝐸𝜃 denotes the set {𝑒𝜃 | 𝑒 ∈ 𝐸},

∙ ∀ 𝜃, 𝜃′ ∈ Θ the notation 𝜃𝜃′ denotes the binding 𝑥 ↦→ (𝑥𝜃)𝜃
′
.

2.2 Sequential processes

2.2.1 Actions

An action is a notation of one of the following forms:

𝑐!𝑒, 𝑐?𝑒, 𝑒 := 𝑒′, where 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠, 𝑒, 𝑒′ ∈ 𝑇𝑚,

which are called sending message 𝑒 to channel 𝑐, receiving message 𝑒 from
channel 𝑐, and assignment, respectively.

Actions of the form 𝑐!𝑒 and 𝑐?𝑒 are called external actions, and actions
of the form 𝑒 := 𝑒′ are called internal actions.

The set of all actions is denoted by the notation 𝐴𝑐𝑡. ∀𝛼 ∈ 𝐴𝑐𝑡 the set
of all variables occurred in 𝛼, is denoted by the notation Var𝛼.

If 𝜃 ∈ Θ and 𝛼 ∈ 𝐴𝑐𝑡, then the notation 𝛼𝜃 denotes an action 𝑐𝜃!𝑒𝜃, 𝑐𝜃?𝑒𝜃

and 𝑒𝜃 := (𝑒′)𝜃, if 𝛼 = 𝑐!𝑒, 𝑐?𝑒 and 𝑒 := 𝑒′, respectively.
In some cases, to facilitate a perception, actions can be written in brack-

ets, i.e., for example, instead of 𝑐!𝑒, the notation (𝑐!𝑒) might be used, etc.

2.2.2 A concept of a sequential process

A sequential process (SP) is a triple (𝑃,𝑋, �̄�), whose components have
the following meaning:

∙ 𝑃 is a graph with a selected node (called an initial node, and denoted
by 𝑃 0), each edge of which is labeled by an action 𝛼 ∈ 𝐴𝑐𝑡,

∙ 𝑋 ⊆ Var ∪𝐶𝑜𝑛 is a set of initialized variables and constants, ∘ ∈ 𝑋,
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∙ �̄� ⊆ 𝑋 ∩ 𝑉 𝑎𝑟 is a set of hidden variables, these variables denote
secret keys, hidden channels, and objects with unique values called
nonces.

A SP is a formal description of the behavior of a dynamic system, which
works by sequentially performing actions related to sending/receiving mes-
sages and initializing uninitialized variables.

For each SP (𝑃,𝑋, �̄�)

∙ this SP can be abbreviated by the same symbol 𝑃 as the corresponding
graph, the set of nodes of the graph 𝑃 also is denoted by 𝑃 ,

∙ nodes of graph 𝑃 , which have no outgoing edges, are said to be ter-
minal and are denoted by ⊗,

∙ notations 𝑋𝑃 , �̄�𝑃 denote the corresponding components of the SP 𝑃 ,

∙ Var𝑃 denotes the set of all variables occurred in 𝑃 ,

∙ if 𝑃 has no edges and 𝑋𝑃 = ∅, then 𝑃 is denoted by 0.

Each SP is associated with a constant from 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠, called a name
of this process. In order to simplify notations, we will denote the names of
processes with the same notations that denote the processes themselves.

Actions of the form ∘!𝑒 and ∘?𝑒 will be shortened as !𝑒 and?𝑒 respectively.

2.2.3 Adversary process

The adversary process is a SP 𝑃* with the following features:

∙ the SP graph 𝑃* has a single node,

∙ 𝐶𝑜𝑛 ⊆ 𝑋𝑃* , ∀ 𝜏 ∈ 𝑇𝑦𝑝𝑒𝑠 the sets �̄�𝑃* and 𝑋𝑃* ∖ �̄�𝑃* have a countable
set of variables of the type 𝜏 ,

∙ ∀𝛼 ∈ 𝐴𝑐𝑡 graph 𝑃* has an edge labeled by 𝛼.

Below we assume that 𝑃* is the only SP under consideration, whose graph
has cycles.
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2.2.4 States of sequential processes

Let 𝑃 be a SP. A state of 𝑃 is a 4-tuple 𝑠 = (𝑣, 𝛼,𝑋, 𝜃), where

∙ 𝑣 ∈ 𝑃 is a current node,

∙ 𝛼 ∈ {𝑖𝑛𝑖𝑡} ⊔ 𝐴𝑐𝑡 is a current action,

∙ 𝑋 ⊆ Var is a current set of initialized variables, and

∙ 𝜃 ∈ Θ is a current binding.

Components of 𝑠 are denoted by 𝑣𝑠, 𝛼𝑠, 𝑋𝑠, and 𝜃𝑠, respectively.
A state of the SP 𝑃 is said to be initial, and is denoted by ⊙, if it has

the form (𝑃 0, 𝑖𝑛𝑖𝑡,𝑋𝑃 , 𝑖𝑑).

2.2.5 An execution of a sequential process

Let 𝑃 be a SP. An execution of 𝑃 can be understood as a walk through the
graph 𝑃 , starting from 𝑃 0, with the execution of actions that are labels of
traversed edges.

Each step of an execution of 𝑃 is associated with

∙ a state of 𝑃 , called a current state at this step (a current state at
first step is ⊙), and

∙ a current channels state, which is a family of sets

𝑀 = {𝑀𝑐 ⊆ 𝑇𝑚 | 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠}.

If a current step of the execution of 𝑃 is not a final step, then the following
actions are performed at this step:

∙ the current state 𝑠 on this step is changed on a state 𝑠′, which will
be a current state at the next step of the execution: if 𝑠 has the form
(𝑣, 𝛼,𝑋, 𝜃), then there is selected an edge of 𝑃 outgoing from 𝑣, whose
label 𝛼′ meets one of the folllowing conditions:

(a) 𝛼′ = 𝑐!𝑒, 𝑐𝜃 ∈ 𝑋𝜃, 𝑒 ∈ 𝑇𝑚(𝑋)

(b) 𝛼′ = 𝑐?𝑒, 𝑐𝜃 ∈ 𝑋𝜃, ∃ 𝜃 ∈ ΘVar∖𝑋 : (𝑒𝜃)𝜃 ∈ 𝑀𝑐𝜃

(c) 𝛼′ = (𝑒 := 𝑒′), 𝑒′ ∈ 𝑇𝑚(𝑋), ∃ 𝜃 ∈ ΘVar∖𝑋 : (𝑒𝜃)𝜃 = (𝑒′)𝜃

⎫⎪⎬⎪⎭ (2)

and components of 𝑠′ = (𝑣′, 𝛼′, 𝑋 ′, 𝜃′) have the following form: 𝑣′ is the
end of the selected edge, 𝛼′ is the label of the selected edge, and
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– if (a) in (2) holds, then 𝑋 ′ = 𝑋, 𝜃′ = 𝜃,

– if (b) or (c) in (2) holds, then 𝑋 ′ = 𝑋 ∪ Var 𝑒, 𝜃
′ = 𝜃𝜃, and

∙ a replacement of the current channels state 𝑀 with the channels state
𝑀 ′, which will be the current channels state at the next step of the
execution: 𝑀 ′ either is equal to 𝑀 , or is obtained by adding terms to
the sets from 𝑀 , and

– this adding can be performed by 𝑃 as well as those SPs that use
shared channels with 𝑃 , and

– if (a) in (2) holds, then one of such addings is that 𝑃 adds the
term 𝑒𝜃 to the set 𝑀𝑐𝜃 .

We will say that 𝑠′ is obtained by a transition from 𝑠, and denote this
by the notation 𝑠 → 𝑠′.

During each execution of each SP 𝑃 the variables from Var𝑃 have the
following features: ∀𝑥 ∈ Var𝑃

1. if 𝑥 ̸∈ 𝑋𝑃 , then at the initial step of each execution of 𝑃 the variable
𝑥 is not initialized, i.e. there is no value associated with 𝑥,

2. if 𝑥 ∈ �̄�𝑃 and 𝑥 is not a shared variable, then at first step of each
execution 𝐸𝑥𝑒𝑐 of 𝑃 this variable is associated with a unique value,
i.e. such a value that differs from values associated with other initialized
variables at 𝐸𝑥𝑒𝑐, and from values associated with initialized variables
at any execution 𝐸𝑥𝑒𝑐′ ̸= 𝐸𝑥𝑒𝑐 of any SP,

3. if a variable from �̄�𝑃 is shared and has the form 𝑥𝑃1...𝑃𝑛 , then

∙ 𝑃1, . . . , 𝑃𝑛 is a list of names of all SPs, executed together with
𝑃 (and 𝑃 is one of the SPs in this list), which have the variable
𝑥𝑃1...𝑃𝑛 among his hidden variables, and

∙ at the initial moment of each joint execution of SPs from the list
𝑃1, . . . , 𝑃𝑛 variable 𝑥𝑃1...𝑃𝑛 is initialized in all these SPs with the
same value, which is unique, i.e. has the properties described in
the point 2.

2.3 Operations on sequential processes

2.3.1 Prefix action

A refined action is a triple �̃� = (𝛼, �̂�, �̄�), where 𝛼 ∈ 𝐴𝑐𝑡, and �̂�, �̄� are
disjoint subsets of the set Var𝛼.

11



We will denote the refined action �̃� = (𝛼, �̂�, �̄�) by the notation obtained
from the notation of the action 𝛼 by replacing each variable 𝑥 ∈ Var𝛼 to �̂�
or �̄�, if 𝑥 ∈ �̂� or 𝑥 ∈ �̄�, respectively.

Let �̃� = (𝛼, �̂�, �̄�) be a refined action and 𝑃 be a SP. An operation of
a prefix action maps the pair (�̃�, 𝑃 ) to a SP �̃�.𝑃 , having the following
components:

∙ a graph of the SP �̃�.𝑃 is obtained by adding

– a new node 𝑣 to 𝑃 , which will be an initial node in �̃�.𝑃 , and

– an edge 𝑣
𝛼→ 𝑃 0,

∙ 𝑋�̃�.𝑃 = (𝑋𝑃 ∪ Var𝛼) ∖ �̂�, �̄��̃�.𝑃 = �̄�𝑃 ∪ �̄�.

Below we will omit the symbol ∼ in the notations of the refined actions.

2.3.2 Choice

Let 𝑃𝐼 = {𝑃𝑖 | 𝑖 ∈ 𝐼} be a family of SPs.
The notation

∑︀
𝑖∈𝐼 𝑃𝑖 denotes a SP (𝑃,𝑋, �̄�), called a choice from 𝑃𝐼 .

Its components are defined as follows:

∙ the graph 𝑃 is obtained by adding to the union of disjoint copies of
graphs from 𝑃𝐼

– a new node 𝑃 0, which will be the initial one in 𝑃 , and

– edges 𝑃 0 𝛼→ 𝑣, corresponding to edges of the form 𝑃 0
𝑖

𝛼→ 𝑣,

∙ 𝑋 and �̄� are unions of the corresponding components of SPs from 𝑃𝐼 .

If the set of indices 𝐼 has the form {1, . . . , 𝑛}, then SP
∑︀

𝑖∈𝐼 𝑃𝑖 can also
be denoted by 𝑃1 + . . .+ 𝑃𝑛.

2.3.3 Renaming

A renaming is a partial injective function 𝜁 : 𝑉 𝑎𝑟 → 𝑉 𝑎𝑟, where for each
shared variable 𝑥𝑃1...𝑃𝑛 ∈ 𝐷𝑜𝑚(𝜁) the variable 𝜁(𝑥𝑃1...𝑃𝑛) has the form 𝑦𝑃1...𝑃𝑛 .

For each renaming 𝜁, each term 𝑒 and each SP 𝑃 the notations 𝑒𝜁 and
𝑃 𝜁 denote a term or a SP respectively, obtained from 𝑒 or 𝑃 by replacing
∀𝑥 ∈ 𝐷𝑜𝑚(𝜁) of each occurrence of 𝑥 by 𝜁(𝑥).

If Var𝑃 ⊆ 𝐷𝑜𝑚(𝜁), then the SPs 𝑃 and 𝑃 𝜁 are assumed to be the same.
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2.4 Distributed processes

2.4.1 A concept of a distributed process

Let 𝑃𝐼 = {𝑃𝑖 | 𝑖 ∈ 𝐼} be a family of SPs.
∀ 𝑖 ∈ 𝐼 let �̃�𝑃𝑖

be a set of variables from Var𝑃𝑖
, which either do not belong

to 𝑋𝑃𝑖
, or belong to �̄�𝑃𝑖

and are not shared.
We shall assume that for each family of SPs 𝑃𝐼 under consideration the

sets �̃�𝑃𝑖
are disjoint (if this is not the case, then we rename accordingly

variables in SPs from the family 𝑃𝐼).
A distributed process (DP) corresponding to the family 𝑃𝐼 is an object

denoted by the notation
∏︀

𝑖∈𝐼 𝑃𝑖. A DP is a model of a distributed algorithm,
components of which are SPs from the family 𝑃𝐼 , interacting by transmitting
messages through channels. The meaning of a DP concept is explained in
section 2.4.3.

If 𝑃 is a DP of the form
∏︀

𝑖∈𝐼 𝑃𝑖, then

∙ Var𝑃 =
⋃︀

𝑖∈𝐼 Var𝑃𝑖
, 𝑋𝑃 =

⋃︀
𝑖∈𝐼 𝑋𝑃𝑖

, �̄�𝑃 =
⋃︀

𝑖∈𝐼 �̄�𝑃𝑖
,

∙ if 𝜁 is a renaming, then

– the notation 𝑃 𝜁 denotes the DP
∏︀

𝑖∈𝐼 𝑃
𝜁
𝑖 ,

– if Var𝑃 ⊆ 𝐷𝑜𝑚(𝜁), then 𝑃 and 𝑃 𝜁 are assumed to be the same,

∙ 𝑃 can be denoted by the notation

– (𝑃1, . . . , 𝑃𝑛), if 𝐼 = {1, . . . , 𝑛}, or
– 𝑄∞, if 𝐼 is a set of natural numbers, and all SPs in the family 𝑃𝐼

coincide with the SP 𝑄.

If 𝑃𝐼 = {𝑃𝑖 | 𝑖 ∈ 𝐼} is a family of DPs, and each DP 𝑃𝑖 in 𝑃𝐼 corresponds
to a family of SPs {𝑄𝑖′ | 𝑖′ ∈ 𝐼𝑖}, where the sets 𝐼𝑖 (𝑖 ∈ 𝐼) are disjoint (if this
is not the case, then we will replace these sets with appropriate disjunctive
copies), then the notation

∏︀
𝑖∈𝐼 𝑃𝑖 denotes a DP corresponding to the family

of SPs {𝑄𝑖 | 𝑖 ∈
⨆︀

𝑖∈𝐼 𝐼𝑖}.
If DP 𝑃 has the form

∏︀
𝑖∈𝐼 𝑃𝑖, then the notation 𝑃 * denotes the DP∏︀

𝑖∈𝐼⊔{*} 𝑃𝑖, where 𝑃* is the adversary process.

2.4.2 A concept of a state of a distributed process

Let 𝑃 be a DP of the form
∏︀

𝑖∈𝐼 𝑃𝑖.
A state of 𝑃 is a pair 𝑆 of the following objects:

∙ a set {𝑠𝑆𝑃𝑖
| 𝑖 ∈ 𝐼} of states of SPs from 𝑃𝐼 ,
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∙ a channel state: 𝑀𝑆 = {𝑀𝑆
𝑐 ⊆ 𝑇𝑚 | 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠}.

A state 𝑆 of DP 𝑃 is said to be initial, and is denoted by ⊙, if

∀ 𝑖 ∈ 𝐼 𝑠𝑆𝑃𝑖
= ⊙, ∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑀𝑆

𝑐 = ∅.

If 𝑆 is a state of the DP 𝑃 =
∏︀

𝑖∈𝐼 𝑃𝑖, and 𝑖 ∈ 𝐼, then

∙ notations 𝑣𝑆𝑃𝑖
, 𝛼𝑆

𝑃𝑖
, 𝑋𝑆

𝑃𝑖
, 𝜃𝑆𝑃𝑖

denote the corresponding components of
the state 𝑠𝑆𝑃𝑖

,

∙ notation 𝑉 𝑆 denotes the set {𝑣𝑆𝑃𝑖
| 𝑖 ∈ 𝐼},

∙ notation 𝜃𝑆 denotes a binding, such that

∀ 𝑖 ∈ 𝐼, ∀𝑥 ∈ 𝑋𝑆
𝑃𝑖

𝜃𝑆(𝑥) = 𝜃𝑆𝑃𝑖
(𝑥).

2.4.3 An execution of a distributed process

Let 𝑃 be a DP of the form
∏︀

𝑖∈𝐼 𝑃𝑖.
An execution of 𝑃 can be understood as non-deterministic interliving

of executions of SPs from 𝑃𝐼 . At each step of an execution of 𝑃

∙ at most one SP from 𝑃𝐼 performs its current action, and

∙ other SPs from 𝑃𝐼 are in the waiting status.

An execution of a DP 𝑃 can be formally defined as a generation of a
sequence of states of this DP (starting with ⊙), in which each state 𝑆 that is
not terminal, is associated with the next state 𝑆 ′ by a transition relation,
which means the following: ∃ 𝑖 ∈ 𝐼:

𝑠𝑆𝑃𝑖
→ 𝑠𝑆

′
𝑃𝑖
, ∀ 𝑖′ ∈ 𝐼 ∖ {𝑖} 𝑠𝑆

′
𝑃𝑖′

= 𝑠𝑆𝑃𝑖′
, and if 𝑠𝑆

′
𝑃𝑖

= (𝑣, 𝛼,𝑋, 𝜃), then

if 𝛼 = 𝑐!𝑒, then

{︃
𝑀𝑆′

𝑐𝜃
= 𝑀𝑆

𝑐𝜃
∪ {𝑒𝜃},

𝑀𝑆′

𝑐′ = 𝑀𝑆
𝑐′ when 𝑐′ ̸= 𝑐𝜃

}︃
, otherwise 𝑀𝑆′

= 𝑀𝑆.
(3)

For each states 𝑆, 𝑆 ′ of DP 𝑃

∙ 𝑆 → 𝑆 ′ means that 𝑆 is related with 𝑆 ′ by a transition relation,

∙ 𝑆
𝛼𝑃𝑖−→ 𝑆 ′ means that 𝑆 → 𝑆 ′, and (3) holds,

∙ 𝑆 ⇒ 𝑆 ′ means that either 𝑆 = 𝑆 ′, or there is a sequence 𝑆0, . . . , 𝑆𝑛 of
states of 𝑃 , such that

𝑆0 = 𝑆, 𝑆𝑛 = 𝑆 ′, ∀ 𝑖 = 0, . . . , 𝑛− 1 𝑆𝑖 → 𝑆𝑖+1.

A state 𝑆 of 𝑃 is said to be reachable, if ⊙ ⇒ 𝑆.
The set of reachable states of 𝑃 is denoted by Σ𝑃 .
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2.5 Schemes of distributed processes

2.5.1 A concept of a scheme of a distributed process

Let 𝑃 be a DP of the form
∏︀

𝑖∈𝐼 , and ∀ 𝑖 ∈ 𝐼 SP 𝑃𝑖 has the form

𝛼1. . . . 𝛼𝑛.𝑃
′
𝑖 . (4)

The sequence of actions 𝛼1 . . . 𝛼𝑛 and SP 𝑃 ′
𝑖 will be called a prefix and

a postfix of SP 𝑃𝑖, respectively.
If

∙ each external actions in the prefix of 𝑃𝑖 is a sending (receiving) a mes-
sage to (from) a certain SP 𝑃𝑗 ∈ 𝑃𝐼 , and

∙ the action of SP 𝑃𝑗 corresponding to the receiving (sending) this mes-
sage is in the prefix of 𝑃𝑗,

then these dependencies between actions can be expressed as a scheme of
DP 𝑃 , which has the following form:

∙ each SP 𝑃𝑖 ∈ 𝑃𝐼 is represented in this scheme by a thread, i.e. by a
vertical line, on which there are marked points corresponding to nodes
of the graph 𝑃𝑖 belonging to the prefix of 𝑃𝑖 (the upper point of the
thread corresponds to 𝑃 0

𝑖 ), and

– near each such point it might be specified an identifier of the
corresponding node,

– near the upper point of the thread a name of SP 𝑃𝑖 is specified,

– if 𝑃 ′
𝑖 ̸= 0, then the postfix name 𝑃 ′

𝑖 is specified near the bottom
point of the thread,

– the segments connecting the neighboring points of the thread cor-
respond to edges of 𝑃𝑖 related to the prefix of 𝑃𝑖, there are the
specified labels of the corresponding edges beside these segments,

∙ for each segment 𝑂 of the thread connecting neighboring points, if the
corresponding action is sending a message, then there is an arrow in
the scheme, such that

– the start of this arrow lies on the segment 𝑂, and

– the end of this arrow lies on the segment 𝑂′, the label of which is
an action of the corresponding SP 𝑃𝑗 ∈ 𝑃𝐼 to receive this message.
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For example if 𝑃𝑖 = 𝛼1. . . . 𝛼𝑛.𝑃
′
𝑖 , where 𝛼1 is a sending, and 𝛼𝑛 is a

receiving, and 𝐴0, . . . , 𝐴𝑛 are identifiers of the corresponding nodes of 𝑃𝑖,
then a thread corresponding to 𝑃𝑖 has the following form:s

s
s
s

. . .

𝛼1

𝛼𝑛

𝐴0

𝐴1

𝐴𝑛−1

𝐴𝑛
𝑃 ′
𝑖

-
𝑃𝑖
-

�

. . .

. . .

(5)

2.5.2 Examples of schemes of distributed processes

1. First example is a DP consisting of two SPs named 𝐴 and 𝐵, which is
a model for transmitting one message 𝑥 from 𝐴 to 𝐵 through a hidden
channel 𝑐𝐴𝐵 (only 𝐴 and 𝐵 know the name of this channel).

This DP works as follows:

∙ 𝐴 sends 𝐵 the message 𝑥 through channel 𝑐𝐴𝐵,

∙ 𝐵 receives a message from channel 𝑐𝐴𝐵, writes this message to the
variable 𝑦, and then it behaves in the same way as the SP 𝑃 .

SPs 𝐴 and 𝐵 are defined as follows:

𝐴 = (𝑐𝐴𝐵!𝑥).0, 𝐵 = (𝑐𝐴𝐵?𝑦).𝑃.

The scheme of the DP (𝐴,𝐵) has the following form:

-

𝐴 𝐵s s
s s

𝐴0

𝐴1

𝐵0

𝐵1
𝑃

𝑐𝐴𝐵!𝑥 𝑐𝐴𝐵?𝑦 (6)

2. Second example is a DP consisting of two SPs named 𝐴 and 𝐵, which
is a model of transmission an encrypted message 𝑘𝐴𝐵(𝑥) from 𝐴 to 𝐵
through the open channel ∘. It is assumed that 𝐴 and 𝐵 have a shared
secret key 𝑘𝐴𝐵, on which they can encrypt and decrypt messages using
a symmetric encryption system, and only 𝐴 and 𝐵 know the key 𝑘𝐴𝐵.

This DP works as follows:

∙ 𝐴 sends 𝐵 an encrypted message 𝑘𝐴𝐵(𝑥) to channel ∘,
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∙ 𝐵 receives the message 𝑘𝐴𝐵(𝑥) from channel ∘, decrypts it, writes
the extracted message 𝑥 into the variable 𝑦, and then behaves in
the same way as SP 𝑃 .

SPs 𝐴 and 𝐵 are defined as follows:

𝐴 = (!𝑘𝐴𝐵(𝑥)).0, 𝐵 = (?𝑘𝐴𝐵(𝑦)).𝑃.

A scheme of DP (𝐴,𝐵) has the following form:s s
s s

𝐴0

𝐴1

𝐵0

𝐵1

-

𝐴 𝐵

𝑃

!𝑘𝐴𝐵(𝑥) ?𝑘𝐴𝐵(𝑦) (7)

3. Third example is a DP consisting of three SPs named 𝐴, 𝐵, and 𝑇 ,
which is a model for transmission one message 𝑥 from 𝐴 to 𝐵 through
a hidden channel 𝑐𝐴𝐵, using a trusted intermediary 𝑇 , where 𝐴 and
𝑇 (𝐵 and 𝑇 ) communicate through a hidden channel 𝑐𝐴𝑇 (𝑐𝐵𝑇 ), and
only 𝐴 and 𝑇 (𝐵 and 𝑇 ) know the name of this channel.

This DP works as follows:

∙ 𝐴 sends 𝑇 channel name 𝑐𝐴𝐵 (only 𝐴 knows name 𝑐𝐴𝐵 at first)
through channel 𝑐𝐴𝑇 ,

∙ 𝑇 sends 𝐵 received channel name 𝑐𝐴𝐵 through channel 𝑐𝐵𝑇 ,

∙ 𝐴 sends 𝐵 message 𝑥 through channel 𝑐𝐴𝐵,

∙ 𝐵 receives a message from channel 𝑐𝐴𝐵 and writes it to variable 𝑦
and then it behaves in the same way as SP 𝑃 .

SPs 𝐴, 𝐵 and 𝑇 are defined as follows:

𝐴 = 𝛼1.𝛼2.0, where 𝛼1 = 𝑐𝐴𝑇 !𝑐𝐴𝐵, 𝛼2 = 𝑐𝐴𝐵!𝑥,

𝑇 = 𝛾1.𝛾2.0, where 𝛾1 = 𝑐𝐴𝑇 ?�̂�, 𝛾2 = 𝑐𝐵𝑇 !𝑢,

𝐵 = 𝛽1.𝛽2.𝑃, where 𝛽1 = 𝑐𝐵𝑇 ?𝑣, 𝛽2 = 𝑣?𝑦.

(8)

A scheme of DP (𝐴,𝐵, 𝑇 ) has the following form:s s s
s s

s
s s s

𝐴0

𝐴1

𝐴2

𝑇 0

𝑇 1

𝑇 2

𝐵0

𝐵1

𝐵2

-

-

-

𝐴 𝑇 𝐵

𝑃

𝛼1

𝛾2

𝛾1

𝛼2 𝛽2

𝛽1
(9)
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4. Fourth example is a DP (called a Wide-Mouth Frog (WMF) proto-
col), consisting of three SPs named 𝐴, 𝐵 and 𝑇 (where 𝑇 is a trusted
intermediary). This DP is a model of a transmission of encrypted mes-
sage 𝑘𝐴𝐵(𝑥) from 𝐴 to 𝐵 through open channel ∘ with use of 𝑇 , with
whom 𝐴 and 𝐵 communicate through open channel ∘. SP 𝐴

∙ creates the secret key 𝑘𝐴𝐵,

∙ sends 𝐵 this key in an encrypted form using 𝑇 , and then

∙ sends 𝐵 encrypted message 𝑘𝐴𝐵(𝑥).

It is assumed that 𝐴 and 𝑇 (𝐵 and 𝑇 ) have a shared secret key 𝑘𝐴𝑇

(𝑘𝐵𝑇 ), on which they can encrypt and decrypt messages using a sym-
metric encryption system, and only 𝐴 and 𝑇 (𝐵 and 𝑇 ) know secret
key 𝑘𝐴𝑇 (𝑘𝐵𝑇 ).

This DP works as follows.

∙ 𝐴 creates a secret key 𝑘𝐴𝐵 (at first only 𝐴 knows this key) and
sends 𝑇 encrypted message 𝑘𝐴𝑇 (𝑘𝐴𝐵) through ∘, then 𝐴 sends 𝐵
encrypted message 𝑘𝐴𝐵(𝑥) through ∘,

∙ 𝑇 receives a message from 𝐴, decrypts this message, then encrypts
the extracted key 𝑘𝐴𝐵 with the key 𝑘𝐵𝑇 , and sends 𝐵 encrypted
message 𝑘𝐵𝑇 (𝑘𝐴𝐵) through ∘,

∙ 𝐵 extracts key 𝑘𝐴𝐵 from the message received from 𝑇 , and then
uses this key to extract message 𝑥 from the message received from
𝐴, writes 𝑥 to variable 𝑦, and then behaves in the same way as
SP 𝑃 .

SPs 𝐴, 𝐵 and 𝑇 are defined as follows:

𝐴 = 𝛼1.𝛼2.0, where 𝛼1 =!𝑘𝐴𝑇 (𝑘𝐴𝐵), 𝛼2 =!𝑘𝐴𝐵(𝑥),

𝑇 = 𝛾1.𝛾2.0, where 𝛾1 =?𝑘𝐴𝑇 (�̂�), 𝛾2 =!𝑘𝐵𝑇 (𝑢),

𝐵 = 𝛽1.𝛽2.𝑃, where 𝛽1 =?𝑘𝐵𝑇 (𝑣), 𝛽2 =?𝑣(𝑦).

(10)

A scheme of DP (𝐴,𝐵, 𝑇 ) has the same form (9), as the scheme of the
previous DP.

2.6 Transition graphs of distributed processes

2.6.1 A concept of a transition graph of a distributed process

Let 𝑃 be a DP of the form
∏︀

𝑖∈𝐼 𝑃𝑖 .
A transition graph (TG) of DP 𝑃 is a graph 𝐺𝑃 such that

18



∙ a set of nodes of 𝐺𝑃 is the Cartesian product of the sets of nodes of
graphs from 𝑃𝐼 , i.e. each node of 𝐺𝑃 is a family of nodes

𝑉 = {𝑣𝑖 | 𝑖 ∈ 𝐼}, where ∀ 𝑖 ∈ 𝐼 𝑣𝑖 ∈ 𝑃𝑖,

∙ each edge of 𝐺𝑃 has the form

{𝑣𝑖 | 𝑖 ∈ 𝐼}
𝛼𝑃𝑖−→ {𝑣′𝑖 | 𝑖 ∈ 𝐼}, (11)

where 𝑃𝑖 has the edge 𝑣𝑖
𝛼→ 𝑣′𝑖 and ∀ 𝑖′ ∈ 𝐼 ∖ {𝑖} 𝑣𝑖′ = 𝑣′𝑖′ .

The node {𝑃 0
𝑖 | 𝑖 ∈ 𝐼} ∈ 𝐺𝑃 is said to be an initial node of 𝐺𝑃 , and

is denoted by 𝐺0
𝑃 . An edge 𝑉

𝛼𝑃𝑖−→ 𝑉 ′ is said to be a realizable edge, if
∃𝑆, 𝑆 ′ ∈ Σ𝑃 : 𝑉 = 𝑉 𝑆 and 𝑉 ′ = 𝑉 𝑆′

.
It is not difficult to prove that if ∀ 𝑖 ∈ 𝐼 𝑃𝑖 is acyclic, then 𝐺𝑃 is acyclic.
For each DP 𝑃 the graph 𝐺𝑃 * can be considered as a completion of the

graph 𝐺𝑃 with cyclic edges corresponding to the actions of 𝑃*.
If DP 𝑃 has the form (𝑃1, . . . , 𝑃𝑛), then the following conventions will be

used in a graphical representation of 𝐺𝑃 :

∙ each node 𝑉 = {𝑣𝑖 | 𝑖 = 1, . . . , 𝑛} of 𝐺𝑃 is represented by an oval, there
is a list 𝑣1 . . . 𝑣𝑛 of components of 𝑉 inside this oval,

∙ an initial node 𝐺0
𝑃 is represented by a double oval.

2.6.2 Examples of transition graphs of distributed processes

In this section we outline some examples of TGs for DPs described by schemes
from section 2.5.

1. A TG for a DP described by scheme (6):

�� ��𝐴0𝐵0

�� ��𝐴0𝐵1

�� ��

�
�
�
�

𝐴1𝐵0

�� ��𝐴1𝐵1

? ?
-

-

(𝑐𝐴𝐵!𝑥)𝐴 (𝑐𝐴𝐵!𝑥)𝐴

(𝑐𝐴𝐵?𝑦)𝐵

(𝑐𝐴𝐵?𝑦)𝐵 ��1

PPq
. . .

��1

PPq
. . .

(12)

where the slanted arrows denote

∙ edges of 𝐺𝑃 outgoing from the corresponding nodes,

∙ and parts of 𝐺𝑃 reachable after passing through these edges,
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which are not represented in this picture, this convention will be used
in the following TG examples as well.

2. A TG for a DP described by scheme (7):

�� ��𝐴0𝐵0

�� ��𝐴0𝐵1

�� ��

�
�
�
�

𝐴1𝐵0

�� ��𝐴1𝐵1

? ?
-

-

!𝑘𝐴𝐵(𝑥) !𝑘𝐴𝐵(𝑥)

?𝑘𝐴𝐵(𝑦)

?𝑘𝐴𝐵(𝑦) ��1

PPq
. . .

��1

PPq
. . .

(13)

3. A TG for a DP described by scheme (9):

��1

PPq
. . .

��1

PPq
. . .

��1

PPq
. . .

��1

PPq
. . .

��1

PPq
. . .

��1

PPq
. . .

��1

PPq
. . .

��1

PPq
. . .

��1

PPq
. . .

�� ��
�
�
�
�𝐴0𝑇 0𝐵0

�� ��𝐴0𝑇 0𝐵1

�� ��𝐴0𝑇 0𝐵2

�� ��𝐴0𝑇 1𝐵0

�� ��𝐴0𝑇 1𝐵1

�� ��𝐴0𝑇 1𝐵2

�� ��𝐴0𝑇 2𝐵0

�� ��𝐴0𝑇 2𝐵1

�� ��𝐴0𝑇 2𝐵2

�� ��𝐴1𝑇 0𝐵0

�� ��𝐴1𝑇 0𝐵1

�� ��𝐴1𝑇 0𝐵2

�� ��𝐴1𝑇 1𝐵0

�� ��𝐴1𝑇 1𝐵1

�� ��𝐴1𝑇 1𝐵2

�� ��𝐴1𝑇 2𝐵0

�� ��𝐴1𝑇 2𝐵1

�� ��𝐴1𝑇 2𝐵2

�� ��𝐴2𝑇 0𝐵0

�� ��𝐴2𝑇 0𝐵1

�� ��𝐴2𝑇 0𝐵2

�� ��𝐴2𝑇 1𝐵0

�� ��𝐴2𝑇 1𝐵1

�� ��𝐴2𝑇 1𝐵2

�� ��𝐴2𝑇 2𝐵0

�� ��𝐴2𝑇 2𝐵1

�� ��𝐴2𝑇 2𝐵2

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

? ? ?

- -

- -

- -

- -

- -

- -

- -

- -

- -

�� �� ��

�� �� ��

�� �� ��

�� �� ��

�� �� ��

�� �� ��

𝛼1 𝛼1 𝛼1

𝛼1 𝛼1 𝛼1

𝛼1 𝛼1 𝛼1

𝛼2 𝛼2 𝛼2

𝛼2 𝛼2 𝛼2

𝛼2 𝛼2 𝛼2

𝛽1 𝛽2

𝛽1 𝛽2

𝛽1 𝛽2

𝛽1 𝛽2

𝛽1 𝛽2

𝛽1 𝛽2

𝛽1 𝛽2

𝛽1 𝛽2

𝛽1 𝛽2

𝛾1 𝛾1 𝛾1

𝛾1 𝛾1 𝛾1

𝛾1 𝛾1 𝛾1

𝛾2 𝛾2 𝛾2

𝛾2 𝛾2 𝛾2

𝛾2 𝛾2 𝛾2

(14)
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2.7 Values of expressions and formulas in states of dis-
tributed processes

2.7.1 A concept of a value of an expression and a formula in a
state of a distributed process

Let there are given the DP 𝑃 =
∏︀

𝑖∈𝐼 𝑃𝑖, the state 𝑆 ∈ Σ𝑃 , the expression
𝐸 ∈ 𝐸𝑥𝑝𝑟, and the formula 𝛽 ∈ 𝐹𝑚.

The notation 𝐸𝑆 denotes a subset of the set 𝑇𝑚, called a value of the
expression 𝐸 in the state 𝑆, and defined as follows:

∙ if 𝐸 ⊆ 𝑇𝑚, then 𝐸𝑆 = 𝐸𝜃𝑆 ,

∙ if 𝐸 = 𝑋𝑃 , then 𝐸𝑆 = (𝑋𝑆
𝑃 )

𝜃𝑆 ,

∙ if 𝐸 = 𝑀𝑐, then 𝐸𝑆 = 𝑀𝑆

𝑐𝜃𝑆
,

∙ if 𝐸 = 𝑘−1(𝐸 ′), then 𝐸𝑆 = {𝑒 ∈ 𝑇𝑚 | ∃ 𝑒′ ∈ (𝐸 ′)𝑆 : 𝑘𝜃𝑆(𝑒) ⊆ 𝑒′},

∙ (𝐸 ∩ 𝐸 ′)𝑆 = 𝐸𝑆 ∩ (𝐸 ′)𝑆, (𝐸 ∪ 𝐸 ′)𝑆 = 𝐸𝑆 ∪ (𝐸 ′)𝑆, (¬𝐸)𝑆 = 𝑇𝑚 ∖ 𝐸𝑆.

The notation 𝑆 |= 𝛽 denotes the statement 𝛽 holds in 𝑆, which is true
iff one of the following cases holds:

∙ – 𝛽 = (𝐸 = 𝐸 ′), (𝐸 ⊆ 𝐸 ′), or (𝐸 ⊇ 𝐸 ′), where 𝐸,𝐸 ′ ∈ 𝐸𝑥𝑝𝑟, and

– 𝐸𝑆 = (𝐸 ′)𝑆, 𝐸𝑆 ⊆ (𝐸 ′)𝑆, or 𝐸𝑆 ⊇ (𝐸 ′)𝑆, respectively,

∙ – 𝛽 = (𝑥⊥𝑃𝑖), where 𝑥 ∈ Var , 𝑖 ∈ 𝐼, and

– ∀ 𝑒 ∈ (𝑋𝑆
𝑃𝑖
)𝜃

𝑆
𝑥 ̸∈ Var 𝑒,

∙ – 𝛽 = (𝑥⊥𝐶), where 𝑥 ∈ Var , 𝐶 ⊆ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠, and

– ∀ 𝑐 ∈ 𝐶, ∀ 𝑒 ∈ 𝑀𝑆
𝑐 𝑥 ̸∈ Var 𝑒,

∙ – 𝛽 = (𝑘⊥K 𝑃𝑖), where 𝑘 ∈ Keys , 𝑖 ∈ 𝐼, and

– ∀ 𝑒 ∈ (𝑋𝑆
𝑃𝑖
)𝜃

𝑆
each occurrence of 𝑘 in 𝑒 is hidden,

∙ – 𝛽 = (𝑘⊥K𝐶), where 𝑘 ∈ Keys , 𝐶 ⊆ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠, and

– ∀ 𝑐 ∈ 𝐶, ∀ 𝑒 ∈ 𝑀𝑆
𝑐 each occurrence of 𝑘 in 𝑒 is hidden,

∙ 𝛽 = {𝛽𝑖 | 𝑖 ∈ 𝐼} is a family of EFs, ∀ 𝑖 ∈ 𝐼 𝑆 |= 𝛽𝑖.
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2.7.2 Theorems on preserving values of formulas under transitions

Below we prove theorems that some formulas have the same values in states
related by a transition relation.

Theorem 1.
Let 𝑃 =

∏︀
𝑖∈𝐼 𝑃𝑖 be a DP and 𝑆, 𝑆 ′ ∈ Σ𝑃 be states such that

∃ 𝑖 ∈ 𝐼 : 𝑆
𝛼𝑃𝑖−→ 𝑆 ′.

Then the implication 𝑆 |= 𝛽 ⇒ 𝑆 ′ |= 𝛽 holds, where 𝛽 is a formula of
one of the following forms:

1. 𝛽 = {𝑥⊥𝑃𝑖, 𝑥⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠}, where 𝑥 ∈ 𝑋𝑃 ,

2. 𝛽 = {𝑘⊥K 𝑃𝑖, 𝑘⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠}, where 𝑘 ∈ 𝑋K
𝑃𝑖
.

Proof.

1. Let 𝛽 = {𝑥⊥𝑃𝑖, 𝑥⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠}, where 𝑥 ∈ 𝑋𝑃 .

𝑆 |= 𝛽 means that

∀ 𝑦 ∈ 𝑋𝑆
𝑃𝑖

𝑥 ̸∈ Var 𝑦𝜃𝑆

∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,∀ 𝑒 ∈ 𝑀𝑆
𝑐 𝑥 ̸∈ Var 𝑒.

}︃
(15)

It is required to prove that (15) implies 𝑆 ′ |= 𝛽, i.e.

∀ 𝑦 ∈ 𝑋𝑆′
𝑃𝑖

𝑥 ̸∈ Var
𝑦𝜃𝑆

′

∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,∀ 𝑒 ∈ 𝑀𝑆′
𝑐 𝑥 ̸∈ Var 𝑒.

}︃
(16)

If first statement in (16) is wrong, then first statement in (15) implies
that 𝑋𝑆

𝑃𝑖
̸= 𝑋𝑆′

𝑃𝑖
. This is only possible if

𝛼 is of the form 𝑐?𝑒, 𝑋𝑆′
𝑃𝑖

= 𝑋𝑆
𝑃𝑖
∪ Var 𝑒,

𝑒𝜃
𝑆′
∈ 𝑀𝑆

𝑐𝜃𝑆
, and ∃ 𝑦 ∈ Var 𝑒 : 𝑥 ∈ 𝑦𝜃

𝑆′
(⇒ 𝑥 ∈ Var

𝑒𝜃𝑆
′ ).

(17)

(17) contradicts second statement in (15).

If second statement in (16) is wrong, then second statement in (15)
implies that ∃ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 : 𝑀𝑆

𝑐 ̸= 𝑀𝑆′
𝑐 . This is only possible if

𝛼 has the form 𝑐′!𝑒, where (𝑐′)𝜃
𝑆
= 𝑐, and 𝑒 ∈ 𝑇𝑚(𝑋𝑆

𝑃𝑖
),

𝑀𝑆′
𝑐 = 𝑀𝑆

𝑐 ∪ {𝑒𝜃𝑆}, and 𝑥 ∈ Var 𝑒𝜃𝑆 .

}︃
(18)
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Denote by symbols𝑋 and 𝜃 the set𝑋𝑆
𝑃𝑖
and the binding 𝜃𝑆, respectively.

From (18) it follows that 𝑒 ∈ 𝑇𝑚(𝑋) and 𝑥 ∈ Var 𝑒𝜃 .

From 𝑥 ∈ Var 𝑒𝜃 it follows that ∃ 𝑦 ∈ Var 𝑒 : 𝑥 ∈ Var 𝑦𝜃 .

From 𝑒 ∈ 𝑇𝑚(𝑋) and 𝑦 ∈ Var 𝑒 it follows that 𝑦 ∈ 𝑋, so 𝑦𝜃 ∈ 𝑋𝜃.

Thus, we get the statements

𝑦𝜃 ∈ 𝑋𝜃, 𝑥 ∈ Var 𝑦𝜃

that contradict first statement in (15).

2. Let 𝛽 = {𝑘⊥K 𝑃𝑖, 𝑘⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠}, where 𝑘 ∈ 𝑋K
𝑃𝑖
.

𝑆 |= 𝛽 means that

∀𝑥 ∈ 𝑋𝑆
𝑃𝑖

each occurrence of 𝑘 in 𝑥𝜃𝑆 is hidden,

∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠, ∀ 𝑒 ∈ 𝑀𝑆
𝑐 each occurrence of 𝑘 in 𝑒 is hidden.

}︃
(19)

It is required to prove that (19) implies 𝑆 ′ |= 𝛽, i.e.

∀𝑥 ∈ 𝑋𝑆′
𝑃𝑖

each occurrence of 𝑘 in 𝑥𝜃𝑆
′
is hidden,

∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠, ∀ 𝑒 ∈ 𝑀𝑆′
𝑐 each occurrence of 𝑘 in 𝑒 is hidden.

}︃
(20)

If first statement in (20) is wrong, then first statement in (19) implies
that 𝑋𝑆

𝑃𝑖
̸= 𝑋𝑆′

𝑃𝑖
. This is possible in the following two cases:

(a)

⎧⎪⎨⎪⎩
𝛼 is of the form 𝑐?𝑒, 𝑋𝑆′

𝑃𝑖
= 𝑋𝑆

𝑃𝑖
∪ Var 𝑒,

𝑒𝜃
𝑆′
∈ 𝑀𝑆

𝑐𝜃𝑆
, and ∃ 𝑦 ∈ Var 𝑒:

∃ unhidden occurrence of 𝑘 in 𝑦𝜃
𝑆′
,

(b)

⎧⎪⎨⎪⎩
𝛼 is of the form 𝑒 := 𝑒′, 𝑋𝑆′

𝑃𝑖
= 𝑋𝑆

𝑃𝑖
∪ Var 𝑒,

𝑒𝜃
𝑆′
= (𝑒′)𝜃

𝑆
, and ∃ 𝑦 ∈ Var 𝑒:

∃ unhidden occurrence of 𝑘 in 𝑦𝜃
𝑆′
.

In case 2(b)i ∃ unhidden occurrence of 𝑘 in 𝑒𝜃
𝑆′
, that contradicts second

statement in (19).

In case 2(b)ii the following is true:

∃ 𝑒′ ∈ 𝑇𝑚(𝑋𝑆
𝑃𝑖
) : ∃ unhidden occurrence of 𝑘 in (𝑒′)𝜃

𝑆
. (21)
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However, according to first statement in (19), ∀𝑥 ∈ 𝑋𝑆
𝑃𝑖

each occur-

rence of 𝑘 in 𝑥𝜃𝑆 is hidden, whence by induction on the structure of 𝑒′

it is easy to prove that (21) is false.

If second statement in (20) is wrong, then second statement in (19)
implies that ∃ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 : 𝑀𝑆

𝑐 ̸= 𝑀𝑆′
𝑐 . This is only possible if

𝛼 has the form 𝑐′!𝑒, where (𝑐′)𝜃
𝑆
= 𝑐, and 𝑒 ∈ 𝑇𝑚(𝑋𝑆

𝑃𝑖
),

𝑀𝑆′
𝑐 = 𝑀𝑆

𝑐 ∪ {𝑒𝜃𝑆}, and ∃ an unhidden occurrence of 𝑘 in 𝑒𝜃
𝑆
.

(22)

As in previous case, we prove by induction on the structure of 𝑒 that
each occurrence of 𝑘 in 𝑒𝜃

𝑆
is hidden (for the base of induction we use

first statement in (19)) that contradicts the last statement in (22).

Theorem 2.
Let 𝑃 =

∏︀
𝑖∈𝐼 𝑃𝑖 be a DP, and 𝑆, 𝑆 ′ ∈ Σ𝑃 be states such that

∃ 𝑖 ∈ 𝐼 : 𝑆
𝛼𝑃𝑖−→ 𝑆 ′.

Then the implication 𝑆 |= 𝛽 ⇒ 𝑆 ′ |= 𝛽 holds, where 𝛽 is a formula of
one of the following two forms:

{𝑐⊥𝑃𝑖, 𝑐⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,𝑀𝑐 = 𝐸}, where 𝑐 ∈ 𝑋C
𝑃 , (23)⎧⎪⎨⎪⎩

𝑘⊥K 𝑃𝑖, 𝑘⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,

𝑘−1(𝑀𝑐) ⊆ 𝐸 (∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠),

𝑘−1(𝑋𝑃𝑖
) ⊆ 𝐸

⎫⎪⎬⎪⎭ ,where 𝑘 ∈ 𝑋K
𝑃 , 𝐸 ⊆ 𝑇𝑚(𝑋𝑃 ). (24)

Proof.

1. Let 𝛽 has the form (23).

According to theorem 1, if first two EFs occurred in 𝛽 hold in 𝑆, then
these EFs hold in 𝑆 ′ as well.

Thus, to prove 𝑆 ′ |= 𝛽 it suffices to prove the implication

𝑆 |= {𝑐⊥𝑃𝑖, 𝑐⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,𝑀𝑐 = 𝐸} ⇒ 𝑆 ′ |= 𝑀𝑐 = 𝐸. (25)

If the conclusion of implication (25) does not hold, then the sets 𝑀𝑆
𝑐

and 𝑀𝑆′
𝑐 are different. This is possible only if 𝛼 is of the form 𝑐′!𝑒,

where 𝑐 = (𝑐′)𝜃
𝑆
and 𝑐′ ∈ 𝑋𝑆

𝑃𝑖
. However, 𝑆 |= 𝑐⊥𝑃𝑖 implies that

𝑐 ̸∈ Var (𝑐′)𝜃𝑆 , i. e. 𝑐 ̸∈ {𝑐}, which is impossible.
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2. Let 𝛽 has the form (24).

According to theorem 1, if first two EFs occurred in 𝛽 hold in 𝑆, then
these EFs hold in 𝑆 ′ as well.

Thus, to prove 𝑆 ′ |= 𝛽 it suffices to prove the implication

𝑆 |= 𝑘−1(𝑀𝑐) ⊆ 𝐸 (∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠)

𝑆 |= 𝑘−1(𝑋𝑃𝑖
) ⊆ 𝐸

𝑆 |= {𝑘⊥K 𝑃𝑖, 𝑘⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠}

⎫⎪⎬⎪⎭ ⇒

⇒

{︃
𝑆 ′ |= 𝑘−1(𝑀𝑐) ⊆ 𝐸 (∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠)

𝑆 ′ |= 𝑘−1(𝑋𝑃𝑖
) ⊆ 𝐸

(26)

(a) If first statement in the conclusion of implication (26) is wrong,
then ∃ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 : 𝑆 ′ ̸|= 𝑘−1(𝑀𝑐) ⊆ 𝐸.

From first statement in the premise of implication (26) it follows
that this is possible only if

𝛼 has the form 𝑐′!𝑒′, where 𝑐 = (𝑐′)𝜃
𝑆
, 𝑒′ ∈ 𝑇𝑚(𝑋𝑆

𝑃𝑖
),

𝑀𝑆′
𝑐 = 𝑀𝑆

𝑐 ∪ {(𝑒′)𝜃𝑆}, with ∃ 𝑘(𝑒) ⊆ (𝑒′)𝜃
𝑆
: 𝑒 ̸∈ 𝐸.

The term 𝑒′ does not contain 𝑘, because 𝑒′ ∈ 𝑇𝑚(𝑋𝑆
𝑃𝑖
), and if

𝑒′ contains 𝑘, then 𝑘 ∈ 𝑋𝑆
𝑃𝑖
, which contradicts the assumption

𝑆 |= 𝑘⊥K 𝑃𝑖 in the premise of implication (26).

Thus, ∃𝑥 ∈ Var 𝑒′ ⊆ 𝑋𝑆
𝑃𝑖
, ∃ 𝑘(𝑒) ⊆ 𝑥𝜃𝑆 , and 𝑒 ̸∈ 𝐸.

However, this contradicts the statement 𝑆 |= 𝑘−1(𝑋𝑃𝑖
) ⊆ 𝐸 in the

premise of implication (26).

(b) If second statement in the conclusion of implication (26) does not
hold, then from second statement in the premise of implication
(26) it follows that 𝑋𝑆

𝑃𝑖
̸= 𝑋𝑆′

𝑃𝑖
, and

∃𝑥 ∈ 𝑋𝑆′

𝑃𝑖
: ∃ 𝑒 ̸∈ 𝐸 : 𝑘(𝑒) ⊆ 𝑥𝜃𝑆

′

. (27)

This is possible in two cases:

i. 𝛼 = 𝑐?𝑒′, in this case

𝑋𝑆′

𝑃𝑖
= 𝑋𝑆

𝑃𝑖
∪ Var 𝑒′ , 𝑥 ∈ Var 𝑒′ , (𝑒′)𝜃

𝑆′

∈ 𝑀𝑆

𝑐𝜃𝑆
. (28)

Let 𝑐′ = 𝑐𝜃
𝑆
.
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According to first statement in the premise of implication
(26), 𝑆 |= 𝑘−1(𝑀𝑐′) ⊆ 𝐸, so the following implication holds:

𝑘(𝑒) ⊆ 𝑒 ∈ 𝑀𝑆
𝑐′ ⇒ 𝑒 ∈ 𝐸. (29)

The premise of implication (29) holds when 𝑒 = (𝑒′)𝜃
𝑆′
, this

follows from the last statement in (30) and from

𝑘(𝑒) ⊆ 𝑥𝜃𝑆
′

, 𝑥 ∈ Var 𝑒′ , 𝑥𝜃𝑆
′

⊆ (𝑒′)𝜃
𝑆′

∈ 𝑀𝑆

𝑐𝜃𝑆
.

Thus, the conclusion of implication (29) holds, which contra-
dicts the statement 𝑒 ̸∈ 𝐸 in (27).

ii. 𝛼 = (𝑒′ := 𝑒′′), in this case

𝑋𝑆′
𝑃𝑖

= 𝑋𝑆
𝑃𝑖
∪ Var 𝑒′ , 𝑥 ∈ Var 𝑒′ ,

𝑒′′ ∈ 𝑇𝑚(𝑋𝑆
𝑃𝑖
), (𝑒′)𝜃

𝑆′
= (𝑒′′)𝜃

𝑆
.

(30)

According to second statement in the premise of implication
(26), 𝑆 |= 𝑘−1(𝑋𝑃𝑖

) ⊆ 𝐸, so the following implication holds:

𝑘(𝑒) ⊆ 𝑒 ∈ (𝑋𝑆
𝑃𝑖
)𝜃

𝑆 ⇒ 𝑒 ∈ 𝐸. (31)

Since 𝑥 ∈ Var 𝑒′ , then

𝑥𝜃𝑆
′

⊆ (𝑒′)𝜃
𝑆′

= (𝑒′′)𝜃
𝑆

.

The last statements and (27) imply the statements

𝑘(𝑒) ⊆ (𝑒′′)𝜃
𝑆 ∈ (𝑇𝑚(𝑋𝑆

𝑃𝑖
))𝜃

𝑆

. (32)

The term 𝑒′′ does not contain 𝑘, because 𝑒′′ ∈ 𝑇𝑚(𝑋𝑆
𝑃𝑖
), and if

𝑒′′ contains 𝑘, then 𝑘 ∈ 𝑋𝑆
𝑃𝑖
, which contradicts the assumption

𝑆 |= 𝑘⊥K 𝑃𝑖 in the premise of implication (26).
Hence, based on (32), we obtain

∃ 𝑦 ∈ Var 𝑒′′ ⊆ 𝑋𝑆
𝑃𝑖

: 𝑘(𝑒) ⊆ 𝑦𝜃
𝑆

. (33)

From (33) it follows that if we define 𝑒 as the term 𝑦𝜃
𝑆
, then

the premise of implication (31) will be true.
Consequently, a conclusion of this implication will also be
true, i.e. the statement 𝑒 ∈ 𝐸 is true, which contradicts the
assumption 𝑒 ̸∈ 𝐸 in (27).
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Theorem 3.
Formula (24) in theorem 2 can be replaced by a formula 𝛽 of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑘⊥K 𝑃𝑖, 𝑘⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠,

𝑘−1(𝑀𝑐0) = 𝐸

𝑘−1(𝑀𝑐) ⊆ 𝐸 (∀ 𝑐 ∈ 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠),

𝑘−1(𝑋𝑃𝑖
) ⊆ 𝐸

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (34)

where 𝑐0 ∈ 𝑋C
𝑃 , 𝑘 ∈ 𝑋K

𝑃 , 𝐸 ⊆ 𝑇𝑚(𝑋𝑃 ).

Proof.
If 𝑆 |= 𝛽, then 𝑆 |= 𝛽′, where 𝛽′ is obtained from 𝛽 by removing the

formula 𝑘−1(𝑀𝑐0) = 𝐸.
According to theorem 2, the statement 𝑆 |= 𝛽′ implies the statement

𝑆 ′ |= 𝛽′. In particular, 𝑆 ′ |= 𝑘−1(𝑀𝑐0) ⊆ 𝐸.
(3) implies the inclusion𝑀𝑆

𝑐0
⊆ 𝑀𝑆′

𝑐0
, from which we obtain the statements

𝐸 = (𝑘−1(𝑀𝑐0))
𝑆 ⊆ (𝑘−1(𝑀𝑐0))

𝑆′ ⊆ 𝐸,

therefore, 𝑆 ′ |= 𝑘−1(𝑀𝑐0) = 𝐸. Thus, 𝑆 ′ |= 𝛽.

2.8 Marking of a transition graph

2.8.1 A concept of a marking of a transition graph

Let 𝑃 be a DP of the form
∏︀

𝑖∈𝐼 𝑃𝑖.
A marking of the TG 𝐺𝑃 is a pair

(𝐺, {𝛽𝑉 ∈ 𝐹𝑚 | 𝑉 ∈ 𝐺}) (35)

where 𝐺 is a subset of the set of nodes of 𝐺𝑃 , such that

∙ 𝐺0
𝑃 ∈ 𝐺, and

∙ ∀𝑉 ∈ 𝐺, if 𝐺𝑃 has an edge of the form 𝑉 ′ → 𝑉 , then 𝑉 ′ ∈ 𝐺.

Marking (35) is said to be correct, if

∙ 𝐺0
𝑃 |= 𝛽𝐺0

𝑃
, and

∙ ∀𝑆, 𝑆 ′ ∈ Σ𝑃 , if 𝑆 → 𝑆 ′ and 𝑉 𝑆, 𝑉 𝑆′ ∈ 𝐺, then the following implication
holds:

𝑆 |= 𝛽𝑉 𝑆 ⇒ 𝑆 ′ |= 𝛽𝑉 𝑆′ .
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It was noted in section 2.6.1 that for each DP 𝑃 the graph 𝐺𝑃 * is a
completion of the graph 𝐺𝑃 with cyclic edges corresponding to actions of the
adversary 𝑃*. Therefore, for each DP 𝑃 , any marking of the TG 𝐺𝑃 can also
be considered as a marking of the corresponding TG 𝐺𝑃 * .

Below, a marking of any TG 𝐺𝑃 is said to be correct, if it is a correct
marking (in the sense of the above definition) of the corresponding TG 𝐺𝑃 * .

2.8.2 Examples of correct markings of transition graphs

In this section we present examples of correct markings for TGs from section
2.6.2. The correctness of all the markings listed below can be justified the
theorems from section 2.7.2.

Below we denote nodes of TGs by lists of nodes of corresponding SPs.

1. For TG (12) one of correct markings has the form

𝐺 = {𝐴0𝐵0, 𝐴1𝐵0, 𝐴1𝐵1}

and

𝛽𝐴0𝐵0
def
=

{︃
𝑀𝑐𝐴𝐵

= ∅
𝑐𝐴𝐵 ⊥𝑃*
𝑐𝐴𝐵 ⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

}︃
, 𝛽𝐴1𝐵0

def
=

{︃
𝑀𝑐𝐴𝐵

= {𝑥}
𝑐𝐴𝐵 ⊥𝑃*
𝑐𝐴𝐵 ⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

}︃
𝛽𝐴1𝐵1

def
= {𝑥 = 𝑦}

2. For TG (13) one of correct markings has the form

𝐺 = {𝐴0𝐵0, 𝐴1𝐵0, 𝐴1𝐵1}

and

𝛽𝐴0𝐵0
def
=

{︃
𝑘−1
𝐴𝐵(𝑀∘) = ∅

𝑘𝐴𝐵 ⊥K 𝑃*
𝑘𝐴𝐵 ⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

}︃
, 𝛽𝐴1𝐵0

def
=

{︃
𝑘𝐴𝐵

−1(𝑀∘) = {𝑥}
𝑘𝐴𝐵 ⊥K 𝑃*
𝑘𝐴𝐵 ⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

}︃
,

𝛽𝐴1𝐵1
def
= {𝑥 = 𝑦}

3. For TG (14), where actions 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 (𝑖 = 1, 2) are defined according to
(8), one of correct markings has the form

𝐺 =

{︃
𝐴0𝑇 0𝐵0, 𝐴1𝑇 0𝐵0, 𝐴2𝑇 0𝐵0, 𝐴1𝑇 1𝐵0, 𝐴2𝑇 1𝐵0,

𝐴1𝑇 2𝐵0, 𝐴2𝑇 2𝐵0, 𝐴1𝑇 2𝐵1, 𝐴2𝑇 2𝐵1, 𝐴2𝑇 2𝐵2

}︃
(36)

and
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∙ 𝛽𝐴0𝑇 0𝐵0
def
=

{︃
𝑀𝑐𝐴𝑇

= 𝑀𝑐𝐵𝑇
= 𝑀𝑐𝐴𝐵

= ∅
{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

}︃
,

∙ 𝛽𝐴1𝑇 0𝐵0
def
=

⎧⎪⎨⎪⎩
𝑀𝑐𝐴𝑇

= {𝑐𝐴𝐵}
𝑀𝑐𝐵𝑇

= 𝑀𝑐𝐴𝐵
= ∅

{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎬⎪⎭,

∙ 𝛽𝐴2𝑇 0𝐵0
def
=

⎧⎪⎪⎨⎪⎪⎩
𝑀𝑐𝐴𝑇

= {𝑐𝐴𝐵}
𝑀𝑐𝐵𝑇

= ∅
𝑀𝑐𝐴𝐵

= {𝑥}
{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎬⎪⎪⎭,

∙ 𝛽𝐴1𝑇 1𝐵0
def
=

⎧⎪⎪⎨⎪⎪⎩
𝑢 = 𝑐𝐴𝐵
𝑀𝑐𝐴𝑇

= {𝑐𝐴𝐵}
𝑀𝑐𝐵𝑇

= 𝑀𝑐𝐴𝐵
= ∅

{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎬⎪⎪⎭,

∙ 𝛽𝐴2𝑇 1𝐵0
def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢 = 𝑐𝐴𝐵
𝑀𝑐𝐴𝑇

= {𝑐𝐴𝐵}
𝑀𝑐𝐵𝑇

= ∅
𝑀𝑐𝐴𝐵

= {𝑥}
{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

∙ 𝛽𝐴1𝑇 2𝐵0
def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢 = 𝑐𝐴𝐵
𝑀𝑐𝐴𝑇

= {𝑐𝐴𝐵}
𝑀𝑐𝐵𝑇

= {𝑢}
𝑀𝑐𝐴𝐵

= ∅
{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

∙ 𝛽𝐴2𝑇 2𝐵0
def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢 = 𝑐𝐴𝐵
𝑀𝑐𝐴𝑇

= {𝑐𝐴𝐵}
𝑀𝑐𝐵𝑇

= {𝑢}
𝑀𝑐𝐴𝐵

= {𝑥}
{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

∙ 𝛽𝐴1𝑇 2𝐵1
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢 = 𝑐𝐴𝐵𝑣 = 𝑢
𝑀𝑐𝐴𝑇

= {𝑐𝐴𝐵}
𝑀𝑐𝐵𝑇

= {𝑢}
𝑀𝑐𝐴𝐵

= ∅
{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

∙ 𝛽𝐴2𝑇 2𝐵1
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑢 = 𝑐𝐴𝐵𝑣 = 𝑢
𝑀𝑐𝐴𝑇

= {𝑐𝐴𝐵}
𝑀𝑐𝐵𝑇

= {𝑢}
𝑀𝑐𝐴𝐵

= {𝑥}
{𝑐𝐴𝑇 , 𝑐𝐵𝑇 , 𝑐𝐴𝐵}⊥𝑃*
{𝑐𝐴𝑇 , 𝑐𝐵𝑇}⊥𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,
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∙ 𝛽𝐴2𝑇 2𝐵2
def
= {𝑦 = 𝑥}

4. For TG (14), where actions 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 (𝑖 = 1, 2) are defined according to
(10), one of correct markings has the form:

∙ 𝐺 has the same form, as in (36), and

∙ – 𝛽𝐴0𝑇 0𝐵0
def
=

{︃
𝑘−1
𝐴𝑇 (𝑀∘) = 𝑘−1

𝐵𝑇 (𝑀∘) = 𝑘−1
𝐴𝐵(𝑀∘) = ∅

{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

}︃
,

– 𝛽𝐴1𝑇 0𝐵0
def
=

⎧⎪⎨⎪⎩
𝑘−1
𝐴𝑇 (𝑀∘) = {𝑘𝐴𝐵}

𝑘−1
𝐵𝑇 (𝑀∘) = 𝑘−1

𝐴𝐵(𝑀∘) = ∅
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎬⎪⎭,

– 𝛽𝐴2𝑇 0𝐵0
def
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑘−1
𝐴𝑇 (𝑀∘) = {𝑘𝐴𝐵}

𝑘−1
𝐵𝑇 (𝑀∘) = ∅

𝑘−1
𝐴𝐵(𝑀∘) = {𝑥}

{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎬⎪⎪⎪⎭,

– 𝛽𝐴1𝑇 1𝐵0
def
=

⎧⎪⎪⎨⎪⎪⎩
𝑢 = 𝑘𝐴𝐵

𝑘−1
𝐴𝑇 (𝑀∘) = {𝑘𝐴𝐵}

𝑘−1
𝐵𝑇 (𝑀∘) = 𝑘−1

𝐴𝐵(𝑀∘) = ∅
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎬⎪⎪⎭,

– 𝛽𝐴2𝑇 1𝐵0
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢 = 𝑘𝐴𝐵

𝑘−1
𝐴𝑇 (𝑀∘) = {𝑘𝐴𝐵}

𝑘−1
𝐵𝑇 (𝑀∘) = ∅

𝑘−1
𝐴𝐵(𝑀∘) = {𝑥}

{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

– 𝛽𝐴1𝑇 2𝐵0
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢 = 𝑘𝐴𝐵

𝑘−1
𝐴𝑇 (𝑀∘) = {𝑘𝐴𝐵}

𝑘−1
𝐵𝑇 (𝑀∘) = {𝑢}

𝑘−1
𝐴𝐵(𝑀∘) = ∅

{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,

– 𝛽𝐴2𝑇 2𝐵0
def
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑢 = 𝑘𝐴𝐵

𝑘−1
𝐴𝑇 (𝑀∘) = {𝑘𝐴𝐵}

𝑘−1
𝐵𝑇 (𝑀∘) = {𝑢}

𝑘−1
𝐴𝐵(𝑀∘) = {𝑥}

{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭,
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– 𝛽𝐴1𝑇 2𝐵1
def
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑢 = 𝑘𝐴𝐵𝑣 = 𝑢
𝑘−1
𝐴𝑇 (𝑀∘) = {𝑘𝐴𝐵}

𝑘−1
𝐵𝑇 (𝑀∘) = {𝑢}

𝑘−1
𝐴𝐵(𝑀∘) = ∅

{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

– 𝛽𝐴2𝑇 2𝐵1
def
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑢 = 𝑘𝐴𝐵𝑣 = 𝑢
𝑘−1
𝐴𝑇 (𝑀∘) = {𝑘𝐴𝐵}

𝑘−1
𝐵𝑇 (𝑀∘) = {𝑢}

𝑘−1
𝐴𝐵(𝑀∘) = {𝑥}

{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K 𝑃*
{𝑘𝐴𝑇 , 𝑘𝐵𝑇 , 𝑘𝐴𝐵}⊥K𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

– 𝛽𝐴2𝑇 2𝐵2
def
= {𝑦 = 𝑥}.

2.8.3 Application of markings of transition graphs in the problems
of verification of distributed processes

An execution of a DP 𝑃 is a sequence 𝑆0, . . . , 𝑆𝑛 of states from Σ𝑃 , such as
𝑆0 = ⊙, and either 𝑛 = 0, or ∀ 𝑖 = 0, . . . , 𝑛− 1 𝑆𝑖 → 𝑆𝑖+1.

It is not difficult to see that each such sequence 𝑆0, . . . , 𝑆𝑛 corresponds
to a path 𝐺0

𝑃 = 𝑉 𝑆0 → . . . → 𝑉 𝑆𝑛 in TG 𝐺𝑃 .
Some correctness properties of DPs have the following form: in each state

𝑆 of an arbitrary execution of a DP 𝑃 , the following implication holds:

𝑆 |= 𝛽 ⇒ 𝑆 |= 𝛽′, where 𝛽, 𝛽′ ∈ 𝐹𝑚 are given formulas. (37)

For example, for the DP 𝑃 *, where 𝑃 is any of the DPs presented in
section 2.5.2, one of the correctness properties has the following form: for
arbitrary execution 𝑆0, . . . , 𝑆𝑛 of this DP,

∙ if

– 𝑆𝑛 |= (𝑣𝑆𝑛
𝐵 = 𝐵1) (for first and second DPs in section 2.5.2), or

– 𝑆𝑛 |= (𝑣𝑆𝑛
𝐵 = 𝐵2) (for third and fourth DPs in section 2.5.2),

i.e. if 𝐵 executed an action of receiving the message sent by 𝐴 and
wrote the received message in variable 𝑦,

∙ then 𝑆𝑛 |= (𝑥 = 𝑦), i.e. the received message is the same as the message
𝑥 that 𝐴 sent 𝐵.

Properties of the form (37) can be verified using a marking of TG 𝐺𝑃 of
an analyzed DP 𝑃 as follows:
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∙ a correct marking (𝐺, {𝛽𝑉 ∈ 𝐹𝑚 | 𝑉 ∈ 𝐺}) of 𝐺𝑃 is being built, and

∙ for each node 𝑉 ∈ 𝐺, such that 𝛽𝑉 implies 𝛽, the implication 𝛽𝑉 ⇒ 𝛽′

is being checked.

To check the above statements, there is no need to fully build the TG 𝐺𝑃

of the analyzed DP 𝑃 . It is convenient to build the TG together with the
construction of its marking as follows: if a formula 𝛽𝑉 is built to mark the
node 𝑉 of 𝐺𝑃 , and 𝛽𝑉 implies an unrealizability of some edge outgoing from
𝑉 , then this edge is discarded. For example, this can happen if

∙ a label of an edge outgoing from 𝑉 is of the form (𝑐?𝑦)𝐵, and

∙ 𝛽𝑉 contains the conjunctive term 𝑀𝑐 = ∅.

As a result of such a construction with discarding unrealizable edges, a
fragment of the TG 𝐺𝑃 will be obtained. We shall call such fragment a
reduced TG.

It is not difficult to see that the reduced TG preserves all the properties
of the TG 𝐺𝑃 . In particular, for the solution of the verification problem
described above for a property of the form (37), the corresponding reduced
TG can be used instead of the TG 𝐺𝑃 .

2.8.4 Reduction of transition graphs

1. The edge 𝐴0𝐵0 (𝑐𝐴𝐵?𝑦)𝐵−→ 𝐴0𝐵1 in TG (12) is unrealizable.

The reduced TG (12) has the form

�� ��
�
�
�
�𝐴0𝐵0

�� ��𝐴1𝐵0

�� ��𝐴1𝐵1- -(𝑐𝐴𝐵?𝑦)𝐵(𝑐𝐴𝐵!𝑥)𝐴 ��1

PPq
. . . (38)

2. The edge 𝐴0𝐵0 ?𝑘𝐴𝐵(𝑦)−→ 𝐴0𝐵1 in TG (13) is unrealizable.

The reduced TG (13) has the form

�� ��
�
�
�
�𝐴0𝐵0

�� ��𝐴1𝐵0

�� ��𝐴1𝐵1- -?𝑘𝐴𝐵(𝑦)!𝑘𝐴𝐵(𝑥) ��1

PPq
. . . (39)

3. The following edges in TG (14) (where actions 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 (𝑖 = 1, 2) are
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defined according to (8) or according to (10)) are unrealizable:

𝐴0𝑇 0𝐵0 𝛽1→ 𝐴0𝑇 0𝐵1

𝐴0𝑇 0𝐵0
𝛾1→ 𝐴0𝑇 1𝐵0

𝐴1𝑇 0𝐵0 𝛽1→ 𝐴1𝑇 0𝐵1

𝐴1𝑇 1𝐵0 𝛽1→ 𝐴1𝑇 1𝐵1

𝐴1𝑇 2𝐵1 𝛽2→ 𝐴1𝑇 2𝐵2

𝐴2𝑇 0𝐵0 𝛽1→ 𝐴2𝑇 0𝐵1

𝐴2𝑇 1𝐵0 𝛽1→ 𝐴2𝑇 1𝐵1

The reduced TG (14) has the form

��1

PPq
. . .

�� ��
�
�
�
�𝐴0𝑇 0𝐵0

�� ��𝐴1𝑇 0𝐵0

�� ��𝐴1𝑇 1𝐵0

�� ��𝐴1𝑇 2𝐵0

�� ��𝐴2𝑇 0𝐵0

�� ��𝐴2𝑇 1𝐵0

�� ��𝐴2𝑇 2𝐵0

𝛾1 𝛾1

𝛾2 𝛾2

𝛼1 𝛼2

𝛼2

𝛼2

? ?

? ?

- -

-

-

�� ��𝐴1𝑇 2𝐵1

�� ��𝐴2𝑇 2𝐵1
𝛼2 -

�� ��𝐴2𝑇 2𝐵2

? ?
-

𝛽1 𝛽1

𝛽2

Note that in all reduced TGs there is a single node 𝑆 such that

∙ 𝑆 |= (𝑣𝑆𝐵 = 𝐵1) (for first and second DPs in section 2.5.2), and

∙ 𝑆 |= (𝑣𝑆𝐵 = 𝐵2) (for third and fourth DPs in section 2.5.2).

There are correct markings of these reduced TGs presented in section 2.8.2
such that 𝛽𝑉 𝑆 = (𝑥 = 𝑦). As stated above, this statement is a justification
of the property 𝑆 |= (𝑥 = 𝑦)

Thus, by building a suitable marking, we verified the following property
of all four considered DPs: if 𝐵 executed the action of receiving the message
sent by 𝐴 and wrote the received message in the variable 𝑦, then the received
message is the same as the message that 𝐴 sent 𝐵.
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3 An example of a cryptographic protocol

verification

3.1 Description of a cryptographic protocoll

In this section we consider an example of a cryptographic protocol for trans-
mitting encrypted messages between multiple agents through the open chan-
nel ∘. The participants of this protocol are

∙ agents from the set A = {𝐴1, . . . , 𝐴𝑛}, and

∙ a trusted intermediary 𝑇 , with use of which agents from the set A send
messages to each other.

Each agent 𝐴𝑖 ∈ A uses the key 𝑘𝐴𝑖𝑇 to communicate with 𝑇 , which is
known only to agent 𝐴𝑖 and 𝑇 . A session of a transmission of an encrypted
message 𝑥 from agent 𝐴𝑖 ∈ A to agent 𝐴𝑗 ∈ A is a modification of the Wide

Mouth Frog protocol. This session is denoted by the notation 𝐴𝑖
𝑥→ 𝐴𝑗, and

is consisting of the following actions:

∙ an exchange messages between 𝐴𝑖 and 𝑇 , resulting in 𝑇 finds out

– the sender’s name 𝐴𝑖, the recipient’s name 𝐴𝑗, and

– the key 𝑘𝐴𝑖𝐴𝑗
, on which the message 𝑥 from 𝐴𝑖 to 𝐴𝑗 will be

encrypted,

∙ an exchange messages between 𝑇 and 𝐴𝑗, resulting in 𝐴𝑗 finds out

– the sender’s name 𝐴𝑖 of the message that 𝐴𝑗 will receive from 𝐴𝑖,

– the key 𝑘𝐴𝑖𝐴𝑗
on which this message will be encrypted,

∙ sending the encrypted message 𝑘𝐴𝑖𝐴𝑗
(𝑥, . . .) from 𝐴𝑖 to 𝐴𝑗.

This session is represented by the following scheme:s𝐴0s𝐴1s𝐴2s𝐴3

s𝐴4

s𝑇 0 s𝑇 1 s𝑇 2

-

�

-

-

!𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑗, 𝑟) ?𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑗, �̂�𝑟)

?𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑗, 𝑟, �̂�𝑟′) !𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑗, 𝑥𝑟, 𝑟
′)

!𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑖, 𝐴𝑗, 𝑥𝑟′ , 𝑘𝐴𝑖𝐴𝑗
) ?𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑖, 𝐴𝑗, 𝑟

′, 𝑘)

!𝑘𝐴𝑗𝑇 (0, 𝑟
′′) ?𝑘𝐴𝑗𝑇 (0, �̂�𝑟′′)

?𝑘𝐴𝑗𝑇 (𝑟
′′, �̂�𝑟′′′ , 𝐴𝑗) !𝑘𝐴𝑗𝑇 (𝑥𝑟′′ , 𝑟

′′′, 𝐴𝑗)

!𝑘𝐴𝑗𝑇 (0, 𝐴𝑖, 𝐴𝑗, 𝑥𝑟′′′ , 𝑘) ?𝑘𝐴𝑗𝑇 (0, �̂�, 𝐴𝑗, 𝑟
′′′, �̂�𝑘)

!𝑘𝐴𝑖𝐴𝑗
(𝑥,𝐴𝑖, 𝐴𝑗) ?𝑥𝑘(𝑦, 𝑎, 𝐴𝑗)

s𝑇 3s𝑇 4s𝑇 5s𝑇 6

s𝐵0 s𝐵1 s𝐵2 s𝐵3 s𝐵4
𝑃𝑗

-

�

-

(40)
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We denote

∙ by the notations 𝐴𝑖𝑗,𝑇𝑖𝑗 and 𝐵𝑗 the SPs corresponding to the left,
middle and right threads of this diagram, these SPs describe the work
of the sender (𝐴𝑖), a trusted intermediary (𝑇 ) and the recipient (𝐴𝑗)
respectively in this session, and

∙ by the symbol 𝑇 the SP
∑︀𝑛

𝑖,𝑗=1 𝑇𝑖𝑗, which denotes the work of a trusted
intermediary in an arbitrary session of this protocol.

Let a finite set of sessions be given:

𝐴𝑖1

𝑥1→ 𝐴𝑗1 , . . . , 𝐴𝑖𝑚

𝑥𝑚→ 𝐴𝑗𝑚 . (41)

One of cryptographic protocols designed to implement this set of sessions
is represented by a DP

𝑃 = (𝐴𝑖1𝑗1(𝑥1/𝑥), . . . , 𝐴𝑖𝑚𝑗𝑚(𝑥𝑚/𝑥), 𝑇
∞, 𝐵∞

1 , . . . , 𝐵∞
𝑛 ) (42)

This DP consists of SPs of the following families: 𝐴, 𝑇 , 𝐵1, . . ., 𝐵𝑛.
∀ 𝑖 ≥ 1 we denote those variables of the 𝑖–th copy of the SP 𝐵𝑗 in 𝐵∞

𝑗 ,

which are obtained by renaming the corresponding variables of 𝐵𝑗, by 𝑥(𝑖),
where 𝑥 is the corresponding variable of 𝐵𝑗.

A property of this protocol that must be verified is the following:

∀𝑆 ∈ Σ𝑃 , ∀ 𝑗 = 1, . . . , 𝑛, ∀ 𝑖 ≥ 1, if 𝑆 |= (𝑣
(𝑖)
𝐵𝑗

= 𝐵4),

then 𝑀𝑆
∘ has a pair of messages of the form

𝑘𝐴𝑖𝐴𝑗
(𝑥,𝐴𝑖, 𝐴𝑗, 𝑟) and 𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑗, 𝑟)

(43)

which means the following: a session from (41) of the form 𝐴𝑖
𝑥→ 𝐴𝑗 was

executed correctly.

3.2 Verification of the protocol

Let 𝑆 ∈ Σ𝑃 , where 𝑃 is a DP of the form (42).
Using theorem 3 from section 2.7.2, it is not so difficult to prove that

∀ 𝑖, 𝑗 = 1, . . . , 𝑛 {𝑘𝐴𝑖𝑇 , 𝑘𝐴𝑖𝐴𝑗
}⊥K 𝑃*, {𝑘𝐴𝑖𝑇 , 𝑘𝐴𝑖𝐴𝑗

}⊥K𝑀𝑆
∘ (44)

Let �̃�𝑆
∘ be the set of messages in 𝑀𝑆

∘ of the form 𝑘𝐴𝑖𝑇 (. . .) and 𝑘𝐴𝑖𝐴𝑗
(. . .).

Using (40) and (44), it is not so difficult to prove that every message in �̃�𝑆
∘

has one of the following seven forms:

𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑗, 𝑟), (45)
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𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑗, 𝑟, 𝑟
′), (46)

𝑘𝐴𝑖𝑇 (𝐴𝑖, 𝐴𝑖, 𝐴𝑗, 𝑟, 𝑘𝐴𝑖𝐴𝑗
), (47)

𝑘𝐴𝑗𝑇 (0, 𝑟), (48)

𝑘𝐴𝑗𝑇 (𝑟, 𝑟
′, 𝐴𝑗), (49)

𝑘𝐴𝑗𝑇 (0, 𝐴𝑖, 𝐴𝑗, 𝑟, 𝑘), (50)

𝑘𝐴𝑖𝐴𝑗
(𝑥,𝐴𝑖, 𝐴𝑗, 𝑟). (51)

Let

∙ �̃�𝑆
45, . . ., �̃�

𝑆
51 be subsets of �̃�𝑆

∘ , consisting of messages of the form
(45), . . ., (51) respectively,

∙ 𝜌45,46 be a set of pairs of the form ((45), (46)), in each of which the
third component (𝑟) listed in (45) is the same as the third component
(𝑟) listed in (46),

∙ 𝜌46,47, 𝜌48,49, 𝜌49,50, be similar sets of pairs of the form ((46), (47)),
((48), (49)), ((49), (50)).

Define a binary relation 𝜌 on �̃�𝑆
∘ as the least transitive relation containing

𝜌45,46, 𝜌46,47, 𝜌48,49, 𝜌49,50, and satisfying the following conditions:

∙ if 𝜌 contains pairs of the form

((45), (47)) and ((48), (50)) (52)

and the last component in message (47) of the first pair is the same as
the last component in message (50) of the second pair, then 𝜌 contains
the pair ((47), (48)) whose components are the corresponding messages
from (52), and

∙ 𝜌 contains each pair of the form ((50), (51)), in which the keys 𝑘 and
𝑘𝐴𝑖𝐴𝑗

are equal.

Below the notations ∃1 and ∃≤1 are read as “there is only one” and “there
is at most one”, respectively.

With use of theorem 3, it is not so difficult to prove that⎧⎪⎪⎪⎨⎪⎪⎪⎩
∀ 𝑒 ∈ �̃�𝑆

47 ∃1 𝑒
′ ∈ �̃�𝑆

45 : (𝑒
′, 𝑒) ∈ 𝜌,

∀ 𝑒 ∈ �̃�𝑆
50 ∃1 𝑒

′ ∈ �̃�𝑆
48 : (𝑒

′, 𝑒) ∈ 𝜌,

∀ 𝑒 ∈ �̃�𝑆
50 ∃1 𝑒

′ ∈ �̃�𝑆
45 : (𝑒

′, 𝑒) ∈ 𝜌,

∀ 𝑒 ∈ �̃�𝑆
51 ∃≤1 𝑒

′ ∈ �̃�𝑆
45 : (𝑒

′, 𝑒) ∈ 𝜌.

(53)
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(53) and theorem 3 imply the following statement ∀𝑆 ∈ Σ𝑃 , ∀ 𝑖 ≥ 1, if

𝑆 |= (𝑣
(𝑖)
𝐵𝑗

= 𝐵4), then 𝑀𝑆
∘ contains a pair of messages of the form (43), i.e.

the integrity property of the analyzed protocol is true: if agent 𝐴𝑗 performed
the action of receiving a message sent by agent 𝐴𝑖 and wrote the received
message to variable 𝑦𝐵𝑗

, then the received message is the same as the message
𝑥 that 𝐴𝑖 sent 𝐴𝑗 in the same session.

4 Conclusion

In the present work, a new model of cryptographic protocols was built, and
examples of its use for solving problems of verification of protocol integrity
properties are shown.

The objectives for further development of this model and verification
methods based on it are the following:

1. an automation of synthesis of suitable markings in transition graphs of
the analyzed protocols,

2. development of the language of specification of properties of crypto-
graphic protocols, which allow to express e.g.

∙ properties of confidentiality (secrecy) of transmitted messages, i.e.
the adversary’s inability to extract any new information about the
content of messages intercepted by him,

∙ matching properties in authentication protocols, or zero knowl-
edge properties,

∙ non-traceability properties in electronic payments,

∙ properties of correctness of the votes’ counting in voting protocols,

3. construction of automated synthesis methods of cryptographic proto-
cols by describing the properties which the cryptographic protocols
must satisfy, etc.
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