How to Abuse and Fix Authenticated Encryption Without Key Commitment

Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx, and Sophie Schmieg

1Security Engineering Research, Google
2University of Haifa
3Amazon

Abstract
Authenticated encryption (AE) is used in a wide variety of applications, potentially in settings for which it was not originally designed. Recent research tries to understand what happens when AE is not used as prescribed by its designers. A question given relatively little attention is whether an AE scheme guarantees "key commitment": ciphertext should only decrypt to a valid plaintext under the key used to generate the ciphertext. Generally, AE schemes do not guarantee key commitment as it is not part of AE's design goal. Nevertheless, one would not expect this seemingly obscure property to have much impact on the security of actual products. In reality, however, products do rely on key commitment. We discuss three recent applications where missing key commitment is exploitable in practice. We provide proof-of-concept attacks via a tool that constructs AES-GCM ciphertext which can be decrypted to two plaintexts valid under a wide variety of file formats, such as PDF, Windows executables, and DICOM. Finally we discuss two solutions to add key commitment to AE schemes which have not been analyzed in the literature: a generic approach that adds an explicit key commitment scheme to the AE scheme, and a simple fix which works for AE schemes like AES-GCM and ChaCha20Poly1305, but requires separate analysis for each scheme.

1 Introduction

Authenticated Encryption. Symmetric-key encryption (SKE) has been the source of many attacks over the years. The main culprit is the use of malleable, unauthenticated schemes like CBC, and their susceptibility to padding oracle [Vau02] and related attacks. Such attacks are found as frequently against systems designed in the 90’s as they are today; recent research [FIM20] shows that CBC continues to be an attack vector.

Beck et al. [BZG20] cite flaws in Apple iMessage, OpenPGP, and PDF encryption as examples to argue that practitioners are often only convinced that unauthenticated SKE is insecure when they see a proof-of-concept exploit. Similar efforts are deemed necessary to demonstrate the exploitability of cryptographic algorithms such as SHA-1 [SBK+17].

The vast majority of applications should default to using authenticated encryption (AE) [BN00, KY00], a well-studied primitive which avoids the pitfalls of unauthenticated SKE with relatively small performance overhead. AE schemes are used in widely adopted protocols like TLS [Res18], standardized by NIST [NIS07a,NIS07b] and ISO [ISO09], and are the default SKE option in modern cryptographic libraries such as NaCl [nac] and Tink [tin].

With AE more widely used, recent research focuses on its security guarantees in settings which push the boundaries and assumptions of conventional AE, such as understanding nonces [RS06], multiple decryption errors [BDPS13], unverified plaintext [ABL+14], side channel leakage [BMOS17], multi-user attacks [BT16], boundary hiding [BDPS12], streaming AE [HRRV15], and variable-length tags [RVV16]. Furthermore, constructions and security models have received additional scrutiny due to two recent competitions focusing on AE: CAESAR [CAE14] and the NIST lightweight cryptography competition [nis].

Key Commitment. Among the extended, desirable properties explored is the relatively little-studied idea of AE key commitment, which we intuitively explain as follows.

One of the defining design goals of AE is ciphertext integrity: if recipient A decrypts a ciphertext with the key \(K_A \) into a valid plaintext, meaning authentication succeeds, then A knows that the ciphertext has not been modified during transmission. Intuitively, one might mistakenly extend that integrity guarantee to keys, i.e., if some other recipient B decrypts the same ciphertext with their key \(K_B \), then decryption would fail. However, this is neither an AE design goal, nor a guaranteed property, and there are secure and globally deployed AE schemes where both recipients can successfully decrypt the same ciphertext.

Key commitment guarantees that a ciphertext \(C \) can only be decrypted under the same key used to produce \(C \) from some
plaintext. Schemes where it is possible to find a ciphertext which decrypts to valid plaintexts under two different keys do not commit to the key.

Initially studied and formalized for AE by Farshim et al. [FOR17] under the name “robustness”, key commitment might seem like an academic pursuit. Yet Dodis et al. [DGRW18] and Grubbs et al. [GLR17a] show how to exploit AE schemes which do not commit to the key in the context of abuse reporting in Facebook Messenger. Nevertheless, AE key commitment has not received much attention and the concept can be overlooked during deployment.

1.1 Contributions

Facebook Messenger might seem like a niche use of AE which implicitly relies on key commitment, and was exploitable. However, we show that is not the case. We conduct a thorough study of AE key commitment to understand:

What settings or products are vulnerable to attacks that exploit AE schemes which do not commit to the key?

We found three settings in the past year: key rotation in key management services, envelope encryption, and Subscribe with Google [Albb] (see Section 2). In concurrent work, Len et al. [LGR] found another. We expect there to be more.

How easy is it to exploit lack of key commitment in practice?

We study deployed and standardized AE schemes — such as AES-GCM, AES-GCM-SIV, ChaCha20Poly1305, OCB — summarize known key commitment attacks, and introduce new ones. The cryptographic attacks place restrictions on adversarially generated plaintext and ciphertext (see Section 3.4); we exploit this by using binary polyglots, files which are valid in two different file formats. Whereas Dodis et al. [DGRW18] demonstrate binary polyglots for JPEG and BMP, we do the same for many other pairs of file formats: we create a tool1 to mix files of specific file formats which support and identifies more than 40 formats, then tries to combine the input contents following various layouts, resulting in working binary polyglots made of more than 250 format combinations (see Section 4). Combined with another tool we made, we demonstrate how to turn the binary polyglot into AES-GCM ciphertext.

Are there simple and efficient ways to add key commitment to AE schemes?

Farshim et al. [FOR17], Grubbs et al. [GLR17a], and Dodis et al. [DGRW18] present both generic and optimized encryption algorithms which include key commitment. However, none achieve the efficiency of AES-GCM, and require changes to the cryptographic algorithms used2.

We propose simple solutions which have not been analyzed in the literature — amounting to black-box use of the AE schemes, with one additional block output — and analyze their security. One solution simply prepends a constant block of all zero’s to the plaintext and encrypts the padded plaintext as normal; decryption looks for the presence of a leading block of zero’s to verify the correct key was used (similarly, Krawczyk [Kra19, Section 3.1.1], too, proposed padding the last block in GCM). This padding solution does not necessarily work for any AE scheme and must be analyzed on a case-by-case basis, which we do for AES-GCM and ChaCha20Poly1305.

Another solution applies a generic composition to any given AE: the scheme’s key is first used to derive a key commitment string and an encryption key; the encryption key is then used in the underlying AE scheme; the scheme outputs the ciphertext and the commitment string.

An instantiation of our generic composition is already publicly deployed as part of the latest version (2.0) of the AWS Encryption SDK [AWSa], an open source client-side encryption library. Key commitment is included in its default configuration. More details can be found in [Tri].

1.2 How to choose a fix

If your setting cannot tolerate ciphertext expansion, or needs a compact commitment, that is, where just a substring of the ciphertext (like the tag) must suffice to prevent key commitment attacks, then you must rely on prior solutions such as those proposed by Farshim et al. [FOR17], Grubbs et al. [GLR17a], and Dodis et al. [DGRW18]. Such compact commitments could also be useful to produce compact audit trails, where just the tag of a ciphertext is stored instead of the full ciphertext.

If your setting can tolerate a small amount of ciphertext expansion and does not need a compact commitment, then:

1. If you are using AES-GCM or ChaCha20+Poly1305 and cannot easily change algorithms or need a quick fix, use the padding fix (Section 5.3) and prepend 2^κ zeroes for κ bits of security against key commitment attacks, e.g. 256 zeroes for 128 bits of security.

2. Otherwise use our generic solution which works with any AE scheme. We give a sample instantiation in Section 5.4 and Appendix E achieving 128-bit security.

2 Real-World Settings

We highlight real-world scenarios where lack of AE key commitment could lead to vulnerabilities. These attacks do not making Facebook Messenger vulnerable to attack, despite the fact that Grubbs et al. [GLR17a] had already proposed secure alternatives.
break any properties of the underlying AE scheme, but rely on the fact that their applications implicitly assume that the schemes are key committing. Vulnerabilities found as a result of this work have been responsibly disclosed.\(^3\)

Key Rotation. A key management service (KMS) creates, removes, controls access to, and audits use of cryptographic keys. In such a service users typically identify and access cryptographic keys through URIs. An important feature of KMS’s is key rotation, where keys are updated to limit the amount of data encrypted under a single key and reduce damage in case of a compromise.

After key rotation, the old key should still be available to decrypt old ciphertext but not be used to encrypt new data. Therefore different versions of a key exist simultaneously and versions, a solution relying on (2) can still cause a decryption of C to the malicious file M'. This gives the adversary a simple trigger to enable/disable when the ciphertext should be decrypted to harmful content. The user will not detect that a different key was used, as the decryption is authentic.

Envelope Encryption. Envelope encryption is the term used by cloud service providers to describe the process where data is encrypted with a symmetric key, which in turn is encrypted under multiple symmetric or asymmetric recipient keys (i.e. a KEM). All major cloud service providers use envelope encryption, and typically use an AE scheme like AES-GCM for the symmetric encryption; see for example AWS [awsb] and Google Cloud [goo].

Envelope encryption users often — intuitively — expect that if the recipients receive the same ciphertext, then all will decrypt to the same plaintext. However this expectation is false: cloud services without key commitment can fall victim to attacks, where the same ciphertext will decrypt to different plaintexts under different keys. The AWS encryption SDK was vulnerable to this and as a result added the option for a key commitment [Tri].

The encryption of a message for two users can be summarized as follows. First, a random data encryption key K\(_{DEK}\) is generated and wrapped by the two users’ keys which are provided through the encrypt API. Next, a per-message AES-GCM key K is derived using HKDF from K\(_{DEK}\), a randomly generated message ID and fixed algorithm ID. A header is formed from the wrapped keys, the encryption context and other metadata. The header is authenticated using AES-GMAC with K and zero IV. The message M is then encrypted using AES-GCM with K, non-zero IV and fixed associated data. In the end this gives us a ciphertext which consists of a header H, header tag H\(_T\), encrypted message C and authentication tag T. To decrypt, the SDK loops over the wrapped keys and returns the first one which it can successfully unwrap, which is then used to decrypt the ciphertext and obtain the message.

An attacker which wants to send different messages M, M' to two recipients, can do so by exploiting the lack of key commitment in GCM/GMAC. The attacker generates a random pair of (K\(_{DEK}\), K\(_{DEK}'\)), derives (K, K') and encrypts (M, M') such that they form a single ciphertext C with a single valid authentication tag T (see Section 3.4 for details). The attacker then wraps K\(_{DEK}\) for one user and K\(_{DEK}'\) for the other user. At last there is still the header H and tag H\(_T\) which need to be valid. For this we can use the same approach as for the ciphertext encryption, as GMAC is used for authentication. The encryption context can be used as an additional block and allows to correct the authentication tag, such that it is valid for both K and K'.

NOTE: The above sections may refer to CVE-2020-8897, its public (GitHub) repository, and other metadata. This information is not relevant to the content of this section.
see the content immediately, while others might see a preview, or nothing. Either the publisher or third party authorizers give users access to the premium content; examples of third party authorizers include a search indexer, content distribution network, or a third-party paywall service.

Publishers include both premium and preview content in a single document, with the premium content encrypted [Cry]. To do so, the publisher creates a random symmetric key, the document key, and a structure that includes the document key with access requirements, the document crypt. The document key encrypts the premium content using an AE scheme, and the document crypt is encrypted under the authorizers’ public keys. The encrypted document crypts are placed in the document’s header.

Whenever a client requests authorization, the authorizer decrypts the document crypt and checks the access requirements. If a client may access the premium content, then the authorizer decrypts the document crypt and checks the access requirements. If a client may access the premium content, then the authorizer decrypts the document crypt and checks the access requirements. Place the publishers can display different contents to different authorizers. If a client may access the premium content, then the authorizer decrypts the document crypt and checks the access requirements. Place the publishers can display different contents to different authorizers.

3.2 Authenticated Encryption Schemes

Authenticated encryption with associated data, which we call AE, consists of stateless, deterministic encryption (Enc) and decryption (Dec) algorithms, where decryption may output either plaintext or a single, pre-defined error symbol:

\[
\text{Enc}: K \times N \times A \times M \rightarrow C, \quad (2)
\]

\[
\text{Dec}: K \times N \times A \times C \rightarrow M \cup \{\bot\}, \quad (3)
\]

with \(K\) the keys, \(N\) the nonces, \(A\) the associated data, \(M\) the messages, \(C\) the ciphertexts, and \(\bot\) an error symbol not contained in \(M\), which represents verification failure. It must be the case that for all \(K \in K, N \in N, A \in A, M \in M,\)

\[
\text{Dec}(K, N, A, \text{Enc}(K, N, A, M)) = M. \quad (4)
\]

Let \(\Pi_K = (\text{Enc}_K, \text{Dec}_K)\) be an AE scheme using key \(K\). Let \(\Pi^5 = (\delta_{\text{Enc}, \bot})\) be an ‘idealized’ AE scheme with the same interface as \(\Pi\), and let \(\Pi_{K1}^5, \Pi_{K2}^5, \ldots\) denote independent, idealized copies. Then the multi-key AE advantage of adversary \(A\) against \(\Pi\) is

\[
\mu_{AE}(\Pi, A) := A(\Pi_{K1}, \Pi_{K2}, \ldots, \Pi_{Kn}; \Pi_{K1}^5, \Pi_{K2}^5, \ldots, \Pi_{Kn}^5), \quad (5)
\]

where \(K_1, \ldots, K_n\) are chosen independently and uniformly at random, and \(A\) is nonce-respecting, meaning \(A\) never queries the same nonce twice to \(\text{Enc}\). Nonces may be repeated with \(\text{Dec}\). Furthermore, \(A\) cannot use the output of an \(O^1_k\) query as the input to an \(O^2_k\) with the same nonce \(N\).

3.3 AE Key Commitment Definition

Key committing AE schemes are ‘collision resistant’ in the sense that it is computationally difficult to find two keys which either encrypt two plaintexts to the same ciphertext, or, equivalently, decrypt the same ciphertext to two plaintexts.

We follow Farshim et al.’s [FOR17] formalization. Since we focus on concrete bounds, we only define an adversary’s advantage in breaking an AE scheme’s key commitment and refrain from defining when a scheme ‘commits to the key’. Our results allow users to pick parameters according to their security needs.

Definition 1 (Key Commitment Advantage). Let \(\Pi = (\text{Enc}, \text{Dec})\) denote an AE scheme. Let \(A\) be an adversary interacting with \(\Pi\); let \(Q_1, Q_2, \ldots\) denote the sequence of queries \(A\) makes to either \(\text{Enc}\) or \(\text{Dec}\), where \(Q_i = (K_i, N_i, A_i, M_i, C_i)\) and \(\text{Enc}(K_i, N_i, A_i, M_i) = C_i\) or \(\text{Dec}(K_i, N_i, A_i, C_i) = M_i\). Then \(A\)’s \(q\)-KC advantage against \(\Pi\) is the probability that there are two queries \(Q_i\) and \(Q_j\) where \(K_i \neq K_j, N_i = N_j, C_i = C_j \neq \bot, M_i \neq \bot, M_j \neq \bot, \) and \(i, j \leq q\).
3.4 Absence of Key Commitment in AE schemes

We show that several commonly used AE schemes AES-GCM, ChaCha20Poly1305, AES-GCM-SIV and OCB3 do not commit to their keys. This property has been noted before for AES-GCM and ChaCha20Poly1305 [LGR21]. Our attacks not only confirm that key commitment does not follow from the usual AE security properties, but also that protecting against key commitment must be a conscious choice since some of the most commonly used AE schemes do not guarantee it.

Apart from OCB, all these schemes produce ciphertext by generating a (pseudorandom) key stream and XORing it with the plaintext. Two different keys K_1, K_2 produce different key streams S_1, S_2, and for a given ciphertext C this decrypts to $M_1 = S_1 + C$ and $M_2 = S_2 + C$. To mount a successful attack, we have to ensure that the given C and authentication tag T are valid so authentication passes.

We implemented the attacks on GCM-SIV and OCB3, publicly available at https://github.com/kste/keycommitment. Solving these system of equations is very efficient and only takes ≈ 1 second using Sage 9.0 on an Intel Xeon(R) W-2135 CPU @ 3.70GHz.

3.4.1 Polynomial MAC based schemes

We generalize Dodis et al.’s [DGRW18] AES-GCM attack to schemes which compute a polynomial MAC over the ciphertext, like ChaCha20Poly1305. The general construction we consider is as follows:

1. Derive two keys (r_1, s_1) from K_1 (resp. (r_2, s_2) from K_2).
2. Split the ciphertext in blocks $C[1], \ldots, C[m]$.
3. Compute the tag as $T = s_1 + \sum_{i=1}^{m} C[i] \cdot r_1^{m-i}$, where addition and multiplication are done over a finite field.

To generate valid tags with such an authentication scheme, we have to ensure that the given ciphertext leads to the same tag being computed under K_1 and K_2. We fix all ciphertext blocks apart from a single block $C[j]$, which gives us the following equation:

$$s_1 + C[j] \cdot r_1^{m-j} + \sum_{i=1, i\neq j}^{m} C[i] \cdot r_1^{m-i} = s_2 + C[j] \cdot r_2^{m-j} + \sum_{i=1, i\neq j}^{m} C[i] \cdot r_2^{m-i}.$$ \hspace{1cm} (6)

All the variables here are known to the adversary, therefore this equation can be rearranged to isolate $C[j]$:

$$C[j] = (r_1^{m-j} + r_2^{m-j})^{-1} \cdot (s_1 + s_2 + \sum_{i=1, i\neq j}^{m} C[i] \cdot r_1^{m-i} + C[i] \cdot r_2^{m-i}).$$ \hspace{1cm} (7)

which fully determines C and T. In the case of ChaCha20Poly1305, additional restrictions have to be fulfilled and we refer the reader to [LGR21] for a detailed description on how to handle those.

Instead of computing the polynomial MAC over the ciphertext, AES-GCM-SIV computes it over the plaintext, which is then XORed with the nonce and encrypted to get the tag T (see [GLL19]). T is then further used as the first counter block for encryption. In this case we will first pick T, which fixes the corresponding key streams S_1, S_2. Next, we decrypt the tag with K_1, K_2 and authentication tag T.

$$T_1 = \sum_{i=1}^{m} M_1[i] \cdot r_1^{m-i} \text{ and } T_2 = \sum_{i=1}^{m} M_2[i] \cdot r_2^{m-i}. \hspace{1cm} (8)$$

Additionally, we have the condition that the ciphertext should be equal after adding the key streams, therefore we get m equations of the form

$$\vdots$$
$$M_1[m] + S_1[m] = M_2[m] + S_2[m]. \hspace{1cm} (9)$$

In total this gives us $m+2$ linear equations in $2m$ variables (the plaintext blocks), which we can find a solution for if $m > 1$. In general this still gives us a lot of freedom in the message blocks as for longer messages we can fix parts and still find a solution to the system of linear equations.

3.4.2 OCB3

As a final example we consider OCB3 [KR14], which does not follow the paradigm of creating a key stream and is therefore a particularly interesting case. It is also one of the most efficient AE schemes and has become popular in the variant 8CB using a tweakable block cipher. For example Deoxys [JNP15] from the final CAESAR portfolio uses a similar mode and several candidates in the ongoing NIST Lightweight Competition are based on it.

We describe the OCB mode of operation [KR14, Rog04, RBB03]. We do not include associated data as we do not need it for the OCB attacks. The reference used for the figure, pseudocode, and notation below is from [RBB03]. Let $E : K \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a block cipher and let τ denote the tag length, which is an integer between 0 and n. Let $\gamma_1, \gamma_2, \ldots$ be constants. Then Algorithm 1 gives pseudocode describing OCB encryption, and Figure 9 in Section B.3 provides an accompanying diagram.

The tag is computed as a simple checksum which is then encrypted. For the attack we can start with a similar approach to AES-GCM-SIV and will first fix the tag T and the message length m in order to be able to compute all the mask values Z.
We can then decrypt the tag under the two keys and apply the mask which gives us
\[T_1 = \sum_{i=1}^{m} M_1[i] \quad \text{and} \quad T_2 = \sum_{i=1}^{m} M_2[i]. \]

Each message block \(M[i] \) is encrypted as \(C[i] = E_K(M[i] \oplus Z[i]) \oplus Z[i] = E_K(Z[i]) \) for some mask values \(Z[i] \) (the concrete values for \(Z[i] \) are not important for the attack here, and therefore it can also be instantiated with a tweakable block cipher). Hence we get equations of the form
\[
\begin{align*}
E_{K_1 Z[i]}(M_1[1]) &= E_{K_2 Z[i]}(M_2[1]) \\
E_{K_1 Z[i]}(M_1[2]) &= E_{K_2 Z[i]}(M_2[2]) \\
& \vdots \\
E_{K_1 Z[i]}(M_1[m]) &= E_{K_2 Z[i]}(M_2[m]),
\end{align*}
\]
if we want to have the same ciphertext. However as these equations are non-linear the approach used for AES-GCM-SIV cannot work here.

The total message length is \(m \), and we will now split the message blocks up into \(t + 1 \) blocks which we will need to control for the attack, and \(m - t - 1 \) blocks for the actual message content. As a first step, we will ensure that \(T_1 \) is correct, by adding a message block \(M_1[m-t] = T_1 \oplus \sum_{i=t}^{m-1} M_1[i] \).

As long as the remaining blocks after index \(m - t \) are \(\sum_{i=m-t}^{m-1} M_1[i] = 0 \) we get the correct tag \(T \) in the end for \(M_1 \). To get the correct \(T_2 \) we can do the following:

- We encrypt those messages with \(K_1 \), decrypt them with \(K_2 \) and add them pairwise to obtain the values
\[
\gamma_i[i+1] = E_{K_2 Z[i]}(E_{K_1 Z[i]}(A_j[i+1])) + E_{K_1 Z[i]}(E_{K_2 Z[i]}(A_j[i+1])),
\]

for all \(i \), \(j \) such that
\[
\forall i, j : 0 \leq i < t/2, j \in \{0, 1\}.
\]

The next step is to find values \(x_i \in \{0, 1\} \), such that
\[
\gamma_1[1] + \ldots + \gamma_{t/2} = T_2 + \sum_{i=1}^{m-t} M_2[i].
\]

If we can find such values, then this will give us the correct tag for \(T_2 \).

- We can rewrite this equation to
\[
\sum_{i=1}^{t/2} \gamma_i[i] x_i + \gamma_{t/2} = (T_2 + \sum_{i=1}^{m-t} M_2[i]),
\]

In order to solve this equation, we introduce a new variable \(x \) and denote \(X[j] \) as the \(j \)th bit of \(X \). This gives us the following system of linear equations over \(F_2 \)
\[
\sum_{i=1}^{t/2} \gamma_i[i] x_i + \gamma_{t/2} = (T_2 + \sum_{i=1}^{m-t} M_2[i]), \quad 1 \leq j \leq b
\]
\[x_i + x_j = 1 \quad 1 \leq i \leq t/2. \]

Here, \(b \) is the blocksize of \(E \). This gives us \(t/2 + b \) equations in \(2b \) unknowns, therefore if we set \(t/2 > b + 1 \) we get a solution with a probability \(> 0.5 \).

- Finally, we set
\[
M_1[m-t+i] = \begin{cases} 0, & \text{if } x_{(i/2)} = 1 \\ 1, & \text{if } x_{(i/2)} = 1 \end{cases}, \quad 1 \leq i \leq t,
\]

and compute the corresponding values for \(M_2 \). This guarantees that both \(M_1, M_2 \) will give us the correct tag \(T \).

4 Creating Meaningful Plaintexts

In the settings discussed in Section 2 the adversary seeks a single ciphertext \(C \) and two keys \(K_1 \) and \(K_2 \) such that \(\text{Dec}(K_1, C) = P_1 \) and \(\text{Dec}(K_2, C) = P_2 \) are meaningful messages in the relevant setting — we call such a ciphertext ambiguous. Although we have demonstrated how to generate ambiguous ciphertext, ensuring it decrypts to meaningful plaintext requires controlling bits in the resulting plaintexts.

In this section we demonstrate how to craft ambiguous ciphertext which decrypts to different valid files, potentially satisfying different formats. Crafting ambiguous ciphertext
requires understanding file format characteristics and how they relate to each other, to satisfy the constraints imposed by the cryptographic attacks. Below we discuss those constraints, followed by a discussion of file format characteristics, and how to structure the files.

4.1 Cryptographic Attack Constraints

Inclusion of random blocks to repair the tag. As discussed in Section 3.4, for AES-GCM and ChaCha20Poly1305 we need a single block fixed in both P_1 and P_2 at the same position to repair the tag, while for AES-GCM-SIV this will typically require 2 controlled blocks. For OCB we need on average $b + 1$ blocks where b is the blocksize of the block cipher used.

Computational impact of fixing bits in the plaintext. The plaintexts P_1 and P_2 must satisfy $C = P_1 ⊕ S_1 = P_2 ⊕ S_2$, where S_1, S_2 are known to the adversary. Fixing a single bit in P_1 determines the corresponding bit in C, resp. P_2. If we want to set a bit position in P_1 and have no requirement on that same bit in P_2, then we can just do so. However, controlling the same bit position in both P_1 and P_2, requires finding a collision in the key streams S_1 and S_2 at this position. See Figure 1 for an example.

OCB works on 16-byte blocks, therefore if we have conditions in both P_1 and P_2 which fall into the same 16-byte block this will also require brute-force to find the keys which can fulfill these conditions simultaneously.

File formats will impose constraints on how our target plaintexts P_1 and P_2 must be encoded and structured, and if there is significant overlap in the bit positions of the constraints in P_1 and P_2 — the red bits of Figure 1 — then the cryptographic attacks become infeasible. Therefore, we need to minimize the overlap in the constraints imposed by the file formats.

4.2 Binary versus near polyglots

Overlap in the plaintexts is not necessary if the 2 file formats combined in the same ambiguous ciphertext can start at different offsets and leave enough place for each other — in this case, the two formats could co-exist in plaintexts in a single binary polyglot file.

Some combinations of file formats might not be able to co-exist in a single file, and would require, for example, changing a few bytes in the file header. We use the term near polyglot to describe a pair of files, potentially satisfying different formats, which differ in a few bytes. We call the bytes where the files differ their overlap.

From a binary polyglot or from a near polyglot and its overlap, one can create an ambiguous ciphertext by keeping track of the ranges of the file that belong to which format, encrypting each set of ranges separately and combining them in a single file.

![Figure 1: Example of constructing two plaintexts P_1, P_2 from the generated key streams S_1, S_2 and the conditions on the single bits. The keystreams are fixed and the adversary can choose the ciphertext C to determine the plaintexts. A “?” denotes a bit that can be freely chosen by the adversary, a “.” that the bit can be any value in the plaintext, and “1”, “0” that the bit should have this value. In this example the conditions on the first 4 bits (red), would have to be fulfilled by finding the two key stream S_1, S_2, while all the other conditions can simply be solved by choosing the corresponding bits in C.](image)

There are many file formats with their own requirements and restrictions, but we found more than 280 working combinations of formats without overlap, and more than 50 with overlap — in reasonable duration of bruteforcing.

4.3 File Format Characteristics

In this section, we introduce the aspects of file formats that are important in generating binary polyglots and near polyglots. We refer to [fil] for a description of the file formats referenced below.

Enforced offset Most formats require files structure to start at offset zero, but some formats allow files structure to start at any offset. Pure compressors — software which compress one block of data with no notion of file such as Bzip2, Gzip or XZ — typically start at offset zero, as does storage software such as TAR or Unix Archive. Typically, archive formats such as ZIP, RAR, 7z or Arj and flexible web-oriented formats such as Html and PHP allow files structure to start at any offset.

Pre-cavity Some formats start with a cavity that can hold any content. This could be by design, as with the raw dump of sectors of an ISO image, or by courtesy, as for DICOM or PDF, or by abuse, such as archiving a null-named file with TAR or overwriting the deprecated DOS header of a Portable Executable.

Appended data Once a parser has determined that a file is complete, any data appended to the rest of the file is typically ignored. Most file formats have one or more ways of determining whether a file is complete:

- The file size or the number of elements is declared in advance, such as in RIFF or Java Class.
• The format has a terminator or footer to declare that the file structure is valid or that it should not be parsed any further. For example, the terminator could be the last element with a specific bit set, or any element with its pointer to the next element set to null. Some formats like XZ actively check that the file ends with its footer, but in practice, most parsers process the file until a terminator is encountered and all subsequent data is ignored.

• It is also possible to force the parser to terminate, for example by exhausting a recursion limit by triggering an infinite recursion on purpose.

• If the previous conditions are not met but at some point, enough elements have been correctly parsed in the file to declare it valid, the parser might consider it valid and ignore any further missing or invalid data. Typically, truncating the terminator is silently ignored.

Parasite Most file formats allow for parasitic data that is left as-is and not parsed:

• Archive formats are like a stack of labelled storage boxes (cf. Figure 2). To add parasitic data to such a file, just store it, i.e. keep as-is without any compression (see Figure 3). Optionally prevent the newly added file to show like the other ones in the archive listing, by for example corrupting a checksum or giving it a null name. Note that some archive formats like XZ always process the data with some light compression, and therefore modify data even at their lowest compression level, but often they implement storage without any form of processing.

• Sequence-based formats are like trains: one locomotive for the header, and one or several wagons for the chunks (cf. Figure 4). To add anything in that train, just load your goods on another wagon, and insert it in the train at any wagon boundary (see Figure 5). For such formats, use a comment/junk block. While a comment is typically expected to be text, short and unique, such chunks can in practice contain anything, with length which only limitation is how it is stored, and be repeated: parsers just treat comments as data to ignore, they do not count them or check their contents. If the format does not have such a kind of element, it is still possible to rely on redundant or unused element, such as an extra ILDA palette, a picture in an RTF, or just a block of data in PDF. These chunks typically declare their type and size before their data — pre-wrapping — and occasionally store some extra information — post-wrapping — after their data such as CRC, size (redundantly for error detection), chunk terminator (see Figure 6). In some cases such as inline comments or unused functions in PostScript, the data still has to follow some minor requirements, such as no newline characters or balanced parenthesis.

• Some formats such as WAD or ICO are like books. They have at the start a table of contents that points to each chapter. If you just add more pages, just update the indexes in the table of contents. Some formats such as TIFF or BMP are like towed dinghies, where a tugboat just has a rope - a pointer - to the next boat, and each boat is linked to the next by another rope. If you want to carry more, just put something between two boats, and make the rope longer. In practice, you can for example make some space that will be ignored by moving format data further and adjusting all pointers accordingly (see Figure 7).
Stopping parsers The parasite payload might be executed but some trailing bytes might still be executed. It might be better or even required to break out of the hosting format (JavaScript) or to terminate parsing forcibly with some specific keyword in Ruby `__END__` or PostScript `stop` or some tricks such as forcing recursion and exhausting the parser.

Wrappending Some formats do not tolerate appended data as they parse specific structures until the end of a file, but it is still possible to add a trailing structure wrapping a parasite, as most format structures are declared before the data they contain. Such appended data wrapped in a structure we call wrappended.

Wrappending needs to be used if a format that does not tolerate appended data is used as a parasite into another one, such as DICOM/PNG polyglots: PNG starts at offset zero, DICOM at 128, so DICOM is a parasite of PNG, yet DICOM does not tolerate appended data, so the body of the PNG cannot be just following the DICOM parasite (cf. Table 5).

4.4 Polyglot combination strategies

Knowing the typical characteristics of file formats, we can infer the following strategies to create a file valid according to more than one format:

- Combining a format that starts with a cavity and another format that tolerates appended or wrappended data. The cavity should be big enough so that the other payload fits.
- Appending to a format tolerating appended — or wrappended — data another format that is valid at a far enough offset, after the first payload. This means that the feasibility depends on the size of the first file.
- Inserting a format valid at a far enough offset as a parasite inside another format. A chunk of it must be able to fit all the parasite. Otherwise, it may be possible to split the parasite in several pieces, making it a zipper: the pieces of each format are parasites to the other.

Zippers Some formats like GIF start at offset zero and only tolerate parasites of limited length, as the comment length is encoded as a single byte — limited to 255 — which is likely too small to contain a complete payload. A workaround for that is to split the parasite payload in headers and parasite declaration, so that the body of the host itself is a parasite to the hosted file.

Therefore, both payloads’ bodies are parasite to each other. They both set up the structure to tolerate the other’s body, exactly like the teeth of each side of a zipper embrace the other side’s teeth. This can be also extended to more than one body, for example like splitting a JPEG image into hundreds of scans — as opposed to the typical 1–6 — so that each of them is small enough to fit in a parasite.

4.4.1 Binary polyglots

We see that it is usually possible for two different formats to coexist in the same file without any overlap, therefore we can avoid the computational costs associated with overlap discussed in Section 4.1. In practice, few formats — two to our knowledge: ID3v1 and XZ — cannot be made to coexist with any other format: they enforce parsing at offset zero, actively enforce a footer preventing appended data, and prevent any form of parasite.

Binary polyglot files are instant to make, even generically: some data has to be moved around, and some counters, pointers or checksums have to be updated. Our tool\(^4\) takes two input files, identifies the supported file formats, then tries different layouts and generates the final binary polyglot file.

We could take the next PDF article that you would want to open, combine it with malware — even without the source — and turn it into a standard PDF that once encrypted with the right key and then decrypted with another given key (both known in advance), will result in the original malware.

It is easy to turn such a binary polyglot file into two valid plaintexts that will be combined as the same ciphertext, using the offsets where the file contents change side, and each side does not depend on the contents of the other one (except checksums of parasite chunks). It is like slicing two sausages at the same locations and mixing their contents.

4.5 Crypto-polyglots

As mentioned before, near polyglots are invalid binary polyglots with interchangeable, overlapping data. The file type changes depending upon which overlapping data is put in the file. When the data is exchanged via a cryptographic operation, we call these crypto-polyglots: files which are one cryptographic step away from each other.\(^5\)

Each format has its own length requirements to declare its type, header and declare a parasite (see Table 1). We only need to deal with the minimum overlap of both formats; for example, PE/JP2 ambiguous ciphertexts only have 2 bytes of

\(^4\)redactedforanonymity

\(^5\)This concept is not limited to ambiguous ciphertexts: for example, the two files of a hash collision pair (see [Alba]), or a file changing its type via encryption (see [AA14]).
overlap, as PE requires 2 bytes of overlap even though JP2 requires 40.

Dodis et al. [DGRW18] create an ambiguous ciphertext using a JPEG-BMP near polyglot, which has 6 bytes of overlap. We show in Appendix J that we can combine most formats with PostScript with one byte of overlap at best — otherwise 3 bytes. We also combined most formats with Portable Executables with 2 bytes of overlap, and reduced the overlap with JPEG files to 4 bytes.

Using twice the same format cancels this advantage, so it is only possible for formats that can start at variable offset — and make several instances of the same format coexist in the same file.

Any formats requiring no controlled offset at zero can also be combined with itself or another format, such as archives like 7zip, Arj, Rar, Zip and cavities like Dicom, Iso, PDF.

Note that, since the two payloads of an ambiguous ciphertext are not simultaneously in the clear, crypto-polyglots are useful to bypass blacklisting and scanning: the malicious payload is out of reach when the clean one is in clear.

4.5.1 Tag correction

In the case of AES-GCM, one block needs to be used to correct the authentication tag (see Section 4.1), respectively more blocks are required for AES-GCM-SIV and OCB. In practice, most formats support appended data, so just appending the extra block(s) is enough. For the few formats that do not tolerate appended data, wrapping, increasing the size of the internal parasite, or using a small space of a cavity are effective solutions. They all depend on the formats combination used in the file.

5 Adding Key Commitment to AE

5.1 Hash Function Use in Prior Work

Recall that key committing AE schemes (Enc, Dec) need to be collision resistant, that is, it should be difficult to find two inputs $X = (K,N,A,M)$ and $X' = (K',N',A',M')$ such that $\text{Enc}(X) = \text{Enc}(X')$. As we discuss below, all prior work relies on schemes which explicitly or implicitly contain hash functions to achieve collision resistance.

Farshim et al. [FOR17], the first to study key commitment which they call “robustness”, propose generic composition — like encrypt-then-MAC [BN08] — which send either the entire message or ciphertext into a collision-resistant pseudorandom function (PRF). As a practical instantiation, they propose using a hash function with a key, for example HMAC [BCK96] or KMAC [NIS16].

Grubbs et al. [GLR17a] design compactly committing AE, where a small portion of the ciphertext commits to the message. Due to differences in security definitions, GLR’s compactly committing AE does not formally guarantee FOR’s robustness, yet GLR need collision resistance and, like FOR, they propose using collision resistant PRFs which process the entire message or ciphertext.

Dodis et al. [DGRW18] design encryption schemes, which they propose as a building block to achieve robust or compactly committing AE. Their schemes are more efficient than FOR and GLR’s, yet they still need to process the message through a hash function, and even prove that block cipher-based encryption schemes cannot be more efficient than hash functions. They also conjecture that block cipher-based key robust schemes as defined by FOR cannot be more efficient than hash functions.

There are two drawbacks to these approaches:

1. Since commonly used AE algorithms like AES-GCM and ChaCha20Poly1305 do not follow the above hash-based designs, avoiding attacks requires using less widely deployed algorithms, or entirely new ones.

2. The performance of hash-based designs is limited by the fact that commonly used hash functions are serial, whereas widely used AE schemes are parallelizable. This becomes an issue when the message or ciphertext is large, and in fact led Facebook Messenger to rely on AES-GCM to encrypt message attachments, exposing the application to attack [DGRW18].

Ideally, a solution would require minimal changes to widely deployed, highly efficient AE schemes like AES-GCM.

5.2 Overview of Our Solutions

The message or ciphertext does not need to be processed as in a hash-based design: if the ciphertext contains a commitment to just the key, verified during decryption, then the adversary cannot generate ciphertext valid under two keys. We propose the following:

Padding Fix. Let X denote an ℓ-bit string of 0’s. Prepend X to the message M for each encryption, Enc$(K,N,A,X \parallel M)$, and check for the presence of X at the start of the message after decryption; decryption fails if X is not present. This solution is not generic, and must be analyzed per scheme. Furthermore, it is implicitly assumed that $X \parallel M$ is a legitimate input to Enc, i.e., that it is still shorter than the longest legitimate message.

Generic solution. Given a key K, derive an encryption key and a commitment using collision-resistant PRFs: $K_{\text{enc}} = F_{\text{enc}}(K)$ and $K_{\text{com}} = F_{\text{com}}(K)$. The ciphertext is a combination of the normal ciphertext computed with K_{enc} and Enc, and K_{com}: $(\text{Enc}(K_{\text{enc}},N,A,M), K_{\text{com}})$. A nonce N' can be used to compute $K_{\text{enc}} = F_{\text{enc}}(K,N')$ or $K_{\text{com}} = F_{\text{com}}(K,N')$. The presence or absence of N' to derive K_{enc} and K_{com} results in four constructions named in Table 2.
5.3 Padding Fix

Our padding solution $\text{Pad}_\ell \Pi = (\text{Pad}_\ell \Pi^{\text{Enc}}, \text{Pad}_\ell \Pi^{\text{Dec}})$ for some predetermined integer $\ell > 0$ and AE scheme $\Pi = (\text{Enc}, \text{Dec})$ is algorithmically described in Appendix D. We discuss the security of $\text{Pad}_\ell \Pi$ when Π is instantiated with 96-bit-nonce AES-GCM and ChaCha20Poly1305, followed by performance considerations.

AE Security. Since the padding fix uses the underlying AE scheme in a black-box manner, conventional AE security follows immediately. Note that the AE security bounds change since the plaintext length increases by ℓ bits. However, for all practical values of ℓ, e.g. one or two block lengths, the difference is negligible.

Key Commitment Security.

Theorem 1. Let Π denote GCM with 96-bit nonces using ideal cipher $\pi : K \times X \rightarrow X$ as an idealization of AES. Assume that $\ell < 128 \cdot (2^{32} - 2)$, so that the ℓ-bit padding does not violate GCM’s message length constraint. Consider an adversary A with access to π. Then A’s q-KC advantage against $\text{Pad}_\ell \Pi$ is at most $(q + p)^2/2^\ell$, where A makes at most p queries to π.

The proof is in Appendix F. We recommend ℓ to be shorter than $4 \cdot 128 = 512$ bits, or four blocks, as anything longer would exceed 256 bit security.

Theorem 2. Let Π denote ChaCha20Poly1305 using ideal random function $\rho : \{0,1\}^{256} \times \{0,1\}^{32} \times \{0,1\}^{96} \rightarrow \{0,1\}^{512}$ as an idealization of the ChaCha20 block function. Consider an adversary A with access to ρ. Then A’s q-KC advantage against $\text{Pad}_\ell \Pi$ is at most $(q + p)^2/2^\ell$, where A makes at most p queries to ρ.

Analysis of ChaCha20Poly1305 is similar to AES-GCM since ChaCha20Poly1305 uses CTR mode (see Section B.2), but with the ChaCha20 block function instead of AES.

Assumptions on the Underlying Primitives.

GLR [GLR17b] and DGRW [DGRW19] justify security assuming either key-dependent message security, related-key security, or by modelling the primitives as ideal. Similarly, our analysis assumes the primitives are ideal.

To build a conventional AE scheme with a block cipher or hash function, it suffices to assume that the underlying primitive behaves like a PRP or PRF when keyed with a uniformly random key unknown to the adversary. In contrast, supporting AE key commitment requires understanding what happens when the adversary can choose the key used in the block cipher or hash function. As a result, practical instantiations require a stronger assumption on the underlying primitives. Since the adversary can choose the key, related-key attacks [Bib94] and known-key [KR07] or chosen-key attacks become relevant.

In fact AE schemes might not achieve key commitment when instantiated with weak primitives. Take for example HMAC, which is commonly used to build AE with e.g. CTR-mode. HMAC does not require a collision resistant hash function, therefore the use of HMAC-SHA-1 could be justified, and it is still used in TLS in practice. However, if an adversary can find a collision efficiently for the hash function it is possible to find two different tags under two different keys to break the key commitment. As chosen-prefix collisions are practical for SHA-1 [LP20], HMAC-SHA1 is insufficient to provide key commitment while this is not the case for HMAC used with a collision resistant hash function.

In particular, the padding fix with AES-GCM assumes an ideal cipher, and therefore raises the following interesting problem: Is it possible to find two keys k_1, k_2 such that $\text{AES}_{k_1}(0) = \text{AES}_{k_2}(0)$ in less than $\approx 2^{64}$ trials. If the key-size is larger than the blocksize, then such a pair of keys must exist. While there has been some work on the chosen-key setting [FJP13] or using AES in a hashing mode [Sas11], we are not aware of any results on this specific problem.

Performance. The performance overhead of the Padding solution is minimal. Let $T_{\text{GCM}}(a, p)$ denote the performance (e.g., in processor cycles, where smaller is better) for AES-GCM encryption with a 128-bit key, over an input with AAD A and message M. For convenience, assume that A and M consist of full 128-bit blocks, and set $|A| = 128a$ and $|M| = 128p$ for some $a \geq 0, p \geq 0$.

The performance of the Padding solution is $T_{\text{Pad}, \text{GCM}}(a, p) = T_{\text{GCM}}(a, p + 1)$. The actual differences depends on factors such as the computing platform, and potentially also the values of a and p. For example, well aligned buffers may fit better in the caches, and can be accessed more efficiently.

To illustrate, we consider $a = 0$ (no AAD) and measurement carried out on OpenSSL (version 1.0.2m). This code is optimized to leverage the potential pipelining that the processor can offer. We ran the code on a 7th Generation Intel

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4-6</th>
<th>8</th>
<th>9</th>
<th>12</th>
<th>16</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>PE</td>
<td>JPG</td>
<td>Flac</td>
<td>MP4</td>
<td>Tiff</td>
<td>Flv</td>
<td>Wad</td>
</tr>
<tr>
<td>Bpg</td>
<td>Gif</td>
<td>Nes</td>
<td>Png</td>
<td>Riff</td>
<td>Id3v2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rtf</td>
<td>Bmp</td>
<td>Cpio</td>
<td>Ogg</td>
<td>Ilda</td>
<td>Psd</td>
<td>Cab</td>
<td>Jp2</td>
</tr>
<tr>
<td>Elf</td>
<td>Ar</td>
<td>Pcaph</td>
<td>Ico</td>
<td>Icc</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Required amount of controlled bytes at offset zero (best cases).

...
Core i7-7700 processor (“Kaby Lake”). On this processor, the latency of the AES\textsc{enc} instruction is 4 cycles. This means that the latency for AES encryption of one block is \(\sim 41\) cycles (the throughput is 10 cycles).

For \(p = 128\) (a 2048 bytes message), we measured \(T'_{\text{Pad}_\text{GCM}}(0, 128) = 1,739\) cycles and \(T_{\text{GCM}}(0, 128) = 1,665\) cycles, indicating an overhead of 74 cycles for the Padding solution and relative impact of \(\sim 4.4\%\). With \(p = 127\) (a 2032 bytes message), we measured \(T'_{\text{Pad}_\text{GCM}}(0, 128) = 1,665\) cycles and \(T_{\text{GCM}}(0, 128) = 1,636\) cycles. In this case, The overhead is 29 cycles, and the relative impact is \(\sim 1.8\%\). For a longer message we measured \(T'_{\text{Pad}_\text{GCM}}(0, 384) = 4,263\) cycles and \(T_{\text{GCM}}(0, 384) = 4,203\) cycles, with relative impact of \(\sim 1.4\%\).

5.4 Generic Solution

Let \(\Pi = (\text{Enc}, \text{Dec})\) be an AE scheme where \(K = \{0, 1\}^\kappa\) and \(N = \{0, 1\}^\nu\). We describe the scheme CommitKey\(\Pi\) over \(\Pi\). Let \(\kappa_0\), \(\nu\), \(c\) be positive integers where, without loss of generality, \(\kappa_0 \geq \max (\kappa, c)\). Let

\[
F_{\text{enc}} : \{0, 1\}^{\kappa_0} \times \{0, 1\}^{\nu} \rightarrow \{0, 1\}^{\kappa} \quad (17)
\]

\[
F_{\text{com}} : \{0, 1\}^{\kappa_0} \times \{0, 1\}^{\nu} \rightarrow \{0, 1\}^{c} \quad (18)
\]

be independent PRFs. Both schemes use the same key \(K \in \{0, 1\}^{\kappa_0}\), called the main key, but must guarantee that their outputs remain independent.

CommitKey\(\Pi\) has four types, depending on whether a nonce is used in \(F_{\text{enc}}\) or \(F_{\text{com}}\) (see Table 2). We describe Type IV in Algorithm 2 and Algorithm 3. The remaining types are described in Appendix C.

Note that CommitKey\(\Pi\) includes a nonce \(N_I\) in addition to the nonce \(N\) used for the underlying AE scheme \(\Pi\). This is done for backwards compatibility, as \(\Pi\) might already be deployed and re-using \(\Pi\)’s nonce for CommitKey\(\Pi\) might not be feasible. The security requirements for \(N_I\) and \(N\) are the same, so if possible, they can be set to equal each other as long as uniqueness is guaranteed; however care must be taken to ensure the nonces are sufficiently long — \(|N|\) and \(|N'|\) may not be the same, and depending upon the exact requirements of the application (e.g. \(N'\) needs to be generated randomly), one might want a larger \(|N'|\).

Table 2: The four types of key derivation for the generic solution. Each key is either derived with a nonce, or without.

<table>
<thead>
<tr>
<th>(K_{\text{enc}})</th>
<th>(K_{\text{com}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{fixed}</td>
<td>\text{fixed}</td>
</tr>
<tr>
<td>\text{nonce}</td>
<td>\text{nonce}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>\text{I}</th>
<th>\text{II}</th>
<th>\text{III}</th>
<th>\text{IV}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{\text{com}}) \text{ fixed}</td>
<td>\text{Type I}</td>
<td>\text{Type II}</td>
<td>\text{Type III}</td>
<td>\text{Type IV}</td>
</tr>
</tbody>
</table>

Table 3: The overheads compared to \(\Pi\) involved with the different flavors of CommitKey\(\Pi\), when encrypting or decrypting \(q\) payloads with the main key \(K\).

<table>
<thead>
<tr>
<th>Type</th>
<th>(F_{\text{enc}}) calls</th>
<th>(F_{\text{com}}) calls</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>1</td>
<td>c</td>
</tr>
<tr>
<td>II</td>
<td>(q)</td>
<td>1</td>
<td>(c + \nu)</td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>(q)</td>
<td>(c + \nu)</td>
</tr>
<tr>
<td>IV</td>
<td>(q)</td>
<td>(q)</td>
<td>(c + \nu)</td>
</tr>
</tbody>
</table>

Algorithm 2: CommitKey\(\Pi\)\(\text{Enc}(K, N', N, A, M)\)

Input: \(K \in \{0, 1\}^{\kappa_0}, N' \in \{0, 1\}^{\nu'}, N \in N, A \in A, M \in M\)

Output: \(C \in C, K_{\text{com}} \in \{0, 1\}^{c}\)

1. \(K_{\text{enc}} \leftarrow F_{\text{enc}}(K, N')\)
2. \(K_{\text{com}} \leftarrow F_{\text{com}}(K, N')\)
3. \(C \leftarrow \text{Enc}(K_{\text{enc}}, N, A, M)\)
4. \(\text{return } (C, K_{\text{com}})\)

Algorithm 3: CommitKey\(\Pi\)\(\text{Dec}(K, N', N, A, C, K_{\text{com}})\)

Input: \(K \in \{0, 1\}^{\kappa_0}, N' \in \{0, 1\}^{\nu'}, N \in N, A \in A, C \in C, K_{\text{com}} \in \{0, 1\}^{c}\)

Output: \(M \in M \cup \{\perp\}\)

1. \(K'_{\text{enc}} \leftarrow F_{\text{com}}(K, N')\)
2. \(K'_{\text{enc}} \leftarrow F_{\text{enc}}(K, N')\)
3. \(M \leftarrow \text{Dec}(K'_{\text{enc}}, N, A, C)\)
4. \text{if } K_{\text{com}} \neq K'_{\text{com}} \text{ or } M = \perp \text{ then return } \perp\)
5. \(\text{return } M\)
Using the Different CommitKeyΠ Types. The different CommitKeyΠ types have different incremental computational and bandwidth overheads over Π; see Table 3. CommitKeyΠ Type I and type II carry the lowest incremental overheads over Π as they use a fixed key identifier K_{com}. These are useful when leaking an identifier for the key used to produce ciphertext does not violate privacy requirements, for example, when a main key is used for only one session between the communicating parties. Deriving a nonce-dependent K_{com} value, as in Types III and IV, does not leak any key identifiers, but comes at some incremental cost.

Simple Instantiation of F_{enc} and F_{com}. Let $\kappa_0 = \kappa = 256$, assume that $\nu_1 \leq 256$, and set $c = 256$. Let L_{enc} and L_{com} be fixed labels and define

$$F_{\text{enc}}(K, N) = \text{SHA256}(K \parallel L_{\text{enc}} \parallel N)$$

(19)

and

$$F_{\text{com}}(K, N) = \text{SHA256}(K \parallel L_{\text{com}} \parallel N)$$

(20)

For concreteness, we give examples of labels L_{enc} and L_{com} in Table 4. The different CommitKeyΠ types are encoded in the labels $L_{\text{enc}}, L_{\text{com}}$. With this choice,

$$|K \parallel L_{\text{enc}} \parallel N| = |K \parallel L_{\text{com}} \parallel N| \leq 576 \text{ bits}, \quad (21)$$

so deriving K_{enc} and K_{com} require for each computation at most two calls to the SHA256 compression function. Furthermore, for Type I, computing K_{enc} and K_{com} invokes the SHA256 compression function only once, and for Type II, computing K_{com} calls the compression function only once (but twice to compute K_{enc}). Appendix E demonstrates how to instantiate a Type I key committing AES-GCM.

Table 4: Sample labels for use in our instantiation of F_{enc} and F_{com}. Define some fixed label L of length 48 bits; for example $L_0 = 0x436f6d6d6974$, which is commit in hexadecimal notation.

<table>
<thead>
<tr>
<th>Type</th>
<th>L_{enc}</th>
<th>L_{com}</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$L_0 \parallel 0x01 \parallel 0x01$</td>
<td>$L_0 \parallel 0x01 \parallel 0x02$</td>
</tr>
<tr>
<td>II</td>
<td>$L_0 \parallel 0x02 \parallel 0x01$</td>
<td>$L_0 \parallel 0x02 \parallel 0x02$</td>
</tr>
<tr>
<td>III</td>
<td>$L_0 \parallel 0x03 \parallel 0x01$</td>
<td>$L_0 \parallel 0x03 \parallel 0x02$</td>
</tr>
<tr>
<td>IV</td>
<td>$L_0 \parallel 0x04 \parallel 0x01$</td>
<td>$L_0 \parallel 0x04 \parallel 0x02$</td>
</tr>
</tbody>
</table>

Key Commitment Security. To meet the CommitKeyΠ design goal, the PRFs F_{enc} and F_{com} must be collision-resistant (22); our instantiation achieves collision-resistance with SHA256. Furthermore, c should be large enough to make brute-force collision search impractical.

Claim 1. If adversary A produces a winning tuple $(N, A, C, T, K_{\text{com}})$ for keys $K_1 \neq K_2$, then A has found a collision (on K_{com}), i.e.,

$$F_{\text{com}}(K_1, N) = F_{\text{com}}(K_2, N).$$

(22)

Note that the claim holds even if the adversary may freely choose two different nonces N_1 and N_2 as input.

AE Security. Say the PRF’s used by CommitKeyΠ are secure, that is, each PRF output looks uniformly random and independent of other PRF output against computationally bounded adversaries, then:

1. Π is called using K_{enc}, which is uniformly random and independent, hence if Π is a secure AE scheme, then Π’s output maintains confidentiality and integrity, and

2. K_{com} is uniformly random and independent of Π’s output, hence K_{com} does not affect AE security.

As with other generic compositions involving key derivation functions, we can use a straightforward hybrid argument with the result that CommitKeyΠ preserves Π’s AE security.

We state AE security for CommitKeyΠ Type IV; Types I, II, III are analogous.

Definition 2. Let $F : K \times X \rightarrow Y, F' : K \times X' \rightarrow Y'$ be PRFs, then the PRF advantage of adversary A against (F, F') is

$$\text{PRF}_{F,F'}(A) := \Delta_A (F_K, F'_K; S_F, S_{F'})$$

(23)

where K is chosen uniformly at random from K.

Theorem 3 (CommitKeyΠ AE Security). Let A be a nonce-respecting AE adversary against CommitKeyΠ making at most q queries with associated data, message, and ciphertext length at most ℓ. Let B be a PRF adversary and C an AE adversary against Π, then A’s multi-key AE advantage with μ instances is

$$\mu \cdot \text{AE}_{\text{CommitKeyΠ}}(A) \leq \text{PRF}_{F_{\text{com}}, F_{\text{enc}}}(B) + (\mu \cdot q) \cdot \text{AE}_\Pi(C),$$

(24)

where B makes at most q queries to each of its oracles, and C makes at most 1 query to each of its oracles with associated data, message, and ciphertext length at most ℓ.

Appendix G shows how to use the bounds of Theorem 3.

Design rationale and alternatives. We require CommitKeyΠ to use $\kappa_0 \geq \kappa$ to keep a key hierarchy: the derived encryption keys (K_{enc}) are not longer than the main key. Similarly, we require $\nu_0 \geq \nu_{\text{com}}$ and set ν_{com} to be sufficiently long to make brute force collision and pre-image search infeasible. The power-of-two choice $\kappa_0 = \kappa = c = 256$ seems adequate and convenient. However, it is also reasonable to settle with $c = 192$ or 160 to reduce the overhead of CommitKeyΠ encryption.

We point out that defining $F(K, L) = \Pi(K \parallel L)$ with any NIST standard collision-resistant hash function Π, with a sufficiently long digest, is an acceptable choice. This makes it
easy to choose a main key \((K)\) of a desired length, and also to truncate the digests to \(c\) or \(\kappa\) bits, as needed. Note that it is implicitly assumed here that for this usage, \(H\) is invoked with equal-length arguments.

6 Related Work

Other possible techniques to generate polyglots include [Alb15, SBK+17, LP20, AAE+14, Alba]; these techniques are not generic to all file formats.

Hoang, Krovetz, and Rogaway introduce the concept of “robust AE” (RAE) [HKR15], formalizing one of the strongest types of security that an AE scheme can satisfy. We do not use the term robust in the sense of “robust AE.”

Abdalla et al. [ABN10] initiate a provable-security treatment of robust encryption. Canetti et al. [CKVW10] consider “wrong-key detection”, which is similar to robustness.

The OPAQUE protocol [JKX18] requires an AE scheme with random key robustness: robustness where the attacker may not choose the two keys under which it finds a collision. An early draft of an OPAQUE protocol RFC describes a way to fix GCM similar to what we propose [Kra19, Section 3.1.1], by appending a constant string to the plaintext. Subsequent drafts of the RFC remove mention of the fix.

Everspaugh et al. [EPRS17] discuss how to securely support key rotation without decryption in key management services via updatable AE; as part of their motivation, they discuss how Amazon and Google perform key rotation. To achieve ciphertext integrity while rekeying, they require the underlying symmetric encryption scheme to be compactly robust, where the adversary should not be able to find two keys and two ciphertexts with the same tag.

7 Conclusions

Section 2 demonstrates products and settings where key commitment naturally arises and a lack thereof violates expectations, resulting in attacks. We conclude that key commitment is an important property to consider for AE schemes.

We see that a lack of collision-resistance results in AE schemes’ lack of key commitment; the fastest, widely deployed AE schemes are often not collision resistant and are easy to exploit. Adversaries can choose encryption keys as they please, and our automated tools demonstrate how easy it is to generate binary polyglots with a wide variety of file formats.

We also conclude that it is easy to add key commitment via blackbox use of AE schemes. We note that, while the generic solution mainly relies on collision resistance of hash functions, the padding fix does rely on additional assumptions on its underlying primitives.

Acknowledgments

The authors would like to thank Daniel Bleichenbacher for highlighting the impact of binary polyglots, Jean-Philippe Aumasson, Maria Eichlseder and Marc Stevens for helping with crypto-polyglots, Joseph Jaeger and Stefano Tessaro for pointing out an oversight in the key commitment definition, and Peter Valchev and Christoph Kern for their helpful feedback.

This research was partly supported by: NSF-BSF Grant 2018640; The Israel Science Foundation (grant No. 3380/19); The BIU Center for Research in Applied Cryptography and Cyber Security, and the Center for Cyber Law and Policy at the University of Haifa, both in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

Availability

The polyglot and GCM tools along with proof-of-concepts are available at https://github.com/corkami/mitra and https://github.com/kste/keycommitment.

References

A Notation

Let ε denote the empty string, and let 0^n denote the n-bit string consisting of only zeros. Given a block size n, the function $\text{len}_n(X)$ represents the length of X modulo 2^n as an n-bit string, and $X0^n$ is X padded on the right with 0-bits to get a string of length a multiple of n. If $X \in \{0,1\}^*$, then $|X|_n = |X|/n$ is X’s length in n-bit blocks. The operation

$$X[1]X[2] \cdots X[x] \xrightarrow{\varepsilon} X$$

(25)

denotes splitting X into substrings such that $|X[i]| = n$ for $i = 1, \ldots, x - 1$, $0 < |X[x]| \leq n$, and $X[1]|X[2]| \cdots |X[x]| = X$.

The set of n-bit strings is also viewed as the finite field $GF(2^n)$, by mapping $a_{n-1} \ldots a_0$ to the polynomial $a(x) = a_{n-1} + a_{n-2}x + \cdots + a_1x^{n-1} + a_0x^{n-1} \in GF(2)[x]$, and fixing an irreducible polynomial which defines multiplication in the field. For $n = 128$, the irreducible polynomial is $1 + x + x^2 + x^7 + x^{128}$, the one used for GCM.

The function $\text{int}(Y)$ maps the j-bit string $Y = a_{j-1} \ldots a_0$ to the integer $i = a_{j-1}2^{j-1} + \cdots + a_22 + a_0$, and $\text{str}_j(i)$ maps the integer $i = a_{j-1}2^{j-1} + \cdots + a_22 + a_0 < 2^j$ to the j-bit string $a_{j-1} \ldots a_0$. Let $\text{inc}_m(X)$ denote the function which adds one modulo 2^m to X when viewed as an integer:

$$\text{inc}_m(X) := \text{str}_m(\text{int}(X) + 1 \mod 2^m).$$

Define $\text{msb}_j(X)$ to be the function that returns the j most significant bits of X, and $\text{lsb}_j(X)$ the j least significant bits.

The expression $a \equiv b$ evaluates to \top if a equals b, and \bot otherwise.

For a keyed function defined on a domain $K \times X$, we write $F(K,X)$ and $F_K(X)$ interchangeably. If the function has three or more inputs, $K \times N \times X$, then the second input can be written as a superscript, $F(K,N,X) = F^N_K(X)$. If $E : \{0,1\}^n \to \{0,1\}^m$ is a function, then the notation

$$F \leftarrow E(C \parallel \cdot)$$

(26)

defines F to be the function from $\{0,1\}^{n-|C|}$ to $\{0,1\}^m$ which maps an element $X \in \{0,1\}^{n-\ell(C)}$ to $E(C \parallel X)$.

18
B Algorithm Descriptions

In this section we provide descriptions of GCM, ChaCha20Poly1305, and OCB. The descriptions are only given to the level of detail sufficient for the paper. The notation is borrowed from various sources: the description of OCB by Rogaway, Bellare, and Black [RBB03], the description of GCM by Iwata, Ohashi, and Mmatsu [IOM12], and the documents by Procter analyzing ChaCha20Poly1305 [Pro15, Pro14].

B.1 GCM

We describe the GCM mode of operation [MV04a, MV04b] with nonces of 96-bit length. We let $E : \{0,1\}^{128} \times \{0,1\}^{128} \to \{0,1\}^{128}$ denote a block cipher. The function GHASH is defined in Algorithm 4. Algorithm 6 provides pseudocode for GCM encryption, which also uses the keystream generator CTR mode in Algorithm 5. See Figure 8 for an illustration.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Content</th>
<th>PNG</th>
<th>DICOM</th>
</tr>
</thead>
<tbody>
<tr>
<td>04</td>
<td>02 00 00 00 .U .L 04 00 C6 00 00 00</td>
<td>metadata tags</td>
<td>metadata tags</td>
</tr>
<tr>
<td>06</td>
<td>09 00 00 00 .O .B 00 00 62 00</td>
<td>private tag</td>
<td>private tag</td>
</tr>
<tr>
<td>02</td>
<td>A0 B7 45 37</td>
<td>} // chunk</td>
<td>} // chunk</td>
</tr>
<tr>
<td>04</td>
<td>00 00 00 00 .I .E .N .D</td>
<td>body</td>
<td>body</td>
</tr>
<tr>
<td>10</td>
<td>AE 42 60 82</td>
<td>} // body</td>
<td>} // body</td>
</tr>
<tr>
<td>540</td>
<td>FF FF FF</td>
<td>} // body</td>
<td>} // body</td>
</tr>
</tbody>
</table>

Table 5: A PNG/DICOM zipper (shown in HexII).

Algorithm 4: $\text{GHASH}_L(A,C)$

Input: $L \in \{0,1\}^n$, $A \in \{0,1\}^{\leq 2n/2-1}$, $C \in \{0,1\}^{\leq 2n/2-1}$

Output: $Y \in \{0,1\}^n$

1. $X \leftarrow A^0$ \hfill $\| CO^n \| \| \text{str}_n/2(|A|) \| \| \text{str}_n/2(|C|)$
2. $X[1]X[2]\ldots X[x] \leftarrow X$
3. $Y \leftarrow 0^n$
4. for $j = 1$ to x
5. \hspace{1em} $Y \leftarrow L \cdot (Y \oplus X[j])$
6. end
7. return Y

Algorithm 5: $\text{CTR}[F](X,m)$

Input: $F : \{0,1\}^3 \to \{0,1\}^n$, $X \in \{0,1\}^n$, $m \in \mathbb{N}$

Output: $S \in \{0,1\}^{mn}$

1. $I \leftarrow X$
2. for $j = 1$ to m
3. \hspace{1em} $S[j] \leftarrow F(I)$
4. \hspace{1em} $I \leftarrow \text{inc} (I)$
5. end
6. $S \leftarrow S[1]S[2]\cdots S[m]$
7. return S

Algorithm 6: $\text{GCM}_K(N,A,M)$

Input: $K \in \{0,1\}^{128}$, $N \in \{0,1\}^{128}$, $A \in \{0,1\}^{\leq 128-32}$, $M \in \{0,1\}^{\leq 128-32}$

Output: $(C,T) \in \{0,1\}^{\leq 128-32} \times \{0,1\}^{128}$

1. $L \leftarrow E_K(\text{str}_{128}(0))$
2. $I \leftarrow N \parallel \text{str}_{32}(1)$
3. $m \leftarrow |M|_{128}$
4. $F \leftarrow E_K(\text{msb}_{96}(I) \parallel \cdots)$
5. $C \leftarrow M \oplus \text{msb}_{|M|}(\text{CTR}[F](\text{inc}_{32}(\text{lsb}_{32}(I)), m))$
6. $T \leftarrow E_K(I) \oplus \text{GHASH}_L(A,C)$
7. return (C,T)
Algorithm 7: \(CC\&Poly(K, N, A, M)\)

Input: \(K \in \{0, 1\}^{256}, N \in \{0, 1\}^{96}, A \in \{0, 1\}^{L}, M \in \{0, 1\}^{512 - 1}\)

Output: \((C, T) \in \{0, 1\}^{512 + 128}\)

1. \(F \leftarrow CC_K(F \cdot N)\)
2. \(C \leftarrow M \oplus msb_M(F(CTR[F](\text{str}_{32}(1), |M|_{512}))\)
3. \(L \leftarrow msb_{256}(F(\text{str}_{32}(0)))\)
4. \(T \leftarrow \text{lsb}_{128}(L) \oplus \text{Poly}_{msb_{128}(L)}(A0^{128}) C0^{128}||\text{str}_{64}(|A|)\text{str}_{64}(|C|)\)
5. return \((C, T)\)

Algorithm 8: CommitKeyII\(\Pi^{Enc}(K, N, A, M)\)

Input: \(K \in \{0, 1\}^{256}, N_1 \in \{0, 1\}^{96}, N \in \{0, 1\}^{96}, A \in \{0, 1\}^{L}, M \in \{0, 1\}^{512 - 1}\)

Output: \((C, T) \in \{0, 1\}^{512 + 128}\)

1. \(K_{\text{enc}} \leftarrow F_{\text{enc}}(K)\)
2. \(K_{\text{com}} \leftarrow F_{\text{com}}(K)\)
3. \(C \leftarrow Enc(K_{\text{enc}}, N, A, M)\)
4. return \((C, K_{\text{com}})\)

Algorithm 9: CommitKeyII\(\Pi^{Enc}(K, N_1, N, A, M)\)

Input: \(K \in \{0, 1\}^{256}, N_1 \in \{0, 1\}^{96}, N \in \{0, 1\}^{96}, A \in \{0, 1\}^{L}, M \in \{0, 1\}^{512 - 1}\)

Output: \((C, T) \in \{0, 1\}^{512 + 128}\)

1. \(K_{\text{enc}} \leftarrow F_{\text{enc}}(K, N_1)\)
2. \(K_{\text{com}} \leftarrow F_{\text{com}}(K)\)
3. \(C \leftarrow Enc(K_{\text{enc}}, N, A, M)\)
4. return \((C, K_{\text{com}})\)

Algorithm 10: CommitKeyII\(\Pi^{Enc}(K, N_1, N, A, M)\)

Input: \(K \in \{0, 1\}^{256}, N_1 \in \{0, 1\}^{96}, N \in \{0, 1\}^{96}, A \in \{0, 1\}^{L}, M \in \{0, 1\}^{512 - 1}\)

Output: \((C, T) \in \{0, 1\}^{512 + 128}\)

1. \(K_{\text{enc}} \leftarrow F_{\text{enc}}(K)\)
2. \(K_{\text{com}} \leftarrow F_{\text{com}}(K, N_1)\)
3. \(C \leftarrow Enc(K_{\text{enc}}, N, A, M)\)
4. return \((C, K_{\text{com}})\)

Algorithm 11: Pad\(\Pi^{Enc}(K, N, A, M)\)

Input: \(K \in \{0, 1\}^{256}, N \in \{0, 1\}^{96}, A \in \{0, 1\}^{L}, M \in \{0, 1\}^{512 - 1}\)

Output: \((C, T) \in \{0, 1\}^{512 + 128}\)

1. return \(Enc(K, N, A, \text{str}_{l}(0) \parallel M)\)

Figure 8: The GCM mode of operation with 96-bit nonces. GH is GHASH. The value \(L = E_K(\text{str}_{n}(0))\).

B.2 ChaCha20Poly1305

Our description of ChaCha20Poly1305 is taken from RFC 7539 [NL15], as well as Procter’s analysis [Pro15, Pro14]. The combination of ChaCha20 [Ber08] and Poly1305 [Ber05] is similar to that of GCM, with the main differences being the fact that block cipher calls are replaced by ChaCha20’s block function calls, and the key for Poly1305 is generated differently.

The ChaCha20 block function is denoted by

\[
CC: \{0, 1\}^{256} \times \{0, 1\}^{32} \times \{0, 1\}^{96} \rightarrow \{0, 1\}^{512},
\]

which operates on keys of length 256 bits, a block number of length 32 bits, and a nonce of length 96 bits, with an output of size 512 bits. The Poly1305 universal hash function is denoted by

\[
Poly: \{0, 1\}^{128} \times \{0, 1\}^{*} \rightarrow \{0, 1\}^{128}.
\]

The description of ChaCha20Poly1305 encryption is given in Algorithm 7.

B.3 OCB3 Diagram

C Type I, II, and III CommitKey\(\Pi\) Encryption

D Algorithmic Descriptions of the Padding Fix

E A Type I Key Committing AES-GCM

Let \(\Pi\) be the standard AES-GCM scheme with parameters \(\kappa = 256, v = 96\) and block size \(n = 128\). Select parameter values \(\kappa_0 = 256 (= \kappa), c = 256, \ell = \ell_\ell = 48\) (there is
We use the notation and definitions of Appendix A and Section B.1. Let \(E : K \times X \rightarrow X \) denote AES with any key size, where \(X = \{0,1\}^n \) and \(n = 128 \). Let \((N,A,M,C) \) be GCM input. GCM uses the 96-bit nonce \(N \) to produce an initial value \(I = N \| \text{str}_{32}(1) \), which in turn is used to generate AES input in CTR mode. When prepending a string of \(\ell \) zero’s to \(M \), GCM’s ciphertext includes CTR mode output of length \(\ell \).

Using the notation of Section B.1, we let \(F := E_K(\text{msbo}_{96}(I) \| \cdot) \) denote an evaluation of \(E_K \) with the first 96 bits fixed to \(\text{msbo}_{96}(I) \). Let \(L \) be the smallest integer such that \(n \cdot L \geq \ell \), that is, \(L \) is the number of complete \(n \) bit blocks not less than \(\ell \). Then the following is added to GCM’s ciphertext:

\[
\text{msbo}_{\ell}(\text{CTR}[F](\text{lsb}_{32}(I),L)).
\]

(29)

Note that it must be the case that the length of the message plus \(\ell \)-bit is less than \(128 \cdot (2^{32} - 2) \), hence it must be that \(L < 2^{32} - 2 \).

A key commitment adversary would have to find two different keys such that the first \(\ell \) bits of CTR mode under initial value \(I \) are the same under those two different keys, otherwise the GCM ciphertext would not be the same and the adversary would not have broken the key commitment.

We rewrite the constraints the adversary needs to satisfy in terms of block cipher calls. Letting \(I_1, \ldots, I_L \) denote the AES inputs used in the above CTR mode call, the adversary needs to find \(K_1 \) and \(K_2 \) such that

\[
E_{K_1}(I_i) = E_{K_2}(I_i) \quad \text{for } i = 1, \ldots, L - 1 \quad \text{and}
\]

\[
\text{msbo}_R(E_{K_1}(I_{L})) = \text{msbo}_R(E_{K_2}(I_{L})),
\]

(30)

where \(R = \ell - n \cdot (L - 1) \), that is, \(0 \leq R \leq n \) is the number of bits in the last, possibly incomplete, block.

We model AES as an ideal cipher, meaning a random variable chosen uniformly at random from the set of all block ciphers with interface \(K \times X \rightarrow X \). In particular, for each key \(K \), the ideal cipher chooses a permutation \(E_K \) uniformly at random from the set of all permutations on \(X \).

Let \(s = (J_1, J_2, \ldots, J_{L-1}, J_L) \) be a sequence where \(J_i \in X \) for \(i < L \) and \(J_L \in \{0, 1\}^{R} \). Fix \(I_1 \in X \) for \(i = 1, \ldots, L \). We say that a permutation \(p \) over \(X \) satisfies the sequence \(s \) if \(p(I_i) = J_i \) for \(i < L \) and \(\text{msbo}_R(p(I_L)) = J_L \). Let \(S \) be the set of sequences in \(X^{L-1} \times \{0, 1\}^R \) for which there exists a permutation \(p \) over \(X \) satisfying the sequence. This means, for example, for any \(s \in S \) that \(J_i \neq J_j \) for \(i, j < L \), although \(J_L \) could equal the first \(R \) bits of some other \(J_j \).

Fixing \(s \in S \), let \(P_s \) be the set of permutations satisfying \(s \). Say the adversary queries \(E \) under \(u \) different keys. The probability that the adversary finds two keys which select two permutations satisfying the same \(s \in S \) for any \(s \) is at most

\[
\left(\frac{u}{2} \right) \sum_{s \in S} \left(\frac{P_s}{2^{n!}} \right)^2.
\]

(31)

The size of \(P_s \) is at most \(2^{n-R} \cdot (2^n - L)! \), and the size of \(S \) is at most \(2^R \cdot 2^{n!} / (2^n - L + 1)! \). Hence Equation 31 is bounded by

\[
\left(\frac{u}{2} \right) \cdot \left(\frac{2^R \cdot 2^{n!} \cdot (2^n - L)!}{(2^n - L + 1)!} \right)^2 \cdot \left(\frac{2^n - R}{2^{n!}} \right)^2 \cdot (2^n - L)! \cdot (2^n - 1)!
\]

(32)

(33)

\[
\left(\frac{u}{2} \right) \cdot \frac{1}{2^{n-R} \cdot (2^n - L)!} \cdot \frac{1}{2^{n-1} \cdot (2^n - L + 1)!}.
\]

(34)

Given that \(L \leq 2^{32} - 2 \), the size of \(S \) is at most \(2^{32} - 2 \), and the size of \(S \) is at most \(2^{32} - 2 \), the size of \(S \) is at most \(2^{32} - 2 \), hence it must be that

\[
\left(\frac{u}{2} \right) \cdot \frac{1}{2^R \cdot 2^{n!} \cdot (2^n - L + 1)!} \cdot \frac{1}{2^{n-1} \cdot (2^n - L + 1)!}.
\]

(35)
Using the fact that \(\ell = n(L-1) \), and that for \(n = 128 \), the product of the right two terms in the above equation are less than 2, and \((\sigma_j^2) \leq u^2/2 \), we get our desired result.

G Instantiating the Bounds of Theorem 3

We show how to use the bounds of Theorem 3. Consider with AES-GCM under the key AES-GCM. Suppose that a main key \(K \) is used \(q \leq 2^{32} \) times, with different nonces \(N'_1, \ldots, N'_q \) resulting in derived values \(K_{\text{enc}} = F_{\text{enc}}(K, N'_1) \) and \(K_{\text{com}} = F_{\text{com}}(K, N'_1) \). Every nonce from \(N'_1, \ldots, N'_q \) and the respective derived key is used to encrypt a payload with the following characteristics. Payload \(j \) consists of \(q_j \) chunks of data. Every chunk is encrypted with AES-GCM under the key \(K_{\text{enc}, j} \). The total number of blocks encrypted with \(K_{\text{enc}, j} \) is \(\sigma_j \). For CommitKeyII, we make the assumption that AES behaves like an ideal cipher in the multi-key scenario, and ignore the PRF advantage of distinguishing AES from a random permutation on \(\{0, 1\}^{128} \). With probability at most \((2q)^2/2^{25+1} \), we may assume that the \(q \) values of \(K_{\text{enc}} \) and the \(q \) values of \(K_{\text{com}} \) are distinct. With \(T_0 \) key guessing attempts (for either \(K \) or a derive \(K_{\text{enc}} \), correct guessing succeeds with probability \((T_0q)/2^k \). Therefore, we can upper bound the advantage of an adversary against CommitKeyII by

\[
\max \operatorname{PRF}(F_{\text{enc}}, F_{\text{com}}) + \frac{4q^2}{2^{x+1}} + T_0 q \frac{2^x}{2^{x+1}} + \sum_{j=1}^{q} \left(\sigma_j + q_j + 1 \right)^2 2^{-129} \leq \\
(36)
\]

where \(\max \operatorname{PRF}(F_{\text{enc}}, F_{\text{com}}) \) is the maximum distinguishing advantage for \(F \), with \(2q \) queries.

We set the limits \(q \leq 2^{32} \), \(q_j = 2^{30} \) and \(\sigma_j = 2^{30} \), \(j = 1, \ldots, q \), and assume \(T_0 \leq 2^{96} \). This implies \((\sigma_j + q_j + 1) < 2^{32} \), and consequently, the dominant term in (36) is at most \(2^{32} \times 2^{-65} = 2^{-33} \). With a judicious choice for a PRF \(F \) (e.g., SHA256), we can assume that the PRF distinguishing advantage with \(2q \) queries (for \(F \)) is or order \(O(4q^2/2^{257}) \). The amount of data that can be encrypted using CommitKeyII and a main key \(K \), is up to \(2^{60} \) blocks (i.e., \(2^{64} \) bytes), and the indistinguishability bound is at most \(O(2^{-32}) \).

H Example (this file)

This file is actually a proof of concept itself, containing this paper under its PDF form, but also a PDF viewer as a Windows executable. The parameters are :

- \(K_1 = 0x4e6773f00000000000000000000000000 \)
- \(K_2 = 0x4c34743372212121210000000000000000 \)
- \(N = 0x000000000000000000000000000000007c6, \)
- \(A = 0x4d79566f69636549734d795061737321. \)

If this PDF is encrypted with \(K_1 \) and decrypted with \(K_2 \), it will give you a fully working executable which is a PDF viewer. There is no widely available CLI for AES-GCM, but OpenSSL can be used to simulate the encryption/decryption process without authentication in the following way

```
openssl enc -in paper.pdf -out ciphertext
-aes-128-ctr
-iv 00000000000000000000000007c60000002
-K 4e6773f00000000000000000000000000
openssl enc -in ciphertext -out viewer.exe
-aes-128-ctr
-iv 000000000000000000000000000000007c600000002
-K 4c34743372212121000000000000000000
```

I Creating ambiguous ciphertexts with Mitra

To invoke Mitra, just run the main script on 2 given files. The first file argument has to go first in the file structure, so swapping file arguments will give different results. To try both directions, you can use the --reverse flag. If you want more information, use the --verbose flag. By default, near polyglot (with overlapping data) are not generated, since they are not functional as-is. To generate such polyglots, use the --overlap flag. An example of a command line to get a near polyglot of a JPEG and a Portable Executable is

```
$ python3 ./mitra.py jpg.jpg pe32.exe --overlap
```

It takes less than a second to create a near polyglot — called in our case OR(6-a00)-JPG[PE(hdr)]{4D5A}.eldb0d9.jpg.exe — after the following output:

```
jpg.jpg
File 1: JFIF / JPEG File Interchange Format pe32.exe
File 2: Portable Executable (hdr)
```

You can then use the output file directly with our Sage script.

```
$ sage mitra_gcm.sage
OR(6-a00)-JPG[PE(hdr)]{4D5A}.eldb0d9.jpg.exe
```

It will generate the ciphertext — with default values unless specified — after bruteforcing the nonce and correcting the tag.

```
Overlap file found - bruteforced nonce: 11671
Key1: b’01010101010101010101010101010101’
Key2: b’0202020202020202020202020202020202’
Nonce: b’000000000000000000000000000000002d9’
AdditionalData: b’aaaaaaaaaaaaaaaaaaaaaaaaaaaaa...’
Ciphertext: b’6a88b8127629c0c5c20d651866c75.’
Tag: b’0404040404040404040404040404040404’
```

You can use the --dump_plaintexts flag to generate decrypted plaintexts to confirm that the payloads are working.
Reducing overlap in near polyglots

We found ways to create near polyglots with very little overlap in specific file formats.

PostScript (1–3 bytes) This format is parsed from the start of the file. It is possible to start with a line comment % which enables parasites as long as they do not contain any newline or Form Feed (0C) character. Note that the parasite might be encrypted so these requirements apply after encryption. This line comment must just be followed by a newline before the start of the actual PostScript payload.

Another form of parasitizing with PostScript is to declare a nameless unused function with /{} in which case the parasite can contain newlines, but should have balanced parenthesis. This parasite must be followed by } to close the function declaration.

Portable Executable (2 bytes) The PE file format starts at offset zero with a 64 bytes DOS header, which is mostly deprecated. It requires a magic MZ at offset zero and a 4 bytes pointer to the PE header at offset 60. The remaining 58 bytes of the DOS header can be overwritten and used as a cavity. This can be used if another file format and a parasite can be declared in these 58 bytes. Room can be made after the PE header pointer, as its position can be freely moved further: in this case, only the 4 bytes pointer need to be ignored — for example by declaring a dummy RGBA value in a palette.

JPEG (4–6 bytes) The JPEG format requires a minimum of 6 bytes at its start:

1. a signature FF D8.
2. a comment declaration FF FE.
3. the length of the comment, little-endian, on 2 bytes.

So intuitively, 6 bytes of overlapping data are required. But, unless the highest byte of the length is already FF, we can just increase that byte and leave the lower byte uncontrolled, saving one byte of overlapping.

For example, for a BMP/JPG polyglot, the required length of a tiny BMP file to host in a JPEG comment is 01 4A. Since the BMP file requires a 00 at that last offset (value of 4A), we’ll just use a JPEG comment length of 02 XX, where XX is the byte controlled by the 00 byte of the BMP, after the 2 encryption operations with the chosen keys and the nonce determined to overlap the first 5 bytes of each headers.

For example, for headers ff d8 ff fe 02 and BM N 01 00 for BMP, with the keys 01*16 and 02*16, we can compute a nonce of 0xe0000000af2a63bd. With this parameters, the 6th byte 00 of the BMP file will be encrypted as 70 on the JPEG side, which means we need to grow the parasite by 0x170 bytes compared to its original value with 6 bytes of overlap. It is a small sacrifice of 0x1ff bytes maximum, but speeds up the process by a factor of 2^8.

It is also possible to control no bytes of the length: in this case, a small file - most file formats can be valid in a few kilobytes - with padding - provided the format supports appended data or wrapping - will fit in the random length given by the bytes of the other files after the 2 encryption steps. At worse, the random length will be 65535 bytes, which is a small growth. This saves another byte of encryption making bruteforcing of JPEG doable in a few minutes. In practice, JPEG overlap can indeed be reduced to 4 bytes with most formats we tried.

Another use of this format is to get 2 JPEG images decrypted from the same ciphertext, with only 4 bytes of overlap to declare the magic and a comment, and introduce differences in the first comment length, and abusing the difference in comment length by declaring further comments, hiding one of the image contents or the other.