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Abstract

A recent result by Dulek et al. (EUROCRYPT 2020) showed a secure protocol for computing
any quantum circuit even without the presence of an honest majority. Their protocol, however,
is susceptible to a “denial of service” attack and allows even a single corrupted party to force
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Additionally, our protocol is the first to have the property that the number of rounds where
quantum communication is required is independent of the circuit complexity. Furthermore, if
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the assumption that classical fully homomorphic encryptions schemes exist.
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1 Introduction
In the setting of secure multiparty computation (MPC), the goal is to allow a set of mutually
distrustful parties to compute some function of their private inputs in a way that preserves some
security properties, even in the face of adversarial behavior by some of the parties. Some of the
desired properties of a secure protocol include correctness (cheating parties can only affect the
output by choosing their inputs), privacy (nothing but the specified output is learned), fairness
(all parties receive an output or none do), and even guaranteed output delivery (meaning that all
honestly behaving parties always learn an output). Informally speaking, a protocol π computes a
functionality f with full security if it provides all of the above security properties.

It is well-known that, assuming an honest majority and a broadcast channel, any functionality
can be computed with full-security [RBO89]. However, achieving fairness, and hence full-security, is
impossible in general assuming no honest majority [Cle86]. Instead, one usually settles on a weaker
notion called security-with-abort, which completely disregards fairness. Roughly, security-with-
abort guarantees that either the protocol terminates successfully, in which case the honest parties
receive their outputs, or the protocol aborts, in which case all honest parties learn that there was an
attack. Note that since fairness is not guaranteed, it might be the case where the adversary learns
the output of the corrupted parties. In many setting, however, security-with-abort is not enough,
as an adversary can cause a denial-of-service attack by repeatedly aborting the protocol. Thus,
it is highly desirable to consider the stronger security notion called security-with-identifiable-abort
(SWIA) [IOZ14]. Here, if the protocol is aborted, then all honest parties additionally agree on an
identity of a corrupted party. It is well-known that there are protocols admitting SWIA for any
number of corrupted parties, e.g., the GMW protocol [GMW87].

In this work we consider the quantum version of MPC. In the fully-quantum setting, the
functionality – including the inputs and outputs – is quantum. As such, the parties, as well
as the adversary attacking the protocol, are quantum. Secure multiparty quantum computation
(MPQC) in the fully-quantum setting, was first studied by [CGS02], who constructed a fully-secure
n-party protocol tolerating strictly less than n/6. The threshold n/6 was subsequently improved the
more general honest majority setting [BOCG+06], assuming the availability of a classical broadcast
channel. Similarly to the classical setting, if there is no honest majority, then full-security is
impossible to achieve in general [ABDR04, Kit].1 Moreover, [DNS12] presented a secure-with-
abort protocol in the two-party case, and recently [DGJ+20] extended it to the multiparty case,
tolerating any number of corrupted parties.

The protocol of [DGJ+20], however, does not admit identifiable abort. This follows from the
fact that it is impossible to broadcast a quantum state. Therefore a corrupted party can accuse an
honest party of not sending it a message, thus, not only is the quantum state lost, but the other
parties cannot identify the corrupted party. When compared to the classical setting, this raises the
following natural question.

Can any multiparty quantum circuit be computed with security-with-identifiable-abort,
tolerating any number of corrupted parties?

1.1 Our Results
In this paper, we answer the above question affirmatively. Additionally, our protocol is the first
to have the property that the number of rounds where quantum communication is required is

1The impossibility proof is in the information theoretic setting, where the adversary is unbounded. However,
even though Cleve’s impossibility result is stated for classical protocols, the proof can still be applied for quantum
protocols.
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independent of the circuit complexity. Furthermore, if there exists a post-quantum secure classical
protocol whose round complexity is independent of the circuit complexity, then our protocol has
this property as well.

Similarly to [DGJ+20, DNS12], we present the results and the protocol, assuming the avail-
ability of a reactive trusted party, called cMPC, that is able to compute any classical multiparty
functionality. We refer to this as the cMPC-hybrid model. Furthermore, we assume that the par-
ties are able to broadcast classical messages. The implementation of cMPC can be done by first
removing the reactive assumption using standard techniques, and then implement each call using a
post-quantum secure-with-identifiable-abort protocol. We refer the reader to Section 3.2.1 for more
details. We prove the following.

Theorem 1.1 (Informal). Any multiparty quantum circuit can be computed with security-with-
identifiable-abort tolerating any number of corrupted parties in the cMPC-hybrid model, assuming
the existence of fully homomorphic encryption schemes. Moreover, the round complexity of the
quantum communication of the protocol is independent of the circuit complexity.

The formal statement of the theorem appears in Section 4. In the following sections, we present
the ideas behind the construction.

1.2 Our Techniques
In this section, we present the main ideas behind the construction of our protocol.

1.2.1 A Warm-Up: Reliable Transmission of Quantum States

Before presenting the general construction, let us consider the following simple task. Suppose that
there are n parties P1, . . . ,Pn, where P1 – called the sender – holds a quantum state ρ. The goal
of the parties is to send ρ to Pn – called the receiver – such that if either the sender or the receiver
is corrupted and deviate from the protocol, then the other parties can identify which of them is
corrupted. Moreover, this should hold even the corrupted party collude with some of the other
parties in {P2, . . . ,Pn−1}.

As we stated before, simply having P1 send ρ to Pn, and have Pn broadcast a complaint in
case it did not receive a message, does not work. Indeed, it could be the case where the receiver
is corrupted, and falsely accuse the sender of not sending ρ. Since broadcasting a quantum state
is impossible, to the other parties, this scenario is identical to the case where a corrupted sender
did not send ρ. Thus, the desired security property is not met. Moreover, due to the no-cloning
theorem, the state ρ is now permanently lost, making it unclear as to how to proceed the protocol.

Dealing with false accusations. As such “packet loss” seems unavoidable, our first idea is to
not send ρ directly, but rather to encode ρ using a quantum error-correcting code (QECC), that
can tolerate d deletions, where d will be determined below. This generates an q-qubit codeword
(σk)

q
k=1, for some q, which will then be transmitted qubit-by-qubit as explained below.2 By doing

so, Pn can still recover ρ as long as it receives enough qubits of the codeword.
We next explain how the parties can transmit the codeword’s qubits in such a way that will

allow them to identify the corrupted party, if such exists. For simplicity of the current discussion,
let us assume that the adversary can perform one of two attacks. Either it does not send a message,
or it can falsely accuse a party of not sending a message. Below we will explain how to remove this

2Here we abuse the notation that we denote the kth qubit of the codeword σk, while these q qubits may be
entangled.
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assumption and how to resist general malicious attackers. Under these simplifying assumptions,
we can make the following observation. If Pn accused P1 of not sending a message, then all parties
know that at least one of them is corrupted. Therefore, they can agree to remove the channel
between them, and have P1 send the next qubit of the codeword via a different path. The parties
continue in this fashion until either enough σk’s where successfully transmitted to the receiver, or
until there is no path from the sender to the receiver. Formally, the parties keeps track of a simple
and undirected graph G, which represents trust between parties, i.e., an edge between two vertices
exists if and only if there was no accusation between the two parties that the vertices represent.
Observe that in the above protocol, all honest parties form a clique in G. Thus, if G becomes
disconnected, the honest parties can agree on a corrupted party not connected to them. Therefore,
using a QECC that can tolerate d = Θ(n2) deletions, results in a secure protocol.

Dealing with general malicious behavior. Next, we show to remove the simplifying assump-
tion of the behavior of the adversary, and allow it to tamper with the messages arbitrarily. Here,
we utilize quantum authentication codes [BCG+02], that allow a party to verify if a quantum state
was tampered with. However, in our protocol the parties must know where on the path the message
had been tampered with (if any tampered occurred), in order to later remove the corresponding
edge. To achieve this, we define a new primitive, which we call sequential authentication (SA),
that allows the sender to transmit a qubit to the receiver along some path, so that if the qubit was
tampered with, all parties know where on the path the tampering occurred. We then combine SA
with the previous protocol that dealt with false accusations, to construct a secure-with-identifiable-
abort protocol for the transmission of a quantum state. One subtlety in the final construction, is
that any path from P1 to Pn must goes through all parties, so as to ensure that at least one honest
party can verify the integrity of the message.

We now describe the construction of a protocol for sequential authentication. The construction
is inspired by the swaddling notion from [DNS12] and the public authentication test from [DGJ+20],
which are both based on Clifford authentication codes. Let us first recall Clifford codes [ABOE10].
Given a m-qubit state ρ and a security parameter κ, the Clifford encryption3 appends an auxiliary
register |0κ⟩⟨0κ|, called traps. Then, a random Clifford operator E is sampled from the Clifford
group acting on m + κ qubits. Finally, the encryption outputs the ciphertext E(ρ ⊗ |0κ⟩⟨0κ|)E†,
where E serves as the secret key. The decryption of a Clifford ciphertext σ, simply applies E† to
σ and measures the last κ trap qubits. If the measurement outcome is all-zero, then the decoding
algorithm outputs the resulting state of the first m qubits. Otherwise, it rejects. The security of
Clifford codes stems from the fact that any operation that is applied to the ciphertext, will flip
each qubit in the trap with noticeable probability upon measurement. Moreover, the secret key of
the Clifford code can be sampled efficiently by a classical algorithm [DLT02].

Constructing a sequential authentication protocol. We utilize these property to build a
protocol for SA. Suppose that a message ρ is going to be transmitted through ℓ parties. Let us first
present a naïve solution. The first party on the path will append ℓκ qubits of |0⟩ to ρ. Then, using
the classical MPC functionality cMPC, the parties will securely sample for P1 a Clifford key E1 to
encrypt its state. It then sends the encrypted message to P2. To verify the authenticity of the state,
the parties will again use cMPC for sampling a Clifford V2 = E2E

†
1, where E2 acts only on the first

(ℓ− 1)κ qubits. This allows P2 to measure the last κ qubits and compare them to zero. For each
party Pi on the transmitting path, Pi measures κ qubits of traps. The parties can then continue

3It is more common to use the term Clifford encoding. However, in the quantum setting authentication implies
encryption. Thus, we refer to these as encryptions to remove confusion with the QECC encoding.
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in this fashion. Notice, however, that a corrupt P1 might only append the last κ qubits honestly,
which will not be immediately detected by P2. This could later result in an honest party accusing
another honest party. To overcome this issue, we use a similar trick to the public authentication
test [DGJ+20], and have the Clifford V2 that cMPC sampled include a random invertible linear
transformation over F2 acting on all traps. Specifically, we let V2 = E2G2E

†
1, where we abuse

notations and let G2 |x⟩ = |G2(x)⟩. Observe that if P1 did not prepare the traps correctly, then
upon measurement with high probability P2 will not obtain all-zero.

1.2.2 Security With Packet Drops

With the above technique, it is natural to argue for the security of the following compiler, which
supposedly outputs a secure-with-identifiable-abort protocol given a secure-with-abort protocol π.
The parties will simply use the above subroutine to send the quantum messages specified by π.
This naïve solution, however, does not work. The issue lies in the fact that a corrupted party might
not encode its qubit correctly using the QECC. Observe that our sequential authentication protocol
will not be able to detect such error, since it is able to detect an attack only after a Clifford had
been applied. Furthermore, this error might propagate into the evaluation. Indeed, consider the
following example.

Suppose that the parties use repetition code as an implementation of the QECC.4 In repetition
code, a logical zero |0̄⟩ is encoded as |000⟩ and a logical one |1̄⟩ is encoded as |111⟩. The decoding
is done by taking the majority, i.e., |000⟩, |001⟩, |010⟩ and |100⟩ are all decoded to |0̄⟩. Suppose a
malicious party prepares |ψ1⟩ = |001⟩ and |ψ2⟩ = |010⟩ and a honest party prepares |ψ3⟩ = |000⟩
as their inputs to be evaluated. Here, |ψ1⟩ and |ψ2⟩ contain a bit-flip at the second and the third
qubit, respectively. Next, suppose that the parties compute the following circuit, where the CNOTs
are applied transversally.

|ψ1⟩ •
|ψ2⟩ •
|ψ3⟩

Clearly, the value of |ψ3⟩ under such an attack becomes |011⟩. Consequently, even if all codewords
are of logical 0 at the beginning, the decoding would result in a logical 1.

The above discussion suggests that the parties should decode all QECC encoding before starting
to perform any computation. However, once the parties decode the QECC, they lose its protection,
and hence the protocol cannot tolerate losing quantum states after this step. With this state of
affairs, we aim to construct a protocol that has the property that no adversary can cause qubits
to be “dropped” during the computation of the circuit. Thus, we first propose an abstraction of
a security notion, that allows the adversary to “drop” some of the input-states and output-states.
We call this security notion secure-with-identifiable-abort-and-packet-drop (IDPD-security). We
then show how to reduce the problem of constructing a secure-with-identifiable-abort protocol to
the problem of constructing an IDPD-secure protocol.

Defining IDPD-security. Let us now define IDPD-security. Similarly to other notions of secu-
rity in multiparty computation, here we follow the standard ideal vs. real paradigm. Roughly, the
ideal-world follows similar instructions to that of the security-with-identifiable-abort ideal-world,
with the following two additions. First, when the parties send their inputs to the trusted party,
the adversary additionally sends it a bounded-sized set, representing which input-qubits are to be

4Repetition codes only resist bit-flip error (i.e., Pauli X attack). However, it is sufficient for the purposes of
demonstration here.
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replaced with |0⟩ (modelling “packet drop”). Note that it might be the case where a single party
holds several qubits as inputs, and the adversary changes only a subset of them to the 0 state. The
second change we make is done after the adversary receives its output from the trusted party. Here,
the adversary either instructs the trusted party to abort while revealing the identity of a corrupted
party, or it instructs the trusted party to continue and drop some qubits from the output.5 In case
the adversary instructed to continue, the trusted party then sends to all other parties their respec-
tive outputs that remained. Additionally, the trusted party reveal which input-qubits and which
output-qubits were dropped. The formal definition of IDPD-security can be found in Section 3.1.

Reducing SWIA to IDPD-security. We now show a simple reduction from SWIA to IDPD-
security. The reduction makes use of a QECC. Let C be the circuit that the parties wish to compute.
First, each party encodes its input using the QECC. The parties then use an IDPD-secure protocol
in order to compute the circuit C ′ that first decodes its inputs using the QECC, then applies C,
and finally re-encodes each output using the QECC. Upon receiving their encoded outputs, each
party locally decode it to obtain their output. To see why this reduction works, observe that
the adversary can only drop some of the qubits in the input to C ′ and some of the qubits in the
output. Therefore, by the properties of the QECC and IDPD-security, either the original state can
be reconstructed, or the adversary has revealed the identity of a corrupted party.

1.2.3 Securely Computing A General Circuit

We next explain how to achieve a secure protocol for computing a general circuit. With the above
reduction, it suffices to construct an IDPD-secure protocol. Unfortunately, previous approaches,
such as that of [DGJ+20], for constructing secure protocols fail to achieve IDPD-security. To explain
where they fail, let us first present a rough overview of the protocol of [DGJ+20]. Their protocol
starts with an input encoding phase, such that at the end each party’s input is encrypted under
a Clifford code with cMPC holding the secret Clifford key. The parties then proceed to perform
computation over the encrypted inputs. Computation over single-qubit Clifford gates can be done
by simply letting cMPC update its key. However, CNOT gates cannot be computed locally since
the inputs to CNOT gates are encrypted separately under different Clifford keys. In particular, the
protocol of [DGJ+20] requires communicating quantum messages to compute CNOT gates, which
causes inevitable packet drops during computation and thus fails to achieve IDPD-security.

Our approach. To circumvent the aforementioned issue, the parties need a way to perform com-
putation without quantum communication. To do so, our main idea is to delegate the computation
to some designated party, say P1, and let it perform computation under verifiable quantum fully
homomorphic encryption (VQFHE) [ADSS17]. More precisely, the first step of our protocol will
encrypt all parties’ input using the VQFHE scheme of [ADSS17], called TrapTP, send their en-
crypted inputs to P1, and store the VQFHE classical secret key sk in cMPC. We refer to this step
as the pre-computation step. This allows us to let P1 perform the computation homomorphically
to obtain encrypted output without any quantum communication. Furthermore, the verification
of the evaluation can be done using the help of cMPC holding sk. If the verification passes, P1

delivers the output to each party. Note that an additional advantage of our approach is that the
round complexity of our protocol is independent of the circuit complexity.

5Formally, the ideal-world is parametrized by two polynomial in the security parameter that bound the number
input-qubits and number of output-qubits that can be dropped.

8



VQFHE scheme TrapTP. We first review some useful facts about the TrapTP scheme. In
TrapTP, the encryption of a 1-qubit state |ψ⟩ consists of a quantum part and a classical part. The
quantum part is a trap code encryption of |ψ⟩

ΠXxZz(QECC.Enc(|ψ⟩)⊗ |0⟩⊗κ ⊗ |+⟩⊗κ),

where Π is a random permutation over 3κ qubits (which is part of the secret key sk) and x, z ←
{0, 1}3κ are sampled independent and uniformly at random. The classical part is a classical FHE
encryption of the Pauli key x, z. Homomorphic evaluation requires a quantum evaluation key
ρevk, which consists of multiple TrapTP encryption of magic states, including ancilla zero states,
phase (P ) states |P ⟩ := P |+⟩, Hadamard (H) states |H⟩ := (H ⊗ I)CNOT(|+⟩ ⊗ |0⟩), T states
|T ⟩ := T |+⟩, and a special gadget state |γ⟩ (see Section 7.3 for a more detailed definition of |γ⟩).
These (encrypted) states are used to perform computation homomorphically over the underlying
trap codes.

The pre-computation step. Recall that the goal is to send TrapTP encrypted inputs to P1,
with the secret key stored in cMPC. The first step is to let each party send their input to P1 using
the technique we developed in Section 1.2.1. Namely, we let each party to send Clifford encryptions
of their input qubits using sequential authentication protocol through paths determined by a trust
graph G. We formalize this as an authenticated routing (AR) protocol that achieves the following
functionality with IDPD-security.

Authenticated Routing (AR): As input, each sender Pi holds multiple quantum
messages ρ1, . . . , ρℓ (the “packets”) to send to P1. As output, the receiver P1 receives
Clifford ciphertexts σj = Ej(ρj ⊗ |0t⟩⟨0t|)E†j with trap size t and cMPC receives the
Clifford keys Ej for j ∈ [ℓ] with at most n2 packet drop.

We note that in AR, a packet ρj can consist of multiple qubits and the trap size can be set
arbitrarily; these properties will be useful later. Here, we let each Pi send their input qubit-by-
qubit to P1 using AR with trap size 3κ− 1. After that, P1 holds Clifford encodings of all parties’
input (with certain packet drops). Note that AR allows to drop at most n2 input states, while it
is acceptable in IDPD-security.

However, in TrapTP, the quantum messages are encrypted under trap code instead of Clifford
code. We next use the following simple re-encrypt protocol to turn Clifford codes into trap codes:
Let σ = E(ρ ⊗ |03κ−1⟩⟨03κ−1|)E† be a Clifford encoding of ρ held by P1 with the corresponding
Clifford key E held by cMPC. We simply let cMPC send to P1 the Clifford operator

V = XxZzΠ(UEnc ⊗ I⊗κ ⊗H⊗κ)E†,

where UEnc is an unitary operator maps ρ ⊗ |0κ−1⟩⟨0κ−1| into an QECC codeword. Observe that
if P1 applies V to σ, the result would be a trap-code encryption of ρ, which is also the quantum
part of the TrapTP encryption of ρ. Also note that since the Clifford key E is uniformly random
to P1, it serves as a one-time pad, hence P1 learns nothing about the trap code secret Π, x, z from
V . After that, we can let cMPC generate and send the classical part of the TrapTP encryption of
ρ to P1 so that it obtains a complete TrapTP encryption of ρ.

It is worth mention that a natural alternative is to use trap code to construct SA in AR to avoid
using two different codes with re-encryption. However, this does not provide a secure protocol, since
unlike Clifford codes, in trap codes each qubit is encrypted individually. If only one qubit has been
tampered with, then there is no guarantee that the adversary would be immediately caught.
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To conclude the pre-computation step, it is left to prepare the evaluation key ρevk for P1, which
consists of multiple TrapTP encryption of magic states and a special gadget state. Preparing such
states turns out to be involved, which we discuss next.

Magic state preparation (except T ). We first note that it suffices to generate Clifford encryp-
tion of these states, and we can apply the above re-encryption protocol to turn them into TrapTP
encryption.

Let us start with the simplest case of ancilla zero state |0⟩. For this, we can use the AR protocol
to send the the empty state, denoted ε, with trap size 3κ to prepare it. Indeed, the Clifford encoding
outputs

E(ε⊗ |03κ⟩⟨03κ|)E† = E(|0⟩⟨0| ⊗ |03κ−1⟩⟨03κ−1|)E†,

as required. Note that AR protocol takes as input a list of “packets,” where n2 packets may be
dropped. Since magic state preparation is independent to parties’ private states, the parties actually
call AR protocol with n2+1 packets to make sure that at least one packet can be delivered. Then,
the server and cMPC keep the lexicographically first remaining packet. For simplicity, we omit the
number of initial packets.

For P magic state, since P gate is Clifford, we can generate it by preparing encoding of |0⟩ and
update the Clifford key held by cMPC. Specifically, if cMPC updates its Clifford E to E(PH)†

(where PH is applied only to the first qubit of the codeword), then decrypting the ciphertext would
result in

(E(PH)†)†E(|0⟩ ⊗ |03κ−1⟩) = PH(|0⟩ ⊗ |03κ−1⟩) = |P ⟩ ⊗ |03κ−1⟩ .

The H magic state is also in Clifford, but consists of two qubits. To generate this, we first use
AR to send the the empty state with trap size 6κ and view it as

E(|0⟩M1 ⊗ |0⟩M2 ⊗ |03κ−1⟩T1 ⊗ |03κ−1⟩T2),

where the gray superscript denote the registers the qubits are stored in. Then, we let cMPC send
to P1 the Clifford operator

V = (EM1T1
1 ⊗ EM2T2

2 )(H ⊗ I)CNOT(H ⊗ I)M1M2E†,

where E1 and E2 are two Clifford sampled uniformly at random and independently, and where the
gray superscript denote the registers on which each operator acts. Observe that upon applying
V to its codeword, P1 will obtain an encrypted H state. Additionally, as V is distributed like a
uniform random Clifford operator, it follows that a corrupted P1 will gain no new information.

More generally, the above examples suggest that we can prepare any ℓ-qubit state in the Clifford
group by first preparing Clifford encoding of 3ℓκ qubits E |03ℓκ⟩ using AR, and letting cMPC send
Clifford operator V to instruct P1 to prepare the Clifford state and split it into ℓ Clifford encodings
of each qubit. The special gadget state |γ⟩ is of this type and can be prepared this way.

T magic state preparation. Among all magic states, the preparation of T := T |+⟩ magic state
is the most difficult, since T is not a Clifford operator. We follow a similar approach to that of
[DGJ+20], but with modifications to achieve security-with-identifiable-abort. Here, we give a brief
overview of their construction and discuss the required modifications.

At a high-level, the protocol asks a party, say P1, to prepare a large number N of (supposedly)
|T ⟩ states under Clifford encoding with Clifford keys stored in cMPC. This can be done by, e.g.,
letting P1 send these states using AR in our context. Then, the parties randomly distribute these
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encoded states among themselves, and have P2, . . . ,Pn verify that they are indeed |T ⟩ states.
This is done by sending the Clifford keys to Pi, and having Pi measure the decoded states in the
{|T ⟩ , |T⊥⟩}-basis. If any |T⊥⟩ outcome is detected, the protocol aborts. If not, then we know that
the states held in P1 contains only a small number of errors with high probability. The protocol
then apply a T state distillation circuit (over the encoded states) to distill the desired T magic
states.

To achieve security-with-identifiable-abort, we cannot let the protocol be aborted when an error
is detected, since the parties cannot distinguish the case where the error was due to a malicious
P1 preparing incorrect states, or a malicious party Pi falsely reporting the error. Thus, to identify
the malicious party, we let each party Pi report its error rate ϵi, i.e., the fraction of |T⊥⟩ outcomes
it obtained, to cMPC with ϵ1 set to 0. cMPC then sort these numbers, and check if there are two
consecutive numbers with difference greater than a certain threshold δ that is larger than expected
sampling errors. If so, cMPC finds the smallest such pairs, say, they are ϵi < ϵj reported by Pi and
Pj , respectively, and publish the result. The parties then abort, with an honest party Pk identifying
Pi (resp., Pj) as the malicious party if ϵk ≥ ϵj (reps., ϵk ≤ ϵi). Intuitively, this works since all
honest parties should obtain roughly the same error rate up to a small sampling error, and hence
they will belong to the same side and accuse the same party being the malicious party. Also, if the
protocol does not aborts, it means that all reported error rates are small, since ϵ1 = 0 and we still
have the guarantee that the error rate of the states held in P1 is small.

The second issue is that we need to be able to apply the T state distillation circuit to the
(Clifford encrypted) states held by P1, which is a classically-controlled Clifford circuit (A circuit
consists of Clifford gates and measurements, and which Clifford gates should be applied depends on
all previous measurement outcomes.). If these states are encrypted separately, then we do not know
how to compute the distillation circuit without quantum communication, as this is the problem
we want to solve to begin with. Fortunately, as discussed above, if these states are encrypted as
a single Clifford ciphertext of a multi-qubit message, then we can perform Clifford operation on
the underlying message and split it into multiple Clifford ciphertexts of smaller messages by letting
cMPC sending proper Clifford instruction to P1. We can further extend it to evaluate classically-
controlled Clifford circuit. Based on this observation, we let P1 to prepare the N copies of |T ⟩
states and send it as a N -qubit quantum message ρ = |T ⟩⊗N in AR (with a sufficiently large trap
size). This allows us to distribute the states to all parties (by splitting the ciphertexts) and apply
the T state distillation circuit to the states held by P1 later.

Final issue: re-encryption to Clifford codes. The computation step is rather straightforward,
so we do not discuss the details here but just state that as a result, P1 holds trap code encoding
of the output. All that is left is to show how it can distribute each output to its corresponding
party. The idea is to reverse the operations done until now. That is, to first re-encrypt the trap
codes back to Clifford codes, and then use AR to distribute the outputs. The final issue is that
re-encrypting trap code to Clifford cannot be done in the same way as it was done in the other
direction. This is because before, we use the randomness of the Clifford key as one-time pad to
protect the trap code key, but now the randomness in the trap code key is not enough to protect
the Clifford key.

To resolve the issue, we again use AR. Let us say σ is a trap code that P1 needs to send to a
party Pi. We let P1 send ρ as a 3κ-qubit message to itself using AR. As a result, P1 will receive a
Clifford encoding σ = E(ρ⊗|0t⟩⟨0t|)E† (with a sufficiently large trap size t) for which we can let P1

perform Clifford operation on the underlying message ρ. Note that if P1 is malicious, the underlying
message ρ of σ may not be a valid trap code. Thus, we let P1 and cMPC verify and decode the
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supposedly trap code ρ. Specifically, cMPC will check the classical parts of the computation. If the
verification rejects, we abort and identify P1 as the malicious party. If it passes, then we obtain a
Clifford encoding of the qubit underlying the trap code as desired. Finally, we remind the reader
that some of the trap codes in ρ may be dropped by AR, but this is allowed since IDPD-security
allows to drop part of the output qubits.

1.3 Roadmap
In Section 2 we provide the required preliminaries. In Section 3 we explain in detail the model of
our computation. Then, in Section 4 we state our main theorem and show the reduction to IDPD-
security. In Section 5 we give the construction of sequential authentication, and in Section 6 we use
it to construct authenticated routing. These constructions admits information theoretic security.
Following that, in Section 7 we show how to prepare all required magic states. In Section 8 we
show how to securely compute the pre-computation protocol, Section 9 is dedicated to performing
the computation of the circuit, and finally, in Section 10 we show how the parties can distribute
the output securely. We note that only the computation protocol from Section 9 has computational
security.

2 Preliminary
2.1 Notation
For n ∈ N, let [n] = {1, 2 . . . n}. We also let Symn to denote the symmetric group over n symbols,
and let GL(n,F2) denote the general linear group over Fn

2 . We use λ to denote the empty string.
Given a binary string x, we write |x| to denote the length of x, and w(x) to denote the relative
Hamming weight of x which equals to Hamming weight of x divided by |x|. For a string x and a
subset S ⊆ [|x|], we use xS to denote the substring of x indicated by S.

Given a set S, we write |S| to denote the cardinality of S, and write s ← S to indicate that s
is selected uniformly at random from S. Given a random variable (or a distribution) X, we write
x← X to indicate that x is selected according to X. A function µ : N→ [0, 1] is called negligible,
if for every positive polynomial p(·) and all sufficiently large n, it holds that µ(n) < 1/p(n). We
use neg(·) to denote an unspecified negligible function.

For n ∈ N, we use Hn to denote the Hilbert space of n qubits. A density matrix is a positive
semidefinite operator with unit trace. We write D(H) to denote the set of density matrices over
the Hilbert space H, and let Dℓ := D(Hℓ). We define D∗ :=

∪∞
ℓ=0D(Hℓ) to denote the set of

the density matrices acting on the Hilbert space of arbitrary number of qubits. We use lowercase
Greek alphabets, e.g., ρ, σ, τ , to denote quantum state.

A quantum register or quantum system is a physical object that can store quantum information.
We use capital Latin alphabets, e.g., A,B,M, T , to denote quantum registers. For a quantum
register A, we write |A| to denote the number of qubit in it. The content of a quantum register is
called a quantum state, which is modelled by a density matrix. We denote the Hilbert space of a
quantum register A by HA. The Hilbert space HAB of a joint quantum register AB is the tensor
product of the Hilbert spaces of each subsystems, that is, HAB = HA ⊗HB. It will be convenient
to denote by ε ∈ D0 the empty state

The trace distance between two quantum states ρ and σ, denoted as ∆(ρ, σ), is define by

∆(ρ, σ) =
1

2
∥ρ− σ∥1,
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where ∥M∥1 = tr
(√

M †M
)

is the trace norm of a matrix. Let |+⟩ = 1√
2
(|0⟩ + |1⟩) and |−⟩ =

1√
2
(|0⟩ − |1⟩). An EPR pair is the two-qubit state |Φ+⟩ = 1√

2
(|00⟩+ |11⟩).

A state ensemble ρ = {ρa,κ}a∈Dκ,κ∈N is an infinite sequence of quantum states indexed by a ∈ Dκ

and κ ∈ N, where Dκ is a domain that might depend on κ. When the domains of a and κ are clear
from context, we remove them for brevity. We write ρ ≈neg(κ) σ if there exists a negligible function
µ, such that for all κ ∈ N and a ∈ Dκ, it holds that

∆(ρa,κ, σa,κ) ≤ µ(κ).

We sometimes abuse notations and write ρa,κ ≈neg(κ) σa,κ.
Let qpt stand for quantum polynomial time. Computational indistinguishability is defined as

follows.

Definition 2.1. Let ρ = {ρa,κ}a∈Dκ,κ∈N and σ = {σa,κ}a∈Dκ,κ∈N be two ensembles. We say
that ρ and σ are computationally indistinguishable, denoted ρ

C≡ σ, if for every non-uniform qpt
distinguisher D, there exists a negligible function µ(·), such that for all κ ∈ N and a ∈ Dκ, it holds
that

|Pr [D(ρa,κ) = 1]− Pr [D(σa,κ) = 1]| ≤ µ(κ).

2.2 Quantum Computation
The Pauli X gate, Pauli Z gate, Hadamard gate H, phase gate P , π/8 gate T and CNOT gate are
defined as

X =

0 1

1 0

 , Z =

1 0

0 −1

 , H =
1√
2

1 1

1 −1

 , P =

1 0

0 i

 ,

T =

1 0

0 ei
π
4

 , and CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

We use I to denote identity operator.
For a quantum operator U , we write UA to specify that the quantum operator U acts on register

A. Similarly, we write ρA to specify that the quantum state ρ lies on register A. Here, the register
written in gray on the superscript is only for reminder, and whether it is written does not change
the meaning of the operator or the state. That is, UA = U and ρA = ρ. We write χA to denote the
maximally mixed state IA/|A| of the register A.

For an ℓ-bit string r = r1r2 . . . rℓ and a quantum operator U , we let U r = U r1 ⊗U r2 ⊗· · ·⊗U rℓ .
When Π ∈ Symℓ is used as an unitary operator, we say it is to permute ℓ qubits according to

Π. For exmaple,

Π(|ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕℓ⟩) = |ϕΠ(1)⟩ ⊗ |ϕΠ(2)⟩ ⊗ · · · ⊗ |ϕΠ(ℓ)⟩ .

Let Y = iXZ. We use Pℓ to denote the set of ℓ-qubit Pauli operators:

Pℓ = {P = P1 ⊗ P2 ⊗ · · · ⊗ Pℓ : P1, P2, . . . Pℓ ∈ {I,X, Y, Z}} .
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The ℓ-qubit Pauli set Pℓ forms a complete basis of all 2ℓ × 2ℓ complex matrix. That is, any
U ∈ C2ℓ×2ℓ can be written as

U =
∑

a,b∈{0,1}ℓ
αa,bX

aZb, (1)

where each αa,b ∈ C.
A Clifford operator maps a Pauli operator to a Pauli operator, up to a phase of ±1 or ±i. We

use Cℓ to denote the set of Clifford operators acting on ℓ qubits. For any P ∈ Pℓ and C ∈ Cℓ,
it holds that αCPC† ∈ Pℓ for some α ∈ {±1,±i}. The Clifford group can be generated by
{X,Z,H, P,CNOT} [Got98]. The universal quantum circuit can be implemented by Clifford group,
T gate and the computational-basis measurement [BMP+00].It is well known that a uniform random
Clifford group element over n qubits can be sampled by a classical algorithm efficiently [DLT02].

The Pauli and Clifford group satisfy the following properties.
Lemma 2.2 (Quantum one time pad [Chi05]). Let ρAR ∈ D(HA ⊗HR) be a quantum state lying
on a composite system AR, and let n = |A|. It holds that

1

|Pn|
∑
P∈Pn

PAρARP † = χA ⊗ trA ρ
AR. (2)

Lemma 2.3. Let A be a quantum register of size n. Then for all ρ ∈ D(HA), it holds that

1

|CA|
∑

C∈C|A|

CρC† = χ.

A quantum channel is a completely positive trace-preserving (CPTP) linear map Ξ : D(HA)→
D(HB). Similarly to operators, we let ΞA→B denote that Ξ maps from register A to register B.
We can also define twirling on a quantum channel. If Ξ is a quantum channel, we say twirling over
S on Ξ is choosing an unitary operator U uniformly at random from S and applying it on Ξ. It
is equivalently to apply U on the input state ρ of Ξ, then to apply the quantum channel Ξ, and
finally to apply the inverse of U .

The diamond norm of a quantum channels is the trace norm of its output state, maximized over
all input-states (which can include an reference system).
Definition 2.4 (Diamond norm). Let Ξ : D(HA)→ D(HB) be a quantum channel. The diamond
norm of Ξ, denoted ∥Ξ∥⋄, is defined as

∥Ξ∥⋄ := max
ρ
∥(ΞA→B ⊗ IR)(ρAR)∥1, (3)

where the identity operator I acts on an auxiliary Hilbert space HR and ρ ∈ D(HA ⊗HR).

2.3 Useful Concentration Inequalities
The following are some useful concentration bounds.
Lemma 2.5 (Hoeffding’s inequality for the hypergeometric distribution). Let x ∈ {0, 1}n be an
arbitrary string with relative Hamming weight µ = w(x). Let S ⊆ [n] be a random subset of size k
sampled uniformly at random. Let X1, . . . , Xk denote the values of xS. Then for all δ > 0, it holds
that

Pr

[∣∣∣∣∣1k
k∑

i=1

Xi − µ

∣∣∣∣∣ ≥ δ
]
≤ 2e−2δ

2k.
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A simple corollary of Hoeffding’s bound states that a random substring of half the length as
the relative Hamming weight as the complement string.

Corollary 2.6. Let x ∈ {0, 1}2n and let S ⊂ [2n] be a subset of size n sampled uniformly at
random. Let S∁ = [2t] \ S. Then for all δ > 0, it holds that

Pr
[
|w(xS)− w(xS∁)| ≥ δ

]
≤ 4e−2(

δ
2
)2n.

Proof. Let µ = w(x). By Lemma 2.5, we have that

Pr

[
|w(xS)− µ| ≥

δ

2

]
≤ 2e−2(

δ
2
)2n.

Moreover, observe that S and S∁ are identically distributed. Therefore, applying Lemma 2.5 again
yields

Pr

[
|w(xS∁)− µ| ≥

δ

2

]
≤ 2e−2(

δ
2
)2n.

Since |w(xS)−w(xS∁)| ≤ |w(xS)−µ|+ |w(xS∁)−µ|, it follows that the event |w(xS)−w(xS∁)| ≥ δ
implies the event |w(xS)− µ| ≥ δ/2 ∨ |w(xS∁)− µ| ≥ δ/2. Thus, by union bound we get

Pr
[
|w(xS)− w(xS∁)| ≥ δ

]
≤ Pr

[
|w(xS)− µ| ≥

δ

2

]
+ Pr

[
|w(xS∁)− µ| ≥

δ

2

]
≤ 4e−2(

δ
2
)2n.

Bouman and Fehr [BF10] generalized the above to the quantum setting.

Lemma 2.7 (Application of Theorem 3 of [BF10]). Let HA be an 2n-qubit system, let HR be the
reference system, let |ϕ⟩AR ∈ HA⊗HR be an arbitrary state, and let |v0⟩ , |v1⟩ ∈ HA be orthonormal
quantum states. Suppose we randomly sample S ⊆ [2n] of size n uniformly at random, measure
the n qubits in register A indicated by S in the {|v0⟩ , |v1⟩}-basis, and get the outcome y ∈ {0, 1}n.
Denote by |ϕ̃⟩AR the post-measurement state. For all 0 < δ < 1, we define

Bδ =
{
x ∈ {0, 1}2n : xS = y ∧ |w(xS∁)− w(y)| ≤ δ

}
.

Then for all 0 < δ < 1, there exists |ψ⟩ ∈ span
(
{|x⟩ : x ∈ Bδ}

)
⊗HR such that

∆
(
|ϕ̃⟩AR , |ψ⟩

)
≤ 2e−(

δ
2
)2n.

2.4 Magic State Distillation
The T magic state |T ⟩ is defined by |T ⟩ := T |+⟩. Bravyi and Kitaev [BK05] proposed a algorithm
that generates a single qubit |T ⟩, given sufficiently many noisy copies of T magic states. Specifically,
to get a δ-close |T ⟩ state, the algorithm requires poly(log(1/δ)) copies of T magic states with a
constant fraction error.

The algorithm of [BK05] consists of classically controlled Clifford gates and computational basis
measurement, and requires that all qubits of the input state to be identical.

[DNS12] modified the distillation circuit such that this assumption can be weakened. Specifi-
cally, they require the states to be close to a subspace spanned by a basis, as stated in Theorem
D.1 of [DNS12]. As a corollary, we get the following.
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Theorem 2.8 (Application of Theorem D.1 of [DNS12]). Let n ∈ N, let ℓ = ⌊0.041n⌋, and let

V = span
({

Π(|T ⟩⊗(n−w) ⊗ |T⊥⟩⊗w) : 0 ≤ w ≤ ℓ,Π ∈ Symn

})
to be a n-qubit Hilbert space, where |T⊥⟩ := T |−⟩. There exists a quantum circuit C that consists of
classically controlled Clifford gates and computational basis measurement, such that for any n-qubit
state |ϕ⟩ ∈ V , if η is the quantum state of the first qubit of C(|ϕ⟩), then it holds that

∆(η, |T ⟩⟨T |) ≤ O(n · 0.259n0.4
).

2.5 Quantum Error-Correcting Codes
A quantum error correction code (QECC) allows to encode a quantum state using sufficiently many
entangled quantum state, in such a way that any bounded number of tampering or deletions can be
corrected. Formally, an [[m, 1, d]]-QECC is a pair of qpt algorithms QECC.Enc and QECC.Dec,
where QECC.Enc : D1 → Dm is called the encoding algorithm, and where QECC.Dec : Dm → D1 is
called the decoding algorithm, such that the following holds. For all quantum channel Λ acting on
⌊d−12 ⌋ qubits and for all ρ ∈ D1, it holds that

(QECC.Dec ◦ Λ ◦ QECC.Enc)(ρ) = ρ.

That is, the codeword QECC.Enc(ρ) can tolerate arbitrary errors on at most ⌊d−12 ⌋ qubits.
We remark that evaluating homomorphically Pauli gates, P , H, and CNOT over the codewords

of the self-dual CSS code, can be done by applying those gates transversally. Additionally, the
homormorphic measurement of a codeword of a CSS code can be done by measuring the codeword
transversally, followed by running ECC.Dec(m), where ECC.Dec is the classical decoding algorithm
of the linear code associated with the CSS code, and where m is the outcome of the measurement
on the codeword. Finally, the encoding and the decoding circuit of a CSS code only consists of
Clifford gates.

In this paper, we fix QECC to be a self-dual [[m, 1, d]] CSS code, where m is a polynomial in d.
This can be achieved by, for example, using [[7, 1, 3]] Steane code in a concatenated structure.

2.6 Quantum Authentication Schemes
A quantum authentication scheme (QAS) is a way to ensure that quantum state was not tampered
with. We restate the definition of QAS in [ABOE10] as follows. To remove confusion with the
encoding and decoding of QECC, we view QAS as an encryption scheme.

Definition 2.9. A quantum authentication scheme is a pair of polynomial time algorithms Enc
and Dec together with a set of classical keys K such that for any key k ∈ K the following holds.

• Enck : D(HM )→ D(HC) maps from the message register M to the ciphertext register C.

• Deck : D(HC)→ D(HMF ) takes a (possibly altered) ciphertext from register C, and outputs
a message from register M , and a single qubit from the register F to specify whether the
message was tampered with. The basis states of F are called |Acc⟩ and |Rej⟩.

Additionally, we require the following correctness property. For all keys k ∈ K and all messages
ρ ∈ D∗, it holds that

Deck(Enck((ρ)) = ρ⊗ |Acc⟩⟨Acc| .
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We now present the security definition for a QAS.

Definition 2.10 (Security of QAS). Let M be the message resister, C be the QAS ciphertext
register, R be a reference system, and let ε > 0. A QAS (Enc,Dec) is said to be ε-secure, if for all
UCR there exists two CP maps U R

Acc and U R
Rej satisfying U R

Acc+U R
Rej = IR, such that for any input

ρMR it holds that

∆(
1

|K|
∑
k∈K

Deck(U
CREnck(ρ

MR)U †), U R
Acc(ρ

MR)⊗ |Acc⟩⟨Acc|

+ |⊥⟩⟨⊥|M ⊗ trM
(
U R

Rej(ρ
MR)

)
⊗ |Rej⟩⟨Rej|) ≤ ε, (4)

where |⊥⟩⟨⊥| is a predetermined fixed state.

2.6.1 Clifford Authentication Code

Clifford codes are defined as follows.

Definition 2.11 (Clifford code [ABOE10]). Let M be the message register, and let C = MT be
the ciphertext register, where T is a t-qubit register called the trap register. The contents of T are
called traps. The set of keys are the Clifford group C|C|. Define the projectors PAcc := |0t⟩⟨0t| and
PRej := I⊗t − PAcc. The Clifford authentication code CAuth = (CAuth.Enc,CAuth.Dec) is defined
as follows.

• Encryption: Append t-qubits from register T in the state |0t⟩⟨0t|. Then apply E on register
MT . That is

CAuth.EncE(ρ
M ) := E(ρM ⊗ |0t⟩⟨0t|T )E†.

• Decryption: Apply E† on register MT , then measure register T in the computational basis.
If the outcome is all-zero string 0t, set |Acc⟩⟨Acc| in F . Otherwise, set |Rej⟩⟨Rej| in F and
replace the state with Ω in register M . That is,

CAuth.DecE(σ
MT ) := trT

(
P T
AccE

†σMTE
)
⊗|Acc⟩⟨Acc|+trMT

(
P T
RejE

†σMTE
)
|⊥⟩⟨⊥|M⊗|Rej⟩⟨Rej| .

Theorem 2.12 (Security of Clifford code, Theorem 3.1 of [ABOE10]). A Clifford code (CAuth.Enc,CAuth.Dec)
with key set C|MT | is a quantum authentication scheme (2−|T |)-secure.

Clifford code supports homomorphic evaluation of Clifford gate by a simple key update. Given
a Clifford encryption CAuth.EncE(ρ

M ), observe that by decrypting with the key E(G†)
M results in

CAuth.DecEG†(CAuth.EncE(ρ)) = GρG† ⊗ |Acc⟩⟨Acc| ,

thus applying G on ρ.

2.6.2 Trap Authentication Code

We also use trap authentication code [BGS13]. A trap code is a QAS built using a QECC.

Definition 2.13 (Trap code [BGS13]). For a trap code using [[t, 1, d]]-QECC, the key set of trap
code is Sym3t×{0, 1}3t×{0, 1}3t. Let M be a single-qubit register, let M̃ be the register that stores
the QECC codewords, and let C = M̃TXTZ be the ciphertext register, where TX and TZ are two
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t-qubit registers called trap registers. Similarly to Clifford codes, we call the contents of TX and TZ
traps. Define the projectors PAcc := (|0⟩⟨0|)⊗t ⊗ (|+⟩⟨+|)⊗t and PRej := I⊗2t − PAcc. For a single-
qubit input message ρ ∈ D(HM ), the trap authentication code TAuth = (TAuth.Enc,TAuth.Dec) is
defined as follows.

• Encryption: Apply QECC.Enc on register M , and append t-qubits from register TX in the
state (|0⟩⟨0|)⊗t, and append n-qubits from register TZ in the states (|+⟩⟨+|)⊗t. Then permute
the qubits of M̃TXTZ according to Π. Finally, apply XxZz on register M̃TXTZ . That is,

TAuth.EncΠ,x,z(ρ) := XxZzΠ
(
QECC.Enc(ρ)⊗ (|0⟩⟨0|)⊗n ⊗ (|+⟩⟨+|)⊗n

)
(XxZzΠ)†.

• Decryption: Apply (XxZzΠ)† on register M̃TXTZ , and measure the register TX in compu-
tational basis, and measure the register TZ in Hadamard {|+⟩ , |−⟩}-basis. If the outcome of
TX is all zeros and the outcome of TZ is all +, then apply QECC.Dec on register M̃ and set
|Acc⟩⟨Acc| in F . Otherwise, replace the state in M with |⊥⟩⟨⊥| and set |Rej⟩⟨Rej| in F . That
is,

TAuth.DecΠ,x,z(σ) := QECC.Dec
(
trTXTZ

(
I⊗t ⊗ PAcc(X

xZzΠ)†σXxZzΠ
))
⊗ |Acc⟩⟨Acc|

+ |⊥⟩⟨⊥| trM̃TXTZ

(
I⊗t ⊗ PRej(X

xZzΠ)†σXxZzΠ
)
⊗ |Rej⟩⟨Rej| .

Since XxZz is a Pauli operator up to a phase ±1 or ±i, we sometimes write TAuth.EncΠ,P and
TAuth.DecΠ,P , where P is a Pauli operator.

Theorem 2.14 (Security of trap code [BGS13]). A trap code that uses a [[t, 1, d]]-QECC is a
(2/3)d/2-secure quantum authentication scheme.

We define the trap code partial decryption operation TAuth.PDec, as the unitary part of
TAuth.Dec. That is, it decodes the permutation and quantum one time pad, perform the (uni-
tary part of) QECC decoding on the first t qubits, and then apply Hadamards on the last t qubits
to map |+⟩ to |0⟩.

Definition 2.15. Let x, z ∈ {0, 1}m, Π ∈ Symm. Then,

TAuth.PDecΠ,x,z := (UDec ⊗ I⊗2t)(I⊗2t ⊗H⊗t)(XxZzΠ)†,

where UDec is the unitary operator corresponding to the QECC.Dec circuit.

Notice that when applied to a TAuth.Enc encoding of ρ using the same keys, the result is
ρ ⊗ |02t⟩⟨02t|. Similarly, we define the trap code partial encryption operation TAuth.PEnc as the
unitary part of TAuth.Enc.

Definition 2.16. Let x, z ∈ {0, 1}m and Π ∈ Symm. Then,

TAuth.PEncΠ,x,z := XxZzΠ(UEnc ⊗ I⊗t ⊗H⊗t),

where UEnc is the unitary operator corresponding to the QECC.Enc circuit.

2.6.3 Homomorphic Evaluation over Trap Codes

In this section we explain how to homomorphically evaluate any quantum circuit under trap codes.
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Evaluating Pauli and CNOT gates. First observe that, a the [[t, 1, d]]-QECC we use evaluates
X, Z and CNOT by transversally applying these gates, it follows that they can be evaluated
homomorphically under trap code. Indeed, let (Π, x, z) be the key used, where Π ∈ Symm, and
x, z ∈ {0, 1}m, and let ⊕ denote addition modular 2. Then applying an X gate can be done by
updating x to x ⊕ Π(1t02t). That is, apply permute (1t02t) according to Π and XOR with x.
Similarly, applying a Z gate can be done by updating z to z ⊕Π(1t02t).

Next, if two trap code ciphertext σ1 = TAuth.EncΠ,x1,z1(ρ1) and σ2 = TAuth.EncΠ,x2,z2(ρ2) share
the same permutation Π ∈ Symm, then applying CNOT on ρ1 and ρ2 can be done as follows. First,
execute CNOT transversally on the two trap code ciphertext. Then, update z1 to z1⊕z2 and update
x2 to x1 ⊕ x2. Correctness follows from the identity

CNOT(Xx1Zz1 ⊗Xx2Zz2) = (Xx1Zz1⊕z2 ⊗Xx1⊕x2Zz2)CNOT,

for all x1, x2, z1, z2 ∈ {0, 1}. Furthermore, the traps will not be affected by this operation since
CNOT |0⟩ |0⟩ = |0⟩ |0⟩ and CNOT |+⟩ |+⟩ = |+⟩ |+⟩.

Performing measurements. To perform measurements, we use the fact that the [[t, 1, d]]-QECC
we use can homomorphically measure the encoded qubit by first measuring it and then decoding
classically. Thus, the measurement outcome of the trap code plaintext can be obtained by mea-
suring before executing a classical decryption procedure as well. Moreover, authenticating the
measurement can still be done by checking register TX . We next define the classical decryption
procedure TAuth.VerM that is used after measurement.

Definition 2.17. Let s ∈ {0, 1}3t, let Π ∈ Sym3t, and let x ∈ {0, 1}3t. The classical procedure
TAuth.VerMΠ,x(s) is defined as follows.

1. Compute s′ = Π(x⊕ s).

2. If there exists i ∈ {t+ 1, . . . , 2t} such that s′i ̸= 0 then return (⊥,Rej).

3. Otherwise, return (ECC.Dec(s′1, . . . , s
′
t),Acc).

We extend TAuth.VerM to operate over density matrices in the natural way. That is, for a
diagonal density matrix σ =

∑
s∈{0,1}3t ps |s⟩⟨s|, let M̃ , TX and TZ be the first, second, and third

t-qubit registers containing σ. We define TAuth.VerMΠ,x(σ) as follows.

TAuth.VerMΠ,x(σ) = ECC.Dec(trTXTZ
(P TX

Acc(X
xΠ)†σ(XxΠ)))⊗ |Acc⟩⟨Acc|

+ |⊥⟩⟨⊥| (trM̃TXTZ
(P TX

Rej (X
xΠ)†σ(XxΠ)))⊗ |Rej⟩⟨Rej| ,

where PAcc = (|0⟩⟨0|)t, PRej = I⊗t − PAcc, and where

ECC.Dec

 ∑
m∈{0,1}t

pm |m⟩⟨m|

 :=
∑

m∈{0,1}t
pm |ECC.Dec(m)⟩⟨ECC.Dec(m)| .

It is showed that the measuring then decoding procedure is ε-secure if the trap code is ε-secure
in Section B of [BGS13]. We have the following lemma.

Lemma 2.18. Let M , C, and R be the message, the ciphertext, and the reference register of a trap
code respectively. For A ∈ {M,C} and ρ ∈ D(HA) let ΛA(ρ) =

∑
m∈{0,1}|A| |m⟩⟨m| ρ |m⟩⟨m| be the
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measurement in the computational basis on register A. Then for all unitary attacks UCR, there
exists two CP maps U R

Acc and U R
Rej with U R

Acc+U R
Rej = IR such that for all states ρMR it holds that

E
Π,x,z

[
TAuth.VerMC

Π,x ◦ ΛC(UCR(TAuth.EncMΠ,x,z(ρ
MR))U †)

]
≈neg(κ)

(
ΛM ◦U R

Acc(ρ
MR)

)
⊗ |Acc⟩⟨Acc|+ |⊥⟩⟨⊥|M trM (U R

Rej(ρ
MR))⊗ |Rej⟩⟨Rej| . (5)

For any attack U and ρMR, we can get the accept and reject probability by tracing out MR
register on the right hand side of Equation (5). This results in q |Acc⟩⟨Acc| + (1 − q) |Rej⟩⟨Rej|,
where q is the accept probability.

Similarly, we can perform Hadamard measurement homomorphically under trap code. This is
done by executing above steps, using the Hadamard basis, rather than the computational basis,
and consider the trpas in TZ rather than TX .

Evaluating P and H gates. Though the QECC in the trap code evaluates P and H gate
transversally, we cannot directly homomorphically evaluate P andH by applying them transversally
and updating keys. This is due to the fact that the registers TX and TZ will be affected.

Instead, we use the so called magic states to computed these gates [BGS13]. The P magic state
is defined by |P ⟩ := P |+⟩ and the H magic state is defined by |H⟩ := (H ⊗ I) |Φ+⟩. The phase
gate P and Hadamard gate H can then be implemented by a quantum circuit using these magic
states and the procedures described previously to compute Paulis, CNOT, and measurements. The
quantum circuit for implementing P and H gate using magic states is showed in Figure 1.

|ψ⟩ 


 • • c

|P ⟩ • Zc Xc P |ψ⟩

|ψ⟩ • 


 • c1

Xc1 Zc2 H |ψ⟩

X




 • c2

|H⟩

Figure 1: Applying Hadamard and phase gates using magic states

Evaluating T gates. With P and H states, we can homomorphically evaluate Clifford gates
under trap code. To achieve universal quantum computation, we need to implement T gates.
[BMP+99] Showed that a T gate can be implemented by a quantum circuit that consists only
of classical-controlled Clifford gates and computational measurements, using the T magic state
|T ⟩ := T |+⟩ as resource [BMP+99]. The circuit is showed in Figure 2.

|ψ⟩ 


 • • c

|T ⟩ • Xc P c T |ψ⟩

Figure 2: Applying T gates using magic states
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2.7 Verifiable Quantum Fully Homormorphic Encryption
In this section, we restate the definition and the construction of verifiable quantum fully homormor-
phic encryption (VQFHE) introduced in [ADSS17]. The original definition characterizes families of
circuits that can be homomorphically evaluated. We rephrase this model in the language of leveled
homomorphic encryption schemes; that is, said family is determined solely by circuit size. This is
also consistent with the construction in [ADSS17], and is enough for our purposes.

Definition 2.19 (VQFHE scheme). A leveled VQFHE scheme is a 4-tuple of qpt algorithms
(KeyGen,Enc,Eval,Dec) such that the following hold.

1. Key Generation. The algorithm (sk, ρevk) ← KeyGen(1κ, 1L) takes as input the security
parameter and the level parameter, and outputs a classical symmetric key sk and a quantum
evaluation key ρevk.

2. Encryption. The algorithm ρ̂← Encsk(ρ) takes a classical secret key sk and an input state
ρ, and outputs a quantum ciphertext ρ̂.

3. Homomorphic Evaluation. The algorithm (σ̂, log) ← Eval(C, ρevk, ρ̂) is given a quantum
circuit C of size at most L, an evaluation key ρevk, and a ciphertext ρ̂. It outputs a evaluted
quantum ciphertext σ̂ and a classical string log.

4. Verified Decryption. The algorithm (σ, flag) ← VerDecsk(C, σ̂, log) is given a secret key
sk, a ciphertext σ̂, a circuit description C, and a classical string log. It outputs a quantum
message σ and flag ∈ {Acc,Rej}.

The scheme satisfies the correctness property. That is, for all (sk, ρevk)← KeyGen(1κ, 1L), quantum
circuit C of size at most L, and ρ ∈ D(HM ⊗HR) it holds that

∆(VerDecsk(C,Eval(C, ρevk,Encsk(ρ))), C(ρ)⊗ |Acc⟩⟨Acc|) ≤ neg(κ).

Remark 1. In [ADSS17], a complete definition for a VQFHE scheme should also satisfies the
compactness, which restricts the complexity of VerDec. For brevity, we omit this requirement.
However, since our protocol implements the construction given in [ADSS17], our protocol also
achieves compactness.

The security of a VQFHE is defined by the following indistinguishability game. Given an
VQFHE scheme S, an adversary A = (A1,A2,A3), a security parameter κ, and a level parameter
L, the game VerGameS,A (κ,L) is defined using the following game between the adversary and a
challenger C (see Figure 3).

Game 1 VerGameS,A (κ,L)

1. The challenger C computes (sk, ρevk)← S.KeyGen(1κ, 1L) and sends ρevk to the adversary.

2. The adversary chooses an input ρMR along with its reference system R, and sends only the
content of register M to the challenger.

3. The challenger samples a random bit r ← {0, 1}. If r = 1 the challenger encrypts |0n⟩⟨0n|
using sk. Otherwise, if r = 0 it encrypts ρ. Let ρ̂ denote the resulting ciphertext. The
challenger then sends ρ̂ to the adversary.
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Figure 3: The indistinguishability game VerGameS,A (κ,L), restated from [ADSS17].

4. The adversary is now supposed to compute S.Eval(C, ρ̂, ρevk), for some circuit C of size at
most L. Let (σ̂, log) be the purported output of S.Eval. The adversary then sends (C, σ̂, log)
to the challenger.

5. The challenger decrypts (σ, flag)← TrapTP.VerDecsk(σ̂, C, log), and sends flag and

σ′ :=


|⊥⟩⟨⊥| if flag = Rej

C(ρM ) if flag = Acc and r = 1

σ if flag = Acc and r = 0

to the adversary.

6. The adversary outputs a bit r′ ∈ {0, 1}.

Intuitively, a VQFHE scheme is deemed secure if the adversary cannot guess r with probability
that is significantly higher than 1/2. Formally, security is defined as follows.

Definition 2.20 (IND-VER security [ADSS17]). A VQFHE scheme S is IND-VER secure, if for
all qpt adversaries A, it holds that

Pr[VerGameS,A(κ,L) = 1] ≤ 1

2
+ neg(κ),

where we abuse notation and let VerGameS,A(κ,L) = 1 denote the event that A outputs r in the
corresponding game.

2.7.1 A Construction for VQFHE

In this section, we briefly introduce the VQFHE scheme TrapTP proposed by [ADSS17]. The
construction uses the fact that trap codes support homormorphic evaluation of a universal circuit
with the help of some magic states. The key secret key sk used in TrapTP consists of the classical
strings, defined to be a collection of permutations – one is called global permutation and the rest
are called local permutations – the secret key of a message authentication code MAC, and both the
public and secret key of a homomorphic encryption HE. Thus, TrapTP.KeyGen first generate these
values. Towards homomorphic evaluation, the key generation algorithm must also prepare magic
states, which will be part of the evaluation key ρevk. Therefore, TrapTP.KeyGen will further encrypt
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the magic states using TrapTP.Encsk. Specifically, the global permutation will be used to encrypt
all magic states described in Section 2.6.3, and the local permutation will be used to encrypt special
gadget states. We next explain encryption algorithm.

The encryption algorithm TrapTP.Enc will first sample a random Pauli and use it to encrypt
the input state. Next, to get variability in the decryption, the random Pauli will be encrypted
using a the classical HE, and then sign it using MAC.

To preform evaluation, TrapTP.Eval uses the techniques we described in Section 2.6.3. This is
particular updates the Pauli keys that were sampled in the encryption algorithm. To update the
Paulis, TrapTP.Eval simply uses the properties of HE. Additionally, to achieve variability during
the decoding later, TrapTP.Eval also generates a classical string log of the of the computation, that
includes all the classical messages including randomness, computation steps, and all intermediate
results during evaluation. The only issue remained, is the phase introduced by computing T gate.
To overcome this, the algorithm uses the special gadget states prepared during TrapTP.KeyGen.

We now explain the decryption algorithm TrapTP.VerDec, that also verifies the evaluation. First,
it checks log, using a classical algorithm, denoted CheckLogs. Next, it decrypts all HE ciphertexts,
which produces the Paulis. Now, given also the secret key, TrapTP.VerDec can now decrypt all
ciphertexts by decrypting the trap codes (note that this could also cause TrapTP.VerDec to reject
the evaluation). We refer the reader to [ADSS17] for a detailed construction. They proved that
TrapTP is secure with respect to VerGame.

Theorem 2.21 (Theorem 5 of [ADSS17]). The scheme TrapTP is IND-VER secure.

3 The Model of Computation
The security of multiparty computation protocols is defined using the real vs. ideal paradigm.
In this paradigm, we consider the real-world model, in which protocols are executed. We then
formulate an ideal model for executing the task. This ideal model involves a trusted party whose
functionality captures the security requirements of the task. Finally, we show that the real-world
protocol “emulates” the ideal-world protocol, i.e., for any real-world adversary A there exists an
ideal-world adversary Sim (called the simulator) such that the global output of an execution of the
protocol with A in the real-world is distributed similarly to the global output of running Sim in
the ideal model.

In the following section we present the formal definitions. We describe the relevant variants of
the ideal-world and real-world for the quantum, stand alone, definition of secure multiparty compu-
tation. We focus on the definition of security-with-identifiable-abort for static quantum adversaries.
Additionally, in Section 3.1 we present a variant of security-with-identifiable-abort that allows the
adversary to block some of the inputs and outputs states.

The Real Model
A n-party quantum protocol π for computing a quantum circuit family C = {Cκ}κ∈N is defined
by a set of n interactive uniform qpt circuits P = {P1, . . . ,Pn}. To alleviate notation, we simply
write C for the circuit. Each circuit (party) Pi holds the security parameter 1κ as a joint input
and a private input quantum state ρi. Throughout the paper, we assume that all of the inputs
to C are of the same size, and all of its outputs are of the same size as well, respectively. This is
without loss of generality as we can simply pad the shorter inputs and outputs with 0’s. We denote
by ℓin = ℓin(·) and ℓout = ℓout(·) the number of input-qubits and output-qubits, respectively, each
party has.
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The parties execute the protocol over a synchronous network. That is, the execution proceeds
in rounds: each round consists of a send phase (where parties send their messages for this round)
followed by a receive phase (where they receive messages from other parties). We consider a fully
connected point-to-point network, where every pair of parties is connected by both a quantum and
a classical communication line.

In the setting of secure multiparty computation, we consider a single adversary A that controls
a subset I ⊂ P. The adversary has access to the full view of all corrupted parties. A malicious
adversary may instruct the corrupted parties to deviate from the protocol in any way it chooses.
Furthermore, the adversary is given an auxiliary input ρaux. The adversary is static; that is, it
chooses the subset it corrupts prior to the execution of the protocol.

We denote by REALπ,A(ρaux) (κ, ρ1, . . . , ρn) the joint output of the adversary A and of the honest
parties in an execution of π on security parameter κ ∈ N, inputs ρ1, . . . , ρn ∈ D∗, and auxiliary
input ρaux ∈ D∗.

The Ideal Model
We now describe the interaction in the ideal model, which specifies the requirements for a secure-
with-identifiable-abort computation of a circuit C with security parameter κ. Let A be an adversary
in the ideal-world, which is given an auxiliary quantum state ρaux and corrupts a subset I of the
parties.

Security with identifiable abort

Inputs: Each party Pi holds the security parameter 1κ and an input ρi. The adversary A is
given an auxiliary quantum state ρaux, and ρi for every Pi controlled by it. The trusted
party T holds 1κ.

Parties send inputs: Each honest party Pj ∈ P \I sends ρj as its input to T. The malicious
adversary sends a value ρ∗i as the input for party Pi ∈ I. Write ρ′ = (ρ′1, . . . , ρ

′
n) for the

tuple of inputs received by the trusted party.

The trusted party performs computation: The trusted party T prepares ancilla zero states
ρ0 and computes C(ρ′, ρ0). Let (σ1, . . . , σn, σdiscard) be the resulting output-states, where
σi is the output associated with party Pi. The trusted party sends σI to A.

Adversary instructs trusted party to continue or halt: The adversary sends to T ei-
ther continue or (abort,Pi) for some Pi ∈ I. If it sent continue, then for every honest
party Pj the trusted party sends it σj . Otherwise, if A sent (abort,Pi), then T sends
(abort,Pi) to the each honest party Pj .

Outputs: Each honest party outputs whatever output it received from T, the parties in I
output nothing, and the adversary outputs some function of its view.

We denote by IDEALC,A(ρaux) (κ, ρ1, . . . , ρn) the joint output of the adversary A and the honest
parties in an execution of the above ideal-world computation of C, on security parameter κ, inputs
ρ1, . . . , ρn, and auxiliary input ρaux.

Having defined the real and ideal models, we can now define security of protocols according to
the real/ideal paradigm.

Definition 3.1 (security with identifiable abort). Let π be a protocol for computing a circuit
C. We say that π computes C with computational security-with-identifiable-abort, if the following
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holds. For every non-uniform qpt adversary A, controlling a set I ⊂ P in the real-world, there
exists a non-uniform qpt adversary SimA, controlling I in the ideal-world, such that{

IDEALC,SimA(ρaux) (κ, (ρi)
n
i=1)

}
κ∈N,ρ1,...,ρn,ρaux∈D∗

C≡
{

REALπ,A(ρaux) (κ, (ρi)
n
i=1)

}
κ∈N,ρ1,...,ρn,ρaux∈D∗ .

(6)

Statistical and perfect security are defined similarly, by replacing C≡ in Equation (6) with ≈neg(κ)

and =, respectively, and assuming unbounded adversaries and simulators.

3.1 Security With Packet Drops
We now introduce a relaxed security notion of security-with-identifiable-abort that allows the adver-
sary to drop of the input-qubits and some of the output-qubits. We call this security notion IDPD-
security. This security notion is parameterized with two polynomials din = din(κ) and dout = dout(κ)
representing an upper bound on the number of input-qubits and output-qubits, respectively, the
adversary is allowed to drop from the computation. The definition follows the standard ideal vs.
real paradigm.

Informally, in the ideal world, in addition to sending inputs, the adversary also instructs the
trusted party which single qubits are to be replaced with 0. Then, upon receiving the output, the
adversary can decide to either abort the protocol while revealing the identity of a corrupted party,
or to instruct the trusted party to discard some of the qubits in the output and distribute it.

We now formally describe the (din, dout)-IDPD ideal model, which specifies the requirements
for an IDPD-secure computation of a circuit C with security parameter κ. Unlike the informal
discussion from Section 1.2.2, it will be more convenient to have the adversary send to the trusted
party the set of remaining qubits. Let A be an adversary in the ideal-world, which is given an
auxiliary quantum state ρaux and corrupts a subset I of the parties.

Security with identifiable abort and packet drops

Inputs: Each honest party Pi holds the security parameter 1κ where κ ∈ N and an input
ρi = (ρij)

ℓin
j=1 where each ρij ∈ D1 is single-qubit. The adversary is given 1κ, input ρi of

every corrupted party Pi ∈ I, and an auxiliary input ρaux. Finally, the trusted party T
is given the security parameter 1κ.

Parties send inputs: Each honest Pi sends ρi to T. For every corrupted party Pi, the ad-
versary sends a state ρ∗i to T as the input of Pi.

The adversary instructs T to drop some input-qubits: The adversary sends to T a set
Rin ⊆

{
(i, j) ∈ N2 | i ∈ [n], j ∈ [ℓin]

}
of size |Rin| ≥ nℓin − din (note that it could be the

case that nℓin < din, in which case no restriction are imposed on Rin). Denote

ρ′ij =


|0⟩⟨0| if (i, j) /∈ Rin

ρij if (i, j) ∈ Rin and i /∈ I
ρ∗ij if (i, j) ∈ Rin and i ∈ I

and let ρ′ = (ρ̂ij)i∈[n],j∈[ℓin].

The trusted party performs the computation: The trusted party T prepares ancilla zero
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states ρ0 and computes C(ρ′, ρ0). Let (σ1, . . . , σn, σdiscard) be the resulting output-states,
where σi is the output associated with party Pi. The trusted party sends σI to A.

Adversary instructs T to drop some output-qubits or halt: For every i ∈ [n] write σi =
(σij)

ℓout
j=1, where each σij ∈ D1 is single-qubit. The adversary A sends to T either

(continue,Rout) where Rout ⊆
{
(i, j) ∈ N2 | i ∈ [n], j ∈ [ℓout]

}
is of size |Rout| ≥ ℓout −

dout, or (abort,Pi) for some Pi ∈ I. If the adversary sent (continue,Rout), then for
every honest party Pi /∈ I, the trusted party sends it (Rin,Rout, σ

′
i), where σ′i =

(
σ′ij

)ℓout

j=1

are defined as

σ′ij =

{
σij if (i, j) ∈ Rout

⊥ if (i, j) /∈ Rout

Otherwise, if A sent (abort,Pi), then T sends (abort,Pi) to all honest parties.

Outputs: Each honest party outputs whatever it received from the trusted party, the parties
in I output nothing, and the adversary outputs some function of its view.

Observe that if din = dout = 0 then the above process is identical to the security-with-identifiable-
abort process. We denote by IDEAL

(din,dout)-IDPD
C,A(ρaux) (κ, (ρi)

n
i=1) the joint output of the adversary A and

the honest parties in an execution of the above ideal-world computation of C, on security parameter
κ, inputs (ρi)

n
i=1, auxiliary input ρaux, and packet-drop bounds din and dout. When din and dout are

clear from context, we remove them from the notations.
We next give the definition of IDPD-security.

Definition 3.2 (IDPD-security). Let π be a protocol for computing a circuit C, and let din = din(·)
and dout = dout(·) be two polynomials. We say that π computes C with computational (din, dout)-
IDPD-security, if the following holds. For every non-uniform qpt adversary A, controlling a set
I ⊂ P in the real-world, there exists a non-uniform qpt adversary SimA, controlling I in the IDPD
ideal-world, such that{

IDEAL
(din,dout)-IDPD
C,SimA(ρaux)

(κ, (ρi)
n
i=1)

}
κ∈N,ρ1,...,ρn,ρaux∈D∗

C≡
{

REALπ,A(ρaux) (κ, (ρi)
n
i=1)

}
κ∈N,ρ1,...,ρn,ρaux∈D∗

(7)

Statistical and perfect security are defined similarly to Definition 3.1.

In Section 4, we reduce the problem of constructing a secure-with-identifiable-abort protocol,
to the problem of constructing an IDPD-secure protocol.

3.2 The Hybrid Model
The hybrid model is a model that extends the real model with a trusted party that provides ideal
computation for specific circuits. The parties communicate with this trusted party as specified by
the ideal model.

Let C be a quantum circuit. Then, an execution of a protocol π computing a circuit C ′ in the
C-hybrid model involves the parties sending normal messages to each other (as in the real model)
and in addition, having access to a trusted party computing C. It is essential that the invocations
of C are done sequentially, meaning that before an invocation of C begins, the preceding invocation
must finish. In particular, there is at most a single call to C per round, and no other messages are
sent during any round in which C is called.
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Let type be an ideal world. Let A be a non-uniform qpt machine with auxiliary input ρaux
controlling a subset I ⊂ P of the parties. We denote by HYBRIDC,type

π,A(ρaux)(κ, ρ1, . . . , ρn) the joint
output of the adversary and of the honest parties, following an execution of π with ideal calls to
a trusted party computing C according to the ideal model “type,” on inputs ρ1, . . . , ρn, auxiliary
input ρaux given to A, and security parameter κ. We call this the (C, type)-hybrid model. When
type is clear from context we remove it for brevity.

3.2.1 The Classical MPC Hybrid Model

Similarly to [DNS12, DGJ+20], throughout the paper, we assume the availability of a trusted party,
denoted cMPC, that is able to compute any efficiently computable classical multiparty functionality.
Furthermore, we assume cMPC is a reactive functionality, i.e., it is allowed to have an internal state
that may be taken into account the next time it is invoked. One particular classical functionality
we employ is the broadcast functionality. Thus, we implicitly assume that each party can broadcast
a classical message at any given round of the protocol.

Similarly to [DGJ+20], we can implement cMPC using a post-quantum secure protocol. Specif-
ically, we first remove the assumption that cMPC is reactive via standard techniques. To maintain
security-with-identifiable-abort, this is done as follows. At the end of each call to cMPC, its state
s will be shared in an additive n-out-of-n secret sharing scheme. Let si denote the ith share. The
functionality then uses a signature scheme to sign each share. Let σi denote the signature of si.
The output of Pi will now additionally include si, σi, and the verification key of the signature
scheme (which is the same for all parties). Note that the parties do not keep the signing key. In
the next call to cMPC, the parties will additionally send their signed shares and keys to cMPC.
If the keys are not all equal, then cMPC sends to party Pi the output (abort,P), where P is the
lexicographically smallest party whose key differs from the key of Pi. Otherwise, if all the keys are
the same, cMPC verifies all shares, sending the identity of a party whose verification failed if such a
party exists, and reconstruct the state s and continue with the computation otherwise. Note that
since the honest parties forward the output they received from the previous call, in case of abort
they all agree on the identity of a corrupted party.

Finally, we can implement each call to cMPC with assuming a correlated randomness setup,
using the information theoretic UC-secure protocol of [IOZ14] and apply [Unr10]’s lifting theorem,
to obtain post-quantum security. Furthermore, pre-computing the randomness in an off-line phase
yields a protocol in the pre-processing model [DPSZ12]. Such protocols have an off-line phase which
admits computational security, however, assuming no attack was successful during this phase, their
online-phase admit information theoretic security.

Furthermore, for the sake of presentation, we sometimes abuse the existence of cMPC, and
construct some of the ideal worlds with the ability to interact with it. Although this cannot happen
in the standalone model, such an assumption can be removed using the techniques described above,
i.e., each party will hold a signed share of cMPC’s input and receive a signed share of its output.

We denote by HYBRIDcMPC
π,A(ρaux) (κ, (ρi)

n
i=1) the joint output of the adversary A, cMPC, and of the

honest parties in a random execution of π in the cMPC-hybrid model on security parameter κ ∈ N,
inputs ρ1, . . . , ρn, and an auxiliary input ρaux.

4 Statement of Our Main Result
In this section we present the main theorem of the paper, namely that any multiparty quantum func-
tionality can be computed with security-with-identifiable-abort against any number of corrupted
parties.
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Theorem 4.1. Let C be an n-ary quantum circuit. Then C can be computed with computational
security-with-identifiable-abort in the cMPC-hybrid model, assuming the existence of classical fully
homomorphic encryption schemes. Moreover, the round complexity of the protocol is independent
of the circuit depth.

Toward proving Theorem 4.1 we first show how to reduce the problem to the problem of con-
structing an IDPD-secure protocol for a related circuit. The following lemma states the existence
of such an IDPD-secure protocol.

Lemma 4.2. Let C be an n-ary quantum circuit. Then C can be computed with computational
(n2, 2n2)-IDPD security in the cMPC-hybrid model, assuming the existence of classical fully homo-
morphic encryption schemes. Moreover, the round complexity of the protocol is independent of the
circuit depth.

The proof of Lemma 4.2 is given in Section 10. Toward proving it, in the following sections we
construct several building blocks used in the construction of the final protocol. We now use it to
prove Theorem 4.1. It suffices to prove the following claim, asserting that security-with-identifiable-
abort can be reduced to IDPD-security.

Claim 4.3. Let C be an n-ary quantum circuit and let din = din(κ) and dout = dout(κ) be two
polynomials. Additionally, let QECC denote a quantum error-correcting code that can tolerate
max{din, dout} errors. Then C can be computed with perfect security-with-identifiable-abort in the
(C ′, (din, dout)-IDPD)-hybrid model, where

C ′ = QECC.Enc⊗nℓout ◦ C ◦ QECC.Dec⊗nℓin .

That is, C ′ transversely decode each of its inputs using the QECC, computes C, and then re-encode
each output.

Proof. The idea is as follows. First, each party encode each of its input-qubits using the QECC.
The parties then call (C ′, (din, dout)-IDPD). If the functionality did not abort, then by the properties
of the QECC, each party can locally decode its output.

We now present a formal proof. Let ρi = (ρij)
ℓin
j=1 be the input of Pi, where each ρij ∈ D1 is

a single qubit. Similarly, we denote by σi = (σij)
ℓout
j=1 the ith output of C(ρ1, . . . , ρn), where each

σij ∈ D1 is a single qubit. Additionally, let q be the number of qubits in each codeword of the
QECC.

We construct a protocol in the (C ′, (din, dout)-IDPD)-hybrid model. For k ∈ [q] we let ρijk be
the kth qubit of the QECC encoding of ρij . Additionally, we let σijk be the output of C ′ given to
party Pi on input (ρijk)i∈[n],j∈[ℓin],k∈[q], being the kth qubit of the QECC applied by C ′. We next
formally describe our protocol π.

Protocol 1 Protocol π for computing the circuit C

Inputs: Each party Pi holds an input ρi = (ρij)
ℓin
j=1, where each ρij ∈ D1

Common input: The parties hold the security parameter 1κ.

1. Each party Pi encodes each qubit of its input to obtain (ρijk)
q
k=1 ← QECC.Enc(ρij), for all

j ∈ [ℓin].

2. The parties call (C ′, (din, dout)-IDPD).
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3. If the functionality aborted, then the parties hold the identity of a corrupted party. They
output it and halt.

4. Otherwise, for all i ∈ [n], party Pi receives (σijk)(j,k)∈[ℓout]×[q].
6 It then decodes the codeword

to obtain σij ← QECC.Dec((σijk)
q
k=1) for all j ∈ [ℓout], i.e., the jth qubit of its output. It then

outputs (σij)j∈ℓin and halt.

We now show that π admits security-with-identifiable-abort. Fix an adversary A corrupting a
subset I of the parties. The simulator SimA in the ideal world, does the following.

Simulator 1 Simulator SimA

1. Query the adversary A for its inputs to (C ′, (din, dout)-IDPD). Let (ρ∗ijk)(i,j,k)∈I×[ℓin]×[q] be the
inputs of the corrupted parties and let Rin be the set of remaining input-qubits A sent. Note
that each qubit of the ith party is indexed with two numbers j and k to include which of the
qubits in each codeword are kept, i.e., Rin ⊆ {(i, (j, k)) : i ∈ [n], j ∈ [ℓin], k ∈ [q]}.

2. For all i ∈ I and (i, (j, k)) /∈ Rin, update ρ∗ijk to |0⟩.

3. For all i ∈ I and j ∈ ℓin compute ρ∗ij ← QECC.Dec((ρ∗ijk)
q
k=1). Send (ρ∗ij)(i,j)∈I×[ℓin] to the

trusted party T, and receive back (σij)(i,j)∈I×[ℓout].

4. For each (i, j) ∈ I × [ℓout], encode each output-qubit to obtain (σijk)
q
k=1 ← QECC.Enc(σij).

Send (σijk)(i,j,k)∈I×[ℓout]×[q] to A as the output of C ′.

5. The adversary sends back either (continue,Rout) or (abort,P) where P ∈ I. If it sent
(abort,P), then forward it to the trusted party T. Otherwise send continue to T (note that
we discard Rout).

6. Output whatever A outputs and halt.

First, consider the corrupted parties’ inputs to C ′. Clearly, in both the ideal and real worlds,
the adversary chooses then same ρ∗ijk and Rin. Therefore, SimA and C ′ will decode the corrupted
parties’ inputs to the same values. Furthermore, as the QECC can tolerate din errors, C ′ will decode
the inputs of the honest parties correctly. Thus, the outputs SimA sends to A upon re-encoding, is
the same as whatever C ′ sent to A in the real world. Therefore, A replied with the same message.
If it sent (continue,Rout), then due to the fact that the QECC can tolerate dout errors, it follows
that the output of the honest parties in the real world will be the same as in the ideal world.
Finally, conditioned on the output of the honest parties’ being the same in both worlds, it is clear
that the output of A in the real world is the same as SimA in the ideal world. Thus

IDEALC,SimA(ρaux) (κ, (ρi)
n
i=1) = HYBRID

(C′,(din,dout)-IDPD)
π,A(ρaux) (κ, (ρi)

n
i=1) .

6Observe that an adversary might cause some of the σijk’s to be dropped during the call in Step 2. As this is a
QECC codeword, for the sake of simplicity we ignore such technicalities.
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5 Sequential Authentication
In this section, we present a protocol, called sequential authentication (SA), that allows a party
– called the sender – to send an encryption of its input along a predetermined path known to
everyone, to a designated party called the receiver (not necessarily different from the sender). The
security achieved by this protocol roughly guarantees that in case the protocol is aborted, the
parties will identify two parties, one of which is guaranteed to be corrupted. Later, in Section 6
we show how to use SA in order to augment this security guarantee to achieve an IDPD-secure
protocol, by repeated sequential calls to SA.

Let us first formally define the ideal world of SA. To simplify the presentation, we assume that
cMPC is an additional party that will receive an output. Additionally, the parties have two common
inputs, in addition to the security parameter. These are a path PATH and number of traps t. The
domain of PATH is the set of all (non-simple) paths that goes through all parties, whose length is
exactly7 ℓ := n2. To remove confusion with the parties themselves, we call the parties along the
path relays and denote by Qi the ith party along the path (note that a single party may be multiple
relays on the path). Furthermore, we call Q1 the sender, and call Qℓ the receiver.

Ideal world of sequential authentication

Inputs: Each party Pi and cMPC holds the security parameter 1κ, a path description PATH =
(Q1, · · · ,Qℓ) that goes through every party at least once, and the number of traps t = t(κ)
required for the output ciphertext. The sender Q1 holds an m-qubit input state ρ. The
adversary A is given an auxiliary quantum state ρaux.

The sender sends input: If Q1 /∈ I, then it sends ρ as its input to T. Otherwise, the
adversary chooses an input ρ∗ to be given to T. Let ρ′ be the input received by the
trusted party.

The trusted party encodes the state and sends A its output: T samples a Clifford E ←
Cm+t and encode ρ′ to obtain σ ← CAuth.EncE(ρ

′). If Qℓ ∈ I, then T sends σ to A.

The adversary instructs trusted party to continue or to abort: The adversaryA sends
to T either continue or (abort,Qi,Qi+1) where 1 ≤ i < ℓ and where either Qi or Qi+1

is corrupted. If A sent continue, then T sends E to cMPC. Additionally, if the receiver
Qℓ /∈ I is honest, then T sends it σ. Otherwise, if A sends (abort,Qi,Qi+1), then T
forwards it to the cMPC and all honest parties.

Outputs: The honest parties output whatever they received from T, the corrupted parties in
I output nothing, and the adversary outputs some function of its view.

We denote by SAA(ρaux)(κ, PATH, t, ρ) the joint output of A, the honest parties, and cMPC, in
an execution of the above ideal world, on security parameter κ, input ρ, auxiliary input ρaux, path
PATH, and the number of traps t.

As mentioned in Section 1.2.1, our construction is similar to swaddling from [DNS12] and the
public authentication test from [DGJ+20], both of which are based on Clifford code. Swaddling
in [DNS12], is a technique for two parties to check whether each other’s ciphertexts are evaluated
correctly or not. Public authentication test in [DGJ+20] extends it to the multiparty.Concretely,
the ciphertext is transmitted through multiple parties and is only checked at the very end by the

7The reason for the fixed length is due to a technicality that follows from the way SA is used.
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final receiver, which only guaranteed that the protocol will abort if the ciphertext was tampered
with. However, since the ciphertext is only checked by the last party, the parties will not be able
to know who performed the attack.

We next present a high level idea of our protocol, which follows similar ideas to the protocol of
[DGJ+20]. Let us first show a naïve construction. First, cMPC will generate a secret Clifford key E1

and send it to the sender Q1, who use it to encrypt its input ρ. Let σ1 = E1

(
ρ⊗ |0(ℓ+1)t⟩⟨0(ℓ+1)t|

)
E†1

be the resulting Clifford ciphertext. It then forwards it to the next relay Q2. Following this, cMPC
generates another Clifford V2 := E2E

†
1 for Q2 used to check the authenticity of the ciphertext. Here,

E2 acts only on ρ and the first t traps. Then, upon applying V2 to its message σ1, Q2 will obtain
E2

(
ρ⊗ |0ℓt⟩⟨0ℓt|

)
E†2 ⊗ |0t⟩⟨0t|, which can be verified by measuring the last t traps and compare

them to 0t. If Q2 does not aborts, it sends the post-measurement state E2

(
ρ⊗ |0ℓt⟩⟨0ℓt|

)
E†2 to Q3,

which repeats the same process.
This construction, however, has the following issue. If Q1 is corrupted, then it may generate

the initial traps incorrectly. Such an attack will not be immediately caught by an honest Q2, as
long as Q1 prepares the last t traps correctly. To prevent such an attack, cMPC will slightly modify
each Vi as follows. Let ti = (ℓ − i + 2) · t be the number of traps in the state that Qi−1 sent to
Qi. Then at round i, cMPC will sample an invertible linear function over ti elements from F2, i.e.,
Gi ← GLti(F2), and set Vi := EiGiE

†
i−1. Here, Gi will act only on the traps to be measured by Qi

(we abuse notation and allow Gi to act on qubits as Gi |x⟩ = |Gi(x)⟩). Observe that if x ∈ Fti
2 is

not the all-zero vector, then each coordinate of Gi(x) has probability 1/2 to be 0. Thus, if Qi−1 did
not prepare the traps correctly, it will be caught by the next party on the path with probability at
least 1 − 1/2n. Moreover, each Gi can be realized using Clifford operators. Indeed, one such way
is through the LU-decomposition, and implementing the triangular matrices using CNOTs.

We next present our protocol πSA for computing SA. In the following we let M be the m-qubit
register holding the input-message ρ. For all 2 ≤ i ≤ ℓ, let Ti be a t-qubit register for storing the
traps that Qi will verify. Let T ℓ be a t-qubit register for the traps on the output ciphertext, and
denote T i = T ℓTℓ . . . Ti+1 for all i ∈ [ℓ− 1]. Finally, for i ∈ {2, . . . , ℓ} let ti = (ℓ− i+ 2) · t be the
size of register T iTi.

Protocol 2 Protocol πSA for computing SA

Inputs: The sender Q1 holds an input ρ ∈ Dm.
Common input: All parties hold the security parameter 1κ, a path PATH that goes through every
party, and the trap-size t.

1. cMPC samples a Clifford E1 ← Cm+ℓt uniformly at random and sends it to the sender Q1.

2. Q1 computes σMT 1
1 = E1

(
ρM ⊗ |0(ℓ+1)t⟩⟨0(ℓ+1)t|T 1

)
E†1 and sends it to Q2.

3. For i = 2 to ℓ:

(a) cMPC samples a Clifford Ei ← Cm+ti−t and an invertible linear function Gi ← GLti(F2)
independently and uniformly at random. It sets

Vi :=
(
EMT i

i ⊗ I⊗tTi
)(

I⊗m
M ⊗Gi

T iTi

)
E†i−1

MT iTi

and sends it to Qi.

31



(b) Qi evaluates τMT iTi
i = Viσi−1V

†
i and measures register Ti in the computational basis.

If the measurement result is 0t then Qi sends Acc to cMPC. Otherwise it sends Rej to
cMPC. Let σMT i

i denote the post-measurement state.
(c) If cMPC received Rej, then it sends (abort,Qi−1,Qi) to all parties. They then output

this message and halt.
(d) If i < ℓ then Qi sends σi to the next relay Qi+1.

4. The receiver Qℓ outputs σℓ, cMPC outputs Eℓ, and the other parties output nothing.

The following theorem states that πSA securely computes the functionality SA.
Lemma 5.1. For every non-uniform qpt adversary A, controlling a set I ⊂ P in the real-world,
there exists a non-uniform qpt adversary SimA, controlling I in the ideal-world for SA, such that{

SASimA(ρaux) (κ, PATH, t, ρ)
}
κ,t,PATH,ρ,ρaux

≈neg(κ)

{
REALcMPC

πSA,A(ρaux) (κ, ρ)
}
κ,t,PATH,ρ,ρaux

. (8)

Before proving the security of πSA, we first state a useful property of the linear operators Gi. The
proof of Lemma 5.1 is deferred to Section 5.1. It is shown in [DGJ+20] that, if Ti and T i are of the
same size, then applying a random element of GL(m,F2) on the register T iTi followed by measuring
Ti results in the following. If the outcome of the measurement is 0t, then the post-measurement
state on T iTi is 0m with overwhelming probability. In other words, if a corrupted party did not
tampered with register Ti, then with high probability the next party can deduce that the rest of the
traps were not tampered with as well. We observe that this can be generalized in a straightforward
way to the case where Ti and T i are possibly of different sizes. Moreover, [DGJ+20] considered a
general measurement result that is compared to an arbitrary string r. For our purposes, it suffices
to consider only the case where r = 0. To make the above statement precise, we first define the
following operators. First, for each projector P , define LP as the quantum channel that replaces
the component removed in P with ⊥, that is

LP (ρ) := PρP † + tr(QρQ†) |⊥⟩⟨⊥|

where Q = I − P and where |⊥⟩ represents a rejection state that satisfies P |⊥⟩ = 0. Now define
the partial projector on 0t as

Ppart,i := IT i ⊗ |0⟩⟨0|Ti ,

which gives the post-measurement state after measuring 0t on register Ti. Observe that applying a
random Gi followed by checking whether or not ri = 0, can be written as LPpart,i ◦ TGL(tn,F2), where
TS is the twirling operation over a set of operators S, defined twirling as

TS(ρ) =
1

|S|
∑
U∈S

UρU †. (9)

Additionally, define the full projector as

Pfull,i := |0ti⟩⟨0ti |
T iTi

which describes checking all the traps. Using these notations, we can now formally describe the
main property of the linear operators that we use.
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Lemma 5.2. Applying a random element of GL(tn,F2) followed by LPpart,i is equivalent to applying
LPfull,i up to a negligible difference. That is,∥∥LPfull,i − LPpart,i ◦ TGL(tn,F2)

∥∥
⋄ ≤ neg(t).

The proof follows similar argument to the proof of Lemma 4.3 of [DGJ+20] and is therefore
omitted.

5.1 Proof of Lemma 5.1
We are now ready to prove the security of πSA.

Proof of Lemma 5.1. Observe that the correctness directly follows from the correctness of the Clif-
ford encryption and decryption.

Now, fix an adversary A corrupting a subset I of the parties holding auxiliary input ρaux. We
next construct its simulator SimA. Roughly, it will emulate the honest parties and cMPC, replacing
Clifford encoding of unknown states with the encoding of the 0 state. In more detail, we first
partition the protocol into three parts according to the identities of the corrupted parties. Let iF
and iL be the indexes of the first and last honest parties on the path, respectively (note that it
could be the case where iF = iL). The first part of the protocol, is when the state is held by the
corrupted relays Qi where i < iF . The second part is when iF ≤ i ≤ iL, and the third part is when
i > iL. Note that the first and third parts may be empty, depending on whether the sender or the
receiver are corrupted.

For the first part, if the sender Q1 is corrupted, then SimA can reconstruct the adversary’s
input once the path reaches the honest relay QiF . Indeed, once the state is held by an honest
party, the adversary is committed to the state being encoded, since any tampering done to it by a
subsequent corrupted party will be caught. Simulating the second part is done in the natural way,
by emulating the honest parties and cMPC. As for the final part, if the receiver Qℓ is corrupted,
then the simulator will receive the output σ from the trusted party. To ensure that σ will be the
last encoding A receives from the simulator, SimA will undo the operations done in the last ℓ− iL
steps of the protocol. That is, it will append to σ the traps |0tiL ⟩ to be measured by QiL+1 to
Qℓ, and send to A the state obtained from applying V †iL+1 . . . V

†
ℓ to σ ⊗ |0tiL ⟩⟨0tiL |, as the state it

expects to receive from QiL .

Simulator 2 Simulator SimA for SA

1. Let iF , iL be the indexes of the first and last honest relays on PATH, respectively.

2. If iF ̸= 1, then send to A a random uniform Clifford E1 ← Cm+(ℓ+1)t.

3. For i = 2 to iF do the following.

(a) Set the Clifford

Vi =
(
Ei

MT i ⊗ I⊗tTi
)(

I⊗m
M ⊗Gi

T iTi

)
E†i−1

MT iTi

and send it to A as what Qi expects to receive from cMPC, where Gi ← GLti(F2) and
Ei ← Cm+ti−t are sampled independently and uniformly at random.

(b) Query flagi from A. If flagi = Rej, send (abort,Qi−1,Qi) to the trusted party T, halt,
and output whatever A outputs. Otherwise, the simulator continues.
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(c) If i = iF −1, then A also sends a state σ∗ from Qi−1. The simulator decodes it to obtain
(ρ∗, flag∗) = CAuth.DecEi−1(σ

∗). If flag∗ = Rej, then send (abort,QiF−1,QiF ) to T,
output whatever A outputs, and halt. Otherwise, if flag∗ = Acc, send ρ∗ to T.

4. Sample EiF ← Cm+tiF−t and compute σiF = CAuth.EncEiF
(|0m⟩⟨0m|).

5. For i = iF + 1 to iL, do the following.

• If Qi ∈ I is corrupted:
(a) If Qi−1 /∈ I is honest, send σi−1 to A.
(b) Set the Clifford

Vi =
(
EMT i

i ⊗ I⊗tTi
)(

I⊗m
M ⊗GT iTi

i

)
E†i−1

MT iTi

and send it to A as what Qi expects to receive from cMPC, where Gi ← GLti(F2)
and Ei ← Cm+ti−t.

(c) Query flagi from A. If flagi = Rej, send (abort,Qi−1,Qi) to the trusted party T,
halt, and output whatever A outputs. Otherwise, the simulator continues.

• Otherwise, if Qi /∈ I is honest:
(a) If Qi−1 ∈ I is corrupted, receive σi−1 from A.
(b) The simulator decodes σi−1 to obtain (ρi, flagi) = CAuth.DecEi−1(σi−1). If flagi =

Rej, then send (abort,Qi−1,Qi) to T, output whatever A outputs, and halt. Oth-
erwise if flagi = Acc, compute σi = CAuth.EncEi(ρi) where Ei ← Cm+ti−t.

6. If iL = ℓ, then send continue to T, output whatever A outputs, and halt.

7. Otherwise, if iL < ℓ, then do the following.

(a) Receive σ from T.
(b) For all i ∈ {iL + 1, . . . , ℓ}, sample Vi ← Cm+ti independently and uniformly at random.
(c) Send

σiL+1 = V †iL+1 · · ·V
†
ℓ

(
σ ⊗ |0tiL ⟩⟨0tiL |

)
Vℓ · · ·ViL+1

to A as what it expects to receive from QiL .
(d) For i = iL + 1 to ℓ do the following.

i. Send Vi to A.
ii. Query flagi from A. If flagi = Rej, send (abort,Qi−1,Qi) to the trusted party T,

halt, and output whatever A outputs. Otherwise, the simulator continues.
(e) Send continue to T, output whatever A outputs, and halt.

We now analyze the simulator. We denote by R the real-world adversary’s internal reference
register. We additionally assume without loss of generality that each of the adversary’s attacks
can be fully described by a unitary Ai as follows. Upon receiving Vi, it first writes |Vi⟩⟨Vi| into
its reference system. It then applies Vi honestly before applying its chosen attack Ai. This is also
without loss of generality, as any other attack A′i applied before Vi, can be expressed as A′i = V †i AiVi,
for some unitary Ai. Finally, to generate flagi, A measures a qubit F in its register R. This is

34



without loss of generality since we can assume that everything the adversary holds is quantum, so a
measurement is required to generate a classical bit. Moreover, if the adversary wanted to measure
some other qubit or measure in a different basis, this behavior can also be expressed as part of Ai

instead.

Analysis of the first part. We start with analyzing the first part of the protocol, showing that
the simulator successfully simulates the A’s view. Note that if Q1 is honest then this part is empty.
Now, assuming Q1 ∈ I is corrupted, the adversary in the real world only receives from cMPC the
Cliffords E1 and V1, . . . , ViF−1. Clearly, the simulator samples these Cliffords with exactly the same
distribution. Thus, the adversary sends the same flagi for all i ∈ [iF − 1], so both cMPC in the
real world and SimA in the ideal world, will abort at every round with exactly the same probability.
Therefore, we may condition on the adversary sending flagi = Acc for all i ∈ [iF − 1]. Next, when
i = iF − 1 the A additionally holds the same state σ∗MT iF−1R in both worlds, and sends σ∗MT iF−1 .
Write the result of correctly decrypting σ∗ as

CAuth.DecEi−1 (σ
∗) = qAcc

(
ρ∗MR ⊗ |Acc⟩⟨Acc|

)
+ qRej

(
|⊥⟩⟨⊥|M ⊗ σRRej ⊗ |Rej⟩⟨Rej|

)
,

where
qAcc = tr

(
⟨0ti−t|E†i−1σ

∗Ei−1|0ti−t⟩
)

is the accept probability of QiF , where

ρ∗ =
1

qAcc
⟨0ti−t|E†i−1σ

∗Ei−1|0ti−t⟩

is the decrypted value conditioned on success, where

qRej = 1− qAcc

= tr
((
I − |0ti−t⟩⟨0ti−t|

) (
E†i−1σ

∗Ei−1

) (
I − |0ti−t⟩⟨0ti−t|

))
is the reject probability, and where

σRRej =
1

qRej

 ∑
s ̸=0ti−t

⟨sT i−1 |E†i−1σ
∗Ei−1|s⟩


is the post-measurement state held by A conditioned on reject.

We now focus on the real world and claim that

LPpart,i(Viσ
∗V †i ) ≈neg(κ) qAcc

(
CAuth.EncEi(ρ

∗)⊗ |0t⟩⟨0t|
)
+ qRej

(
|⊥⟩⟨⊥| ⊗ σRRej

)
. (10)
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Indeed, observe that

LPpart,i

(
Viσ
∗V †i

)
= LPpart,i

(
EMT i

i GT iTi
i

(
E†i−1

)MT iTi

σEi−1G
†
iE
†
i

)
= LPpart,i

(
Ei

(
TGL(tn,F2)

(
E†i−1σ

∗Ei−1

))
E†i

)
= Ei

(
LPpart,i ◦ TGL(tn,F2)

(
E†i−1σ

∗Ei−1

))
E†i

≈neg(κ) Ei

(
LPfull,i

(
E†i−1σ

∗Ei−1

))
E†i ,

where the third equality follows from the fact that, Ei and Ppart,i act on different registers, and
Ei |⊥⟩⟨⊥|E†i = |⊥⟩⟨⊥|, and the forth transition is due to Lemma 5.2. From the definition of LPfull,i ,
it follows that

Ei

(
LPfull,i

(
E†i−1σ

∗Ei−1

))
E†i = Ei

(
|0ti⟩⟨0ti |T iTiE†i−1σ

∗Ei−1|0ti⟩⟨0ti |
T iTi + qRej

(
|⊥⟩⟨⊥| ⊗ σRRej

))
E†i

= Ei

(
|0ti⟩T iTi(qAcc · ρ∗MR)⟨0ti |T iTi + qRej

(
|⊥⟩⟨⊥| ⊗ σRRej

))
E†i

= Ei

(
qAcc

(
ρ∗ ⊗ |0ti⟩⟨0ti |

)
+ qRej

(
|⊥⟩⟨⊥| ⊗ σRRej

))
E†i

= Ei

(
qAcc

(
ρ∗ ⊗ |0ti⟩⟨0ti |

))
E†i + Ei

(
qRej

(
|⊥⟩⟨⊥| ⊗ σRRej

))
E†i

= qAcc
(
CAuth.EncEi(ρ

∗)⊗ |0t⟩⟨0t|
)
+ qRej

(
|⊥⟩⟨⊥| ⊗ σRRej

)
.

We conclude that, up to a negligible difference, Equation (10) states that both worlds have
the same reject probability qRej at step iF . Moreover, on reject, in both the real and ideal worlds,
the adversary holds only σRRej, and honest parties output (abort,Qi−1,Qi), hence they are indistin-
guishable. Let us now condition on the event where the protocol does not abort on the first part. In
this case, the adversary holds ρ∗R in both worlds. In the real world QiF holds CAuth.EncEi

(
ρ∗M

)
,

where Ei is held by cMPC, while in the ideal world the simulator (which emulates the honest relay
QiF ) generates CAuth.EncEi (|0⟩⟨0|), and send ρ∗M to the trusted party.

Analysis of the second part. We now analyze the simulation of the second part of the protocol.
Denote by τMR as the joint message-reference state by the end of the previous part. That is, if
Q1 ∈ I is corrupted, then τ is the ρ∗ given by the discussion above, together with the adversary’s
reference system at the end of the first part. Otherwise if Q1 /∈ I is honest, then τ is the joint
input-reference state given by the input of the sender.

For i ∈ {iF + 1, . . . , ℓ}, let VR,i denote the contents of registers MT iR right after measuring Ti
(and before sending the state). Moreover, these are defined to be contents conditioned on Qi sending
Acc, and are thus are subnormalized. Similarly, let VI,i denote the contents in the corresponding
registers in the ideal world.

The next claim asserts that in the second part of the protocol, the view in both worlds can be
expressed as an operator applied to the ith ciphertext and A’s auxiliary reference register. In the
following, we say that the protocol aborts at Qi if it sent Rej to cMPC.

Claim 5.3. For all i ∈ {iF , . . . , iL} and for all possible sequences (Vj)j≤i,j∈I , the following holds.

• The probability of aborting at Qi is the same in both real and ideal worlds. Moreover, if the
protocol aborts, then the real and ideal worlds are indistinguishable.

• If the protocol does not abort at Qi, then there exists a CP map Wi, acting on registers M ,
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R, and T i, such that

VR,i ≈neg(κ) Wi

(
CAuth.EncM→MT i

Ei

(
τMR

))
where Ei is the random Clifford sampled by cMPC, and

VI,i ≈neg(κ) Wi

(
CAuth.EncM→MT i

Ei
(|0m⟩⟨0m|)⊗ τR

)
.

where Ei is the random sampled by SimA. Moreover, if Qi /∈ I, then Wi acts on register R
alone.

The proof of the claim is done using a simple inductive argument, and is proven below. Let us
first use it to argue for the success of simulation of the second part of the protocol. First note that
the distributions of Vj are the same in real and ideal worlds. Therefore, we may fix (Vj)j≤i,j∈I .
Moreover, by Claim 5.3 we may assume that the protocol did not abort at the second part.

Let us now consider the case where the receiver Qℓ is honest, i.e., iL = ℓ. By Claim 5.3, the
adversary A holds the state WR

ℓ

(
τR

)
in both worlds. Thus,

REALcMPC
πSA,A(ρaux) (κ, PATH, t, ρ) ≈neg(κ) Wℓ

(
CAuth.EncMEℓ

(
τMR

))
⊗ |Eℓ⟩⟨Eℓ|

where Eℓ is the output of cMPC. On the other hand, in the ideal world, CAuth.EncEℓ
(|0m⟩) and Eℓ

are discarded. Instead, cMPC outputs a uniform Clifford key E and the honest receiver Qℓ outputs
CAuth.EncE(τ

M ) as given to them by the trusted party. Therefore

SASimA(ρaux) (κ, PATH, t, ρ) ≈neg(κ) Wℓ

(
CAuth.EncME

(
τMR

))
⊗ |E⟩⟨E| .

So we conclude that

REALcMPC
πSA,A(ρaux) (κ, PATH, t, ρ) ≈neg(κ) SASimA(ρaux) (κ, PATH, t, ρ) .

Now, we consider the case where iL ̸= ℓ.

Analyzing the third part. Similarly to Claim 5.3, we can express the view in the third part in
both worlds using an appropriate operator.

Claim 5.4. For all i ∈ {iL+1, . . . , ℓ} and for all possible sequences (Vj)j≤i,j∈I , the following holds.

• The probability of aborting at Qi is the same in real and ideal worlds. Moreover, if the protocol
aborts, then the real and ideal worlds are indistinguishable.

• If the protocol does not abort at Qi, then there exists a CP map Wi, acting on registers M ,
R, and T i, so that

VR,i ≈neg(κ) Wi

(
CAuth.EncM→MT i

Ei

(
τMR

))
and

VI,i ≈neg(κ) Wi

(
U †i

(
σ̃MT ℓR ⊗ |0(ℓ−i)t⟩⟨0(ℓ−i)t|

)
Ui

)
where σ̃ is the joint state of output σ and where τR, Ui = Vℓ . . . Vi+1 for i < ℓ and Uℓ = I.

Similarly to Claim 5.3, the proof of the above claim is done using a inductive argument. The
analysis is almost identical to that of Claim 5.3 and is therefore omitted. Observe that the distribu-
tions of the Vj ’s are uniformly random in both the real and ideal worlds, so we can fix a particular
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sequence of (Vj)j≤i,j∈I . Now, assuming the protocol terminates successfully, by Claim 5.4, it follows
that

REALcMPC
πSA,A(ρaux) (κ, PATH, t, ρ) ≈neg(κ) Wℓ

(
CAuth.EncMEℓ

(
τMR

))
⊗ |Eℓ⟩⟨Eℓ| .

On the other hand, in the ideal world cMPC outputs a uniformly random Clifford E and the output
sent to the simulator is σMT ℓ = CAuth.EncME (τM ). Therefore, σ̃ = CAuth.EncME (τMR), hence

SASimA(ρaux) (κ, PATH, t, ρ) ≈neg(κ) Wℓ

(
CAuth.EncME

(
τMR

))
⊗ |E⟩⟨E|

We conclude that

SASimA(ρaux) (κ, PATH, t, ρ) ≈neg(κ) REALcMPC
πSA,A(ρaux) (κ, PATH, t, ρ) .

We now work towards proving the claims used earlier Claims 5.3 and 5.4. First, we show that
the adversary has no information on the Clifford key Ei sampled by cMPC, when it chooses its
attack.

Claim 5.5. Let n ∈ N and let (ti)ni=1 be a decreasing sequence of positive integers. For i ∈ [n], let
Gi be a random variables over Cti, and let Ei be uniform random variable over Cti. For 2 ≤ i ≤ n,
define the random variable Vi = (Ei ⊗ I⊗(ti−1−ti))(I⊗(ti−1−ti) ⊗ Gi)E†i−1 over Cti. Then, assuming
{Gi, Ei}ni=1 are independent, for all Vi ∈ Cti−1 and En ∈ Cln, it holds that

Pr

En = En

∣∣∣∣∣∣
∧

2≤i≤n
(Vi = Vi)

 = Pr(En = En).

Proof. Equivalently, we may prove that for all Vi ∈ Cti−1 , En ∈ Cln , it holds that

Pr

 ∧
2≤i≤n

(Vi = Vi)

∣∣∣∣∣∣ En = En

 = Pr

 ∧
2≤i≤n

(Vi = Vi)

 . (11)

First, consider the left-hand side of Equation (11). By the chain rule of probabilities it holds
that

Pr

 ∧
2≤i≤n

(Vi = Vi)

∣∣∣∣∣∣ En = En

 =
∏

2≤i≤n
Pr

Vi = Vi

∣∣∣∣∣∣
 ∧

i+1≤j≤n
Vj = Vj

 ∧ En = En

 . (12)

To simplify notation, we denote by Bi the event that ∧
i+1≤j≤n

Vj = Vj

 ∧ En = En

 .

Then it suffices to show that for all 2 ≤ i ≤ n, it holds that

Pr (Vi = Vi | Bi) =
1

|Cti−1 |
. (13)
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Indeed, by the definition of Vi, it holds that

Pr
(
EiGiE†i−1 = Vi

∣∣∣ Bi

)
= Pr

(
Ei−1 = V †i EiGi

∣∣∣ Bi

)
. (14)

Therefore, by the law of total probabilities it follows that

Pr
(
Ei−1 = V †i EiGi

∣∣∣ Bi

)
=

∑
E∈Cti−1

Pr
(
Ei−1 = E

∣∣∣ V †i EiUi = E ∧Bi

)
Pr

(
V †i EiUi = E

∣∣∣ Bi

)
=

∑
E∈Cti−1

1

|Cti−1 |
Pr

(
V †i EiUi = E

∣∣∣ Bi

)
=

1

|Cti−1 |
,

where the third equality follows from the assumption that {Ei,Ui}ni=1 are independent, hence the
events Ei−1 = E and V †i EiUi = E ∧Bi are independent.

Now consider the right-hand side of Equation (11). By the law of total probabilities it follows
that

Pr

 ∧
2≤i≤n

(Vi = Vi)

 =
∑

E∈Cln

Pr

 ∧
2≤i≤n

(Vi = Vi)

∣∣∣∣∣∣ En = E

 · Pr (En = E)

=
∑

E∈Cln

∏
2≤i≤n

1

|Cti−1 |
· Pr(En = E)

=
∏

2≤i≤n

1

|Cti−1 |
.

where the second equality follows also from Equations 12 and 13 above.

We now show the invariant in the second part of πSA.

Proof of Claim 5.3. We prove this by induction over i. The base case i = iF follows from Equa-
tion (10) and taking Wi = I.

Now, let us assume the claim is true for i and let us prove it for i + 1. Let us first con-
sider the real world. We assume that VR,i ≈neg(κ) W

MT i
i

(
CAuth.EncEi

(
τMR

))
and VI,i ≈neg(κ)

WMT i
i

(
CAuth.EncEi

(
(|0m⟩⟨0m|)⊗ τR

))
. Suppose Qi+1 is honest. Following the same analysis of

Equation (10), it follows that the probability that Qi+1 sends Rej to cMPC is negligibly close to the
same probability that SimA aborts. Therefore, by the security of Clifford codes, it follows that the
output in the real world is

VR,i+1 ≈neg(κ) CAuth.EncEi+1(CAuth.DecEi(VR,i)⊗ |0t⟩⟨0t|)
≈neg(κ) qAcc,i+1 · CAuth.EncEi+1(U

R
Acc,i+1(τ

MR)) + qRej,i+1 · |⊥⟩⟨⊥| ⊗ trM (U R
Rej,i+1(τ

MR))

= qAcc,i+1 · CAuth.EncEi+1(U
R
Acc,i+1(τ

MR)) + qRej,i+1 · |⊥⟩⟨⊥| ⊗U R
Rej,i+1(τ

R),

where UAcc,i+1 and URej,i+1 are as in Definition 2.10, and where qAcc,i+1 = 1 − qRej,i+1 is the
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probability that Qi+1 sent Acc to cMPC. On the other hand, in the ideal world it holds that

VI,i+1 ≈neg(κ) CAuth.EncEi+1(CAuth.DecEi(VI,i)⊗ |0t⟩⟨0t|)

≈neg(κ) qAcc,i+1 · CAuth.EncEi+1(U
R
Acc,i+1(|0⟩⟨0|

M ⊗ τR)) + qRej,i+1 · |⊥⟩⟨⊥| ⊗ trM (U R
Rej,i+1(τ

MR))

= qAcc,i+1 · CAuth.EncEi+1(U
R
Acc,i+1(|0⟩⟨0|

M ⊗ τR)) + qRej,i+1 · |⊥⟩⟨⊥| ⊗U R
Rej,i+1(τ

R).

Thus, if the protocol aborts, then the ideal world simulator will abort as well and output negligibly
close states. Otherwise, if the protocol continues, then we take Wi+1 = UAcc,i+1.

Now suppose Qi+1 ∈ I is corrupted. Let Ai+1
MT i+1Ti+1F be the attack A instructs Qi+1 to

apply after Vi+1. Upon applying these operations, in the real world A obtains

Ai+1Vi+1VR,i(Ai+1Vi+1)
† ≈neg(κ) Ai+1Vi+1

(
Wi

(
CAuth.EncEi

(
τMR

)))
(Ai+1Vi+1)

†.

Let Fi+1
MT i+1Ti+1R (·) = Ai+1Vi+1

(
Wi

(
V †i+1 (·)Vi+1

))
V †i+1A

†
i+1. Therefore, Qi+1 now holds

Fi+1

(
Vi+1

(
CAuth.EncEi

(
τMR

))
V †i+1

)
= Fi+1

(
CAuth.EncEi+1

(
τMR

)
⊗ |0t⟩⟨0t|Ti+1

)
Therefore, the contents of register Ti+1 is negligibly close to |0t⟩⟨0t| before Fi+1 is applied. Moreover,
as it is never used again, we can assume without loss of generality that Fi+1 does not act on Ti.
We can then therefore write Wi+1 (·) = ⟨AccF | Fi+1

MT i+1R (·) |Acc⟩ as the projection of Fi+1 to
acceptance. Similarly, we can do the same in the ideal world (by replacing the contents of register
M with |0⟩⟨0|).

Clearly, by the security of Clifford code, the probability that A aborts is the same in both
worlds. Therefore, as the Clifford key is erased, it follows that VR,i+1 ≈neg(κ) VI,i+1 in case of
abort.

5.2 Input-Ciphertext Sequential Authentication
We also make use of variant of SA, where the input – instead of an arbitrary state – is encrypted
under Clifford encryption, with the key being held by cMPC. We call this variant input-ciphertext
SA (CTSA). The protocol follows the same lines as πSA, with the exception that cMPC does not
send to Q1 the first Clifford. We stress that unlike πSA, this protocol will not be secure.

Protocol 3 Input-Ciphertext Sequential Authentication πCTSA

Inputs: The sender Q1 holds an input σMT 1
1 and cMPC holds a Clifford E1 ∈ Cm+(ℓ+1)t.

Common input: All parties hold the security parameter 1κ, a path PATH that goes through every
party, and the trap-size t.

1. For i = 2 to ℓ:

(a) cMPC samples a Clifford Ei ← Cm+ti−t and an invertible linear function Gi ← GLti(F2)
independently and uniformly at random. It sets

Vi :=
(
EMT i

i ⊗ I⊗tTi
)(

I⊗m
M ⊗GT iTi

i

)
E†i−1

MT iTi

and sends it to Qi.
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(b) Qi evaluates τMT iTi
i = Viσi−1V

†
i and measures register Ti in the computational basis.

If the measurement result is 0t then Qi sends Acc to cMPC, otherwise it sends Rej to
cMPC. Let σMT i

i denote the post-measurement state.
(c) If cMPC received Rej, then sends (abort,Qi−1,Qi) to all parties. They then output this

message and halt.
(d) If i < ℓ, Qi sends σi to the next relay Qi+1.

2. The receiver Qℓ outputs σℓ, cMPC outputs Eℓ, and the other parties output nothing.

Although we cannot argue for the security of the protocol, we can translate an attacker of πCTSA
to an attacker of πSA.

Claim 5.6. For every non-uniform qpt adversary A, controlling a set I ⊂ P in protocol πCTSA,
there exists a non-uniform qpt adversary ASA, controlling I in the protocol πSA, such that{

HYBRIDcMPC
πSA,ASA(ρaux)

(κ, PATH, t, ρ)
}
κ,t,PATH,ρ,ρaux

=
{

HYBRIDcMPC
πCTSA,A(ρaux) (κ, PATH, t, ρ)

}
κ,t,PATH,ρ,ρaux

.

In particular, taking I = ∅ results in the receiver Qℓ outputting CAuth.EncEℓ
(ρ), and cMPC out-

putting Eℓ, ρ = CAuth.DecE1(σ1) and Eℓ ∈ Cm

Proof. Fix an attacker A for πCTSA. If Q1 ∈ I, then the adversary ASA will simply interact in πSA
like A would on input CAuth.EncE1(ρ), where E1 is the Clifford received from cMPC at the start of
the protocol. Otherwise, if Q1 is honest, then ASA will act like A. Finally, ASA outputs whatever
A outputs. Clearly, the joint state held by A and the honest parties in πCTSA is the same as the
joint state held by ASA and the honest parties in πSA.

We thus have the following simple corollary asserting that any adversary attacking πCTSA can
be simulated in the SA ideal world. Using the construction of our simulation of SA, it further holds
that it does not change its input it sends to the trusted party.

Corollary 5.7. For every non-uniform qpt adversary A, controlling a set I ⊂ P in protocol
πCTSA, there exists a non-uniform qpt adversary SimA, controlling I in the ideal-world for SA,
such that{

SASimA(ρaux) (κ, PATH, t, ρ)
}
κ,t,PATH,ρ,ρaux

≈neg(κ)

{
HYBRIDcMPC

πCTSA,A(ρaux) (κ, PATH, t, ρ)
}
κ,t,PATH,ρ,ρaux

.

Moreover, SimA does not change the input it sends to its trusted party.

6 Authenticated Routing
In this section, we present a protocol, called authenticated routing (AR), that allows the parties to
securely send an encryption of their inputs to a designated party. The security achieved by this
protocol is IDPD-security (i.e., security-with-identifiable-abort-and-packet-drops), as was defined
in Section 3.1. We extensively use AR as a building block in order to construct a secure-with-
identifiable-abort protocol for a general circuit.

We next define the AR functionality. For a polynomial t = t(κ) ≥ κ, representing trap-size,
denote by AR = ARt the following mapping. Each party Pi holds ℓin packets ρi = (ρij)

ℓin
j=1, where
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each ρij ∈ Dm. An output is given only to P1 – called the receiver – and to cMPC. Specifically,
cMPC receives a collection of Cliffords (Eij)i∈[n],j∈[ℓin], where Eij ← Cm+t are sampled independently
and uniformly at random, and the receiver P1 receives the Clifford encoding of each packet ρij
under Eij ; that is, P1 receives (CAuth.EncEij (ρij))i∈[n],j∈[ℓin]. In the following section we present a
protocol that computes AR with (n2, 0)-IDPD-security in the cMPC-hybrid model, i.e., at most n2
input-packets can be dropped by the adversary while no output-packets can be dropped.

6.1 The Authenticated Routing Protocol
In this section, we present our protocol for authenticated routing. Roughly, the idea is as follows.
Throughout the entire interaction, we let cMPC maintain a graph G that represents trustfulness.
In more details, each vertex in G corresponds to a party and the graph is initialized as the complete
graph. Then, whenever a party accuses another party, the corresponding edge will be removed from
G.8 Following the initialization, each party Pi tries to send its packets (ρij), one by one, to P1

along a path that goes through all parties. Such a path can be computed, and thus agreed upon,
by having cMPC repeatedly applying BFS/DFS to find a path from Pi to P2, then to P3 until it
reaches the last party Pn, from which it finds a path to P1. The parties will send the packets along
the path using the SA functionality.9 If SA aborted, then the parties now hold two identities Pa

and Pb given to them by SA, one of which is guaranteed to be corrupted. cMPC will then remove
the edge ab from the graph G. Now, party Pi will try to send the rest of its packet using a different
route that does not pass through the edge ab. The parties continue in this fashion until either most
qubits were sent successfully, or until G becomes disconnected, in which case all honest parties are
in the same connected component. Therefore, they can agree to identify a party not connected to
them as malicious.

Let us now consider the case where a call SA ended in abort. Here, a single packet had been
dropped, and so by the ideal-world definition of IDPD-security, the parties must agree to replace
this packet with the 0 state. To do this, the parties will call SA again with the empty state ε ∈ D0

and m+ κ traps. To see why this work, notice that the Clifford encoding of the empty state with
m+ κ traps, is equivalent to a Clifford encoding of |0m⟩ with κ traps. Moreover, by the security of
Clifford encoding, if the adversary changes the traps from 0 then SA will abort again, which will
remove another edge from the graph. Thus, this can be done repeatedly until either G becomes
disconnected or the parties successfully encode the 0 state.

The IDPD-security of the protocol described so far can still be breached by a malicious adversary,
due to the following difficulty one would encounter while constructing a simulator. Suppose that the
adversary corrupted the receiver P1, and consider a call to SA, for a packet (1, j) for some j ∈ [ℓ1],
i.e., the receiver sends to itself an encoding of the packet. To generate the corresponding transcript,
the simulator in the ideal-world must query the adversary for its input ρ to the SA functionality and
must send to A an output in return. Observe that A expects to receive σ = CAuth.EncE(ρ) where
the key E is held by the cMPC. Since the simulator does not know the key E, it cannot generate
a-priori a value σ that is consistent with the output of cMPC. On the other hand, the simulator may
not be ready to send inputs to the trusted party either, as it must hold all input packets from the
adversary. Since rewinding the adversary can help the environment to distinguish between the real
world and ideal world, it seems to be the case where there are no good ways to generate this output
of SA. One possible solution is to modify the AR ideal functionality so it will immediately encode

8We note that this technique, of using the graph to allow honest parties to unanimously agree on the identity of
a corrupted party, was independently used in another recent paper by [BMMMQ20].

9Recall that SA requires the path to be of length n2. Note that the way cMPC computes the path always generates
a path of length at most n2. If the path is shorter, then cMPC can just add the last party repeatedly.
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and output each received packet before receiving the next packet. Unfortunately, the resulting ideal
functionality would be too weak for our purposes later.

It is possible to overcome this challenge by tweaking the protocol. A simple solution to this issue
would be to have the receiver, after it has received all of the packets, to send them to itself again
using CTSA (that is, the ciphertext-input version of SA from Section 5.2). With this modification,
the simulator can send authentication of 0s to the receiver as the outputs of SA. To see why
this works, recall that Clifford authentication ciphertexts are identical to maximally mixed states
due to Lemma 2.3 (Clifford twirling). Thus, the simulator can then collect all input packets and
interact with the trusted party to receive the correct outputs. When the receiver sends the dummy
ciphertexts to itself, the simulator collects and verifies them, before replacing them with the correct
outputs.

Although this approach works, since CTSA is not composable, it hard to formally argue the
security. Instead, we slightly modify the protocol, and construct a slightly different simulator. The
idea is to have the simulator send halves of EPR pairs as the output of SA, instead of authentications
of 0s. Since halves of EPR pairs are indistinguishable from Clifford authentication ciphertexts, the
adversary will reply with the same messages in both the real and the ideal world. After the simulator
collects all packets and interact with the trusted party, it then replaces these halves of EPR pairs
with the correct output via quantum teleportation (see Figure 4). To complete the teleportation,
the simulator must send a Pauli operator for the adversary to apply. Thus, we correspondingly add
a key-update step at the end of the protocol to provide an opportunity for this.

Protocol 4 Authenticated Routing protocol πAR
Inputs: Each party Pi holds private input ρi = (ρij)

ℓi
j=1 where ρij ∈ Dm.

Common input: The parties hold the security parameter 1κ and the packet-size m.

1. cMPC initializes G as the complete graph with n vertices where each vertex represents a party,
and initializes a set Rin = ∅, which will keep track of all packets that were sent successfully.

2. For each packet (i, j) ∈ [n]× [ℓin]:

(a) cMPC computes a path PATHij in G from Pi to P1 that goes through all parties of size
n2, and send it to all parties.

(b) The parties call SA with Pi’s input being ρij , with κ as the common trap-size, and PATH

as the common path.
• If SA outputs (abort,Pa,Pb) for some a, b ∈ [n], then cMPC removes the edge ab

from the graph G. If G becomes disconnected, then cMPC sends ab to all parties.
Each party then outputs (abort,P), where P ∈ {Pa,Pb} is the party on the edge
not connected to P, and halts.

• Otherwise SA terminates successfully, sending a uniform random Clifford Fij ←
Cm+κ to cMPC, sending σij to P1, where σij = CAuth.EncFij (ρij), and sending
continue to all other parties. In this case, cMPC adds (i, j) to Rin.

3. For each dropped packet (i, j) ∈ ([n]× [ℓin]) \ Rin:

(a) cMPC finds a path PATH′ij in G from P1 to itself that passes through every party and
send it to all parties.

(b) The parties call SA, trap-size m+κ, no private inputs, and PATH′ij as the common input.
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• If SA outputs (abort,Pa,Pb) for some a, b ∈ [n], then, similarly to Step 2b, cMPC
removes the edge ab from the graph G. If G becomes disconnected, then cMPC
sends ab to all parties. Each party P then outputs (abort,P′), where P′ ∈ {Pa,Pb}
is the party on the edge not connected to P, and halt. Otherwise, if the graph is
still connected, then the parties go back to Step 3a.

• Otherwise SA terminates successfully, sending a uniform random Clifford Fij ←
Cm+κ to cMPC, sending σij to P1, where σij ← CAuth.EncFij (ε), and sending
continue to all other parties.

4. For all packets (i, j) ∈ Sinput:

(a) cMPC samples a Pauli independently and uniformly at random Pij ← Pm+κ and sends
it to P1.

(b) P1 applies Pij to σij , obtaining τij .
(c) cMPC updates its Clifford key to be Eij = PijFij .

5. cMPC sends Rin to all parties.

6. Each party outputs (continue,Rin), cMPC additionally outputs the Cliffords {Eij}ij∈Sinput
,

and P1 additionally outputs {τij}ij∈Sinput
.

We next state and prove the security of the protocol.

Lemma 6.1. Protocol πAR computes the functionality AR with perfect (n2, 0)-IDPD-security in the
{cMPC,SA}-hybrid model.

Proof. Fix an adversary A corrupting a subset I of the parties holding auxiliary input ρaux. We
next construct a simulator SimA for the adversary in the (n2, 0)-IDPD ideal world.

τijk • H 


 • zijk

σLijk



 • xijk

σRijk Xxijk Zzijk τijk

_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

Figure 4: Teleportation-inspired circuit for output equivocation

Simulator 3 Simulator SimA for authenticated routing

1. Initialize G as the complete graph and Rin = ∅ as an empty set.

2. For all (i, j) ∈ Sinput:

(a) Find the path PATHij in G from Pi to P1 that passes through every party, computed the
same as cMPC computed and send it to A.

(b) If Pi ∈ I is corrupted, then query A for its input ρij to SA.
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(c) If P1 ∈ I is corrupted, then prepare m+κ EPR pairs,
(
σLijkRijk

)m+κ

k=1
= |Φ+⟩⊗m+κ, and

send
(
σRijk

)m+κ

k=1
(that is, half of each EPR pair) to A as the output of SA.

(d) The adversary sends back either continue or (abort, (Pa,Pb)). If it sent continue,
then add (i, j) to Rin. Otherwise, if it sent (abort, (Pa,Pb)), then remove the edge
e = ab from the graph G. If G becomes disconnected, send (abort,P′) to T where
P′ ∈ {Pa,Pb} is the party on e not connected to any of the honest parties,10 output
whatever A outputs, and halt.

3. For all dropped packets (i, j) ∈ Sinput \ Rin:

(a) Find a path PATH′ij in G from the receiver P1 to itself that passes through all parties,
and send it and the trap-size m+ κ to the adversary as a message from SA.

(b) If P1 ∈ I is corrupted, then update
(
σLijkRijk

)m+κ

k=1
= |Φ+⟩⊗m+κ as fresh EPR pairs, and

send
(
σRijk

)m+κ

k=1
to A as the output of SA.

(c) The adversary sends back either continue or (abort, (Pa,Pb)) where either Pa ∈ I or
Pb ∈ I. If it sent continue, then add (i, j) to Rin. Otherwise, if it sent (abort, (Pa,Pb)),
then remove the edge e = ab from the graph G. If G becomes disconnected, send
(abort,P′) to T where P′ ∈ {Pa,Pb} is the party on e not connected to any of the
honest parties, outputs whatever A outputs, and halt. Otherwise, if G is still connected,
go back to Step 3a with the same packet (i, j).

4. Send ((ρij)i∈I,j∈[ℓi] ,Rin) to the trusted party T.

5. If P1 is corrupted, then T sends back to the simulator the ciphertexts (τij)(i,j)∈Sinput
. Rewrite

each τij qubit-by-qubit, i.e., as (τijk)(i,j,k)∈Sinput×[m+κ]. For all (i, j) ∈ Sinput and k ∈ [m+ κ],
run the portion of Figure 4 in the dashed lines, generating classical bits xijk and zijk. Send
Pij =

⊗m+κ
k=1 ZzijkXxijk for all (i, j) ∈ Sinput to A.

6. Send continue to T.

7. Send Rin to A, output whatever it outputs, and halt.

We now analyze the above simulator, showing that it perfectly simulate the real world. That
is, we show that

IDEAL
(n2,0)-IDPD
AR,SimA(ρaux)

(κ, (ρi)
n
i=1) = HYBRIDcMPC,SA

πAR,A(ρaux) (κ, (ρi)
n
i=1) .

First, we show that for all (i, j) ∈ Sinput in Step 2 in the real world and Step 2 in the ideal
world, the view of A are identical. Clearly, PATHij is the same in both worlds. Moreover, if P1 is
corrupted, the adversary receives a Clifford authentication ciphertext in the real world, and halves
of EPR pairs in the ideal world, both of which are maximally mixed state (see Lemma 2.3). Thus,
the adversary’s answer to SA is identical in both worlds, hence the graph G and the set Rin of
remaining packets are updated the same as well. In particular, if the protocol aborts in this step,
then the adversary has the same view in both worlds. Furthermore, the honest parties output the

10Formally, the simulator should first send inputs to the trusted party. For simplicity, however, we ignore such
technicalities, as the simulator can first send arbitrary inputs and then abort.
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same identity of a corrupted party due to them forming a clique in G. Similarly, assuming the
adversary did not abort during Step 2 of the protocol, the view of the adversary during Step 3 of
the protocol, is identical to the view generated by the simulator.

Now we assume the protocol has not aborted in the previous steps. Observe that the protocol,
by construction, does not have any more chances to abort. Let us first consider the case where
the receiver P1 is honest. Here, the adversary does not receive anymore messages. In the ideal
world, the honest receiver receives ciphertexts CAuth.EncEij (ρij) from the trusted party and cMPC
receives the corresponding keys Eij . In the real world, CAuth.EncFij (ρij) and Fij which has the
same distribution is given to them by SA, then Fij is shifted by a Pauli Pij to generate Eij . Since
this uniformly random Pauli shift has no effect on the distribution, the real and ideal worlds are
identical.

Now, let us consider the case where the receiver P1 ∈ I is corrupted. Here, the dropped
packets are replaced with Clifford encoding of 0’s in both worlds. Furthermore, in both worlds,
each survived packets ρij can be written as σij = P †ijτijPij , where Pij is the Pauli sent to A, and
τij = CAuth.EncFij (ρij) and Fij is the encoded packet. Furthermore, by the properties of quantum
teleportation, each Pij is also uniformly random in the ideal world. Thus, joint output of the
adversary and cMPC in the real-world is identical to their output in the ideal-world.

Finally, as the trustfulness graph G will become disconnected after at most n2 edge removal, it
follows that the number of remaining input-qubits is |Rin| ≥ n · ℓin − n2, hence

IDEAL
(n2,0)-IDPD
AR,SimA(ρaux)

(κ, (ρi)
n
i=1) = HYBRIDcMPC,SA

πAR,A(ρaux) (κ, (ρi)
n
i=1) .

6.2 Authenticated Routing With Input-Ciphertext
We also make use of the input-ciphertext variant of AR, denoted CTAR. Similarly to CTSA, this is
also insecure in general, so we only describe the protocol. Here, unlike in AR, there is only a single
sender, denoted P1, and multiple receivers. The goal variant is to send each plaintext from the P1

to its designated receiver, encrypted under a new key.
We now describe the protocol. It is similar to πAR, with the following exceptions. First, the

dropped packets are not replaced with 0’s. Second, the calls to SA are replaced with executions of
to πCTSA. Third, there is no need to update the keys held by cMPC at the end. Fourth, the parties
hold the size of the plaintexts, denoted m, and the size of traps used in the Cliffords encryption,
denoted t, as common input. Note that these might depend on the security parameter κ. Finally,
since the ciphertexts may be transmitted through n2 relays, the initial ciphertexts should have the
traps of size tn2.

Protocol 5 Protocol πCTAR for input-ciphertext authenticated routing

Inputs: The sender P1 has a set of Clifford ciphertexts (σij)i∈[n],j∈[ℓin], where cMPC holds the
corresponding Clifford keys (Eij)i∈[n],j∈[ℓin], where each Eij ∈ Cm+tn2 .
Common input: The parties hold the security parameter 1κ, the size of the plaintexts m, and
the size of the traps t.

1. cMPC initializes G as the complete graph with n vertices where each vertex represents a party,
and initializes a set Rin = ∅, which will keep track of all packets that were sent successfully.

2. For each packet (i, j) ∈ [n]× [ℓin]:
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(a) cMPC computes a path PATHij of the length n2 in G from P1 to Pi that goes through all
parties, and send it to all parties.

(b) The parties execute πCTSA with P1’s input being the set of Clifford ciphertext σij and
cMPC’s input being its corresponding Clifford key Eij , and PATHij and trap size t as the
common input.

• If the output of πCTSA is (abort,Pa,Pb) for some a, b ∈ [n],11 then cMPC removes
the edge ab from G. If G becomes disconnected, then cMPC sends ab to all parties.
Each party then outputs (abort,P), where P ∈ {Pa,Pb} is the party on the edge
not connected to it.

• Otherwise, πCTSA terminates successfully, sending to Pi the ciphertext σ̂ij ← CAuth.EncFij (ρij),
and sending to cMPC the corresponding key Fij ∈ Cm+t. In this case, cMPC adds
(i, j) to Rin.

3. Each party Pi outputs (continue,Rin) and (σ̂ij)j:(i,j)∈Rin
, and cMPC additionally outputs

the Cliffords (Fij)(i,j)∈Rin
.

By Corollary 5.7, in an honest execution of the above protocol outputs the correct output. That
is, we have the following claim.

Claim 6.2. For all i ∈ [n] and j ∈ [ℓin] let ρij = CAuth.DecEij (σij). Then in an honest execution
of πCTAR, for all i ∈ [n] the output of Pi is (CAuth.EncFij (ρij))j∈[ℓin], and the output of cMPC is
(Fij)i∈[n],j∈[ℓin].

7 Magic State Preparation
Recall that we aim to have a single designated party to homomorphically evaluate a universal
circuit over encrypted values. Towards achieving this, the parties require five kinds of magic states.
These include ancilla zero states, P magic states, T magic states, H magic state and gadgets γ. In
this section, we show how the parties can prepare these states using a secure-with-identifiable-abort
protocol. In all magic states protocol, an output will be given to only two parties: the server P1 and
cMPC. In Section 7.1 we show how to prepare ancilla zero state and P magic state, in Section 7.2 we
show how prepare H magic state, in Section 7.3 we show how to prepare gadget states preparation,
and in Section 7.4 we show how to prepare T magic states. To simplify the presentation, all
protocols will prepare a single magic state. These, however, can be easily generalized to create
more magic states using the same number of rounds.

7.1 Preparing Ancilla and P Magic States
In this section we show how to prepare ancilla zero states and P magic states. Let us first define
the mappings. We denote by MSPZ the following functionality. It is a no-input functionality that
outputs to P1 the Clifford encoding CAuth.EncE(|0⟩⟨0|) and outputs to cMPC the corresponding
key E, where E ← C3κ is uniform random Clifford. Then the mapping outputs to P1 an encryption
of the zero state CAuth.EncE(|0⟩⟨0|) and outputs to cMPC the corresponding key E. Similarly, We
denote by MSPP the mapping that outputs to P1 a Clifford encoding of |P ⟩ = P |+⟩.

11Recall that by Corollary 5.7 all parties will agree on the identities in case of abort, one of which is guaranteed to
be corrupted.
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We next present the protocols for computing MSPZ with security-with-identifiable-abort. The
idea is as follows. First, the parties call the functionality AR without any input, with trap size 3κ,
and with the P1 as the receiver. Syntatically, AR takes as input a list of “packets,” where n2 of
them may be dropped. Thus, the parties actually call AR with n2 + 1 packets, where each packets
consists of no input state with trap size 3κ. Then, the server and cMPC keep the lexicographically
first remaining packet. This result in P1 holding E(ε⊗|03κ⟩⟨03κ|)E†, and cMPC holding the random
Clifford E. The correctness immediately follows from the fact that

E(ε⊗ |03κ⟩⟨03κ|)E† = E(|0⟩⟨0| ⊗ |03κ−1⟩⟨03κ−1|)E†.

To generate multiple magic states at once, the parties can call AR with more packets initially. In
the following, we omit the number of initial packets and only focus on preparing single magic state
each time for simplicity.

To see why the protocol admits security-with-identifiable-abort, observe that there is no inter-
action, and moreover, there are no inputs to AR hence it either aborts or send to P1 and cMPC
their outputs.

Now, to see how the parties can compute MSPP , observe that if P1 decrypts with the key EPH
instead of E, where PH is applied only to the first bit, then the result would be |P ⟩. Indeed,

(EPH)(|0⟩⟨0| ⊗ |03κ−1⟩⟨03κ−1|)(EPH)† = E(|P ⟩⟨P | ⊗ |03κ−1⟩⟨03κ−1|)E†.

Thus, we let cMPC output EPH instead of the key given to it by AR. We next formally describe
both protocols. We denote by πms, where ms ∈ {Z,P}, the protocol that computes MSPms.

Protocol 6 Protocol πms for preparing ancilla and P magic states

Common input: The parties hold the security parameter 1κ.

1. The parties call (AR, (n2, 0))-IDPD without inputs, P1 as the receiver, and trap-size 3κ. If
AR aborts, then the parties have the identity of a corrupted party, they output it, and halt.

2. Otherwise, cMPC receives from AR a Clifford E ← C3κ sampled uniformly at random, and
the server P1 receives σ := CAuth.EncE(ε).

3. The server P1 outputs σ. If ms = Z, cMPC outputs E; if ms = P , it outputs EPH. The
other parties output nothing.

The following claim asserts the security the protocol

Claim 7.1. For all ms ∈ {Z,P} it holds that protocol πms computes the functionality MSPms with
perfect security-with-identifiable-abort in {cMPC,AR}-hybrid model.

7.2 Preparing H Magic States
We next show how to prepare H magic states. Recall that |H⟩ = (H⊗ I)CNOT(|+⟩⊗ |0⟩) is a two-
qubit system. Define the functionality MSPH as follows. This is a no-input functionality whose that
outputs to P1 a Clifford encoding for qubit in H, i.e., (CAuth.EncE1 ⊗ CAuth.EncE2)(|H⟩⟨H|), and
outputs to cMPC the corresponding keys E1 and E2, where E1, E2 ← C3κ are sampled independently
and uniformly at random.
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We now present our protocol for computing MSPH . Roughly, the protocol starts the same as
πZ and πP ; that is, the parties call AR with no inputs. Unlike in the previous protocol, as H is
a two-state qubit, it is not enough to have cMPC simply update the Clifford it received from AR.
Instead, we let cMPC send to the server P1 a carefully chosen Clifford for it to apply over the state
it received from AR.

Protocol 7 Protocol πH for preparing H magic states

Common input: The parties hold the security parameter 1κ.

1. The parties call (AR, (n2, 0))-IDPD without inputs, P1 as the receiver, and trap-size 6κ. If
AR aborts, the parties have the identity of a corrupted party. They output it and halt.

2. Otherwise, cMPC receives from AR a Clifford E ← C6κ sampled uniformly at random, and
the server P1 receives

σ = CAuth.EncE (ε)

= E(ε⊗ |06κ⟩⟨06κ|)E†

= E(|0⟩⟨0|M1 ⊗ |03κ−1⟩⟨03κ−1|T1 ⊗ |0⟩⟨0|M2 ⊗ |03κ−1⟩⟨03κ−1|T2)E†.

3. cMPC sets UM1M2 = (H⊗I)CNOT(H⊗I). Additionally, cMPC samples two random Cliffords
E1, E2 ← C3κ independently and uniformly at random.

4. Then, cMPC sends to P1 the Clifford V = (EM1T1
1 ⊗ EM2T2

2 )UE†.

5. The server outputs V σV †, cMPC outputs (E1, E2), and the other parties outputs nothing.

We next state and prove the security of the protocol.

Claim 7.2. Protocol πH computes the functionality MSPH with perfect security-with-identifiable-
abort in {cMPC,AR}-hybrid model.

Proof. To see correctness, observe that U(|0⟩ ⊗ |0⟩) = |H⟩, so we have

V σV †

=
(
(EM1T1

1 ⊗ EM2T2
2 )UM1M2E†

)(
E
(
|0⟩⟨0|M1 ⊗ |03κ−1⟩⟨03κ−1|T1 ⊗ |0⟩⟨0|M2 ⊗ |03κ−1⟩⟨03κ−1|T2

)
E†

)
((E1 ⊗ E2)UE

†)†

= (CAuth.EncE1 ⊗ CAuth.EncE2)(|H⟩⟨H|).

As for security, notice that the only message sent in the protocol is the Clifford V sent from cMPC
to P1. As V is uniform random Clifford, security follows.

7.3 Preparing Gadget Magic States
We now show how to prepare a gadget magic state γ, which is a multi-qubit state defined below.
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Notations. Before formally introducing our protocol, we first present some notations. Let ℓgad
be the number of qubits in a single gadget state. Recall that in VQFHE scheme TrapTP, the key
generation algorithm TrapTP.KeyGen outputs a classical string sk viewed as a secret key. This
secret key includes the secret key of a classical message authentication code MAC, the public key
and secret key of classical homomorphic encryption scheme HE, a global permutation Π0 for the
trap-code encryptions, and local permutations (Πd)

L
d=1 for each gadget, where L will represent a

bound on the circuit size. Toward creating the gadget states, a classical algorithm MGad(sk, d) that
generates all the classical description of the garden-hose gadget is executed. It is given an secret
key sk and a permutation index d, and outputs the classical description gd of dth gadget and a
Clifford operator Ud used for creating the gadget, defined to be |γd⟩⟨γd| := Ud |0ℓgad⟩⟨0ℓgad |U †d . We
refer the reader to [ADSS17] for a detailed construction of each classical algorithm.

Our construction. Let us now present the definition of the functionality MSPγ for preparing
gadget states. The parties Pi hold no input, and cMPC is given the secret key sk and the permutation
index d. The output given to the server is Clifford encryptions of each qubit in dth gadget; that is,
it receives (⊗ℓgad

j=1CAuth.EncEj )(|γd⟩⟨γd|) where Ej ← C3κ for all j ∈ [ℓgad], and cMPC is given the
Clifford keys (Ej)

ℓgad
j=1 and classical description of the gadget gd ∈ {0, 1}∗.

We now present our protocol for computing MSPγ . It is similar to πH for preparing H magic
states.

Protocol 8 Protocol πγ for preparing gadget magic states

Inputs: cMPC holds sk ∈ {0, 1}∗ and the permutation index d.
Common inputs: The parties hold the security parameter 1κ.

1. The parties call (AR, (n2, 0))-IDPD without inputs, P1 as the receiver, and trap-size 3κ · ℓgad.
If the AR aborts, the parties have the identity of a corrupted party. They output it and halt.

2. Otherwise, cMPC receives from AR a Clifford E ← C3κ·ℓgad , sampled uniformly at random,
and the P1 receives

σ = CAuth.EncE(ε) = E(|03κ·ℓgad⟩⟨03κ·ℓgad |)E† = E(|0ℓgad⟩⟨0ℓgad |M⊗|0(3κ−1)·ℓgad⟩⟨0(3κ−1)·ℓgad |T )E†.

3. cMPC computes (UM
d , gd)←MGad(sk, d).

4. Partition the registers M and T into ℓgad registers M1, . . . ,Mℓgad and T1, . . . , Tℓgad , respectively,
where Mi is a single qubit register and Ti is a κ-qubit register for all i ∈ [ℓgad]. For each
i ∈ [ℓgad], cMPC samples Cliffords EMiTi

i ← C3κ independently and uniformly at random.

5. cMPC sets V = (
⊗ℓgad

i=1Ei
MiTi)(EU †d)

† and sends it to P1.

6. Party P1 outputs V σV †, cMPC outputs the gadget descriptions gd and the Clifford keys
(Ei)

ℓgad
i=1, and the other parties output nothing.

We next state and prove the security of the protocol.

Claim 7.3. Protocol πγ computes MSPγ with perfect security-with-identifiable-abort in the {cMPC}-
hybrid model.
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Proof. For correctness, observe that

V σV † =

 ℓgad⊗
i=1

EMiTi
i

(
E(U †γ)

M
)†
E

|0ℓgad⟩⟨0ℓgad |M ⊗ ℓgad⊗
i=1

|0κ⟩⟨0κ|Ti

E†
(
EU †γ

) ℓgad⊗
i=1

Ei

†

=

 ℓgad⊗
i=1

EMiTi
i

|γ⟩⟨γ|M ⊗ ℓgad⊗
i=1

|0κ⟩⟨0κ|Ti

 ℓgad⊗
i=1

Ei

†

=

 ℓgad⊗
i=1

CAuth.EncEi

 (|γ⟩⟨γ|) .

As for security, similarly to πH , the only message sent in the protocol is the Clifford V that is
distributed uniformly.

7.4 Preparing T Magic States
In this section we show how to prepare T magic states, |T ⟩ := T |+⟩. We define MSPT to be a no-
input functionality whose output is defined as follows. Let E ← C3κ be a uniform random Clifford.
Then the mapping outputs to P1 a Clifford encryption of the T magic state CAuth.EncE(|T ⟩⟨T |)
and outputs to cMPC the corresponding key E.

Since T gates are not Clifford, preparing T magic states requires a different approach from the
other magic states. Toward constructing such a protocol, we first show how to homomorphically
evaluate a classically controlled Clifford circuit over a Clifford ciphertext. We present such a
protocol in Section 7.4.1. Then, in Section 7.4.2 we present a secure protocol for preparing |T ⟩
states.

7.4.1 Homomorphic Evaluation of Classically Controlled Clifford Circuit Over Clif-
ford Codes

In this section we present a way for the parties to homomorphically evaluate classically controlled
Cliffords over a Clifford authentication code. This is a two-party protocol executed between the
server P1 and cMPC. We stress that, similarly to πCTSA and πCTAR, the protocol we present is not
secure on its own, and will be used as a subroutine during the T magic state preparation protocol
in Section 7.4.2.

The input of the server P1 is a Clifford ciphertext σ0 = E(ρ⊗ |0t⟩⟨0t|)E† of an r-qubit state ρ
under the key E ∈ Cr+t with t traps, and the input cMPC is the corresponding Clifford key E. The
number t = t(κ) is a polynomial in the security parameter κ. Roughly, the idea is the following.
Let C be the circuit to be evaluated and let d denote the number of gates in C. First, we represent
the circuit C to be evaluated as C = Gd · · ·G2G1, where each Gi is either a function for generating
a Clifford gate or a measurement on a specific qubit. The server and cMPC will compute the Gi’s in
order. If Gi represents a function, cMPC computes Gi(m) where m ∈ {0, 1}∗ represents all previous
measurement outcomes, and obtain a Clifford Ei. Similarly to the protocols for preparing P magic
states, to emulate P1 applying Ei we can simply have cMPC update its key.

Otherwise, Gi represents a measurement. Here we aim to have the server measuring the in-
dicated qubits, and send the outcome to cMPC. To perform this task homomorphically over the
Clifford ciphertexts, we let the parties re-arrange the ciphertext so that the qubit that should be
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measured will be re-encrypted to a trap authentication code, while the remaining qubits will be
encrypted by Clifford code under a new key.

Formally, given an integer N , let S be a subsequence over [N ] without repetitions. We define
WN (S) to be the permutation over N qubits that moves the qubits indicated by S to the end, while
keeping the order. For example, suppose we have eight qubits labelled by 1 to 8 in an ascending
order. The permutation W8((1, 3, 8)) will move the sequence 12345678 to 24567138. Additionally,
given two integers a < b we denote by [a : b] to be the sequence (a, a + 1, · · · , b − 1, b). Now,
suppose we have a ciphertext in the form of σ = E(ρ⊗ |0t⟩⟨0t|)E†, where ρ is an r-qubit state, and
we wish the measure the jth qubit of ρ. Then cMPC will send to P1 the following Clifford. Let
W =Wr+t((j, [r + 1 : r + κ])) be the permutation that moves the jth qubits and κ of the traps to
the end. It send to P1 the operator

V = (E′ ⊗ TAuth.PEncΠ,x,z)WE†,

where E′ is the new key of the Clifford code, and Π, x, and z are the new keys of the trap
authentication code. After P1 applies V to σ, the last κ + 1 qubits are encrypted by trap code.
Thus, the measurement outcome of the underlying message can be got by measuring the last κ+1
qubits transversally in the computational basis and running TAuth.Dec over the encrypted outcome.

We next present the formal description of the protocol.

Protocol 9 Protocol πCCC of Classically Controlled Clifford Circuit and Measurement under Clif-ford Code

Inputs: The server P1 holds a Clifford ciphertext σ0 = E0(ρ ⊗ |0t⟩⟨0t|)E†0 of an r-qubit state ρ
under the key E0 ∈ Cr+t, and cMPC holds the corresponding Clifford key E0.
Common inputs: The parties hold the security parameter 1κ.

1. For i = 1 to d:

(a) cMPC initializes count = 0 and a string m∗ = λ, which will include all previous mea-
surement outcomes.

(b) If Gi is Clifford gate, then cMPC computes Gi(m
∗) and updates its key Ei := Ei−1G

†
i ,

and P1 sets σi = σi−1.
(c) If Gi is a measurement on jth qubit:

i. cMPC Does the following. Sample a Clifford Ei ← Cr+t−(count+1)(κ+1), a permu-
tation Πi ← Symκ+1, and strings xi, zi ← {0, 1}κ+1 uniformly at random and in-
dependently. Additionally, cMPC sets Wi := Wr+t−count(κ+1)(j, [r − count + 1 :
r − count+ κ]).

ii. cMPC sends Vi := (Ei ⊗ TAuth.PEncΠi,xi,zi)WiE
†
i−1 to P1.

iii. P1 applies Vi to σi−1, measures the last κ+1 qubits in the computational basis, and
sends the measurement outcome m̃i ∈ {0, 1}κ+1 to cMPC. Let σi be the remaining
unmeasured r + t− (count+ 1)(κ+ 1) qubits.

iv. cMPC evaluates (flag,mi) = TAuth.DecΠi,xi,zi(m̃i). If flag = Rej, then cMPC
output abort and halt. Otherwise, if flag = Acc, then cMPC appends mi to m∗.

v. cMPC sets count = count+ 1.

2. P1 outputs the state σd, and cMPC outputs the corresponding Clifford key Ed.
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Notice that, similarly to πCTSA in Section 5.2, the protocol is insecure since the inputs include
secret keys. However, in Section 7.4.2 below, we use πCCC as a subroutine where the keys will be
generated honestly, and thus the security will not be compromised. The following claim asserts the
correctness of the protocol.

Claim 7.4. In an honest execution of πCCC, the output of P1 is CAuth.EncEd
(C(ρ)) and the output

of cMPC is Ed.

Proof. Fix i ∈ [d]. First, if Gi is a Clifford gate, then the correctness follows from the same
argument as in the previous magic state preparation protocols. If Gi is measurement, then by
Lemma 2.18, the authenticity of all measurement outcomes are guaranteed. In other words, if the
protocol is not aborted, all measurements are applied honestly, so the Clifford operations can be
applied correctly by cMPC via key updating.

7.4.2 T Magic State Preparation Protocol

In this section we finally present a secure-with-identifiable-abort protocol for computing MSPT . Our
protocol is a modification of the protocol of [DGJ+20] for preparing T magic states, which achieves
only security-with-abort. Let us first give an overview of the protocol of [DGJ+20]. First, recall from
Section 2.4, that given poly(log(1/δ0)) copies of noisy T magic states with a constant fraction error,
using the T distillation circuit we can obtain δ0-close |T ⟩ state. Now, in [DGJ+20], the server P1

prepares κn copies of |T ⟩. Then, the parties execute the secure-with-abort input-encoding protocol
of [DGJ+20], which generates a Clifford encoding of each |T ⟩ state, i.e., (CAuth.EncEj (|T ⟩⟨T |))κnj=1,
and outputs to cMPC the corresponding Clifford keys. Following this, cMPC samples disjoint sets
S1, · · · , Sn ⊆ [κn], each of size κ, uniformly at random, and sends them to all parties. For each
subset Si, the server P1 sends {CAuth.EncEj (|T ⟩⟨T |)}j∈Si to Pi and cMPC sends {Ej}j∈Si to Pi.
Then, party Pi decrypts and measures the received states in the {|T ⟩ , |T⊥⟩}-basis, and broadcast an
abort if it gets |T⊥⟩ in any of the measurements. We refer to this step as the random sampling test.
Upon receiving an abort from a party, all parties abort and halt. Otherwise, [DGJ+20] showed that
the remaining copies the server holds differ by a constant fraction from {CAuth.EncEj (|T ⟩⟨T |)}j∈S1

with respect to the trace distance. The server can then get a state of negligible trace distance from
CAuth.EncE |T ⟩⟨T | with respect to a new key E, by running the T distillation circuit guaranteed to
exist by Theorem 2.8.

Clearly, the above protocol does not admits security-with-identifiable-abort. Indeed, not only is
the input-encoding protocol of [DGJ+20] does not admit security-with-identifiable-abort, it further
holds that a corrupted party may accuse an honest server by lying about the states that it measured.
To overcome this two issues, we perform the following modifications to the protocol of [DGJ+20].

First, we make the following observations. Regardless of what the server prepares, assuming all
states were successfully sent during the random sampling test, with overwhelming probability all
honest parties will have roughly the same number of |T⊥⟩ states upon measurement. Therefore,
instead of broadcasting abort, we consider each party’s error rate, defined to be number of |T⊥⟩
it holds divided by κ. These will be sent to cMPC, who compares them. If there are two parties
whose error rates are significantly far apart, then cMPC can publish them, and the honest parties
can agree on which is corrupted.

Second, note that the previous observation holds only if the states were faithfully distributed by
during the random sampling test. Indeed, the corrupted parties can bias the error rates by dropping
the packets. Consider the following example. Suppose that P1 is corrupted and P2, . . . ,Pn are
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honest. The server P1 prepares each state to be |T ⟩ with probability 1/2 and |T⊥⟩ with probability
1/2. Then, after cMPC sends to P1 the set S2, the adversary drops the all |T ⟩ states that belong to
S2. As for the the states that belong to S3, the adversary will drop the |T⊥⟩ states. Consequently,
the error rate ϵ2 will be much higher than 1/2 while ϵ3 will be much lower than 1/2. To solve
this issue, we would like that for any state that was dropped, the error rate will not include it.
We achieve this as follows. The server first prepares N0 := 3n2 + 1 copies of |T ⟩⟨T |⊗κn. Then,
for each copy of |T ⟩⟨T |⊗κn a random sampling test is applied, where each party receives κ of the
qubits among |T ⟩⟨T |⊗κn. Moreover, the qubits will be transmitted to their destination using the
AR functionality, to ensure that the adversary cannot drop too many qubits. If there is a state that
was lost during the transmission, all parties starts the random sampling test for another copy of
|T ⟩⟨T |⊗κn.

Third, the parties need to be able to sample a subset of the qubits held by P1, even if |T ⟩⟨T |⊗κn
are encrypted under a Clifford code. The idea is to have cMPC update the encryption keys so that
they will randomly permute the qubits and re-encrypt using a new key of the form (E1⊗· · ·⊗En),
where each Ei ← Cκ+t, where t is the number of traps. Additionally, the permutation must ensure
that each κ of the T states have t trap states |0⟩ appended to. Observe that decrypting using such
key would result in n pieces of T states, each of size κ and encrypted under a different key with t
traps. The parties can then use πCTAR (Protocol 5) to distribute the states.

Finally, we encounter the following difficulty when constructing the simulator. The T distillation
circuit is not deterministic in the sense that which gates should be applied depend on previous
measurement outcomes. To simplify the security proof, after performing the T distillation, the
parties execute πCTAR to have the server P1 route all ciphertexts generated by the T distillation
circuit to itself. Now, similarly to πAR, we let cMPC updating its key using a random Pauli. Then,
similarly to the simulation for AR, the simulator can send halves of EPR pairs as the output during
the execution of πCTAR. Among the remaining packets after πCTAR, the simulator can teleport the
output it got from the trusted party to P1.

We now formally describe our protocol in the {cMPC,AR}-hybrid model. In the following, we
let δ = 0.04

n . The rationale of choosing the number of traps is explained in the security proof.

Protocol 10 Protocol πT for preparing T magic states

Common input: The parties hold the security parameter 1κ.

1. P1 prepares N0 copies of (|T ⟩⟨T |)⊗κn. Let ρj ∈ Dκn be the jth copy.

2. The parties call (AR, (n2, 0))-IDPD with trap-size n3 ·(n2(3κ−1)+κ2), with P1 as the receiver,
and with only P1 having an input, being a list of packets (ρj)

N0
j=1.

• If the output is (abort,P), then the parties output (abort,P) and halt.
• Otherwise, if AR terminated successfully, each party receives (continue,Rin), and P1

additionally gets a list of Clifford ciphertexts (σj)
N0
j=1, and cMPC gets the corresponding

Clifford keys (E′j)
N0
j=1, where each E′j ∈ Cκn+n3·(n2(3κ−1)+κ2). The server P1 and cMPC

discard the packets where (1, j) ̸∈ Rin and relabel the remaining packets as (σj)
N1
j=1 and

(E′j)
N1
j=1, where N1 = |Rin| ≥ 2n2 + 1.

3. For all j ∈ [N1]:

(a) For all i = 1 to n cMPC does the following:
i. Sample a subset Sij ⊆ [iκ] of size |Sij | = κ uniformly at random.
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ii. Set Wij :=Wκn+n3·(n2(3κ−1)+κ2)(Sij , [iκ+ 1 : iκ+ κ]).
iii. Sample Eij ← Cκ+n2·(n2(3κ−1)+κ2).

(b) cMPC sets
Vj = (E1j ⊗ · · · ⊗ Enj)(Wnj · · ·W1j)E

′†
j ,

and sends Vj to P1.
(c) P1 applies Vj to σj to obatin

τ1j ⊗ τ2j ⊗ · · · ⊗ τnj = VjσjV
†
j ,

where τij = Eij(|T ⟩⟨T |⊗κ ⊗ |0⟩⟨0|⊗n
2·(n2(3κ−1)+κ2))E†ij for all i ∈ [n].

4. The parties execute πCTAR (Protocol 5). Here, P1 is the sender with its input being (τij)(i,j)∈[n]×[N1],
cMPC’s input are the corresponding Cliffords (Eij)(i,j)∈[n]×[N1], and Pi is the receiver of
(τij)j∈[N1] for all i ∈ [n]. The common inputs are κ as the size of the plaintext, and
n2 · (n2(3κ− 1) + κ2) as the trap-size.

• If πCTAR outputs (abort,P), then the parties output (abort,P) and halt.
• Otherwise, if πCTAR terminated successfully, each party receives (continue,R′in), and for

all i, party Pi additionally gets a list of Clifford ciphertexts (τ̃ij)ij∈R′
in
, and cMPC gets

the corresponding Clifford keys (Ẽij)ij∈R′
in
.

5. cMPC updates R′in to ensure each party holds the same list of packets:

(a) For each packet (i, j) ∈ R′in, if there exists i∗ ∈ [n] such that (i∗, j) ̸∈ R′in, then remove
(i, j) from R′in (note that at most n2 packets can be dropped during the execution of
πCTAR, hence R′in is not empty).

(b) Send the updated R′in to all parties. Let RJ be the set of all remaining indices j, i.e.,
RJ = {j ∈ [N1] : (i, j) ∈ R′in}.

6. For each packet j ∈ RJ:

(a) For each non-server party i ∈ {2, 3, . . . , n}:
i. cMPC sends Ẽij to Pi.
ii. Pi runs CAuth.DecẼij

(τ̃ij) and measures the decrypted message in the {|T ⟩ , |T⊥⟩}-
basis. Let ϵij be the error-rate, defined to be the number of |T⊥⟩ divided by κ.

iii. Pi sends ϵij to cMPC

(b) cMPC check the error-rates for packet j:
i. Set ϵ1j = 0.
ii. Sort the error-rates ϵ1j , ϵ2j , · · · , ϵnj of all parties. Let µ1j ≤ · · · ≤ µnj be the sorted

result.
iii. For k = 1 to n − 1, if µ(k+1)j − µkj > δ, then do the following. First, cMPC sends

(µkj ,Pa,Pb) to all parties, where Pa is the party who sent the error-rate µkj , and
where Pb is the party who sent the error-rate µ(k+1)j . Then, each party Pi then
outputs (abort,Pa) if ϵij > µkj , and outputs (abort,Pb) if ϵij ≤ µkj , and halt.

7. For each packet j ∈ RJ, cMPC and P1 execute πCCC (Protocol 9) for the magic state distillation
circuit guaranteed to exist by Theorem 2.8, with P1’s input being τ̃1j , and cMPC’s input being
Ẽ1j
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• If the output of cMPC is abort, then it sends (abort,P1) to all parties, they output it,
and halt.

• Otherwise, if πCCC terminated successfully, P1 holds ηj which is the output of distillation
under Clifford encoding, and cMPC holds the corresponding Clifford key Fj .

8. The parties execute πCTAR. Here, P1 is the sender and the only receiver, with its input being
the list of packets (ηj)j∈RJ

, and cMPC holds the corresponding Clifford keys (Fj)j∈RJ
. The

common inputs are 1 as the size of the plaintext, and n2(3κ− 1) as the trap-size.

• If πCTAR outputs (abort,P), the parties then outputs (abort,P) and halt.
• Otherwise, if πCTAR terminated successfully, each party receives (continue,R′′in), and

P1 additionally gets a list of Clifford ciphertexts (η̃j)(1,j)∈R′′
in
, and cMPC gets the corre-

sponding Clifford keys (F̃j)(1,j)∈R′′
in
.

9. Let (1, j∗) = argminj{(1, j) ∈ R′′in} with respect to to lexicographic ordering. cMPC and P1

do the following.

(a) cMPC samples a Pauli Q← P3κ and sends it to P1.
(b) P1 applies Q to η̃j∗ , to obtain η̂.
(c) cMPC updates its Clifford key E = QF̃j∗ .

10. P1 outputs η̂ and cMPC outputs E.

We now state and prove the security of πT .

Lemma 7.5. Protocol πT computes the functionality MSPT with statistical security-with-identifiable-
abort in {cMPC,AR}-hybrid model.

Proof. Let us first prove correctness. Observe that in an honest execution, all copies that P1

prepares at the beginning are (|T ⟩⟨T |)⊗κn. Observe that at the first execution of πCTAR, the state
τij that suppose to be routed to Pi is Eij(|T ⟩⟨T |⊗κ ⊗ |0⟩⟨0|⊗(n

2(3κ−1)+κ2))E†ij , because (n2 − 1)/n2

portion of traps are consumed in πCTAR. Then, by Claim 6.2, each party gets the Clifford encryption
of (|T ⟩⟨T |)⊗κ at the end of Step 4, and each party will report error rate equals to zero at Step 6.
Then, for each packet j ∈ RJ, by Claim 7.4 and Theorem 2.8, the state that P1 holds at Step 7
is a state negligibly close to |T ⟩ with respect to trace distance, under Clifford encryption. Here,
the number of traps reduces to n2(3κ − 1) since κ2 traps are used in πCCC. Finally, by Claim 6.2
the output of P1 at Step 8 are Clifford encryptions of nearly perfect |T ⟩ states, where the number
of traps reduces to 3κ − 1 due to πCTAR. Because |T ⟩ is a single-qubit state, the total size of the
output is 3κ, concluding correctness.

We now prove security. Fix an adversary A corrupting a subset I of the parties holding auxiliary
input ρaux. We next show how to construct a simulator SimA. Roughly, the idea is to emulate the
honest parties and cMPC until the second execution of πCTAR. There, we use the same trick used
to simulate πAR, and send half of EPR pairs as the output, and use quantum teleportation to
correct the output of the server (see Figure 4). Additionally, to simulate an execution of πCTAR,
the simulator must also simulate many executions of πCTSA. For this, we can use the simulator
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operating in the SA ideal world, denoted SimSA
A , guaranteed to exists by Corollary 5.7. We now

formalize the above intuition.

Simulator 4 Simulator SimA for T magic state preparation

1. Simulate the call to AR at Step 2:

(a) If P1 ∈ I is corrupted, query A for its input (ρj)
N0
j=1 to AR. Otherwise, if P1 is honest,

sets ρj = (|T ⟩⟨T |)⊗κn for all j ∈ [N0].
(b) Sample E′j ← Cκn+n3·(n2(3κ−1)+κ2) for all j ∈ [N0].

(c) Send (CAuth.EncE′
j
(|0⟩⟨0|))N0

j=1 to A as the output of AR. If A replies with (abort,P),
forward it to T, output whatever A outputs, and halt. Otherwise,it sent (continue,Rin).
Let N1 = |Rin|.

2. For each packet j ∈ [N1]:

(a) For all i ∈ [n], sample the subset Sij ⊆ [iκ] and Clifford Eij ∈ Cκ+n2·(n2(3κ−1)+κ2), and
set Vj as cMPC does at Step 3.

(b) If P1 ∈ I is corrupted, send Vj to A.
(c) Divide ρj according to Sij for all i. Let ρij be the states sampled from ρj by Sij .

3. Simulate the execution of πCTAR (Protocol 5) at Step 4:

(a) For all i ∈ [n] and j ∈ [N1] sample Ẽij ← Cκ+(n2(3κ−1)+κ2).
(b) Initialize G as the complete graph and R′in = ∅ as an empty set.
(c) For all (i, j) ∈ [n]× [N1]:

i. Find the path PATHij in G from P1 to Pi that passes through every party, computed
the same as cMPC computed, and sends it to A.

ii. Run SimSA
A with the following as input. If P1 /∈ I then SimSA

A has no inputs. Oth-
erwise, the input is ρij . If Pi ∈ I, then SimSA

A sends ρij back as input. Send it back
CAuth.EncẼij

(ρij) as the output SimSA
A receives from the trusted party.

iii. If SimSA
A replied with continue, then add (i, j) to R′in.

iv. Otherwise, if it replied with (abort,Pa,Pb), then remove the edge ab from G. If
G becomes disconnected, send (abort,P) to T where P ∈ {Pa,Pb} is the party not
connected to the honest parties, output whatever A outputs, and halt.

4. Update R′in as cMPC does at Step 5, and set RJ = {j ∈ [N1] : (i, j) ∈ R′in}.

5. For each packet j ∈ RJ:

(a) For each malicious non-server party Pi ∈ I \ {P1}, send Ẽij to A, and receive back ϵij
as the error-rate of Pi.

(b) For each honest non-server party Pi /∈ I \{P1}, measure ρij in the {|T ⟩ , |T⊥⟩}-basis and
set the error rate ϵij to be the number of |T⊥⟩ divided by κ.

(c) Set ϵ1j = 0.
(d) Sort the error rates ϵ1j , ϵ2j , · · · , ϵnj of all parties, and let µ1j ≤ · · · ≤ µnj be the sorted

result.
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(e) For k = 1 to n− 1:
i. If µ(k+1)j−µkj > δ and there exists an error rate ϵij ≤ µkj for some Pi ̸∈ I is honest,

send (abort,P) to T, where P is the corrupted party with the error rate µ(k+1)j .
ii. If µ(k+1)j − µkj > δ and there exists an error rate ϵij ≥ µ(k+1)j for some Pi ̸∈ I

is honest, send (abort,P) to T, where P is the corrupted party with the error rate
µkj .

6. If P1 ∈ I is corrupted, for every j ∈ RJ, simulate the execution of πCCC at Step 7. This
is done by emulating cMPC on input Ẽ1j . Let Fj be the Clifford keys, being the output of
cMPC has computed by SimA in the jth execution.

7. Simulate the execution of πCTAR at Step 8:

(a) Initialize G as the complete graph and R′′in = ∅ as an empty set.
(b) For all (i, j) ∈ R′in:

i. Find the path PATHij in G from P1 to Pi that passes through every party, computed
the same as cMPC computed, and sends it to A.

ii. If P1 ∈ I is corrupted:
A. Put 3κ EPR pairs |Φ+⟩3κ into a 6κ-qubit register SLR

ij , where SL
ij and SR

ij rep-
resents the 3κ-qubit register storing the first and the second qubit of each EPR
pair, respectively.

B. Run SimSA
A on the input that P1 holds after the execution of πCCC. When SimSA

A
requests for an output from its trusted party, send it the content of register SR

j .
iii. If P1 ̸∈ I is honest, run SimSA

A on input CAuth.EncF (|0⟩⟨0|), where F ← C3κn2 (note
that SimSA

A never requests for an output if P1 is honest).
iv. If SimSA

A replied with continue, then add (i, j) to R′′in.
v. Otherwise, if it replied with (abort,Pa,Pb), then remove the edge ab from G. If G

becomes disconnected, send (abort,P) to T where P′ ∈ {Pa,Pb} is the party not
connected to the honest parties, output whatever A outputs, and halt.

8. If P1 ∈ I is corrupted, receive the ciphertext η̂ from the trusted party T, and do the following.

(a) Let j∗ be the lexicographically first packet, i.e., (1, j∗) = argminj{(1, j) ∈ R′′in}.
(b) Put the state η̂ into register S′. Run the circuit in the dashed lines of Figure 4 over

register S′ and SL
j∗ , generating classical strings x and z. This step teleports η̂ to register

SR
j∗ .

(c) Send P = ZzXx to A.

9. Send continue to T, output whatever A outputs, and halt.

We now analyze the above simulator. There are five steps where the protocol can abort. a)
During the call to AR at Step 2; b) during the executions of πCTAR at Steps 4 and 8; c) during error
estimation at Step 6; d) and during T distillation at Step 7.

Let us first consider the case where P1 /∈ I is honest. Observe that in this case, the only messages
A receives, are during the executions of πCTAR. By Corollary 5.7, the states of A generated by
SimSA

A is indistinguishable from the real world execution of πCTSA. Moreover, in the first execution
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of πCTSA, the output sent to SimSA
A are Clifford encryptions of |T ⟩⟨T |⊗κ, which is the same as in

the real world. Thus, the adversary replies with the same messages (up to a negligible difference).
Let us now consider the case where P1 ∈ I. Because at Step 3, the Vjs that the adversary

receives are random Cliffords from the perspective of the adversary, we can assume without loss
of generality that the adversary always applies Vj honestly, and attacks the ciphertexts then. By
a similar argument to the previous case, we may condition on the event that there was no abort
during the first execution of πCTAR. Then the error rates A sent to SimA in the ideal world, are
statistically close to the error rates it sends to cMPC in the real world. Moreover, the error rates of
the honest parties computed by SimA are also statistically close their real world counter parts. By
Hoeffding’s inequality12 (Lemma 2.5) and the union bound, it follows that except with negligible
probability, the error rates of the honest parties are at most δ apart. That is,

Pr[∃i, i′ ∈ [n] \ I, j ∈ RJ : |ϵij − ϵi′j | > δ] < 4n2N2 · e−2(δ/2)
2κ,

where N2 = |RJ|.
Next, if the error rates are all at most δ apart (i.e., there was no abort during Step 6), then in

particular the error rates are at most nδ = 0.04. Therefore, by Lemma 2.7, for all j ∈ RJ, up to trace
distance 2e−0.0005

2κ, the message of the ciphertext τ̃1j in the real world, lies in span ({|s⟩T : s ∈ B})
where |0⟩T := |T ⟩ , |1⟩T := |T⊥⟩ and B = {s ∈ {0, 1}κ : |w(s) − nδ| ≤ 0.001}. Therefore, by
Theorem 2.8, as long as the distillation protocol terminates successfully, the output state ηj satisfies

∆
(
CAuth.DecEj (ηj) , |T ⟩⟨T |

)
≤ neg(κ)

for all j.
Finally, by the similar argument as the previous execution of πCTAR, the views at the end of Step

9 are identical in both worlds. To be more precise, if the protocol does not abort, then the output
in the ideal world is teleported to the qubits corresponding to the packet (1, j∗). Also, all other
discarded packets are maximally mixed states from the adversary’s view, which do not provide any
distinguishing power. Therefore, we conclude that{

IDEALMSPT ,SimA(ρaux) (κ)
}
κ∈N,ρaux∈D∗

C≡
{

HYBRIDcMPC,AR
πT ,A(ρaux) (κ)

}
κ∈N,ρaux∈D∗

.

8 Secure Delegation of The Computation – Preparation
In this section, we present a protocol, which we call pre-computation, that allows the parties to
securely delegate the computation to a designated party, called the server. More concretely, at the
end of the protocol, the server will hold an encryption of each of the parties’ inputs, while cMPC
will hold the keys used for the encryption. Later, in Section 9, we show how the server and cMPC
can homomorphically evaluate a quantum circuit over the encrypted inputs. Thus, we require that
the encryption used by the parties to be the TrapTP VQFHE scheme of [ADSS17]. Recall that
a VQFHE is four-tuple of qpt algorithms (KeyGen,Enc,Eval,Dec), that generate keys, encrypt
plaintext, evaluate a circuit of an encrypted message, and decrypt a ciphertext while verifying
the evaluation was performed honestly. Our pre-computation protocol can thus be viewed as a
way to implement TrapTP.KeyGen and TrapTP.Enc – the key generation and encryption algorithms

12Notice that to compute the error rates, the parties first partition all states and then measure. Clearly, this is
equivalent to first measuring and then partitioning.
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of TrapTP, respectively – in a distributed manner. We next present a formal definition of the
functionality we wish to compute.

Let L = L(κ) be a polynomial (this will later represent an upper-bound on the size of a circuit to
be evaluated and the number of ancilla 0 states it requires). Denote by PreComp = PreCompL the
following mapping. Party Pi holds an ℓin-qubit input ρi = (ρij)

ℓin
j=1, where ℓin = ℓin(κ) ∈ N is some

polynomial. Only the server P1 and cMPC are given outputs, defined as follows. Let (sk, ρevk) ←
TrapTP.KeyGen(1κ, 1L). Recall that sk ∈ {0, 1}∗ is a classical string and ρevk is a quantum state.
Then cMPC receives sk and P1 receives the encryptions of each input-qubit, encryptions of 0 states,
and the evaluation key ρevk, i.e., it receives (ρ̂, ρ̂0, ρevk) where ρ̂ = (TrapTP.Encsk(ρij))(i,j)∈[n]×[ℓin],
and ρ̂0 = (TrapTP.Encsk(|0⟩⟨0|))

L
i=1. In the following section we present a protocol computing

PreComp with (n2, 0)-IDPD-security that outputs ciphertexts of the size 3κ.

8.1 The Pre-Computation Protocol
In this section, we present our protocol for pre-computation. Conceptually, the protocol consists
of three main steps. First, the private inputs of each party are routed to P1 by a to call to AR.
This results in P1 holding the Clifford ciphertexts of all private inputs, and cMPC holding the
keys. Second, the parties call the magic state preparation functionalities. This include MSPZ that
prepares ancilla 0 states, MSPP that prepares magic P states, MSPH that prepares magic H states,
MSPT that prepares magic T states, and MSPγ that prepares gadget states. At the end of the call,
the server P1 holds the Clifford ciphertexts of all these magic states, while cMPC holds the Clifford
keys. Finally, as we use the TrapTP scheme, the homomorphic evaluation can only be applied
to trap-code ciphertexts. Thus, we show how to the server and cMPC can re-encrypt all Clifford
ciphertexts to trap-code ciphertext.

Notations. Before formally introducing our protocol, we first present some notations. First, it
will be convenient to denote by M = {Z,P,H, T, γ} and let MSP = {MSPms}ms∈M be the set of
corresponding ideal functionalities. Now recall that in the VQFHE scheme TrapTP, both algorithms
TrapTP.KeyGen and TrapTP.Enc, are executed by the client, who is an honest party with quantum
power. In our case, however, only the hybrid cMPC, which can perform only classical computation,
may be viewed as an honest party. Thus, we divide TrapTP.KeyGen and TrapTP.Enc into their
classical part and its quantum part Then, we let cMPC perform the classical part and let the server
P1 perform the quantum part.

Formally, the classical part of TrapTP.KeyGen consists of two algorithms. The first algorithm,
denoted MKG

1 (1κ, 1L), is given the security parameter and outputs a secret key sk ∈ {0, 1}∗. The
secret key sk includes the secret key of a classical message authentication code MAC, the public
key and secret key of classical homomorphic encryption scheme HE, a global permutation Π0 for
the trap-code encodings, and local permutations (Πi)

L
i=1 for each gadget. The second algorithm,

denoted MKG
2 (sk, (gi)

L
i=1), is given the secret key sk and a list of gadget descriptions (gi)

L
i=1. It

outputs a classical string mevk that mevk contains all classical information that the server would later
need for the evaluation. Similarly, we also divide TrapTP.Enc into the classical and the quantum
parts. Here, there is only a single classical part denoted ME. The algorithm ME(sk, P, i) takes as
inputs the secret key sk, a Pauli operator P and a permutation index i, and outputs a classical
string, which includes the encryption HE.Enc(P ) of the Pauli, signed by MAC. We refer the reader
to [ADSS17] for a detailed construction of each classical algorithm.

Re-encrypting Clifford Codes to trap code. We now present a simple two-party protocol,
between the server P1 and cMPC, that allows the server to re-encrypt a Clifford ciphertext into a
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trap-code ciphertext.

Protocol 11 Re-Encryption πReEnc

Inputs: P1 holds a Clifford ciphertext σ = CAuth.EncE(ρ), and cMPC holds the corresponding key
E, a secret key sk and a permutation index i.
Common input: Both parties hold the security parameter 1κ.

1. cMPC does the following.

(a) Sample a random Pauli P ← P3κ.
(b) Compute m←ME(sk, P, i).13

(c) Set V = TAuth.PEncΠi,PE
†, where Πi is the local permutation for the ith gadget in sk if

i > 0, and Π0 is the global permutation if i = 0.
(d) Send m and V to P1.

2. P1 applies V to σ, obtaining τ .

3. P1 outputs (m, τ) and cMPC outputs sk.

Clearly, if P1 faithfully applies V to its input, then the output τ is a trap-code of ρ.

Protocol’s construction. We are now ready to introduce our protocol πPreComp for performing
the pre-computation task. The protocol has an additional common input L = L(κ) and is described
in the {cMPC,AR,MSP}-hybrid model.

Protocol 12 Pre-Computation πPreComp

Inputs: Each party Pi holds private inputs ρi = (ρij)
ℓin
j=1, where each ρij ∈ D1 is a single qubit.

Common input: The parties hold the security parameter 1κ and the level parameter L.

1. The parties call (AR, (n2, 0)-IDPD) with trap-size 3κ− 1, with Pi’s input being (ρij)
ℓin
j=1, and

with P1 as the receiver.

• If AR outputs (abort,P), then the parties output (abort,P) and halt.
• Otherwise, if AR terminated successfully, each party receives (continue,Rin), P1 addi-

tionally gets Clifford ciphertext (σij)(i,j)∈[n]×[ℓin], and cMPC additionally gets the corre-
sponding Clifford keys (Eij)(i,j)∈[n]×[ℓin], where each Eij ∈ C3κ.

2. The parties prepare magic state as follows.

(a) cMPC generates a secret key sk←MKG
1 (1κ, 1L).

(b) For all ms ∈M \ γ, the parties call MSPms L times.
13Recall that m includes an encryption of the Pauli P under a key included in sk held by cMPC.
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• If at any of the calls, the parties receive the output (abort,P), then they output
(abort,P) and halt.

• Otherwise, from the ith call to MSPms the server P1 gets σms
i and cMPC gets Fms

i .
Here, we have that if ms ̸= H then σms

i is a Clifford encryption of a single qubit
where Fms

i is the Clifford key used. Otherwise, σHi is the encryption of |H⟩ where
each qubit is encrypted independently and FH

i = (FH
i1 , F

H
i2 ) is the pair of Clifford

keys used.
(c) For all i ∈ [L]:

i. The parties prepare gadget states by calling MSPγ with cMPC’s input being sk and
the permutation index i.
• If the protocol outputs (abort,P), then the parties output (abort,P) and halt.
• Otherwise, P1 receives σγi and cMPC receives (gi, (F

γ
ij)

ℓgad
j=1).

(d) cMPC computes mevk ←MKG
2 (sk, (gi)

L
i=1) and sends mevk to P1.

3. The server P1 and cMPC re-encrypt all Clifford ciphertext as follows.

(a) For each private inputs (i, j) ∈ [n]× [ℓin], cMPC and P1 execute πReEnc with P1’s input
being the state σij , and cMPC’s input being Eij , sk and gadget index 0. Let (mij , τij)
be the output of P1.

(b) For all ms ∈ {Z,P, T} and i ∈ [L], cMPC and P1 execute πReEnc with P1’s input being
the state σms

i , and cMPC’s input being Fms
i , sk and gadget index 0. Let (mms

i , τms
i ) be

the output of P1.
(c) For all H magic states i ∈ [L]:

i. Put the state σHi in register RH
i of 6κ-qubit system. Partition RH

i into two registers
RH

i,1 and RH
i,2, each of size 3κ.

ii. For j ∈ {1, 2}, cMPC and P1 execute πReEnc with P1’s input being the qubits of RH
i,j ,

and cMPC’s input being FH
ij , sk and permutation index 0.

iii. Denote mH
i to be the two classical outputs of the executions of πReEnc, and let τHi

be the state held by P1 in register RH
i .

(d) For each gadget i ∈ [L]:
i. Put the state σγi in register Rγ

i of (3κ · ℓgad)-qubit system. Partition Rγ
i into ℓgad

registers Rγ
i,1, . . . , R

γ
i,ℓgad

, each of size 3κ.
ii. For j ∈ {1, 2}, cMPC and P1 execute πReEnc with P1’s input being the jth register

Rγ
ij , and cMPC’s input being F γ

ij , sk and the permutation index that equals to 0 if
j ∈ {1, 2} and equal to i otherwise.14

iii. Denote mγ
i to be the ℓgad classical outputs of the executions of πReEnc, and let τγi be

the state held by P1 in register Rγ
i .

4. Each party outputs (continue,Rin). Additionally, cMPC outputs sk, and P1 outputs (ρ̂, ρ̂0, ρevk),
14Recall that the input and output qubit (labelled by 1st and 2nd respectively) of the gadget are encrypted under

the global permutation Π0, while the other qubits in the gadget are encrypted under the local permutation Πi for ith

gadget.
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where

ρ̂ = (mij , τij)i∈[n],j∈[ℓin] ,

ρ̂0 =
(
mZ

i , τ
Z
i

)L
i=1

,

ρevk =
(
mevk, (m

ms
i , τms

i )i∈[L],ms∈M\{Z}

)
. (15)

Theorem 8.1. Protocol πPreComp computes the functionality PreComp with perfect (n2, 0)-IDPD
security in the {cMPC,AR,MSP}-hybrid model.

Proof. Let us first prove correctness. Observe that in an honest execution, P1 holds mevk, and
all encrypted private inputs and encrypted magic states under Clifford code at the end of Step 2.
Furthermore, it is clear that executions of πReEnc transform transforms all Clifford ciphertexts into
trap-code ciphertexts with respect to a new random Pauli one-time pad and a proper permutations
(depending on whether it re-encrypts a gadget or not) as the keys. Moreover, P1 gets all classical
information for each re-encrypted ciphertexts from cMPC during the execution of πReEnc, and cMPC
gets sk, which includes all the keys to the trap-code ciphertext, by running MKG

1 (1κ). Since the
keys generated by the functionality are distributed the same, we conclude that the output of P1

and cMPC in the real world is identical.
Let A be an adversary corrupting a subset I of the parties, holding auxiliary input ρaux. Observe

that if P1 /∈ I is honest, then A receive no messages. Thus simulation in this case is trivial. Now,
suppose P1 ∈ I is corrupted. We next construct the simulator SimA.

Simulator 5 Simulator SimA

1. Query the adversary for the inputs (ρi)i∈I for AR and forwards it to T.

2. Let (ρ̂, ρ̂0, ρevk) be the output received from T.

3. Parse each entry in (ρ̂, ρ̂0, ρevk) into its classical part and its quantum part, that is, write

ρ̂ = (mij , τij)i∈[n],j∈[ℓin] ,

ρ̂0 =
(
mZ

i , τ
Z
i

)L
i=1

,

ρevk =
(
mevk, (m

ms
i , τms

i )i∈[L],ms∈M\{Z}

)
.

4. For each quantum part τij of ρ̂, where i ∈ [n] and j ∈ [ℓin], sample Vij ← C3κ and compute
σij = V †ijτijVij .

5. Similarly, for each quantum part τms
i , where i ∈ [L] and ms ∈ M, sample V ms

i ← C3κ and
compute σms

i = (V ms
i )†τms

i V ms
i .

6. Send to A the values (σij)i,∈[n],j∈[ℓin] as the output of AR. If A replied with (abort,P), send
it to T, output whatever A outputs, and halt.

7. Otherwise, let Rin be the set A sends to the AR ideal model.
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8. For all ms ∈M and the ith call to MSPms, send σms
i to A as the output of MSPms. If at any

of the called, A replied with (abort,P), send it to T, output whatever A outputs, and halt.

9. Send mevk to A.

10. Simulate the each execution of πReEnc. This is done by simply sending the Vij ’s and V ms
i .

11. Send (continue,Rin) to T, output whatever A outputs, and halt.

Clearly, each message A receive from SimA is identical to whatever it received in the real world.
Additionally, if no aborts occurred, then in the ideal world, by applying the Cliffords V ’s sampled
by the simulator, the Clifford ciphertexts sent to A can be transformed into the correct output,
which includes encryptions whose keys are sent to cMPC by T. Moreover, as the only packets that
were dropped are those indicated by Rin, it follows that

IDEAL
(n2,0)-IDPD
PreComp,SimA(ρaux)

(κ, (ρi)
n
i=1) = HYBRIDcMPC,AR,MSP

πPreComp,A(ρaux) (κ, (ρi)
n
i=1) .

9 Secure Delegation of The Computation – Computation
In the previous section we introduced the PreComp protocol for generating a key of TrapTP and
outputs to the server P1 encryptions of all inputs. In this section, we present a protocol that securely
implements evaluation and verified decryption. This in turn, allows P1 to perform the circuit
evaluation, while ensuring to the other parties that the evaluation was done correctly. Looking
ahead, as the server would need to distribute the outputs, unlike in PreComp, the resulting encrypted
value held by the server would be under Clifford code. In Section 10 below, we will show how to
securely distribute these Clifford ciphertexts.

Formally, let C be an n-ary circuit. Define the functionality Comp as follows. Let ℓin and ℓout be
the number of input-qubits and output-qubits, respectively, of each party Pi. Denote the input of
Pi as ρi. An output is given only to the server P1 and cMPC, as follows. cMPC receives a uniform
random Clifford for each output-qubit, namely it receives (Eij)(i,j)∈[n]×[ℓout] where Eij ← C1+n2κ are
sampled independently and uniformly at random. The server P1 receives the Clifford encryptions
of each of the output-qubits encrypted with the Cliffords given to cMPC. That is, P1 receives
CAuth.EncEij (σij), where for all i ∈ [n] and j ∈ [ℓout] it holds that σij ∈ D1 is a single qubit, and
these are defined as (σij)(i,j)∈[n]×[ℓout] = C(ρ1, . . . , ρn).

Roughly, our protocol works as follows. First, the parties prepare the values required to run
TrapTP.Eval. That is, they generate keys and ciphertexts of their inputs under TrapTP using
PreComp. The server P1 can now run TrapTP.Eval on the ciphertexts to homomorphically evaluate
the circuit, obtaining the outcome σ̂ij for every party i and qubit j (possibly after some qubits
where dropped). As σ̂ij is encrypted using TrapTP, the parties now need to re-encrypt it to a
Clifford ciphertext. To do this, the parties call AR, to have the server route the encrypted results
to itself. This results in a Clifford ciphertext τij of a trap code ciphertext of the outputs.

We now explain how cMPC can verify the computation. Let us first recall two important
properties of TrapTP.Eval and TrapTP.VerDec. Recall that TrapTP.Eval, in addition to performing
a computation over trap codes, if further produces a log of the computation, that includes all the
classical messages including randomness, computation steps, and all intermediate results during
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evaluation. Next recall, that although TrapTP.VerDec is a quantum procedure, it includes a classical
subroutine that verifies these logs. We denote this subroutine by CheckLogs. It is given a secret
key sk (generated from TrapTP.KeyGen used in PreComp) and a log to be checked, and outputs
updated Pauli keys and a flag to indicate whether the computation was performed faithfully. We
refer the reader to [ADSS17] for a detailed construction of the classical algorithm.

Now, P1 sends log to cMPC who applies CheckLogs to check validity. Then, the server split the
trap registers into Z1 and Z2 for each ciphertext τij , and cMPC sends it the Clifford

Vij = (EMZ2
ij ⊗RS

ij ⊗ TAuth.PEncTZ1
Πij ,Qij

)TAuth.PDecMST
Π0,Pij

F †ij .

Here, the first term F †ij would remove the Clifford encryption added by AR, resulting in a trap code
ciphertext. Then the partial decryption of the trap code TAuth.PDec is applied (see Definition 2.15),
using the global permutation Π0 (written in sk), and the Pauli Pij it got from checking the logs
using CheckLogs. This converts the trap code ciphertext into a plaintext in register M , traps to
be verified in register T , and the syndrome in register S (recall that trap codes use QECC in their
construction). The term Eij is a new Clifford that re-encrypts the plaintexts under a Clifford code,
the term Rij is a random Pauli that overwrites the syndromes to prevent leak of information, and
TAuth.PEncΠij ,Qij perform partial encryption of the trap code (see Definition 2.16), to re-encrypt
the traps in register T under trap code with a newly sampled key. The server is then asked to
homomorphically measure these traps and send the measurement results to cMPC to verify, who
aborts if the verification failed. Specifically, the verification compares the measured traps to 0’s. If
the protocol does not abort, the server outputs the computation results that is now under a Clifford
code, and cMPC outputs the corresponding keys.

We now formally present the protocol πComp in the {cMPC,PreComp,AR}-hybrid model that
computes Comp with (n2, n2)-IDPD security.

Protocol 13 Protocol πComp for computing Comp

Inputs: Each party Pi holds private inputs ρi = (ρij)
ℓin
j=1, where each ρij ∈ D1.

Common input: The parties hold the security parameter 1κ.

1. The parties call (PreCompL, (n
2, 0)-IDPD) with level parameter L taken to be the maximum

between the size of C and number of ancilla |0⟩ states it uses, and with ρi as the input of Pi.

• If the output is (abort,P), then the parties output (abort,P) and halt.
• Otherwise, all parties receive (continue,Rin), where |Rin| ≥ nℓin − n2, P1 additionally

receives encryptions and evaluation key (ρ̂, ρ̂0, ρevk), and cMPC receives the secret key
sk.

2. The server P1 compute TrapTP.Eval(C, ρevk, ρ̂ ⊗ ρ̂0) and obtains ((σ̂ij)(i,j)∈[n]×[ℓout] , log). It
then sends log to cMPC.

3. The parties call (AR, (n2, 0)-IDPD) with trap-size t = 6κ2− 2κ+ n2κ, with P1 as the receiver
and on input (σ̂ij)(i,j)∈[n]×[ℓout].

• If the output is (abort,P), then the parties output (abort,P) and halt.
• Otherwise, all parties receive (continue,RAR

in ). Additionally, cMPC receives Cliffords
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(Fij)(i,j)∈RAR
in

, where Fij ∈ C6κ2+(n2+1)κ
15 for all (i, j) ∈ RAR

in , and P1 receives the Clifford
ciphertexts of the trap-code ciphertexts (σ̂ij)(i,j)∈RAR

in
, denoted (τij)(i,j)∈RAR

in
. Note that

RAR
in and will be used to indicated dropped output-qubits.

4. P1 partitions the trap register of each τij into two registers Zi,j,1 and Zi,j,2 of sizes 6κ2 − 2κ
and n2κ qubits, respectively. When clear from context we remove the i’s and j’s from the
subscripts to alleviate the notation.

5. Define C ′ as the circuit that first applies C and then discards the qubits outside of RAR
in .

6. cMPC creates log′ for the homomorphic evaluation of C ′ as follows. Recall that TrapTP.Eval
is done gate-by-gate, generating log at each step. log′ is then defined to be the parts in log
that corresponds to the gates whose output is not discarded by C ′. cMPC then computes
((Pij)(i,j)∈RAR

in
, flaglog) = CheckLogs(sk, log′).

7. For every (i, j) ∈ RAR
in , cMPC does the following.

(a) Sample a permutation Πij ← Sym6κ2 , Paulis Qij ← P6κ2 and Rij ← Pκ−1, and a Clifford
Eij ← C1+n2κ, independently and uniformly at random.

(b) Send to P1 the Clifford

Vij = (EMZ2
ij ⊗RS

ij ⊗ TAuth.PEncTZ1
Πij ,Qij

)TAuth.PDecMST
Π0,Pij

F †ij ,

where Π0 is the global permutation of evaluation written in sk.

8. For all (i, j) ∈ RAR
in the server does the following.

(a) Compute σ̃MZ2STZ1
ij = VijτijV

†
ij

(b) Transversally measure σ̃TZ1
ij to obtain z̃ij and send it to cMPC.

9. cMPC computes (flagij , zij) = TAuth.DecΠij ,Qij (z̃ij) for each (i, j) ∈ RAR
in . If flagij = Rej

or zij ̸= 02κ for some (i, j) ∈ RAR
in , or flaglog = Rej, then it sends (abort,P1) to all parties,

they output it, and halt.

10. Otherwise, all parties and cMPC outputs Rin and RAR
in . The server P1 additionally outputs(

σ̃MZ2
ij

)
(i,j)∈RAR

in

, and cMPC additionally outputs the Clifford keys (Eij)(i,j)∈RAR
in

.

Lemma 9.1. Protocol πComp computes Comp with computational (n2, n2)-IDPD security in {cMPC,PreComp,AR}-
hybrid model.

Proof. We first show that the protocol is correct. Observe that after running PreComp, the server
P1 receives (ρ̂, ρ̂0, ρevk) and cMPC receives sk. P1 then evaluates(

σ̂MST
ij

)
i∈[n],j∈[ℓout]

= TrapTP.Eval(ρ̂, ρ̂0, ρevk).

15Recall that each σ̂ij ∈ D3κ, and that given an m-size input and trap-size t, AR outputs Cliffords operating over
m+ t qubits.
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By the correctness of TrapTP.Eval it follows that((
σMST
ij

)
i∈[n],j∈[ℓout]

,Acc
)
≈neg(κ) TrapTP.VerDecsk

(
(σ̂ij)i∈n,j∈ℓout

)
,

where (σij)i∈[n],j∈[ℓout] = C(ρ1, . . . , ρn) are the outputs of the circuit. Moreover, as TrapTP is trap-
code based, there exists a permutation Π and Paulis (Pij)i∈[n],j∈[ℓout] such that for every (i, j) ∈
[n]× [ℓout], it holds that

σ̂ij ≈neg(κ) TAuth.EncΠ,Pij (σij).

Recall that by the definition of PreComp, Π is a part of sk held by cMPC. Furthermore, cMPC can
compute the Pij ’s by checking the logs, i.e.,

((Pij)(i,j)∈[n]×[ℓout] ,Acc) = CheckLogs(sk, log′).

Following this, P1 sends (σ̂ij)(i,j)∈[n]×[ℓout] to AR, and receives

CAuth.EncFij (σ̂ij) = Fij

(
σ̂ij ⊗ |06κ

2−2κ+n2κ⟩⟨06κ2−2κ+n2κ|
Z1Z2

)
F †ij

for every (i, j) ∈ [n]× [ℓout]. Then, at Step 7b, cMPC sends to P1 the Cliffords

Vij =WijTAuth.PDec
MST
Π0,Pij

F †ij ,

for every (i, j) ∈ [n]× [ℓout], where

Wij = EMZ2
ij ⊗RS

ij ⊗ TAuth.PEncTZ1
Πij ,Qij

.

Observe that by applying Vij to the (i, j)th output of AR results in the following state.

σ̃MSTZ1Z2
ij = VijFij

(
σMST
ij ⊗ |06κ2−2κ+n2κ⟩⟨06κ2−2κ+n2κ|

Z1Z2
)
F †ijV

†
ij

=WijTAuth.PDec
MST
Π0,Pij

(
σMST
ij ⊗ |06κ2−2κ+n2κ⟩⟨06κ2−2κ+n2κ|

Z1Z2
)
TAuth.PDec†Π0,Pij

W †ij

=Wij

(
σMij ⊗ |0κ−1⟩⟨0κ−1|

S ⊗ |02κ⟩⟨02κ|T ⊗ |06κ2−2κ+n2κ⟩⟨06κ2−2κ+n2κ|
Z1Z2

)
W †ij

= EMZ2
ij

(
σMij ⊗ |0n

2κ⟩⟨0n2κ|
Z2
)
E†ij ⊗

(
χ⊗κ−1

)S ⊗ TAuth.PEncTZ1
Πij ,Qij

(
|06κ2⟩⟨06κ2 |

)
TAuth.PEncΠij ,Qij

= CAuth.EncEij (σij)⊗ χ⊗κ−1 ⊗ TAuth.EncΠij ,Qij

(
|02κ2⟩⟨02κ2 |

)
,

where the penultimate equality follows from that fact that Rij |0κ−1⟩⟨0κ−1|R†ij = χ⊗κ−1 due to
Lemma 2.2.

Then, P1 measures σ̃TZ1 = TAuth.EncΠij ,Qij

(
|02κ2⟩⟨02κ2 |

)
to obtain a classical string z̃ij and

sends it to cMPC. By the correctness of homomorphic measurement over trap code given in Theorem
2.18, cMPC will obtain

(0κ−1,Acc) = TAuth.DecΠij ,Qij (z̃ij)

at Step 9. Thus, cMPC outputs the Clifford keys of the encryptions that P1 outputs, concluding
correctness.

We now prove the security. Let A be an adversary corrupting a subset I of the parties, holding
auxiliary input ρaux. Observe that if the server is honest, then the adversary receives no messages
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throughout the whole interaction. By correctness, it follows that simulating this case is trivial.
Thus, we focus on the case where P1 ∈ I. We next construct the simulator SimA. It roughly does
as follows. It begins by collecting the corrupted parties’ inputs to PreComp, sending them to the
trusted party T as inputs, and sending encryptions of |0⟩’s to P1 as the output of PreComp. The
adversary is then asked to apply the circuit C homomorphically and send its evaluation outcomes
to AR. Now, SimA can collect and verify the outcome and abort if needed. The adversary then
expects to receive packets τij from AR and Cliffords Vij from cMPC, so that VijτijV †ij is a tensor
product of its output σ̃ij together with a trap-code ciphertexts τ̃ij that it is suppose to measure, as
well as used qubits χ⊗κ−1 that should be discarded. Thus, we let the simulator sample the Cliffords
Vij and send them to A alongside the states

V †ij
(
σ̃ij ⊗ χ⊗κ−1 ⊗ TAuth.EncΠij ,Pij (|02κ⟩⟨02κ|)

)
Vij ,

as the output of AR. Finally, SimA receives z̃ij from the server and verifies it similarly to cMPC,
and aborts if needed. We now formally state our construction.

Simulator 6 SimA

1. Query A for its inputs (ρi)i∈I to PreComp, and the set Rin of remaining input-qubits, and
forward them to T.

2. Let (σ̃ij)(i,j)∈Rin
be the output received.

3. Generate keys (sk, ρevk)← TrapTP.KeyGen(1κ, 1L), dummy ciphertexts ρ̂← TrapTP.Enc⊗nℓinsk (|0nℓin⟩⟨0nℓin |),
and ciphertexts of 0’s ρ̂0 ← TrapTP.Enc⊗Lsk (|0L⟩⟨0L|).

4. Send (ρ̂, ρ̂0, ρevk) to A as the output of PreComp. If A replies with (abort,P), send it to T,
output whatever A outputs, and halt.

5. Otherwise, A sends continue, and additionally sends log that was purportedly generated by
TrapTP.Eval.

6. Query the adversary to receive its input (σ̂ij)(i,j)∈[n]×[ℓout] for AR, and the RAR
in of remaining

input-qubits for AR.

7. Evaluate TrapTP.VerDec((σ̂ij)(i,j)∈RAR
in
). This returns a flag, denoted flag, and additional

states to be discarded.

8. For all (i, j) ∈ RAR
in , sample a Clifford Vij ← C6κ2+(n2+1)κ, a permutation Πij ← Sym6κ2 , and

a Pauli Pij ← P6κ2 .

9. Send to A the Clifford encryptions

τij = V †ij
(
σ̃ij ⊗ χ⊗κ−1 ⊗ TAuth.EncΠij ,Pij (|02κ⟩⟨02κ|)

)
Vij

as the output of AR. If A replies with (abort,P), send it to T, output whatever A outputs,
and halt.

10. Otherwise, A replies with set continue.

11. The adversary replies with purported measurement results (z̃ij)(i,j)∈RAR
in

.
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12. For each (i, j) ∈ RAR
in , compute TAuth.DecΠij ,Pij (z̃ij). This returns a flag, denoted flagij ,

and additional states to be discarded.

13. If flag = Rej or any flagij = Rej, then send (abort,P1) to T. Otherwise send (continue,RAR
in )

to T.

14. Output whatever A outputs and halt.

We now prove that{
IDEAL

(n2,n2)-IDPD
C,SimA(ρaux)

(κ, (ρi)
n
i=1)

}
κ,ρ1,...,ρn,ρaux

C≡
{

HYBRIDcMPC,PreComp,AR
πComp,A(ρaux) (κ, (ρi)

n
i=1)

}
κ,ρ1,...,ρn,ρaux

.

(16)

Fix a non-uniform qpt distinguisher D and inputs ρ1, . . . , ρn for πComp. We prove Equation (16)
by reducing to the security of the VQFHE scheme. Recall that the security of VQFHE is defined
using the VerGame. In the following, we denote by DH the probability D outputs 1 when given the
output of the protocol, and denote by DI the probability D outputs 1 when given the output of the
ideal world. The next claim (proven below) asserts the existence of an attacker for TrapTP with
certain properties.

Claim 9.2. There exists an adversary A∗ for TrapTP satisfying

DH ≈neg(κ) VerGameA∗
∣∣
r=0

and
DI ≈neg(κ) VerGameA∗

∣∣
r=1

,

where VerGameA∗
∣∣
r=r′

is the probability A∗ outputs r in VerGameTrapTP,A∗ conditioned on the chal-
lenger C using r = r′.

Clearly, Equation (16) follows from Claim 9.2 and the security of TrapTP stating that16

{
VerGameA∗

∣∣
r=0

}
κ∈N,ρ1,...,ρn,ρaux∈D∗

C≡
{

VerGameA∗
∣∣
r=1

}
κ∈N,ρ1,...,ρn,ρaux∈D∗ .

We now prove the claim.

Proof of Claim 9.2. Roughly, A∗ collects the inputs (ρ∗i )i∈I that the protocol’s adversary A sends
to PreComp as well as the set Rin, and replaces the dropped inputs with |0⟩. It then sends the
inputs to the challenger C, who replies with encryptions of each input sent to it. Then, to apply
the homomorphic evaluation, A∗ forwards these ciphertexts to A who sends back its inputs to
AR. These are then forwarded to C to learn whether the outcomes can be decrypted successfully.
Finally, A∗ emulates the rest of πComp in a way that is similar to SimA, and runs the distinguisher
D on the outcomes. Formally, A∗ is described as follows.

Algorithm 13 Adversary A∗ for VerGameTrapTP

16[ADSS17] considered only uniform adversaries. We note that their construction is secure against non-uniform
adversaries if there exists a post-quantum classical homomorphic encryption scheme.
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1. Upon receiving ρevk from the challenger, query A for its inputs (ρ∗i )i∈I to PreComp, and the
set Rin of remaining input qubits. For each (i, j) ∈ [n]× [ℓin], send

ρ′ij =


|0⟩ if (i, j) /∈ Rin

ρij if (i, j) ∈ Rin and i /∈ I
ρ∗ij if (i, j) ∈ Rin and i ∈ I

and |0L⟩ to the challenger.

2. Receive (ρ̂, ρ̂0) from the challenger and do the following.

(a) Forward (ρ̂, ρ̂0, ρevk) to A as its outputs of PreComp.
(b) The adversary A then replies with either (abort,P) or continue. If A sent (abort,P),

then query it for its output, forward (abort,P) and the output of A to D, output
whatever D outputs, and halt.

(c) Otherwise, if A sent continue, query it for log that was purportedly generated by
TrapTP.Eval.

(d) Query A for its inputs (σ̂ij)(i,j)∈[n]×[ℓout] to AR, and the setRAR
in of remaining input-qubits

for the functionality.
(e) Define C ′ and log′ similarly to the cMPC and SimA, and send ((σ̂ij)(i,j)∈RAR

in
, C ′, log′) to

the challenger.

3. Receive (σ, flag) from the challenger and do the following.

(a) If flag = Rej then set σ = |0|RAR
in |⟩⟨0|RAR

in ||.
(b) Write σ = (σij)(i,j)∈RAR

in
, where each σij ∈ D1.

(c) For all (i, j) ∈ RAR
in , sample Eij ← C1+κn2 , Πij ← Sym6κ2 , Qij ← P6κ2 , and Vij ←

C(n2+1)κ+6κ2 .
(d) Send

τij = V †ij
(
CAuth.EncEij (σij)⊗ χ⊗κ−1 ⊗ TAuth.EncΠij ,Qij (|02κ⟩⟨02κ|)

)
Vij

to A as outputs of AR, where χ⊗κ−1 is a (κ− 1)-qubit maximally mixed state.
(e) Query A for either (abort,P) or continue to AR. If it sends (abort,P), then query it

for its outputs, then forward its outputs and (abort,P) to D and output whatever D
outputs.

(f) Otherwise, if A sends continue, for each (i, j) ∈ RAR
in , send (Vij)(i,j)∈RAR

in
to A

(g) A replies with purported measurements z̃ij . Compute (flag′ij , zij)← TAuth.DecΠij ,Qij (z̃ij).
If any flag′ij = Rej or flag = Rej then send to D the output (abort,P1), output what-
ever D outputs, and halt.

(h) Otherwise, query A’s output and forward it and (Rin,RAR
in , (Eij)(i,j)∈RAR

in
) to D, output

whatever D outputs and halt.
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Recall that if r = 1, then the challenger sends to A∗ dummy encryptions of 0’s. Thus, the
output that A∗ submits to D is the same as in the ideal world, hence DI = VerGameA∗

∣∣
r=1

. It is left
to show that DH ≈neg(κ) VerGameA∗

∣∣
r=0

. First, recall that the adversary A for the protocol, can
only do the following. It can change and drop some of the inputs when calling PreComp, instruct P1

to apply some arbitrary operation over the output it receives from PreComp (the honest operation
would be applying TrapTP.Eval), change and drop some of the inputs of P1 to AR, and finally, send
to cMPC different measurement results.

Notice that the messages A see in the protocol, are indistinguishable from the messages it
receives from A∗ in VerGame. Thus, for the sake of simplifying the proof, we assume that A replies
with the same messages. Moreover, if A aborted during either the call to PreComp or to AR, the
joint output of it and the honest parties are the same as what A∗ sent to D. Therefore we condition
on the case where A did not abort.

Let us now analyze the real world. Recall that (τij)(i,j)∈RAR
in

are the outputs that A received
from AR. Furthermore, each of these values are encrypted under a Clifford Fij . We assume without
loss of generality that A applied the Vij ’s honestly, followed by a unitary of the adversary’s choice
applied to the register and its auxiliary reference system. Define

τ ′ij =
(
TAuth.PDecΠ0,PijF

†
ijτij(TAuth.PDecΠ0,PijF

†
ij)
†
)T

to be the result in register T after applying the partial decoding to inputs sent to AR. Then for all
(i, j) ∈ RAR

in it holds that

TAuth.EncTΠij ,Qij
τ ′ij

(
TAuth.EncΠij ,Qij

)†
= TAuth.PEncTZ1

Πij ,Qij
TAuth.PDecMST

Πij ,Pij
F †ijτij

(
TAuth.PEncΠij ,QijTAuth.PDecΠ0,PijF

†
ij

)†
.

We can now apply Lemma 2.18 on (τ ′ij)(i,j)∈RAR
in

with the reference system being MSZ2R, where
R is A’s auxiliary reference system. Therefore, for all (i, j) ∈ RAR

in there exists q ∈ [0, 1] and two
CPTPs AAcc and ARej acting on register MZ2SR, such that the joint state held by cMPC and A is
negligibly close to

q · E
zij←Λ(τ ′ij)

[
(|flaglog⟩⟨flaglog| ⊗ zij)⊗AAcc

(
VijτijV

†
ij

)MZ2S
⊗ ⟨zij |τ ′ij |zij⟩

]
+ (1− q)

[
|flaglog⟩⟨flaglog| ⊗ |⊥H⟩⟨⊥H| ⊗ARej

(
VijτijV

†
ij

)MZ2S
]
,

where |⊥H⟩⟨⊥H| represents the state of cMPC if there exists (i, j) ∈ RAR
in such that flagij = Rej.
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Observe that we can write the expectation as follows.

E
zij←Λ(τ ′ij)

[
(flaglog ⊗ zij)⊗AAcc

(
VijτijV

†
ij

)MZ2S
⊗ ⟨zij |τ ′ij |zij⟩

]
= Pr

[
flaglog = Acc ∧ zij = 0

]
|Acc⟩⟨Acc| ⊗ |0⟩⟨0| ⊗AAcc

(
VijτijV

†
ij

)MZ2S

+ Pr
[
flaglog = Rej ∧ zij = 0

]
|Rej⟩⟨Rej| ⊗ |0⟩⟨0| ⊗AAcc

(
VijτijV

†
ij

)MZ2S

+
∑
zij ̸=0

[
Pr

[
flaglog ∧ zlog

]
|flaglog⟩⟨flaglog| ⊗ |zij⟩⟨zij | ⊗AAcc

(
VijτijV

†
ij

)MZ2S
]
. (17)

We now show that in VerGameTrapTP,A∗ , the state that A∗ generates for cMPC and A (before
sending to D) are the same. Indeed, if τij is the state that A∗ sent to A as the output of AR, then
Lemma 2.18 the joint state prepared for A and cMPC is(

q ·
[
(|flag⟩⟨flag| ⊗ |0⟩⟨0|)⊗AAcc

(
VijτijV

†
ij

)MZ2S
]

+ (1− q)
[
(|flag⟩⟨flag| ⊗ |⊥V⟩⟨⊥V|)⊗ARej

(
VijτijV

†
ij

)MZ2S
])

ij
,

where |⊥V⟩⟨⊥V| represent the state generated for cMPC by A∗ if there exists (i, j) ∈ RAR
in such that

flag′ij = Rej. Moreover, q, AAcc and ARej are also the same as in the real world, since A cannot
distinguish the real world output of AR from what A∗ generated.

Now, recall that the (σ, flag) that the challenger C sends to A∗ at the beginning of Step 3
is computed as follows. C first decodes the encryptions that A∗ sent to it, i.e., it computes
TrapTP.VerDec((σ̂ij)(i,j)∈RAR

in
, C ′, log′). This is done first checking the logs like cMPC does in the

real world. Then it computes TAuth.PDec(σ̂ij), measures the traps, decodes them using TAuth.Dec,
and compares them to 0, for all (i, j) ∈ RAR

in . If any of the verifications failed, it outputs flag = Rej.
Let flagClog and (zCij)(i,j)∈RAR

in
be the output of CheckLogs and TAuth.Dec, respectively, as computed

by C. Then flag = Acc if and only if flagClog = Acc and zCij = 0 for all i, j. Therefore

(|flag⟩⟨flag| ⊗ |0⟩⟨0|)⊗AAcc

(
VijτijV

†
ij

)MZ2S

= Pr
[
flagClog = Acc ∧ zCij = 0

]
|Acc⟩⟨Acc| ⊗ |0⟩⟨0| ⊗AAcc

(
VijτijV

†
ij

)MZ2S

+ Pr
[
flagClog = Rej ∧ zCij = 0

]
|Rej⟩⟨Rej| ⊗ |0⟩⟨0| ⊗AAcc

(
VijτijV

†
ij

)MZ2S

+
∑
zCij ̸=0

[
Pr

[
flagClog ∧ z

C
log

]
|flaglog⟩⟨flaglog| ⊗ |z

C
ij⟩⟨zCij | ⊗AAcc

(
VijτijV

†
ij

)MZ2S
]
,

which equals to the expression computed in Equation (17). In particular, the subnormalized accept
state is the same in both the real world and the VerGame. Now, as given that state |⊥V⟩⟨⊥V| would
cause A∗ to abort, it follows that the subnormalized abort state is also the same. Therefore, the
state given to D in the real world is negligibly close the the state it gets from A∗.
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10 Secure Computation of a Quantum Circuit With Packet Drops
In this section, we are finally ready to present our protocol for computing an arbitrary quantum
circuit C with IDPD-security. That is, we prove the following lemma.

Lemma 10.1 (Restatement of Lemma 4.2). Let C be an n-ary quantum circuit. Then C can
be computed with computational (n2, 2n2)-IDPD security in the cMPC-hybrid model, assuming the
existence of classical fully homomorphic encryption schemes. Moreover, the round complexity of
the protocol is independent of the circuit depth.

We next construct a protocol in the {cMPC,Comp}-hybrid model. Given the functionality Comp
from the previous section, the protocol is rather simple. The parties first call Comp. This ensures
that P1 will hold a Clifford encoding of the output of each party, and cMPC will hold the keys.
The parties then execute πCTAR to route each output held by P1 to the correct party. Finally, if the
protocol did not yet aborted, then cMPC will send the keys to each output to the corresponding
party.

We now formally state our protocol in the {cMPC,Comp}-hybrid model.

Protocol 14 Protocol π for computing a circuit C

Inputs: Each party Pi holds input ρi ∈ Dℓin .
Common input: The parties hold the security parameter 1κ.

1. The parties call (Comp, (n2, n2)-IDPD), with the input of Pi being ρi.

• If the output is (abort,P), then the parties output (abort,P) and halt.
• Otherwise, all parties receive (continue,Rin,Rout). Additionally, P1 receives Cliffords

encoding of the outputs (σ̂ij)(i,j)∈Rout
and cMPC receives the corresponding Clifford keys

(Eij)(i,j)∈Rout
,

2. The parties execute πCTAR (Protocol 5). Here, P1 is the sender with its input being (σ̂ij)(i,j)∈Rout
,

cMPC’s input are the Clifford (Eij)(i,j)∈Rout
, and Pi is the receiver for the content in the reg-

isters (σ̂ij)(i,j)∈Rout
for all i ∈ [n]. The common inputs are 1 as the size of the plaintext, and

κ as the trap-size.

• If the output is (abort,P), then the parties output (abort,P) and halt.
• Otherwise, all parties receive (continue,RAR

in ), and additionally, for all i ∈ [n] party
Pi receive the Clifford ciphertexts (σ̃ij)(i,j)∈RAR

in
, and cMPC receives the corresponding

Clifford keys
(
F ′ij

)
(i,j)∈RAR

in

. Note that RAR
in ⊇ Rout and will be used to indicate dropped

output-qubits.

3. For all i ∈ [n], cMPC sends to Pi the Cliffords (Fij)(i,j)∈RAR
in

, which reconstructs the output
σi = (CAuth.DecFij (σ̃ij))j:(i,j)∈RAR

in
.

4. Each party Pi outputs (σi,Rin,RAR
in ).

We now state and prove the security of the protocol
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Lemma 10.2. Protocol π computes C with perfect (n2, 2n2)-IDPD security in the {cMPC,Comp}-
hybrid model.

Proof. First, observe that correctness directly follows from the definition of Comp, the correctness
of πCTAR as given by Claim 6.2, and the correctness of the Clifford decryption.

We next prove security. Fix an adversary A holding auxiliary input ρaux. The construction of
the simulator SimA is roughly as follows. It will forward A’s input to Comp and send them to the
trusted party T. Following this, it can prepare Clifford encryptions of the outputs of the corrupted
parties that where given to it by T, and prepare dummy ciphertext as the output for the honest
parties. The simulator then send these ciphertexts to A as the output of Comp. Then, to simulate
πCTAR, the simulator will emulate cMPC, and use the simulator in the SA ideal world, guaranteed
to exists by Corollary 5.7, to simulate the adversary’s view during the executions of πCTSA inside
πCTAR. Formally, let SimSA

A be the simulator in ideal world of SA, that simulates the adversary’s
view in πCTSA as guaranteed by Corollary 5.7. Then SimA works works as follows.

Simulator 7 SimA

1. Query the adversary A for its inputs (ρi)i∈I and the set Rin for Comp, and forward these to
the trusted party T. Let (σij)i∈I,(i,j)∈Rin

be the outputs received.

2. For all (i, j) ∈ Rin, sample Clifford Eij ∈ C1+n2κ independently and uniformly at random.

3. For all (i, j) ∈ Rin encrypt dummy 0 states σ̂ij = CAuth.EncEij (|0⟩⟨0|).

4. Send (σ̂ij)(i,j)∈Rin
to A as the output of Comp. If it replies with (abort,P), then send it to

T, output whatever A outputs, and halt.

5. Otherwise, A sends (continue,Rout).

6. Simulate the execution of πCTAR:

(a) Initialize GT as the complete graph and RAR
in = ∅

(b) For all (i, j) ∈ Rout:
i. Find a path PATHij in GT from P1 to Pi that passes through every party, computed

the same as cMPC computed, and send it to A.
ii. Run SimSA

A , where the input is σij if P1 ∈ I, and it has no input otherwise. If
Pi ∈ I, then it sends back the same σij as input to the trusted party. Send it back
CAuth.EncFij (σij) where Fij ← C1+κ, as the output.

iii. If SimSA
A replied with continue, then add (i, j) to RAR

in .
iv. Otherwise, if it replied with (abort,Pa,Pb), then remove the edge ab from GT . If

GT becomes disconnected, send (abort,P) to T where P′ ∈ {Pa,Pb} is the party
not connected to the honest parties, output whatever A outputs, and halt.

7. Send (continue,RAR
in ) to T.

8. Send to A the Cliffords (Fij)i∈I,(i,j)∈RAR
in

and all views that SimSA
A produced in each iteration,

output whatever it outputs, and halt.
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Clearly, in the ideal the state given to A as the output of Comp are maximally mixed state as in
the real world. Thus, it replies with the same answer. Next, consider a single execution of πCTAR.
Since the paths are computed the same in both worlds, by Corollary 5.7, it follows that the state
of A generated by SimSA

A is indistinguishable from the state generated in the real world execution
of πCTSA. As the output given to SimSA

A (when Pi ∈ I) is the Clifford encryption of the output
given by T, it follows that upon receiving the Cliffords Fij ’s, the joint state of the adversary and
the honest parties are the indistinguishable from the real world.
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