# Preliminary Hardware Benchmarking of a Group of Round 2 NIST Lightweight AEAD Candidates

Mustafa Khairallah, Thomas Peyrin and Anupam Chattopadhyay

Nanyang Technological University, Singapore

**Abstract.** In this report, we analyze the hardware implementations of 10 candidates for Round 2 of the NIST lightweight cryptography standardization process. These candidates are Ascon, DryGASCON, Elephant, Gimli, PHOTON-Beetle, Pyjamask, Romulus, Subterranean, TinyJAMBU and Xoodyak. Specifically, we study the implementations of these algorithms when synthesized using the TSMC 65nm and FDSOI 28nm technologies and Synopsys Design Compiler, targeting various performance trade-offs and different use-cases. We show how different candidates stack-up against such trade-offs. We base our benchmarking parameters and metrics on real-world use-cases, such as high-speed applications, lightweight communication protocols and internet payloads.

**Keywords:** ASIC  $\cdot$  authenticated encryption  $\cdot$  AEAD  $\cdot$  lightweight cryptography  $\cdot$  NIST  $\cdot$  benchmarking

## 1 Introduction

Lightweight Symmetric Key Cryptography has been a growing research area in the past 10 years or more, with applications varying from block cipher design to authenticated encryption or hash functions and much more. This has led the National Institute of Standards and Technology (NIST) to release a call for proposals to establish a new lightweight cryptography standard [NIS18]. The goal is to use the standardized primitive(s) in applications such as Internet-of-Things (IoT) and Sensor Networks. Authenticated Encryption with Associated Data (AEAD) is one of the most important requirements of symmetric key cryptography (SKE) in these environments, since it is usually cheaper than having independent solutions for the authentication and encryption requirements of the system. NIST received 57 submissions. 56 submissions were accepted into round 1 of the process, and after a rigorous period of analysis 32 designs were selected for round 2. Round 2 is expected to last till December, 2020. Hence, we have decided to study the ASIC performance of different Round 2 candidates.

Why ASIC? We have chosen to study ASIC implementations for two main reasons:

1. ASIC is an important technology in practice, since many real world products rely on ASIC accelerators for improving the performance of cryptographic algorithm. This is evident by the wide adoption of ASIC accelerators for the high performance implementations of Advanced Encryption Standard (AES) and standard hash functions such as SHA-2 and SHA-3. However, due to either expensive tools, lack of expertise, or simplicity of other technologies, *e.g.*, FPGA or micro-controllers, ASIC benchmarking and estimations are sometimes overlooked. During the CAESAR competition [CAE20], ASIC benchmarking was not thoroughly studied except at the late stages of the competition [KHYKC17]. Having early ASIC benchmarks will help the designers improve the performance of their algorithms and give a better perspective about the comparative evaluation of the candidates.

2. Several benchmarking projects have been launched targeting micro-controllers [SR20], general-purpose processors [BL20] or FPGA [MHN<sup>+</sup>20]. However, in absence of an ASIC evaluation, the benchmarking results may reflect uneven edge for certain candidates, thereby undermining the fairness for the entire evaluation.

**The LWC Hardware API** After a period of public discussions, Kaps *et.al.* proposed the Hardware API for Lightweight Cryptography, commonly known as the LWC Hardware API [KDT<sup>+</sup>19], as specification of the compliance criteria, bus interface and communication protocol expected from the implementations submitted for hardware benchmarking of lightweight cryptography. The purpose of the API is to ensure uniformity of the implementations submitted, in terms of communications and a certain level of functionality. Only implementations compliant with this API will be considered in our benchmarking efforts.

**Considered Candidates** On May 7, 2020, we announced our intention to perform a study on ASIC benchmarking of the NIST lightweight candidates on the NIST lightweight cryptography forum. Since then, we have received 38 implementations of 10 candidates from 12 different design teams. All the 38 implementations are compliant with the LWC hardware API. The candidates considered are Ascon, DryGASCON, Elephant, Gimli, PHOTON-Beetle, Pyjamask, Romulus, Subterranean, TinyJAMBU and Xoodyak. Six submissions are submitted by the design teams of these candidates, namely Ascon, Gimli, Romulus, Subterranean, TinyJAMBU and Xoodyak (partenring with Silvia Mella). The implementation of DryGASCON was submitted by the independent designer Ekawat Homsirikamol. Five implementations are submitted by Kris Gaj from the GMU CERG team, namely Elephant, PHOTON-Beetle, Pyjamask, TinyJAMBU and Xoodyak. A summary of these implementations is given in Tables 1 and 2. All the implementations considered target only the primary AEAD variant of each candidate. In the rest of the report, add the suffix 'cg' when clock gating is applied during synthesis and 'ncg' otherwise.

| Candidate     | Architecture              | Identifier    | Language     | Designer                   |
|---------------|---------------------------|---------------|--------------|----------------------------|
| Ascon         | Basic iterative: 1-round  | ascon-rp      | vhdl         | Robert Primas              |
| DryGASCON     | Basic iterative: 1-round  | drygascon-eh  | vhdl-verilog | Ekawat Homsirikamol        |
| Flophont      | Basic iterative: 1-round  | elephant-rh-1 | vhdl         | Richard Haeussler          |
| Elephant      | Basic iterative: 5-round  | elephant-rh-5 | vhdl         | Richard Haeussler          |
|               | Basic iterative: 1-round  | gimli-pm-1    | verilog      | Pedro Maat Costa Massolino |
|               | Basic iterative: 2-round  | gimli-pm-2    | verilog      | Pedro Maat Costa Massolino |
|               | Basic iterative: 3-round  | gimli-pm-3    | verilog      | Pedro Maat Costa Massolino |
| Gimli         | Basic iterative: 4-round  | gimli-pm-4    | verilog      | Pedro Maat Costa Massolino |
|               | Basic iterative: 6-round  | gimli-pm-6    | verilog      | Pedro Maat Costa Massolino |
|               | Basic iterative: 8-round  | gimli-pm-8    | verilog      | Pedro Maat Costa Massolino |
|               | Basic iterative: 12-round | gimli-pm-12   | verilog      | Pedro Maat Costa Massolino |
| PHOTON-Beetle | Basic iterative: 1-round  | beetle-vl     | vhdl         | Vivian Ledynh              |
|               | Folded                    | pyjamask-rn-f | vhdl         | Rishub Nagpal              |
| Pyjamask      | Pipelined                 | pyjamask-rn-p | vhdl         | Rishub Nagpal              |
|               | Basic iterative: 1-round  | romulus-mk-1  | verilog-vhdl | Mustafa Khairallah         |
|               | Basic iterative: 2-round  | romulus-mk-2  | verilog-vhdl | Mustafa Khairallah         |
| Romulus       | Basic iterative: 4-round  | romulus-mk-4  | verilog-vhdl | Mustafa Khairallah         |
|               | Basic iterative: 8-round  | romulus-mk-8  | verilog-vhdl | Mustafa Khairallah         |
|               | Byte Sliding              | romulus-mk-s  | verilog-vhdl | Mustafa Khairallah         |

 $\label{eq:table_table_table} \textbf{Table 1:} Candidates and implementations considered in this report.$ 

| Candidate    | Architecture               | Identifier       | Language | Designer                   |
|--------------|----------------------------|------------------|----------|----------------------------|
| Subterranean | Basic iterative            | subterranean-pm  | verilog  | Pedro Maat Costa Massolino |
|              | Serial: 32-bit             | tinyjambu-sl-32  | vhdl     | Sammy Lin                  |
| Ting IAMDII  | Serial: 16-bit             | tinyjambu-sl-16  | vhdl     | Sammy Lin                  |
|              | Serial: 1-bit              | tinyjambu-sl-1   | vhdl     | Sammy Lin                  |
| ImyJAMBU     | Basic iterative: 8-round   | tinyjambu-th-8   | vhdl     | Tao Huang                  |
| I            | Basic iterative: 32-round  | tinyjambu-th-32  | vhdl     | Tao Huang                  |
|              | Basic iterative: 128-round | tinyjambu-th-128 | vhdl     | Tao Huang                  |
|              | Basic iterative: 1-round   | xoodyak-sm-1     | vhdl     | Silvia Mella               |
|              | Basic iterative: 2-round   | xoodyak-sm-2     | vhdl     | Silvia Mella               |
|              | Basic iterative: 3-round   | xoodyak-sm-3     | vhdl     | Silvia Mella               |
| V ll-        | Basic iterative: 4-round   | xoodyak-sm-4     | vhdl     | Silvia Mella               |
| лоодуак      | Basic iterative: 6-round   | xoodyak-sm-6     | vhdl     | Silvia Mella               |
|              | Basic iterative: 12-round  | xoodyak-sm-12    | vhdl     | Silvia Mella               |
|              | Basic iterative: 1-round   | xoodyak-rh-1     | vhdl     | Richard Haeussler          |
|              | Sorial: 128 bit            | woodwak rh a     | whdl     | Dichard Hannalor           |

**Table 2:** Candidates and implementations considered in this report (Continued).

Use Cases In this report, we consider two use-cases for our initial study:

- 1. Performance Efficiency: We try to optimize the designs towards the best throughput/area ratio, by varying architectures, area and speed synthesis constraints. Once the optimization is done, extract different measurements for each architecture: area, power, throughput and energy.
- 2. Lightweight Protocols: We optimize the designs towards practical lightweight protocols. We choose two representative target protocols: Bluetooth and Bluetooth Low Energy (BLE). The application data rate of these protocols ranges between 0.27 and 2.1 Mbps, with an air data rate between 125 Kbps and 3 Mbps. Hence, we synthesize the designs for a target throughput of 3 Mbps for very long messages, and measure the corresponding area, power and energy.

In [BCL18], Burg *et.al.* provided a survey of the security needs of different wireless communication standard. They show that most relevant wireless communication protocols, with the exceptions of 802.11 variants, have data rates below 20 Mbps. The SigFox standard has a data rate of 100 bps and most of the standards have data rates in the Kbps range. However, our study shows that the power consumption and area of the circuit do not change significantly when the throughput is below the Mbps range. Hence, in order to simplify reading our reports, we consider the Bluetooth/BLE case with a target throughput of 3 Mbps, assuming the area and power consumption is almost constant below such rate and the energy varies linearly with the data rate. This is due to the fact that at such frequencies, the power consumption is dominated by the static power that does not depend on the frequency. The same is not true for high data rates as they can affect the area and power consumption significantly and non-linearly, as the switching power depends on the target frequency, while the synthesizer may require larger, more power consuming standard cells to achieve such high data rates. For 802.11 and other applications that require high data rates, we introduce the first use case.

**Process and Flow** For this study, we used an area-oriented and throughput-oriented synthesis flow, given in Figure 1. We used the Synopsys VCS K-2015.09SP2-10 and Xilinx ISIM 14.7 simulators, and the Synopsys Design Compiler Q-2019-12-SP5. We used the general-purpose industry grade TSMC TSBN 65nm 9-track standard cell library as a target. We used Python for generating and analyzing the results. The simulation is used to generate the data useful to the analyze the synthesis outputs, namely throughput and energy.

**Data Size** In accordance with the FPGA benchmarking project by the CERG team, we consider 9 different data sizes:

- 1. 16 bytes of associated data.
- 2. 64 bytes of associated data.
- 3. 1536 bytes of associated data.
- 4. 16 bytes of plaintext.
- 5. 64 bytes of plaintext.
- 6. 1536 bytes of plaintext.
- 7. 16 bytes of both associated data and plaintext.
- 8. 64 bytes of both associated data and plaintext.



Figure 1: The synthesis flow and tools used for our Study.

9. 1536 bytes of both associated data and plaintext.

1536 Bytes is the size of the Maximum Transmission Unit (MTU) of Ethernet [eth]. Besides, the IETF IMIX GENOME defines benchmarking packets for internet applications that start from 64 bytes [imi]. It is expected that lightweight protocol can have even smaller packets. Given these data sizes, we cover both short messages and relatively long messages. We can also assess the cost of authentication vs. encryption.

# 2 Limitations and goals

The task of fairly comparing 10 or more different algorithms in a short time span is not straightforward. One may think of different goals for such process:

- 1. Compare the baseline performance of different algorithms.
- 2. Optimize different algorithms.
- 3. Rank different algorithms.
- 4. Compare the optimized performance of different algorithms.

While all these are valid goals, the delays in the process of developing the RTL code, the number of designs, due to the ongoing COVID-19 pandemic and the time constraints of the standardization process imposes additional constraints. Hence, we opt for a two phase approach:

- 1. Design space exploration: during round 2 of the standardization process, we study 10 candidates in terms of front-end design (synthesis). While this approach has the side-effect of reducing the accuracy, it is usually used in the early stages of design exploration to quickly compare many implementations and designs. This gives us an idea on what to expect from each design.
- 2. Optimization: during round 3 of the standardization process, we should be able to look more in depth on the back-end design of the finalists (layout). The NIST team announced they expect 8 finalists. Hopefully, the data obtained in this report will help us in round 3 to go deeper in the analysis with more time span.

Another limitation of our study is that the implementations are done by several teams with varying optimization level and code quality. One way to overcome this is to take a deeper look at optimizing the implementations and/or work with the designers to find better architectures.

# 3 Summary and Rankings

Given the results in this report, we rank the candidates considered according to their best result in different metrics. We provide two types of rankings. The first one is general rankings based on different metrics, represented as a bar chart. For example, Figure 2 shows the energy  $\times$  area ranking for 16-byte messages on the TSMC 65nm library. The length of each bar is proportional to the minimum energy  $\times$  area value that each design gets. Consequently, the graph does not only show the rank of each design, but also how close it is to its neighbors. It can be seen that in Figure 2 TinyJAMBU and Subterannean are close, while Ascon, Xoodyak and DryGASCON are close, with Romulus filling the gap between the two groups. Such ranking figures are given for energy  $\times$  area, energy and area in Figures 2 to 15, where a lower rank is better. In this figures we excluded Pyjamask as its implementation is an outlier, being both very slow and very big. The second type of ranking is ranking the designs with a moving area threshold. We look at how the implementations rank when we move the area constraint from 5 kGE all the way up to 50 kGE. For example, some designs may offer a speed-area trade-off by using many architectures, and some designs can over high speed implementations but they cannot fit in a tightly constrained environment, or, on the other hand, offer very small implementation but their speed does not scale by increasing the area. In Figures 16 to 33 show such moving rankings, where the x-axis represent the area threshold ('O' is the ranking for very large area), and the y-axis shows the order to different designs that can fit within such constraint. In this case, the higher the rank, the better. A summary of different rankings is given in Table 3. However, these rankings should be understood as a very tiny glimpse at the big picture that follows in the report.

## 4 Raw Synthesis Results

In this section, we report the raw synthesis results for the implementations considered. Each implementation is synthesized against four different corner cases: balanced (BC), low-area (LA), high-speed (HS) and low frequency (LF) targetting  $\sim 3$  Mbps throughput. The results reported are area in both  $\mu m^2$  and gate equivalents (GE), clock period in ns and power in mW. The results for TSMC 65nm (using CCS circuit models) are shown in Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14, while the results for FDSOI 28nm are shown in Tables 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25. For simplicity, the xoodyak-rh-\* implementations of Xoodyak are excluded as they either presents a anomaly in the results (both slow and large in terms of area) or almost the same as other included implementations.

| Scheme        | $E \times A$ | $\boldsymbol{E}$ | T   | A  | $E \times A \; (3 \; \mathrm{Mbps})$ | $E~(3~{ m Mbps})$ |
|---------------|--------------|------------------|-----|----|--------------------------------------|-------------------|
| Subterannean  | 1            | 1                | 1   | 3  | 3                                    | 4                 |
| TinyJAMBU     | 2            | 2                | 7   | 1  | 1                                    | 1                 |
| Romulus       | 3            | 4 =              | 3=  | 2  | 2                                    | 2                 |
| Gimli         | 4 =          | 3                | 3 = | 7  | 6                                    | 6                 |
| Xoodyak       | 4 =          | 4 =              | 2   | 4  | 5                                    | 5                 |
| Ascon         | 6            | 6 =              | 3=  | 6  | 4                                    | 3                 |
| DryGASCON     | 7            | 6 =              | 6   | 9  | 9                                    | 8                 |
| PHOTON-Beetle | 8            | 8 =              | 8 = | 8  | 8                                    | 7                 |
| Elephant      | 9            | 8 =              | 8 = | 5  | 7                                    | 9                 |
| Pyjamask      | 10           | 10               | 10  | 10 | 10                                   | 10                |

Table 3: Summarized Rankings of Different Designs.

We believe this is due to the use of large register files that maybe cheap in FPGAs but not suitable for ASIC.

# 5 Energy×Area

The energy  $\times$  area comparison metric represents the main trade-off that the designer for a constrained environment is faced with. On one hand, the designer wants to minimize the time required to process a certain amount of data, *i.e.*, the latency. On the other hand, the designer needs to reduce the cost spent to perform the computation. The cost consist of mainly two components: manufacturing cost, *i.e.*, area, and running cost, *i.e.*, power consumption. Hence, the designer's goal is to minimize the cost function given by

$$L \times P \times A$$

where L is the latency, P is the power consumption, and A is the circuit area.  $L \times P$  can be rewritten as energy E. Hence, the cost function becomes

#### $E \times A$

The minimum energy  $\times$  area implementation for each design is given in Tables 26, 28 and 30 for TSMC 65nm and Tables 27, 29 and 31 for FDSOI 28nm.

# 6 Energy

In devices where the main constraint comes from the usage of a battery, the longevity of such battery, and cosnequently the energy consumption becomes the primary goal of the designer. Tables 32, 34 and 32 give the estimated energy consumption on TSMC 65nm needed in order to process messages of 16 bytes, 64 bytes and 1536 bytes, respectively, while Tables 33, 35 and 33 give the estimated energy consumption on FDSOI 28nm. |A| and |M| refers to the size of associated data and plaintext in bytes, respectively. AD cost refers to the energy overhead when encrypting X bytes of plaintext and X bytes of associated data vs. only X bytes of plaintext, with 0.00 being the lowest.

## 7 Throughput

In high performance applications, cost is less important compared to speed. Hence, throughput becomes the main decision factor. However, the cost has to remain within

reasonable bounds. Given the different corner cases with the aid of simulation outputs, we get the throughput for different message sizes. Tables 38, 40 and 42 include the maximum achievable throughput on TSMC 65nm for 16 bytes, 64 bytes and 1536 bytes, respectively, for reasonably low power. In other words, we focus on the BC and LA corners. While some designs can achieve higher throughputs using the HS corner, this comes at the expense of unreasonable power consumption. Hence, we leave it for interested readers to find the throughput at the HS corner by multiplying the throughput by CP[HS]/CP[BC] or CP[HS]/CP[LA], where CP[X] is the clock period at corner X. Such high power consumption is not suitable for lightweight devices and not suitable for ranking the designs. Tables 39, 41 and 43 include the maximum achievable throughput on FDSOI 28nm for 16 bytes, 64 bytes and 1536 bytes, respectively, for reasonably low power. |A| and |M| refers to the size of associated data and plaintext in bytes, respectively. AD efficiency refers to the gain in throughput when encrypting X bytes of plaintext and X bytes of associated data vs. only X bytes of plaintext, with 1.00 being the highest.

# 8 Trade-offs

In the Figures 52 to 139, we give a more fine-grained look at the different speed, power, area and energy trade-offs for different designs, for different message length, for both high speed applications, *i.e.*, the performance efficiency use case and the lightweight protocols use case.

# 9 Conclusions

The results in this report give an idea about the ASIC performance of 10 round 2 candidates for the NIST lightweight cryptography competition: Ascon, DryGASCON, Elephant, Gimli, PHOTON-Beetle, Pyjamask, Romulus, Subterranean, TinyJAMBU and Xoodyak. We study different performance metrics and trade-offs, across two use cases: performance efficiency and Bluetooth communication. The results show that some algorithms behave differently in different use cases, while others maintain a somewhat uniform profile across different metrics. For example, the results show that Pyjamask does not fare well when it comes to unprotected hardware implementations, ranking last in most metrics, and in most cases with a big margin. Subterranean ranks first in most metrics except when it comes to low data rates. A group of 5 candidates: Ascon, Gimli, Romulus, TinyJAMBU and Xoodyak trade rankings below Subterannean, with Romulus and TinyJAMBU more biased towards low area, short messages and overall efficiency (energy  $\times$  area), while Ascon, Gimli and Xoodyak rank better in terms of pure speed. DryGASCON is close to the bottom of this group but it notably ranks better on FDSOI 28nm than it does on TSMC 65nm. The next group is Elephant and PHOTON-Beetle, while Pyjamask ranks last (with big margin) in most categories. On the other hand, only two designs (Romulus and TinyJAMBU) achieve notable results with area below 6 kGE, which place them in top two in terms of minimum Area. Four designs achieve results with less than 9kGE, with Subterranean and Xoodyak joining the pack.

What does this mean? The benchmarking of different candidates only measures the corresponding implementations submitted. Hence, it is not a definitive answer to the optimal performance and potential of every candidate as it is likely that novel optimizations can be found. However, it measures the state-of-the-art of implementations. Designers are encouraged to find spots where their implementations are not optimal and enhance it accordingly.

# Acknowledgment

We would like to thank Kris Gaj, Mark Aagard, and Pedro Maat Costa Massolino for their inputs and insights on the ASIC benchmarking. We would like to also thank the designers of the LWC Hardware API for their efforts that made this benchmarking process possible.

# References

- [BCL18] A. Burg, A. Chattopadhyay, and K. Lam. Wireless communication and security issues for cyber-physical systems and the internet-of-things. Proceedings of the IEEE, 106(1):38-60, 2018. https://ieeexplore.ieee.org/ abstract/document/8232533.
- [BL20] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems. https://bench.cr.yp.to/supercop.html, 2020.
- [CAE20] CAESAR Competition. CAESAR submissions. https://competitions.cr. yp.to/caesar-submissions.html, 2020.
- [eth] Extended ethernet frame size support.
- [imi] Imix genome: Specification of variable packet sizes for additional testing.
- [KDT<sup>+</sup>19] Jens-Peter Kaps, William Diehl, Michael Tempelmeier, Ekawat Homsirikamol, and Kris Gaj. Hardware API for Lightweight Cryptography. 2019.
- [KHYKC17] Sachin Kumar, Jawad Haj-Yihia, Mustafa Khairallah, and Anupam Chattopadhyay. A Comprehensive Performance Analysis of Hardware Implementations of CAESAR Candidates. IACR Cryptology ePrint Archive, Report 2017/1261, 2017. https://eprint.iacr.org/2017/1261.pdf.
- [MHN<sup>+</sup>20] Kamyar Mohajerani, Richard Haeussler, Rishub Nagpal, Farnoud Farahmand, Abubakr Abdulgadir, Jens-Peter Kaps, and Kris Gaj. Fpga benchmarking of round 2 candidates in the nist lightweight cryptography standardization process: Methodology, metrics, tools, and results. Cryptology ePrint Archive, Report 2020/1207, 2020. https://eprint.iacr.org/2020/1207.
- [NIS18] NIST. Submission Requirements and Evaluation Criteria for the Lightweight Cryptography Standardization Process, 2018. https: //csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/ documents/final-lwc-submission-requirements-august2018.pdf.
- [SR20] Jürgen Mottok Sebastian Renner, Enrico Pozzobon. NIST LWC Software Performance Benchmarks on Microcontrollers. https://lwc.las3.de/, 2020.



Figure 2: Energy×Area ranking for 16-byte messages on TSMC 65nm.



Figure 3: Energy×Area ranking for 16-byte messages on FDSOI 28nm.



Figure 4: Energy×Area ranking for 64-byte messages on TSMC 65nm.



Figure 5: Energy×Area ranking for 64-byte messages on FDSOI 28nm.



Figure 6: Energy×Area ranking for 1536-byte messages on TSMC 65nm.



Figure 7: Energy×Area ranking for 1536-byte messages on FDSOI 28nm.



Figure 8: Energy ranking for 16-byte messages on TSMC 65nm.



Figure 9: Energy ranking for 16-byte messages on FDSOI 28nm.



Figure 10: Energy ranking for 64-byte messages on TSMC 65nm.



Figure 11: Energy ranking for 64-byte messages on FDSOI 28nm.



Figure 12: Energy ranking for 1536-byte messages on TSMC 65nm.



Figure 13: Energy ranking for 1536-byte messages on FDSOI 28nm.







Figure 15: Area ranking on FDSOI 28nm.



Figure 16: Energy×Area moving ranking for 16-byte messages on TSMC 65nm.



Figure 17: Energy×Area moving ranking for 16-byte messages on FDSOI 28nm.



Figure 18: Energy×Area moving ranking for 64-byte messages on TSMC 65nm.



Figure 19: Energy×Area moving ranking for 64-byte messages on FDSOI 28nm.



Figure 20: Energy×Area moving ranking for 1536-byte messages on TSMC 65nm.



Figure 21: Energy×Area moving ranking for 1536-byte messages on FDSOI 28nm.



Figure 22: Energy moving ranking for 16-byte messages on TSMC 65nm.



Figure 23: Energy moving ranking for 16-byte messages on FDSOI 28nm.



Figure 24: Energy moving ranking for 64-byte messages on TSMC 65nm.



Figure 25: Energy moving ranking for 64-byte messages on FDSOI 28nm.



Figure 26: Energy moving ranking for 1536-byte messages on TSMC 65nm.



Figure 27: Energy moving ranking for 1536-byte messages on FDSOI 28nm.



Figure 28: Throughput moving ranking for 16-byte messages on TSMC 65nm.



Figure 29: Throughput moving ranking for 16-byte messages on FDSOI 28nm.



Figure 30: Throughput moving ranking for 64-byte messages on TSMC 65nm.



Figure 31: Throughput moving ranking for 64-byte messages on FDSOI 28nm.



Figure 32: Throughput moving ranking for 1536-byte messages on TSMC 65nm.



Figure 33: Throughput moving ranking for 1536-byte messages on FDSOI 28nm.

| Implementation    | Corner        | Area $(\mu m^2)$ | Area (GE) | <b>Clock Period</b> (ns) | $\mathbf{Power}\ (\mathrm{mW})$ |
|-------------------|---------------|------------------|-----------|--------------------------|---------------------------------|
| ascon-rp-cg       | BC            | 15490.08         | 10757.00  | 0.87                     | 0.56                            |
| ascon-rp-cg       | LA            | 15477.12         | 10748.00  | 0.84                     | 0.56                            |
| ascon-rp-cg       | HS            | 16426.08         | 11407.00  | 0.49                     | 6.17                            |
| ascon-rp-cg       | LF            | 15475.32         | 10746.75  | 1333.33                  | 0.33                            |
| ascon-rp-ncg      | BC            | 15826.32         | 10990.50  | 0.73                     | 0.93                            |
| ascon-rp-ncg      | LA            | 15825.96         | 10990.25  | 0.71                     | 0.93                            |
| ascon-rp-ncg      | HS            | 16552.08         | 11494.50  | 0.49                     | 18.70                           |
| ascon-rp-ncg      | LF            | 15811.56         | 10980.25  | 1333.33                  | 0.32                            |
| beetle-vl-cg      | BC            | 19028.88         | 13214.50  | 0.67                     | 0.67                            |
| beetle-vl-cg      | LA            | 19028.88         | 13214.50  | 0.67                     | 0.67                            |
| beetle-vl-cg      | HS            | 25808.04         | 17922.25  | 0.49                     | 8.72                            |
| beetle-vl-cg      | LF            | 19039.68         | 13222.00  | 1292.93                  | 0.39                            |
| beetle-vl-ncg     | BC            | 20172.96         | 14009.00  | 0.60                     | 1.16                            |
| beetle-vl-ncg     | $\mathbf{LA}$ | 20175.84         | 14011.00  | 0.60                     | 1.16                            |
| beetle-vl-ncg     | HS            | 26795.16         | 18607.75  | 0.49                     | 22.24                           |
| beetle-vl-ncg     | LF            | 20169.00         | 14006.25  | 1292.93                  | 0.40                            |
| drygrascon-eh-cg  | BC            | 22353.48         | 15523.25  | 0.48                     | 0.70                            |
| drygrascon-eh-cg  | LA            | 22354.20         | 15523.75  | 0.48                     | 0.70                            |
| drygrascon-eh-cg  | HS            | 24561.00         | 17056.25  | 0.49                     | 7.14                            |
| drygrascon-eh-cg  | LF            | 22337.64         | 15512.25  | 2031.75                  | 0.50                            |
| drygrascon-eh-ncg | BC            | 24174.36         | 16787.75  | 0.51                     | 1.60                            |
| drygrascon-eh-ncg | $\mathbf{LA}$ | 24174.36         | 16787.75  | 0.51                     | 1.60                            |
| drygrascon-eh-ncg | HS            | 26975.88         | 18733.25  | 0.49                     | 32.23                           |
| drygrascon-eh-ncg | LF            | 24161.04         | 16778.50  | 2031.75                  | 0.51                            |

**Table 4:** Raw synthesis results using the TSMC 65nm standard cell library.

| Implementation   | Corner                 | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | Power (mW) |
|------------------|------------------------|------------------|-----------|---------------------|------------|
| elephant-rh-1cg  | BC                     | 15129.36         | 10506.50  | 0.64                | 0.62       |
| elephant-rh-1cg  | $\mathbf{LA}$          | 15129.36         | 10506.50  | 0.64                | 0.62       |
| elephant-rh-1cg  | HS                     | 15676.56         | 10886.50  | 0.49                | 7.51       |
| elephant-rh-1cg  | LF                     | 15115.68         | 10497.00  | 606.06              | 0.31       |
| elephant-rh-1ncg | BC                     | 17437.32         | 12109.25  | 0.67                | 1.14       |
| elephant-rh-1ncg | $\mathbf{L}\mathbf{A}$ | 17437.32         | 12109.25  | 0.67                | 1.14       |
| elephant-rh-1ncg | HS                     | 17437.32         | 12109.25  | 0.67                | 1.14       |
| elephant-rh-1ncg | LF                     | 17434.44         | 12107.25  | 606.06              | 0.35       |
| elephant-rh-5cg  | BC                     | 21011.40         | 14591.25  | 0.73                | 0.73       |
| elephant-rh-5cg  | $\mathbf{LA}$          | 21011.40         | 14591.25  | 0.73                | 0.73       |
| elephant-rh-5cg  | HS                     | 29669.40         | 20603.75  | 0.52                | 9.10       |
| elephant-rh-5cg  | LF                     | 20995.92         | 14580.50  | 2807.02             | 0.41       |
| elephant-rh-5ncg | BC                     | 23290.92         | 16174.25  | 0.72                | 1.22       |
| elephant-rh-5ncg | $\mathbf{L}\mathbf{A}$ | 23290.92         | 16174.25  | 0.72                | 1.22       |
| elephant-rh-5ncg | HS                     | 23290.92         | 16174.25  | 0.72                | 1.22       |
| elephant-rh-5ncg | LF                     | 23278.32         | 16165.50  | 2807.02             | 0.44       |

**Table 5:** Raw synthesis results using the TSMC 65nm standard cell library (Continued).

| Implementation                 | Corner                 | Area $(\mu m^2)$ | Area (GE) | <b>Clock Period</b> (ns) | Power (mW) |
|--------------------------------|------------------------|------------------|-----------|--------------------------|------------|
| gimli-pm-12cg                  | BC                     | 205526.16        | 142726.50 | 0.72                     | 5.40       |
| gimli-pm-12cg                  | LA                     | 205526.16        | 142726.50 | 0.72                     | 5.40       |
| gimli-pm-12cg                  | HS                     | 205526.16        | 142726.50 | 0.72                     | 5.40       |
| gimli-pm-12cg                  | $\mathbf{LF}$          | 205510.32        | 142715.50 | 21333.33                 | 5.15       |
| gimli-pm-12ncg                 | BC                     | 207151.92        | 143855.50 | 0.75                     | 6.04       |
| gimli-pm-12ncg                 | LA                     | 207151.92        | 143855.50 | 0.75                     | 6.04       |
| gimli-pm-12ncg                 | HS                     | 207151.92        | 143855.50 | 0.75                     | 6.04       |
| gimli-pm-12ncg                 | $\mathbf{LF}$          | 207253.44        | 143926.00 | 21333.33                 | 5.15       |
| gimli-pm-1cg                   | BC                     | 17334.36         | 12037.75  | 0.75                     | 0.48       |
| gimli-pm-1cg                   | LA                     | 17334.36         | 12037.75  | 0.75                     | 0.48       |
| gimli-pm-1cg                   | HS                     | 18089.28         | 12562.00  | 0.49                     | 4.89       |
| gimli-pm-1cg                   | $\mathbf{LF}$          | 17310.96         | 12021.50  | 1777.78                  | 0.37       |
| gimli-pm-1ncg                  | BC                     | 18961.56         | 13167.75  | 0.75                     | 1.09       |
| gimli-pm-1ncg                  | LA                     | 18953.28         | 13162.00  | 0.78                     | 1.09       |
| gimli-pm-1ncg                  | HS                     | 19919.52         | 13833.00  | 0.49                     | 27.77      |
| gimli-pm-1ncg                  | $\mathbf{LF}$          | 18947.16         | 13157.75  | 1777.78                  | 0.37       |
| $\operatorname{gimli-pm-2cg}$  | BC                     | 20169.36         | 14006.50  | 0.75                     | 0.54       |
| gimli-pm-2cg                   | LA                     | 20169.36         | 14006.50  | 0.75                     | 0.54       |
| gimli-pm-2cg                   | HS                     | 21922.92         | 15224.25  | 0.49                     | 5.16       |
| gimli-pm-2cg                   | $\mathbf{LF}$          | 20145.24         | 13989.75  | 3555.56                  | 0.42       |
| gimli-pm-2ncg                  | BC                     | 21829.32         | 15159.25  | 0.78                     | 1.16       |
| $\operatorname{gimli-pm-2ncg}$ | $\mathbf{L}\mathbf{A}$ | 21829.32         | 15159.25  | 0.78                     | 1.16       |
| gimli-pm-2ncg                  | HS                     | 24374.16         | 16926.50  | 0.48                     | 28.25      |
| $\operatorname{gimli-pm-2ncg}$ | $\mathbf{LF}$          | 21836.88         | 15164.50  | 3555.56                  | 0.44       |

**Table 6:** Raw synthesis results using the TSMC 65nm standard cell library (Continued).

29

| Implementation                | Corner        | Area $(\mu m^2)$ | Area (GE) | <b>Clock Period</b> (ns) | Power (mW) |
|-------------------------------|---------------|------------------|-----------|--------------------------|------------|
| gimli-pm-3cg                  | BC            | 23945.76         | 16629.00  | 0.72                     | 0.64       |
| gimli-pm-3cg                  | LA            | 23945.76         | 16629.00  | 0.72                     | 0.64       |
| gimli-pm-3cg                  | HS            | 23945.76         | 16629.00  | 0.72                     | 0.64       |
| $\operatorname{gimli-pm-3cg}$ | $_{ m LF}$    | 23926.68         | 16615.75  | 5333.33                  | 0.52       |
| gimli-pm-3ncg                 | BC            | 25673.76         | 17829.00  | 0.78                     | 1.28       |
| gimli-pm-3ncg                 | LA            | 25673.76         | 17829.00  | 0.78                     | 1.28       |
| gimli-pm-3ncg                 | HS            | 25673.76         | 17829.00  | 0.78                     | 1.28       |
| gimli-pm-3ncg                 | $\mathbf{LF}$ | 25682.04         | 17834.75  | 5333.33                  | 0.52       |
| gimli-pm-4cg                  | BC            | 25454.88         | 17677.00  | 0.72                     | 0.70       |
| gimli-pm-4cg                  | LA            | 25454.88         | 17677.00  | 0.72                     | 0.70       |
| gimli-pm-4cg                  | HS            | 25454.88         | 17677.00  | 0.72                     | 0.70       |
| gimli-pm-4cg                  | $_{ m LF}$    | 25435.08         | 17663.25  | 7111.11                  | 0.58       |
| gimli-pm-4ncg                 | BC            | 27191.52         | 18883.00  | 0.75                     | 1.34       |
| gimli-pm-4ncg                 | LA            | 27182.16         | 18876.50  | 0.78                     | 1.34       |
| gimli-pm-4ncg                 | HS            | 27182.16         | 18876.50  | 0.78                     | 1.34       |
| gimli-pm-4ncg                 | $\mathbf{LF}$ | 27194.76         | 18885.25  | 1777.78                  | 0.58       |
| gimli-pm-6cg                  | BC            | 32860.80         | 22820.00  | 0.72                     | 0.87       |
| gimli-pm-6cg                  | LA            | 32860.80         | 22820.00  | 0.72                     | 0.87       |
| gimli-pm-6cg                  | HS            | 32860.80         | 22820.00  | 0.72                     | 0.87       |
| gimli-pm-6cg                  | $\mathbf{LF}$ | 32852.52         | 22814.25  | 10666.67                 | 0.74       |
| gimli-pm-6ncg                 | BC            | 34596.36         | 24025.25  | 0.78                     | 1.51       |
| gimli-pm-6ncg                 | LA            | 34596.36         | 24025.25  | 0.78                     | 1.51       |
| gimli-pm-6ncg                 | HS            | 34596.36         | 24025.25  | 0.78                     | 1.51       |
| gimli-pm-6ncg                 | $\mathbf{LF}$ | 34609.68         | 24034.50  | 10666.67                 | 0.74       |

**Table 7:** Raw synthesis results using the TSMC 65nm standard cell library (Continued).

| Implementation   | Corner        | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | Power (mW) |
|------------------|---------------|------------------|-----------|---------------------|------------|
| gimli-pm-8cg     | BC            | 51884.64         | 36031.00  | 0.72                | 1.37       |
| gimli-pm-8cg     | LA            | 51884.64         | 36031.00  | 0.72                | 1.37       |
| gimli-pm-8cg     | HS            | 51884.64         | 36031.00  | 0.72                | 1.37       |
| gimli-pm-8cg     | $\mathbf{LF}$ | 51876.36         | 36025.25  | 14222.22            | 1.22       |
| gimli-pm-8ncg    | BC            | 53594.28         | 37218.25  | 0.78                | 1.93       |
| gimli-pm-8ncg    | LA            | 53594.28         | 37218.25  | 0.78                | 1.93       |
| gimli-pm-8ncg    | HS            | 53594.28         | 37218.25  | 0.78                | 1.93       |
| gimli-pm-8ncg    | LF            | 53610.12         | 37229.25  | 14222.22            | 1.22       |
| pyjamask-rn-fcg  | BC            | 58637.52         | 40720.50  | 0.68                | 1.52       |
| pyjamask-rn-fcg  | LA            | 58646.88         | 40727.00  | 0.59                | 1.53       |
| pyjamask-rn-fcg  | HS            | 56176.92         | 39011.75  | 0.49                | 6.02       |
| pyjamask-rn-fcg  | $_{ m LF}$    | 58513.32         | 40634.25  | 162.85              | 1.31       |
| pyjamask-rn-fncg | BC            | 74188.80         | 51520.00  | 0.68                | 6.40       |
| pyjamask-rn-fncg | LA            | 74188.80         | 51520.00  | 0.68                | 6.40       |
| pyjamask-rn-fncg | HS            | 73295.64         | 50899.75  | 0.49                | 136.43     |
| pyjamask-rn-fncg | $\mathbf{LF}$ | 74088.36         | 51450.25  | 162.85              | 1.93       |
| pyjamask-rn-pcg  | BC            | 59311.80         | 41188.75  | 0.68                | 1.55       |
| pyjamask-rn-pcg  | $\mathbf{LA}$ | 59311.80         | 41188.75  | 0.68                | 1.55       |
| pyjamask-rn-pcg  | HS            | 62574.48         | 43454.50  | 0.49                | 7.86       |
| pyjamask-rn-pcg  | $\mathbf{LF}$ | 59237.28         | 41137.00  | 418.30              | 1.31       |
| pyjamask-rn-pncg | BC            | 74506.32         | 51740.50  | 0.62                | 5.98       |
| pyjamask-rn-pncg | LA            | 74506.32         | 51740.50  | 0.62                | 5.98       |
| pyjamask-rn-pncg | HS            | 80543.52         | 55933.00  | 0.49                | 138.93     |
| pyjamask-rn-pncg | LF            | 74460.96         | 51709.00  | 418.30              | 1.67       |

Table 8: Raw synthesis results using the TSMC 65nm standard cell library (Continued).

| Implementation  | Corner        | Area $(\mu m^2)$ | Area (GE) | <b>Clock Period</b> (ns) | Power (mW) |
|-----------------|---------------|------------------|-----------|--------------------------|------------|
| romulus-mk-1cg  | BC            | 8668.44          | 6019.75   | 0.90                     | 0.37       |
| romulus-mk-1cg  | $\mathbf{LA}$ | 8672.76          | 6022.75   | 0.86                     | 0.37       |
| romulus-mk-1cg  | HS            | 9079.56          | 6305.25   | 0.49                     | 4.17       |
| romulus-mk-1cg  | $\mathbf{LF}$ | 8664.84          | 6017.25   | 711.11                   | 0.18       |
| romulus-mk-1ncg | BC            | 9423.72          | 6544.25   | 0.76                     | 0.55       |
| romulus-mk-1ncg | LA            | 9423.72          | 6544.25   | 0.76                     | 0.55       |
| romulus-mk-1ncg | HS            | 9873.00          | 6856.25   | 0.49                     | 11.87      |
| romulus-mk-1ncg | $\mathbf{LF}$ | 9439.20          | 6555.00   | 711.11                   | 0.19       |
| romulus-mk-2cg  | BC            | 10069.20         | 6992.50   | 0.97                     | 0.40       |
| romulus-mk-2cg  | $\mathbf{LA}$ | 10069.20         | 6992.50   | 0.97                     | 0.40       |
| romulus-mk-2cg  | HS            | 11737.08         | 8150.75   | 0.48                     | 4.36       |
| romulus-mk-2cg  | $\mathbf{LF}$ | 10059.48         | 6985.75   | 1333.33                  | 0.21       |
| romulus-mk-2ncg | BC            | 10797.12         | 7498.00   | 0.85                     | 0.58       |
| romulus-mk-2ncg | $\mathbf{LA}$ | 10797.12         | 7498.00   | 0.85                     | 0.58       |
| romulus-mk-2ncg | HS            | 12364.20         | 8586.25   | 0.49                     | 12.07      |
| romulus-mk-2ncg | $\mathbf{LF}$ | 10809.00         | 7506.25   | 1333.33                  | 0.22       |
| romulus-mk-4cg  | BC            | 13242.24         | 9196.00   | 0.80                     | 0.49       |
| romulus-mk-4cg  | $\mathbf{LA}$ | 13242.24         | 9196.00   | 0.80                     | 0.49       |
| romulus-mk-4cg  | HS            | 21625.20         | 15017.50  | 0.77                     | 5.34       |
| romulus-mk-4cg  | $\mathbf{LF}$ | 13232.16         | 9189.00   | 2370.37                  | 0.29       |
| romulus-mk-4ncg | BC            | 14333.76         | 9954.00   | 0.97                     | 0.68       |
| romulus-mk-4ncg | LA            | 14333.76         | 9954.00   | 0.97                     | 0.68       |
| romulus-mk-4ncg | HS            | 21622.68         | 15015.75  | 0.78                     | 11.77      |
| romulus-mk-4ncg | $\mathbf{LF}$ | 14329.44         | 9951.00   | 2370.37                  | 0.30       |

**Table 9:** Raw synthesis results using the TSMC 65nm standard cell library (Continued).

| Implementation      | Corner        | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | $\mathbf{Power}\ (\mathrm{mW})$ |
|---------------------|---------------|------------------|-----------|---------------------|---------------------------------|
| romulus-mk-8cg      | BC            | 19823.40         | 13766.25  | 0.88                | 0.66                            |
| romulus-mk-8cg      | LA            | 19823.40         | 13766.25  | 0.88                | 0.66                            |
| romulus-mk-8cg      | HS            | 36947.16         | 25657.75  | 1.44                | 7.44                            |
| romulus-mk-8cg      | LF            | 19817.64         | 13762.25  | 3878.79             | 0.45                            |
| romulus-mk-8ncg     | BC            | 20874.96         | 14496.50  | 0.85                | 0.84                            |
| romulus-mk-8ncg     | LA            | 20874.96         | 14496.50  | 0.85                | 0.84                            |
| romulus-mk-8ncg     | HS            | 37909.08         | 26325.75  | 1.44                | 12.60                           |
| romulus-mk-8ncg     | LF            | 20874.60         | 14496.25  | 3878.79             | 0.46                            |
| romulus-mk-scg      | BC            | 7073.28          | 4912.00   | 0.85                | 0.21                            |
| romulus-mk-scg      | LA            | 7073.28          | 4912.00   | 0.85                | 0.21                            |
| romulus-mk-scg      | HS            | 7281.36          | 5056.50   | 0.49                | 1.74                            |
| romulus-mk-scg      | LF            | 7067.88          | 4908.25   | 32.72               | 0.17                            |
| romulus-mk-sncg     | BC            | 8019.72          | 5569.25   | 0.76                | 0.47                            |
| romulus-mk-sncg     | LA            | 8019.72          | 5569.25   | 0.76                | 0.47                            |
| romulus-mk-sncg     | HS            | 8501.76          | 5904.00   | 0.49                | 11.66                           |
| romulus-mk-sncg     | LF            | 8028.72          | 5575.50   | 32.72               | 0.32                            |
| subterranean-pm-cg  | BC            | 9599.76          | 6666.50   | 0.52                | 0.43                            |
| subterranean-pm-cg  | LA            | 9599.76          | 6666.50   | 0.52                | 0.43                            |
| subterranean-pm-cg  | HS            | 9969.12          | 6923.00   | 0.49                | 7.81                            |
| subterranean-pm-cg  | LF            | 9593.64          | 6662.25   | 10666.67            | 0.19                            |
| subterranean-pm-ncg | BC            | 9847.08          | 6838.25   | 0.43                | 0.55                            |
| subterranean-pm-ncg | LA            | 9865.80          | 6851.25   | 0.47                | 0.55                            |
| subterranean-pm-ncg | HS            | 10268.28         | 7130.75   | 0.49                | 13.25                           |
| subterranean-pm-ncg | $\mathbf{LF}$ | 9866.16          | 6851.50   | 10666.67            | 0.21                            |

Table 10: Raw synthesis results using the TSMC 65nm standard cell library (Continued).

33

| Implementation      | Corner                 | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | Power (mW) |
|---------------------|------------------------|------------------|-----------|---------------------|------------|
| tinyjambu-sl-128cg  | BC                     | 5622.12          | 3904.25   | 0.82                | 0.40       |
| tinyjambu-sl-128cg  | LA                     | 5622.12          | 3904.25   | 0.82                | 0.40       |
| tinyjambu-sl-128cg  | HS                     | 5585.76          | 3879.00   | 1.06                | 1.59       |
| tinyjambu-sl-128cg  | LF                     | 5620.32          | 3903.00   | 10.40               | 0.32       |
| tinyjambu-sl-128ncg | BC                     | 6201.36          | 4306.50   | 0.58                | 0.43       |
| tinyjambu-sl-128ncg | LA                     | 6201.36          | 4306.50   | 0.58                | 0.43       |
| tinyjambu-sl-128ncg | HS                     | 6201.36          | 4306.50   | 0.77                | 3.77       |
| tinyjambu-sl-128ncg | LF                     | 6202.44          | 4307.25   | 10.40               | 0.61       |
| tinyjambu-sl-32cg   | BC                     | 5695.56          | 3955.25   | 0.87                | 0.40       |
| tinyjambu-sl-32cg   | LA                     | 5695.56          | 3955.25   | 0.87                | 0.40       |
| tinyjambu-sl-32cg   | HS                     | 5659.20          | 3930.00   | 1.17                | 1.60       |
| tinyjambu-sl-32cg   | LF                     | 5691.60          | 3952.50   | 161.62              | 0.13       |
| tinyjambu-sl-32ncg  | BC                     | 6395.76          | 4441.50   | 0.60                | 0.44       |
| tinyjambu-sl-32ncg  | LA                     | 6395.76          | 4441.50   | 0.60                | 0.44       |
| tinyjambu-sl-32ncg  | HS                     | 6359.76          | 4416.50   | 0.90                | 3.74       |
| tinyjambu-sl-32ncg  | LF                     | 6397.56          | 4442.75   | 161.62              | 0.16       |
| tinyjambu-sl-8cg    | BC                     | 5622.12          | 3904.25   | 0.82                | 0.40       |
| tinyjambu-sl-8cg    | LA                     | 5622.12          | 3904.25   | 0.82                | 0.40       |
| tinyjambu-sl-8cg    | HS                     | 5585.76          | 3879.00   | 1.06                | 1.59       |
| tinyjambu-sl-8cg    | LF                     | 5620.32          | 3903.00   | 313.73              | 0.12       |
| tinyjambu-sl-8ncg   | BC                     | 6201.36          | 4306.50   | 0.58                | 0.43       |
| tinyjambu-sl-8ncg   | $\mathbf{L}\mathbf{A}$ | 6201.36          | 4306.50   | 0.58                | 0.43       |
| tinyjambu-sl-8ncg   | HS                     | 6201.36          | 4306.50   | 0.77                | 3.77       |
| tinyjambu-sl-8ncg   | LF                     | 6203.52          | 4308.00   | 313.73              | 0.14       |

**Table 11:** Raw synthesis results using the TSMC 65nm standard cell library (Continued).

| Implementation      | Corner                 | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | Power (mW) |
|---------------------|------------------------|------------------|-----------|---------------------|------------|
| tinyjambu-th-128cg  | BC                     | 6806.52          | 4726.75   | 0.64                | 0.27       |
| tinyjambu-th-128cg  | $\mathbf{L}\mathbf{A}$ | 6806.52          | 4726.75   | 0.64                | 0.27       |
| tinyjambu-th-128cg  | HS                     | 6800.76          | 4722.75   | 0.92                | 0.82       |
| tinyjambu-th-128cg  | LF                     | 6801.48          | 4723.25   | 1333.33             | 0.15       |
| tinyjambu-th-128ncg | BC                     | 7517.16          | 5220.25   | 0.63                | 0.46       |
| tinyjambu-th-128ncg | $\mathbf{L}\mathbf{A}$ | 7517.16          | 5220.25   | 0.63                | 0.46       |
| tinyjambu-th-128ncg | HS                     | 7512.84          | 5217.25   | 0.88                | 3.79       |
| tinyjambu-th-128ncg | LF                     | 7517.88          | 5220.75   | 1333.33             | 0.17       |
| tinyjambu-th-32cg   | BC                     | 5336.28          | 3705.75   | 0.60                | 0.25       |
| tinyjambu-th-32cg   | $\mathbf{LA}$          | 5336.28          | 3705.75   | 0.60                | 0.25       |
| tinyjambu-th-32cg   | HS                     | 5333.40          | 3703.75   | 0.84                | 0.95       |
| tinyjambu-th-32cg   | LF                     | 5333.40          | 3703.75   | 323.23              | 0.12       |
| tinyjambu-th-32ncg  | BC                     | 6269.40          | 4353.75   | 0.61                | 0.43       |
| tinyjambu-th-32ncg  | $\mathbf{LA}$          | 6269.40          | 4353.75   | 0.61                | 0.43       |
| tiny jambu-th-32ncg | HS                     | 6266.52          | 4351.75   | 0.85                | 3.74       |
| tiny jambu-th-32ncg | LF                     | 6271.20          | 4355.00   | 323.23              | 0.14       |
| tinyjambu-th-8cg    | BC                     | 4442.04          | 3084.75   | 0.69                | 0.29       |
| tinyjambu-th-8cg    | $\mathbf{LA}$          | 4442.04          | 3084.75   | 0.69                | 0.29       |
| tinyjambu-th-8cg    | HS                     | 4439.52          | 3083.00   | 0.75                | 1.83       |
| tinyjambu-th-8cg    | LF                     | 4439.52          | 3083.00   | 82.69               | 0.12       |
| tiny jambu-th-8ncg  | BC                     | 5333.40          | 3703.75   | 0.58                | 0.38       |
| tiny jambu-th-8ncg  | $\mathbf{LA}$          | 5333.40          | 3703.75   | 0.58                | 0.38       |
| tinyjambu-th-8ncg   | HS                     | 5329.08          | 3700.75   | 1.01                | 3.49       |
| tinyjambu-th-8ncg   | LF                     | 5332.32          | 3703.00   | 82.69               | 0.16       |

**Table 12:** Raw synthesis results using the TSMC 65nm standard cell library (Continued).

မ္မာ

| Implementation   | Corner                 | Area $(\mu m^2)$ | Area (GE) | Clock Period (ns) | Power (mW) |
|------------------|------------------------|------------------|-----------|-------------------|------------|
| xoodyak-sm-12cg  | BC                     | 69779.52         | 48458.00  | 0.97              | 2.09       |
| xoodyak-sm-12cg  | LA                     | 69779.52         | 48458.00  | 0.97              | 2.09       |
| xoodyak-sm-12cg  | HS                     | 69779.52         | 48458.00  | 0.97              | 2.09       |
| xoodyak-sm-12cg  | LF                     | 69815.88         | 48483.25  | 6400              | 1.60       |
| xoodyak-sm-12ncg | BC                     | 70594.92         | 49024.25  | 0.93              | 2.13       |
| xoodyak-sm-12ncg | $\mathbf{LA}$          | 70594.92         | 49024.25  | 0.93              | 2.13       |
| xoodyak-sm-12ncg | HS                     | 70594.92         | 49024.25  | 0.93              | 2.13       |
| xoodyak-sm-12ncg | LF                     | 70608.60         | 49033.75  | 6400              | 1.60       |
| xoodyak-sm-1cg   | BC                     | 12667.32         | 8796.75   | 0.88              | 0.73       |
| xoodyak-sm-1cg   | LA                     | 12667.32         | 8796.75   | 0.88              | 0.73       |
| xoodyak-sm-1cg   | HS                     | 12889.80         | 8951.25   | 0.49              | 15.22      |
| xoodyak-sm-1cg   | LF                     | 12667.32         | 8796.75   | 3047.62           | 0.25       |
| xoodyak-sm-1ncg  | BC                     | 13472.28         | 9355.75   | 0.92              | 0.84       |
| xoodyak-sm-1ncg  | $\mathbf{LA}$          | 13472.28         | 9355.75   | 0.92              | 0.84       |
| xoodyak-sm-1ncg  | HS                     | 13686.12         | 9504.25   | 0.49              | 17.72      |
| xoodyak-sm-1ncg  | LF                     | 13464.36         | 9350.25   | 3047.62           | 0.24       |
| xoodyak-sm-2cg   | BC                     | 18910.44         | 13132.25  | 0.88              | 0.88       |
| xoodyak-sm-2cg   | $\mathbf{LA}$          | 18910.44         | 13132.25  | 0.88              | 0.88       |
| xoodyak-sm-2cg   | HS                     | 24133.32         | 16759.25  | 0.49              | 16.81      |
| xoodyak-sm-2cg   | LF                     | 18910.44         | 13132.25  | 4266.67           | 0.40       |
| xoodyak-sm-2ncg  | BC                     | 19722.96         | 13696.50  | 0.93              | 0.99       |
| xoodyak-sm-2ncg  | $\mathbf{L}\mathbf{A}$ | 19722.96         | 13696.50  | 0.93              | 0.99       |
| xoodyak-sm-2ncg  | HS                     | 25027.56         | 17380.25  | 0.49              | 18.08      |
| xoodyak-sm-2ncg  | LF                     | 19714.68         | 13690.75  | 4266.67           | 0.39       |

**Table 13:** Raw synthesis results using the TSMC 65nm standard cell library (Continued).
| Implementation  | Corner        | Area $(\mu m^2)$ | $\mathbf{Area}\ (\mathrm{GE})$ | Clock Period $(ns)$ | $\mathbf{Power}\ (\mathrm{mW})$ |
|-----------------|---------------|------------------|--------------------------------|---------------------|---------------------------------|
| xoodyak-sm-3cg  | BC            | 25981.92         | 18043.00                       | 0.88                | 1.06                            |
| xoodyak-sm-3cg  | LA            | 25981.92         | 18043.00                       | 0.88                | 1.06                            |
| xoodyak-sm-3cg  | $_{ m HS}$    | 26534.88         | 18427.00                       | 0.98                | 8.34                            |
| xoodyak-sm-3cg  | $_{ m LF}$    | 25981.92         | 18043.00                       | 4923.08             | 0.57                            |
| xoodyak-sm-3ncg | BC            | 26848.80         | 18645.00                       | 0.93                | 1.17                            |
| xoodyak-sm-3ncg | LA            | 26848.80         | 18645.00                       | 0.93                | 1.17                            |
| xoodyak-sm-3ncg | HS            | 46926.00         | 32587.50                       | 0.62                | 20.22                           |
| xoodyak-sm-3ncg | LF            | 26835.48         | 18635.75                       | 4923.08             | 0.57                            |
| xoodyak-sm-4cg  | BC            | 30830.76         | 21410.25                       | 0.88                | 1.17                            |
| xoodyak-sm-4cg  | LA            | 30830.76         | 21410.25                       | 0.88                | 1.17                            |
| xoodyak-sm-4cg  | HS            | 34282.80         | 23807.50                       | 0.98                | 9.68                            |
| xoodyak-sm-4cg  | $\mathbf{LF}$ | 30830.76         | 21410.25                       | 5333.33             | 0.69                            |
| xoodyak-sm-4ncg | BC            | 31641.48         | 21973.25                       | 0.93                | 1.28                            |
| xoodyak-sm-4ncg | LA            | 31641.48         | 21973.25                       | 0.93                | 1.28                            |
| xoodyak-sm-4ncg | HS            | 53882.28         | 37418.25                       | 0.82                | 21.42                           |
| xoodyak-sm-4ncg | $\mathbf{LF}$ | 31629.24         | 21964.75                       | 5333.33             | 0.68                            |
| xoodyak-sm-6cg  | BC            | 40633.20         | 28217.50                       | 0.88                | 1.41                            |
| xoodyak-sm-6cg  | LA            | 40633.20         | 28217.50                       | 0.88                | 1.41                            |
| xoodyak-sm-6cg  | $_{ m HS}$    | 40633.20         | 28217.50                       | 0.88                | 1.41                            |
| xoodyak-sm-6cg  | $\mathbf{LF}$ | 40633.20         | 28217.50                       | 5818.18             | 0.92                            |
| xoodyak-sm-6ncg | BC            | 41433.48         | 28773.25                       | 0.93                | 1.52                            |
| xoodyak-sm-6ncg | LA            | 41433.48         | 28773.25                       | 0.93                | 1.52                            |
| xoodyak-sm-6ncg | HS            | 77376.96         | 53734.00                       | 1.15                | 23.06                           |
| xoodyak-sm-6ncg | LF            | 41428.44         | 28769.75                       | 5818.18             | 0.91                            |

**Table 14:** Raw synthesis results using the TSMC 65nm standard cell library (Continued).

 $|_{37}^{37}$ 

| Implementation    | Corner        | Area $(\mu m^2)$ | $\mathbf{Area}\ (\mathrm{GE})$ | Clock Period $(ns)$ | $\mathbf{Power}\ (\mathrm{mW})$ |
|-------------------|---------------|------------------|--------------------------------|---------------------|---------------------------------|
| ascon-rp-cg       | BC            | 5279.36          | 10558.71                       | 1.63                | 0.27                            |
| ascon-rp-cg       | LA            | 5279.36          | 10558.71                       | 1.63                | 0.27                            |
| ascon-rp-cg       | HS            | 6872.84          | 13745.68                       | 0.60                | 1.30                            |
| ascon-rp-cg       | LF            | 5263.20          | 10526.40                       | 1333.33             | 0.23                            |
| ascon-rp-ncg      | BC            | 5319.34          | 10638.68                       | 1.67                | 0.30                            |
| ascon-rp-ncg      | $\mathbf{LA}$ | 5319.34          | 10638.68                       | 1.67                | 0.30                            |
| ascon-rp-ncg      | HS            | 7488.76          | 14977.52                       | 0.59                | 3.15                            |
| ascon-rp-ncg      | LF            | 5317.87          | 10635.74                       | 1333.33             | 0.22                            |
| beetle-vl-cg      | BC            | 6479.20          | 12958.41                       | 1.51                | 0.34                            |
| beetle-vl-cg      | $\mathbf{LA}$ | 6479.20          | 12958.41                       | 1.51                | 0.34                            |
| beetle-vl-cg      | HS            | 9314.48          | 18628.95                       | 0.99                | 1.89                            |
| beetle-vl-cg      | LF            | 6464.19          | 12928.38                       | 1292.93             | 0.29                            |
| beetle-vl-ncg     | BC            | 6813.11          | 13626.22                       | 1.36                | 0.37                            |
| beetle-vl-ncg     | $\mathbf{LA}$ | 6806.75          | 13613.49                       | 1.36                | 0.37                            |
| beetle-vl-ncg     | HS            | 9328.84          | 18657.68                       | 0.97                | 3.82                            |
| beetle-vl-ncg     | LF            | 6805.93          | 13611.86                       | 1292.93             | 0.29                            |
| drygrascon-eh-cg  | BC            | 7635.80          | 15271.60                       | 1.20                | 0.37                            |
| drygrascon-eh-cg  | LA            | 7635.80          | 15271.60                       | 1.20                | 0.37                            |
| drygrascon-eh-cg  | HS            | 10565.24         | 21130.48                       | 0.83                | 1.71                            |
| drygrascon-eh-cg  | LF            | 7588.64          | 15177.27                       | 2031.75             | 0.34                            |
| drygrascon-eh-ncg | BC            | 8125.24          | 16250.48                       | 1.06                | 0.45                            |
| drygrascon-eh-ncg | $\mathbf{LA}$ | 8208.14          | 16416.29                       | 1.61                | 0.46                            |
| drygrascon-eh-ncg | HS            | 12341.02         | 24682.04                       | 0.81                | 5.43                            |
| drygrascon-eh-ncg | LF            | 8207.65          | 16415.31                       | 2031.75             | 0.35                            |

**Table 15:** Raw synthesis results using the FDSOI 28nm standard cell library.

| Implementation   | Corner                 | Area $(\mu m^2)$ | Area (GE) | <b>Clock Period</b> (ns) | $\mathbf{Power}\ (\mathrm{mW})$ |
|------------------|------------------------|------------------|-----------|--------------------------|---------------------------------|
| elephant-rh-1cg  | BC                     | 5060.18          | 10120.36  | 1.85                     | 0.26                            |
| elephant-rh-1cg  | $\mathbf{LA}$          | 5060.18          | 10120.36  | 1.85                     | 0.26                            |
| elephant-rh-1cg  | HS                     | 6247.62          | 12495.24  | 0.54                     | 1.50                            |
| elephant-rh-1cg  | LF                     | 5037.49          | 10074.99  | 606.06                   | 0.22                            |
| elephant-rh-1ncg | BC                     | 6243.71          | 12487.41  | 1.84                     | 0.35                            |
| elephant-rh-1ncg | $\mathbf{L}\mathbf{A}$ | 6243.71          | 12487.41  | 1.84                     | 0.35                            |
| elephant-rh-1ncg | HS                     | 7179.00          | 14358.01  | 0.68                     | 3.95                            |
| elephant-rh-1ncg | LF                     | 6243.71          | 12487.41  | 606.06                   | 0.25                            |
| elephant-rh-5cg  | BC                     | 7027.72          | 14055.44  | 1.59                     | 0.35                            |
| elephant-rh-5cg  | $\mathbf{LA}$          | 7027.72          | 14055.44  | 1.59                     | 0.35                            |
| elephant-rh-5cg  | HS                     | 9779.76          | 19559.52  | 1.08                     | 1.75                            |
| elephant-rh-5cg  | LF                     | 7005.52          | 14011.05  | 2807.02                  | 0.30                            |
| elephant-rh-5ncg | BC                     | 8176.32          | 16352.64  | 1.76                     | 0.43                            |
| elephant-rh-5ncg | $\mathbf{LA}$          | 8176.32          | 16352.64  | 1.76                     | 0.43                            |
| elephant-rh-5ncg | HS                     | 10975.85         | 21951.71  | 1.08                     | 4.35                            |
| elephant-rh-5ncg | LF                     | 8175.67          | 16351.33  | 2807.02                  | 0.34                            |

**Table 16:** Raw synthesis results using the FDSOI 28nm standard cell library.

| Implementation                | Corner        | Area $(\mu m^2)$ | Area (GE) | <b>Clock Period</b> (ns) | Power (mW) |
|-------------------------------|---------------|------------------|-----------|--------------------------|------------|
| gimli-pm-12cg                 | BC            | 40170.70         | 80341.40  | 1.35                     | 1.82       |
| gimli-pm-12cg                 | LA            | 40170.70         | 80341.40  | 1.35                     | 1.82       |
| gimli-pm-12cg                 | HS            | 40170.70         | 80341.40  | 1.35                     | 1.82       |
| gimli-pm-12cg                 | $\mathbf{LF}$ | 40149.00         | 80297.99  | 21333.33                 | 1.76       |
| gimli-pm-12ncg                | BC            | 40580.50         | 81160.99  | 1.22                     | 1.89       |
| gimli-pm-12ncg                | LA            | 40580.50         | 81160.99  | 1.22                     | 1.89       |
| gimli-pm-12ncg                | HS            | 40580.50         | 81160.99  | 1.22                     | 1.89       |
| gimli-pm-12ncg                | LF            | 40631.58         | 81263.16  | 21333.33                 | 1.74       |
| gimli-pm-1cg                  | BC            | 5879.44          | 11758.89  | 1.36                     | 0.28       |
| gimli-pm-1cg                  | LA            | 5879.44          | 11758.89  | 1.36                     | 0.28       |
| gimli-pm-1cg                  | HS            | 7441.10          | 14882.21  | 0.78                     | 1.14       |
| gimli-pm-1cg                  | $\mathbf{LF}$ | 5860.68          | 11721.35  | 1777.78                  | 0.27       |
| gimli-pm-1ncg                 | BC            | 6323.18          | 12646.37  | 1.22                     | 0.37       |
| gimli-pm-1ncg                 | LA            | 6323.18          | 12646.37  | 1.22                     | 0.37       |
| gimli-pm-1ncg                 | HS            | 7999.57          | 15999.15  | 0.78                     | 4.37       |
| gimli-pm-1ncg                 | $\mathbf{LF}$ | 6308.01          | 12616.01  | 1777.78                  | 0.27       |
| $\operatorname{gimli-pm-2cg}$ | BC            | 6832.04          | 13664.08  | 1.35                     | 0.33       |
| $\operatorname{gimli-pm-2cg}$ | LA            | 6832.04          | 13664.08  | 1.35                     | 0.33       |
| $\operatorname{gimli-pm-2cg}$ | HS            | 9541.65          | 19083.30  | 0.83                     | 1.39       |
| gimli-pm-2cg                  | $_{ m LF}$    | 6809.85          | 13619.69  | 3555.56                  | 0.31       |
| gimli-pm-2ncg                 | BC            | 7441.92          | 14883.84  | 1.22                     | 0.42       |
| gimli-pm-2ncg                 | LA            | 7441.92          | 14883.84  | 1.22                     | 0.42       |
| gimli-pm-2ncg                 | HS            | 10111.55         | 20223.09  | 0.84                     | 4.65       |
| gimli-pm-2ncg                 | $\mathbf{LF}$ | 7426.91          | 14853.81  | 3555.56                  | 0.31       |

**Table 17:** Raw synthesis results using the FDSOI 28nm standard cell library.

|                  | 0         |                          | J          |
|------------------|-----------|--------------------------|------------|
| Area $(\mu m^2)$ | Area (GE) | <b>Clock Period</b> (ns) | Power (mW) |
| 8309.98          | 16619.96  | 1.35                     | 0.37       |
| 8309.98          | 16619.96  | 1.35                     | 0.37       |
| 8309.98          | 16619.96  | 1.35                     | 0.37       |
| 8287.79          | 16575.57  | 5333.33                  | 0.35       |
| 8780.65          | 17561.30  | 1.26                     | 0.47       |
| 8780.65          | 17561.30  | 1.26                     | 0.47       |
| 8780.65          | 17561.30  | 1.26                     | 0.47       |
| 8765.80          | 17531.60  | 5333.33                  | 0.35       |
| 8728.26          | 17456.53  | 1.36                     | 0.40       |
| 8728.26          | 17456.53  | 1.36                     | 0.40       |
| 8728.26          | 17456.53  | 1.36                     | 0.40       |
| 8708.03          | 17416.05  | 7111.11                  | 0.38       |
| 9200.56          | 18401.13  | 1.26                     | 0.49       |
| 9200.56          | 18401.13  | 1.26                     | 0.49       |
| 9200.56          | 18401.13  | 1.26                     | 0.49       |
| 9186.04          | 18372.08  | 7111.11                  | 0.38       |
| 11161.41         | 22322.82  | 1.35                     | 0.51       |
| 11161.41         | 22322.82  | 1.35                     | 0.51       |
| 11161.41         | 22322.82  | 1.35                     | 0.51       |
| 11139.71         | 22279.41  | 10666.67                 | 0.48       |
| 11632.41         | 23264.81  | 1.22                     | 0.60       |
| 11632.41         | 23264.81  | 1.22                     | 0.60       |
| 11632.41         | 23264.81  | 1.22                     | 0.60       |
| 11617.88         | 23235.76  | 10666.67                 | 0.48       |

Table 18: Raw synthesis results using the FDSOI 28nm standard cell library.

Implementation

gimli-pm-3cg gimli-pm-3cg

gimli-pm-3cg

gimli-pm-3cg

gimli-pm-3ncg

gimli-pm-3ncg

gimli-pm-3ncg

gimli-pm-3ncg gimli-pm-4cg

gimli-pm-4cg

gimli-pm-4cg

gimli-pm-4cg

gimli-pm-4ncg gimli-pm-4ncg

gimli-pm-4ncg

gimli-pm-4ncg gimli-pm-6cg

gimli-pm-6cg

gimli-pm-6cg

gimli-pm-6cg gimli-pm-6ncg

gimli-pm-6ncg

gimli-pm-6ncg

gimli-pm-6ncg

Corner BC

LA

HS

LF

BC

LA HS

LF

BC

LA HS

LF

BC

LA HS

LF

HS

 $\mathbf{L}\mathbf{A}$ 

BC LF

BC

 $\mathbf{L}\mathbf{A}$ 

HS

LF

| Implementation                 | Corner                 | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | Power (mW) |
|--------------------------------|------------------------|------------------|-----------|---------------------|------------|
| gimli-pm-8cg                   | BC                     | 13887.67         | 27775.33  | 1.35                | 0.64       |
| gimli-pm-8cg                   | LA                     | 13887.67         | 27775.33  | 1.35                | 0.64       |
| gimli-pm-8cg                   | HS                     | 13887.67         | 27775.33  | 1.35                | 0.64       |
| gimli-pm-8cg                   | LF                     | 13866.13         | 27732.25  | 14222.22            | 0.61       |
| gimli-pm-8ncg                  | BC                     | 14353.93         | 28707.86  | 1.22                | 0.73       |
| gimli-pm-8ncg                  | LA                     | 14353.93         | 28707.86  | 1.22                | 0.73       |
| gimli-pm-8ncg                  | HS                     | 14353.93         | 28707.86  | 1.22                | 0.73       |
| $\operatorname{gimli-pm-8ncg}$ | LF                     | 14339.73         | 28679.46  | 14222.22            | 0.61       |
| pyjamask-rn-fcg                | BC                     | 20221.62         | 40443.25  | 1.83                | 0.94       |
| pyjamask-rn-fcg                | LA                     | 20221.62         | 40443.25  | 1.83                | 0.94       |
| pyjamask-rn-fcg                | HS                     | 21008.90         | 42017.80  | 0.70                | 1.68       |
| pyjamask-rn-fcg                | LF                     | 20061.69         | 40123.37  | 162.85              | 0.92       |
| pyjamask-rn-fncg               | BC                     | 24552.13         | 49104.27  | 1.82                | 1.54       |
| pyjamask-rn-fncg               | $\mathbf{L}\mathbf{A}$ | 24552.13         | 49104.27  | 1.83                | 1.54       |
| pyjamask-rn-fncg               | HS                     | 28326.46         | 56652.92  | 0.73                | 21.40      |
| pyjamask-rn-fncg               | LF                     | 24496.97         | 48993.95  | 162.85              | 1.02       |
| pyjamask-rn-pcg                | BC                     | 20448.31         | 40896.62  | 1.91                | 0.95       |
| pyjamask-rn-pcg                | $\mathbf{LA}$          | 20448.31         | 40896.62  | 1.91                | 0.95       |
| pyjamask-rn-pcg                | HS                     | 23661.72         | 47323.43  | 0.92                | 2.05       |
| pyjamask-rn-pcg                | LF                     | 20289.02         | 40578.05  | 418.30              | 0.91       |
| pyjamask-rn-pncg               | BC                     | 24754.67         | 49509.33  | 1.93                | 1.54       |
| pyjamask-rn-pncg               | LA                     | 24754.67         | 49509.33  | 1.93                | 1.54       |
| pyjamask-rn-pncg               | HS                     | 28640.62         | 57281.24  | 0.97                | 20.92      |
| pyjamask-rn-pncg               | LF                     | 24697.22         | 49394.44  | 418.30              | 0.99       |

**Table 19:** Raw synthesis results using the FDSOI 28nm standard cell library.

| Implementation  | Corner        | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | $\mathbf{Power}\ (\mathrm{mW})$ |
|-----------------|---------------|------------------|-----------|---------------------|---------------------------------|
| romulus-mk-1cg  | BC            | 2973.01          | 5946.03   | 1.89                | 0.15                            |
| romulus-mk-1cg  | $\mathbf{LA}$ | 2971.55          | 5943.09   | 1.80                | 0.15                            |
| romulus-mk-1cg  | HS            | 3693.22          | 7386.43   | 0.73                | 0.88                            |
| romulus-mk-1cg  | $\mathbf{LF}$ | 2959.47          | 5918.94   | 711.11              | 0.12                            |
| romulus-mk-1ncg | BC            | 3256.82          | 6513.64   | 1.94                | 0.19                            |
| romulus-mk-1ncg | LA            | 3256.82          | 6513.64   | 1.94                | 0.19                            |
| romulus-mk-1ncg | HS            | 4129.45          | 8258.90   | 0.69                | 1.94                            |
| romulus-mk-1ncg | LF            | 3257.47          | 6514.94   | 711.11              | 0.14                            |
| romulus-mk-2cg  | BC            | 3473.39          | 6946.77   | 1.93                | 0.17                            |
| romulus-mk-2cg  | $\mathbf{LA}$ | 3473.39          | 6946.77   | 1.93                | 0.17                            |
| romulus-mk-2cg  | HS            | 4841.49          | 9682.98   | 0.86                | 0.97                            |
| romulus-mk-2cg  | LF            | 3464.41          | 6928.82   | 1333.33             | 0.14                            |
| romulus-mk-2ncg | BC            | 3759.48          | 7518.95   | 1.97                | 0.22                            |
| romulus-mk-2ncg | LA            | 3759.48          | 7518.95   | 1.97                | 0.22                            |
| romulus-mk-2ncg | HS            | 5213.10          | 10426.20  | 0.87                | 2.01                            |
| romulus-mk-2ncg | LF            | 3762.74          | 7525.48   | 1333.33             | 0.16                            |
| romulus-mk-4cg  | BC            | 4626.07          | 9252.13   | 1.88                | 0.23                            |
| romulus-mk-4cg  | LA            | 4626.07          | 9252.13   | 1.88                | 0.23                            |
| romulus-mk-4cg  | HS            | 7588.47          | 15176.95  | 1.57                | 1.24                            |
| romulus-mk-4cg  | LF            | 4616.11          | 9232.22   | 2370.37             | 0.19                            |
| romulus-mk-4ncg | BC            | 5221.42          | 10442.84  | 1.78                | 0.27                            |
| romulus-mk-4ncg | LA            | 5221.42          | 10442.84  | 1.78                | 0.27                            |
| romulus-mk-4ncg | HS            | 8234.75          | 16469.49  | 1.56                | 2.25                            |
| romulus-mk-4ncg | LF            | 5223.22          | 10446.43  | 2370.37             | 0.21                            |

**Table 20:** Raw synthesis results using the FDSOI 28nm standard cell library.

43

| Implementation                   | Corner        | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | $\mathbf{Power}\ (\mathrm{mW})$ |
|----------------------------------|---------------|------------------|-----------|---------------------|---------------------------------|
| romulus-mk-8cg                   | BC            | 7020.37          | 14040.75  | 1.85                | 0.34                            |
| romulus-mk-8cg                   | $\mathbf{LA}$ | 7020.37          | 14040.75  | 1.85                | 0.34                            |
| romulus-mk-8cg                   | HS            | 13730.51         | 27461.01  | 2.93                | 2.10                            |
| romulus-mk-8cg                   | LF            | 7007.48          | 14014.96  | 3878.79             | 0.30                            |
| romulus-mk-8ncg                  | BC            | 7594.68          | 15189.35  | 1.97                | 0.38                            |
| romulus-mk-8ncg                  | LA            | 7594.68          | 15189.35  | 1.97                | 0.38                            |
| romulus-mk-8ncg                  | HS            | 14888.25         | 29776.49  | 2.91                | 2.87                            |
| romulus-mk-8ncg                  | $\mathbf{LF}$ | 7595.49          | 15190.98  | 3878.79             | 0.32                            |
| romulus-mk-scg                   | BC            | 2531.88          | 5063.77   | 1.75                | 0.12                            |
| romulus-mk-scg                   | LA            | 2531.88          | 5063.77   | 1.75                | 0.12                            |
| romulus-mk-scg                   | HS            | 3112.71          | 6225.43   | 0.64                | 0.44                            |
| romulus-mk-scg                   | LF            | 2527.48          | 5054.96   | 32.72               | 0.11                            |
| romulus-mk-sncg                  | BC            | 2760.53          | 5521.06   | 1.56                | 0.16                            |
| romulus-mk-sncg                  | LA            | 2760.53          | 5521.06   | 1.56                | 0.16                            |
| romulus-mk-sncg                  | HS            | 3700.07          | 7400.14   | 0.67                | 1.90                            |
| $\operatorname{romulus-mk-sncg}$ | LF            | 2760.53          | 5521.06   | 32.72               | 0.14                            |
| subterranean-pm-cg               | BC            | 3209.33          | 6418.66   | 1.13                | 0.17                            |
| subterranean-pm-cg               | LA            | 3209.33          | 6418.66   | 1.13                | 0.17                            |
| subterranean-pm-cg               | HS            | 4171.07          | 8342.13   | 0.69                | 1.53                            |
| subterranean-pm-cg               | LF            | 3200.52          | 6401.03   | 10666.67            | 0.13                            |
| subterranean-pm-ncg              | BC            | 3370.57          | 6741.14   | 0.80                | 0.18                            |
| subterranean-pm-ncg              | LA            | 3370.57          | 6741.14   | 0.80                | 0.18                            |
| subterranean-pm-ncg              | HS            | 4405.91          | 8811.82   | 0.69                | 2.22                            |
| subterranean-pm-ncg              | LF            | 3370.57          | 6741.14   | 10666.67            | 0.13                            |

**Table 21:** Raw synthesis results using the FDSOI 28nm standard cell library.

| Implementation      | Corner | Area $(\mu m^2)$ | $\mathbf{Area}\;(\mathrm{GE})$ | Clock Period $(ns)$ | $\mathbf{Power}\ (\mathrm{mW})$ |
|---------------------|--------|------------------|--------------------------------|---------------------|---------------------------------|
| tinyjambu-sl-128cg  | BC     | 1913.03          | 3826.06                        | 1.58                | 0.14                            |
| tinyjambu-sl-128cg  | LA     | 1913.03          | 3826.06                        | 1.58                | 0.14                            |
| tinyjambu-sl-128cg  | HS     | 2573.01          | 5146.02                        | 0.51                | 0.83                            |
| tinyjambu-sl-128cg  | LF     | 1905.69          | 3811.37                        | 10.40               | 0.12                            |
| tinyjambu-sl-128ncg | BC     | 2047.18          | 4094.36                        | 1.50                | 0.13                            |
| tinyjambu-sl-128ncg | LA     | 2047.18          | 4094.36                        | 1.50                | 0.13                            |
| tinyjambu-sl-128ncg | HS     | 2855.51          | 5711.02                        | 0.51                | 1.64                            |
| tinyjambu-sl-128ncg | LF     | 2047.67          | 4095.34                        | 10.40               | 0.16                            |
| tinyjambu-sl-32cg   | BC     | 2033.15          | 4066.29                        | 1.69                | 0.14                            |
| tinyjambu-sl-32cg   | LA     | 2033.15          | 4066.29                        | 1.69                | 0.14                            |
| tinyjambu-sl-32cg   | HS     | 2483.58          | 4967.16                        | 0.52                | 0.80                            |
| tinyjambu-sl-32cg   | LF     | 2026.29          | 4052.58                        | 161.62              | 0.09                            |
| tinyjambu-sl-32ncg  | BC     | 2178.07          | 4356.13                        | 1.29                | 0.14                            |
| tinyjambu-sl-32ncg  | LA     | 2178.07          | 4356.13                        | 1.29                | 0.14                            |
| tinyjambu-sl-32ncg  | HS     | 3086.44          | 6172.88                        | 0.49                | 1.65                            |
| tinyjambu-sl-32ncg  | LF     | 2177.09          | 4354.18                        | 161.62              | 0.10                            |
| tinyjambu-sl-8cg    | BC     | 1913.03          | 3826.06                        | 1.58                | 0.14                            |
| tinyjambu-sl-8cg    | LA     | 1913.03          | 3826.06                        | 1.58                | 0.14                            |
| tinyjambu-sl-8cg    | HS     | 2573.01          | 5146.02                        | 0.51                | 0.83                            |
| tinyjambu-sl-8cg    | LF     | 1905.69          | 3811.37                        | 313.73              | 0.09                            |
| tiny jambu-sl-8ncg  | BC     | 2047.02          | 4094.04                        | 1.47                | 0.14                            |
| tiny jambu-sl-8ncg  | LA     | 2047.18          | 4094.36                        | 1.50                | 0.13                            |
| tinyjambu-sl-8ncg   | HS     | 2855.51          | 5711.02                        | 0.51                | 1.64                            |
| tiny jambu-sl-8ncg  | LF     | 2047.83          | 4095.67                        | 313.73              | 0.09                            |

**Table 22:** Raw synthesis results using the FDSOI 28nm standard cell library.

| Implementation       | Corner                 | Area $(\mu m^2)$ | $\mathbf{Area}\ (\mathrm{GE})$ | Clock Period $(ns)$ | $\mathbf{Power}\ (\mathrm{mW})$ |
|----------------------|------------------------|------------------|--------------------------------|---------------------|---------------------------------|
| tinyjambu-th-128cg   | BC                     | 2371.95          | 4743.90                        | 1.37                | 0.13                            |
| tinyjambu-th-128cg   | LA                     | 2371.95          | 4743.90                        | 1.37                | 0.13                            |
| tinyjambu-th-128cg   | HS                     | 2386.31          | 4772.62                        | 0.93                | 0.23                            |
| tinyjambu-th-128cg   | $\mathbf{LF}$          | 2364.12          | 4728.23                        | 1333.33             | 0.11                            |
| tinyjambu-th-128ncg  | BC                     | 2544.78          | 5089.56                        | 1.65                | 0.15                            |
| tiny jambu-th-128ncg | $\mathbf{LA}$          | 2544.78          | 5089.56                        | 1.65                | 0.15                            |
| tinyjambu-th-128ncg  | HS                     | 2563.06          | 5126.11                        | 1.34                | 0.63                            |
| tinyjambu-th-128ncg  | $\mathbf{LF}$          | 2544.29          | 5088.58                        | 1333.33             | 0.11                            |
| tinyjambu-th-32cg    | BC                     | 1886.76          | 3773.51                        | 1.54                | 0.11                            |
| tinyjambu-th-32cg    | $\mathbf{LA}$          | 1883.82          | 3767.64                        | 1.55                | 0.11                            |
| tinyjambu-th-32cg    | HS                     | 1876.31          | 3752.62                        | 1.07                | 0.22                            |
| tinyjambu-th-32cg    | $_{ m LF}$             | 1875.33          | 3750.66                        | 323.23              | 0.09                            |
| tinyjambu-th-32ncg   | BC                     | 2066.44          | 4132.88                        | 1.27                | 0.13                            |
| tinyjambu-th-32ncg   | $\mathbf{LA}$          | 2066.44          | 4132.88                        | 1.27                | 0.13                            |
| tinyjambu-th-32ncg   | HS                     | 2077.86          | 4155.72                        | 1.35                | 0.60                            |
| tinyjambu-th-32ncg   | $\mathbf{LF}$          | 2065.95          | 4131.90                        | 323.23              | 0.09                            |
| tinyjambu-th-8cg     | BC                     | 1568.68          | 3137.36                        | 1.17                | 0.10                            |
| tinyjambu-th-8cg     | $\mathbf{LA}$          | 1568.68          | 3137.36                        | 1.17                | 0.10                            |
| tinyjambu-th-8cg     | HS                     | 1551.87          | 3103.74                        | 0.94                | 0.34                            |
| tinyjambu-th-8cg     | $\mathbf{LF}$          | 1549.42          | 3098.84                        | 82.69               | 0.07                            |
| tiny jambu-th-8ncg   | BC                     | 1730.90          | 3461.80                        | 1.23                | 0.11                            |
| tinyjambu-th-8ncg    | $\mathbf{L}\mathbf{A}$ | 1730.90          | 3461.80                        | 1.23                | 0.11                            |
| tinyjambu-th-8ncg    | HS                     | 1735.31          | 3470.61                        | 1.34                | 0.55                            |
| tiny jambu-th-8ncg   | LF                     | 1730.57          | 3461.15                        | 82.69               | 0.08                            |

**Table 23:** Raw synthesis results using the FDSOI 28nm standard cell library.

| Implementation   | Corner                 | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | $\mathbf{Power}\ (\mathrm{mW})$ |
|------------------|------------------------|------------------|-----------|---------------------|---------------------------------|
| xoodyak-sm-12cg  | BC                     | 26988.22         | 53976.44  | 1.76                | 1.32                            |
| xoodyak-sm-12cg  | $\mathbf{LA}$          | 26988.22         | 53976.44  | 1.76                | 1.32                            |
| xoodyak-sm-12cg  | HS                     | 26988.22         | 53976.44  | 1.76                | 1.32                            |
| xoodyak-sm-12cg  | LF                     | 26982.18         | 53964.37  | 6400                | 1.24                            |
| xoodyak-sm-12ncg | BC                     | 27260.60         | 54521.20  | 1.78                | 1.32                            |
| xoodyak-sm-12ncg | $\mathbf{LA}$          | 27260.60         | 54521.20  | 1.78                | 1.32                            |
| xoodyak-sm-12ncg | HS                     | 27260.60         | 54521.20  | 1.78                | 1.32                            |
| xoodyak-sm-12ncg | LF                     | 27260.60         | 54521.20  | 6400                | 1.24                            |
| xoodyak-sm-1cg   | BC                     | 4801.18          | 9602.36   | 1.76                | 0.29                            |
| xoodyak-sm-1cg   | $\mathbf{L}\mathbf{A}$ | 4801.18          | 9602.36   | 1.76                | 0.29                            |
| xoodyak-sm-1cg   | HS                     | 6062.23          | 12124.45  | 0.60                | 2.47                            |
| xoodyak-sm-1cg   | LF                     | 4795.14          | 9590.28   | 3047.62             | 0.20                            |
| xoodyak-sm-1ncg  | BC                     | 5059.85          | 10119.71  | 1.78                | 0.27                            |
| xoodyak-sm-1ncg  | $\mathbf{L}\mathbf{A}$ | 5059.85          | 10119.71  | 1.78                | 0.27                            |
| xoodyak-sm-1ncg  | HS                     | 6718.45          | 13436.91  | 0.63                | 2.61                            |
| xoodyak-sm-1ncg  | $_{ m LF}$             | 5059.85          | 10119.71  | 3047.62             | 0.20                            |
| xoodyak-sm-2cg   | BC                     | 7886.15          | 15772.30  | 1.76                | 0.42                            |
| xoodyak-sm-2cg   | $\mathbf{LA}$          | 7886.15          | 15772.30  | 1.76                | 0.42                            |
| xoodyak-sm-2cg   | HS                     | 12168.03         | 24336.06  | 0.87                | 3.34                            |
| xoodyak-sm-2cg   | LF                     | 7880.11          | 15760.22  | 4266.67             | 0.33                            |
| xoodyak-sm-2ncg  | BC                     | 8136.34          | 16272.67  | 1.78                | 0.40                            |
| xoodyak-sm-2ncg  | $\mathbf{L}\mathbf{A}$ | 8136.34          | 16272.67  | 1.78                | 0.40                            |
| xoodyak-sm-2ncg  | HS                     | 12597.08         | 25194.16  | 0.87                | 3.21                            |
| xoodyak-sm-2ncg  | LF                     | 8136.34          | 16272.67  | 4266.67             | 0.33                            |

**Table 24:** Raw synthesis results using the FDSOI 28nm standard cell library.

| Implementation  | Corner                 | Area $(\mu m^2)$ | Area (GE) | Clock Period $(ns)$ | Power (mW) |
|-----------------|------------------------|------------------|-----------|---------------------|------------|
| xoodyak-sm-3cg  | BC                     | 11461.86         | 22923.72  | 1.76                | 0.57       |
| xoodyak-sm-3cg  | $\mathbf{LA}$          | 11461.86         | 22923.72  | 1.76                | 0.57       |
| xoodyak-sm-3cg  | HS                     | 15317.30         | 30634.60  | 0.93                | 1.81       |
| xoodyak-sm-3cg  | LF                     | 11455.82         | 22911.65  | 4923.08             | 0.48       |
| xoodyak-sm-3ncg | BC                     | 11947.87         | 23895.74  | 1.78                | 0.55       |
| xoodyak-sm-3ncg | $\mathbf{LA}$          | 11947.87         | 23895.74  | 1.78                | 0.55       |
| xoodyak-sm-3ncg | HS                     | 21387.36         | 42774.72  | 1.21                | 2.93       |
| xoodyak-sm-3ncg | LF                     | 11947.87         | 23895.74  | 4923.08             | 0.49       |
| xoodyak-sm-4cg  | BC                     | 14574.25         | 29148.50  | 1.76                | 0.71       |
| xoodyak-sm-4cg  | $\mathbf{LA}$          | 14574.25         | 29148.50  | 1.76                | 0.71       |
| xoodyak-sm-4cg  | HS                     | 24825.33         | 49650.66  | 1.62                | 2.95       |
| xoodyak-sm-4cg  | LF                     | 14568.21         | 29136.42  | 5333.33             | 0.62       |
| xoodyak-sm-4ncg | BC                     | 14835.21         | 29670.41  | 1.78                | 0.69       |
| xoodyak-sm-4ncg | $\mathbf{L}\mathbf{A}$ | 14835.21         | 29670.41  | 1.78                | 0.69       |
| xoodyak-sm-4ncg | HS                     | 26785.53         | 53571.05  | 1.63                | 3.41       |
| xoodyak-sm-4ncg | LF                     | 14835.21         | 29670.41  | 5333.33             | 0.62       |
| xoodyak-sm-6cg  | BC                     | 20050.92         | 40101.83  | 1.76                | 0.97       |
| xoodyak-sm-6cg  | $\mathbf{LA}$          | 20050.92         | 40101.83  | 1.76                | 0.97       |
| xoodyak-sm-6cg  | HS                     | 20050.92         | 40101.83  | 1.76                | 0.97       |
| xoodyak-sm-6cg  | $_{ m LF}$             | 20048.79         | 40097.59  | 5818.18             | 0.89       |
| xoodyak-sm-6ncg | BC                     | 20315.63         | 40631.25  | 1.86                | 0.95       |
| xoodyak-sm-6ncg | $\mathbf{LA}$          | 20315.63         | 40631.25  | 1.86                | 0.95       |
| xoodyak-sm-6ncg | HS                     | 36983.24         | 73966.48  | 2.37                | 3.55       |
| xoodyak-sm-6ncg | LF                     | 20315.63         | 40631.25  | 5818.18             | 0.88       |

**Table 25:** Raw synthesis results using the FDSOI 28nm standard cell library.

| Candidate     | Implementation     | Corner        | Energy×Area of<br>Auth. (fJ.kGE) | Energy×Area<br>without AD (fJ.kGE) | Energy×Area<br>with AD (fJ.kGE) | AD Cost |
|---------------|--------------------|---------------|----------------------------------|------------------------------------|---------------------------------|---------|
| TinyJAMBU     | tinyjambu-th-128cg | BC            | 0.0441                           | 0.0610                             | 0.0698                          | 0.1447  |
| Subterranean  | subterranean-pm-cg | BC            | 0.0764                           | 0.0779                             | 0.0823                          | 0.0577  |
| Romulus       | romulus-mk-4cg     | BC            | 0.2022                           | 0.2022                             | 0.2022                          | 0       |
| Ascon         | ascon-rp-cg        | $\mathbf{LA}$ | 0.3592                           | 0.3288                             | 0.4401                          | 0.3385  |
| Xoodyak       | xoodyak-sm-1cg     | BC            | 0.4533                           | 0.4590                             | 0.4760                          | 0.0370  |
| DryGASCON     | drygrascon-eh-cg   | BC            | 0.3748                           | 0.3748                             | 0.4842                          | 0.2917  |
| Gimli         | gimli-pm-2cg       | BC            | 0.5273                           | 0.5273                             | 0.5953                          | 0.1290  |
| PHOTON-Beetle | beetle-vl-cg       | BC            | 0.4591                           | 0.4770                             | 0.6558                          | 0.3750  |
| Elephant      | elephant-rh-5ncg   | BC            | 1.6929                           | 1.3515                             | 1.6929                          | 0.2526  |
| Pyjamask      | pyjamask-rn-pcg    | BC            | 25.4045                          | 25.2314                            | 29.8622                         | 0.1835  |

**Table 26:** Minimum energy×area for 16-byte messages on TSMC 65nm.

**Table 27:** Minimum energy×area for 16-byte messages on FDSOI 28nm.

| Candidate     | Implementation      | Corner | Energy×Area of<br>Auth. (fJ.kGE) | Energy×Area<br>without AD (fJ.kGE) | Energy×Area<br>with AD (fJ.kGE) | AD Cost |
|---------------|---------------------|--------|----------------------------------|------------------------------------|---------------------------------|---------|
| Subterranean  | subterranean-pm-ncg | BC     | 0.0508                           | 0.0518                             | 0.0548                          | 0.0577  |
| TinyJAMBU     | tinyjambu-th-128cg  | BC     | 0.0481                           | 0.0665                             | 0.0762                          | 0.1447  |
| Romulus       | romulus-mk-2cg      | BC     | 0.1958                           | 0.1958                             | 0.1958                          | 0       |
| Ascon         | ascon-rp-cg         | BC     | 0.3253                           | 0.2978                             | 0.3986                          | 0.3385  |
| Xoodyak       | xoodyak-sm-1ncg     | BC     | 0.3862                           | 0.3910                             | 0.4055                          | 0.0370  |
| DryGASCON     | drygrascon-eh-cg    | BC     | 0.4873                           | 0.4873                             | 0.6294                          | 0.2917  |
| Gimli         | gimli-pm-2cg        | BC     | 0.5584                           | 0.5584                             | 0.6305                          | 0.1290  |
| PHOTON-Beetle | beetle-vl-cg        | BC     | 0.5190                           | 0.5393                             | 0.7415                          | 0.3750  |
| Elephant      | elephant-rh-5cg     | BC     | 0.9196                           | 0.7342                             | 0.9196                          | 0.2526  |
| Pyjamask      | pyjamask-rn-pcg     | BC     | 43.3898                          | 43.0941                            | 51.0033                         | 0.1835  |

| Candidate     | Implementation     | Corner        | Energy×Area of<br>Auth. (fJ.kGE) | ${f Energy} 	imes {f Area} {f without AD (fJ.kGE)}$ | Energy×Area<br>with AD (fJ.kGE) | AD Cost |
|---------------|--------------------|---------------|----------------------------------|-----------------------------------------------------|---------------------------------|---------|
| Subterranean  | subterranean-pm-cg | BC            | 0.0943                           | 0.0958                                              | 0.1183                          | 0.2344  |
| TinyJAMBU     | tinyjambu-th-128cg | BC            | 0.0730                           | 0.1348                                              | 0.1758                          | 0.3036  |
| Romulus       | romulus-mk-4cg     | BC            | 0.3610                           | 0.3971                                              | 0.5559                          | 0.4000  |
| Xoodyak       | xoodyak-sm-1cg     | BC            | 0.6063                           | 0.6970                                              | 0.8670                          | 0.2439  |
| Ascon         | ascon-rp-cg        | $\mathbf{LA}$ | 0.6020                           | 0.5716                                              | 0.9257                          | 0.6195  |
| Gimli         | gimli-pm-2cg       | BC            | 0.7314                           | 0.7314                                              | 1.0035                          | 0.3721  |
| DryGASCON     | drygrascon-eh-cg   | BC            | 0.7028                           | 0.7028                                              | 1.1401                          | 0.6222  |
| PHOTON-Beetle | beetle-vl-cg       | BC            | 0.9599                           | 1.0672                                              | 1.7469                          | 0.6369  |
| Elephant      | elephant-rh-5cg    | BC            | 1.2932                           | 1.7346                                              | 2.2921                          | 0.3214  |
| Pyjamask      | pyjamask-rn-pcg    | BC            | 38.1284                          | 38.4746                                             | 55.8293                         | 0.4511  |

**Table 28:** Minimum energy×area for 64-byte messages on TSMC 65nm.

**Table 29:** Minimum energy×area for 64-byte messages on FDSOI 28nm.

| Candidate     | Implementation      | Corner | Energy×Area of<br>Auth. (fJ.kGE) | Energy×Area<br>without AD (fJ.kGE) | Energy×Area<br>with AD (fJ.kGE) | AD Cost |
|---------------|---------------------|--------|----------------------------------|------------------------------------|---------------------------------|---------|
| Subterranean  | subterranean-pm-ncg | BC     | 0.0628                           | 0.0637                             | 0.0787                          | 0.2344  |
| TinyJAMBU     | tinyjambu-th-128cg  | BC     | 0.0797                           | 0.1471                             | 0.1917                          | 0.3036  |
| Romulus       | romulus-mk-2cg      | BC     | 0.3637                           | 0.4197                             | 0.5875                          | 0.4000  |
| Xoodyak       | xoodyak-sm-1ncg     | BC     | 0.5165                           | 0.5938                             | 0.7386                          | 0.2439  |
| Ascon         | ascon-rp-cg         | BC     | 0.5452                           | 0.5177                             | 0.8384                          | 0.6195  |
| Gimli         | gimli-pm-2cg        | BC     | 0.7746                           | 0.7746                             | 1.0628                          | 0.3721  |
| DryGASCON     | drygrascon-eh-cg    | BC     | 0.9136                           | 0.9136                             | 1.4821                          | 0.6222  |
| PHOTON-Beetle | beetle-vl-cg        | BC     | 1.0853                           | 1.2066                             | 1.9751                          | 0.6369  |
| Elephant      | elephant-rh-5cg     | BC     | 1.2906                           | 1.7311                             | 2.2875                          | 0.3214  |
| Pyjamask      | pyjamask-rn-pcg     | BC     | 65.1217                          | 65.7130                            | 95.3541                         | 0.4511  |

| Candidate     | Implementation                | Corner                 | Energy×Area of<br>Auth. (fJ.kGE) | Energy×Area<br>without AD (fJ.kGE) | Energy×Area<br>with AD (fJ.kGE) | AD Cost |
|---------------|-------------------------------|------------------------|----------------------------------|------------------------------------|---------------------------------|---------|
| Subterranean  | subterranean-pm-cg            | BC                     | 0.6453                           | 0.6468                             | 1.2202                          | 0.8866  |
| TinyJAMBU     | tinyjambu-th-128cg            | BC                     | 0.9591                           | 2.5008                             | 3.4245                          | 0.3694  |
| Romulus       | romulus-mk-4cg                | BC                     | 4.0143                           | 6.3752                             | 10.1874                         | 0.5980  |
| Gimli         | $\operatorname{gimli-pm-3cg}$ | BC                     | 6.3952                           | 6.3876                             | 12.2562                         | 0.9188  |
| Xoodyak       | xoodyak-sm-1cg                | BC                     | 5.4965                           | 7.9671                             | 13.0273                         | 0.6351  |
| Ascon         | ascon-rp-cg                   | $\mathbf{L}\mathbf{A}$ | 8.0482                           | 8.0178                             | 15.8181                         | 0.9729  |
| DryGASCON     | drygrascon-eh-cg              | BC                     | 10.7611                          | 10.7611                            | 21.2566                         | 0.9753  |
| PHOTON-Beetle | beetle-vl-cg                  | BC                     | 16.3182                          | 19.1681                            | 35.2062                         | 0.8367  |
| Elephant      | elephant-rh-5cg               | BC                     | 15.0461                          | 26.0421                            | 40.3525                         | 0.5495  |
| Pyjamask      | pyjamask-rn-pcg               | BC                     | 428.3273                         | 444.6001                           | 852.1537                        | 0.9167  |

**Table 30:** Minimum energy×area for 1536-byte messages on TSMC 65nm.

**Table 31:** Minimum energy×area for 1536-byte messages on FDSOI 28nm.

| Candidate     | Implementation      | Corner | Energy×Area of<br>Auth. (fJ.kGE) | Energy×Area<br>without AD (fJ.kGE) | Energy×Area<br>with AD (fJ.kGE) | AD Cost |
|---------------|---------------------|--------|----------------------------------|------------------------------------|---------------------------------|---------|
| Subterranean  | subterranean-pm-ncg | BC     | 0.4293                           | 0.4303                             | 0.8118                          | 0.8866  |
| TinyJAMBU     | tinyjambu-th-128cg  | BC     | 1.0461                           | 2.7279                             | 3.7355                          | 0.3694  |
| Romulus       | romulus-mk-4cg      | BC     | 4.3694                           | 6.9392                             | 11.0885                         | 0.5980  |
| Xoodyak       | xoodyak-sm-1ncg     | BC     | 4.6827                           | 6.7875                             | 11.0984                         | 0.6351  |
| Gimli         | gimli-pm-3cg        | BC     | 7.0113                           | 7.0030                             | 13.4370                         | 0.9188  |
| Ascon         | ascon-rp-cg         | BC     | 7.2891                           | 7.2617                             | 14.3263                         | 0.9729  |
| DryGASCON     | drygrascon-eh-cg    | BC     | 13.9890                          | 13.9890                            | 27.6328                         | 0.9753  |
| PHOTON-Beetle | beetle-vl-cg        | BC     | 18.4498                          | 21.6720                            | 39.8050                         | 0.8367  |
| Elephant      | elephant-rh-5cg     | BC     | 15.0155                          | 25.9892                            | 40.2705                         | 0.5495  |
| Pyjamask      | pyjamask-rn-pcg     | BC     | 731.5654                         | 759.3585                           | 1455.4433                       | 0.9167  |

| Candidate     | Implementation     | Corner | Energy of<br>Auth. (pJ) | Energy<br>without AD (pJ) | Energy<br>with AD (pJ) | AD Cost |
|---------------|--------------------|--------|-------------------------|---------------------------|------------------------|---------|
| Subterranean  | subterranean-pm-cg | BC     | 11.45                   | 11.68                     | 12.35                  | 0.0577  |
| TinyJAMBU     | tinyjambu-th-128cg | BC     | 9.34                    | 12.90                     | 14.77                  | 0.1447  |
| Romulus       | romulus-mk-4cg     | BC     | 21.98                   | 21.98                     | 21.98                  | 0       |
| DryGASCON     | drygrascon-eh-cg   | BC     | 24.15                   | 24.15                     | 31.19                  | 0.2917  |
| Gimli         | gimli-pm-3cg       | BC     | 35.80                   | 35.34                     | 39.47                  | 0.1169  |
| Ascon         | ascon-rp-cg        | LA     | 33.42                   | 30.59                     | 40.95                  | 0.3385  |
| Xoodyak       | xoodyak-sm-2cg     | BC     | 43.42                   | 44.20                     | 46.52                  | 0.0526  |
| PHOTON-Beetle | beetle-vl-cg       | BC     | 34.74                   | 36.09                     | 49.63                  | 0.3750  |
| Elephant      | elephant-rh-5cg    | BC     | 63.15                   | 50.42                     | 63.15                  | 0.2526  |
| Pyjamask      | pyjamask-rn-pcg    | BC     | 616.78                  | 612.58                    | 725.01                 | 0.1835  |

 Table 32:
 Minimum energy for 16-byte messages on TSMC 65nm.

 Table 33:
 Minimum energy for 16-byte messages on FDSOI 28nm.

| Candidate     | Implementation      | Corner | Energy of<br>Auth. (pJ) | Energy<br>without AD (pJ) | Energy<br>with AD (pJ) | AD Cost |
|---------------|---------------------|--------|-------------------------|---------------------------|------------------------|---------|
| Subterranean  | subterranean-pm-ncg | BC     | 7.54                    | 7.68                      | 8.13                   | 0.0577  |
| TinyJAMBU     | tinyjambu-th-128cg  | BC     | 10.15                   | 14.02                     | 16.05                  | 0.1447  |
| Romulus       | romulus-mk-4cg      | BC     | 23.78                   | 23.78                     | 23.78                  | 0       |
| Ascon         | ascon-rp-cg         | BC     | 30.81                   | 28.20                     | 37.75                  | 0.3385  |
| Xoodyak       | xoodyak-sm-1ncg     | BC     | 38.16                   | 38.64                     | 40.07                  | 0.0370  |
| DryGASCON     | drygrascon-eh-cg    | BC     | 31.91                   | 31.91                     | 41.21                  | 0.2917  |
| Gimli         | gimli-pm-4cg        | BC     | 39.28                   | 38.73                     | 43.09                  | 0.1127  |
| PHOTON-Beetle | beetle-vl-ncg       | BC     | 38.67                   | 40.18                     | 55.25                  | 0.3750  |
| Elephant      | elephant-rh-5cg     | BC     | 65.43                   | 52.23                     | 65.43                  | 0.2526  |
| Pyjamask      | pyjamask-rn-pcg     | BC     | 1060.96                 | 1053.73                   | 1247.13                | 0.1835  |

| Candidate     | Implementation     | Corner | Energy of<br>Auth. (pJ) | Energy<br>without AD (pJ) | Energy<br>with AD (pJ) | AD Cost |
|---------------|--------------------|--------|-------------------------|---------------------------|------------------------|---------|
| Subterranean  | subterranean-pm-cg | BC     | 14.15                   | 14.37                     | 17.74                  | 0.2344  |
| TinyJAMBU     | tinyjambu-th-128cg | BC     | 15.45                   | 28.53                     | 37.18                  | 0.3036  |
| Romulus       | romulus-mk-4cg     | BC     | 39.26                   | 43.18                     | 60.45                  | 0.4000  |
| Gimli         | gimli-pm- $3cg$    | BC     | 46.81                   | 46.35                     | 61.50                  | 0.3267  |
| DryGASCON     | drygrascon-eh-cg   | BC     | 45.28                   | 45.28                     | 73.45                  | 0.6222  |
| Xoodyak       | xoodyak-sm-2cg     | BC     | 59.70                   | 67.46                     | 86.07                  | 0.2759  |
| Ascon         | ascon-rp-cg        | LA     | 56.01                   | 53.18                     | 86.13                  | 0.6195  |
| PHOTON-Beetle | beetle-vl-cg       | BC     | 72.64                   | 80.76                     | 132.20                 | 0.6369  |
| Elephant      | elephant-rh-5cg    | BC     | 88.63                   | 118.88                    | 157.09                 | 0.3214  |
| Pyjamask      | pyjamask-rn-pcg    | BC     | 925.70                  | 934.10                    | 1355.45                | 0.4511  |

 Table 34:
 Minimum energy for 64-byte messages on TSMC 65nm.

 Table 35:
 Minimum energy for 64-byte messages on FDSOI 28nm.

| Candidate     | Implementation                | Corner        | Energy of<br>Auth. (pJ) | Energy<br>without AD (pJ) | Energy<br>with AD (pJ) | AD Cost |
|---------------|-------------------------------|---------------|-------------------------|---------------------------|------------------------|---------|
| Subterranean  | subterranean-pm-cg            | BC            | 14.15                   | 14.37                     | 17.74                  | 0.2344  |
| TinyJAMBU     | tinyjambu-th-128cg            | BC            | 15.45                   | 28.53                     | 37.18                  | 0.3036  |
| Romulus       | romulus-mk-4cg                | BC            | 39.26                   | 43.18                     | 60.45                  | 0.4000  |
| Gimli         | $\operatorname{gimli-pm-3cg}$ | BC            | 46.81                   | 46.35                     | 61.50                  | 0.3267  |
| DryGASCON     | drygrascon-eh-cg              | BC            | 45.28                   | 45.28                     | 73.45                  | 0.6222  |
| Xoodyak       | xoodyak-sm-2cg                | BC            | 59.70                   | 67.46                     | 86.07                  | 0.2759  |
| Ascon         | ascon-rp-cg                   | $\mathbf{LA}$ | 56.01                   | 53.18                     | 86.13                  | 0.6195  |
| PHOTON-Beetle | beetle-vl-cg                  | BC            | 72.64                   | 80.76                     | 132.20                 | 0.6369  |
| Elephant      | elephant-rh-5cg               | BC            | 88.63                   | 118.88                    | 157.09                 | 0.3214  |
| Pyjamask      | pyjamask-rn-pcg               | BC            | 925.70                  | 934.10                    | 1355.45                | 0.4511  |

| Candidate     | Implementation     | Corner | Energy of<br>Auth. (pJ) | Energy<br>without AD (pJ) | Energy<br>with AD (pJ) | AD Cost |
|---------------|--------------------|--------|-------------------------|---------------------------|------------------------|---------|
| Subterranean  | subterranean-pm-cg | BC     | 96.80                   | 97.02                     | 183.04                 | 0.8866  |
| TinyJAMBU     | tinyjambu-th-128cg | BC     | 202.90                  | 529.07                    | 724.50                 | 0.3694  |
| Gimli         | gimli-pm- $3cg$    | BC     | 384.58                  | 384.12                    | 737.04                 | 0.9188  |
| Romulus       | romulus-mk-8cg     | BC     | 443.98                  | 633.34                    | 1052.84                | 0.6624  |
| Xoodyak       | xoodyak-sm-2cg     | BC     | 575.32                  | 778.47                    | 1312.70                | 0.6863  |
| DryGASCON     | drygrascon-eh-cg   | BC     | 693.22                  | 693.22                    | 1369.34                | 0.9753  |
| Ascon         | ascon-rp-cg        | LA     | 748.81                  | 745.98                    | 1471.73                | 0.9729  |
| PHOTON-Beetle | beetle-vl-cg       | BC     | 1234.87                 | 1450.54                   | 2664.21                | 0.8367  |
| Elephant      | elephant-rh-5ncg   | BC     | 1708.97                 | 2957.93                   | 4583.35                | 0.5495  |
| Pyjamask      | pyjamask-rn-pcg    | BC     | 10399.13                | 10794.21                  | 20688.99               | 0.9167  |

 Table 36:
 Minimum energy for 1536-byte messages on TSMC 65nm.

 Table 37:
 Minimum energy for 1536-byte messages on FDSOI 28nm.

| Candidate     | Implementation      | Corner | Energy of<br>Auth. (pJ) | Energy<br>without AD (pJ) | Energy<br>with AD (pJ) | AD Cost |
|---------------|---------------------|--------|-------------------------|---------------------------|------------------------|---------|
| Subterranean  | subterranean-pm-ncg | BC     | 63.68                   | 63.83                     | 120.42                 | 0.8866  |
| TinyJAMBU     | tinyjambu-th-128cg  | BC     | 220.52                  | 575.02                    | 787.43                 | 0.3694  |
| Gimli         | gimli-pm-3cg        | BC     | 421.86                  | 421.36                    | 808.48                 | 0.9188  |
| Xoodyak       | xoodyak-sm-1ncg     | BC     | 462.73                  | 670.72                    | 1096.71                | 0.6351  |
| Romulus       | romulus-mk-8cg      | BC     | 479.44                  | 683.92                    | 1136.94                | 0.6624  |
| Ascon         | ascon-rp-cg         | BC     | 690.34                  | 687.74                    | 1356.82                | 0.9729  |
| DryGASCON     | drygrascon-eh-cg    | BC     | 916.01                  | 916.01                    | 1809.42                | 0.9753  |
| Elephant      | elephant-rh-5cg     | BC     | 1068.30                 | 1849.05                   | 2865.12                | 0.5495  |
| PHOTON-Beetle | beetle-vl-ncg       | BC     | 1374.65                 | 1614.73                   | 2965.77                | 0.8367  |
| Pyjamask      | pyjamask-rn-pcg     | BC     | 17888.16                | 18567.76                  | 35588.36               | 0.9167  |

 $|_{4}^{54}$ 

| Candidate     | Implementation                | Corner | Throughput of<br>Auth. (Gbps) | Throughput<br>without AD (Gbps) | Throughput<br>with AD (Gbps) | AD Efficiency |
|---------------|-------------------------------|--------|-------------------------------|---------------------------------|------------------------------|---------------|
| Subterranean  | subterranean-pm-ncg           | BC     | 5.84                          | 5.72                            | 10.82                        | 0.8909        |
| Romulus       | romulus-mk-8ncg               | BC     | 3.59                          | 3.59                            | 7.17                         | 1             |
| Xoodyak       | xoodyak-sm-12ncg              | BC     | 3.82                          | 3.72                            | 6.88                         | 0.8500        |
| DryGASCON     | drygrascon-eh-cg              | BC     | 3.70                          | 3.70                            | 5.73                         | 0.5484        |
| Gimli         | $\operatorname{gimli-pm-8cg}$ | BC     | 2.69                          | 2.58                            | 4.80                         | 0.8649        |
| TinyJAMBU     | tiny jambu-th-128 ncg         | BC     | 3.69                          | 2.67                            | 4.67                         | 0.7471        |
| Ascon         | ascon-rp-ncg                  | LA     | 2.54                          | 2.77                            | 4.14                         | 0.4943        |
| PHOTON-Beetle | beetle-vl-ncg                 | BC     | 2.77                          | 2.67                            | 3.88                         | 0.4545        |
| Elephant      | elephant-rh-5ncg              | BC     | 1.49                          | 1.87                            | 2.99                         | 0.5966        |
| Pyjamask      | pyjamask-rn-pncg              | BC     | 0.35                          | 0.35                            | 0.60                         | 0.6899        |

 Table 38: Maximum throughput for 16-byte messages on TSMC 65nm.

 Table 39: Maximum throughput for 16-byte messages on FDSOI 28nm.

| Candidate     | Implementation      | Corner | Throughput of<br>Auth. (Gbps) | Throughput<br>without AD (Gbps) | Throughput<br>with AD (Gbps) | AD Efficiency |
|---------------|---------------------|--------|-------------------------------|---------------------------------|------------------------------|---------------|
| Subterranean  | subterranean-pm-ncg | BC     | 3.14                          | 3.08                            | 5.82                         | 0.8909        |
| Xoodyak       | xoodyak-sm-12cg     | BC     | 2.02                          | 1.97                            | 3.64                         | 0.8500        |
| Romulus       | romulus-mk-8cg      | BC     | 1.65                          | 1.65                            | 3.29                         | 1             |
| Gimli         | gimli-pm-8ncg       | BC     | 1.59                          | 1.52                            | 2.84                         | 0.8649        |
| DryGASCON     | drygrascon-eh-ncg   | BC     | 1.68                          | 1.68                            | 2.60                         | 0.5484        |
| TinyJAMBU     | tinyjambu-th-128cg  | BC     | 1.70                          | 1.23                            | 2.15                         | 0.7471        |
| Ascon         | ascon-rp-cg         | BC     | 1.11                          | 1.21                            | 1.81                         | 0.4943        |
| PHOTON-Beetle | beetle-vl-ncg       | BC     | 1.22                          | 1.18                            | 1.71                         | 0.4545        |
| Elephant      | elephant-rh-5cg     | BC     | 0.68                          | 0.85                            | 1.35                         | 0.5966        |
| Pyjamask      | pyjamask-rn-pcg     | BC     | 0.11                          | 0.11                            | 0.19                         | 0.6899        |

| Candidate     | Implementation      | Corner | Throughput of<br>Auth. (Gbps) | Throughput<br>without AD (Gbps) | Throughput<br>with AD (Gbps) | AD Efficiency |
|---------------|---------------------|--------|-------------------------------|---------------------------------|------------------------------|---------------|
| Subterranean  | subterranean-pm-ncg | BC     | 18.90                         | 18.60                           | 30.14                        | 0.6203        |
| Xoodyak       | xoodyak-sm-12ncg    | BC     | 10.59                         | 9.66                            | 14.49                        | 0.5000        |
| Gimli         | gimli-pm-8cg        | BC     | 7.90                          | 7.65                            | 11.66                        | 0.5246        |
| Romulus       | romulus-mk-8ncg     | BC     | 8.37                          | 8.03                            | 11.47                        | 0.4286        |
| DryGASCON     | drygrascon-eh-cg    | BC     | 7.90                          | 7.90                            | 9.74                         | 0.2329        |
| Ascon         | ascon-rp-ncg        | LA     | 6.06                          | 6.38                            | 7.88                         | 0.2350        |
| TinyJAMBU     | tinyjambu-th-128ncg | BC     | 8.93                          | 4.84                            | 7.42                         | 0.5342        |
| PHOTON-Beetle | beetle-vl-ncg       | BC     | 5.30                          | 4.77                            | 5.82                         | 0.2218        |
| Pyjamask      | pyjamask-rn-pncg    | BC     | 0.94                          | 0.93                            | 1.28                         | 0.3783        |

Table 40: Maximum throughput for 64-byte messages on TSMC 65nm.

 Table 41: Maximum throughput for 64-byte messages on FDSOI 28nm.

| Candidate     | Implementation      | Corner | Throughput of<br>Auth. (Gbps) | Throughput<br>without AD (Gbps) | Throughput<br>with AD (Gbps) | AD Efficiency |
|---------------|---------------------|--------|-------------------------------|---------------------------------|------------------------------|---------------|
| Subterranean  | subterranean-pm-ncg | BC     | 10.16                         | 10                              | 16.20                        | 0.6203        |
| Xoodyak       | xoodyak-sm-12cg     | BC     | 5.59                          | 5.10                            | 7.66                         | 0.5000        |
| Gimli         | gimli-pm-8ncg       | BC     | 4.66                          | 4.51                            | 6.88                         | 0.5246        |
| Romulus       | romulus-mk-8cg      | BC     | 3.84                          | 3.69                            | 5.27                         | 0.4286        |
| DryGASCON     | drygrascon-eh-ncg   | BC     | 3.58                          | 3.58                            | 4.41                         | 0.2329        |
| Ascon         | ascon-rp-cg         | BC     | 2.64                          | 2.78                            | 3.43                         | 0.2350        |
| PHOTON-Beetle | beetle-vl-ncg       | BC     | 2.34                          | 2.10                            | 2.57                         | 0.2218        |
| Elephant      | elephant-rh-5cg     | BC     | 1.93                          | 1.44                            | 2.18                         | 0.5135        |
| Pyjamask      | pyjamask-rn-pcg     | BC     | 0.30                          | 0.30                            | 0.42                         | 0.3783        |

| Candidate     | Implementation                | Corner | Throughput of<br>Auth. (Gbps) | Throughput<br>without AD (Gbps) | Throughput<br>with AD (Gbps) | AD Efficiency |
|---------------|-------------------------------|--------|-------------------------------|---------------------------------|------------------------------|---------------|
| Subterranean  | subterranean-pm-ncg           | BC     | 66.30                         | 66.15                           | 70.13                        | 0.0601        |
| Xoodyak       | xoodyak-sm-12ncg              | BC     | 23.94                         | 19.75                           | 22.24                        | 0.1263        |
| Gimli         | $\operatorname{gimli-pm-8cg}$ | BC     | 20.66                         | 20.59                           | 21.41                        | 0.0402        |
| Romulus       | romulus-mk-8ncg               | BC     | 18.97                         | 13.30                           | 16.00                        | 0.2031        |
| DryGASCON     | drygrascon-eh-cg              | BC     | 12.39                         | 12.39                           | 12.54                        | 0.0125        |
| Ascon         | ascon-rp-ncg                  | LA     | 10.88                         | 10.92                           | 11.07                        | 0.0138        |
| TinyJAMBU     | tinyjambu-th-128ncg           | BC     | 16.32                         | 6.26                            | 9.14                         | 0.4605        |
| PHOTON-Beetle | beetle-vl-ncg                 | BC     | 7.48                          | 6.37                            | 6.94                         | 0.0889        |
| Elephant      | elephant-rh-5ncg              | BC     | 8.78                          | 5.07                            | 6.55                         | 0.2907        |
| Pyjamask      | pyjamask-rn-pncg              | BC     | 2.00                          | 1.93                            | 2.01                         | 0.0435        |

 Table 42: Maximum throughput for 1536-byte messages on TSMC 65nm.

 Table 43: Maximum throughput for 1536-byte messages on FDSOI 28nm.

| Candidate     | Implementation      | Corner | Throughput of<br>Auth. (Gbps) | Throughput<br>without AD (Gbps) | Throughput<br>with AD (Gbps) | AD Efficiency |
|---------------|---------------------|--------|-------------------------------|---------------------------------|------------------------------|---------------|
| Subterranean  | subterranean-pm-ncg | BC     | 35.64                         | 35.56                           | 37.69                        | 0.0601        |
| Gimli         | gimli-pm-8ncg       | BC     | 12.19                         | 12.15                           | 12.64                        | 0.0402        |
| Xoodyak       | xoodyak-sm-12cg     | BC     | 12.65                         | 10.44                           | 11.75                        | 0.1263        |
| Romulus       | romulus-mk-8cg      | BC     | 8.72                          | 6.11                            | 7.35                         | 0.2031        |
| DryGASCON     | drygrascon-eh-ncg   | BC     | 5.61                          | 5.61                            | 5.68                         | 0.0125        |
| Ascon         | ascon-rp-cg         | BC     | 4.74                          | 4.76                            | 4.82                         | 0.0138        |
| TinyJAMBU     | tinyjambu-th-128cg  | BC     | 7.51                          | 2.88                            | 4.20                         | 0.4605        |
| PHOTON-Beetle | beetle-vl-ncg       | BC     | 3.30                          | 2.81                            | 3.06                         | 0.0889        |
| Elephant      | elephant-rh-5cg     | BC     | 3.98                          | 2.30                            | 2.97                         | 0.2907        |
| Pyjamask      | pyjamask-rn-pcg     | BC     | 0.65                          | 0.63                            | 0.65                         | 0.0435        |



Figure 34: Throughput vs. Area for |A| = 16 bytes on TSMC 65nm.



Figure 35: Throughput vs. Area for |A| = 64 bytes on TSMC 65nm.



Figure 36: Throughput vs. Area for |A| = 1536 bytes on TSMC 65nm.



Figure 37: Throughput vs. Area for |M| = 16 bytes on TSMC 65nm.



Figure 38: Throughput vs. Area for |M| = 64 bytes on TSMC 65nm.



Figure 39: Throughput vs. Area for |M| = 1536 bytes on TSMC 65nm.



Figure 40: Throughput vs. Area for |A| = |M| = 16 bytes on TSMC 65nm.



Figure 41: Throughput vs. Area for |A| = |M| = 64 bytes on TSMC 65nm.



Figure 42: Throughput vs. Area for |A| = |M| = 1536 bytes on TSMC 65nm.



**Figure 43:** Energy vs. Area for |A| = 16 bytes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



**Figure 44:** Energy vs. Area for |A| = 64 bytes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



**Figure 45:** Energy vs. Area for |A| = 1536 bytes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 9000$  pJ.



Figure 46: Energy vs. Area for |M| = 16 by tes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



Figure 47: Energy vs. Area for |M| = 64 bytes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



**Figure 48:** Energy vs. Area for |M| = 1536 bytes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 9000$  pJ.


**Figure 49:** Energy vs. Area for |A| = |M| = 16 bytes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



**Figure 50:** Energy vs. Area for |A| = |M| = 64 bytes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



Figure 51: Energy vs. Area for |A| = |M| = 1536 bytes on TSMC 65nm. The energy axis follows a log scale for values  $\ge 9000$  pJ.



Figure 52: Throughput vs. Power for |A| = 16 bytes on TSMC 65nm.



Figure 53: Throughput vs. Power for |A| = 64 bytes on TSMC 65nm.



Figure 54: Throughput vs. Power for |A| = 1536 bytes on TSMC 65nm.



Figure 55: Throughput vs. Power for |M| = 16 bytes on TSMC 65nm.



Figure 56: Throughput vs. Power for |M| = 64 bytes on TSMC 65nm.



Figure 57: Throughput vs. Power for |M| = 1536 bytes on TSMC 65nm.



Figure 58: Throughput vs. Power for |A| = |M| = 16 bytes on TSMC 65nm.



Figure 59: Throughput vs. Power for |A| = |M| = 64 bytes on TSMC 65nm.



Figure 60: 3 Mbps: Throughput vs. Area for |A| = 16 bytes on TSMC 65nm.



Figure 61: 3 Mbps: Throughput vs. Area for |A| = 64 bytes on TSMC 65nm.



Figure 62: 3 Mbps: Throughput vs. Area for |A| = 1536 bytes on TSMC 65nm.



Figure 63: 3 Mbps: Throughput vs. Area for |M| = 16 bytes on TSMC 65nm.



Figure 64: 3 Mbps: Throughput vs. Area for |M| = 64 bytes on TSMC 65nm.



Figure 65: 3 Mbps: Throughput vs. Area for |M| = 1536 bytes on TSMC 65nm.



Figure 66: 3 Mbps: Throughput vs. Area for |A| = |M| = 16 bytes on TSMC 65nm.



Figure 67: 3 Mbps: Throughput vs. Area for |A| = |M| = 64 bytes on TSMC 65nm.



Figure 68: 3 Mbps: Throughput vs. Area for |A| = |M| = 1536 bytes on TSMC 65nm.



Figure 69: 3 Mbps: Energy vs. Area for |A| = 16 by tes on TSMC 65nm.



Figure 70: 3 Mbps: Energy vs. Area for |A| = 64 bytes on TSMC 65nm.



Figure 71: 3 Mbps: Energy vs. Area for |A| = 1536 bytes on TSMC 65nm.



Figure 72: 3 Mbps: Energy vs. Area for |M| = 16 bytes on TSMC 65nm.



Figure 73: 3 Mbps: Energy vs. Area for |M| = 64 bytes on TSMC 65nm.



Figure 74: 3 Mbps: Energy vs. Area for |M| = 1536 bytes on TSMC 65nm.



Figure 75: 3 Mbps: Energy vs. Area for |A| = |M| = 16 bytes on TSMC 65nm.



Figure 76: 3 Mbps: Energy vs. Area for |A| = |M| = 64 bytes on TSMC 65nm.



Figure 77: 3 Mbps: Energy vs. Area for |A| = |M| = 1536 by tes on TSMC 65nm.



Figure 78: 3 Mbps: Throughput vs. Power for |A| = 16 bytes on TSMC 65nm.



Figure 79: 3 Mbps: Throughput vs. Power for |A| = 64 bytes on TSMC 65nm.



Figure 80: 3 Mbps: Throughput vs. Power for |A| = 1536 bytes on TSMC 65nm.



Figure 81: 3 Mbps: Throughput vs. Power for |M| = 16 bytes on TSMC 65nm.



Figure 82: 3 Mbps: Throughput vs. Power for |M| = 64 bytes on TSMC 65nm.



Figure 83: 3 Mbps: Throughput vs. Power for |M| = 1536 bytes on TSMC 65nm.



Figure 84: 3 Mbps: Throughput vs. Power for |A| = |M| = 16 bytes on TSMC 65nm.


Figure 85: 3 Mbps: Throughput vs. Power for |A| = |M| = 64 bytes on TSMC 65nm.



Figure 86: 3 Mbps: Throughput vs. Power for |A| = |M| = 1536 bytes on TSMC 65nm.



Figure 87: Throughput vs. Area for |A| = 16 bytes on FDSOI 28nm.



Figure 88: Throughput vs. Area for |A| = 64 bytes on FDSOI 28nm.



Figure 89: Throughput vs. Area for |A| = 1536 bytes on FDSOI 28nm.



Figure 90: Throughput vs. Area for |M| = 16 bytes on FDSOI 28nm.



Figure 91: Throughput vs. Area for |M| = 64 bytes on FDSOI 28nm.



Figure 92: Throughput vs. Area for |M| = 1536 bytes on FDSOI 28nm.



Figure 93: Throughput vs. Area for |A| = |M| = 16 bytes on FDSOI 28nm.



Figure 94: Throughput vs. Area for |A| = |M| = 64 bytes on FDSOI 28nm.



Figure 95: Throughput vs. Area for |A| = |M| = 1536 bytes on FDSOI 28nm.



**Figure 96:** Energy vs. Area for |A| = 16 bytes on FDSOI 28nm. The energy axis follows a log scale for values  $\ge 900$  pJ on FDSOI 28nm.



**Figure 97:** Energy vs. Area for |A| = 64 bytes on FDSOI 28nm. The energy axis follows a log scale for values  $\ge 900$  pJ on FDSOI 28nm.



**Figure 98:** Energy vs. Area for |A| = 1536 bytes. The energy axis follows a log scale for values  $\ge 9000$  pJ on FDSOI 28nm.



**Figure 99:** Energy vs. Area for |M| = 16 bytes on FDSOI 28nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



Figure 100: Energy vs. Area for |M| = 64 bytes on FDSOI 28nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



Figure 101: Energy vs. Area for |M| = 1536 by tes on FDSOI 28nm. The energy axis follows a log scale for values  $\ge 9000$  pJ.



Figure 102: Energy vs. Area for |A| = |M| = 16 bytes on FDSOI 28nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



Figure 103: Energy vs. Area for |A| = |M| = 64 bytes on FDSOI 28nm. The energy axis follows a log scale for values  $\ge 900$  pJ.



**Figure 104:** Energy vs. Area for |A| = |M| = 1536 bytes on FDSOI 28nm. The energy axis follows a log scale for values  $\ge 9000$  pJ.



Figure 105: Throughput vs. Power for |A| = 16 bytes on FDSOI 28nm.



Figure 106: Throughput vs. Power for |A| = 64 bytes on FDSOI 28nm.



Figure 107: Throughput vs. Power for |A| = 1536 bytes on FDSOI 28nm.



Figure 108: Throughput vs. Power for |M| = 16 bytes on FDSOI 28nm.



Figure 109: Throughput vs. Power for |M| = 64 bytes on FDSOI 28nm.



Figure 110: Throughput vs. Power for |M| = 1536 bytes on FDSOI 28nm.



Figure 111: Throughput vs. Power for |A| = |M| = 16 bytes on FDSOI 28nm.



Figure 112: Throughput vs. Power for |A| = |M| = 64 bytes on FDSOI 28nm.



Figure 113: 3 Mbps: Throughput vs. Area for |A| = 16 bytes on FDSOI 28nm.



Figure 114: 3 Mbps: Throughput vs. Area for |A| = 64 bytes on FDSOI 28nm.



Figure 115: 3 Mbps: Throughput vs. Area for |A| = 1536 bytes on FDSOI 28nm.



Figure 116: 3 Mbps: Throughput vs. Area for |M| = 16 bytes on FDSOI 28nm.



Figure 117: 3 Mbps: Throughput vs. Area for |M| = 64 bytes on FDSOI 28nm.



Figure 118: 3 Mbps: Throughput vs. Area for |M| = 1536 bytes on FDSOI 28nm.



Figure 119: 3 Mbps: Throughput vs. Area for |A| = |M| = 16 bytes on FDSOI 28nm.



Figure 120: 3 Mbps: Throughput vs. Area for |A| = |M| = 64 bytes on FDSOI 28nm.


Figure 121: 3 Mbps: Throughput vs. Area for |A| = |M| = 1536 bytes on FDSOI 28nm.



Figure 122: 3 Mbps: Energy vs. Area for |A| = 16 bytes on FDSOI 28nm.



Figure 123: 3 Mbps: Energy vs. Area for |A| = 64 bytes on FDSOI 28nm.



Figure 124: 3 Mbps: Energy vs. Area for |A| = 1536 bytes on FDSOI 28nm.



Figure 125: 3 Mbps: Energy vs. Area for |M| = 16 bytes on FDSOI 28nm.



Figure 126: 3 Mbps: Energy vs. Area for |M| = 64 bytes on FDSOI 28nm.



Figure 127: 3 Mbps: Energy vs. Area for |M| = 1536 bytes on FDSOI 28nm.



Figure 128: 3 Mbps: Energy vs. Area for |A| = |M| = 16 bytes on FDSOI 28nm.



Figure 129: 3 Mbps: Energy vs. Area for |A| = |M| = 64 bytes on FDSOI 28nm.



Figure 130: 3 Mbps: Energy vs. Area for |A| = |M| = 1536 bytes on FDSOI 28nm.



**Figure 131:** 3 Mbps: Throughput vs. Power for |A| = 16 bytes on FDSOI 28nm.



**Figure 132:** 3 Mbps: Throughput vs. Power for |A| = 64 bytes on FDSOI 28nm.



Figure 133: 3 Mbps: Throughput vs. Power for |A| = 1536 bytes on FDSOI 28nm.



Figure 134: 3 Mbps: Throughput vs. Power for |M| = 16 bytes on FDSOI 28nm.



Figure 135: 3 Mbps: Throughput vs. Power for |M| = 64 bytes on FDSOI 28nm.



Figure 136: 3 Mbps: Throughput vs. Power for |M| = 1536 bytes on FDSOI 28nm.



Figure 137: 3 Mbps: Throughput vs. Power for |A| = |M| = 16 bytes on FDSOI 28nm.



Figure 138: 3 Mbps: Throughput vs. Power for |A| = |M| = 64 bytes on FDSOI 28nm.



Figure 139: 3 Mbps: Throughput vs. Power for |A| = |M| = 1536 bytes on FDSOI 28nm.