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Abstract

Zero-knowledge protocols enable the truth of a mathematical statement to be certified by a
verifier without revealing any other information. Such protocols are a cornerstone of modern
cryptography and recently are becoming more and more practical. However, a major bottleneck
in deployment is the efficiency of the prover and, in particular, the space-efficiency of the protocol.

For every NP relation that can be verified in time T and space S, we construct a public-coin
zero-knowledge argument in which the prover runs in time T ·polylog(T ) and space S ·polylog(T ).
Our proofs have length polylog(T ) and the verifier runs in time T · polylog(T ) (and space
polylog(T )). Our scheme is in the random oracle model and relies on the hardness of discrete
log in prime-order groups.

Our main technical contribution is a new space efficient polynomial commitment scheme for
multi-linear polynomials. Recall that in such a scheme, a sender commits to a given multi-linear
polynomial P : Fn → F so that later on it can prove to a receiver statements of the form
“P (x) = y”. In our scheme, which builds on commitments schemes of Bootle et al. (Eurocrypt
2016) and Bünz et al. (S&P 2018), we assume that the sender is given multi-pass streaming
access to the evaluations of P on the Boolean hypercube and we show how to implement both
the sender and receiver in roughly time 2n and space n and with communication complexity
roughly n.
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1 Introduction
Zero-knowledge protocols are a cornerstone of modern cryptography, enabling the truth of a
mathematical statement to be certified by a prover to a verifier without revealing any other
information. First conceived by Goldwasser, Micali, and Rackoff [GMR89], zero knowledge has
myriad applications in both theory and practice and is a thriving research area today. Theoretical
work primarily investigates the complexity tradeoffs inherent in zero-knowledge protocols:

• the number of rounds of interaction,

• the number of bits exchanged between the prover and verifier

• the computational complexity of the prover and verifier (e.g. running time, space usage)

• the degree of soundness—in particular, soundness can be statistical or computational, and the
protocol may or may not be a proof of knowledge.

ZK-SNARKs (Zero-Knowledge Succinct Non-interactive ARguments of Knowledge) are protocols
that achieve particularly appealing parameters: they are non-interactive protocols in which to certify
an NP statement x with witness w, the prover sends a proof string π of length |π| ≪ |w|. Such proof
systems require setup (namely, a common reference string) and (under widely believed complexity-
theoretic assumptions [GH98, GVW02]) are limited to achieving computational soundness.

One of the main bottlenecks limiting the scalability of ZK-SNARKs is the high computational
complexity of generating proof strings. In particular, a major problem is that even for the lowest-
overhead ZK-SNARKs (see e.g. [GGPR13, PHGR13, BBHR19] and follow-up works), the prover
requires Ω(T ) space to certify correctness of a time-T computation, even if that computation uses
space S ≪ T .

As typical computations require much less space than time, such space usage can easily become
a hard bottleneck. While it is straight-forward to run a program for as long as one’s patience allows,
a computer’s memory cannot be expanded without purchasing additional hardware. Moreover,
the memory architecture of modern computer systems is hierarchical, consisting of different tiers
(various cache levels, RAM, and nonvolatile storage), with latencies and capacities that increase
by orders of magnitude at each successive level. In other words, high space usage can also incur a
heavy penalty in running time.

In this work, we focus on uniform non-deterministic computations—that is, proving that a
nondeterministic time-T space-S Turing machine accepts an input x. Our objective is to obtain
“complexity-preserving” (ZK-)SNARKs [BC12a] for such computations, i.e., SNARKs in which the
prover runs in time roughly T and space roughly S. Relatively efficient privately verifiable solutions
are known [BC12b, HR18]. In such schemes the verifier holds some secret state that, if leaked,
compromises soundness. However, many applications (such as cryptocurrencies or other massively
decentralized protocols) require public verifiability, which is the emphasis of our work.

To date, publicly verifiable complexity-preserving SNARKs are known only via recursive compo-
sition [Val08, BCCT13]. This approach indeed yields SNARKs with prover running time Õ(T ) and
space usage S · polylog(T ), but with significant concrete overheads. Recursively composed SNARKs
require both the prover and verifier to make non-black-box usage of an “inner” verifier for a different
SNARK, leading to enormous computational overhead in practice.

Several recent works [BGH19, BCMS20, COS20] attempt to solve the inefficiency problems with
recursive composition, but the protocols in these works rely on heuristic and poorly understood
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assumptions to justify their soundness. While any SNARK (with a black-box security reduction)
inherently relies on non-falsifiable assumptions [GW11], these SNARKs possess additional troubling
features. They rely on hash functions that are modeled as random oracles in the security proof,
despite being used in a non-black-box way by the honest parties. Security thus cannot be reduced
to a simple computational hardness assumption, even in the random oracle model. Moreover, the
practicality of the schemes crucially requires usage of a novel hash function (e.g., Rescue [AAB+19])
with algebraic structure designed to maximize the efficiency of non-black-box operations. Such
hash functions have endured far less scrutiny than standard SHA hash functions, and the algebraic
structure could potentially lead to a security vulnerability.

In this work, we ask:

Can we devise a complexity-preserving ZK-SNARK in the random oracle model based on
standard cryptographic assumptions?

1.1 Our Results

Our main result is an affirmative answer to this question.

Theorem 1. Assume that the discrete-log problem is hard in obliviously sampleable1 prime-order
groups. Then, for every NP relation that can be verified by a random access machine in time T and
space S, there exists a publicly verifiable ZK-SNARK, in the random oracle model, in which both the
prover and verifier run in time T · polylog(T ), the prover uses space S · polylog(T ), and the verifier
uses space polylog(T ). The proof length is poly-logarithmic in T .

We emphasize that the verifier in our protocol has similar running time to that of the prover,
in contrast to other schemes in the literature that offer poly-logarithmic time verification. While
this limits the usefulness of our scheme in delegating (deterministic) computations, our scheme is
well-geared towards zero-knowledge applications in which the prover and verifier are likely to have
similar computational resources.

At the heart of our ZK-SNARK for NP relations verifiable by time-T space-S random access
machine (RAM) is a new public-coin interactive argument of knowledge, in the random oracle
model, for the same relation where the prover runs in time T · polylog(T ) and requires space
S · polylog(T ). We make this argument zero-knowledge by using standard techniques which incurs
minimal asymptotic blow-up in the efficiency of the argument [BGG+90, CD98, WTs+18]. Finally,
applying the Fiat-Shamir transformation [FS87] to our public-coin zero-knowledge argument yields
Theorem 1.

1.1.1 Space-Efficient Polynomial Commitment for Multi-linear Polynomials

The key ingredient in our public-coin interactive argument of knowledge is a new space efficient
polynomial commitment scheme, which we describe next.

Polynomial commitment schemes were introduced by Kate et al. [KZG10] and have since
received much attention [BBHR18, BGKS19, BFS20, WBT+17, KPV19, ZXZS20], in particular due

1By obliviously sampleable we mean that there exist algorithms S and S−1 such that on input random coins r, the
algorithm S samples a uniformly random group element g, whereas on input g, the algorithm S−1 samples random
coins r that are consistent with the choice of g. In other words, if S uses ℓ random bits then the joint distributions
(Uℓ, S(Uℓ)) and (S−1(S(Uℓ)), S(Uℓ)) are identically distributed, where Uℓ denotes the uniform distribution on ℓ bit
strings.
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to their usage in the construction of efficient zero-knowledge arguments. Informally, a polynomial
commitment scheme is a cryptographic primitive that allows a committer to send to a receiver
a commitment to an n-variate polynomial Q : Fn → F, over some finite field F, and later reveal
evaluations y of Q on a point x ∈ Fn of the receiver’s choice along with a proof that indeed y = Q(x).

In this work we construct polynomial commitment schemes where the space complexity is
(roughly) logarithmic in the description size of the polynomial. In order to state this result more
precisely, we must first determine the type of access that the committer has to the polynomial.

We first note that in this work we restrict our attention to multi-linear polynomials (i.e.,
polynomials which have individual degree 1). Note that such a polynomial Q : Fn → F is uniquely
determined by its evaluations on the Boolean hybercube, that is,

(
Q(0), . . . , Q(2n − 1)

)
, where the

integers in Z2n are associated with vectors in {0, 1}n in the natural way.
Towards achieving our space efficient implementation, and motivated by our application to

the construction of an efficient argument-scheme, we assume that the committer has multi-pass
streaming access to the evaluations of the polynomial on the Boolean hypercube. Such an access
pattern can be modeled by giving the committer access to a read-only tape that is pre-initialized
with the values

(
Q(0), . . . , Q(2n − 1)

)
. At every time-step the committer is allowed to either move

the machine head to the right or to restart its position to 0.

Theorem 2 (Informal, see Theorem 5). Let G be an obliviously sampleable group of prime-order p
and let Q : Fn → F be some n-variate multi-linear polynomial. Assuming the hardness of discrete-
log over G and multi-pass streaming access to the sequence (Q(0), . . . , Q(2n − 1)), there exists a
polynomial commitment scheme for Q in the random oracle model such that

1. The commitment consists of one group element, evaluation proofs consist of O(n) group and
field elements,

2. The committer and receiver perform Õ(2n) group and field operations, make Õ(2n) queries to
the random oracle, and store only O(n) group and field elements, and

3. The committer makes O(n) passes over (Q(0), . . . , Q(2n − 1)).

Following [KZG10], a number of works have focussed on achieving asymptotically optimal
proof sizes (more generally, communication), and time complexity for both committer and receiver.
However, the space complexity of the committer has been largely ignored; naively it is lower-bounded
by the size of the committer’s input (which is a description of the polynomial). As mentioned above,
we believe that obtaining a space-efficient polynomial commitment scheme in the streaming model
to be of independent interest and may even eventually lead to significantly improved performance of
interactive oracle proofs, SNARKS, and related primitives in practice.

We also mention that the streaming model is especially well-suited to our application of building
space-efficient SNARKs. The reason is that in such schemes, the prover typically uses a polynomial
commitment scheme to commit to a low-degree extension of the transcript of a RAM program,
which, naturally, can be generated as a stream in space that is proportional to the space complexity
of the underlying RAM program.

At a high level, we use an algebraic homomorphic commitment (e.g., Pedersen commit-
ment [Ped92]) to succinctly commit to the polynomial Q (by committing to the sequence (Q(0), . . . ,
Q(2n − 1)). Next, to provide evaluation proofs, our scheme leverages the fact that evaluating
Q on point x reduces to computing an inner-product between (Q(0), . . . , Q(2n − 1)) and the se-
quence of Lagrange coefficients defined by the evaluation point x. Relying on the homomorphic
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properties of our commitment, the basic step of our evaluation protocol is a 2-move (randomized)
reduction step which allows the committer to “fold” a statement of size 2n into a statement of
size 2n/2. Our scheme is inspired from the “inner-product argument” of Bootle et al. [BCC+16]
(and its variants [BBB+18, WTs+18]) but differs in the 2-move reduction step. More specifically,
their reduction step folds the left half of (Q(0), . . . , Q(2n − 1)) with its right half (referred to as
msb-based folding as the index of the elements that are folded differ in the most significant bit).
This, unfortunately, is not compatible with our streaming model (we explain this shortly). We
instead perform the more natural lsb-based folding which, indeed, is compatible with the streaming
model. We additionally exploit random access to the inner-product argument’s setup parameters
(defined by the random oracle) and the fact that any component of the coefficient sequence can be
computed in polylogarithmic time, i.e. poly(n) time. We give a high level overview of our scheme
in Section 2.1.

1.2 Prior Work

Complexity Preserving ZK-SNARKs. Bitansky and Chiesa [BC12b] proposed to construct
complexity preserving ZK-SNARKS by first constructing complexity preserving multi-prover inter-
active proof (MIPs) and then compile them using cryptographic techniques. While our techniques
share the same high-level approach, our compilation with a polynomial-commmitment scheme yields
a publicly verifiable scheme whereas [BC12b] only obtain a designated verifier scheme.

Blumberg et al. [BTVW14] give a 2-prover complexity preserving MIP of knowledge, improving
(concretely) on the complexity preserving MIP of [BC12b] (who obtain a 2-prover MIP via a
reduction from their many-prover MIP). Both Bitansky and Chiesa and Blumberg et al. obtain
their MIPs from reducing RAMs to circuits via the reduction of Ben-Sasson et al. [BCGT13], then
appropriately arithmetize the circuit into an algebraic constraint satisfaction problem. Holmgren
and Rothblum [HR18] obtain a non-interactive protocol based on standard (falsifiable assumptions)
by also constructing a complexity preserving MIP for RAMs (achieving no-signaling soundness) and
compiling it into an argument using fully-homomorphic encryption (á la [BMW98, KR09, KRR13]).
We remark that [HR18] reduce a RAM directly to algebraic constraints via a different encoding of
the RAM transcript, thereby avoiding the reduction to circuits entirely.

Another direction for obtaining complexity preserving ZK-SNARKS is via recursive compo-
sition [BCCT13, Val08], or “bootstrapping”. Here, one begins with an “inefficient” SNARK and
bootstraps it recursively to produce publicly verifiable complexity preserving SNARKs. While these
constructions yield good asymptotics, these approaches require running the inefficient SNARK
on many sub-computations. Recent works [BGH19, BCMS20, COS20] describe a novel approach
to recursive composition which attempt to solve the inefficiencies of the aforementioned recursive
compositions, though at a cost to the theoretical basis for the soundness of their scheme (as discussed
above).

Interactive Oracle Proofs. Interactive oracle proofs (IOPs), introduced by Ben-Sasson et
al. [BCS16] and independently by Reingold et al. [RRR16], are interactive protocols where a verifier
has oracle access to all prover messages. IOPs capture (and generalize), both interactive proofs and
PCPs.

A recent line of work [BCGT13, BTVW14, CMT12, GKR08, Set20, Tha13, WTs+18, RR19]
follows the framework of Kilian [Kil92] and Micali [Mic94] to obtain efficient arguments by con-
structing efficient IOPs and compiling them into interactive arguments using collision resistant
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hashing [BCS16, Kil92] or the random oracle model [BCS16, Mic94].

Polynomial Commitments. Polynomial commitment schemes were introduced by Kate et
al. [KZG10] and have since been an active area of research. Lines of research for construction polyno-
mial commitment schemes include privately verifiable schemes [KZG10, PST13], publicly-verifiable
schemes with trusted setup [BFS20], and zero-knowledge schemes [WBT+17]. More recently, much
focus has been on obtaining publicly-verifiable schemes without a trusted setup [BBHR18, BGKS19,
BFS20, WBT+17, KPV19, ZXZS20]. We note that in all prior works on polynomial commitments,
the space complexity of the sender is proportional to the description size of the polynomial, whereas
we achieve poly-logarithmic space complexity.

2 Technical Overview
As mentioned above, the key component in our construction is that of a public-coin interactive
argument for RAM computations. The latter construction itself consists of two key technical
ingredients. First, we construct a polynomial interactive oracle proof (polynomial IOP) for time-T
space-S RAM computations in which the prover runs in time T ·polylog(T ) and space S ·polylog(T ).
We note that this ingredient is a conceptual contribution which formalizes prior work in the language
of polynomial IOPs. Second, we compile this IOP with a space-efficient extractable polynomial
commitment scheme where the prover has multi-pass streaming access to the polynomial to which it
is committing—a property that plays nicely with the streaming nature of RAM computations. We
emphasize that the construction of the space-efficient polynomial commitment scheme is our main
technical contribution, and describe our scheme in more detail next.

2.1 Polynomial Commitment to Multi-linear Polynomials in the Streaming
Model

Fix a finite field F of prime order p. Also fix an obliviously sampleable (see Footnote 1) group G of
order p in which the discrete logarithm is hard. Let H : {0, 1}∗ → G be the random oracle.

In order to describe our polynomial commitment scheme, we start with some notation. Let n be
a positive integer and set N = 2n. We will be considering N -dimensional vectors over F and will
index such vectors using n dimensional binary vectors. For example, if b ∈ F26 then b000101 = b5.
For convenience, we will denote b ∈ FN by (bc : c ∈ {0, 1}n) where bc is the c-th element of b. For
b = (bn, . . . , b1) ∈ {0, 1}n we refer to b1 as the least-significant bit (lsb) of b. Finally, for b ∈ FN ,
we denote by be the restriction of b to the even indices, that is, be = (bc0 : c ∈ {0, 1}n−1). Similarly,
we denote by bo = (bc1 : c ∈ {0, 1}n−1) the restriction of b to odd indices.

Let Q : Fn → F be a multi-linear polynomial. Recall that such a polynomial can be fully
described by the sequence of its evaluations over the Boolean hypercube. More specifically, for any
x ∈ Fn, the evaluation of Q on x can be expressed as

Q(x) =
∑

b∈{0,1}n

Q(b) · z(x, b), (1)

where z(x, b) = ∏
i∈[n]

(
bi · xi + (1− bi) · (1− xi)

)
. We use Q ∈ FN to denote the restriction of Q to

the Boolean hybercube (i.e., Q = (Q(b) : b ∈ {0, 1}n)).
Next, we describe the our commitment scheme which has three phases: (a) Setup, (b) Commit

and (c) Evaluation.
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2.1.1 Setup and Commit Phase

During setup, the committer and receiver both consistently define a sequence of N generators for G
using the random oracle, that is, g = (gb = H(b) : b ∈ {0, 1}n). Then, given streaming access to Q,
the committer computes the Pedersen multi-commitment [Ped92] C defined as

C =
∏

b∈{0,1}n

(gb)Qb . (2)

For g ∈ G2n and Q ∈ F2n , we use gQ as a shorthand to denote the value ∏
b∈{0,1}n(gb)Qb . Assuming

the hardness of discrete-log for G, we note that C in Equation (2) is a binding commitment to
Q under generators g. Note that the committer only needs to perform a single-pass over Q and
performs N exponentiations to compute C while storing only O(1) number of group and field
elements.2

2.1.2 Evaluation Phase

On input an evaluation point x ∈ Fn, the committer computes and sends y = Q(x) and defines the
auxiliary commitment Cy ← C · gy for some receiver chosen generator g. Then, both engage in an
argument (of knowledge) for the following NP statement which we refer to as the “inner-product”
statement:

∃Q ∈ ZN
p : y = ⟨Q, z⟩ and Cy = gy · gQ , (3)

where z = (z(x, b) : b ∈ {0, 1}n) as defined in Equation (1). This step can be viewed as proving
knowledge of the decommitment Q of the commitment Cy, which furthermore is consistent with the
inner-product claim that y = ⟨Q, z⟩.

Inner-product Argument. A basic step in the argument for the above inner-product statement
is a 2-move randomized reduction step which allows the prover to decompose the N -sized statement
(Cy, z, y) into two N/2-sized statements and then “fold” them into a single N/2-sized statement
(C̄ȳ, z̄ = (z̄c : c ∈ {0, 1}n−1), ȳ) using the verifier’s random challenge. We explain the two steps
below (as well as in Figure 1).

1. Committer computes the cross-product ye = ⟨Qe, zo⟩ between the even-indexed elements Qe

with the odd-indexed vectors zo. Furthermore, it computes a binding commitment Ce that
binds ye (with g) and Qe (with go). That is,

Ce = gye · gQe
o , (4)

where recall that for g = (g1, . . . , gt) and x = (x1, . . . , xt) the expression gx = ∏
i∈[t] gxi

i . This
results in an N/2-sized statement (Ce, zo, ye) with witness Qe. Similarly, as in Figure 1 it
computes the second N/2-sized statement (Co, ze, yo) with witness Qo. The committer sends
(ye, yo, Ce, Co) to the receiver.

2Here, we treat exponentiation as an atomic operation but note that computing gα for α ∈ Zp can be emulated,
via repeated squarings, by O(log p) group multiplications while storing only O(1) number of group and field elements.
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Reduce(Cy ∈ G, g ∈ GN , g ∈ G, z ∈ FN , y ∈ F; Q ∈ FN )

Prover Verifier
ye ← ⟨Qe, zo⟩, yo ← ⟨Qo, ze⟩
Ce ← gye · gQe

o , Co ← gy0 · gQo
e (ye, yo, Ce, Co)

α
$← F∗

α

Q̄← α ·Qe + α−1 ·Qo z̄← α−1 · ze + α · zo

ḡ← (ge)α−1 ∗ (go)α

ȳ ← α2 · ye + y + α−2 · yo

C̄ȳ ← Cα2
e · Cy · Cα−2

o

Reduce(C̄ȳ, ḡ, g, z̄, ȳ; Q̄)

Figure 1: Our 2-move randomized reduction step for the inner-product protocol where recall that
for any Q ∈ FN , we denote by Qe the elements of Q indexed by even numbers where Qo denotes
the elements with odd indices. On input a statement of size N > 1, Reduce results in a statement
of size N/2.

2. After receiving a random challenge α ∈ F∗, committer folds its witness Q into an N/2-sized
vector Q̄ = α ·Qe + α−1 ·Qo. More specifically, for every c ∈ {0, 1}n−1,

Q̄c = α ·Qc0 + α−1 ·Qc1 . (5)

Similarly, the committer and receiver both compute the rest of the folded statement (C̄ȳ, z̄, ȳ)
as shown in Figure 1.

Relying on the homomorphic properties of Pedersen commitments, it can be shown that if Q
were a witness to (Cy, z, y) then Q̄ is a witness for (C̄ȳ, z̄, ȳ).3 In the actual protocol, the parties then
recurse on smaller statements (C̄ȳ, z̄, ȳ) forming a recursion tree. After log N steps, the statement is
of size 1 in which case the committer sends its witness which is a single field element. This gives an
overall communication of O(log N) field and group elements. Next we briefly discuss the efficiency
of the scheme.

2.1.3 Efficiency

For the purpose of this overview, we focus only on the time and space efficiency of the committer in
the inner-product argument (the analysis for the receiver is analogous). Recall that in a particular
step of the recursion, suppose we are recursing on the N/2-sized statement (C̄ȳ, z̄, ȳ) with witness
Q̄, the committer’s computation includes computing (a) the cross-product ⟨Q̄e, z̄o⟩ between the

3albeit under different set of generators but we ignore this for now
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Scheme [BCC+16, BBB+18] (msb-based) This work (lsb-based)

Q̄b α ·Q0b + α−1 ·Q1b α ·Qb0 + α−1 ·Qb1

z̄b α−1 · z0b + α · z1b α−1 · zb0 + α · zb1

ḡb (g0b)α−1 ∗ (g1b)α (gb0)α−1 ∗ (gb1)α

Figure 2: Table highlights the differences between the 2-move randomized reduction steps of the
inner-product argument of [BCC+16, BBB+18] (second column) and our scheme (third column).
Specifically, given vectors Q, z, g of size 2n, the rows describe the definition of the 2n/2 sized vectors
Q̄, z̄, ḡ respectively where b ∈ {0, 1}n−1.

even half of Q̄ and the odd half of z̄, and (b) the “cross-exponentiation” ḡQ̄e
o of the even half of Q̄

with the odd half of the generators ḡ.4
A straightforward approach to compute (a) is to have Q̄ (and z̄) in memory, but this requires the

committer to have Ω(N) space which we want to avoid. Towards a space efficient implementation,
first note every element of Q̄ depends on only two, more importantly, consecutive elements of Q.
This coupled with streaming access to Q is sufficient to simulate streaming access to Q̄ while making
only one pass over Q. Secondly, by definition, computing any element of z requires only O(log N)
field operations while storing only O(n) field elements This then allows to compute any element of
z̄ on the fly with polylog(N) operations. Given the simulated streaming access to Q̄ along with the
ability to compute any element of z̄ on the fly is sufficient to compute the ⟨Q̄e, z̄o⟩. Note this step,
overall, requires performing only a single pass over Q and N ·polylog N operations, and storing only
the evaluation point x and verifier challenge α (along with some book-keeping). The computation
of (b) is handled similarly, except that here we crucially leverage the fact that g is defined using the
random oracle, and hence the committer has random access to all of the generators in g. Relying
on similar ideas as in (a), the committer can compute ḡQ̄e

o while additionally making O(N) queries
to the random oracle. Overall, this gives the required prover efficiency. Please see Section 4.3 for a
full discussion on the efficiency.

2.1.4 Comparison with the 2-move reduction step of [BCC+16, WTs+18]

In their protocol, a major difference is in how the folding is performed (Step 2, Figure 1). We list
concrete differences in Figure 2. But at a high level, since they fold the first element Q00n−1 with
the N/2-nd element Q10n−1 , it takes at least a one pass over Q to even compute the first element of
Q̄, thereby requiring Ω(N) passes over Q which is undesirable.5 Although we differ in the 2-move
reduction steps, the security of our scheme follows from ideas similar to [BCC+16, WTs+18].

2.2 Polynomial IOPs for RAM Programs

The second ingredient we use to obtain space-efficient interactive arguments for NP relations
verifiable by time-T space-S RAMs is a space-efficient polynomial interactive oracle proof system
[BCS16, RRR16, BFS20]. Informally, an interactive oracle proof (IOP) is an interactive protocol

4Efficiency for ⟨Q̄o, z̄e⟩ and ḡQ̄o
e can be argued similarly.

5When a polynomial commitment is used in building arguments, it takes O(N) time to stream Q, and requiring
Ω(N) passes results in a prover that runs in quadratic time.
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such that in each round the verifier sends a message to the prover, and the prover responds with
proof string that the verifier can query in only a few locations. A polynomial IOP is an IOP where
the proof string sent by the prover is a polynomial (i.e, all evaluations of a polynomial on a domain),
and if a cheating prover successfully convinces a verifier then the proof string is consistent with
some polynomial.

We consider a variant of the polynomial IOP model in which the prover sends messages which are
encoded by the channel; in particular, the time and space complexity of the encoding computed by
the channel do not factor into the complexity of the prover. For our purposes, we use the polynomial
IOP that is implicit in [BTVW14] and consider it with a channel which computes multi-linear
extensions of the prover messages. We briefly describe the IOP construction for completeness (see
Section 5 for more details). The polynomial IOP at its core first leverages the space-efficient RAM
to arithemtic circuit satifsiability reduction of [BTVW14] (adapting techniques of [BCGT13]). This
reduction transforms a time-T space-S RAM into a circuit of size T ·polylog(T ) and has the desirable
property (for our purposes) that the circuit can be accessed by the prover in a streaming manner:
the assignment of gate values in the circuit can be streamed “gate-by-gate” in time T · polylog(T )
and space S · polylog(T ), which, in particular, allows a prover to compute a correct transcript of
the circuit in time T · polylog(T ) and space S · polylog(T ).

The prover sends the verifier an oracle that is the multi-linear extension of the gate values (i.e.,
the transcript), where we remark that this extension is computed by the channel. The correctness of
the computation is reduced to an algebraic claim about a low degree polynomial which is identically
0 on the Boolean hypercube if and only if the circuit is satisfied by the given witness. Finally, the
prover and verifier engage in the classical sum-check protocol [LFKN90, Sha90] to verify that the
constructed polynomial indeed vanishes on the Boolean hypercube.

Theorem 3. There exists a public-coin polynomial IOP over a channel which encodes prover
messages as multi-linear extensions for NP relations verifiable by a time-T space-S random access
machine M such that if y = M(x; w) then

1. The IOP has perfect completeness and statistical soundness, and has O(log(T )) rounds;

2. The prover runs in time T · polylog(T ) and space S · polylog(T ) (not including the space
required for the oracle) when given input-witness pair (x; w) for M , sends a single polynomial
oracle in the first round, and has polylog(T ) communication in all subsequent rounds; and

3. The verifier runs in time (|x|+ |y|) · polylog(T ), space polylog(T ), and has query complexity 3.

2.3 Obtaining Space-Efficient Interactive Arguments

We compile Theorem 3 and Theorem 2 into a space-efficient interactive argument scheme for NP
relations verifiable by RAM computations.

Theorem 4 (Informal, see Theorem 6). There exists a public-coin interactive argument for NP
relations verifiable by a time-T space-S random access machine M , in the random oracle model,
under the hardness of discrete-log in obliviously sampleable prime-order groups such that:

1. The prover runs in time T · polylog(T ) and space S · polylog(T );

2. The verifier runs in time T · polylog(T ) and space polylog(T ); and

11



3. The round complexity is O(log T ) and the communication complexity is polylog(T ).

The interactive argument of Theorem 4 is obtained by modifying the polynomial IOP of Theorem 3
with the commitment scheme of Theorem 2 in the following manner. First, the prover uses the
polynomial commitment scheme to send a commitment to the multi-linear extension of the gate values
rather than an oracle. This is possible to do in a space-efficient manner because of the streaming
nature of RAM computations and the streaming nature of the IOP. Second, the verifier oracle querie
are replaced with the prover and verifier engaging in the evaluation protocol of the polynomial
commitment scheme. The remainder of the IOP protocol remains unchanged. Thus we obtain
Theorem 4. We obtain Theorem 1 by transforming the interactive argument to a zero-knowledge
interactive argument using standard techniques, then apply the Fiat-Shamir transformation [FS87].

3 Preliminaries
We let λ denote the security parameter, let n ∈ N and N = 2n. For a finite, non-empty set S, we let
x

$← S denote sampling element x from S uniformly at random. We let Primes(1λ) denote the set of
all λ-bit primes. We let Fp denote a finite field of prime cardinality p, often use lower-case Greek
letters to denote elements of F, e.g., α ∈ F. For a group G, we denote elements of G with sans-serif
font; e.g., g ∈ G. We use boldface lowercase letters to denote binary vectors, e.g. b ∈ {0, 1}n. We
assume for a bit string (bn, . . . , b1) = b ∈ {0, 1}n that bn is the most significant bit and b1 is the
least significant bit. For bit string b ∈ {0, 1}n and b ∈ {0, 1} we let bb (resp., bb) denote the string
(b ◦b) ∈ {0, 1}n+1 (resp.,(b ◦ b) ∈ {0, 1}n+1), where “◦” is the string concatenation operator. We use
boldface lowercase Greek denotes F vectors, e.g., α ∈ Fn, and let α = (αn, . . . , α1) for αi ∈ F. We
let uppercase letters denote sequences and let corresponding lowercase letters to denote its elements,
e.g., Y = (yb ∈ F : b ∈ {0, 1}n) is a sequence of 2n elements in F. We denote by FN the set of all
sequences over F of size N .

3.0.1 Random Oracle.

We let U(λ) denote the set of all functions that map {0, 1}∗ to {0, 1}λ. A random oracle with
security parameter λ is a function H : {0, 1}∗ → {0, 1}λ sampled uniformly at random from U(λ).

3.1 The Discrete-log Relation Assumption

Let GGen be an algorithm that on input 1λ ∈ N returns (G, p, g) such that G is the description of a
finite cyclic group of prime order p, where p has length λ, and g is a generator of G.

Assumption 1 (Discrete-log Assumption). The Discrete-log Assumption holds for GGen if for all
PPT adversaries A there exists a negligible function µ(λ) such that

Pr
[
α′ = α : (G, g, p) $← GGen(1λ), α

$← Zp, α′
$←A(G, g, gα)

]
≤ µ(λ) .

For our purposes, we use the following variant of the discrete-log assumption which is equivalent
to Assumption 1.
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Assumption 2 (Discrete-log Relation Assumption [BCC+16]). The Discrete-log Relation Assump-
tion holds for GGen if for all PPT adversaries A and for all n ≥ 2 there exists a negligible function
µ(λ) such that

Pr
[
∃αi ̸= 0 ∧

n∏
i=1

gαi
i = 1 : (G, g, p) $← GGen(1λ), g1, . . . , gn

$←G ,

(α1, . . . , αn) ∈ Zn
p

$←A(G, g1, . . . , gn) .

]
≤ µ(λ) .

We say ∏n
i=1 gαi

i = 1 is a non-trivial discrete log relation between g1, . . . , gn. The Discrete Log
Relation assumption states that an adversary can’t find a non-trivial relation between randomly
chosen group elements.

3.2 Interactive Arguments of Knowledge in ROM

Definition 1 (Witness Relation Ensemble). A witness relation ensemble or relation ensemble is
a ternary relation RL that is polynomially bounded, polynomial time recognizable and defines a
language L = {(pp, x) : ∃w s.t. (pp, x, w) ∈ RL}. We omit pp when considering languages recognized
by binary relations.

Definition 2 (Interactive Arguments [GMR89]). Let R be some relation ensemble. Let (P, V )
denote a pair of PPT interactive algorithms and Setup denote a non-interactive setup algorithm
that outputs public parameters pp given security parameter 1λ. Let ⟨P (pp, x, w), V (pp, x)⟩ denote
the output of V ’s interaction with P on common inputs public parameter pp and statement x where
additionally P has the witness w. The triple (Setup, P, V ) is an argument for R in the random
oracle model (ROM) if

1. Perfect Completeness. For any adversary A

Pr
[
(x, w) /∈ R or ⟨P H(pp, x, w), V H(pp, x)⟩ = 1

]
= 1 ,

where probability is taken over H
$←U(λ), pp

$← SetupH(1λ), (x, w) $←AH(pp).

2. Computational Soundness. For any non-uniform PPT adversary A

Pr
[
∀w (x, w) /∈ R and ⟨AH(pp, x, st), V H(pp, x)⟩ = 1

]
≤ negl(λ) ,

where probability is taken over H
$←U(λ), pp

$← SetupH(1λ), (x, st) $←AH(pp).

Remark 1. Usually completeness is required to hold for all (x, w) ∈ R. However, for the argument
systems used in this work, statements x depends on pp output by Setup and the random oracle H.
We model this by asking for completeness to hold for statements sampled by an adversary A, that
is, for (x, w) $←A(pp).

For our applications, we will need (Setup, P, V ) to be an argument of knowledge. Informally, in
an argument of knowledge for R, the prover convinces the verifier that it “knows” a witness w for
x such that (x, w) ∈ R. In this paper, knowledge means that the argument has witness-extended
emulation [GI08, Lin03].
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Definition 3 (Witness-extended Emulation). Given a public-coin interactive argument tuple
(Setup, P, V ) and some arbitrary prover algorithm P ∗, let Record(P ∗, pp, x, st) denote the message
transcript between P ∗ and V on shared input x, initial prover state st, and pp generated by
Setup. Furthermore, let ERecord(P ∗,pp,x,st) denote a machine E with a transcript oracle for this
interaction that can be rewound to any round and run again on fresh verifier randomness. The
tuple (Setup, P, V ) has witness-extended emulation if for every deterministic polynomial-time P ∗

there exists an expected polynomial-time emulator E such that for all non-uniform polynomial-time
adversaries A the following holds:

Pr
[
AH(tr) = 1 : H

$←U(λ), pp
$← SetupH(1λ),

(x, st) $←AH(pp), tr
$← RecordH(P ∗, pp, x, st)

]
≈

Pr

 AH(tr) = 1 and
tr accepting =⇒ (x, w) ∈ R :

H
$←U(λ), pp

$← SetupH(1λ),
(x, st) $←AH(pp),

(tr, w) $← EH,RecordH(P ∗,pp,x,st)(pp, x)


It was shown in [BCC+16, BFS20] that witness-extended emulation is implied by an extractor

that can extract the witness given a tree of accepting transcripts. For completeness we state
this—dubbed Generalized Forking Lemma—more formally below but refer to [BFS20] for the proof.

Definition 4 (Tree of Accepting Transcripts). An (n1, . . . , nr)-tree of accepting transcripts for
an interactive argument on input x is defined as follows: The root of the tree is labelled with the
statement x. The tree has r depth. Each node at depth i < r has ni children, and each child is
labeled with a distinct value for the i-th challenge. An edge from a parent node to a child node is
labeled with a message from P to V . Every path from the root to a leaf corresponds to an accepting
transcript, hence there are ∏r

i=1 ni distinct accepting transcripts overall.

Lemma 1 (Generalized Forking Lemma [BCC+16, BFS20]). Let (Setup, P, V ) be an r-round public-
coin interactive argument system for a relation R. Let T be a tree-finder algorithm that, given
access to a Record(·) oracle with rewinding capability, runs in polynomial time and outputs an
(n1, . . . , nr)-tree of accepting transcripts with overwhelming probability. Let Ext be a deterministic
polynomial-time extractor algorithm that, given access to T ’s output, outputs a witness w for the
statement x with overwhelming probability over the coins of T . Then, (P, V ) has witness-extended
emulation.

Definition 5 (Public-coin). An argument of knowledge is called public-coin if all messages sent
from the verifier to the prover are chosen uniformly at random and independently of the prover’s
messages, i.e., the challenges correspond to the verifier’s randomness H.

3.2.1 Zero-knowledge

We also need our argument of knowledge to be zero-knowledge, that is, to not leak partial information
about w apart from what can be deduced from (x, w) ∈ R.

Definition 6 (Zero-knowledge Arguments). Let (Setup, P, V ) be an public-coin interactive argument
system for witness relation ensemble R. Then, (Setup, P, V ) has computational zero-knowledge with
respect to an auxiliary input if for every PPT interactive machine V ∗, there exists a PPT algorithm
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S, called the simulator, running in time polynomial in the length of its first input, such that for
every (x, w) ∈ R and any z ∈ {0, 1}∗:

V iew(⟨P (w), V ∗(z)⟩(x)) ≈c S(x, z) ,

where V iew(⟨P (w), V ∗(z)⟩(x)) denotes the distribution of the transcript of interaction between
P and V ∗, and ≈c denotes that the two quantities are computationally indistinguishable. If the
statistical distance between the two distributions is negligible then the interactive argument is
said to be statistical zero-knowledge. If the simulator is allowed to abort with probability at most
1/2, but the distribution of its output conditioned on not aborting is identically distributed to
V iew(⟨P (w), V ∗(z)⟩(x)), then the interactive argument is called perfect zero-knowledge.

3.3 Multi-linear Extensions

Definition 7 (Multi-linear Extensions). Let n ∈ N, F be some finite field and let W : {0, 1}n → F.
Then, the multi-linear extension of W (denoted as MLE(W, ·) : Fn → F) is the (unique) multi-linear
polynomial that agrees with W on {0, 1}n. Equivalently,

MLE(W, ζ ∈ Fn) =
∑

b∈{0,1}n

W (b) ·
n∏

i=1
β(bi, ζi) ,

where β(b, ζ) = b · ζ + (1− b) · (1− ζ).

For notational convenience, we denote
k∏

i=1
β(bi, ζi) by β(b, ζ).

Remark 2. There is a bijective mapping between the set of all functions from {0, 1}n → F to
the set of all n-variate multi-linear polynomials over F. More specifically, as seen above every
function W : {0, 1}n → F defines a (unique) multi-linear polynomial. Furthermore, every multi-
linear polynomial Q : Fn → F is, in fact, the multi-linear extension of the function that maps
b ∈ {0, 1}n → Q(b).

3.3.1 Streaming access to multi-linear polynomials

For our commitment scheme, we assume that the committer will have multi-pass streaming access
to the function table of W (which defines the multi-linear polynomial) in the lexicographic ordering.
Specifically, the committer will be given access to a read-only tape that is pre-initialized with the
sequence W =

(
wb = W (b) : b ∈ {0, 1}n

)
. At every time-step the committer is allowed to either

move the machine head to the right or to restart its position to 0.
With the above notation, we can now view MLE(W, ζ ∈ Fn) as an inner-product between W and

Z = (zb = β(b, ζ) : b ∈ {0, 1}n) where computing zb requires O(n = log N) field multiplications for
fixed ζ any b ∈ {0, 1}n.

3.4 Polynomial Commitment Scheme to Multi-linear Extensions

Polynomial commitment schemes, introduced by Kate et al. [KZG10] and generalized in [BFS20,
Set20, WTs+18], are a cryptographic primitive that allows one to commit to a multivariate polynomial
of bounded degree and later provably reveal evaluations of the committed polynomial. Since we
consider only multi-linear polynomials, we tailor our definition to them.
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Convention. In defining the syntax of various protocols, we use the following convention for any
list of arguments or returned tuple (a, b, c; d, e) – variables listed before semicolon are known both
to the prover and verifier whereas the ones after are only known to the prover. In this case, a, b, c
are public whereas d, e are secret. In the absence of secret information the semicolon is omitted.

Definition 8 (Commitment to Multi-linear Extensions). A polynomial commitment to multi-linear
extensions is a tuple of protocols (Setup, Com, Open, Eval):

1. pp
$← SetupH(1λ, 1N ) takes as input the unary representations of security parameter λ ∈ N

and size parameter N = 2n corresponding to n ∈ N, and produces public parameter pp. We
allow pp to contain the description of the field F over which the multi-linear polynomials will
be defined.

2. (C; d) $← ComH(pp, Y ) takes as input public parameter pp and sequence Y = (yb : b ∈
{0, 1}n) ∈ FN that defines the multi-linear polynomial to be committed, and outputs public
commitment C and secret decommitment d.

3. b ← OpenH(pp, C, Y, d) takes as input pp, a commitment C, sequence committed Y and a
decommitment d and returns a decision bit b ∈ {0, 1}.

4. EvalH(pp, C, ζ, γ; Y, d) is a public-coin interactive protocol between a prover P and a verifer
V with common inputs—public parameter pp, commitment C, evaluation point ζ ∈ Fn and
claimed evaluation γ ∈ F, and prover has secret inputs Y and d. The prover then engages
with the verifier in an interactive argument system for the relation

Rmle(pp) =
{

(C, ζ, γ; Y, d) : OpenH(pp, C, Y, d) = 1 ∧ γ = MLE(Y, ζ)
}

. (6)

The output of V is the output of Eval protocol.

Furthermore, we require the following three properties.

1. Computational Binding. For all PPT adversaries A and n ∈ N

Pr

b0 = b1 ̸= 0 ∧ Y0 ̸= Y1 :

H
$←U(λ), pp

$← SetupH(1λ, 1N )
(C, Y0, Y1, d0, d1) $←AH(pp)
b0 ← OpenH(pp, C, Y0, d0)
b1 ← OpenH(pp, C, Y1, d1)

 ≤ negl(λ) .

2. Perfect Correctness. For all n, λ ∈ N and all Y ∈ FN and ζ ∈ Fn,

Pr
[
1 = EvalH(pp, C, Z, γ; Y, d) : H

$←U(λ), pp
$← SetupH(1λ, 1N ),

(C; d) $← ComH(pp, Y ), γ = MLE(Y, ζ)

]
= 1 .

3. Witness-extended Emulation. We say that the polynomial commitment scheme has witness-
extended emulation if Eval has a witness-extended emulation as an interactive argument for
the relation ensemble {Rmle(pp)}pp (Equation (6)) except with negligible probability over the
choice of H and coins of pp

$← SetupH(1λ, 1N ).
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4 Space-Efficient Commitment for Multi-linear Extensions
In this section we describe our polynomial commitment scheme for multilinear extensions, a high
level overview of which was provided in Section 2.1. We dedicate the remainder of the section to
proving our main theorem:

Theorem 5. Let GGen be a generator of obliviously sampleable, prime-order groups. Assuming
the hardness of discrete logarithm problem for GGen, the scheme (Setup, Com, Open, Eval) defined
in Section 4.1 is a polynomial commitment scheme to multi-linear extensions with witness-extended
emulation in the random oracle model. Furthermore, for every N ∈ N and sequence Y ∈ FN , the
committer/prover has multi-pass streaming access to Y and

1. Com performs O(N log p) group operations, stores O(1) field and group elements, requires
one pass over Y , makes N queries to the random oracle, and outputs a single group element.
Evaluating MLE(Y, ·) requires O(N) field operations, storing O(1) field elements and requires
one pass over Y .

2. Eval is public-coin and has O(log N) rounds with O(1) group elements sent in every round.
Furthermore,

• Prover performs O(N · (log2 N) · log p) field and group operations, O(N log N) queries to
the random oracle, requires O(log N) passes over Y and stores O(log N) field and group
elements.

• Verifier performs O(N · (log N) · log p) field and group operations, O(N) queries to the
random oracle, and stores O(log N) field and group elements.

Section 4.1 describes our scheme, Section 4.2 and Section 4.3 establish its security and efficiency.

4.1 Commitment Scheme

We describe a commitment scheme (Setup, Com, Open, Eval) to multi-linear extensions below.

1. SetupH(1λ, 1N ): On inputs security parameter 1λ and size parameter N = 2n and access to H,
Setup samples (G, p, g) $← GGen(1λ), sets F = Fp and returns pp = (G,F, N, p). Furthermore,
it implicitly defines a sequence of generators g = (gb = H(b) : b ∈ {0, 1}n).

2. ComH(pp, Y ) returns C ∈ G as the commitment and Y as the decommitment where

C←
∏

b∈{0,1}n

(gb)yb .

3. OpenH(pp, C, Y ) returns 1 iff C = ComH(pp, Y ).

4. EvalH(pp, C, ζ, γ; Y ) is an interactive protocol ⟨P, V ⟩ that begins with V sending a random
g $←G. Then, both P and V compute the commitment Cγ ← C · gγ to additionally bind the
claimed evaluation γ. Then, P and V engage in an interactive protocol EvalReduce on input
(Cγ , Z, g, g, γ; Y ) where the prover proves knowledge of Y such that

Cγ = Com(g, Y ) · gγ ∧ ⟨Y, Z⟩ = γ ,

where Z = (zb = β̄(b, ζ) : b ∈ {0, 1}n). We define the protocol in Figure 3.
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Eval(pp, C, ζ, γ; Y )
1 : V samples and sends g $←G
2 : P and V define Cγ ← C · gγ

3 : P and V define the sequence Z =
(
zb =

n∏
i=1

β(bi, ζi) : b ∈ {0, 1}n
)

4 : P and V engage in EvalReduce(Cγ , Z, γ, g, g; Y )

EvalReduce(Cγ ∈ G, Z = (zb), γ ∈ F, g = (gb), g; Y = (yb))
proves knowledge of Y such that: Cγ = Com(g, Y ) · gγ and ⟨Y, Z⟩ = γ.
1 : N ← |Z|, n← log N

2 : if N = 1 : then
3 : Let g = (g′), Z = (z), Y = (y)
4 : P sends y to V who accepts iff Cγ = g′y · gy·z

5 : else
6 : P computes γL and γR where

γL ←
∑

b∈{0,1}n−1

yb0 · zb1 ; γR ←
∑

b∈{0,1}n−1

yb1 · zb0.

7 : P computes and sends CL and CR where

CL ← gγL ·
∏

b∈{0,1}n−1

(gb1)yb0 ; CR ← gγR ·
∏

b∈{0,1}n−1

(gb0)yb1 .

8 : V samples α
$← F and sends it to P.

9 : P computes and sends γ′ = α2 · γL + γ + α−2 · γR.

10 : P and V both compute

C′
γ′ ← (CL)α2

· Cγ · (CR)α−2
,

Z ′ =
(
z′

b = α−1 · zb0 + α · zb1
)

b∈{0,1}n−1 ,

g′ =
(
g′

b = (gb0)α−1
· (gb1)α )

b∈{0,1}n−1 .

11 : P computes Y ′ =
(
y′

b = α · yb0 + α−1 · yb1
)

b∈{0,1}n−1 .

12 : return EvalReduce(C′
γ′ , Z ′, γ′, g′, g; Y ′)

Figure 3: Eval protocol for the commitment scheme from Section 4.1.

Remark 3. In fact, our scheme readily extends to proving any linear relation α about a committed
sequence Y (i.e., the value ⟨α, Y ⟩), as long as each element of α can be generated in poly-logarithmic
time.

4.2 Correctness and Security

Lemma 2. The scheme from Section 4.1 is perfectly correct, computationally binding and Eval has
witness-extended emulation under the hardness of the discrete logarithm problem for groups sampled
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by GGen in the random oracle model.

The perfect correctness of the scheme follows from the correctness of EvalReduce protocol, which
we prove in Lemma 3, computationally binding follows from that of Pedersen multi-commitments
which follows from the hardness of discrete-log (in the random oracle model). The witness-extended
emulation of Eval follows from the witness-extended emulation of the inner-product protocol
in [BBB+18]. At a high level, we make two changes to their inner-product protocol: (1) sample
the generators using the random oracle H, (2) perform the 2-move reduction step using the lsb-
based folding approach (see Section 2.1 for a discussion). At a high level, given a witness Y for
the inner-product statement (Cγ , g, Z, γ), one can compute a witness for the permuted statement
(Cγ , π(g), π(Z), γ) for any efficiently computable/invertible public permutation π. Choosing π as
the permutation that reverses its input allows us, in principle, to base the extractability of our
scheme (lsb-based folding) to the original scheme of [BBB+18]. We provide a formal proof in the
full version. Due to (1) our scheme enjoys security only in the random-oracle model.

Lemma 3. Let (Cγ , Z, γ, g, g; Y ) be inputs to EvalReduce and let (C′γ′ , Z ′, γ′, g′, g; Y ′) be generated
as in Figure 3. Then,

Cγ = Com(g, Y ) · gγ

∧
⟨Y, Z⟩ = γ

=⇒
C′γ′ = Com(g′, Y ′) · gγ′

∧
⟨Y ′, Z ′⟩ = γ′

.

Proof. Let N = |Z| and let n = log N . Then,

1. To show γ′ = ⟨Y ′, Z ′⟩:

⟨Y ′, Z ′⟩ =
∑

b∈{0,1}n−1

y′b · z′b,

=
∑

b∈{0,1}n−1

(α · yb0 + α−1 · yb1) · (α−1 · zb0 + α · zb1),

=
∑

b∈{0,1}n−1

yb0 · zb0 + α2 · yb0 · zb1 + yb1 · zb1 + α−2 · yb1 · zb1,

= γ + α2 · γL + α−2 · γR = γ′.

2. C′γ′ = Com(g′, Y ′) · gγ′ :

Com(g′, Y ′) =
∏

b∈{0,1}n−1

(
g′b

)y′
b , =

∏
b∈{0,1}n−1

(
gα−1

b0 · gα
b1

)α·yb0+α−1·yb1
,

=
∏

b∈{0,1}n−1

(
gyb0

b0 · g
α−2·yb1
b0 · gα2·yb0

b1 · gyb1
b1

)
,

=
∏

b∈{0,1}n−1

(
gyb1

b0
)α−2

· gyb0
b0 · g

yb1
b1 ·

(
gyb0

b1
)α2

.

Then, above with the definition of γ′ implies that C′γ′ = Com(g′, Y ′) · gγ′ .
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4.3 Efficiency

In this section we discuss the efficiency aspects of each of the protocols defined in Section 4.1 with
respect to four complexity measures: (1) queries to the random oracle H, (2) field/group operations
performed, (3) field/group elements stored and (4) number of passes over the stream Y .

For the rest of this section, we fix n, N = 2n, H,G,F, ζ ∈ Fn and furthermore fix Y = (yb : b ∈
{0, 1}n), g = (gb = H(b) : b ∈ {0, 1}n) and Z = (zb = β̄(b, ζ) : b ∈ {0, 1}n). Note given ζ, any zb
can be computed by performing O(n) field operations.

First, consider the prover P of Eval protocol (Figure 3). Given the inputs (C, Z, γ, g, g; Y ), P and
V call the recursive protocol EvalReduce on the N sized statement (Cγ , Z, γ, g, g; Y ) where Cγ = C·gγ .
The prover’s computation in this call to EvalReduce is dictated by computing (a) γL, γR (line 6), (2)
CL, CR (line 7) and (c) inputs for the next recursive call on EvalReduce with N/2 sized statement
(C′γ′ , Z ′, γ′, g′, g; Y ′) (line 9,11). The rest of its computation requires O(1) number of operations.
The recursion ends on the n-th call with statement of size 1. For k ∈ {0, . . . , n}, the inputs at
the k-th depth of the recursion be denoted with superscript k, that is, C(k), γ(k), Z(k), g(k), Y (k).
For example, Z(0) = Z, Y (0) = Y denote the initial inputs (at depth 0) where prover computes
γ

(0)
L , γ

(0)
R , C(0)

L , C(0)
R with verifier challenge α(0). The sequences Z(k), Y (k) and g(k) are of size 2n−k.

At a high level, we ask prover to never explicitly compute the sequences g(k), Z(k), Y (k) (item (c)
above) but instead compute elements g(k)

b , z
(k)
b , y

(k)
b , of the respective sequences, on demand, which

then can be used to compute γ
(k)
L , γ

(k)
R , C(k)

L , C(k)
R in required time and space. For this, first it will

be useful to see how the elements of sequences Z(k), Y (k), g(k) depend on the initial (i.e., depth-0)
sequence Z(0), Y (0), g(0).

Relating Y (k) with Y (0). First, lets consider Y (k) = (y(k)
b : b ∈ {0, 1}n−k) at depth k ∈ {0, . . . , n}.

Let (α(0), . . . , α(k−1)) be the verifier’s challenges sent in all prior rounds.

Lemma 4 (Streaming of Y (k)). For every b ∈ {0, 1}n−k,

y
(k)
b =

∑
c∈{0,1}k

 k∏
j=1

coeff(α(j−1), cj)

 · yb◦c , (7)

where coeff(α, c) = α · (1− c) + α−1 · c.

The proof follows by induction on depth k. Lemma 4 allows us to simulate the stream Y (k) with
one pass over the initial sequence Y , additionally performing O(N · k) multiplications to compute
appropriate coeff functions.

Relating Z(k) with Z(0). Next, consider Z(k) = (z(k)
b : b ∈ {0, 1}n−k) at depth k ∈ {0, . . . , n}.

Lemma 5 (Computing z
(k)
b ). For every b ∈ {0, 1}n−k,

z
(k)
b =

∑
c∈{0,1}k

 k∏
j=1

coeff(α(j−1), cj)

 · zb◦c , (8)

where coeff(α, c) = α · c + α−1 · (1 − c). Furthermore, computing z
(k)
b requires O(2k · n) field

multiplications and storing O(n) elements (see algorithm Computez in Figure 4).

20



Computez(k, c, ζ,α)
1 : z(k)

c ← 0
2 : foreach a ∈ {0, 1}k do
3 : temp← 1F
4 : foreach j ∈ {1, . . . , k} do
5 : temp← temp · coeff(α(j−1), aj)
6 : z(k)

c ← temp · β(c ◦ a, ζ)
7 : return z(k)

c

ComputegH(k, c,α)
1 : g(k)

c ← 0
2 : foreach a ∈ {0, 1}k do
3 : temp← 1F
4 : foreach j ∈ {1, . . . , k} do
5 : temp← temp · coeff(α(j−1), aj)
6 : g(k)

c ← H(c ◦ a)temp

7 : return g(k)
c

Figure 4: Algorithms for computing z
(k)
b and g(k)

b . In both algorithms c ∈ {0, 1}n−k and α =
(α(0), . . . , α(k−1)), where β(b, ζ) = ∏n

i=1 β(bi, ζi) for b = c ◦ a and coeff(α, c) = α · c + α−1 · (1− c).

Relating g(k) with g(0). Finally, consider g(k) = (g(k)
b : b ∈ {0, 1}n−k) at depth k ∈ {0, . . . , n}.

Lemma 6 (Computing g(k)
b ). For every b ∈ {0, 1}n−k,

g(k)
b =

∏
c∈{0,1}k

gcoeff(α,c)
b◦c ; coeff(α, c) =

k∏
i=1

α(j−1) · cj + (α(j−1))−1 · (1− cj) . (9)

Furthermore, computing g(k)
b requires 2k · k field multiplications, 2k queries to H, 2k group multi-

plications and exponentiations, and storing O(k) elements (see algorithm Computeg in Figure 4).

We now discuss the efficiency of the commitment scheme.

4.3.1 Commitment Phase

We first note that ComH on input pp and given streaming access to Y can compute the commitment
C = ∏

b(H(b))yb for b ∈ {0, 1}n making N queries to H, performing N group exponentiations and
a single pass over Y . Furthermore, requires storing only a single group element.

Note that a single group exponentiation gα can be emulated while performing O(log p) group
multiplications while storing O(1) group and field elements. Since, G,F are of order p, field and
group operations can, furthermore, be performed in polylog(p(λ)) time.

4.3.2 Evaluating MLE(Y, ζ)

The honest prover (when used in higher level protocols) needs to evaluate MLE(Y, ζ) which requires
performing O(N log N) field operations overall and a single pass over stream Y .

4.3.3 Prover Efficiency

For every depth-k of the recursion, it is sufficient to discuss the efficiency of computing γ
(k)
L , γ

(k)
R , C(k)

L ,

and C(k)
R . We argue the complexity of computing γ

(k)
L and C(k)

L and the analysis for the remaining is
similar. We give a formal algorithm Prover in Figure 5.
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ProverH(pp, k, Y, ζ, g, α(0), . . . , α(k−1))
1 : γL, γR, y(k) ← 0F, g(k), CL, CR ← 1G, count← 0
2 : foreach b = (bn, . . . , b1) ∈ {0, 1}n do
3 : temp← 1F
4 : foreach j ∈ {1, . . . , k} do
5 : temp← temp · coeff(α(j−1), bj)
6 : y(k) ← y(k) + temp · yb

7 : count← count + 1
8 : if count == 2k then
9 : z(k) ← Computez(k, (bn, . . . , bn−k+1, 1− bn−k), ζ, α(0), . . . , α(k−1))

10 : g(k) ← ComputegH(k, (bn, . . . , bn−k+1, 1− bn−k), α(0), . . . , α(k−1))
11 : if bn−k == 0 then

12 : γL ← γL + z(k) · y(k) ; CL ← CL · (g(k))y(k)

13 : else

14 : γR ← γR + z(k) · y(k) ; CR ← CR · (g(k))y(k)

15 : y(k) ← 0F; g(k) ← 1G; count← 0
16 : CL ← CL · gγL ; CR ← CR · gγR

17 : return (γL, CL, γR, CR)

Figure 5: Space-efficient Prover

Computing γ
(k)
L . Recall that γ

(k)
L = ∑

b y
(k)
b0 ·z

(k)
b1 for b ∈ {0, 1}n−k−1. To compute γ

(k)
L we stream

the initial N -sized sequence Y and generate elements of the sequence (y(k)
b0 : b ∈ {0, 1}n−k−1) in

a streaming manner. Since each y
(k)
b0 depends on a contiguous block of 2k elements in the initial

stream Y , we can compute y
(k)
b0 by performing 2k · k field operations (lines 2-7 in Figure 5). For

every b ∈ {0, 1}n−k−1, after computing y
(k)
b0 , we leverage “random access” to Z and compute z

(k)
b1

(Lemma 5) which requires O(2k · k) field operations. Overall, γ
(k)
L can be computed in O(N · k) field

operations and a single pass over Y .

Computing C(k)
L . The two differences in computing C(k)

L (see Figure 3 for the definition) is that
(a) we need to compute g(k)

b1 instead of computing z
(k)
b1 and (b) perform group exponentiations, that

is, g(k)
b1

y
(k)
b0 as opposed to group multiplications as in the computation of γ

(k)
L . Both steps overall

can be implemented in O(N · k · log p) field and group operations and N queries to H (Lemma 6).
Overall, at depth k the prover (1) makes O(N) queries to H, (2) performs O(N · k · log(p)) field
and group operations and (3) requires a single pass over Y .

Therefore, the entire prover computation (over all calls to EvalReduce) requires O(log N) passes
over Y , makes O(N log N) queries to H and performs O(N · log2 N · log p) field/group operations.
Furthermore, this requires storing only O(log N) field and group elements.
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4.3.4 Verifier Efficiency

V only needs to compute folded sequence Z(n) and folded generators g(n) at depth-n of the recursion.
These can computed by invoking Computez and Computeg (Figure 4) with k = n and require
O(N · log(N, p)) field and group operations, O(N) queries to H and storing O(log N) field and
group elements.

Lemma 7. The time and space efficiency of each of the phases of the protocols are listed below:

Computation H queries Y passes F/G ops6 G/F elements
Com N 1 O(N) O(1)

MLE(Y, ζ) 0 1 O(N log N) O(1)
P (in Eval) O(N log N) O(log N) O(N log2 N) O(log N)
V (in Eval) O(N) 0 O(N log N) O(log N)

Finally, Theorem 5 follows directly from Lemma 2 and Lemma 7.

5 A Polynomial IOP for Random Access Machines
We obtain space efficient arguments for any NP relation verifiable by time-T space-S RAM compu-
tations by compiling our polynomial commitment scheme with a suitable space-efficient polynomial
interactive oracle proof (IOP) [BCS16, BFS20, RRR16]. Informally, a polynomial IOP is a multi-
round interactive PCP such that in each round the verifier sends a message to the prover and
the prover responds with a proof oracle that the verifier can query via random access, with the
additional property that the proof oracle is a polynomial.

We give a detailed overview the construction of our polynomial IOP and prove Theorem 3. We
first recall Theorem 3.

Theorem 3. There exists a public-coin polynomial IOP over a channel which encodes prover
messages as multi-linear extensions for NP relations verifiable by a time-T space-S random access
machine M such that if y = M(x; w) then

1. The IOP has perfect completeness and statistical soundness, and has O(log(T )) rounds;

2. The prover runs in time T · polylog(T ) and space S · polylog(T ) (not including the space
required for the oracle) when given input-witness pair (x; w) for M , sends a single polynomial
oracle in the first round, and has polylog(T ) communication in all subsequent rounds; and

3. The verifier runs in time (|x|+ |y|) · polylog(T ), space polylog(T ), and has query complexity 3.

To begin, formally define Random Access Machines.

Definition 9 (Random Access Machine). A (non-deterministic) Random Access Machine (RAM)
is a tuple M = ⟨k, r,A,L⟩ where ℓ ∈ N is the register size, r ∈ N is the number of registers,
A ⊆ {f : {0, 1}ℓ × {0, 1}ℓ → {0, 1}ℓ} is the arithmetic unit, and L = (I0, . . . , Im), where m ∈ [2ℓ]
and each Ij is an instruction, is the code. For any input x ∈ {0, 1}n and witness w ∈ {0, 1}∗, a RAM

6log(p) factors are omitted.
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M runs in time T (n) and space S(n) if M(x; w) halts after executing at most T (n) instructions
and uses at most S(n) space.

We let RRAM denote the set of all tuples (M, x, y, T, S; w) such that M is a RAM and M(x; w)
outputs y in time T and space S. We define the language LRAM as

LRAM = {(M, x, y, T, S) | ∃w : (M, x, y, T, S; w) ∈ RRAM}.

Our construction is in fact a polynomial IOP for the NP relation RRAM. At a high-level, our
IOP construction reduces checking membership of a RRAM instance to performing the classical
sum-check protocol [LFKN90, Sha90] of some appropriately constructed polynomial. We proceed
in two parts. First we reduce an RRAM instance into a circuit satisfiability instance for some
appropriate circuit. We then reduce the circuit satisfiability instance to a polynomial statement
compatible with the sum-check protocol. Our construction is inspired from previous approaches
[BCGT13, BTVW14, CMT12, GKR08, Set20, Tha13, WTs+18] re-imagined in the language of
IOPs.

5.1 RAMs to Circuits.

Let (M, x, y, T, S; w) ∈ RRAM. The first step in the IOP is for the prover to compile the RAM M
into an appropriate (non-deterministic) arithmetic circuit over some appropriate finite field F.

For finite field F and arithemtic circuit C : Fn → Fk, we let |C| denote the size of the circuit..
We assume a canonical ordering on the gates of C (known by both the prover and verifier), and
label every gate in C with unique a ∈ {0, 1}s for s = ⌈log |C|⌉. Without loss of generality we assume
the first n input gates of C correspond to the s-bit representation of the integers {1, . . . , n}.

Definition 10 (Circuit Transcript). A transcript for arithmetic circuit C with input x and output
y is an assignment W : {0, 1}s → F of values to the circuit gates, where s = ⌈log |C|⌉. We say that
a transcript W is correct for (C, x, y) if W (a) = xa for all input gates a, W (a) = yi if a is the i-th
output gate, and for every a, b, c ∈ {0, 1}s such that b and c are parents of a, W (a) = W (b) + W (c)
if a is an add gate and W (a) = W (b) ·W (c) if a is a multiplication gate. Given a tuple (C, x, y),
the problem of determining whether there exists a correct transcript W for (C, x, y) is referred to as
the non-deterministic circuit evaluation problem.

We use the RAM to circuit transformation of Blumberg et al. [BTVW14].

Lemma 8 ((Non-Deterministic) RAM to Circuit [BTVW14, Lemma 4.2]). For (M, x, y, T, S; w) ∈
RRAM, M can be transformed into an equivalent (non-deterministic) arithmetic circuit CM over a
finite field F of size polylog(T ) with the following properties:

1. CM has size T · polylog(T ).

2. An (input, witness) pair (x; w) such that (M, x, y, T, S; w) ∈ RRAM can be mapped to a correct
transcript W for CM in time T · polylog(T ) and space S · polylog(T ) such that |W | = 2s for
some s = O(log |CM |). Furthermore, w is a substring of the transcript W , and any correct
W ′ for CM possesses a witness w′ certifying (M, x, y, T, S) ∈ LRAM as a substring.

3. CM can be evaluated “gate-by-gate” in time T · polylog(T ) and space S · polylog(T ).
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5.2 Circuits to Polynomials

Consider (M, x, y, T, S; w) ∈ RRAM and let CM be the arithmetic circuit given by Lemma 8, and let
s = ⌈log |CM |⌉. Let W be a correct transcript for (CM , x, y). We reduce showing W is a correct
transcript for (CM , x, y) to showing that a polynomial we construct over F is the 0-polynomial. In
particular, the constructed polynomial is the 0-polynomial if and only if W is a correct transcript.
Let W be the multi-linear extension of a transcript W .

We associate three wiring predicates add, mult, io : {0, 1}3s → {0, 1} with CM such that the
following hold. For all a, b, c ∈ {0, 1}s, add(a, b, c) = 1 if and only if a is an addition gate with
parent gates b and c (with mult(a, b, c) being defined analogously), and io(a, b, c) = 1 if and only
b and c are parents of a and a is an output gate or a (non-auxiliary) input gate. We also define
Ix,y : {0, 1}s → F for a ∈ {0, 1}s as Ix,y(a) = xa if a is an input gate, Ix,y(a) = yi if a is the i-th
output gate, and Ix,y(a) = 0 otherwise.

Let Ix,y, io be the multi-linear extensions of Ix,y, io, and let add, mult be some degree-3 extensions
of add, mult. Define polynomials Gx,y : F3s → F and Fx,y : F3s → F as

Gx,y(ζ(1), ζ(2), ζ(3)) = io(ζ(1), ζ(2), ζ(3)) · (Ix,y(ζ(1))−W (ζ(1))) (10)
+ add(ζ(1), ζ(2), ζ(3)) · (W (ζ(1))−W (ζ(2))−W (ζ(3)))
+ mult(ζ(1), ζ(2), ζ(3)) · (W (ζ(1))−W (ζ(2)) ·W (ζ(3))) ,

and

Fx,y(X) =
∑

c∈{0,1}3s

Gx,y(c) ·
3s∏

i=1
β(ci, Xi) =

∑
c∈{0,1}3s

Gx,y(c) · g(c, X) . (11)

Lemma 9. The polynomial Fx,y is the 0-polynomial if and only if Gx,y(c) = 0 for all c ∈ {0, 1}3s

if and only if W is a multi-linear extension of a correct transcript W of CM . Further, there
exist degree-3 extensions of add and mult such that add and mult can be evaluated at any point in
O(polylog(T )) time without explicit access to CM .

Proof. We first note that the definition of Gx,y immediately gives us that Gx,y|{0,1}3s ≡ 0 if and only
if W is a multi-linear extension of a correct transcript W of CM [BTVW14, GKR08, Set20, WTs+18].
Next, we note that the polynomial Fx,y is defined as the multi-linear extension of the sequence
(Gx,y(c) : c ∈ {0, 1}3s). In particular, Fx,y(c) = Gx,y(c) for all c ∈ {0, 1}3s. This directly implies
that Fx,y is the 0-polynomial if and only if Gx,y(c) = 0 for all c ∈ {0, 1}3s. To finish the proof,
we note that existence of degree-3 add and mult with the desired properties follows directly from
[BTVW14, Theorem 4.1 and Lemma 4.2].

Finally, for any τ ∈ F3s, we define the polynomial hτ (ζ) := Gx,y(ζ) · g(ζ, τ ). By Lemma 9 the
satisfiability of the circuit CM is reduced to checking if Fx,y is the 0-polynomial. In particular by
Schwartz-Zippel a verifier is convinced that Fx,y is the 0-polynomial if Fx,y(τ ) = 0 for τ

$← F3s.
However, a verifier would perform O(|CM |3) = T 3 ·polylog(T ) operations to compute Fx,y(τ ), which
gives a non-succinct verifier. Instead, checking Fx,y(τ ) = 0 is offloaded to a prover via a sum-check
protocol for the statement

0 =
∑

c∈{0,1}3s

hτ (c) = Fx,y(τ ).
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PIOP(M, x, T, S; w)
1 : P compiles circuit CM and transcript W via the reduction of [BTVW14].
2 : P provides V with an oracle for W.

3 : V samples τ
$← F3s and sends τ to P.

4 : P computes polynomial hτ and sets γ ← 0. P sends γ to V .
5 : V sets γ′ ← γ.

6 : foreach j ∈ {1, . . . , 3s} do // sum-check

7 : P sends h(j)
τ (Xj) to V , where h(j)

τ (Xj)←
∑

c′∈{0,1}3s−j

hτ (α1, . . . , αj−1, Xj , c′).

8 : V checks γ′ ?= h(j)
τ (0) + h(j)

τ (1), rejecting if equality doesn’t hold.

9 : V samples αj
$← F and sets γ′ ← h(j)

τ (αj).
10 : if j < 3s then V sends αj to P endif
11 : V queries the oracle W and obtains γi ←W (α(i)) for i ∈ {1, 2, 3}, where α(i) ← (αi·1, . . . , αi·s).
12 : V computes hτ (α) using oracle queries γi and accepts if and only if γ′ = hτ (α).

Figure 6: Our Polynomial IOP for time-T space-S RAM computations.

5.3 Polynomial IOP Construction

We present our polynomial IOP construction in Figure 6, which we call PIOP. The protocol PIOP
takes as input (M, x, y, T, S; w) and the prover compiles it into circuit instance (CM , x, y) via the
reduction guaranteed by Lemma 8. The prover next sends an oracle to the multi-linear extension
of the transcript of (CM , x, y). The prover compiles CM into a suitable polynomial Fx,y given by
Lemma 9, receives τ

$← F3s from the verifier, and engages in a sum-check with the verifier for the
statement ∑

c hτ (c) = Fx,y(τ ) = 0. Finally the verifier uses the challenges α ∈ F3s given by the
sum-check to query the oracle at 3 points and evaluates polynomial hτ (α) locally and compares it
to the value output by the sum-check.

We now argue that PIOP satisfies Theorem 3. Perfect completeness follows directly from the
protocol description, and the round complexity follows since s = O(log |CM |) = polylog(T ). To
finish proving the theorem, we show the efficiency and soundness of the protocol.

5.3.1 Verifier Efficiency

The verifier samples O(log(T )) random field elements τ and αj for j ∈ {1, . . . , 3s}. During each
round of the sum-check the verifier evaluates the polynomial h

(j)
τ (Xj) at 3 points {0, 1, αj} ⊂ F.

Since hτ has individual degree at most 6, each univariate h
(j)
τ has degree at most 6, giving O(1)

multiplications to evaluate h
(j)
τ . This gives that the verifier has complexity polylog(T ) multiplications

and polylog(T ) communication during the sum-check phase. Next the verifier queries the oracle
W at 3 points.As a last step, the verifier uses the 3 oracle queries to compute hτ (α), which by
Lemma 9 takes time (|x|+ |y|) · polylog(T ) and is computable without explicit access to CM .

During any round of the sum-check, the verifier stores O(1) field elements for the description of
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h
(j)
τ and stores all challenges τ ∈ F3s and α ∈ F3s, which is polylog(T ) field elements of storage.

Computing extensions add and mult can be done in polylog(T ) time, so they can be computed using
at most polylog(T ) space. This gives a verifier with space complexity of polylog(T ).

5.3.2 Prover Efficiency

We examine the complexity of the prover in PIOP after sending the oracle W , an oracle to the
multi-linear extension of a correct transcript W for (CM , x, y, T, S; w). The prover receives verifier
challenge τ and now must run the sum-check with polynomial hτ (ζ) of Lemma 9. We leverage the
following lemma to allow the prover to perform this computation efficiently in each round.

Lemma 10 ([BTVW14, Theorem 4.1, Lemma 4.2]). Let (M, x, y, T, S; w) ∈ RRAM and let CM be
the equivalent arithmetic circuit given by Lemma 8. Then given (M, x, y, T, S, w), one can run in
time T · polylog(T ) and space S · polylog(T ) to compute sum-check messages for the polynomial
hτ (Y).

In particular, Lemma 10 implies that the prover’s computation of the polynomial h
(j)
τ (Xj) in

each round of the sum-check can be done in T · polylog(T ) time and S · polylog(T ) space. Note
also that each polynomial h

(j)
τ (Xj) is a degree at most 6 polynomial, and therefore uses O(1) space.

Finally, the prover also stores verifier challenges αj for each j ∈ {1, . . . , 3s − 1}, which requires
O(polylog(T )) space. Since s = O(log |CM |) and |CM | = T · polylog(T ), we have that the total
prover time is T · polylog(T ) and total space is S · polylog(T ).

5.3.3 Soundness

The soundness of PIOP follows from the soundness of the sum-check protocol.

Lemma 11 (Sum-check Soundness [LFKN90, Sha90]). For γ ∈ F, v, d ∈ N, let Lγ,v,d be the
language of all v-variate polynomials f of individual degree at most d such that γ = ∑

c∈{0,1}v f(c).
Then the sum-check protocol is an interactive proof system for Lγ,v,d with perfect completeness and
soundness error εsc ≤ dv/|F|, where the verifier is given oracle access to the function f .

We now show the soundness of PIOP.

Proposition 1. Let V be the verifier of PIOP. For every x = (M, x, y, T, S) ̸∈ LRAM and every P ∗,
over the randomness of V we have that ⟨P ∗, V (x)⟩ = 1 with probability at most 36s

|F| .

Proof. Let P ∗ be an arbitrary prover. Let (M, x, y, T, S) ̸∈ LRAM be the input to both verifier V
and P ∗. By assumption, there does not exist a correct transcript W for the circuit CM . Let W ∗ be
the polynomial oracle sent by P ∗.

By Lemma 9, the polynomial Fx,y is the 0-polynomial if and only if W ∗ is a multi-linear extension
of a correct transcript, so by assumption Fx,y is not the 0-polynomial and has individual degree at
most 6. For a verifier to be convinced that W ∗ is a correct transcript, it suffices for the verifier to
sample τ

$← F3s and check Fx,y(τ ) ?= 0. Since Fx,y is a polynomial of individual degree at most 6,
by Schwartz-Zippel we have

Pr
τ

$←F3s

[Fx,y(τ ) = 0|Fx,y ̸≡ 0] ≤ 6 · 3s

|F|
.
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So after receiving oracle W ∗ the verifier samples and sends τ
$← F3s to P ∗.

Now P ∗ and V engage in a sum-check protocol for the statement

0 =
∑

c∈{0,1}3s

hτ (c) = Fx,y(τ ). (12)

Conditioning on Fx,y(τ ) ̸= 0, the soundness now reduces to the soundness of the sum-check. In
particular, P ∗ must convinced V that Equation (12) holds, but Fx,y(τ ) ̸= 0. In this case the
probability P ∗ succeeds is at most (3s · 6)/|F| by Lemma 11. Since Fx,y is not the 0-polynomial we
have that

Pr[⟨P ∗, V (x)⟩ = 1] ≤ Pr
τ

[Fx,y(τ ) = 0] + Pr[P ∗ breaks sum-check] ≤ 36s

|F|
.

6 Time- and Space-Efficient Arguments for RAM
We obtain space-efficient arguments ⟨Parg, Varg⟩ for NP relations that can be verified by time-T space-
S RAMs by composing the polynomial commitment scheme of Theorem 5 and the polynomial IOP
of Figure 6. Specifically, the prover Parg and Varg runs the prover and the verifier of the underlying
PIOP except two changes: (1) Parg (line 2, Figure 6) instead provides Varg with a commitment to the
multi-linear extension of the circuit transcript W . Here Parg crucially relies on streaming access to
W to compute the commitment in small-space using Com. (2) Parg and Varg run the protocol Eval
in place of all verifier queries to the oracle W (line 11, Figure 6). We state the formal theorem.
Theorem 6 (Small-space Arguments for RAMs). There exists a public-coin interactive argument
for NP relations verifiable by time-T space-S random access machines M , in the random oracle
model, under the hardness of discrete-log in obliviously sampleable prime-order groups with the
following complexity.

1. The protocol has perfect completeness, has O(log(T )) rounds and polylog(T ) communication,
and has witness-extended emulation.

2. The prover runs in time T · polylog(T ) and space S · polylog(T ) given input-witness pair (x; w)
for M ; and

3. The verifier runs in time T · polylog(T ) and space polylog(T ).
Proof. We compose our commitment scheme of Theorem 5 with the Polynomial IOP of Theorem 3.
The algorithm Setup is identical to that of the commitment scheme. The protocol is identical to
the protocol PIOP except for the following changes. First, instead of providing the verifier with an
oracle W , the prover instead sends ComH(pp, W ), noting that W uniquely defines the multi-linear
extension W . Second, the 3 verifier queries to the oracle W are replaced with 3 invocations of the
protocol EvalH .

By Lemma 8, the transcript W is computable in a streaming manner in time T · polylog(T )
and space S · polylog(T ), so computing ComH(pp, W ) requires S · polylog(T ) space. Replacing the
oracle queries to W with 3 invocations of the Eval protocol requires T · polylog(T ) time from the
verifier, since |W | = T · polylog(T ).

Let P ∗ be a cheating prover for our argument system. The we construct an emulator E for our
scheme which does the following.
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1. Runs P ∗ until the first Eval query is generated, yielding partial transcript t1.

2. Run the emulator EH
pc of the polynomial commitment scheme, yielding extracted witness

W : {0, 1}s → F and some transcript t2. We note that if EH
pc aborts, then E aborts.

3. Finish the interaction with P ∗, yielding transcript t3. Let tr = t1 ◦ t2 ◦ t3.

4. If W is not consistent with (CM , x, y) or t is rejecting, output (tr, 0). If W is consistent with
(CM , x, y), extract witness w from W (since w is a substring of W by Lemma 8). If tr is
accepting and M(x; w) = y, output (tr, w). Else output ⊥.

Note that E as run above runs in expected polynomial time if EH
pc runs in expected polynomial time.

Fix polynomial time adversary A. We need to show that

Pr[tr← ⟨P ∗, V ⟩ : A(tr) = 1] ≈negl(λ) (13)

Pr
[
(tr, w)← E : A(tr) = 1 ∧

tr is accepting =⇒ M(x; w) = y

]
,

where λ is the security parameter.
If E outputs a pair (tr, w), the transcript tr is a transcript produced by an honest verifier

interacting with P ∗. In this case, the probability that A(tr) = 1 when E does not abort differs
from the probability that A(tr) = 1 for tr output by ⟨P ∗, V ⟩ by at most negl(λ). This is due to the
negligible error of the emulator EH

pc. We now turn to show that the probability E aborts is negligible.
Let E be the event that E aborts. In particular, E aborts if EH

pc fails to extract a witness, or
if EH

pc extracts a witness (circuit transcript) W and W is a correct transcript for (CM , x, y) and
tr is an accepting transcript but M(x; w) ̸= y for witness w that is a substring of W . By the
witness-extended emulation property of our polynomial commitment scheme, it holds that EH

pc aborts
with negligible probability. Now suppose EH

pc does not abort and that it successfully extracts a
witness W . Let E′ be the event that W is a correct transcript for (CM , x, y) and tr is accepting
but M(x; w) ̸= y, conditioned on EH

pc not aborting and successfully extracting witness W . Suppose
Pr[E′] = ε for some ε ∈ [0, 1]. We now construct an adversary P̂ which breaks soundness of our
IOP with probability at least ε− negl(λ).

We first note the differences between the our argument verifier V and our IOP verifier VIOP.
The IOP verifier VIOP receives a polynomial oracle W ∗ from the prover while V does not receive an
oracle to the multi-linear extension of a transcript and instead receives a commitment to the the
oracle W ∗. Further, VIOP simply queries said oracle to check the final statement of the sum-chekc,
while V interacts with P ∗ to obtain evaluations of this oracle.

We now describe how P̂ breaks the soundness of the IOP. P̂ simulates the interaction between
P ∗ and V until V makes an eval query. P̂ then runs the emulator EH

pc to extract out witness W ,
rewinding P ∗ and V as necessary. Once a witness W is extracted, P̂ rewinds P ∗ to the point just
after the commitment to W was sent. Now P̂ computes the multi-linear extension of W as W and
sends this to VIOP. P̂ then forwards all verifier messages to P ∗ and forwards all messages from P ∗

to VIOP. Finally VIOP outputs accept or reject after querying the oracle W and computing a final
check.

We note that EH
pc has error probability negl(λ); that is, the emulator may output an incorrect

W with negligible probability. Suppose this is not the case and that W is a correct transcript for
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(CM , x, y) but the witness w extracted from W is such that M(x; w) ̸= y. By assumption, we have
that P ∗ convinces V to accept this scenario with probability ε. By our construction of P̂ , we also
have that in this scenario VIOP accepts with probability ε. So we have that

Pr
[
⟨P̂ , VIOP⟩ = 1

]
≥ ε(1− negl(λ)) ≥ ε− negl(λ).

Note that by soundness of the IOP we have that

Pr
[
⟨P̂ , VIOP⟩ = 1

]
≤ 36s

|F|
,

where |F| is exponential in the security parameter and s = O(log T ). Thus we have that

ε ≤ 36s

|F|
+ negl(λ) = negl(λ).

Therefore Pr[E] = ε ≤ negl(λ) as desired, and the total probability that E aborts is at most some
negligible function of λ. This along with the negligible error of EH

pc gives that Equation (13) holds
for some function negl(λ), showing witness-extended emulation.

6.1 Obtaining Theorem 1

We discuss how to modify our interactive argument of knowledge from Theorem 6 to satisfy
zero-knowledge and then make the resulting argument non-interactive, thus obtaining Theorem 1.

6.1.1 Zero-knowledge

We use commit-and-prove techniques introduced in [BGG+90, CD98] and later implemented
in [WTs+18]. At a high level, this requires making two changes in our base protocols: (1) modify
polynomial commitment from Section 4 to satisfy zero-knowledge—we modify all commitments sent
in both Com and Eval protocols (Figure 3) to additionally include blinding factors. For example,
commitment to x ∈ F under generator g ∈ G is changed from gx to gx ·hr for some randomly sampled
h

$← G and r
$← F. Further, at the end of the EvalReduce protocol when N = 1, prover instead

of sending the witness in the clear instead engages with the verifier in Schnorr’s zero-knowledge
proof of dot-product protocol [Sch91]. This along with hiding of the commitments now ensure
that the resulting polynomial commitment is zero-knowledge. (2) We replace all messages sent
in the argument Theorem 6 in the clear with Pedersen hiding commitments and use techniques
developed in [WTs+18] to ensure verifier checks go through. We emphasize that these changes do not
asymptotically blow up the complexity of the protocol and, in particular, keep the space-complexity
low. Furthermore, this transformation preserves the knowledge-soundness and public-coin features
of the underlying argument [WTs+18].

6.1.2 Non-interactivity

We apply the Fiat-Shamir (FS) transform [FS87] to our zero-knowledge argument of knowledge,
thereby obtaining a non-interactive, zero-knowledge argument of knowledge. However, note that it
is folklore that applying FS to a t-round public-coin argument of knowledge yields a non-interactive
argument of knowledge where the extractor runs in time exponential in t. Since our protocol has
O(log T ) rounds our extractor runs in poly(T )-time.
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