
Function Secret Sharing for Mixed-Mode and
Fixed-Point Secure Computation

Elette Boyle1, Nishanth Chandran2, Niv Gilboa3, Divya Gupta2,
Yuval Ishai4, Nishant Kumar?5, and Mayank Rathee2

1 IDC Herzliya
2 Microsoft Research, India

3 Ben-Gurion University of the Negev
4 Technion

5 University of Illinois at Urbana-Champaign

Abstract. Boyle et al. (TCC 2019) proposed a new approach for secure computation in the prepro-
cessing model building on function secret sharing (FSS), where a gate g is evaluated using an FSS
scheme for the related offset family gr(x) = g(x + r). They further presented efficient FSS schemes
based on any pseudorandom generator (PRG) for the offset families of several useful gates g that arise
in “mixed-mode” secure computation. These include gates for zero test, integer comparison, ReLU, and
spline functions. The FSS-based approach offers significant savings in online communication and round
complexity compared to alternative techniques based on garbled circuits or secret sharing.
In this work, we improve and extend the previous results of Boyle et al. by making the following three
kinds of contributions:

– Improved Key Size. The preprocessing and storage costs of the FSS-based approach directly depend
on the FSS key size. We improve the key size of previous constructions through two steps. First, we
obtain roughly 4× reduction in key size for Distributed Comparison Function (DCF), i.e., FSS for the
family of functions f<α,β(x) that output β if x < α and 0 otherwise. DCF serves as a central building
block in the constructions of Boyle et al.. Second, we improve the number of DCF instances required
for realizing useful gates g. For example, whereas previous FSS schemes for ReLU and m-piece spline
required 2 and 2m DCF instances, respectively, ours require only a single instance of DCF in both
cases. This improves the FSS key size by 6−22× for commonly used gates such as ReLU and sigmoid.

– New Gates. We present the first PRG-based FSS schemes for arithmetic and logical shift gates, as
well as for bit-decomposition where both the input and outputs are shared over Z2n . These gates are
crucial for many applications related to fixed-point arithmetic and machine learning.

– A Barrier. The above results enable a 2-round PRG-based secure evaluation of “multiply-then-
truncate,” a central operation in fixed-point arithmetic, by sequentially invoking FSS schemes for
multiplication and shift. We identify a barrier to obtaining a 1-round implementation via a single
FSS scheme, showing that this would require settling a major open problem in the area of FSS:
namely, a PRG-based FSS for the class of bit-conjunction functions.

? Work done while at Microsoft Research, India

Table of Contents

1 Introduction 4
1.1 MPC with Preprocessing Through FSS . 4
1.2 Our Contributions . 7
1.3 Other Related Works . 10
1.4 Organization . 10

2 Preliminaries 10
2.1 Data Types and Operators . 11
2.2 Function Secret Sharing . 11
2.3 FSS Gates . 12

3 Optimized Distributed Comparison Function 13

4 Public Intervals and Multiple Interval Containments 14
4.1 Realizing FSS gate for [p, q] using FSS scheme for f<

(N−1)+rin,1
. 15

4.2 FSS Gate for Multiple Interval Containments . 17

5 Applications of Public Intervals 17
5.1 Splines with Public Intervals . 17
5.2 Bit Decomposition . 20

6 FSS Gates for Fixed-Point Arithmetic 21
6.1 Fixed-Point Addition and Multiplication . 22
6.2 Logical Right Shift . 22
6.3 Arithmetic Right Shift . 23
6.4 Comparison . 24

7 FSS Barrier for Fixed-Point Multiplication 25

References 29

A Realizing the Dealer 32
A.1 Extending Doerner-shelat to DCF . 32
A.2 Distributed Generation via Generic 2PC . 34

B Malicious Security 34

C Comparison with Garbled Circuits 37
C.1 Garbled Circuits in the Preprocessing Model . 37
C.2 Garbled Circuits vs Our Protocols . 38

D FSS Gates Syntax 38

E Additional Preliminaries 41
E.1 Representing Functions . 41
E.2 Secure Computation with Preprocessing . 41
E.3 Secure Computation from FSS . 42

F Optimized DCF: Proof and Dual DCF 42
F.1 Proof of DCF Theorem . 42
F.2 Dual Distributed Comparison Function (DDCF) . 46

G Proofs and Supplemental Material for Section 4 47
G.1 Proof of correctness of Fig. 2 . 47
G.2 Proof of Lemma 1 . 48
G.3 Proof of Lemma 2 . 49
G.4 Interval Containment using f<

(N−1)+rin,N−1
and f6

(N−1)+rin,1
. 49

G.5 FSS Gate for Multiple Interval Containments . 49

H Applications of Public Intervals 51
H.1 Most Significant Non-Zero Bit (MSNZB) . 51
H.2 Bit Decomposition . 51

I Proofs and Supplemental Material for Section 6 53
I.1 Addition . 54
I.2 Multiplication . 54
I.3 Proof of Lemma 3 . 55
I.4 Proof of Lemma 4 . 55

3

1 Introduction

Secure multi-party computation (or MPC) [12,29,43,78] allows two or more parties to compute any function
on their private inputs without revealing anything other than the output. A useful intermediate construction
goal is that of MPC in the preprocessing model, wherein the parties receive correlated randomness from a
trusted dealer in an offline input-independent phase, and then use this correlated randomness in the online
phase once the inputs are known. Such protocols can be directly converted to ones in the standard model
(without a dealer) via an assortment of general transformations, e.g. emulating the role of the dealer jointly
using a targeted MPC protocol between the parties (see discussion in Appendix A). This modular design
approach facilitates significant performance benefits, and indeed is followed by essentially all concretely
efficient MPC protocols to date. Common types of correlated randomness include Beaver triples for multi-
plication [8], garbled circuit correlations [36,78], OT [25,45,50] and OLE [46,60] correlations, and one-time
truth tables [33,44].

When used to evaluate “pure” Boolean or arithmetic circuits, MPC protocols in the preprocessing model
have the benefit of a very fast online phase in which the local computation performed by the parties is
comparable to computing the circuit in the clear. Furthermore, the online communication is roughly the
same as communicating the values of all wires in the circuit, and the number of online rounds is equal to the
circuit depth.

Unfortunately, typical applications of MPC in areas such as machine learning and scientific computing
apply computations that cannot be succinctly represented by pure Boolean or arithmetic circuits. Instead,
they involve a mixture of arithmetic operations (additions and multiplications over a large field or ring) and
“non-arithmetic” operations such as truncation, rounding, integer comparison, ReLU, bit-decomposition, or
piecewise-polynomial functions known as splines. The cost of naively emulating such mixed computations by
pure Boolean or arithmetic circuits is prohibitively high.

This motivated a long line of work on “mixed-mode” MPC, which supports efficient inter-conversions
between arithmetic and Boolean domains and supports the above kinds of non-arithmetic operations. General
frameworks such as [23, 28, 36, 51, 57] allow mixing of arithmetic gates (additions and multiplications) and
Boolean gates (such as integer comparison), performing a suitable conversion whenever the type of gate
changes. Together with MPC protocols for Boolean circuits based on garbled circuits or secret sharing, they
can support the above kinds of non-arithmetic operations. However, the efficiency of these techniques leaves
much to be desired, as they typically incur a significant overhead in communication and rounds even when
ignoring the cost of input-independent preprocessing.

Recently, Boyle et al. [21] proposed a powerful approach for mixed-mode MPC in the preprocessing model,
using function secret sharing (FSS) [18, 20] (their approach can be seen as a generalization of an earlier
truth-table based protocol of Damg̊ard et al. [33]). The FSS-based approach to MPC with preprocessing can
support arithmetic operations that are mixed with the above kinds of non-arithmetic operations with the
same online communication and round complexity as pure arithmetic computations, and while only making
use of symmetric cryptography. In the present work, we significantly improve the efficiency of this FSS-based
approach and extend it by supporting useful new types of non-arithmetic operations. Before giving a more
detailed account of our results, we give an overview of the FSS-based approach to MPC with preprocessing.

1.1 MPC with Preprocessing Through FSS

At a high level, a (2-party) FSS scheme [18, 20] for a function family F splits a function f ∈ F into two
additive shares f0, f1, such that each fσ hides f and f0(x) + f1(x) = f(x) for every input x. Here we assume
that the output domain of f is a finite Abelian group G, where addition is taken over G. While this can be
trivially solved by secret-sharing the truth-table of f , the goal of FSS is to obtain succinct descriptions of f0

and f1 using short keys k0 and k1, while still allowing their efficient evaluation.
For simplicity, consider semi-honest 2-party secure computation (2PC) with a trusted dealer – we discuss

how to emulate the trusted dealer with 2PC (building upon [39]) as well as extensions to malicious security,
in Appendix A and B, respectively. The main idea, from [21], to obtain 2PC with trusted dealer is as follows.
Consider a mixed circuit whose wires take values from (possibly different) Abelian groups and where each
gate g maps a single input wire to a single output wire. We can additionally make free use of fan-out gates
that duplicate wires, “splitters” that break a wire from a product group G1×G2 into two wires, and “joiners”

4

that concatenate two wires into a single wire from the product group. This allows us to view a two-input
gate (such as addition or multiplication) as a single-input gate applied on top of a joiner gate.

The FSS-based evaluation of such a circuit proceeds by maintaining the following invariant: for every
wire wi in the circuit, both parties learn the masked wire value wi + ri, where ri is a random secret mask
(from the group associated with wi) which is picked by the dealer and is not revealed to any of the parties.
The only exceptions are input wires, where the mask ri is revealed to the party owning the input, and the
circuit output wires, where the masks are revealed to both parties.

This above is easy to achieve for input wires by simply letting the dealer send to each party the masks of
the inputs owned by this party, and having the parties reveal the masked inputs to each other. The challenge
is to maintain the invariant when evaluating a gate g with input wire wi and output wire wj = g(wi) without
revealing any information about the wire values. The idea is to consider the function mapping the masked
input w′i = wi + ri to the masked output w′j = g(wi) + rj as a secret function f determined by ri and rj ,
applied to the public input w′i. Concretely, f(w′i) = g(w′i − ri) + rj .

Since the secret function f is known to the dealer (who picks all random masks), the dealer can securely
delegate the evaluation of f to the two parties by splitting it into f0 and f1 via FSS and sending to each
party σ its corresponding FSS key kσ. Letting party σ evaluate fσ(w′i), the parties obtain additive shares of
w′j , which they can safely exchange and recover the masked output w′j . Finally, the circuit output wires are
unmasked by having the dealer provide their masks to both parties.

The key observation is that given a gate g, the secret function f comes from the family of offset functions

Fg that includes all functions of the form g[rin,rout](x) = g(x− rin) + rout. (Alternatively, up to a slight loss of
efficiency, it is enough to use FSS for the simpler class of functions of the form gr(x) = g(x + r), together
with separate shares of the masks.) We refer to an FSS scheme for the offset function family Fg as an FSS
gate for g. The key technical challenge in implementing the approach of [21] is in efficiently realizing FSS
gates for useful types of gates g.

For addition and multiplication gates over a finite ring, the FSS gates are information-theoretic and
essentially coincide with Beaver’s protocol [8] (more accurately, its circuit-dependent variant from [11,30,33]).
A key observation of [21] is that for a variety of useful non-arithmetic gates, including zero test, integer
comparison, ReLU, splines, and bit-decomposition (mapping an input in Z2n to the corresponding output in
Zn2), FSS gates can be efficiently constructed using a small number of invocations of FSS schemes from [20].
The latter FSS schemes have the appealing feature of making a black-box use of any pseudorandom generator
(PRG). This gives rise to relatively short keys and fast implementations using hardware support for AES.

Alternative variants. The above protocol uses circuit-dependent correlated randomness, since a wire mask
is used in two or more gates incident to this wire, and this incidence relation depends on the circuit topology.
At a small additional cost, one can break the correlations between FSS gates and obtain a circuit independent
variant; see [21] for details. Another variant, which corresponds to how standard MPC protocols are typically
described, is to use an FSS gate for mapping a secret-shared input to a secret-shared output (rather than
a masked input to a masked output). This variant proceeds as described above, except that the parties
start by reconstructing the masked input using a single round of interaction, and then use the FSS gate to
locally compute shares of the output (without any interaction). With this variant, one can seamlessly use
FSS gates in combination with other kinds of MPC protocols are based on garbled circuits, secret sharing,
or homomorphic encryption.

Efficiency. When mapping a masked input to a masked output, processing a gate g requires only a single
round of interaction, where each party sends a message to the other party. This message consists of a single
element in the output group of g. Similarly, the variant mapping a secret-shared input to a secret-shared
output still requires only a single round of interaction, where the message here consists of a single element
in the input group of g. Assuming a single round of interaction, this online communication complexity is
optimal [21]. Overall, when evaluating a full circuit the communication by each party (using either the
masked-input to masked-output or the shared-input to shared-output variant) is equal to that of communi-
cating all wire values. The round complexity is equal to the circuit depth, no matter how complex the gates
g are. The only complexity measures which are sensitive to the FSS gate implementation are the evaluation
time and, typically more significantly, the size of the correlated randomness communicated by the dealer and
stored by the parties. Optimizing the latter is a central focus of our work.

5

When is the FSS-based approach attractive? It is instructive to compare the efficiency features of
the above FSS-based approach with that of the two main approaches for MPC with preprocessing: a Yao-
style protocol based on garbled circuits (GC) [78] and a GMW-style protocol based on secret sharing [43].6

Consider the goal of securely converting input shares for g into output shares when g is a nontrivial gate,
say ReLU, over elements of ZN for N = 2n.

The FSS-based online protocol requires only one round of interaction in which each party sends only
n bits (as argued above, this is optimal). In contrast, in a GC-based protocol the online phase (as used in
several related works [23,28,36,47,56,57,59]) requires one of the parties to communicate 256n bits (a pair of
AES keys for each input), which is 128× bigger. Furthermore, the parties need to interact in two sequential
rounds. In Appendix C we discuss a way to reduce the online communication of a GC-based protocol by 2×,
which still leaves a 64× overhead in communication and 2× overhead in rounds over the FSS-based protocol.
A GMW-style protocol typically requires a large number of rounds (depending on the multiplicative depth
of a Boolean circuit implementing g), and has online per-party communication which is bigger than n by a
multiplicative factor which depends on the number of multiplication gates in the circuit. See Section 1.3 for
a more concrete comparison with previous works taking the GC-based or GMW-based approach.

Even when considering MPC without preprocessing, namely, when the offline and online phases are
combined, the FSS-based approach can still maintain some of its advantages. For instance, since keys for all
FSS gates in a deep circuit can be generated in parallel, the advantage in round complexity is maintained. In
the 3PC setting where one party emulates the role of the dealer, or in the 2PC setting with a relatively small
input length n (see Appendix A), one can potentially beat the communication complexity of a GC-based
protocol, depending on the FSS key size. This will be further discussed below.

To conclude, FSS-based protocols will typically outperform competing approaches in two common scenar-
ios: (1) when offline communication is cheaper than online communication, or alternatively (2) when latency
is the bottleneck and minimizing rounds is a primary goal. In the setting of MPC with preprocessing, the
FSS-based approach beats all previous practical approaches to mixed-mode secure computation with respect
to both online communication and round complexity.

Finally, we stress that while the above discussion mainly focuses on semi-honest 2PC with a trusted
dealer, most of the above benefits also apply to malicious security (see Appendix B), and when emulating
the trusted dealer using the different options we discuss: third party, 2PC protocol (Appendix A), or semi-
trusted hardware [61].

Bottlenecks for the FSS-based approach. Given the optimality of rounds and communication in the
online evaluation of a gate g, the main bottleneck in the FSS-based approach lies in the size of the correlated
randomness provided by the trusted dealer, namely the size of the FSS keys kσ. This affects both offline
communication and online storage. In the 3PC setting, where the trusted dealer is emulated by a third
party, the FSS key size directly translates to offline communication from the third party to the other two
parties. In the 2PC setting, where the dealer is emulated by an offline protocol for securely generating
correlated randomness (see Appendix A), the communication and computation costs of the offline protocol
grow significantly with the key size. Thus, minimizing key size of useful FSS gates is strongly motivated by
all application scenarios of FSS-based MPC.

Many compelling use-cases of MPC, such as privacy-preserving machine learning, finance, and scientific
computing, involve numerical computation with finite precision, also known as “fixed-point arithmetic.”
Arithmetic over fixed-point numbers not only requires arithmetic operations such as additions and multipli-
cations, for which efficient protocols can be based on traditional techniques, but also other kinds of operations
that cannot be efficiently reduced to arithmetic operations over large rings. These include Boolean shift op-
erators needed for adjusting the “scale” of fixed-point numbers. Concretely, for N = 2n, a logical (resp.,
arithmetic) right shift by s converts an element x ∈ ZN representing an n-bit unsigned (resp., signed) num-
ber to y ∈ ZN representing bx/2sc. To date, there are no PRG-based realizations of FSS gates for these

6 Here we only consider protocols whose online phase is based on symmetric cryptography. This excludes protocols
based on homomorphic encryption, whose concrete costs are typically much higher.

6

Boolean operations,7 and hence, fixed-point arithmetic operations cannot be realized securely using existing
lightweight FSS machinery.

We now discuss our contributions that address these bottlenecks.

1.2 Our Contributions

In this work, we make the following contributions:

– Improved Key Size. We obtain both concrete and asymptotic improvements in key size for widely
applicable FSS gates such as integer comparisons, interval containment, bit-decomposition, and splines.

– New Gates. We extend the scope of FSS-based MPC by providing the first efficient FSS gates for several
useful function families that include (logical and arithmetic) right shift, as well as bit-decomposition with
outputs shared in ZN (rather than Z2 in the construction from [21]).

– A Barrier. We provide a barrier result explaining the difficulty of obtaining PRG-based FSS gates for
functions such as fixed-point multiplication.

We now give more details about these three kinds of contributions.

Improved Key Size. In Table 1 we summarize our improvements in key size over [21] and compare our
improved FSS key size with garbled circuit size for the same gates. We provide the key size both as a
function of input bitlength n and for the special case n = 16. Compared to [21], we observe a reduction in
key size ranging from 6× for ReLU to 22× for splines and 77× for multiple interval containment (MIC) with
12 intervals. (See Appendix D for precise definitions of all gate types.) As can be observed, for all of the
FSS gates considered in [21], their key size was significantly larger than the garbled circuit size. With our
constructions, the key size is significantly lower than garbled circuits, for all gates except bit-decomposition
(with output in Zn2). For instance, our key size is at least 2× better than garbled circuits for ReLU and
15× and 27× better for splines and MIC, respectively. Recall that when compared to MPC protocols that
use garbled circuits for preprocessing, protocols that follow the FSS-based approach have 64× lower online
communication and 2× less rounds. So with our new schemes, FSS-based MPC with preprocessing will
typically become more efficient in storage as well. The offline cost can also be smaller in some MPC settings
(such as the 3PC case).

Our improvements in key size are obtained in two steps. The first step is a roughly 4× improvement for
a central building block of useful FSS gates that we call Distributed Comparison Function (DCF). A DCF is
an FSS scheme for the family of functions f<α,β(x) that output β if x < α and 0 otherwise, where α, β ∈ ZN .
This improvement is independently motivated by several other applications, including Yao’s millionaires’
problem and 2-server PIR with range queries. However, our primary motivation is the fact that previous
FSS gate constructions from [21] are cast as reductions that invoke multiple instances of DCF. As a second
step, we significantly improve the previous reductions from [21] of useful non-arithmetic FSS gates to DCF.
We describe these two types of improvements in more detail below.

Optimized DCF. The best previous DCF construction is an instance of an FSS scheme for decision trees
from [20]. Instead, we provide a tighter direct construction that reduces the key size by roughly 4×. Con-
cretely, the total key size is improved from ≈ 2n(4λ + n) to ≈ 2n(λ + n) for input and output domains of
size N = 2n and PRG seed length λ, with similar savings for general input and output domains.8

7 An FSS-based protocol for right-shift can be obtained using the FSS gate for bit-decomposition from [21]. However,
their construction only allows output shares of bits over Z2, whereas such a reduction (as well as other applications)
requires output shares over ZN . Conversion of shares from Z2 to ZN would thus require an additional round of
interaction. Furthermore, this approach would require key size quadratic in input length: O(n2λ) for N = 2n (i.e.,
n-bit numbers) and PRG seed length λ.

8 A concurrent work by Ryffel et al. [70] on privacy-preserving machine learning using FSS also proposes an optimized
DCF scheme. Our construction is around 1.7× better in key size than theirs.

7

Better reductions to DCF. We significantly reduce the number of DCF instances required by most of the
non-arithmetic FSS gates from [21]. The main new building block is a new FSS scheme for the offset families
of interval containment (IC for short) and splines (piecewise polynomial functions) when the comparison
points are public. Our construction uses only one DCF instance compared to the analogous constructions
from [21] that require 2 and 2m DCF instances for IC and splines with m pieces, respectively, but can hide
the comparison points. We note that comparison points are public for almost all important applications -
e.g. the popular activation function in machine learning, ReLU,9 absolute value, as well as approximations
of transcendental functions [55,59].

Concretely, for n = 16 (where inputs and outputs are in ZN for N = 2n), including our improvement in
DCF key size, we improve the key size from [21] by roughly 6×, 12×, and 22× for the spline functions ReLU,
absolute value and sigmoid, respectively, where the sigmoid function is approximated using 12 pieces [55].
Moreover, this improvement in key size makes the FSS-based construction beat garbled circuits not only in
terms of online communication but also in terms of per-gate storage requirements. See Table 1 for a more
detailed comparison.

The main technical idea that enables the above improvement is that an FSS scheme for the offset family
of a public IC function f[p,q] (that outputs is 1 if p 6 x 6 q and 0 otherwise) can be reduced to a single DCF
instance with α = N − 1 + rin. We build on this construction to reduce FSS keys for multiple intervals (and
hence splines with constant payload) to this single DCF instance. See Section 4 for details. Constructions
for splines with general polynomial outputs employ additional techniques to embed secret payloads (see
Section 5.1).

Another kind of FSS gate for which we get an asymptotic improvement in key size over [21] is bit-
decomposition with outputs shared over Z2. Here an input x ∈ ZN is split to its bit-representation (xn−1, . . .
, x0) ∈ {0, 1}n, where each xi is individually shared over Z2. (This type of “arithmetic to Boolean” conversion
can be useful for applying a garbled circuit to compute a complex function of x that is not efficiently
handled by FSS gates.) Non-trivial protocols for bit-decomposition have been proposed in different MPC
models [32, 63, 71, 72]. An FSS gate for the above flavor of bit-decomposition was given in [21] with O(n2λ)
key size. Here we substantially improve the hidden constant by reducing the bit-decomposition problem to
a series of public interval containments. Moreover, we show how to further reduce the key size by an extra
factor of w at the cost of computational overhead that grows exponentially with w. Setting w = log n, we
get an asymptotic improvement in key size over [21], while maintaining poly(n) computation time.

New FSS Gates. A central operation that underlies fixed-point arithmetic with bounded precision is a
Boolean right shift operation that maps a number x ∈ ZN to y ∈ ZN representing bx/2sc for shift amount
s. This operation comes in two flavors: logical that applies to unsigned numbers and arithmetic that applies
to signed numbers in 2’s complement representation. These operations are typically applied following a
multiplication operation to enable further computations while keeping the significant bits. Previous results
from the literature do not give rise to efficient PRG-based FSS gates for these shift operators. We present
a new design approach to FSS for right shift that uses only two invocations of DCF, obtaining asymptotic
key size of O(nλ+ n2). See Section 6 for definitions and construction details and Table 1 for comparison of
key size with garbled circuits.

Another new feasibility result is related to the bit-decomposition problem discussed above. The FSS gate
for bit-decomposition from [21] crucially relies on the output bits xi being shared over Z2, whereas in some
applications one needs the bits xi to be individually shared over ZN (or a different ZN ′). While a conversion
from Z2 to ZN can be done directly using another FSS gate or oblivious transfer, this costs at least one more
round of interaction. We realize this generalized form of bit-decomposition directly by a single FSS gate, via
a similar approach of reducing the problem to a series of public interval containments.

A Barrier. Most applications of MPC in the areas of machine learning (see [57,59,67] and references therein)
and scientific computing (see [5, 7, 26, 27] and references therein) use fixed-point arithmetic for efficiently
obtaining an approximate output. Fixed-point addition is defined to be the same as integer addition; however,
fixed-point multiplication requires an integer multiplication followed by an appropriate right shift operation
for preventing integer overflows (see Section 6). Many prior works, for efficiency reasons, implement this

9 A ReLU operator, or Rectified Linear Unit, is a function on signed numbers defined by g(x) = max(x, 0).

8

Table 1: Comparison of our FSS gate key sizes, with those of [21], and Garbled Circuits (GC) [75]. For
FSS (i.e., our work and [21]), we list total key size for both P0, P1. For GC, we under-approximate and
consider only the size of garbled circuit. The table only captures the size of correlated randomness (offline
communication in the 3PC case); the online communication corresponding to both FSS columns is at least
λ
2× better than GC (and rounds 2× better). UN , SN denote unsigned and signed n-bit integers, respectively.
We consider gates for: Interval containment (IC), multiple interval containment (MIC) with m intervals,
splines with m intervals and d-degree polynomial outputs, ReLU, Absolute value (ABS), Bit Decomposition
(BD), Logical/Arithmetic Right Shifts (LRS/ARS) by s. Syntax and definitions of all gates are described
in Appendix D. We provide cost in terms of number of DCFn,G keys for DCF with input bitlength n and

output group G. To disambiguate between our optimized DCF and DCF used in [21], we use DCFBGI
n,G for

the latter. Let ` = dlog |G|e. Size of our optimized DCFn,G key is total 2 (n(λ+ `+ 2) + λ+ `) bits. Size of

DCFBGI
n,G key (using [20]) is 2 (4n(λ+ 1) + n`+ λ) bits. For our BD scheme (with output over Un2), w is a

parameter (here we assume w | n) and compute grows exponentially with w. We provide approximate key
size expressions here by ignoring lower order terms; refer to Table 2 (Appendix C.2) for exact expressions.
The values in parenthesis give exact key size in bits for λ = 128, n = 16, m = 12, d = 1, w = 4, s = 7.

Gate This work BGI’19 [21] GC

IC
(n)

DCFn,UN 2×DCFBGI
n,UN 8λn

(4992) (34592) (15616)

MIC
(n,m)

DCFn,UN + 2mn 2m×DCFBGI
n,UN 6λmn

(5344) (415104) (145152)

Splines
(n,m, d)

DCF
n,Um(d+1)

N

+ 4mn(d+ 1) 2m×DCFBGI

n,U(d+1)
N

4λmn(d+ 2)

(19040) (427008) (289536)

ReLU
(n)

DCFn,U2
N

2×DCFBGI
n,U2

N
6λn

(5664) (35616) (11776)

ABS
(n)

DCFn,U2
N

4×DCFBGI
n,U2

N
8λn

(5728) (71168) (15616)

BD
(n,w)

n
w
×DCFn+w

2
,U2

(n− 1)×DCFBGI
n
2
,U2

2λn

(11544) (127952) (3840)

LRS
(n, s)

DCFs,UN + DCFn,UN - 4λn
(7324) (-) (7680)

ARS
(n, s)

DCFs,SN + DCFn−1,S2
N

- 4λn

(7608) (-) (7680)

right shift (or truncation) through a non-interactive “local truncation” procedure [38, 53, 57, 59, 74]. This
has two issues. First, the truncated output can be totally incorrect, in the sense of being random, with
some (small) probability. Since this probability accumulates with the number of such multiplications (and
hence truncations), it necessitates an increase of the modulus N that can take a toll on efficiency. While this
overhead is reasonable in some cases [2,68], local truncation may be too costly for large scale applications [67].
Second, even when a big error does not occur, the least significant bit resulting from local truncation is
erroneous with high probability. Such small errors are aggregated over the course of the computation. This
makes the correctness of the implementation more difficult to verify, and can potentially lead to fraud through
salami slicing (or penny shaving) in financial applications [1], where the adversary ensures that the small
errors are biased in its favorable direction.

Our new FSS gate constructions for right shifts provide an effective solution for performing fixed-point
multiplication operations in two rounds by sequentially invoking two FSS gates: one FSS gate for performing
multiplication over ZN (implemented via [21] or a standard multiplication triple), followed by a second
FSS gate to perform an arithmetic right shift for signed integers (or logical shift for unsigned integers).
This approach gives a faithful error-free implementation of secure fixed-point multiplication for inputs of all
bitlengths. A natural question is whether it is possible to replace the two FSS gates by a single FSS gate,
avoiding the additional round of communication, using only cheap symmetric cryptographic primitives such
as a PRG.

9

We demonstrate a barrier toward this goal, showing that this requires settling a major open problem in
the area of FSS: namely, whether the family of conjunctions of a subset of n bits has an FSS scheme based on
symmetric cryptography. Currently, FSS schemes for this family are known only under structured, public-
key computational hardness assumptions such as Decisional Diffie-Hellman [19], Paillier [41] or Learning
With Errors [22, 38], that imply homomorphic public key encryption. Such FSS schemes are less efficient
than the PRG-based schemes considered in this work by several orders of magnitude, with respect to both
communication and computation.

1.3 Other Related Works

FSS-based MPC has some key advantages over works on 2PC and 3PC in the preprocessing model. Prior
works on 2PC in the preprocessing model [36, 47, 56, 59, 69] use garbled circuits (GC) to evaluate non-
arithmetic gates such as comparison and general splines. This holds for many 3PC works with honest ma-
jority [10, 57, 58] that try to minimize online round complexity. In Appendix C.1, we describe an optimized
GC-based approach in the preprocessing model that is more communication efficient than prior works. Our
FSS-based approach beats this GC-based approach in both correlated randomness size (see Table 1) and
online communication (by a factor of λ/2, namely 64× for AES-based implementation).

Another line of work in the preprocessing model [37, 64, 65] focuses on optimizing the rounds and com-
munication of the online phase without the use of GC (due to its high communication cost). A recent work
ABY2.0 [65] reduces online rounds and communication complexity of GMW-like approach [36] for many non-
arithmetic functions by constructing efficient protocols for multi input AND gates. Even then, FSS-based
approach is more efficient in the online phase in terms of both rounds as well as communication. For instance,
for popular functions like ReLU and spline-based approximation of sigmoid, ABY2.0 [65] requires 4 − 5×
more rounds and 3 − 6× more communication in the online phase compared to the FSS-based approach.
However, [65] requires smaller correlated randomness and it can be generated more efficiently using 2PC
based preprocessing.

In the honest-majority setting, several works solve the mixed-mode secure computation problem using
secret sharing rather than GC in order to reduce the communication cost [6, 53, 57, 67, 74]. However, the
round complexity of these protocols is typically much higher than ours, and even when optimized to the
offline-online setting, their online communication is significantly higher than ours.

An alternate line of work considers building secure protocols for floating-point arithmetic [4,14]; however,
these are significantly more expensive than their fixed-point counterparts [27, 53, 59], which suffice for most
applications.

The work on pseudorandom correlation generators [16] shows a simple way to use a single DPF for com-
pressing a randomly shifted and secret-shared truth-table, which can be used for implementing an arbitrary
FSS gate. However, their solution either requires (1) superlinear offline computation and linear storage in
N = 2n, or (2) linear online computation in N . In contrast, the storage and online computation costs of our
solutions scale polynomially with n.

1.4 Organization

Following some background on data types, gates, and FSS in Section 2, Section 3 gives our FSS construction
for DCF. We present our core technical contribution of efficient FSS gates for single and multiple interval
containments with public boundaries (Section 4), extend these ideas to splines with public intervals (Sec-
tion 5.1) and bit-decomposition (Section 5.2), provide constructions for FSS gates for fixed-point arithmetic
(Section 6), and demonstrate the barrier towards one round fixed-point multiplication via FSS (Section 7).
The appendices include discussion of two-party protocols for emulating the dealer in the two-party setting
(Appendix A), achieving malicious security with a trusted dealer (Appendix B), detailed comparison with
garbled circuits Appendix C, and other proofs and details that are deferred from the main text.

2 Preliminaries

We provide an abbreviated version of preliminaries and notation. We defer a more detailed formal treatment
to Appendix E.

10

Notation. We use arithmetic operations in the ring ZN for N = 2n. We naturally identify elements of ZN
with their n-bit binary representation, where 0 is represented by 0n and N − 1 by 1n. Unless otherwise
specified, we parse x ∈ {0, 1}n as x[n−1], . . . , x[0], where x[n−1] is the most significant bit (MSB) and x[0] is
the least significant bit (LSB). For 0 6 j < k 6 n, z = x[j,k) ∈ Z2k−j denotes the ring element corresponding
to the bit-string x[k−1], . . . , x[j]. || denotes string concatenation. Function family denotes an infinite collection
of functions specified by the same representation. λ denotes computational security parameter.

2.1 Data Types and Operators

Unsigned and signed integers. We consider computations over finite bit unsigned and signed integers, denoted
by UN and SN , respectively, over n-bits. We note that UN = {0, . . . , N − 1} is isomorphic to ZN . Moreover,
SN = {−N/2, . . . , 0, . . . , N/2− 1} can be encoded into ZN or UN using 2’s complement notation or mod N
operation. The positive values {0, . . . , N/2−1} are mapped identically to {0, . . . , N/2−1} and negative values
{−N/2, . . . ,−1} are mapped to {N/2, . . . , N − 1}. In this notation, the MSB of (the binary representation
of) x is 0 if x > 0 and 1 if x < 0. Note that addition, subtraction and multiplication of signed integers
modulo N respect this representation as long as the result is in the range [−N/2, N/2). Our work also
considers fixed-point representation of numbers and its associated arithmetic. Section 6 provides a more
detailed description of the mapping of rationals into the fixed-point space as well as fixed-point arithmetic.

Operators. We consider several standard operators, which can be thought of as applying to (signed or un-
signed) integers. Each operator is defined by a gate: a function family parameterized by input and output
domains and possibly other parameters. Some of the operators we consider are single and multiple interval
containments (Section 4), splines and applications to ReLU and absolute value (Section 5.1), bit decom-
position (Section 5.2), as well as operators required for the realization of fixed-point arithmetic - such as
fixed-point addition and multiplication (Section 6.1), logical and arithmetic right shifts (Section 6.2 & 6.3),
and comparison (Section 6.4).

2.2 Function Secret Sharing

We follow the definition of function secret sharing (FSS) from [20]. Intuitively, a (2-party) FSS scheme is
an efficient algorithm that splits a function f ∈ F into two additive shares f0, f1, such that: (1) each fσ
hides f ; (2) for every input x, f0(x) + f1(x) = f(x). The main challenge is to make the descriptions of
f0 and f1 compact, while still allowing their efficient evaluation. As in [18, 20, 21], we insist on an additive
representation of the output that is critical for applications.

Definition 1 (FSS: Syntax). A (2-party) function secret sharing (FSS) scheme is a pair of algorithms
(Gen,Eval) such that:

– Gen(1λ, f̂) is a PPT key generation algorithm that given 1λ and f̂ ∈ {0, 1}∗ (description of a function

f) outputs a pair of keys (k0, k1). We assume that f̂ explicitly contains descriptions of input and output
groups Gin,Gout.

– Eval(σ, kσ, x) is a polynomial-time evaluation algorithm that given σ ∈ {0, 1} (party index), kσ (key
defining fσ : Gin → Gout) and x ∈ Gin (input for fσ) outputs a group element yσ ∈ Gout (the value of
fσ(x)).

Definition 2 (FSS: Correctness and Security). Let F = {f} be a function family and Leak be a

function specifying the allowable leakage about f̂ . When Leak is omitted, it is understood to output only Gin

and Gout. We say that (Gen,Eval) as in Definition 1 is an FSS scheme for F (with respect to leakage Leak)
if it satisfies the following requirements.

– Correctness: For all f̂ ∈ PF describing f : Gin → Gout, and every x ∈ Gin, if (k0, k1) ← Gen(1λ, f̂)
then Pr [Eval(0, k0, x) + Eval(1, k1, x) = f(x)] = 1.

– Security: For each σ ∈ {0, 1} there is a PPT algorithm Simσ (simulator), such that for every sequence

(f̂λ)λ∈N of polynomial-size function descriptions from F and polynomial-size input sequence xλ for fλ,
the outputs of the following experiments Real and Ideal are computationally indistinguishable:

11

• Realλ: (k0, k1)← Gen(1λ, f̂λ); Output kσ.
• Idealλ: Output Simσ(1λ, Leak(f̂λ)).

A central building block for many of our constructions is an FSS scheme for a special interval function
referred to as a distributed comparison function (DCF) as defined below. We formalize it below.

Definition 3 (DCF). A special interval function f<α,β, also referred to as a comparison function, outputs
β if x < α and 0 otherwise. We refer to an FSS schemes for comparison functions as distributed comparison
function (DCF). Analogously, function f6α,β outputs β if x 6 α and 0 otherwise. In all of these cases, we

allow the default leakage Leak(f̂) = (Gin,Gout).

The following theorem captures the concrete costs of the best known construction of DCF from a PRG
(Theorem 3.17 in the full version of [20]):

Theorem 1 (Concrete cost of DCF [20]). Given a PRG G : {0, 1}λ → {0, 1}2λ+2, there exists a DCF
for f<α,β : Gin → Gout with key size 4n · (λ + 1) + n` + λ,where n = dlog |Gin|e and ` = dlog |Gout|e. For

`′ = d `
λ+2e, the key generation algorithm Gen invokes G at most n · (4 + `′) times and the algorithm Eval

invokes G at most n · (2 + `′) times.

We use DCFn,G to denote the total key size, i.e. |k0| + |k1|, of the DCF key with input length n and
output group G (see Table 1). This captures the output length of Gen algorithm. On the other hand, we use
DCFn,G (non-bold) to denote the key size per party, i.e., |kb|, b ∈ {0, 1}. This captures the key size used in
Eval algorithm. In the rest of the paper, we use DCFn,G to count number of invocations/evaluations as well
as key size per evaluator Pb, b ∈ {0, 1}.

2.3 FSS Gates

The recent work of Boyle et al. [21] provided general-purpose transformations for obtaining efficient secure
computation protocols in the preprocessing model via FSS schemes for corresponding function families.

The key idea is the following FSS-based gate evaluation procedure. For each gate g : Gin → Gout in the
circuit to be securely evaluated, the dealer uses an FSS scheme for the class of offset functions Ĝ that includes

all functions of the form g[rin,rout](x) = g(x− rin) + rout. If the input to gate g is wire i and the output is wire

j, the dealer uses the FSS scheme for Ĝ to split the function g[rin,rout] into two functions with keys k0, k1, and
delivers each key kσ to party Pσ. Now, evaluating their FSS shares on the common masked input wi + ri,
the parties obtain additive shares of the masked output wj + rj , which they can exchange and maintain the
invariant for wire j. Finally, the outputs are reconstructed by having the dealer reveal to both parties the
masks of the output wires. We defer a formal statement of the corresponding transformation to Appendix E.
In what follows we introduce necessary terminology.

Definition 4 (Offset function family and FSS gates). Let G = {g : Gin → Gout} be a computation
gate (parameterized by input and output groups Gin,Gout). The family of offset functions Ĝ of G is given by

Ĝ :=

{
g[rin,rout] : Gin → Gout

∣∣∣∣ g : Gin → Gout ∈ G,
rin ∈ Gin, rout ∈ Gout

}
, where

g[rin,rout](x) := g(x− rin) + rout,

and g[rin,rout] contains an explicit description of rin, rout. Finally, we use the term FSS gate for G to denote an
FSS scheme for the corresponding offset family Ĝ.

As explained above, an FSS gate for G implies an “online-optimal” protocol for converting a masked
input x to a masked output g(x) for g ∈ G. Concretely, the online phase consists of only one round in
which each party sends a message of length |g(x)|. Alternatively, we can have a similar one-round protocol
converting additively shared input to additively shared output, where here the message length is |x|. The
offline communication and storage correspond to the FSS key size produced by Gen, and the online compute
time corresponds to the computational cost of Eval.

Boyle et al. [21] constructed FSS gates for most of the operators from Section 2.1 by reducing them to
multiple invocations of DCF. In this work we will improve the efficiency of previous DCF constructions, and
provide better reductions (both asymptotically and concretely) from gates in Section 2.1 to DCF.

12

3 Optimized Distributed Comparison Function

A Distributed Comparison Function (DCF), as formalized in Definition 3, is an FSS scheme for the family of
comparison functions. We reduce the key size of prior best known construction of [20] from roughly n(4λ+n)
to roughly n(λ + n), i.e. roughly 4×, for input and output domains of size N = 2n and security parameter
λ, with similar savings for general input and output domains.

Distributed Comparison Function (Gen<n ,Eval
<
n)

Let G : {0, 1}λ → {0, 1}2(2λ+1) be a pseudorandom generator.
Let ConvertG : {0, 1}λ → G be a map converting a random λ-bit string to a pseudorandom group element of G.

Gen<n (1λ, α, β,G):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α

2: Sample random s
(0)
0 ← {0, 1}λ and s

(0)
1 ← {0, 1}λ

3: Let Vα = 0 ∈ G, let t
(0)
0 = 0 and t

(0)
1 = 1

4: for i = 1 to n do
5: sL0 ||vL0 ||tL0

∣∣∣∣ sR0 ||vR0 ||tR0 ← G(s
(i−1)
0)

6: sL1 ||vL1 ||tL1
∣∣∣∣ sR1 ||vR1 ||tR1 ← G(s

(i−1)
1)

7: if αi = 0 then Keep← L, Lose← R
8: else Keep← R, Lose← L
9: end if

10: sCW ← sLose
0 ⊕ sLose

1

11: VCW ← (−1)t
(i−1)
1 · [ConvertG(vLose

1)− ConvertG(vLose
0)− Vα]

12: if Lose = L then VCW ← VCW + (−1)t
(i−1)
1 · β

13: end if
14: Vα ← Vα − ConvertG(vKeep

1) + ConvertG(vKeep
0) + (−1)t

(i−1)
1 · VCW

15: tLCW ← tL0 ⊕ tL1 ⊕ αi ⊕ 1 and tRCW ← tR0 ⊕ tR1 ⊕ αi
16: CW (i) ← sCW ||VCW ||tLCW ||tRCW
17: s

(i)
b ← sKeep

b ⊕ t(i−1)
b · sCW for b = 0, 1

18: t
(i)
b ← tKeep

b ⊕ t(i−1)
b · tKeep

CW for b = 0, 1
19: end for
20: CW (n+1) ← (−1)t

n
1 · [ConvertG(s

(n)
1)− ConvertG(s

(n)
0)− Vα]

21: Let kb = s
(0)
b ||CW

(1)|| · · · ||CW (n+1)

22: return (k0, k1)

Eval<n (b, kb, x):

1: Parse kb = s(0)||CW (1)|| · · · ||CW (n+1), x = x1, . . . , xn, let V = 0 ∈ G, t(0) = b.
2: for i = 1 to n do
3: Parse CW (i) = sCW ||VCW ||tLCW ||tRCW
4: Parse G(s(i−1)) = ŝL||v̂L||t̂L

∣∣∣∣ ŝR||v̂R||t̂R
5: τ (i) ← (ŝL||t̂L

∣∣∣∣ ŝR||t̂R)⊕ (t(i−1) ·
[
sCW ||tLCW ||sCW ||tRCW

]
)

6: Parse τ (i) = sL||tL
∣∣∣∣ sR||tR ∈ {0, 1}2(λ+1)

7: if xi = 0 then V ← V + (−1)b · [ConvertG(v̂L) + t(i−1) · VCW]
8: s(i) ← sL, t(i) ← tL

9: elseV ← V + (−1)b · [ConvertG(v̂R) + t(i−1) · VCW]
10: s(i) ← sR, t(i) ← tR

11: end if
12: end for
13: V ← V + (−1)b · [ConvertG(s(n)) + t(n) · CW (n+1)]
14: Return V

Fig. 1: Optimized FSS scheme for the class F<n,G of comparison functions f<α,β : {0, 1}n → G, outputting β
for 0 6 x < α and 0 for x > α. || denotes string concatenation. b refers to party id. All s and v values are
λ-bit strings, V values are elements in G, which are represented in dlog |G|e bits and t values are single bits.
α1 and x1 refer to MSBs of α and x, respectively. Similarly, αn and xn are the corresponding LSBs.

13

Our construction draws inspiration from the DPF of [20]. The Gen algorithm uses a PRG G and generates
two keys (k0, k1) such that ∀b ∈ {0, 1}, kb includes a random PRG seed sb and n+1 shared correction words.
A key implicitly defines a binary tree with N = 2n leaves where a node u is associated with a tuple (sb, Vb, tb),
for a PRG seed sb, an output group element Vb ∈ G and a bit tb. The construction ensures that the sum
V0 + V1 over all nodes leading to an input x is exactly equal to f<α,β(x). Therefore, evaluating a key kb on
an input x requires traversing the tree generated by kb from the root to the leaf representing x, computing
(sb, Vb, tb) at each node and summing up the values Vb.

The tuple (sb, Vb, tb) associated with u is a function of the seed associated with the parent of u and the
correction words. Therefore, if s0 = s1 then for any descendent of u, k0 and k1 generate identical tuples. The
correction words are chosen such that when a path to x departs from the path to α, the two seeds s0 and
s1 on the first node off the path are identical, and the sum of V0 + V1 along the whole path to u is exactly
zero if the departure is to the right of the path to α, i.e. x > α, and is β if the departure is to the left of
the path to α. Finally, along the path to α any seed sb is computationally indistinguishable from a random
string given the key k1−b, which ensures the security of the construction.

The DCF scheme is presented in Fig. 1, and a formal statement of the scheme’s complexity appears in
Theorem 2 (see Appendix F.1 for detailed security proof). The scheme uses the function ConvertG : {0, 1}λ →
G [20] that converts a pseudo-random string to a pseudo-random group element. When |G| = 2k and k 6 λ,
the function simply outputs the first k bits of the input. In any other case, the function expands the input s to
a string G(s) of length at least log |G| using a PRG G, regards G(s) as an integer and returns G(s) mod |G|.

Theorem 2. Let λ be a security parameter, let G be an Abelian group, ` = dlog |G|e, and let G : {0, 1}λ →
{0, 1}4λ+2 be a PRG. The scheme in Fig. 1 is a DCF for f<α,β : {0, 1}n → G with key size n(λ+ `+2)+λ+ `

bits. For `′ = d `
4λ+2e, the key generation algorithm Gen invokes G at most 2n(1 + 2`′) + 2`′ times and the

evaluation algorithm Eval invokes G at most n(1 + `′) + `′ times. In the special case that |G| = 2c for c 6 λ
the number of PRG invocations in Gen is 2n and the number of PRG invocations in Eval is n.

Dual Distributed Comparison Function (DDCF). Consider a variant of DCF, called Dual Distributed Com-
parison Function, denoted by FDDCF

n,G . It is a class of comparison functions fα,β1,β2
: {0, 1}n → G, that outputs

β1 for 0 6 x < α and β2 for x > α. The FSS scheme for DDCF, denoted by DDCFn,G, follows easily from
DCF using fα,β1,β2

(x) = β2 + f<α,β1−β2
(x). We provide a formal construction in Fig. 12 in Appendix F.2.

4 Public Intervals and Multiple Interval Containments

Computing interval containment for a secret value w.r.t. a publicly known interval, that is, whether x ∈ [p, q],
is an important building block for many tasks occurring in scientific computations [5] as well as machine
learning [53,59,74]. Moreover, many popular functions such as splines (see Section 5.1) and most significant
non-zero bit (MSNZB) (see Appendix H.1) reduce to computing multiple interval containments on the same
secret value x. The work of [21] provided the first constructions of a PRG-based FSS gate for interval
containment as well as splines. In their work, the key size of an FSS gate for interval containment was ≈ 2
DCF keys. They build on this to construct an FSS gate for splines and multiple interval containment with
m different intervals using key size proportional to 2m DCF keys, which is quite expensive. We provide the
following constructions:

– First, in Section 4.1, we show how to reduce the key size required for a single interval containment to
a single DCF key, compared to two DCF keys needed in [21]. Including the gains from our optimized
DCF, we get around 7× reduction in key size over [21] for n = 32.

– Next, in Section 4.2, we show how to compress the FSS keys for multiple interval containments to
essentially that of an FSS key for a single interval containment (and ring elements proportional to
m). More concretely, over inputs of length n, and for computing the output of m interval containment
functions on the same input, we reduce the FSS key size from ≈ 2m(4nλ+n2+4n)+mn to ≈ nλ+n2+mn
(including gains from our optimized DCF construction). As an example, taking n = 32, we reduce the
key size by up to 1100× and for instance, for m = 10, the reduction is about 62×.

While the construction from [21] also works when the interval boundaries are secret, i.e., known only to
the dealer, our techniques crucially rely on the interval boundaries being public. However, we show that our

14

techniques enable the reduction of key size for several important applications, such as splines (Section 5.1),
bit decomposition (Section 5.2) and MSNZB (Appendix H.1).

We start by setting notation for single and multiple interval containments. For ease of exposition, in this
section, we only consider the ring UN ; however our ideas easily extend to SN as well. In particular, for signed
intervals checking whether x ∈ [p, q], where p, q ∈ SN , can be reduced to the following unsigned interval
containment: (x+N/2 mod N) ∈ [(p+N/2 mod N), (q+N/2 mod N)]. We define 1{b} as 1 when b is true
and 0 otherwise.

Interval Containment gate. The (single) interval containment gate GIC is the family of functions gIC,n,p,q :
UN → UN parameterized by input and output groups Gin = Gout = UN , and given by

GIC =
{
gIC,n,p,q : UN → UN

}
06p6q6N−1

, gIC,n,p,q(x) = 1{p 6 x 6 q}.

Multiple Interval Containment Gate. The multiple interval containment gate GMIC is the family of
functions gMIC,n,m,P,Q : UN → UmN for m interval containments parameterized by input and output groups
Gin = UN and Gout = UmN , respectively, and for P = {p1, p2, . . . , pm} and Q = {q1, q2, . . . , qm}, given by

GMIC =
{
gMIC,n,m,P,Q : UN → UmN

}
06pi6qi6N−1

, gMIC,n,m,P,Q(x) =
{

1{pi 6 x 6 qi}
}

16i6m
,

Next, we describe our construction for single interval containment that reduces to universal comparison
function f<

(N−1)+rin,1
and this is the key idea that allows us to compress keys for multiple interval contain-

ments.

4.1 Realizing FSS gate for [p, q] using FSS scheme for f<
(N−1)+rin,1

First, in Fig. 2, we describe a construction of an FSS gate for GIC that is a slight modification of the
construction in [21]. This will enable us to build upon it to obtain an FSS gate for GIC with a reduced key
size (when the intervals are public). The modification that we make is as follows: in [21], the FSS keys for
GIC were generated differently in the case when only q + rin wraps around in UN as opposed to when either
both or none of p + rin and q + rin wrap around. In our construction (Fig. 2), we unify these cases, except
that the dealer additionally includes an additive correction term 1{(p + rin mod N) > (q + rin mod N)} in
the key, which makes up for the difference between the cases. For completeness, we provide a correctness
proof in Appendix G.1. We note that the key size of our construction in Fig. 2 is identical to the scheme
presented in [21], that is, 2 DCF keys and a ring element in UN .

Next, we present an alternate construction of FSS gate for GIC again using two DCF keys that are
independent of interval [p, q]. Later, we will optimize this construction to use only a single DCF key.

Using 2 DCF keys independent of p and q. Below, we state our main technical lemma that allows us
to give an alternate construction of FSS gate for gIC,n,p,q using 2 keys for comparison that are independent
of the interval [p, q] and only depend on rin. More concretely, we will use FSS keys for f<

(N−1)+rin,N−1
and

f6
(N−1)+rin,1

. In the lemma statement and its proof (see Appendix G.2), unless explicitly stated using mod N ,

all expressions and equations are over Z and we consider the natural embedding of UN into Z.

Lemma 1. Let a, ã, b, b̃, r ∈ UN , where a 6 b, ã = a + r mod N and b̃ = b + r mod N . Define 4 boolean
predicates over UN → {0, 1} as follows: P (x) denotes x < ã, P ′(x) denotes x 6 ã, Q(x) denotes (x + (b −
a) mod N) < b̃, Q′(x) denotes (x+ (b− a) mod N) 6 b̃. Then, the following holds:

P (x) = Q(x) + (ea − ex) and P ′(x) = Q′(x) + (ea − ex)

where ea = 1{ã+ (b− a) > N − 1} and ex = 1{x+ (b− a) > N − 1}

15

Interval Containment Gate (GenIC
n,p,q,Eval

IC
n,p,q)

GenIC
n,p,q(1

λ, rin, rout):

1: (k
(p)
0 , k

(p)
1)← Gen<n (1λ, α(p), N − 1,UN), α(p) = p+ rin ∈ UN .

2: (k
(q)
0 , k

(q)
1)← Gen6n (1λ, α(q), 1,UN), α(q) = q + rin ∈ UN .

3: Sample random w0, w1 ← UN s.t. w0 + w1 = rout + 1{α(p) > α(q)}.
4: For b ∈ {0, 1}, let kb = k

(p)
b ||k

(q)
b ||wb.

5: return (k0, k1).

EvalICn,p,q(b, kb, x):

1: Parse kb = k
(p)
b ||k

(q)
b ||wb.

2: Set t
(p)
b ← Eval<n (b, k

(p)
b , x).

3: Set t
(q)
b ← Eval6n (b, k

(q)
b , x).

4: return t
(p)
b + t

(q)
b + wb.

Fig. 2: FSS Gate for GIC using 2 DCFs [21], b refers to party id.

Interval Containment Gate (GenIC
n,p,q,Eval

IC
n,p,q)

GenIC
n,p,q(1

λ, rin, rout):

1: Set γ = (N − 1) + rin ∈ UN .

2: (k
(N−1)
0 , k

(N−1)
1)← Gen<n (1λ, γ, 1,UN).

3: Set q′ = q + 1 ∈ UN , α(p) = p+ rin ∈ UN , α(q) = q + rin ∈ UN and α(q′) = q + 1 + rin ∈ UN .
4: Sample random z0, z1 ← UN s.t. z0 + z1 = rout +1{α(p) > α(q)}−1{α(p) > p}+1{α(q′) > q′}+1{α(q) = N − 1}.
5: For b ∈ {0, 1}, let kb = k

(N−1)
b ||zb.

6: return (k0, k1).

EvalICn,p,q(b, kb, x):

1: Parse kb = k
(N−1)
b ||zb.

2: Set q′ = q + 1 ∈ UN , x(p) = x+ (N − 1− p) ∈ UN and x(q
′) = x+ (N − 1− q′) ∈ UN .

3: Set s
(p)
b ← Eval<n (b, k

(N−1)
b , x(p)).

4: Set s
(q′)
b ← Eval<n (b, k

(N−1)
b , x(q

′)).

5: return yb = b · (1{x > p} − 1{x > q′})− s(p)b + s
(q′)
b + zb.

Fig. 3: FSS Gate for GIC using DCF key for f<
(N−1)+rin,1

, b refers to party id.

Intuitively, Lemma 1 allows us to reduce comparison of x with ã (both < and 6) to similar comparison
with b̃ modulo some additive correction terms, i.e. ea and ex. Our next observation is that in the FSS
setting, ea can be computed by the dealer (with the knowledge of r) and ex can be locally computed by
P0, P1 (with the knowledge of x at runtime). Using Lemma 1 and this observation, we can construct an FSS

gate for gIC,n,p,q using 2 DCF keys, for functions f<
(N−1)+rin,N−1

and f6
(N−1)+rin,1

(see Appendix G.4 for this

construction).

Reducing to 1 DCF key. We now further optimize the key size of our construction to a single DCF key
using Lemma 2 (proof in Appendix G.3).

Lemma 2. Let c, c′ ∈ UN , where c′ = c+1 mod N . Define 2 boolean predicates over UN → {0, 1} as follows:
R(x) denotes x 6 c and S(x) denotes x < c′. Then the following holds: R(x) = S(x) + 1{c = N − 1}

This lemma lets us get rid of the DCF key for f6
(N−1)+rin,1

and work with the key for f<
(N−1)+rin,1

using an

additional correction term which can be computed by the dealer. Formally, we have the following theorem.

Theorem 3. There is an FSS Gate (GenIC
n,p,q,Eval

IC
n,p,q) for GIC that requires 2 invocations of DCFn,UN , and

has a total key size of n bits plus key size of DCFn,UN .

Proof. We present our construction formally in Fig. 3. For arguing correctness we need to prove that y =
y0 + y1 mod N = 1{p 6 (x− rin mod N) 6 q}+ rout. We use correctness of FSS gate in Fig. 2 and prove that

output of Fig. 3 is identical to output of Fig. 2. In Fig. 2, using correctness of FSS schemes for f<α,β and f6α,β ,

16

t(p) = t
(p)
0 + t

(p)
1 mod N = −1 · 1{x < α(p)} and t(q) = t

(q)
0 + t

(q)
1 mod N = 1{x 6 α(q)}

Also, from correctness of FSS gate in Fig. 2, t(p) + t(q) + 1{α(p) > α(q)} + rout = 1{p 6 (x − rin mod N) 6
q}+ rout.

First, we look at t(q) = 1{x 6 α(q)}. From Lemma 2, we can write t(q) = 1{x < α(q′)}+1{α(q) = N −1},
where α(q′) = α(q) + 1 mod N . Now, using Lemma 1 with a = q′, b = N − 1, r = rin, ã = α(q′), and b̃ = γ:

t(q) = 1{x < α(q′)}+ 1{α(q) = N − 1}

= 1{x+ (N − 1− q′) mod N < γ}+ 1{α(q′) + (N − 1− q′) > (N − 1)}
− 1{x+ (N − 1− q′) > (N − 1)}+ 1{α(q) = N − 1}

= 1{x(q′) < γ}+ 1{α(q′) > q′} − 1{x > q′}+ 1{α(q) = N − 1}

= s
(q′)
0 + s

(q′)
1 + 1{α(q′) > q′} − 1{x > q′}+ 1{α(q) = N − 1}

Similarly, using Lemma 1, it can be proven that: t(p) = −1 · (s(p)
0 +s

(p)
1)−1{α(p) > p}+1{x > p}. Therefore,

in Fig. 3, y = y0 + y1 = t(p) + t(q) + 1{α(p) > α(q)}+ rout matches the output of Fig. 2.

4.2 FSS Gate for Multiple Interval Containments

We now construct an FSS gate for multiple interval containments GMIC using the above idea of reducing FSS
gate for arbitrary public interval [p, q] to the universal comparison function f<

(N−1)+rin,1
. Formally, we reduce

key for the FSS gate for m public intervals [p1, q1], . . . , [pm, qm] to FSS key for f<
(N−1)+rin,1

plus m elements

from UN . We describe our construction of FSS Gate for gMIC,n,m,P,Q formally in Fig. 14, Appendix G.5 that
satisfies the following theorem.

Theorem 4. There is an FSS Gate (GenMIC
n,m,Eval

MIC
n,m) for GMIC that requires 2m invocations of DCFn,UN ,

and has a total key size of mn bits plus the key size of DCFn,UN .

5 Applications of Public Intervals

5.1 Splines with Public Intervals

A spline is a special function defined piecewise by polynomials. Formally, consider P = {pi}i ∈ UmN such
that 0 6 p1 < p2 < . . . < pm−1 < pm (pm = N − 1) and d− degree univariate polynomials F = {fi}i. Then,
a spline function hn,m,d,P,F : UN → UN parameterized by input and output rings UN , list of m interval
boundaries P and degree d polynomials F is defined as

hn,m,d,P,F (x) =

f1(x) if x ∈ [0, p1]

f2(x) if x ∈ [p1 + 1, p2]
...

fm(x) if x ∈ [pm−1 + 1, pm]

Commonly used functions such as Rectified Linear Unit (ReLU) and Absolute value are special cases of
splines. Moreover, splines have been used to approximate transcendental functions such as sigmoid [55, 59],
sometimes with up to m = 12 intervals. Boyle et al. [21], gave a construction of an FSS gate for splines
by reducing it to m instances of interval containment, resulting in both key size and online evaluation
cost being proportional to the cost of 2m DCF keys. In this work, building upon our techniques for multiple
interval containment10, we reduce both the key size as well as online evaluation. More concretely, [21] requires
2m DCFn,Zd+1

N
keys and each key is evaluated once during online phase. We provide a construction using

a single DCF
n,Z(d+1)m

N

key that is evaluated m times and additional 2m(d + 1) + 1 ring elements. Hence,

10 As we explain later, our FSS gate for splines requires secret payload (function of rin) in DCF known only to the
dealer and hence, it does not black-box reduce to GMIC.

17

including our improved DCF construction, we reduce the overall key size from ≈ 2m
(
4n(λ+ 1) + n2(d+ 1)

)
to ≈

(
λ(n+ 1) +mn2(d+ 1)

)
+2mn(d+1) bits. As an example, for n = 32, m > 2 and degree 1 polynomials,

this represents a reduction in key size of about 8− 17×, and for instance, for m = 10, the reduction is 14×.
The spline gate Gspline is the family of functions gspline,n,m,d,P,F : UN → UN with m intervals parameterized

by input and output rings UN , and for P = {p1, p2, . . . , pm} and F = {f1, f2, . . . , fm}, given by

Gspline =
{
gspline,n,m,d,P,F : UN → UN

}
06pi<pi+16N−1
p0=pm=N−1

, gspline,n,m,d,P,F (x) = hn,m,d,P,F (x).

Construction Overview. Our FSS gate for splines builds upon our techniques from multiple interval
containment to incorporate secret payloads as required. At a high level, the basic idea, also used in [21], is
to check for interval containment [pi−1 + 1, pi] and output the coefficients of the polynomial f ′i = fi(x− rin)
as payload. Once the evaluators P0 and P1 learn the shares of the correct coefficients, they compute an
inner product with (xd, . . . , x0) to learn shares of final output. We note that coefficients of f ′i depend on
the randomness rin that is secret and known only to the dealer. Due to this, we cannot invoke our FSS gate
for multiple interval containment GMIC directly. Next, [21] used a different interval containment key for each
interval with payload as the corresponding coefficients of the polynomials. In our construction, we only use
a single DCF key for all intervals, and hence, the payload of this key has to encode the coefficients of all the
polynomials. Moreover, naively building on GMIC, the online computation would require 2m evaluations of
the DCF key similar to Section 4.2. However, for the case of splines, we use the property that the intervals
are consecutive, that is, of the form [pi−1 + 1, pi], to reduce this to m evaluations.

We present our final construction in 2 steps. First, we present the construction for a simpler spline gate,
Gspline-one that is a family of functions hn,d,p,f with only 1 interesting interval i.e., it outputs f(x) on [0, p]
and 0 otherwise. With this construction, we describe our techniques for embedding secret payloads in our
optimized FSS gate for GIC that uses a single DCF key. Note that ReLU function, the most commonly used
activation in machine learning, is a function in Gspline-one. Then, we will give our construction for general
splines using our ideas of common payload for all intervals and reducing number of DCF evaluations.

Spline with one interesting interval. The simple spline gate Gspline-one is a family of functions hn,d,p,f :
UN → UN such that p ∈ UN , f is a d-degree univariate polynomial and hn,d,p,f (x) = f(x) for x ∈ [0, p] and
0 otherwise. We give a formal construction for FSS gate for Gspline-one in Fig. 4. At a high level, we build
on our construction for GIC and modify it to allow for secret payloads as follows: Recall that in FSS gate
for GIC, we give out a DCF key with payload 1 and shares of a correction term that depends on rin, say cr.
Also, during evaluation, P0, P1 compute a correction term, say cx, that depends on x. Overall, at the time of
evaluation, P0, P1 evaluate the DCF key and add cr and cx. Now we desire the payload to be coefficients of
f ′ = f(x− rin), say β. To enable this, the dealer sets the payload of the DCF key as β. But now, this β also
needs to be multiplied with cr and cx. For this the dealer gives out shares of cr · β and shares of β. Shares
of β allow P0 and P1 to compute shares of cx · β, as cx can be computed locally.

Theorem 5. There is an FSS Gate (Genspline-one
n,d,p ,Evalspline-one

n,d,p) for Gspline-one that requires 2 invocations of
DCF

n,U(d+1)
N

, and has a total key size of n(2d+ 3) bits plus the key size of DCF
n,U(d+1)

N

.

Proof. We present our construction of FSS Gate for single interval spline formally in Fig. 4. To prove
correctness of our scheme it suffices to show that w = w0 + w1 is β when (x − rin) ∈ [0, p] and 0d+1

otherwise. In our scheme, w =
∑
b(cx · βb − s

(L)
b + s

(R′)
b + eb) = cx · β − s(L) + s(R′) + cr · β. Now, by

correctness of DCF keys, s(L) = β · 1{x(L) < γ} and s(R′) = β · 1{x(R′) < γ}. Using these, we get that

w =
(
cx − 1{x(L) < γ}+ 1{x(R′) < γ}+ cr

)
· β = 1{0 6 (x − rin) 6 p} · β as required, by using similar

arguments as in correctness of GIC in Fig. 3.

ReLU. ReLU is the most commonly used activation function in machine learning [54] and ReLU(x) = x
if x is positive and 0 otherwise. Efficient protocols for this function has been a main focus of many works
on secure machine learning [47, 53, 56, 59, 67, 74]. When signed integers are encoded using 2’s complement,
elements of SN have a natural embedding in UN using modN operation. Then, for x ∈ UN , ReLU(x) = x

18

Spline Gate (Genspline-one
n,d,p ,Evalspline-one

n,d,p)

Genspline-one
n,d,p (1λ, f, rin, rout):

1: Let (f ′d, . . . , f
′
0) ∈ U(d+1)

N be coefficients of f ′ such that f ′(x) = f(x− rin).

2: Set β = (f ′d, . . . , f
′
0) ∈ U(d+1)

N and γ = (N − 1) + rin ∈ UN .

3: (k
(N−1)
0 , k

(N−1)
1)← Gen<n (1λ, γ, β,U(d+1)

N).

4: Set α(L) = rin ∈ UN , α(R) = p+ rin ∈ UN and α(R′) = p+ 1 + rin ∈ UN .
5: Set cr = 1{α(L) > α(R)} − 1{α(L) > 0}+ 1{α(R′) > (p+ 1 mod N)}+ 1{α(R) = N − 1}.
6: Sample random e0, e1 ← U(d+1)

N s.t. e0 + e1 = cr · β.

7: Sample random β0, β1 ← U(d+1)
N s.t. β0 + β1 = β.

8: Sample random r0, r1 ← UN s.t. r0 + r1 = rout.
9: For b ∈ {0, 1}, let kb = k

(N−1)
b ||eb||βb||rb.

10: return (k0, k1).

Evalspline-one
n,d,p (b, kb, x):

1: Parse kb = k
(N−1)
b ||eb||βb||rb.

2: Set x(L) = x+ (N − 1) ∈ UN and x(R
′) = x+ (N − 1− (p+ 1)) ∈ UN .

3: Set s
(L)
b ← Eval<n (b, k

(N−1)
b , x(L)).

4: Set s
(R′)
b ← Eval<n (b, k

(N−1)
b , x(R

′)).
5: Set cx = (1{x > 0} − 1{x > (p+ 1 mod N)}).
6: wb = (wd,b, . . . , w0,b) = cx · βb − s(L)

b + s
(R′)
b + eb.

7: return ub = rb +
∑d
i=0(wi,b · xi) mod N .

Fig. 4: FSS Gate for single interval splines Gspline-one, b refers to party id.

for x ∈ [0, 2n−1 − 1] and 0 otherwise, and is a special case of Gspline-one. Hence, as a corollary of Theorem 5,
we have an FSS gate for GReLU that requires 2 invocations of DCFn,U2

N
, and has a total key size of 5n bits

plus the key size of DCFn,U2
N

. FSS gate for ReLU can be constructed using splines in [21]. Our construction

gives 2× reduction in key size over [21] even when [21] is instantiated using our optimized DCF and overall
≈ 6× reduction.

General Splines. To construct an FSS gate for general splines, we make two modifications to the previous
construction. First, we change the payload of our DCF key to be the long vector containing coefficients of
all polynomials {f ′i}i, where f ′i = f(x − rin). Now, during evaluation, we do DCF evaluations similar to

GMIC separately for each interval. For each interval, output would be over Um(d+1)
N . While considering the ith

interval, i.e., [pi−1 + 1, pi], we will only use the ith segment of (d+ 1) ring elements. These would either be
shares of coefficients of f ′i (if (x− rin) ∈ [pi−1 + 1, pi]) or 0d+1. Next, to reduce number of evaluations from
2m to m, we rely on intervals in splines being consecutive, i.e., an interval ends at pi and next interval starts
at pi + 1. Recall from our construction of GMIC, that we need to do two DCF evaluations for each interval of
interest, one for the left point and one for the right point. This is also true for Fig. 4, where we do one DCF
evaluation each for x(L) and x(R′). In general splines, for the ith interval [pi−1 + 1, pi], let these points be

x
(L)
i and x

(R′)
i . Now, observe that since x

(R′)
i = x

(L)
i+1, we need to evaluate the DCF only once for them. For

consistency of notation, we set p0 = pm = N − 1, so that the first interval, i.e., [0, p1] can also be written
as [p0 + 1, p1] and similarly the last interval, i.e., [pm−1 + 1, N − 1] can be written as [pm−1 + 1, pm]. In our

construction, we do DCF evaluations for all points xi = x
(L)
i = x+ (N − 1− (pi−1 + 1)) for i ∈ {1, . . . ,m}.

Theorem 6. There is an FSS Gate (Genspline
n,m,d,{pi}i ,Eval

spline
n,m,d,{pi}i) for Gspline that requires m invocations of

DCF
n,Um(d+1)

N

, and has a total key size of 2mn(d+ 1) + n bits plus the key size of DCF
n,Um(d+1)

N

.

Proof. We provide our construction of FSS gate for general splines formally in Fig. 5. For correctness, it
suffices to prove that t = t0 + t1 = βj when (x− rin mod N) lies in the jth interval [pj−1 + 1, pj]. In Fig. 5,

w(i) = w
(i)
0 + w

(i)
1 =

∑
b(cx,i · βi,b − s

(i)
i,b + s

(i+1)
i,b + ei,b) = cx,i · βi − s(i)

i + s
(i+1)
i + cr,i · βi. Observe that s

(i)
i

(resp. s
(i+1)
i) corresponds to the ith segment of (d+ 1) ring elements in the output of DCF evaluated on the

input xi = x
(L)
i = x+ (N − 1− (pi−1 + 1)) ∈ UN (resp. xi+1 = x

(R′)
i = x+ (N − 1− (pi + 1)) ∈ UN). By the

19

Spline Gate (Genspline
n,m,d,{pi}i

,Evalspline
n,m,d,{pi}i

)

Genspline
n,m,d,{pi}i

(1λ, {fi}i, rin, rout):

1: For i ∈ {1, . . . ,m}, let βi = (f ′i,d, . . . , f
′
i,0) ∈ U(d+1)

N , be the coefficient vector of f ′i s.t. f ′i(x) = fi(x− rin).

2: Set β = (β1, . . . , βm) ∈ Um(d+1)
N and γ = (N − 1) + rin ∈ UN .

3: (k
(N−1)
0 , k

(N−1)
1)← Gen<n (1λ, γ, β,Um(d+1)

N).
4: for i = {1, . . . ,m} do
5: Set α

(L)
i = pi−1 + 1 + rin ∈ UN , α

(R)
i = pi + rin ∈ UN and α

(R′)
i = pi + 1 + rin ∈ UN .

6: Set cr,i = 1{α(L)
i > α

(R)
i } − 1{α(L)

i > (pi−1 + 1 mod N)}+ 1{α(R′)
i > (pi + 1 mod N)}+ 1{α(R)

i = N − 1}.
7: Sample random ei,0, ei,1 ← U(d+1)

N s.t. ei,0 + ei,1 = cr,i · βi.
8: Sample random βi,0, βi,1 ← U(d+1)

N s.t. βi,0 + βi,1 = βi.
9: end for

10: Sample random r0, r1 ← UN s.t. r0 + r1 = rout.
11: For b ∈ {0, 1}, let kb = k

(N−1)
b ||{ei,b}i||{βi,b}i||rb.

12: return (k0, k1).

Evalspline
n,m,d,{pi}

(b, kb, x):

1: Parse kb = k
(N−1)
b ||{ei,b}i||{βi,b}i||rb.

2: for i = {1, . . . ,m} do
3: Set xi = x+ (N − 1− (pi−1 + 1)) ∈ UN .

4: Set (s
(i)
1,b, . . . , s

(i)
m,b)← Eval<n (b, k

(N−1)
b , xi).

5: end for
6: Set (s

(m+1)
1,b , . . . , s

(m+1)
m,b) = (s

(1)
1,b, . . . , s

(1)
m,b)

7: for i = {1, . . . ,m} do
8: Set cx,i = (1{x > (pi−1 + 1 mod N)} − 1{x > (pi + 1 mod N)}).
9: w

(i)
b = (w

(i)
d,b, . . . , w

(i)
0,b) = cx,i · βi,b − s(i)i,b + s

(i+1)
i,b + ei,b.

10: end for
11: Set tb = (td,b, . . . , t0,b) =

∑m
i=1 w

(i)
b ∈ U(d+1)

N .

12: return yb = rb +
∑d
i=0(ti,b · xi) mod N .

Fig. 5: FSS Gate for splines Gspline, b refers to party id.

correctness of DCF keys, we have that s
(i)
i = βi ·1{x(L)

i < γ} and s
(i+1)
i = βi ·1{x(R′) < γ}. Using arguments

similar to the correctness proof of Fig. 4, we get that w(i) = 1{(pi−1 +1) 6 (x− rin) 6 pi} ·βi. Since intervals
in a spline are disjoint, (x − rin) lies in exactly one of them, say jth interval, so ∀i 6= j, w(i) = 0d+1 and
w(j) = βj . Therefore, t =

∑m
i=1 w

(i) = βj .

Next, we discuss an optimization to key size of FSS gate for splines such as absolute value, where all the
polynomials fi’s are constant multiples of a polynomial f , for publicly known constants.

Absolute Value. Absolute value of x ∈ SN , denoted by |x| is equal to x if x is positive and −x otherwise.
Again, using the natural encoding of SN into UN using mod N , |x| can be defined as x for f1(x) = x ∈
[0, 2n−1 − 1] and f2(x) = −x for [2n−1, N − 1]. Using Theorem 6, we get an FSS gate for G|·| with key size
DCFn,U4

N
and 9n bits. We observe that f2 = −1·f1 and compress keys as follows. Let β1 and β2 be coefficients

of f ′1 and f ′2, respectively, as defined above. Now, the dealer creates the DCF key with payload β = β1. And
similarly, gives out shares of β1 alone and not β2. It still gives out shares of cr,1 ·β1 and cr,2 ·β2 and rout. This
gives key size of DCFn,U2

N
and 7n bits. Now, during evaluation, when evaluating for second interval, P0, P1

locally multiply the output by −1, to get correct shares of either β2 or 02, and similarly, multiply shares of
β1 by −1 to get shares of β2. Finally, we note that this optimized construction reduces the key size of G|·|
of prior solution using general splines in [21] by 4× even when we use our optimized DCF construction to
instantiate [21] and ≈ 12× overall.

5.2 Bit Decomposition

The bit-decomposition gate GBIT is the family of functions gBIT,n : UN → UnN , parameterized by input, output

groups Gin = UN , Gout = UnN and given by gBIT,n(x) = (xn−1, . . . , x0) s.t. ∀i, xi ∈ {0, 1} and
∑n−1
i=0 2ixi = x.

20

Our FSS gate for bit decomposition builds upon ideas in our FSS gate for GMIC. We illustrate this using
4-bit integers. Let x = x3||x2||x1||x0, where x ∈ U16. We observe that the bit x3 ⇔ 1{8 6 x 6 15} and
hence, can be computed using the IC gate gIC,8,15(x). Next, x2 can be computed as gIC,4,7(x) + gIC,12,15(x) =
1{4 6 x 6 7} + 1{12 6 x 6 15}. Similarly, for x1 and x0. As we can see, the number of instances of gIC

needed increases exponentially in distance from MSB, i.e., x3. However, using the idea of compressing the IC
keys from the previous section, we reduce all these to the universal comparison function f<

15+rin,1
. Moreover,

since x2 = gIC,4,7(x) + gIC,12,15(x), the dealer’s corrections for the IC gates gIC,4,7 and gIC,12,15 can be put
together as one element. Hence, overall we can compute the bit-decomposition for x using a single DCF key
along with 4 additional ring elements.

However, the above idea requires an exponential (in bitlength) computation for both the dealer and the
evaluators. We address this issue by breaking the input into smaller chunks. As an example, consider 8-bit
integers and x = x7||x6|| . . . x0. We compute x7 . . . x4 using the idea discussed above. For computing x3,
note that x3 = 1⇔ x[0,4) ∈ [8, 15]. Using this observation, we can recurse on 4-bit integer defined by x[0,4).
For the FSS gate, this can be achieved by dealer dropping upper 4 bits of rin in key generation and P0, P1

dropping upper 4 bits of x.
The above idea of extracting 4 bits at a time naturally extends to extracting w bits. With this, overall

FSS keys are ≈ n
w DCF keys of appropriately decreasing input length (by w), along with n additional

ring elements. Since the compute for each chunk is exponential in w, we set w = dlog ne, ensuring overall
compute is polynomial in n. Hence, our construction with ≈ n

logn DCF keys asymptotically improves upon

the prior work [21], which required n DCF keys for the special case11 of output group Un2 . We stress that
our construction is the first to provide a PRG-based FSS gate for bit decomposition with outputs in larger
groups, an important feature missing in [21]. We present the FSS gate for GBIT (Fig. 16) and its correctness
formally in Appendix H.2.

Theorem 7. There is an FSS Gate (GenBIT
n ,EvalBIT

n) for GBIT that makes 2(2w − 1) invocations of each
of {DCFn−i·w,UN }06i6b nw c−1 keys plus 2(2w

′ − 1) invocations of DCFw′,UN and has a key size of n2 bits
plus the key size of {DCFn−i·w,UN }06i6b nw c−1 and DCFw′,UN , where w is a parameter s.t. 1 6 w 6 n and
w′ = n mod w.

6 FSS Gates for Fixed-Point Arithmetic

Fixed-point representation allows us to embed rational numbers into fixed bit-width integers. Let Qu denote
non-negative rational numbers. Assuming no overflows, the unsigned (resp. signed) forward mapping fufix

n,s :

Qu → UN (resp. f sfix
n,s : Q → SN) is defined by bx · 2sc and the reverse mapping hufix

n,s : UN → Qu (resp.

hsfix
n,s : SN → Q) is defined by x/2s, where x is lifted to Q and “/” denotes the regular division over Q. The

value s associated with a fixed-point representation is called the “scale” which defines the precision, i.e., the
number of bits after the decimal point, that the fixed-point number preserves. When 2 fixed-point numbers
are added or multiplied in n-bit integer ring, the bits at the top (significant bits) can overflow leading to
incorrect results. To prevent this from happening, these operations are accompanied by a “scale adjustment”
step where the scale of operands are appropriately reduced to create enough room in the top bits for the
computation to fit. Scale adjustment is also used in multiplication to maintain the scale of the output at
s instead of getting doubled for every multiplication performed. Many applications of secure computation
require computing over the rational numbers. One such application is privacy-preserving machine learning
where most prior works use fixed-point representation to deal with rational numbers [47,53,56,57,59,67,74]12.

In this section we build efficient FSS gates for realizing secure fixed-point arithmetic. In particular, we
consider the following operations: addition, multiplication, and comparison. We begin (in Section 6.1) by
first describing how fixed-point addition and multiplication work given access to a FSS gates for secure right
shift operations. We then describe the FSS gate constructions for right shift operators - logical right shift
(LRS) in Section 6.2, and arithmetic right shift (ARS) in Section 6.3, which enable scale adjustment, and

11 Our construction trivially works for output group Un2 by using U2 as output group in DCFs and corresponding
ring elements.

12 Although there are a handful of works outside the secure ML context that give secure protocols directly for floating-
point numbers 13 [4, 35,49,66], they are usually orders of magnitude slower than the ones based on fixed-point.

21

hence fixed-point multiplication, over unsigned and signed integers respectively. Finally, in Section 6.4, we
show how to construct an FSS gate for comparison of two fixed-point numbers.

6.1 Fixed-Point Addition and Multiplication

We describe the case when the scales of both operands is the same, i.e. s - the case of different scales is
similar14. Fixed-point addition is a local operation where the corresponding shares of the operands are added
together by each party and no scale adjustment is typically performed. This is same as the construction of FSS
gate for addition from [21] as described in Fig. 17, Appendix I.1. Fixed-point multiplication involves 2 steps:
first, using the FSS gate for multiplication from [21] (presented in Fig. 18, Appendix I.2 for completeness)
the operands are multiplied resulting in an output of scale 2s, and second, using our FSS gate for right shift,
values are shifted (ARS/LRS for signed/unsigned operands respectively) by s to reduce the scale back to s.

6.2 Logical Right Shift

Logical right shift of unsigned integers is done by shifting the integer by a prescribed number of bits to the
right while removing the low-order bits and inserting zeros as the high order bits. Implementing the shift
operation on secret shared values is a nontrivial task even when the shift s is public, and is typically achieved
via an expensive secure bit-decomposition operation. Prior PRG-based FSS gate for bit-decomposition [21]
outputs shares of bits in U2 (which must then be converted into shares over UN , if it is to be used in
computing logical right shift). Hence, this leads to construction for right shift that has 2 online rounds. Here
we provide a much more efficient construction, which a) requires only 1 online round of communication of a
single group element; and b) further, improves upon the key size of the approach based on bit-decomposition,
by roughly a factor of n (when n 6 λ), i.e. O(nλ+ n2) vs O(n2λ).

If an integer x ∈ UN (N = 2n) is additively shared into x ≡ x0 + x1 mod N with one party holding
x0 and the other holding x1 then locally shifting x0 and x1 by s bits is not sufficient to additively share a
logically shifted x. Lemma 3 (proof appears in Appendix I.3) gives an identity showing that the LRS of a
secret shared x can be computed as the sum of the LRS of the shares and the output of two comparison
functions. This identity is the basis for an FSS gate realizing the offset family associated with LRS.

Notation. Given integers 0 < n, 0 6 s 6 n, let (�L s) : UN → UN , 0 6 s 6 n be the logical right shift

function with action on input x denoted by (�L s)(x) = (x �L s) and defined by (x �L s) = x−(x mod 2s)
2s

over Z.

Lemma 3. For any integers 0 < n, 0 6 s 6 n, any x ∈ UN and any x0, x1 ∈ UN such that x0 + x1 ≡
x mod N , the following holds over Z (and in particular over UN) (x�L s) = (x0 �L s) + (x1 �L s) + t(s)−
2n−s · t(n), where for any 0 6 i 6 n, t(i) is defined by:

t(i) =

{
1 (x0 mod 2i) + (x1 mod 2i) > 2i − 1
0 otherwise

,

The logical right-shift gate G�L is the family of functions g�L,s,n : UN → UN parameterized by input/output
groups Gin = Gout = UN , shift s and given by

G�L =
{
g�L,s,n : UN → UN

}
06s6n

, g�L,s,n(x) = (x�L s).

We denote the corresponding offset gate class by Ĝ�L and the offset functions by ĝ
[rin,rout]
�L,s,n(x) = g�L,s,n(x−

rin) + rout = ((x− rin)�L s) + rout. We use Lemma 3 to construct our FSS gate for LRS as described in Fig. 6
which satisfies the following theorem.

Theorem 8 (LRS from DCF). There is an FSS Gate (Gen�Ln,s ,Eval
�L
n,s) for G�L that requires a single

invocation each of DCFn,UN and DCFs,UN , and has a total key size of n bits plus the key sizes of DCFn,UN
and DCFs,UN .
14 When scales of the operands differ, they need to be aligned before addition can happen. For this, a common practice

is to left shift (locally) the operand with smaller scale by the difference of the scales. Fixed-point multiplication
remains the same and shift parameter for the right shift at the end can be chosen depending on the scale required
for the output.

22

Logical Right Shift Gate (Gen
�L
n,s ,Eval

�L
n,s)

Gen
�L
n,s (1λ, rin, rout):

1: Let y = (2n − rin) mod N .

2: (k
(s)
0 , k

(s)
1)← Gen<s (1λ, α(s), 1,UN), α(s) = y[0,s) ∈ {0, 1}s.

3: (k
(n)
0 , k

(n)
1)← Gen<n (1λ, y, 1,UN).

4: Sample random r0, r1 ← UN s.t. r0 + r1 = rout + (y �L s).

5: For b ∈ {0, 1}, let kb = k
(s)
b ||k

(n)
b ||rb.

6: return (k0, k1).

Eval
�L
n,s (b, kb, x):

1: Parse kb = k
(s)
b ||k

(n)
b ||rb.

2: Set t
(s)
b ← Eval<s (b, k

(s)
b , x(s)), where x(s) = 2s − x[0,s) − 1.

3: Set t
(n)
b ← Eval<n (b, k

(n)
b , x(n)), where x(n) = 2n − x− 1.

4: return b · (x�L s) + rb + t
(s)
b − 2n−s · t(n)b .

Fig. 6: FSS Gate for Logical Right Shift G�L , b refers to party id.

6.3 Arithmetic Right Shift

Arithmetic right shift of signed integers by s, is done by removing the lower s bits and copying the most-
significant bit (MSB) in the upper s positions. Similar to LRS, ARS of secret values cannot be obtained by
simply locally shifting the shares of the values. In this subsection, we present our construction of the FSS
gate for ARS operator.

Handling Signed Integers. Note that the ARS operator takes as input a signed integer x ∈ SN , but
our crypto protocols work over integers modulo N, i.e. over UN . Relying on the bijective mapping be-
tween elements of SN and UN , i.e. x ∈ SN is mapped to (x mod N) ∈ UN (forward) and y ∈ UN is
mapped to (y − MSB(y) · N) ∈ SN (backward), we can define shares of x over UN , i.e., x0, x1 ∈ UN s.t.
x0 + x1 mod N = (x mod N). This allows us to perform the secure computation over UN , as required. The
forward mapping defined above gives a binary representation corresponding to the two’s complement encod-
ing of signed integers which has the following property: fundamental arithmetic operations like addition and
multiplication over signed integers become identical to the corresponding operations on unsigned integers of
the same bitwidth. Therefore, operating over shares in UN preserves the relation that the reverse mapping
of their sum is equal to the secret value in SN . For the ease of exposition, we use a ≡s b to denote that the
forward mapping of a is equal to the unsigned value b, where a ∈ SN and b ∈ UN .

Lemma 4 (proof appears in Appendix I.4) gives an identity showing that ARS of a secret shared x can be
computed as the sum of the LRS of integer represented by lower n− 1 bits of the shares x0 and x1, output
of two comparison functions and MSB of x.

Notation. Substring function on signed integer x ∈ SN is defined as: x[0,i) = (x mod N)[0,i) ∈ U2i . Simi-

larly, the bit function on signed x ∈ SN is: x[i] = (x mod N)[i]. For 0 6 s 6 n, let (�A s) : SN → SN be

the arithmetic right shift function with action on input x denoted by (�A s)(x) = (x �A s) and defined by

(x�A s) = x−(x mod 2s)
2s over Z [40]. Pictorially, the two’s complement representation of this is the following

(x�A s) = x[n−1] . . . x[n−1]︸ ︷︷ ︸
s

n−s︷ ︸︸ ︷
x[n−1]x[n−2] . . . x[s] (1)

Lemma 4. For any integers n > 0, 0 6 s < n, any x ∈ SN and any x0, x1 ∈ UN such that x ≡s x0 +x1 mod
N , it holds that (x �A s) ≡s (x0[0,n−1) �L s) + (x1[0,n−1) �L s) + t(s) − 2n−s−1

(
t(n−1) + x[n−1]

)
mod N ,

where:

t(i) =

{
1 (x0 mod 2i) + (x1 mod 2i) > 2i − 1
0 otherwise

,

The arithmetic right-shift gate G�A is the family of functions g�A,s,n : SN → SN parameterized by input

23

and output groups SN , shift amount s and given by

G�A =
{
g�A,s,n : SN → SN

}
06s<n

, g�A,s,n(x) = (x�A s).

We denote the corresponding offset gate class by Ĝ�A , its component functions by ĝ
[rin,rout]
�A,s,n : UN → UN ,

where rin, rout ∈ UN , and the following relation holds: (x′ �A s) = g�A,s,n(x′) ≡s ĝ
[rin,rout]
�A,s,n(x) − rout, where

x′ ≡s (x− rin). We use Lemma 4 to construct our FSS gate for ARS as described in Fig. 7 which satisfies the
following theorem.

Arithmetic Right Shift Gate (Gen
�A
n,s ,Eval

�A
n,s)

Gen
�A
n,s (1λ, rin, rout):

1: Let y = (2n − rin) ∈ UN and α(n−1) = y[0,n−1)

2: (k
(s)
0 , k

(s)
1)← Gen<s

(
1λ, α(s), 1,UN

)
, where α(s) = y[0,s).

3: (k
(n−1)
0 , k

(n−1)
1)← GenDDCF

n−1

(
1λ, α(n−1), β1, β2,UN × UN

)
, where β1 = (1, 1⊕ y[n−1]), β2 = (0, y[n−1]) ∈ UN ×UN .

4: Sample random r0, r1 ← UN s.t. r0 + r1 = rout + (α(n−1) �L s).

5: return (k0, k1), where kb = k
(s)
b ||k

(n−1)
b ||rb for b ∈ {0, 1}.

Eval
�A
n,s (b, kb, x):

1: Parse kb = k
(s)
b ||k

(n−1)
b ||rb.

2: Set t
(s)
b ← Eval<s (b, k

(s)
b , x(s)), where x(s) = 2s − x[0,s) − 1.

3: Set (t
(n−1)
b ,m

(n−1)
b)← EvalDDCF

n−1 (b, k
(n−1)
b , x(n−1)), where x(n−1) = 2n−1 − x[0,n−1) − 1.

4: mb = b · x[n−1] +m
(n−1)
b − 2 · x[n−1] ·m(n−1)

b .

5: return b · (x[0,n−1) �L s) + rb + t
(s)
b − 2n−s−1 · (t(n−1)

b +mb).

Fig. 7: FSS Gate for Arithmetic Right Shift G�A , b refers to party id.

Theorem 9 (ARS from DDCF and DCF). There is an FSS Gate (Gen�An,s ,Eval
�A
n,s) for G�A that

requires a single invocation each of DDCFn−1,SN×SN and DCFs,SN , and has a total key size of n bits plus the
key sizes of DDCFn−1,SN×SN and DCFs,SN .

6.4 Comparison

Comparison of 2 integers, x, y (unsigned/signed), is outputs 1 if x > y and 0 otherwise. When working
with fixed-point numbers, the comparison function is the same as the one that works over integers except
for when the operands x and y have differing scales which is handled similar to how fixed-point addition
accommodates operands of different scales.

An FSS gate construction for integer comparison was presented in [21] which reduces to an interval
containment on (x − y). Using our optimized interval containment construction in Fig. 3, we already have
a FSS gate for integer comparison with half the key size compared to [21], however the number of DCF
invocations is the same as in [21]. Here, we present a construction which has half the key size as well half
the DCF invocations as in [21]. Note that our construction as well as the prior one from [21] require the
following precondition for correctness to hold: |x− y| < N/2 for unsigned and |x|+ |y| < N/2 for the signed
case.

The signed integer comparison gate GsCMP is the family of functions gsCMP,n : SN×SN → SN parameterized
by input group SN × SN and output group SN , and given by gsCMP,n(x, y) := 1{x > y}. We denote the

corresponding offset gate class by ĜsCMP, its component offset functions by ĝ
[rin
1 ,r

in
2 ,r

out]
sCMP,n : UN × UN → UN ,

where rin
1 , r

in
2 , r

out ∈ UN , and the following relation holds: 1{x′ > y′} = gsCMP,n(x′, y′) ≡s ĝ
[rin
1 ,r

in
2 ,r

out]
sCMP,n (x, y)−rout,

where x′ ≡s (x − rin
1) and y′ ≡s (y − rin

2). Unsigned integer comparison gate GuCMP is defined in a similar
manner.

24

Theorem 10 (Integer Comparison). There is an FSS Gate (GensCMP
n ,EvalsCMP

n) for GsCMP that requires a
single invocation of DDCFn−1,UN , and has a total key size of n bits plus key size of DDCFn−1,UN . Moreover,

there is an FSS gate (GenuCMP
n ,EvaluCMP

n) for GuCMP with same parameters.

Proof. We present our construction of FSS Gate for signed integer comparison formally in Figure Fig. 8 and
the unsigned case is similar. Our construction relies on the following observation: for any 2 signed integers
c, d ∈ SN , 1{c > d} = 1−MSB(e), where (c− d) ≡s e, as long as |c|+ |d| < N/2 (similar relation holds for
c, d ∈ UN with (c− d) = e as long as |c− d| < N/2).

Signed Integer Comparison Gate (GensCMP
n ,EvalsCMP

n)
GensCMP

n (1λ, rin
1 , r

in
2 , r

out):

1: Let y = (2n − (rin
1 − rin

2)) ∈ UN and α(n−1) = y[0,n−1)

2: (k
(n−1)
0 , k

(n−1)
1)← GenDDCF

n−1

(
1λ, α(n−1), β1, β2,UN

)
, where β1 = 1⊕ y[n−1], β2 = y[n−1] ∈ UN .

3: Sample random r0, r1 ← UN s.t. r0 + r1 = rout.
4: For b ∈ {0, 1}, let kb = k

(n−1)
b ||rb.

5: return (k0, k1).

EvalsCMP
n (b, kb, x, y):

1: Parse kb = k
(n−1)
b ||rb.

2: Set z = (x− y) ∈ UN .

3: Set m
(n−1)
b ← EvalDDCF

n−1 (b, k
(n−1)
b , z(n−1)), where z(n−1) = 2n−1 − z[0,n−1) − 1.

4: return b− (b · z[n−1] +m
(n−1)
b − 2 · z[n−1] ·m(n−1)

b) + rb.

Fig. 8: FSS Gate for Signed Integer Comparison GsCMP, b refers to party id.

7 FSS Barrier for Fixed-Point Multiplication

In the previous section, we presented FSS gates for several fixed-point operations, enabling secure com-
putation of fixed-point multiplication FFPM with “FSS depth 2”: namely, one FSS gate for performing
multiplication of the two integer inputs over UN (resp. SN), followed by a second FSS gate to perform a
logical right shift (resp. arithmetic right shift). While this provides an effective solution, a downside of two
sequential FSS gates is that the resulting secure computation protocol requires information communicated
between parties via two sequential rounds, and a natural goal would be to construct a single FSS gate to
perform both steps of the fixed-point multiplication together. Such a single FSS gate would not only lead to
optimal round complexity (one instead of two rounds), but also to optimal online communication complexity
(a factor-2 improvement over the current implementation). In this section, we demonstrate a barrier toward
achieving this goal using only symmetric-key cryptography.

More specifically, we show that the existence of any FSS gate construction for fixed-point multiplication,
denoted by GuFPM (resp. GsFPM) for operation over unsigned (resp. signed) integers, (with polynomial key size)
directly implies the existence of FSS scheme for the class of all bitwise conjunction formulas (with polynomial
key size), from the same underlying assumptions. As discussed below, FSS schemes for conjunctions from
symmetric-key primitives have remained elusive despite significant research effort. As such, this constitutes
a barrier toward symmetric-key constructions for fixed-point multiplication.

FSS for conjunctions. We will denote by F∧n,UN the collection of bit-conjunction functions on n-bit inputs,
each parameterized by a subset S ⊆ [n], where [n] = {i | (0 6 i 6 n− 1)∧ (i ∈ Z)}), of input bits, evaluating
to a given nonzero value if the corresponding input bits are all 1.

Definition 5. The family F∧n,UN of conjunction functions is

F∧n,UN =
{
fS : {0, 1}n → UN

}
S⊆[n]

, where fS(x) =

{
β

∧
i∈S x[i] = 1

0 otherwise
.

25

Presently the only existing construction of FSS scheme for F∧n,UN with negligible correctness error relies
on the Learning With Errors (LWE) assumption [22,38]. A construction with inverse-polynomial correctness
error can be obtained from the Decisional Diffie-Hellman (DDH) assumption [19] or from the Paillier as-
sumption [41]. All assumptions are specific structured assumptions, and corresponding constructions require
heavy public-key cryptographic machinery. It remains a highly motivated open question to attain such an
FSS construction using only symmetric-key cryptography, even in the case when payload β is public.

Open Question (FSS for conjunctions). Construct FSS scheme for the class F∧n,UN of bit-conjunction
functions (with key size polynomial in the security parameter and input length n) based on symmetric-key
cryptographic primitives.

The barrier result. We prove the desired barrier result via an intermediate function family: F×MSB
η,UN , a sim-

plified version of fixed-point multiplication.

Definition 6. The family F×MSB
η,UN of multiply-then-MSB functions is given by

F×MSB
η,UN =

{
fc : U2η → UN

}
c∈U2η

, where fc(x) = MSB(c · x),

and where n 6 η and c · x is multiplication over U2η .

The description of a function fc above is assumed to explicitly contain a description of the respective
parameter c ∈ U2η (similarly for fS ∈ F∧n,UN and S ⊆ [n]).

Our overall barrier result will proceed in two steps. First, we build an FSS scheme for conjunctions
F∧n,UN from an FSS scheme for multiply-then-MSB F×MSB

n(dlogne+1),UN . Next, we give a reduction from the

FSS scheme for F×MSB
η,UN to the FSS gate for unsigned fixed-point multiplication, GuFPM over U2η , and set

η = n(dlog ne + 1). We now focus only on the case of unsigned fixed point multiplication - the case of
signed fixed point multiplication follows in an analogous manner and we describe the changes needed for this
reduction at the end of this section.

Step one of the barrier result. Intuitively, for a function fS ∈ F∧n,UN , the input/output behavior will be

emulated by a corresponding function fcS ∈ F×MSB
n(dlogne+1),UN , i.e., fS(x) = fcS (x) = MSB(x′ · cS), where

x′ is a public encoding of the input x, and cS is a (secret) constant determined as a function of S. The
Gen algorithm of FSS scheme for fS ∈ F∧n,UN will output FSS keys for fcS ∈ F×MSB

n(dlogne+1),UN , where cS is

determined from S. The Eval algorithm will encode the public x ∈ U2n to x′ ∈ U2n(dlogne+1) and evaluate the
given FSS key for fcS .

More concretely, the new FSS evaluation will encode the input x to x′ by “spacing out” the bits of x
with m = dlog ne zeros with x[0] as the least significant bit (as depicted below). Now, cS is carefully crafted
to “extract” and add the bits in x at indices in S such that: the value x′ · cS will have most significant bit
(MSB) as 1 if and only if bits of x in all indices of S are equal to 1. For ease of exposition, first consider the
case when size h = |S| is a power of 2 and let ` = log h. Moreover, consider an alternate representation of
S ⊆ [n] as (sn−1, . . . , s0) ∈ {0, 1}n such that si = 1 iff i ∈ S, else 0. Then, cS ∈ U2n(m+1) (depicted below)
will be constructed by spacing out the bits si by m zeros and put in reverse order, and has ` leading zeros
and m− ` trailing zeros.

Mathematically, we can write, x′ =
∑n−1
i=0 x[i] · 2i(m+1) ∈ U2n(m+1) and cS = 2n(m+1)−`−1 ·

∑n−1
i=0 si ·

2−i(m+1) ∈ U2n(m+1) . We will make use of these equations in formal construction and correctness of reduction.

m︷︸︸︷ m︷︸︸︷ m︷︸︸︷ m︷︸︸︷
x′ = 0 · · · 0 x[n−1] 0 · · · 0 x[n−2] 0 · · · 0 · · · 0 · · · 0 x[0]

`︷︸︸︷ m︷︸︸︷ m︷︸︸︷ m︷︸︸︷ m−`︷︸︸︷
cS = 0 · · · 0 s0 0 · · · 0 s1 0 · · · 0 · · · 0 · · · 0 sn−1 0 · · · 0

The interesting part in the product x′ ·cS is the upper `+1 bits which will capture the sum
∑n−1
i=0 x[i] ·si.

Things have been structured so that none of the other terms in x′ · cS affect these upper bits due to

26

the large spacing of 0s (preventing additive carries), as shown in the proof of Theorem 11. Therefore,

MSB(x′ · cS) = MSB(
∑n−1
i=0 x[i] · si) = MSB(

∑
i∈S x[i]) (because si = 1 for i ∈ S, else 0), which is equal

to 1 precisely if all bits {x[i]}i∈S are equal to 1. Namely, precisely if fS(x) = 1, as desired.
The more general case where h = |S| is not necessarily a power of 2 can be addressed by replacing

si ∈ {0, 1} with arbitrary positive integer values such that the sum of all terms
∑
i∈S si is precisely equal to

2`, where ` = dlog he, and {si}i/∈S = 0. The analysis remains the same.

Theorem 11. Assume the existence of an FSS scheme for the function class F×MSB
n(m+1),UN , where m = dlog ne.

Then there exists an FSS scheme for F∧n,UN .

Proof. Let (Gen×MSB
n(m+1),Eval

×MSB
n(m+1)) be an FSS scheme for F×MSB

n(m+1),UN .

For Gen×MSB
n(m+1)(1

λ, fcS ,UN) = (k0, k1), we have that
∑1
b=0 Eval

×MSB
n(m+1)(b, kb, x

′) = MSB(x′ · cS) ∈ UN (mul-

tiplication over U2n(m+1)), where the description of fcS : U2n(m+1) → UN defines cS and x′ ∈ U2n(m+1) . We
construct an FSS scheme (Gen∧n ,Eval

∧
n) for F∧n,UN as follows.

Gen∧n(1λ, fS ,UN) :

1: Parse fS : {0, 1}n → UN and S ⊆ [n]. Let h = |S| and ` = dlog he.
2: For i ∈ S, set si > 0 as an arbitrary positive integer such that

∑
i∈S si = 2`. In the other case when

i /∈ S, set si = 0.
3: Let cS = 2n(m+1)−`−1 ·

∑n−1
i=0 si · 2−i(m+1) ∈ U2n(m+1)

4: Sample FSS keys (k0, k1)← Gen×MSB
n(m+1)(1

λ, fcS ,UN)

5: Output (k0, k1).

Eval∧n(b, kb, x) :

1: Parse the input x as x[n−1]||x[n−2]|| · · · ||x[1]||x[0].

2: Encode x as x′ =
∑n−1
j=0 x[j] · 2j(m+1) (i.e., separating the bits of x each by m 0s).

3: Output Eval×MSB
n(m+1)(b, kb, x

′).

We prove that (Gen∧n ,Eval
∧
n) is a secure FSS scheme for F∧n,UN . By the security of the underlying FSS

scheme for F×MSB
n(m+1),UN , it holds that the key kb is indistinguishable from a simulated output generated

from only the leakage (U2n(m+1) ,UN), corresponding to the input and output spaces of fcS , which in turn is
simulatable given (U2n ,UN), corresponding to the input and output spaces of the secret function fS .

It remains thus to prove correctness. Observe that

x′ · cS = 2n(m+1)−`−1

n−1∑
i=0

si · 2−i(m+1) ·
n−1∑
j=0

x[j] · 2j(m+1)

= 2n(m+1)−`−1

(∑n−1
i=0

∑i−1
j=0 si · x[j] · 2(j−i)·(m+1) +

∑n−1
i=0 si · x[i]

+
∑n−1
i=0

∑n−1
j=i+1 si · x[j] · 2(j−i)·(m+1)

)
Now, we argue that only the second term in the summation matters for MSB(x′ · cS). Note that the third

term can also be written as: 2n(m+1)−`−1
(
2m+1 ·

∑n−1
i=0

∑n−i−2
k=0 si ·x[i+k+1] ·2k(m+1)

)
≡ 0 ∈ U2n(m+1) because

m > `. In a similar way, the first term can be rewritten as: 2n(m+1)−`−1
(
2−m−1 ·

∑n−1
i=0

∑i−1
k=0 si · x[i−k−1] ·

2−k(m+1)
)
. Here, observe that value of k decides the bit position where components of this term get added

and also how many times they get added. For k = 0, the number of components added is maximum, which
is precisely n− 1, and their sum

∑n−1
i=1 si · x[i−1] 6 2` < 2m+1. Pictorially, for k = 0, these components are

getting added at the position where s1 sits in cS and since, their sum is less than 2m+1, it will not carry into
the upper ` + 1 bits due to the m intermediate zeros. Similarly for k = 1, the terms are pictorially added
where s2 sits and the summation will not carry into the bit positions where the terms of k = 0 get added
and so on.

Therefore, neither the first nor the third term affects the value in the upper ` + 1 bits of (x′ · cS), and
hence, the following holds:

MSB(x′ · cS) = MSB

(
2n(m+1)−`−1

(n−1∑
i=0

si · x[i]

))
= MSB

(
2n(m+1)−`−1

(∑
i∈S

si · x[i]

))

27

This value is 1 exactly if all bits in x corresponding to the set S are 1, i.e. x[i] = 1 for i ∈ S. Therefore,
MSB(x′ · cS) = fS(x).

Step two of the barrier result. We now present the second part, i.e., a reduction from the FSS scheme for
F×MSB
η,UN to GuFPM over U2η . Setting η = n(dlog ne + 1) completes the barrier result for unsigned fixed-point

multiplication. The high level idea is as follows: we set the shift parameter of GuFPM as s = η− 1 and include
c+r as a part of the FSS key (along with the key for GuFPM) which still hides the secret constant c of member
functions in F×MSB

η,UN , where r is randomly sampled from U2η and known only to the Gen algorithm. Then
using these FSS keys, the evaluation algorithm computes ((x · c)�L η − 1) = MSB(x · c), as desired.

Theorem 12. Assume the existence of an FSS gate GuFPM over U2η for unsigned fixed-point multiplication.
Then there exists an FSS scheme for F×MSB

η,UN , where n 6 η.

Proof. Let (GenuFPM
η,s ,EvaluFPM

η,s) be an FSS gate for unsigned fixed-point multiplication, where s is the
parameter that specifies the right shift amount, and both the input and output groups are U2η . For
GenuFPM

η,s (1λ, rin
1 , r

in
2 , r

out) = (k0, k1), we have that
∑1
b=0 Eval

uFPM
η,s (b, kb, x, y) = (((x−rin

1)·(y−rin
2))�L s)+rout ∈

U2η (multiplication over U2η), where x, rin
1 , r

in
2 , r

out ∈ U2η . We construct an FSS scheme (Gen×MSB
η ,Eval×MSB

η)

for F×MSB
η,UN as follows.

Gen×MSB
η (1λ, fc,UN) :

1: Parse fc : U2η → UN and c ∈ U2η .
2: Set c̃ = c+ r, where r ← U2η is randomly sampled.
3: Sample FSS keys (k0, k1)← GenuFPM

η,η−1(1λ, 0, r, 0).
4: For b ∈ {0, 1}, Kb = (kb, c̃).
5: Output (K0,K1).

Eval×MSB
η (b,Kb, x) :

1: Parse Kb = (kb, c̃).
2: Set zb = EvaluFPM

η,η−1(b, kb, x, c̃).
3: Output z′b = zb mod N .

To argue that (Gen×MSB
η ,Eval×MSB

η) is a secure FSS scheme for F×MSB
η,UN , we observe the following: from the

security of the FSS gate GuFPM over U2η , kb looks indistinguishable from the output generated by the simulator
given access to just the leakage function, i.e., input and output group (U2η ,U2η), of GuFPM (which are same
as the input group of F×MSB

η,UN and therefore simulatable). The other part of the key, c̃, is indistinguishable
from a randomly sampled element from U2η , which is also simulatable with just the knowledge of the input
group U2η of F×MSB

η,UN .

We now show the correctness of our reduction. Let z = z0 + z1 ∈ U2η and z′ = z′0 + z′1 ∈ UN . Observe

that z =
∑1
b=0 Eval

uFPM
η,η−1(b, kb, x, c̃) = (((x − 0) · (c̃ − r)) �L (η − 1)) = ((x · c) �L (η − 1)) = MSB(x · c).

Since n 6 η, z′ = z mod N = MSB(x · c).

Signed Fixed-Point Multiplication. To prove the case of signed fixed-point multiplication, the first part of the
barrier result remains the same as the unsigned case captured by Theorem 11. In the second part, we show
how to reduce the FSS scheme for F×MSB

η,UN to GsFPM over S2η in an analogous manner to the unsigned case.

Let (GensFPM
η,s ,EvalsFPM

η,s) be an FSS gate for signed fixed-point multiplication, where s is the parameter that

specifies the right shift amount, and both the input and output groups are S2η . For GensFPM
η,s (1λ, rin

1 , r
in
2 , r

out) =

(k0, k1), we have that
∑1
b=0 Eval

sFPM
η,s (b, kb, x, y) = (((x − rin

1) · (y − rin
2)) �A s) + rout ∈ S2η (multiplication

over S2η), where x, rin
1 , r

in
2 , r

out ∈ S2η . All the steps in Gen×MSB
η (1λ, fc,UN) are same as the unsigned case

(Theorem 12) except how FSS keys are generated, i.e., (k0, k1)← GensFPM
η,η−1(1λ, 0, r, 0). In Eval×MSB

η (b,Kb, x),
we need to be careful about the use of arithmetic right shift in signed fixed-point multiplication instead
of logical right shift used in the unsigned case. Following the same steps as above, we get the following:
z = z0+z1 =

∑1
b=0 Eval

sFPM
η,η−1(b, kb, x, c̃) = (((x−0)·(c̃−r))�A (η−1)) = ((x·c)�A (η−1)) = −1·MSB(x·c).

Multiplying zb with −1 followed by mod N gives correct shares of the result.

28

Acknowledgments

E. Boyle supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and ERC Project HSS (852952).
N. Gilboa supported by ISF grant 2951/20, ERC grant 876110, and a grant by the BGU Cyber Center. Y.
Ishai supported by ERC Project NTSC (742754), ISF grant 2774/20, NSF-BSF grant 2015782, and BSF
grant 2018393.

References

1. Salami slicing — Wikipedia. https://en.wikipedia.org/w/index.php?title=Salami_slicing&oldid=

943583075 (2020), [Online; accessed 1-November-2020]
2. Agrawal, N., Shamsabadi, A.S., Kusner, M.J., Gascón, A.: QUOTIENT: Two-Party Secure Neural Network

Training and Prediction. In: CCS (2019)
3. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: EURO-

CRYPT (2015)
4. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating point numbers. In: NDSS (2013)
5. Aly, A., Smart, N.P.: Benchmarking privacy preserving scientific operations. In: ACNS 2019 (2019)
6. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-honest secure three-party com-

putation with an honest majority. In: CCS (2016)
7. Atallah, M.J., Pantazopoulos, K.N., Rice, J.R., Spafford, E.H.: Secure outsourcing of scientific computations.

Adv. Comput. (2001)
8. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: CRYPTO (1991)
9. Beaver, D.: Precomputing oblivious transfer. In: CRYPTO (1995)

10. Ben-Efraim, A., Lindell, Y., Omri, E.: Optimizing semi-honest secure multiparty computation for the internet.
In: CCS (2016)

11. Ben-Efraim, A., Nielsen, M., Omri, E.: Turbospeedz: Double your online SPDZ! improving SPDZ using function
dependent preprocessing. In: ACNS (2019)

12. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In: STOC (1988)

13. Bendlin, R., Damg̊ard, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation.
In: EUROCRYPT (2011)

14. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-preserving computations. In:
ESORICS (2008)

15. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Rindal, P., Scholl, P.: Efficient two-round OT extension
and silent non-interactive secure computation. In: ACM CCS (2019)

16. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators:
Silent OT extension and more. In: CRYPTO (2019)

17. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators
from ring-lpn. In: CRYPTO (2020)

18. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: EUROCRYPT (2015)
19. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: CRYPTO

(2016)
20. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: Improvements and extensions. In: CCS (2016)
21. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function secret sharing. In: TCC

(2019)
22. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: EUROCRYPT (2019)
23. Büscher, N., Demmler, D., Katzenbeisser, S., Kretzmer, D., Schneider, T.: HyCC: Compilation of hybrid protocols

for practical secure computation. In: CCS (2018)
24. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology (2000)
25. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure

computation. In: STOC (2002)
26. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point arithmetic. In: ESORICS

(2010)
27. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: FC (2010)
28. Chandran, N., Gupta, D., Rastogi, A., Sharma, R., Tripathi, S.: EzPC: Programmable and Efficient Secure

Two-Party Computation for Machine Learning. In: IEEE EuroS&P (2019)
29. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC

(1988)

29

https://en.wikipedia.org/w/index.php?title=Salami_slicing&oldid=943583075
https://en.wikipedia.org/w/index.php?title=Salami_slicing&oldid=943583075

30. Couteau, G.: A note on the communication complexity of multiparty computation in the correlated randomness
model. In: EUROCRYPT, Part II (2019)

31. Cramer, R., Damg̊ard, I., Escudero, D., Scholl, P., Xing, C.: SPD Z2k : Efficient MPC mod 2k for dishonest
majority. In: Crypto. pp. 769–798 (2018)

32. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party
computation for equality, comparison, bits and exponentiation. In: TCC (2006)

33. Damg̊ard, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for 2-party secure computation,
or: Gate-scrambling revisited. In: CRYPTO, Part I (2017)

34. Damg̊ard, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic en-
cryption. In: CRYPTO (2012)

35. Demmler, D., Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni, S.: Automated synthesis of
optimized circuits for secure computation. In: CCS (2015)

36. Demmler, D., Schneider, T., Zohner, M.: ABY-a framework for efficient mixed-protocol secure two-party compu-
tation. In: NDSS (2015)

37. Dessouky, G., Koushanfar, F., Sadeghi, A., Schneider, T., Zeitouni, S., Zohner, M.: Pushing the communication
barrier in secure computation using lookup tables. In: NDSS (2017)

38. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: CRYPTO (2016)
39. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: CCS (2017)
40. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives for MPC over mixed arithmetic-

binary circuits. In: CRYPTO (2020)
41. Fazio, N., Gennaro, R., Jafarikhah, T., III, W.E.S.: Homomorphic secret sharing from paillier encryption. In:

Provable Security (2017)
42. Goldreich, O.: Foundations of Cryptography — Basic Applications. Cambridge University Press (2004)
43. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A Completeness Theorem for Protocols

with Honest Majority. In: STOC (1987)
44. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated ran-

domness in secure computation. In: TCC (2013)
45. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer - efficiently. In: CRYPTO

(2008)
46. Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: TCC (2009)
47. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A Low Latency Framework for Secure Neural

Network Inference. In: USENIX Security (2018)
48. Katz, J., Ranellucci, S., Rosulek, M., Wang, X.: Optimizing authenticated garbling for faster secure two-party

computation. In: CRYPTO (2018)
49. Kerik, L., Laud, P., Randmets, J.: Optimizing MPC for robust and scalable integer and floating-point arithmetic.

In: FC (2016)
50. Kilian, J.: More general completeness theorems for secure two-party computation. In: STOC (2000)
51. Kiltz, E., Damgaard, I., Fitzi, M., Nielsen, J.B., Toft, T.: Unconditionally secure constant round multi-party

computation for equality, comparison, bits and exponentiation. IACR Cryptology ePrint Archive 2005 (2005)
52. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: ICALP (2008)
53. Kumar, N., Rathee, M., Chandran, N., Gupta, D., Rastogi, A., Sharma, R.: CrypTFlow: Secure TensorFlow

Inference. In: IEEE S&P (2020)
54. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nat. (2015)
55. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via minionn transformations. In:

CCS (2017)
56. Mishra, P., Lehmkuhl, R., Srinivasan, A., Zheng, W., Popa, R.A.: Delphi: A cryptographic inference service for

neural networks. In: USENIX Security (2020)
57. Mohassel, P., Rindal, P.: ABY3: A mixed protocol framework for machine learning. In: CCS (2018)
58. Mohassel, P., Rosulek, M., Zhang, Y.: Fast and secure three-party computation: The garbled circuit approach.

In: CCS (2015)
59. Mohassel, P., Zhang, Y.: SecureML: A system for scalable privacy-preserving machine learning. In: IEEE S&P

(2017)
60. Naor, M., Pinkas, B.: Oblivious polynomial evaluation. SIAM J. Comput. 35(5) (2006)
61. Nawaz, M., Gulati, A., Liu, K., Agrawal, V., Ananth, P., Gupta, T.: Accelerating 2PC-based ML with limited

trusted hardware. arXiv preprint:2009.05566 (2020)
62. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-secure two-party

computation. In: CRYPTO (2012)
63. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition

protocol. In: PKC (2007)

30

64. Ohata, S., Nuida, K.: Communication-efficient (client-aided) secure two-party protocols and its application. In:
FC (2020)

65. Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: Improved mixed-protocol secure two-party computa-
tion. Cryptology ePrint Archive, Report 2020/1225 (2020)

66. Pullonen, P., Siim, S.: Combining secret sharing and garbled circuits for efficient private IEEE 754 floating-point
computations. In: FC (2015)

67. Rathee, D., Rathee, M., Kumar, N., Chandran, N., Gupta, D., Rastogi, A., Sharma, R.: CrypTFlow2: Practical
2-party secure inference. In: CCS (2020)

68. Riazi, M.S., Samragh, M., Chen, H., Laine, K., Lauter, K.E., Koushanfar, F.: XONN: xnor-based oblivious deep
neural network inference. In: USENIX Security (2019)

69. Riazi, M.S., Weinert, C., Tkachenko, O., Songhori, E.M., Schneider, T., Koushanfar, F.: Chameleon: A hybrid
secure computation framework for machine learning applications. In: AsiaCCS (2018)

70. Ryffel, T., Pointcheval, D., Bach, F.: ARIANN: Low-interaction privacy-preserving deep learning via function
secret sharing. arXiv preprint:2006.04593 (2020)

71. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted values. In: EUROCRYPT (2006)
72. Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared values. In: CT-RSA (2009)
73. Trieu, N., Shehata, K., Saxena, P., Shokri, R., Song, D.: Epione: Lightweight contact tracing with strong privacy.

IEEE Data Eng. Bull. (2020)
74. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-Party Secure Computation for Neural Network Training.

PoPETs (2019)
75. Wang, X., Malozemoff, A.J., Katz, J.: EMP-toolkit: Efficient MultiParty computation toolkit. https://github.

com/emp-toolkit (2016)
76. Wang, X., Ranellucci, S., Katz, J.: Authenticated Garbling and Efficient Maliciously Secure Two-Party Compu-

tation. In: CCS (2017)
77. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: Fast Extension for coRRElated oT with small com-

munication. IACR Cryptol. ePrint Arch. (2020)
78. Yao, A.C.: How to generate and exchange secrets. In: FOCS (1986)
79. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data transfer in garbled circuits using

half gates. In: EUROCRYPT (2015)

31

https://github.com/emp-toolkit
https://github.com/emp-toolkit

A Realizing the Dealer

Protocols in this work are presented in an idealized preprocessing model, where the two parties receive
correlated randomness from a trusted dealer before protocol execution. Protocols within this idealized model
can be converted to protocols in the standard model, without a dealer, via different generic transformations.
Examples of such transformations include:

1. 3-party setting: Given 3 parties and 1 corruption, the role of the dealer can be emulated directly by the
third party.

2. 2-party setting with trusted hardware: As explored recently e.g. by Nawaz et al. [61], the role of the dealer
can be emulated within a trusted execution environment, such as that provided by Intel SGX.

3. 2-party setting: Additionally, the role of the dealer can be jointly emulated by the parties via a small-scale
two-party secure protocol.

In this section, we discuss concrete approaches for the third path above, where two parties jointly emulate
the role of dealer. Recall that this amounts to 2-party protocols for securely executing the Gen procedure for
appropriate FSS gates, in turn reducing to secure generation of keys for DCF.

We focus on two specific paths of execution toward this goal: (1) a variant of the secure DPF gener-
ation protocol of Doerner and shelat [39] for small and moderate domain sizes, which is black-box in the
underlying cryptographic pseudorandom generator (PRG); and (2) generic 2-party computation approaches,
implementing the PRG via AES or targeted constructions of “MPC-friendly” ciphers. The two approaches
have various tradeoffs and respective advantages:

– Black-box protocol (à la Doerner-shelat): Restricted to moderate domain size (e.g., 216 or smaller)
and semi-honest security, but outperforms alternatives within these regimes.

– Generic 2PC: Can be used with large domain sizes, extends efficiently to malicious security, and can
obtain small constant round complexity.

A.1 Extending Doerner-shelat to DCF

The most expensive part of securely distributing DCF key generation is the corresponding required secure
evaluations of the cryptographic PRG. For the special related case of generating Distributed Point Function
(DPF) keys, an alternative method was given by Doerner and shelat [39], within the context of secure 2-
party computation on RAM programs. While their protocol is restricted to key generation for moderate-sized
domains (computation costs grow linearly with the domain size), and the approach is presently limited to
the semi-honest setting, within these settings the protocol offers the significant efficiency advantage that it
executes black-box in the PRG evaluation. That is, PRG evaluations only take place locally, and do not need
to be securely emulated. As a result, the protocol performs significantly better within the relevant parameter
regimes.

We demonstrate that the DPF key generation protocol of Doerner-shelat can be extended to the case
of DCF at small additional cost. In turn, this provides an appealing solution for secure emulation of our
FSS key dealer within the setting of semi-honest adversaries and moderate gate domain sizes (e.g., 216 or
smaller).

DCF with Z2 payloads. We first show that, for the special case of DCF keys with Z2 outputs, the Doerner-
shelat protocol without modification already is a protocol for secure DCF key generation. This follows from
two steps.

Recall that the Doerner-shelat protocol securely evaluates the Gen procedure of the specific DPF con-
struction from [20]. We first appeal to the observation of [17] that a small modification of the correspond-
ing DPF EvalDPF procedure yields an FSS (Gen,Evalprefix) for the class of all-prefix point functions func-
tions with incremental evaluation. That is, for the class of functions fα,β̄ :

⋃
`∈[n]{0, 1}` → Z2 given by

fα,β̄(x1, . . . , x`) = β` ∈ Z2 if (x1, . . . , x`) = (α1, . . . , α`), and 0 otherwise, and where the cost of Evalprefix on

an input (x1 . . . , x`) is small given the output of Evalprefix on (x1, . . . , x`−1) (plus short intermediate state

32

information). Intuitively, the desired incremental prefix evaluation output shares are already present within
the intermediate execution values for EvalDPF.15

As the second step, we demonstrate that an additional small modification of Evalprefix (again keeping Gen
unchanged) yields yet another FSS scheme (Gen,EvalDCF), which this time provides support for DCF with
Z2 payloads. (In fact, it even supports the more general class of decision lists with output in Z2.) The new
EvalDCF function has roughly twice the runtime of the original EvalDPF.

More concretely, consider a secret comparison function f<α,β , with β ∈ Z2.

– To generate a DCF key for f<α,β , run the all-prefix DPF key generation procedure on the function fα,β̄′

with β̄′ ∈ Zn2 , where: (a) if β = 1 then β′i = αi for all i ∈ [n], and (b) if β = 0 then β′i = 0 for all i ∈ [n].
– The modified EvalDCF procedure takes as input an identity bit b ∈ {0, 1}, an incremental all-prefix DPF

key kb for fα,β̄′ as above, and an input x ∈ {0, 1}n to the DCF. Functionality-wise, it outputs the
following value:

EvalDCF(b, kb, x) =

n∑
i=1

Evalprefix(b, kb, (x1, . . . , xi)). (2)

Computed naively, the expression in Equation 2 would take quadratic time O(λn2) to evaluate; however,
leveraging the incremental evaluation property of the all-prefix DPF scheme, then this value can be
computed in time comparable to two executions of the original DPF evaluation, EvalDPF.

Security of the construction follows directly by the underlying all-prefix DPF security. Correctness holds
via the following argument. If β = 0, then correctness follows directly, as all prefix evaluations (and thus
their sums) evaluate to 0, as desired. Suppose then β = 1. Consider an arbitrary input x = (x1 . . . , xn),
and let ` ∈ [n] denote the unique index for which (x1, . . . , x`−1) = (α1, . . . , α`−1) but x` = 0 and α` = 1.
Thus, fα,β̄′(x1, . . . , x`) = β′` = α` (i.e., this modified prefix of x exactly matches the prefix of α), but

fα,β̄′(x1, . . . , xi) = 0 for all other indices i 6= ` ∈ [n]. Taking the sum, this means EvalDCF on input x outputs
additive shares of the bit α` for this index `. If α` = 0 (and thus x` = 1), this implies x > α, and we indeed
do want f<α,β(x) = 0; similarly, if α` = 1 (and thus x` = 0), this implies x < α, and we again do want

f<α,β(x) = 1. In both cases, α` is the desired output.
Combining the two steps above yields secure DCF generation immediately via the Doerner-shelat protocol

(as the resulting Gen algorithms to be securely computed are identical). This provides a convenient state
of affairs, where existing, optimized implementations of their protocol can be used directly within our new
contexts.

In terms of efficiency, the total computation time of the protocol to distribute DCF Gen with Z2 payloads
is dominated by (n + 1) string OTs for 129-bit strings and 2n+1 locally computed AES operations; the
communication is dominated by the (n+ 1) string OTs. For example, DCF with Z2 output and domain size
216 (i.e., n = 16) corresponds to 17 string OTs (129-bit strings) and 217 local AES computations. The cost
of the string OTs can be amortized over many FSS key generation computations (e.g., over the different
gates of a given circuit), via OT extension. IKNP-based OT extension, given a one-time cost of base OTs
(say roughly 20ms), can yield rates of over 500,000 OTs per second [62], translating here to less than 0.05ms
amortized OT cost per DCF key. Recent developments in “silent OT” and extensions [15, 77] can further
improve these estimates. For local computation, using an estimate of 360 million AES calls per second on a
single-core 3.6 GHz machine (10 machine cycles per AES) [73], local computation will take roughly 0.36ms
per DCF key. Given the large parallelism of the respective AES evaluations (2j parallel calls per level j),
executing with multiple cores can further provide significant efficiency benefits.

DCF for general payloads. To extend to more general output spaces, beyond Z2, we must look more closely
at the specific structure of the Doerner-shelat protocol.

The core challenge faced in this setting is that within Gen, the parties must securely evaluate a PRG
on specific values sib ∈ {0, 1}λ that need to remain secret from both of the parties (as their identity reveals

15 For those familiar with the DPF construction of [20]: The prefix-evaluation output share at an input (x1, . . . , x`) is
precisely the t bit generated in the `th level evaluation of EvalDPF on an input with this prefix. As part of the DPF
construction, these t bits are guaranteed to be opposite across the parties for any partial evaluation that remains
on the special path, and are guaranteed to agree at any point off the path.

33

information about the secret input value α). The main insights of Doerner and shelat are that: (1) each
sib is directly computable by party b ∈ {0, 1}, but must be hidden from within a list of 2i possible values

Lb ∈ ({0, 1}λ)2i , (2) the lists L0, L1 of parties b = 0, 1 agree aside from this one pair of values si0, s
i
1, and

(3) the computation in Gen in fact only relies on the xor G(si0) ⊕ G(si1), and not on the individual PRG
evaluations themselves. Combining these ideas, they designed a protocol which removes the PRG evaluations
from the secure computation and replaces them with 2i local PRG evaluations per level: reaching the target
value as a simple computation G(si0)⊕G(si1) =

(∑
s∈L0

G(s)
)
⊕
(∑

s∈L1
G(s)

)
.

We observe that the same insights apply also to the case of our Distributed Comparison Function (DCF)
key generation, and give an extension of the Doerner-shelat procedure to support secure computation of
GenDCF. Consider a DCF fα,β : {0, 1}n → G, where parties enter with secret shares of input α ∈ {0, 1}n
and payload β ∈ G over their respective groups (in particular, bitwise shares of α). In the pseudocode that
follows, we associate each node w of a binary tree with a seed swb (one for each party b ∈ {0, 1}), where w
indicates the bit string of length 6 n that uniquely identifies the given node. By convention, we take w = ∅
to represent the root node. We provide the pseudocode of the corresponding protocol in Fig. 9.

The execution time for the more general protocol will be comparable to the baseline Doerner-shelat
execution, with an appropriate overhead for the larger output group G. This has two contributions: (1)
Lengthening the output of the string OTs by 2dlog |G|e additional bits (for computing V values as well;
see Fig. 9). (2) Greater expansion required of the PRG to 2(λ + 1 + dlog |G|) bits, emulatable, e.g., using
2 + d2 log |G|/128e AES calls in the place of 2. For group size G up to 128 bits, the overall effect will be
relatively minor.

A.2 Distributed Generation via Generic 2PC

Alternatively, one may jointly emulate the dealer’s role of generating DCF keys via generic secure 2-party
computation. Communication and computation requirements of the corresponding protocol will be dominated
by the (n+ 1) secure evaluations of the length-doubling PRG.

Setting λ = 127 and instantiating the PRG via two AES evaluations, as suggested previously, results
in a necessary 2(n + 1) secure evaluations of AES (with secret-shared inputs and outputs). Depending
on the hardware, network, and on whether one targets semi-honest or malicious security, the throughput
for state-of-the-art secure 2PC of AES via garbled circuits is 100-1000 instances per second [48, 76], with
communication roughly 200kB per instance. As an example for ReLU on domain size 216, requiring 34 secure
AES evaluations, secure key generation is estimated to take roughly 35-300ms.

The generation numbers can be further improved using an MPC-friendly PRG with few AND gates instead
of AES; e.g., using LowMC [3] would give approximately a ×10-20 time improvement for communication and
computation of the setup. Although usage of non-AES ciphers incurs an efficiency tradeoff between secure
key generation and online computation of Eval, since (unlike AES) their operations are not supported in
native hardware.

B Malicious Security

All protocols described up to this point are only secure against semi-honest parties. In this section we sketch a
simple modification of these protocols that achieves security against malicious parties, under the assumption
that the correlated randomness setup is performed correctly.16 To secure the protocols against malicious
behavior by one of the two parties we follow the arithmetic MAC approach of [13,34].

First, we previously viewed each FSS gate as translating a public masked input on each input wire and
additive secret shares of the mask to a public masked value and additive shares of the mask on the output
wire. It will be more convenient to consider the values on every wire as additive shares of the wire value.
These shares are obtained by one party setting its share to minus its share of the mask and the other party

16 Such a trusted setup can be achieved either by assuming a semi-trusted dealer (e.g., implemented with limited
trusted hardware [61]), or a two-party maliciously secure preprocessing protocol. The latter can be done quite
efficiently via state-of-the-art generic 2PC protocols (e.g., [48]). Potential efficiency improvements can be obtained
via recent techniques for making the Doerner-shelat protocol for distributed DPF key generation maliciously
secure [15,17]. We leave the question of optimizing the concrete cost of such setup protocols to future work.

34

Protocol: Secure Distributed DCF Generation
Inputs: Each party holds additive shares of α ∈ {0, 1}n (bitwise) and β ∈ G.
Output: DCF keys for f<α,β

Each party b ∈ {0, 1} performs the following:

1: Sample s∅b ← {0, 1}λ, set t∅b = b, and set additive share of Vα to 0 ∈ G.
2: for j = 1, . . . , n do
3: Initialize (V Lb ||V Rb) = 0||0 and (sLb ||sRb) = 0||0
4: for w ∈ {0, 1}j−1 do
5: Compute (sw,Lb ||vw,Lb ||tw,Lb

∣∣∣∣ sw,Rb ||vw,Rb ||tw,Rb) = G(swb)

6: Update (sLb ||tLb
∣∣∣∣ sRb ||tRb) ⊕ = (sw,Lb ||tw,Lb

∣∣∣∣ sw,Rb ||tw,Rb)

7: Update V Lb + = ConvertG(vw,Lb), and V Rb + = ConvertG(vw,Rb)
8: // Note: for any w 6= (α1, . . . , αj−1), the parties’ updates cancel each other
9: end for

10: Secure Computation:
– Inputs: shares of α, shares of β, (sLb ||tLb

∣∣∣∣ sRb ||tRb), (V Lb ||V Rb), (twb)w∈{0,1}j−1 (from previous level), and
shares of Vα

– Compute:

t∗ ← t
(α1,...,αj−1)

1 ,

(sCW , tLCW , t
R
CW)←

{(
(sR0 ⊕ sR1), (tL0 ⊕ tL1 ⊕ 1), (tR0 ⊕ tR1)

)
if αj = 0(

(sL0 ⊕ sL1), (tL0 ⊕ tL1), (tR0 ⊕ tR1 ⊕ 1)
)

if αj = 1
,

VCW ←

{
(−1)t

∗
·
[
(V R1 − V R0)− Vα

]
if αj = 0

(−1)t
∗
·
[
(V L1 − V L0)− Vα + β

]
if αj = 1

,

Vα ←

{
Vα − V L1 + V L0 + (−1)t

∗
· VCW if αj = 0

Vα − V R1 + V R0 + (−1)t
∗
· VCW if αj = 1

– Output: CW j := (sCW ||VCW ||tLCW ||tRCW) to both, and additive shares of Vα
11: for w ∈ {0, 1}j−1 do // Compute s, t values for each node in next level:

12: Compute (s
w||0
b ||sw||1b) = (sw,Lb ||sw,R)⊕ twb · (sCW ||sCW)

13: Compute (t
w||0
b ||tw||1b) = (tw,Lb ||tw,R)⊕ twb · (tLCW ||tRCW)

14: end for
15: end for
16: Output kb = s∅b ||CW 1|| · · · ||CWn+1

Fig. 9: Extension of Doerner-shelat [39] protocol to secure 2-party generation of DCF keys as per Gen<n
in Fig. 1.

setting its share to the masked input minus its share of the mask. The second, and more crucial observation
is that all the families of offset functions, for which we construct FSS gates, are closed under multiplication
by scalar. For instance, given a comparison function with output x in a group, there is another comparison
function in the family with output αx for some scalar α.

We begin by describing a maliciously secure protocol that makes the assumption that all wire values in
the protocol are defined over a large field F. Our protocol is similar to the MAC batching protocol in [34]. We
then explain how to construct a similar protocol over ZN for N = 2n, which is particularly important in light
of the output domain for most of the FSS gates in this paper. This second protocol we propose is similar to
MAC batching in [31]. Another standard assumption that we make is that the parties can efficiently sample
a shared random source with security against a malicious adversary.

Preprocessing phase:

1. Choose a random element α ∈ F and create additive secret shares α = α1 + α2 and α2 = β1 + β2.

2. For every FSS gate in the semi-honest protocol realizing a function f(x, y), create two FSS gates: the
original gate for f , and a gate for the function fα from the same family with output fα(x, y) = αf(x, y).

3. Distribute the shares of α, α2, and the FSS keys for all the FSS gates to the two parties.

35

In the computation phase, the two parties run the semi-honest protocol for every gate, such that on each
output wire w with inputs to the gate xw, yw the parties in an honest execution hold shares of f(xw, yw) and
fα(xw, yw). Assume that the shares on all wires of party b ∈ {1, 2} are sb,1, . . . , sb,m for m gates of functions
f and tb,1, . . . , tb,m for m gates of functions fα. The two parties complete the execution with a verification
step that either outputs the value of the circuit or aborts the computation.

Verification phase:

1. Jointly and securely sample m random non-zero field elements r1, . . . , rm ∈ F \ {0}.
2. The first party computes locally S1 =

∑m
i=1 ris1,i, T1 =

∑m
i=1 rit1,i and the second party computes

locally S2 =
∑m
i=1 ris2,i, T2 =

∑m
i=1 rit2,i.

3. The two parties run a maliciously secure 2PC which checks two conditions. If either of them fails then
the protocol aborts, and otherwise the protocol returns the sum of the shares on the output wire.
(a) (α1 + α2)2 = β1 + β2

(b) (α1 + α2)(S1 + S2) = T1 + T2

The verification step uses a maliciously secure 2PC as a black box, but since the protocol executes on a
constant number of field elements, it will be very efficient. Note that if the first check on α and α2 is not
performed then the adversary can execute a type of selective failure attack that tests if all the wire values
are zero. It changes α arbitrarily and then all the wire values are zero if and only if the verification does not
abort.

It follows from the definition of the verification step that it correctly returns the output after an honest
execution of the protocol. We next prove that any malicious behavior by one of the parties results in an
abort with high probability.

Lemma 5. Any dishonest behavior in the computation phase of the protocol by one of the parties results in
an abort in the verification step with probability at least 1− 3

|F|−1 −µ(1λ), for a negligible function µ and the

security parameter λ.

Proof. We begin by assuming that every FSS gate in the circuit is information-theoretically secure. That is,
the distributions induced by the two experiments Realλ and Idealλ in Definition 2 are identical. We further
assume that the malicious party is the first party, which we can do wlog since the security argument is
symmetrical for both parties.

If the first party changes the shares of α or α2 that it enters into the final computation then its inputs
are γ1 instead of α1 and δ1 instead of β1. In order to pass the first verification check it must hold that
(γ1 + α2)2 = δ1 + β2 in addition to the fact that (α1 + α2)2 = (β1 + β2). Subtracting the two equations we
have that

α2(α1 − γ1) = β1 − δ1 + γ2
1 − α2

1.

If α1 = γ1 then β1 = δ1 which contradicts the assumption on malicious behavior. Otherwise, the first party
can correctly predict α2. Since α is random in F the first party can predict the value of α2 with probability
at most 1/|F|.

Now, assume that both parties entered the correct shares of α and α2, but that the first party behaved
maliciously during the computation phase. Observe that the only communication between the parties in the
computation phase occurs at the output of an FSS gate when the two parties convert their shares of the
output and shares of the mask to a public masked output. They achieve that by locally adding the shares of
the output and the mask and then exchanging the shares of the masked output. Assume that the first time
the first party behaves maliciously was when exchanging values for the i-th wire. Then, the only way it can
influence the share of the second party on the i-th wire is to add to its real share some additive value, by
changing the reported value of the first party’s share of the masked value on this wire.

The result of this attack is that the f value of the wire is s1,i + s2,i + γ and the value on the fα wire is
t1,i + t2,i + δ for some γ, δ which are not both zero. To pass the second check in the verification phase, it
holds that α(S1 +S2)−(T1 +T2) = 0 or that αriγ−riδ+c = 0, for some value c that we can assume that the
adversary knows. If γ = 0 and c = 0 then δ = 0 which contradicts the assumption on malicious behavior. If
γ = 0 and c 6= 0 then riδ = c. Since ri is chosen independently of δ and c from F\{0}, the adversary chooses
δ correctly with probability at most 1

|F|−1 . Finally, if γ 6= 0 then the adversary can compute α, which can

only happen with probability at most 1/|F|.

36

Taking the union bound over all possible attacks gives the adversary a success probability of at most
3
|F|−1 when the distributions of Realλ and Idealλ are identical for every FSS gate.

In the general case, the distributions of Realλ and Idealλ are computationally indistinguishable in each
of the 2m FSS gates in the circuit. We use a standard hybrid argument, constructing distributions Hybj ,
j = 0, 1, . . . , 2m, such that in Hybj the distributions of the keys of the first j gates are given by Idealλ,
and the distribution of the rest of the keys is given by Realλ. Therefore, Hyb2m is the distribution of the
ideal experiment on all FSS gates, and Hyb0 is the distribution of the real experiment on all FSS keys,
with independent key generation for each gate. Since every mask is random and independent, and the only
communication between the parties is shares of these masks, Hyb0 is distributed identically to a party’s view
during the execution of the protocol. By definition, any polynomial time adversary can distinguish between
Realλ and Idealλ with negligible probability, and can therefore distinguish between Hybj and Hybj+1 with

some negligible probability µ′(1λ). As a consequence, that same adversary can distinguish between Hyb0 and
Hyb2m with probability at most µ(1λ) = mµ′(1λ), which is negligible if m is a polynomial in the security
parameter. Since any malicious behavior by the adversary in the ideal model succeeds with probability at
most 1− 3

|F|−1 in the ideal model, it succeeds with probability at most 1− 3
|F|−1−µ(1λ) in the real model.

The protocol we described so far relies on the fact that F is a field, and therefore all elements have an
inverse. In the domain ZN , N = 2n, that is not the case. For example, using the protocol we described
with operations over ZN allows an adversary to cheat with good probability by choosing certain inputs, e.g.
x = 2n−1.

The protocol achieving malicious security in ZN uses the method of Cramer et al. in [31]. The idea is
to choose a security parameter s, and then to “lift” the computation to ZN ′ for N ′ = 2n+s. The input and
output domains of all FSS gates must be changed to ZN ′ , which is possible for all our schemes. For example,
inputs α, β ∈ ZN for a DCF are padded with extra zeroes and viewed as elements of ZN ′ .

Then, run the previous verification protocol over ZN ′ . In further detail, in the preprocessing phase choose
a random element α ∈ ZN ′ and create additive secret shares α ≡ α1 +α2 mod N ′ and α2 ≡ β1 +β2 mod N ′.
Create FSS gates for the functions f(x, y) and fα(x, y) = αf(x, y) and distribute the shares to the parties.
Then, in the verification phase securely sample m public random ring elements r1, . . . , rm ∈ ZN ′ . Party
b ∈ {0, 1} computes Sb, Tb as in the protocol over fields, and both together check that the conditions

1. (α1 + α2)2 = β1 + β2

2. (α1 + α2)(S1 + S2) = T1 + T2

hold.
If the FSS gates are information-theoretically secure then the probability of an adversary acting ma-

liciously without the verification step leading to an abort is at most 2−s+log(s+1) [31]. Therefore, for any
computationally secure FSS gates, and a polynomial size circuit, the probability of dishonest computation
by one of the parties without the other aborting is at most 2−s+log(s+1) + µ(1λ) for a negligible function µ.

C Comparison with Garbled Circuits

C.1 Garbled Circuits in the Preprocessing Model

Recall that secure computation with preprocessing involves a trusted dealer giving out correlated random-
ness to the parties in an input independent setup phase. This is succeeded by a highly efficient online phase
where parties use this correlated randomness to perform secure computation on their inputs. We use the
term “offline storage” to refer to the correlated randomness that a party needs to store. Similar to our work,
we assume that the parties start with additive shares of the input to garbled circuit and learn additive
shares of the output from it. Note that this is required for chaining different protocols together as a part
of the widely-used mixed-mode computation paradigm [36,57]. In this section, we describe in detail how we
use Garbled Circuits (GC) [78] in the preprocessing model when comparing it with our work in Table 1.
In Table 2 (Appendix C.2), we provide a version of Table 1 with exact key size expressions. For completeness,
we also provide a comparison with GC for per party offline storage and online AES calls in Appendix C.2.

37

Let the functionality being computed with GC be f : {0, 1}n1 → {0, 1}n2 , where y = f(x), (x0, x1) be
additive shares of x and (y0, y1) be additive shares of y. We assume that {0, 1}n represents the binary rep-
resentation of elements of ZN . We denote the garbler by P0 and the evaluator by P1.

Setup Phase. The trusted dealer generates a garbled circuit Cg for the functionality g : {0, 1}n1 → {0, 1}n2 ,
where g(x) = f(x − r1) − r0 and r0, r1 are sampled randomly from {0, 1}n2 , {0, 1}n1 , respectively. Let
{(w0

i , w
1
i)}i be the pair of labels corresponding each input wire i in Cg. She sends ({(w0

i , w
1
i)}i, r0) to P0 and

(Cg, r1) to P1.

Online Phase. Let x0, x1 be the shares of x held by P0 and P1, respectively. The online phase proceeds in 2 se-
quential communication rounds. In the first round, P1 sends x1+r1 to P0. P0 computes x̃ = x0+x1+r1 = x+r1

and sends the wire labels corresponding to x̃, i.e. {wx̃[i]

i }i, to P1 in the second round. P1 evaluates Cg using

the labels {wx̃[i]

i }i to learn y1 = g(x̃) = g(x+ r1) = f(x)− r0. P0 sets y0 = r0.

In the above protocol, the offline storage of P0, which includes ({(w0
i , w

1
i)}i, r0), amounts to a total of

(n1 + 1)λ+ n2 bits (relying on the Free XOR optimization [52]). P1’s offline storage includes (Cg, r1) which
is equivalent to #AND · 2λ+ n1 bits, where #AND denotes the number of AND gates in Cg and each such
gate requires 2λ bits of storage (using the half-gates optimization from [79]). In the online phase, across both
the rounds, a total communication of (λ+ 1)n1 bits happens.

Computing Splines with GC: Recall that a spline function with m intervals defined by a list of m consecutive
intervals {[pi−1 + 1, pi]}i and m degree-d univariate polynomials {fi}i outputs fj(x) if x ∈ [pj−1 + 1, pj].
This involves performing multiplications to evaluate fj(x) which is very inefficient with GC. In mixed-mode
paradigm, this step is often performed using arithmetic beaver triples [8]. Additive shares of coefficients of
fj are computed using GC and then beaver triples are consumed to evaluate the polynomial. However, we
observe that this step of evaluating the polynomials can be made completely local. For this, instead of giving
out r1 to P1, the dealer distributes additive shares of r1 between P0 and P1 during the setup phase. Then,
in the online phase, P0 and P1 reconstruct x + r1 and P0 sends labels corresponding to it to P1. The rest
of the GC evaluation proceeds normally and the parties get shares of coefficients of f ′j at the end such that
f ′j(x + r1) = fj(x). Since, P0 and P1 both know x + r1 in clear, they can evaluate f ′j(x + r1) locally to get
shares of fj(x) as output.

Prior Work: Similar to this, a recent work Delphi [56] splits GC into preprocessing and online phases in
the 2PC setting, and obtains a total online communication of λn1 + n2 bits across 2 rounds. However, their
offline storage is (n1 + 1)λ for P0 and #AND · 2λ + (n1 + n2)(λ + 1) for P1, which is more than the total
storage required for our GC protocol. Note that one can also use Garbled Circuits in the preprocessing model
by having the dealer give out random OT (ROT) correlations in the setup phase. These ROT correlations
are then reoriented into general OT (GOT) in the online phase [9] by P0 and P1 to transfer the wire labels
corresponding to P1’s input. However, it has double the online communication compared to our GC protocol.

C.2 Garbled Circuits vs Our Protocols

We now show how our protocols compare with GC in the preprocessing model. Recall that all our FSS gate
constructions are optimal in terms of online communication (equal to n bits per party) and rounds (single
round), while GC requires online communication of (λ + 1)n bits and 2 rounds, where n denotes the input
group bitsize. This translates to our protocols being λ

2× better in online communication and 2× better in
rounds. First, we provide a version of Table 1 with exact expressions for key size in Table 2. We then provide
a comparison of our protocols for offline storage and online AES calls per party with GC in Table 3a and
3b, respectively.

D FSS Gates Syntax

We summarize the syntax of FSS gates considered in this work below. We use N to denote 2n for n > 0. UN
and SN denote unsigned and signed n-bit integers, respectively. Refer to Section 2.1 for more details on our
data types. We define 1{b} as 1 when b is true and 0 otherwise.

38

Table 2: Comparison of key size (i.e., storage and for the 3PC case offline communication) for our FSS
gate constructions with [21] and Garbled Circuits (GC) [75]. For FSS, i.e., our work and [21], we use the
total key size for both P0, P1. For GC, we do an under approximation and consider only the size of garbled
circuit. The table only captures the size of correlated randomness (offline communication in the 3PC case)
and the online communication corresponding to both the FSS columns is at least λ

2× better than GC (and
rounds 2× better). Here, UN and SN denote unsigned and signed n-bit integers, respectively. We consider
following gates: Interval containment (IC), multiple interval containment (MIC) with m intervals, splines
with m intervals and d-degree polynomial outputs, ReLU, Absolute value (ABS), Bit Decomposition (BD),
Logical/Arithmetic Right Shifts (LRS/ARS) by s. The exact syntax and definitions of all the gates in the
table are described in Appendix D. We provide cost in terms of number of DCFn,G keys for DCF with input
bitlength n and output group G. To disambiguate between our optimized DCF and DCF used in [21], we use
DCFBGI

n,G for the latter. Let ` = dlog |G|e. Size of our optimized DCFn,G key is total 2 (n(λ+ `+ 2) + λ+ `)

bits across both parties. Size of DCFBGI
n,G key (using [20]) is 2 (4n(λ+ 1) + n`+ λ) bits. For our BD scheme

(with output over Un2), w is a parameter (here we assume w | n) and compute grows exponentially with w.
The values in the parenthesis give exact key size in bits for λ = 128, n = 16, m = 12, d = 1, w = 4, s = 7.

Gate This work [21] GC

IC
(n)

DCFn,UN + 2n 2×DCFBGI
n,UN + 2n 2λ(4n− 3)

(4992) (34592) (15616)

MIC
(n,m)

DCFn,UN 2m×DCFBGI
n,UN 2λ(n− 1)(3m+ 1)

+2mn +2mn +2λm
(5344) (415104) (145152)

Splines
(n,m, d)

DCF
n,Um(d+1)

N
2m×DCFBGI

n,U(d+1)
N

2λ(n− 1)(2m+ 1)

+4mn(d+ 1) + 2n +2λm(2n(d+ 1)− d)
(19040) (427008) (289536)

ReLU
(n)

DCFn,U2
N

+ 10n 2×DCFBGI
n,U2

N
+ 2n 2λ(3n− 2)

(5664) (35616) (11776)

ABS
(n)

DCFn,U2
N

+ 14n 4×DCFBGI
n,U2

N
2λ(4n− 3)

(5728) (71168) (15616)

BD
(n,w)

n
w
×DCFn+w

2
,U2

+ 2n (n− 1)×DCFBGI
n
2
,U2

+ 2n 2λ(n− 1)

(11544) (127952) (3840)

LRS
(n, s)

DCFs,UN + DCFn,UN + 2n - 2λ(2n− 2)
(7324) (-) (7680)

ARS
(n, s)

DCFs,SN + DCFn−1,S2
N

+ 6n - 2λ(2n− 2)

(7608) (-) (7680)

1. Interval Containment/IC (n): GIC gate is a family of functions gIC,n,p,q : UN → UN parametrized by the
input and output groups UN and defined by gIC,n,p,q(x) = 1{p 6 x 6 q}.

2. Multiple Interval Containment/MIC (n,m): GMIC gate is a family of functions gMIC,n,m,{pi}i,{qi}i : UN →
UmN for m interval containments parameterized by input and output groups UN and UmN , respectively,

and defined by gMIC,n,m,{pi}i,{qi}i(x) =
{

1{pi 6 x 6 qi}
}

16i6m
.

3. Splines (n,m, d): Gspline gate is a family of functions gspline,n,m,d,{pi}i,{fi}i : UN → UN with m intervals pa-
rameterized by input and output rings UN , and defined by gspline,n,m,d,{pi}i,{fi}i(x) = hn,m,d,{pi}i,{fi}i(x),
where fi refers to the d-degree univariate polynomial defining the output of the spline at i-th interval
and

hn,m,d,{pi}i,{fi}i(x) =

f1(x) if x ∈ [0, p1]

f2(x) if x ∈ [p1 + 1, p2]
...

fm(x) if x ∈ [pm−1 + 1, N − 1]

4. ReLU (n): GReLU gate is a family of functions gReLU,n : SN → SN parametrized by the input and output
groups SN and defined by gReLU,n(x) = x if x > 0 and 0 otherwise.

5. Absolute Value/ABS (n): G|·| gate is a family of functions g|·|,n : SN → SN parametrized by the input
and output groups SN and defined by g|·|,n(x) = x if x > 0 and −x otherwise.

39

Table 3: Comparison of our FSS gate constructions with GC in the preprocessing model. We consider
following gates: Interval containment (IC), multiple interval containment (MIC) with m intervals, splines
with m intervals and d-degree polynomial outputs, ReLU, Absolute value (ABS), Bit Decomposition (BD),
Logical/Arithmetic Right Shifts (LRS/ARS) by s. n denotes the input bitlength. IC, MIC and Splines have
public intervals. For our BD scheme (with output over Zn2), w is a parameter and compute grows exponentially
with w. In the table, we assume that w | n. The exact syntax and definitions of all the gates in the table are
described in Appendix D.

Gate This work GC

IC (n) n(λ+ n) n(8λ+ 1)

MIC (n,m) n(λ+ n+m) n(6mλ+ 1)

Splines (n,m, d) n(λ+mn(d+ 1)) n(4m(d+ 2)λ+ 1)

ReLU (n) n(λ+ 2n) n(6λ+ 1)

ABS (n) n(λ+ 2n) n(8λ+ 1)

BD (n,w) nλ(n+w)
2w

n(2λ+ 1)

LRS (n, s) (λ+ n)(n+ s) n(4λ+ 1)

ARS (n, s) (λ+ n)(n+ s) + n2 n(4λ+ 1)

(a) Offline storage required for our FSS gate constructions vs GC. For our work, offline storage values denote the
number of bits of key size that each party needs to store, i.e., 1

2
× the total key size. For GC, it refers to the number

of bits that GC evaluator (P1) needs to store. We provide approximate storage costs here by ignoring the lower order
terms.

Gate This work GC

IC (n) 8n 8n− 6

MIC (n,m) 8mn (n− 1)(6m+ 2) + 2m

Splines (n,m, d) 4mn (n− 1)(4m+ 2) +m(4n(d+ 1)− 2d)

ReLU (n) 8n 6n− 4

ABS (n) 8n 8n− 6

BD (n,w) 4n(2w−1)(n+w)
w

2n− 2

LRS (n, s) 4(n+ s) 4n− 4

ARS (n, s) 4(n+ s− 1) 4n− 4

(b) Online AES calls required for our FSS gate constructions vs GC. For our work, online AES calls denote the
number of AES calls that each party makes during gate evaluation. For GC, it refers to the number of AES calls that
GC evaluator (P1) makes to evaluate the garbled circuit. We assume nm(d+ 1) 6 λ.

6. Bit Decomposition/BD (n,w): GBIT gate is a family of functions gBIT,n : UN → UnN , parameterized by the
input and output groups UN and UnN , respectively, and defined by gBIT,n(x) = {xn−1, xn−2, . . . x0} s.t.

∀i, xi ∈ {0, 1} and
∑n−1
i=0 2ixi = x.

– The key size of our FSS gate construction of BD is ≈ n
w DCF keys, where w is tunable parameter.

However, our compute grows exponentially with w and to keep it polynomial in n, we set w = dlog ne.

– In Table 1 and 2, we use the output group of GBIT as Un2 for which the gate definition remains the
same except that instead of outputting the bits xi (in the binary representation of x) over UN , we
output them over U2. Similarly for Table 3a and 3b.

7. Logical Right Shift/LRS (n, s): G�L gate is a family of functions g�L,s,n : UN → UN parameterized
by the input and output groups UN and shift amount s, and defined by g�L,s,n(x) = (x �L s), where

(x�L s) = x−(x mod 2s)
2s over Z.

8. Arithmetic Right Shift/ARS (n, s): G�A gate is a family of functions g�A,s,n : SN → SN parameterized
by the input and output groups SN and shift amount s, and defined by g�A,s,n(x) = (x �A s), where

(x�A s) = x−(x mod 2s)
2s over Z [40].

40

E Additional Preliminaries

E.1 Representing Functions

In order to seamlessly handle both arithmetic and Boolean operations, we will consider all functions to be
defined over Abelian groups. For instance, a Boolean function f : {0, 1}n → {0, 1}m will be viewed as a
mapping from the group Zn2 to the group Zm2 . Given our heavy use of function secret sharing, we use a
similar convention for function representation to the one used in [20] (the only difference being that here we
also endow the input domain with a group structure).

Definition 7 (Function families). A function family is defined by F = (PF , EF), where PF ⊆ {0, 1}∗
is an infinite collection of function descriptions f̂ and EF : PF × {0, 1}∗ → {0, 1}∗ is a polynomial-time

algorithm defining the function described by f̂ . Concretely, f̂ ∈ PF describes a corresponding function f :
Df → Rf defined by f(x) = EF (f̂ , x). We require Df and Rf to be finite Abelian groups, denoted by Gin and
Gout respectively. We will typically let Gin and Gout be product groups, which can capture the case of multiple
inputs and outputs. When there is no risk of confusion, we will sometimes write f instead of f̂ and f ∈ F
instead of f̂ ∈ PF . We assume that f̂ includes an explicit description of Gin and Gout.

By convention, we denote by 0 ∈ G the identity element of G. We will use the notation 1 ∈ G to denote a
fixed canonical nonzero element of G; when G is additionally endowed with a multiplicative structure, e.g.,
when G is the additive group of a finite ring, 1 will be set to the multiplicative identity.

E.2 Secure Computation with Preprocessing

We follow the standard definitional framework for secure computation (cf. [24, 42]), except that we allow
a trusted input-independent setup phase that distributes correlated secret randomness to the parties. This
setup phase can be securely emulated by an interactive preprocessing protocol that can be carried out before
the inputs are known. We focus here on protocols with security against a semi-honest adversary who may
non-adaptively corrupt any strict subset of parties. For simplicity, we explicitly spell out the definitions for
the two-party case, and later explain the (straightforward) extension to the multi-party case.

Functionalities. We denote the two parties by P0 and P1 and a party index by σ ∈ {0, 1}. We consider
by default protocols for deterministic functionalities that deliver the same output to the two parties. The
general case (of randomized functionalities with different outputs) can be reduced to this case via a standard

reduction [24, 42]. A two-party functionality f is described by a bit-string f̂ via a function family F , as in
Definition 7. We assume that the input domain Gin is split into Gin = Gin

0 ×Gin
1 , capturing the inputs of the

two parties.

Protocols with preprocessing. A two-party protocol is defined by a pair of PPT algorithms Π = (Setup,

NextMsg). The setup algorithm Setup(1λ, f̂), given a security parameter λ and functionality description f̂ ,
outputs a pair of correlated random strings (r0, r1). We also consider protocols with function-independent

preprocessing, in which Setup only receives a bound 1S on the size of f̂ instead of f̂ itself. The next-message
function NextMsg determines the messages sent by the two parties. Concretely, the function NextMsg, on
input (σ, j, f̂ , xσ, rσ,m), specifies the message sent by party Pσ in Round j depending on the functionality

description f̂ , input xσ, random input rσ, and vector m of previous messages received from P1−σ. We assume
both parties can speak to each other in the same round. (In the semi-honest model, one can eliminate
this assumption by at most doubling the number of rounds.) If the output of NextMsg is of the form

(Out, y) then party Pσ terminates the protocol with output y. We denote by OutΠ,σ(λ, f̂ , (x0, x1)) and

ViewΠ,σ(λ, f̂ , (x0, x1)) the random variables containing the output and view of party Pσ (respectively) in the
execution of Π on inputs (x0, x1), where the view includes rσ and messages received from P1−σ.

41

Security definition. We require both correctness and security, where security is captured by the existence of
a PPT algorithm Sim that simulates the view of a party given its input and output alone. We formalize this
below.

Definition 8 (Secure computation with preprocessing). We say that Π = (Setup,NextMsg) securely
realizes a function family F in the preprocessing model if the following holds:

– Correctness: For all f̂ ∈ PF describing f : Gin
0 ×Gin

1 → Gout, (x0, x1) ∈ Gin
0 ×Gin

1 , λ ∈ N, σ ∈ {0, 1}, we

have Pr[OutΠ,σ(λ, f̂ , (x0, x1)) = f(x0, x1)] = 1.
– Security: For each corrupted party σ ∈ {0, 1} there exists a PPT algorithm Simσ (simulator), such that

for every infinite sequence (f̂λ)λ∈N of polynomial-size function descriptions from PF and polynomial-size
input sequence (xλ0 , x

λ
1)λ∈N for fλ, the outputs of the following experiments Real and Ideal are computa-

tionally indistinguishable:
• Realλ: Output ViewΠ,σ(λ, f̂λ, (x

λ
0 , x

λ
1))

• Idealλ: Output Simσ(1λ, f̂λ, x
λ
σ, fλ(xλ0 , x

λ
1))

We say that Π realizes F with statistical (resp., perfect) security if the above security requirement holds with
statistical (resp., perfect) indistinguishability instead of computational indistinguishability.

E.3 Secure Computation from FSS

We here present one of the main theorems from [21], attaining secure computation with preprocessing given
appropriate FSS schemes.

Theorem 13 (Circuit-Dependent Preprocessing [21]). Let C be a circuit over basis B. For each
G ∈ B, let (GenĜ ,EvalĜ) be an FSS for the offset-function family Ĝ with key size sizeĜ(λ, |Gin|, |Gout|). Then
for any instantiation Cg of C, there exists a 2-party protocol for securely computing Cg with the following
properties:

– Preprocessing. Given circuit C with gate indices v ∈ C, denote the set of gates by Gv and their instanti-
ations by gv, which in particular specify input/output groups Gin

v ,Gout
v . The preprocessing phase executes

GenĜv for each gv and produces output of size
∑
v∈C sizeĜv (λ, |Gin

v |, |Gout
v |).

– Online. The online protocol requires local execution of EvalĜ for each gate, yielding the following proper-
ties:
• Rounds: depthB(C).
• Communication:

∑
v∈C log |Gout

v | bits per party.

If the FSS schemes are perfectly (resp., statistically) secure, then the resulting protocol is perfectly (resp.,
statistically) secure in the preprocessing model.

F Optimized DCF: Proof and Dual DCF

F.1 Proof of DCF Theorem

Proof of Theorem 2 . Security: We prove that each party’s key kb is pseudorandom. This will be done via a
sequence of hybrids, where in each step we replace another correction word CW (i) within the key from being
honestly generated to being random.

The high-level argument for security will go as follows. Each party b ∈ {0, 1} begins with a random seed

s
(0)
b that is completely unknown to the other party. In each level of key generation (for i = 1 to n), the

parties apply a PRG to their seed s
(i−1)
b to generate six items: namely, two seeds sLb , s

R
b , two group elements

V Lb , V
R
b and 2 bits tLb , t

R
b . This process will always be performed on a seed which appears completely random

and unknown given the view of the other party; because of this, the security of the PRG guarantees that the
six resulting values appear similarly random and unknown given the view of the other party. The ith level
correction word CW (i) will “use up” the secret randomness of 4 of these 6 pieces: the two bits tLb , t

R
b , the

element V Lose
b and the seed sLose

b for Lose ∈ {L,R} corresponding to the direction exiting the “special path”

42

α: i.e. Lose = L if α = 1 and Lose = R if α = 0. However, given this CW (i), the remaining seed sKeep
b for

Keep 6= Lose still appears random to the other party. The argument then continues in similar fashion to the
next level, beginning with seeds sKeep

b .
For each j ∈ {0, 1, . . . , n+ 1}, we will consider a distribution Hybj defined roughly as follows:

1. s
(0)
b ← {0, 1}λ chosen at random (honestly), and t

(0)
b = b.

2. CW (1), . . . , CW (j) ← {0, 1}λ+1 chosen at random.

3. For i 6 j, s
(i)
b ||V

(i)
b ||t

(i)
b computed honestly, as a function of s

(0)
b ||V

(0)
b ||t

(0)
b and CW (1), . . . , CW (j).

4. For j, the other party’s seed s
(j)
1−b ← {0, 1}λ and the element V

(j)
1−b ← G are chosen at random, and

t
(j)
1−b = 1− t(j)b .

5. For i > j: the remaining values

s
(i)
b ||V

(i)
b ||t

(i)
b , s

(i)
1−b||V

(i)
1−b||t

(i)
1−b, CW

(i)

are all computed honestly as a function of the previously chosen values.
6. The output of the experiment is

kb := s
(0)
b ||CW

(1)|| · · · ||CW (n+1).

Formally, Hybj is fully described in Fig. 10. Note that when j = 0, this experiment corresponds to the honest
key distribution, whereas when j = n+ 1 this yields a completely random key kb. We claim that each pair of
adjacent hybrids j − 1 and j will be indistinguishable based on the security of the pseudorandom generator.

The proof of Theorem 2 follows from the following four claims:

Claim 1. For every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G, it holds that

{kb ← Hyb0(1λ, b, α, β)} ≡ {kb : (k0, k1)← Gen<n (1λ, α, β,G)}.

Claim 2. For every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G, it holds that

{kb ← Hybn+1(1λ, b, α, β)} ≡ {kb ← U}.

Note that Claim 1 and Claim 2 follow directly by construction of Hybj .

Claim 3. There exists a polynomial p′ such that for any (T, εPRG)-secure pseudorandom generator G, then
for every j ∈ [n], every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G, and every nonuniform adversary A running in time
T ′ 6 T − p′(λ), it holds that∣∣∣Pr[kb ← Hybj−1(1λ, b, α, β); c← A(1λ, kb) : c = 1]

− Pr[kb ← Hybj(1
λ, b, α, β); c← A(1λ, kb) : c = 1]

∣∣∣ < εPRG.

Proof. Fix an arbitrary j ∈ [n], b ∈ {0, 1}, α ∈ {0, 1}n and β ∈ G. Given a Hyb-distinguishing adversary A
with advantage ε for these values, we construct a corresponding PRG adversary B. Recall that in the PRG
challenge for G, the adversary B is given a value r that is either computed by sampling a seed s ← {0, 1}λ
and computing r = G(s), or sampling a random r ← {0, 1}2(2λ+1).

Now, consider B’s success in the PRG challenge as a function of A’s success in distinguishing Hybj−1 from

Hybj . If r is computed pseudorandomly, then it is clear the generated kb is distributed as Hybj−1(1λ, b, α, β).

It remains to show that if r was sampled at random then the generated kb is distributed as Hybj(1
λ, b, α, β).

That is, if r is random, then the corresponding computed values of s
(j)
1−b and CW (j) are distributed randomly

conditioned on the values of s
(0)
b ||t

(0)
b ||CW (1)|| · · · ||CW (j−1), and the value of t

(j)
1−b is given by 1− t(j)b . Note

that all remaining values (for “level” i > j) are computed as a function of the values up to “level” j.
First, consider CW (j), computed in four parts:

43

Hybj(1
λ, b, α, β):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α

2: Sample random s
(0)
b ← {0, 1}

λ, and let V
(0)
α ← 0 ∈ G, t

(0)
b = b, t

(0)
1−b = 1− b.

3: for i = 1 to n do
4: if i < j then Sample CW (i) ← {0, 1}λ ×G× {0, 1}2.
5: else
6: if i = j then
7: Sample random s

(j−1)
1−b ← {0, 1}

λ, and random V
(i)
α ← G.

8: Let t
(j−1)
1−b = 1− t(j−1)

b .
9: end if

10: CW (i) = CompCW(i, αi, G(s
(i−1)
b), G(s

(i−1)
1−b), V

(i−1)
α , β).

11: (s
(i)
1−b, t

(i)
1−b) = NextST(1− b, i, t(i−1)

1−b , sKeep
1−b ||t

Keep
1−b , CW

(i)).
12: end if
13:
14: (s

(i)
b , t

(i)
b) = NextST(b, i, t

(i−1)
b , sKeep

b ||tKeep
b , CW (i)).

15: V
(i)
α ← V

(i−1)
α − ConvertG(vKeep

1) + ConvertG(vKeep
0) + (−1)t

(i−1)
1 · VCW .

16: end for
17:
18: if j = n+ 1 then
19: CW (n+1) ← G
20: else
21: CW (n+1) ← (−1)t

n
1 ·
[
β − Convert(s

(n)
0) + Convert(s

(n)
1)
]
∈ G

22: end if
23: Let kb = s

(0)
b ||CW

(1)|| · · · ||CW (n+1)

24: return kb

CompCW(i, αi, S
(i−1)
b , S

(i−1)
1−b , V

(i−1)
α , β):

1: Parse S
(i−1)
1−b = sL1−b||vL1−b||tL1−b

∣∣∣∣sR1−b||vR1−b||tR1−b.
2: Parse S

(i−1)
b = sLb ||vLb ||vLb ||tLb

∣∣∣∣sRb |vRb ||vRb ||tRb .
3: if αi = 0 then set Keep← L, Lose← R.
4: else Set Keep← R, Lose← L.
5: end if
6: sCW ← sLose

0 ⊕ sLose
1 .

7: VCW ← (−1)t
(i−1)
1 · [ConvertG(vLose

1)− ConvertG(vLose
0)− V (i−1)

α].

8: if Lose = L then VCW ← VCW + (−1)t
(i−1)
1 · β

9: end if
10: tLCW ← tL0 ⊕ tL1 ⊕ αi ⊕ 1 and tRCW ← tR0 ⊕ tR1 ⊕ αi.
11: return CW (i) ← sCW ||VCW ||tLCW ||tRCW

NextST(x, i, t
(i−1)
x , sKeep

x ||tKeep
x , CW (i)):

1: Parse CW (i) = sCW ||VCW ||tLCW ||tRCW .

2: s
(i)
x ← sKeep

x ⊕ t(i−1)
x · sCW

3: t
(i)
x ← tKeep

x ⊕ t(i−1)
x · tKeep

CW

4: return (s
(i)
x , t

(i)
x).

Fig. 10: Hybrid distribution j, in which the first j correction words are sampled completely at random, and
the remaining correction words are computed honestly.

44

PRG adversary B(1λ, (j, b, α, β), r):

1: Let α = α1, . . . , αn ∈ {0, 1}n be the bit decomposition of α

2: Sample s
(0)
b ← {0, 1}

λ, let V
(0)
α = 0 ∈ G, and let t

(0)
b = b.

3:
4: for i = 1 to (j − 1) do
5: Sample random CW (i) ← {0, 1}λ ×G× {0, 1}2.
6: Parse CW (i) = sCW ||VCW ||tLCW ||tRCW .

7: Expand sLb ||vLb ||tLb
∣∣∣∣sRb ||vRb ||tRb = G(s

(i−1)
b).

8: if αi = 0 then Set Keep← L, Lose← R. else, Set Keep← R, Lose← L
9: (s

(i)
b , t

(i)
b) = NextST(b, i, t

(i−1)
b , sKeep

b , tKeep
b , CW (i)).

10: V
(i)
α ← V

(i−1)
α − ConvertG(vKeep

1) + ConvertG(vKeep
0) + (−1)t

(i−1)
1 · VCW

11: Take t
(i)
1−b = 1− t(i)b .

12: end for
13:
14: Expand sLb ||vLb ||tLb

∣∣∣∣sRb ||vRb ||tRb = G(s
(j−1)
b).

15: Set sLb ||vLb ||tLb
∣∣∣∣sRb ||vRb ||tRb = r (the PRG challenge).

16: CW (j) = CompCW(j, αj , r, G(s
(j−1)
b), V

(i−1)
α , β).

17: if αj = 0 then Set Keep← L, Lose← R. else, Set Keep← R, Lose← L

18: Compute (s
(j)
x , t

(j)
x) = NextST(x, j, t

(j−1)
x , sKeep

x ||tKeep
x , CW (j)), for both x ∈ {0, 1}.

19:
20: Set P = [sL0 ||vL0 ||tL0

∣∣∣∣sR0 ||vR0 ||tR0], [sL1 ||vL1 ||tL1
∣∣∣∣sR1 ||vR1 ||tR1].

21: Compute (CW (j+1)|| · · · ||CW (n+1)) =
RemainingKey(α, j, CW (1)|| · · · ||CW (j), P).

22: return kb = s
(0)
b ||CW

(1)|| · · · ||CW (n+1).

RemainingKey(α, j, CW (1)|| · · · ||CW (j), t
(j)
0 , t

(j)
1 , P):

1: Parse P = [sL0 ||vL0 ||tL0
∣∣∣∣sR0 ||vR0 ||tR0], [sL1 ||vL1 ||tL1

∣∣∣∣sR1 ||vR1 ||tR1].
2: for i = (j + 1) to n do

3: Expand sLx ||vLx ||tLx
∣∣∣∣sRx ||vRx ||tRx = G(s

(i−1)
x) for both x ∈ {0, 1}.

4: if αi = 0 then Set Keep← L, Lose← R. else, Set Keep← R, Lose← L
5: CW (i) = CompCW(i, αi, [s

L
0 ||vL0 ||tL0

∣∣∣∣sR0 ||vR0 ||tR0], [sL1 ||vL1 ||tL1
∣∣∣∣sR1 ||vR1 ||tR1], V

(i−1)
α , β).

6: Compute (s
(i)
x , t

(i)
x) = NextST(x, i, t

(i−1)
x , sKeep

x ||tKeep
x , CW (i)), for both x ∈ {0, 1}.

7: V
(i)
α ← V

(i−1)
α − ConvertG(vKeep

1) + ConvertG(vKeep
0) + (−1)t

(i−1)
1 · VCW

8: end for
9: CW (n+1) ← (−1)t

n
1 ·
[
β − Convert(s

(n)
0) + Convert(s

(n)
1)
]
∈ G

10: return (CW (j)||CW (j+1)|| · · · ||CW (n+1))

Fig. 11: Adversary action.

45

– sCW = sLose
b ⊕ sLose

1−b.

– VCW ← (−1)t
(i−1)
1 · [ConvertG(vLose

1) − ConvertG(vLose
0) − V (i−1)

α], and if Lose = L then VCW ← VCW +

(−1)t
(i−1)
1 · β.

– tLCW = tLb ⊕ tL1−b ⊕ αj ⊕ 1.

– tLCW = tLb ⊕ tL1−b ⊕ αj .

In the case that r is random, then sLose
1−b, t

L
1−b, and tR1−b (no matter the value of Lose ∈ {L,R}) are each

perfect one-time pads, and vLose
1−b is a random element in G. So, CW (j) = sCW ||VCW ||tLCW ||tRCW is indeed

distributed uniformly.

Now, condition on CW (j) as well, and consider the value of s
(j)
1−b. Depending on the value of t

(j−1)
1−b , s

(j)
1−b

is selected either as sKeep
1−b or sKeep

1−b ⊕ sCW . However, sKeep
1−b is distributed uniformly conditioned on the view

thus far, and so in either case the resulting value is again distributed uniformly.

Finally, consider the value of t
(j)
1−b. Note that both t

(j)
b and t

(j)
1−b are computed as per NextST, as a function

of t
(j−1)
1 and t

(j−1)
1−b , respectively (and t

(j−1)
1−b was set to 1− t(j−1)

b). In particular,

t
(j)
b ⊕ t

(j)
1−b = (tKeep

b ⊕ t(i−1)
b · tKeep

CW)⊕ (tKeep
1−b ⊕ t

(i−1)
1−b · t

Keep
CW)

= tKeep
b ⊕ tKeep

1−b ⊕ (t
(i−1)
b ⊕ t(i−1)

1−b) · tKeep
CW

= tKeep
b ⊕ tKeep

1−b ⊕ 1 · (tKeep
0 ⊕ tKeep

1 ⊕ 1)

= 1

Combining these pieces, we have that in the case of a random PRG challenge r, the resulting distribution
of kb as generated by B is precisely distributed as is Hybj(1

λ, b, α, β). Thus, the advantage of B in the

PRG challenge experiment is equivalent to the advantage ε of A in distinguishing Hybj−1(1λ, b, α, β) from

Hybj(1
λ, b, α, β). The runtime of B is equal to the runtime of A plus a fixed polynomial p′(λ). Thus for any

T ′ 6 T − p′(λ), it must be that the distinguishing advantage ε of A is bounded by εPRG.

Claim 4. There exists a polynomial p′ such that for any (T, εConvert)-secure pseudorandom Convert : {0, 1}λ →
G, then for every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G, and every nonuniform adversary A running in time
T ′ 6 T − p′(λ), it holds that∣∣∣Pr[kb ← Hybn(1λ, b, α, β); c← A(1λ, kb) : c = 1]

− Pr[kb ← Hybn+1(1λ, b, α, β); c← A(1λ, kb) : c = 1]
∣∣∣ < εConvert.

Proof. Fix an arbitrary b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ G. In a similar fashion to the previous claim, an adversary
A who distinguishes between the corresponding distributions Hybn and Hybn+1 with advantage ε directly
yields a corresponding adversary B for the pseudo-randomness of Convert with the same advantage, and only

polynomial additional runtime p′(λ). Namely, B samples s
(n)
b ← {0, 1}λ and all values CW (1), . . . , CW (n) ←

{0, 1}λ+2 at random, and then embeds the Convert challenge by setting CW (n+1) = (−1)t
n
1 · [β + (−1)1−b ·

Convert(s
(n)
b) + (−1)b · r]. In the case that r is generated pseudo-randomly as the output of Convert(s

(n)
1−b)

for random s
(n)
1−b, this is precisely the distribution generated by Hybn. In the case that r is truly random,

then it directly acts as a one-time pad on the remaining terms and thus CW (n+1) is distributed uniformly,
precisely as per Hybn+1. The claim follows.

This concludes the proof of Theorem 2.

F.2 Dual Distributed Comparison Function (DDCF)

In Fig. 12, we give an FSS scheme for FDDCF
n,G . The key size of DDCFn,G is equal to dlog |G|e bits plus the key

size of DCFn,G.

46

Dual Distributed Comparison Function (GenDDCF
n ,EvalDDCF

n)
GenDDCF

n (1λ, α, β1, β2,G):

1: Let β = β1 − β2.
2: (k

(n)
0 , k

(n)
1)← Gen<n

(
1λ, α, β,G

)
.

3: Sample random S0, S1 ← G s.t. S0 + S1 = β2.
4: For b ∈ {0, 1}, let kb = k

(n)
b ||Sb.

5: return (k0, k1).

EvalDDCF
n (b, kb, x):

1: Parse kb = k
(n)
b ||Sb.

2: y
(n−1)
b ← Eval<n (b, k(n), x).

3: return y
(n−1)
b + Sb.

Fig. 12: Optimized FSS scheme for the class FDDCF
n,G of comparison functions fα,β1,β2

: {0, 1}n → G, outputting
β1 for 0 6 x < α and β2 for x > α. b refers to party id.

G Proofs and Supplemental Material for Section 4

In this section, we provide the missing proofs from Section 4 along with some supplemental material.
Following simple lemma is used in the proof of main technical Lemma 1 and also in correctness proof of

basic FSS gate for interval containment described in Fig. 2.

Lemma 6. Let x, y, z ∈ UN . Unless stated by an explicit mod N , (+,−, <,>,=) are operations over Z and
any operands ∈ UN are seen as elements of Z for that purpose. Then, the following holds true:

x > y implies ex > ey
where ex = 1{x+ z > N − 1} and ey = 1{y + z > N − 1}.

Proof. This Lemma is very simple to prove. We have, x > y, then over Z, we can say that x+ z > y + z. If
ey = 1, then y + z > N − 1 from the definition of ey. Since x + z > y + z > N − 1, ex = 1. On the other
hand, if ey = 0, then x + z > y + z 6 N − 1, and ex can be both 0 or 1 depending on the values of x and
z.

G.1 Proof of correctness of Fig. 2

The proof follows from the following lemma using correctness of FSS schemes for f<α,β and f6α,β .

Lemma 7. Let p, p̃, q, q̃, r ∈ UN , where p 6 q, p̃ = p+ r mod N , q̃ = q+ r mod N . Define boolean predicate
over UN → {0, 1} as follows: P (x) denotes p 6 x 6 q.
Then the following holds:

P (x) = 1{x̃ 6 q̃} − 1{x̃ < p̃}+ 1{p̃ > q̃}, where x̃ = x+ r mod N

Proof. First of all, observe that P (x) evaluates an interval containment on x, and the expression of P (x)
derived from this lemma is being used as it is in Fig. 2.
We first look at the RHS of the expression we want to prove, i.e. P (x) = 1{x̃ 6 q̃} − 1{x̃ < p̃}+ 1{p̃ > q̃}.

1{x̃ 6 q̃} − 1{x̃ < p̃}+ 1{p̃ > q̃}
= 1{x̃ 6 q̃} − 1{x̃ < p̃}+ 1 + 1{p̃ > q̃} − 1

= 1{x̃ 6 q̃}+ (1− 1{x̃ < p̃})− (1− 1{p̃ > q̃})
= 1{x̃ 6 q̃}+ 1{x̃ > p̃} − 1{p̃ 6 q̃}

Next, we look at the statement of the predicate P (x). P (x) can be rewritten as 1{(x > p) ∧ (x 6 q)}. We
take this predicate from being over x to x̃.

1{(x > p) ∧ (x 6 q)} = 1{(x+ r > p+ r) ∧ (x+ r 6 q + r)}
= 1{

(
x̃+ wxN > p̃+ wpN

)
∧
(
x̃+ wxN 6 q̃ + wqN

)
}

47

where wx = 1{x+ r > N − 1}, wp = 1{p+ r > N − 1} and wq = 1{q + r > N − 1}.
Therefore, the primary expression that we want to prove becomes:

1{
(
x̃+ wxN > p̃+ wpN

)
∧
(
x̃+ wxN 6 q̃ + wqN

)
} = 1{x̃ 6 q̃}+ 1{x̃ > p̃} − 1{p̃ 6 q̃} (3)

An important observation (Obs. 1) to make before going forward is the following: Consider a, b ∈ UN , and
their corresponding wraps when added with r ∈ UN are wa = 1{a+ r > N − 1} and wb = 1{b+ r > N − 1},
respectively. If wa > wb, then ã < b̃, where ã = a + r mod N and b̃ = b + r mod N . This is true because
when wa > wb: ã = a+ r −N = r − (N − a) < r, while b̃ = b+ r > r (over Z).
We proceed by analyzing 2 cases: Case A being p̃ 6 q̃ and Case B being p̃ > q̃.

Case A p̃ 6 q̃: In this case, from Obs. 1 and Lemma 6, wp = wq. We get 3 subcases depending on the value
of wx.

– If wx = wp = wq, Equation 3 becomes: 1{(x̃ > p̃) ∧ (x̃ 6 q̃)} = 1{x̃ 6 q̃}+ 1{x̃ > p̃} − 1. Here, if x̃ > p̃,
LHS = RHS, and if x̃ < p̃, LHS = 0 and RHS = 1 + 0− 1 = 0 = LHS.

– If wx 6= wp = wq and wx = 0, Equation 3 becomes: 1{(x̃ > p̃+N) ∧ (x̃ 6 q̃ +N)} = 1{x̃ 6 q̃}+ 1{x̃ >
p̃} − 1. Here, LHS = 0, and RHS = 0 + 1− 1 = LHS (because x̃ > q̃ > p̃ from Obs. 1).

– If wx 6= wp = wq and wx = 1, Equation 3 becomes: 1{(x̃+N > p̃) ∧ (x̃+N 6 q̃)} = 1{x̃ 6 q̃}+ 1{x̃ >
p̃} − 1. Here also, LHS = 0, and RHS = 1 + 0− 1 = LHS (because x̃ < p̃ 6 q̃ from Obs. 1).

Case B p̃ > q̃: Since p 6 q and p̃ > q̃, we have that wp = 0 and wq = 1.

– If wx = 0, Equation 3 becomes: 1{(x̃ > p̃)∧ (x̃ 6 q̃+N)} = 1{x̃ 6 q̃}+ 1{x̃ > p̃}. LHS = 1{x̃ > p̃} and
from Obs. 1, we have x̃ > q̃, and therefore, RHS = 1{x̃ > p̃} = LHS.

– If wx = 1, Equation 3 becomes: 1{(x̃ + N > p̃) ∧ (x̃ + N 6 q̃ + N)} = 1{x̃ 6 q̃} + 1{x̃ > p̃}. LHS =
1{x̃ 6 q̃} and from Obs. 1, we have x̃ < p̃, and therefore, RHS = 1{x̃ 6 q̃} = LHS.

G.2 Proof of Lemma 1

In the following unless explicitly stated using mod N , all expressions and equations are over Z. We consider
the natural embedding of UN into Z.

Proof. Let wa = 1{a+ r > N − 1} and wb = 1{b+ r > N − 1}, then (b− a) can be written as:

(b− a) = (b+ r − wb ·N)− (a+ r − wb ·N)

= b̃− ã+ (wb − wa) ·N (4)

We start by looking at the statement of the predicate Q(x).

x+ (b− a) mod N < b̃

x+ (b− a) mod N < r + b mod N

x+ (b− a) mod N < (r + a) + (b− a) mod N

x+ (b− a) mod N < ã+ (b− a) mod N (5)

Now, we use the fact that b > a and lift the predicate inequality (Equation 5) to Z.

x+ (b− a)− ex ·N < ã+ (b− a)− ea ·N over Z

x+ (b̃− ã+ (wb − wa) ·N)− ex ·N < ã+ (b− a)− ea ·N (From Equation 4)

x+ (b̃− ã+ (wb − wa) ·N)− ex ·N < (a+ r − wa ·N) + (b− a)− ea ·N
x+ (b̃− ã+ (wb − wa) ·N)− ex ·N < (b+ r − wa ·N)− ea ·N

x+ (b̃− ã)− ex ·N < (b+ r − wb ·N)− ea ·N
x+ (b̃− ã)− ex ·N < b̃− ea ·N

x < ã+ (ex − ea) ·N

48

Therefore, we can substitute the statement of predicate Q(x) with x < ã+ (ex − ea) ·N . Now, we do a case
analysis on relation between ex and ea to prove that P (x) = Q(x) + (ea − ex).

– Case ea = ex: In this case, Q(x) + (ea − ex) = Q(x) = (x < ã) = P (x).
– Case ex < ea: In this case, x < ã by Lemma 6 and ex = 0, ea = 1. Now, Q(x) = (x < ã−N) = 0 because

0 6 x, ã < N . Hence, Q(x) + (ea − ex) = 1 = P (x).
– ex > ea: In this case, x > ã by Lemma 6 and ex = 1, ea = 0. Now, Q(x) = (x < ã + N) = 1. Hence,
Q(x) + (ea − ex) = 0 = P (x).

This proves P (x) = Q(x) + (ea − ex).
In order to prove P ′(x) = Q′(x) + (ea − ex), we make use of the following:

P ′(x) = P (x) + 1{x = ã} (6)

Q′(x) = Q(x) + 1{x+ (b− a) mod N = b̃} (7)

It is straightforward to see why this is true. Let’s look at the first equation P ′(x) = P (x) + 1{x = ã}. The
only value of x where P (x) and P ′(x) differ is x = ã, P (ã) outputs 0, while P ′(ã) outputs 1. For x = ã,
according to the equation, P ′(ã) = P (ã) + 1 = 1, which matches the expected output of P ′(ã). Similarly,
Equation 7 can be proven. Using Equation 4, the term 1{x+ (b− a) mod N = b̃} in Equation 7 can also be
rewritten as 1{x = ã}. Therefore,

Q′(x) = Q(x) + 1{x = ã} (8)

Replacing the value of P (x) and Q(x) from Equations 6 and 8 in P (x) = Q(x) + (ea − ex), we get

P ′(x)− 1{x = ã} = Q′(x)− 1{x = ã}+ (ea − ex)

P ′(x) = Q′(x) + (ea − ex)

G.3 Proof of Lemma 2

In the following unless explicitly stated using mod N , all expressions and equations are over Z. We consider
the natural embedding of UN into Z.

Proof. Using the basic wrap around property in UN , we have: c′ = c+1−wN over Z, where w = 1{c = N−1}.
Therefore, c = c′ − 1 + wN . Replacing c in the statement of R(x), we get:

x 6 c′ − 1 + wN

x < c′ + wN

When w = 0, i.e. c 6= N − 1, the statement of R(x) becomes x < c′, which is the same as predicate S(x).
On the other hand, when w = 1, we have c′ = 0, and R(x) becomes x < N which always outputs 1. In this
case, S(x) becomes x < 0 and therefore, always outputs 0. Hence, R(x) = S(x)+1{c = N−1} is correct.

G.4 Interval Containment using f<
(N−1)+rin,N−1

and f6
(N−1)+rin,1

Here we show a construction of FSS gate for gIC,n,p,q that reduces any public interval [p, q] to f<
(N−1)+rin,N−1

and f6
(N−1)+rin,1

in Fig. 13. This construction relies on Lemma 1 and builds over the simple interval contain-

ment from Fig. 2.

G.5 FSS Gate for Multiple Interval Containments

Fig. 14 shows our FSS gate construction for multiple interval containments.

49

Interval Containment Gate (GenIC
n,p,q,Eval

IC
n,p,q)

GenIC
n,p,q(1

λ, rin, rout):

1: Set γ = (N − 1) + rin ∈ UN .

2: (k
(L)
0 , k

(L)
1)← Gen<n (1λ, γ,N − 1,UN).

3: (k
(R)
0 , k

(R)
1)← Gen6n (1λ, γ, 1,UN).

4: Set α(p) = p+ rin ∈ UN and α(q) = q + rin ∈ UN .
5: Sample random z0, z1 ← UN s.t. z0 + z1 = rout + 1{α(p) > α(q)} − 1{α(p) > p}+ 1{α(q) > q}.
6: For b ∈ {0, 1}, let kb = k

(L)
b ||k

(R)
b ||zb.

7: return (k0, k1).

EvalICn,p,q(b, kb, x):

1: Parse kb = k
(L)
b ||k

(R)
b ||zb.

2: Set x(p) = x+ (N − 1− p) ∈ UN and x(q) = x+ (N − 1− q) ∈ UN .

3: Set s
(p)
b ← Eval<n (b, k

(L)
b , x(p)).

4: Set s
(q)
b ← Eval6n (b, k

(R)
b , x(q)).

5: return yb = b · (1{x > p} − 1{x > q}) + s
(p)
b + s

(q)
b + zb.

Fig. 13: Construction for FSS Gate for Interval Containment GIC using f<
(N−1)+rin,N−1

and f6
(N−1)+rin,1

, b

refers to party id.

Multiple Interval Containment Gate (GenMIC
n,m,{pi,qi}i ,Eval

MIC
n,m,{pi,qi}i)

GenMIC
n,m,{pi,qi}i(1

λ, rin, {rout
i }i):

1: Set γ = (N − 1) + rin ∈ UN .

2: (k
(N−1)
0 , k

(N−1)
1)← Gen<n (1λ, γ, 1,UN).

3: for i = {1, . . . ,m} do
4: Set q′i = qi + 1 ∈ UN , α

(p)
i = pi + rin ∈ UN , α

(q)
i = qi + rin ∈ UN and α

(q′)
i = qi + 1 + rin ∈ UN .

5: Sample random zi,0, zi,1 ← UN s.t.

zi,0 + zi,1 = rout
i + 1{α(p)

i > α
(q)
i } − 1{α(p)

i > pi}+ 1{α(q′)
i > q′i}+ 1{α(q)

i = N − 1}.
6: end for
7: For b ∈ {0, 1}, let kb = k

(N−1)
b ||{zi,b}i.

8: return (k0, k1).

EvalMIC
n,m,{pi,qi}(b, kb, x):

1: Parse kb = k
(N−1)
b ||{zi,b}i.

2: for i = {1, . . . ,m} do
3: Set q′i = qi + 1 mod N .

4: Set x
(p)
i = x+ (N − 1− pi) ∈ UN and x

(q′)
i = x+ (N − 1− q′i) ∈ UN .

5: Set s
(p)
i,b ← Eval<n (b, k

(N−1)
b , x

(p)
i).

6: Set s
(q′)
i,b ← Eval<n (b, k

(N−1)
b , x

(q′)
i).

7: yi,b = b · (1{x > pi} − 1{x > q′i})− s
(p)
i,b + s

(q′)
i,b + zi,b.

8: end for
9: return {yi,b}i.

Fig. 14: FSS Gate for Multiple Interval Containment GMIC. b refers to party id.

50

H Applications of Public Intervals

In this section, we present our FSS gate construction for Most Significant Non-Zero Bit function which is
heavily used in many scientific computing applications [4, 5]. Later in the section, we formally describe our
construction for bit decomposition and prove its correctness.

H.1 Most Significant Non-Zero Bit (MSNZB)

Securely computing mathematical functions such as division (with a secret divisor), square root, trigonometric
functions, logarithms and exponentials are crucial for many scientific computation tasks. Secure computation
protocols for these functions has received much attention [4,5,27]. One of the most important sub-functions
that is used in the secure computation of such functions is that of MSNZB, which is the unit vector indicating
the position of the most significant non-zero bit. Mathematically, consider x ∈ UN \ {0} parsed as x =
xn−1|| . . . ||x0. For j ∈ {0, . . . , n − 1}, define ej ∈ UnN to be the unit vector with 1 at the jth location and
0 elsewhere. Then, MSNZB(x) = ej such that xj = 1 and xk = 0,∀k > j. For completeness, MSNZB(0) is
defined to be 0n.

We now present a construction of an FSS gate for MSNZB. The MSNZB gate GMSNZB is the family of
functions {gMSNZB,n : UN → UnN} parameterized by input and output groups Gin = UN ,Gout = UnN and
given by

GMSNZB = {gMSNZB,n : UN → UnN}, gMSNZB,n(x) = MSNZB(x)

We denote the corresponding offset gate class by ĜMSNZB and the offset functions by ĝ
[rin,{rout

i }]
MSNZB,n(x) =

gMSNZB,n(x− rin) + (rout
n−1, . . . , r

out
0), where the addition is done element-wise.

First, observe that MSNZB(x) = ej if and only if x ∈ [2j , 2j+1− 1]. Using this, we construct an FSS gate
for GMSNZB, by reducing it to the problem of multiple public interval containments that we constructed in
Section 4.2. The theorem below captures our result formally.

MSNZB Gate (GenMSNZB
n ,EvalMSNZB

n)
GenMSNZB

n (1λ, rin, {rout
i }i):

1: For i ∈ {0, 1, . . . , n− 1}, define pi = 2i and qi = 2i+1 − 1.
2: return (k0, k1)← GenMIC

n,n,{pi,qi}i(1
λ, rin, {rout

i }i).

EvalMSNZB
n (b, kb, x):

1: For i ∈ {0, 1, . . . , n}, define pi = 2i and qi = 2i+1 − 1.
2: return {zi,b}i ← EvalMIC

n,n,{pi,qi}i(b, kb, x)

Fig. 15: FSS Gate for Most Significant Non-Zero Bit GMSNZB, b refers to party id.

Theorem 14. There is an FSS gate (GenMSNZB
n ,EvalMSNZB

n) for GMSNZB that has key size equivalent to GMIC

over UN computing n public intervals and evaluates it only once.

Proof. Our construction of FSS Gate for MSNZB is given in Fig. 15. The security of this construction follows
from the security of FSS gate for GMIC. For correctness, we first use the fact that MSNZB(x) = ej if and only
if x ∈ [2j , 2j+1 − 1]. Next, let zi = zi,0 + zi,1 ∈ UN . Then, by correctness of FSS gate for GMIC, it holds that
zi = 1{2i 6 (x− rin) 6 2i+1− 1}+ rout

i . Also, note that all intervals [pi, qi] for i ∈ {0, . . . , n− 1} are disjoint.
Hence, for x ∈ [2j , 2j+1 − 1], zj = 1 + rout

j , and zi = rout
i for all i ∈ {0, . . . , n − 1} \ j. It is easy to see that

for the corner case of x = 0, all zi = rout
i .

H.2 Bit Decomposition

We present the full construction of the FSS gate for GBIT in Fig. 16.

Lemma 8. The FSS gate presented in Fig. 16 for GBIT is correct.

51

BIT Gate (GenBIT
n,w,Eval

BIT
n,w)

GenBIT
n,w(1λ, rin, {rout

i }i):
1: (k0, k1) = (φ, φ), i = n− 1.
2: while i > 0 do
3: n′ = i+ 1, N ′ = 2n

′
, rin′ = rin

[0,i+1) ∈ UN′ , γ′ = N ′ − 1 + rin′ mod N ′ ∈ UN′ .
4: (k

(i)
0 , k

(i)
1)← Gen<n′(1

λ, γ′, 1,UN).
5: j = 0.
6: while j < w & i− j > 0 do
7: p = i− j.
8: S(i,j) = {[2p + k · 2p+1, 2p+1 + k · 2p+1 − 1], ∀k ∈ {0, 1, . . . 2i−p − 1}}.
9: z(i,j) = rout

p ∈ UN .

10: for [a0, a1] ∈ S(i,j) do

11: α(a0) = a0 + rin′, α(a1) = a1 + rin′, α(a′1) = a1 + 1 + rin′ ∈ UN′ .
12: z(i,j) = z(i,j) + 1{α(a0) > α(a1)} − 1{α(a0) > a0}+ 1{α(a′1) > a1 + 1 mod N ′}+ 1{α(a1) = N ′ − 1}.
13: end for
14: Sample random z

(i,j)
0 , z

(i,j)
1 ∈ UN s.t. z

(i,j)
0 + z

(i,j)
1 = z(i,j).

15: j = j + 1
16: end while
17: For b ∈ {0, 1}, kb = kb||(k(i)b ||{z

(i,j)
b }j).

18: i = i− w
19: end while
20: return (k0, k1).

EvalBIT
n,w(b, kb, x):

1: k′b = kb, i = n− 1.
2: while i > 0 do
3: Parse k′b = (k

(i)
b ||{z

(i,j)
b }j)||tb. Set k′b = tb.

4: n′ = i+ 1, N ′ = 2n
′
, x′ = x[0,i+1) ∈ UN′ .

5: j = 0.
6: while j < w & i− j > 0 do
7: p = i− j.
8: S(i,j) = {[2p + k · 2p+1, 2p+1 + k · 2p+1 − 1], ∀k ∈ {0, 1, . . . 2i−p − 1}}.
9: y

(i,j)
b = z

(i,j)
b .

10: for [a0, a1] ∈ S(i,j) do

11: a′1 = a1 + 1 mod N ′, x(a0) = x′ + (N ′ − 1− a0) ∈ UN′ , x(a
′
1) = x′ + (N ′ − 1− a′1) ∈ UN′ .

12: s
(i,j,a0,a1)
b,0 ← Eval<n′(b, k

(i)
b , x(a0)).

13: s
(i,j,a0,a1)
b,1 ← Eval<n′(b, k

(i)
b , x(a

′
1)).

14: y
(i,j)
b = y

(i,j)
b + b(1{x′ > a0} − 1{x′ > a′1})− s

(i,j,a0,a1)
b,0 + s

(i,j,a0,a1)
b,1 .

15: end for
16: j = j + 1
17: end while
18: i = i− w
19: end while
20: return {y(i,j)b }i,j .

Fig. 16: FSS Gate for Bit Decomposition GBIT. b refers to party id and φ refers to the empty string. w refers
to a parameter in our construction and which we set as w = dlog ne.

52

Proof. We analyze a particular iteration of the loops for iterators (i, j) in Fig. 16.

y(i,j) = y
(i,j)
0 + y

(i,j)
1

= z(i,j) +
∑

(a0,a1)∈S(i,j)

(
1{x′ > a0} − 1{x′ > a′1} − (s

(i,j,a0,a1)
0,0 + s

(i,j,a0,a1)
1,0)

+(s
(i,j,a0,a1)
0,1 + s

(i,j,a0,a1)
1,1)

)

= rout
i−j +

∑
(a0,a1)∈S(i,j)

β(i,j,a0,a1)

where

β(i,j,a0,a1) = 1{x′ > a0} − 1{x′ > a′1} − 1{x(a0) < γ′}+ 1{x(a′1) < γ′}

+ 1{α(a0) > α(a1)} − 1{α(a0) > a0}+ 1{α(a′1) > a1 + 1 mod N ′}+ 1{α(a1) = N ′ − 1}
(9)

By the correctness of IC construction in Fig. 3, we have the following for x ∈ UN

1{p 6 (x− rin) mod N 6 q}+ rout = 1{x > p} − 1{x > q′} − 1{x(p) < γ}+ 1{x(q′) < γ}

+ 1{α(p) > α(q)} − 1{α(p) > p}+ 1{α(q′) > q′}+ 1{α(q) = N − 1}+ rout
(10)

We use the above equation in Equation 9 by setting N = N ′, p = a0, q = a1, r
in = rin′, rout = 0n

′
, x =

x′, γ = γ′, q′ = a′1 = a1 + 1 mod N ′ to get

β(i,j,a0,a1) = 1{a0 6 (x′ − rin′) mod N ′ 6 a1}

Therefore,

y(i,j) = rout
i−j +

∑
(a0,a1)∈S(i,j)

1{a0 6 (x′ − rin′) mod N ′ 6 a1} (11)

We next prove the following claim.

Claim. If w′ = (x′ − rin′) mod N ′ and w = (x− rin) mod N , then
∑

(a0,a1)∈S(i,j) 1{a0 6 w′ 6 a1} = w[i−j].

Proof. Note that since x′ = x[0,i+1), r
in′ = rin

[0,i+1) and N ′ = 2n
′

= 2i+1, we have w′ = w[0,i+1). Also, note
that ∑

(a0,a1)∈S(i,j)

1{a0 6 w′ 6 a1} =
∑

k∈{0,1,...2j−1}

1{2p + k · 2p+1 6 w′ 6 2p+1 − 1 + k · 2p+1}

where p = i− j. Note that each of the intervals in the summations is a disjoint interval and only one of them
can ever be 1. We find one such interval in this summation for w[i−j], which would prove our claim.

If w′ = w[i−j+1,i+1)||w[i−j]||w[0,i−j) is the bit-representation of w′, we have w′ = w[i−j+1,i+1) · 2i−j+1 +
w[i−j] · 2i−j + w[0,i−j). Setting k′ = w[i−j+1,i+1) and bounding by the maximum and minimum values of
w[0,i−j) as 2i−j − 1 and 0 respectively, we get

k′ · 2i−j+1 + w[i−j]2
i−j 6 w′ 6 k′ · 2i−j+1 − 1 + (w[i−j] + 1)2i−j

Clearly, now w[i−j] = 1⇐⇒ 1{k′ · 2i−j+1 + 2i−j 6 w′ 6 k′ · 2i−j+1− 1 + 2i−j+1} = 1. The claim follows.

From Equation 10 and the above claim, we have

y(i,j) = rout
i−j + w[i−j],where w = (x− rin) mod N

I Proofs and Supplemental Material for Section 6

In this section, we first describe the FSS gate constructions for addition and multiplication from [21]. We
then present the proof of Lemma 3 over which we build our LRS FSS gate. Finally, we provide the proof
of Lemma 4 used in our ARS construction.

53

I.1 Addition

The addition gate G+ is the family of functions g+,n : UN × UN → UN parameterized by input group
Gin = UN × UN and output group Gout = UN , and given by g+,n(x1, x2) := x1 + x2. We denote the

corresponding offset gate class by Ĝ+ and the offset functions by ĝ
[rin
1 ,r

in
2 ,r

out]
+,n (x1, x2) = g+,n(x1− rin

1 , x2− rin
2) +

rout = (x1 − rin
1) + (x2 − rin

2) + rout.

Proposition 1 (Addition gate). There is an FSS Gate (Gen+
n ,Eval

+
n) for G+ that has a total key size of n

bits.

Proof. We present our construction of FSS Gate for + formally in Fig. 17.

Addition Gate (Gen+n ,Eval
+
n)

Gen+n (1λ, rin
1 , r

in
2 , r

out):

1: Sample random R0, R1 ← UN s.t. R0 +R1 = rout − (rin
1 + rin

2).
2: For b ∈ {0, 1}, let kb = Rb.
3: return (k0, k1).

Eval+n (b, kb, x1, x2):

1: Parse kb = Rb.
2: return x1 + x2 +Rb.

Fig. 17: FSS Gate for Addition G+, b refers to party id.

I.2 Multiplication

Multiplication of two values x1, x2 ∈ UN refers to the multiplication of the two values x1 and x2 carried out
in the group UN . The multiplication gate G× is the family of functions g×,n : UN ×UN → UN parameterized
by input group Gin = UN × UN and output group Gout = UN , and given by g×,n(x1, x2) := x1 · x2. We

denote the corresponding offset gate class by Ĝ× and the offset functions by ĝ
[rin
1 ,r

in
2 ,r

out]
×,n (x1, x2) = g×,n(x1 −

rin
1 , x2 − rin

2) + rout = (x1 − rin
1) · (x2 − rin

2) + rout.

Proposition 2 (Multiplication gate). There is an FSS Gate (Gen×n ,Eval
×
n) for G× that has a total key size

of 3n bits.

Proof. We present the construction of FSS Gate for × formally in Fig. 18.

Multiplication Gate (Gen×n ,Eval
×
n)

Gen×n (1λ, rin
1 , r

in
2 , r

out):

1: Sample random P0, P1 ← UN s.t. P0 + P1 = rin
1 .

2: Sample random Q0, Q1 ← UN s.t. Q0 +Q1 = rin
2 .

3: Sample random R0, R1 ← UN s.t. R0 +R1 = rin
1 · rin

2 + rout.
4: For b ∈ {0, 1}, let kb = Pb||Qb||Rb.
5: return (k0, k1).

Eval×n (b, kb, x1, x2):

1: Parse kb = Pb||Qb||Rb.
2: return b · (x1 · x2)− x1 ·Qb − x2 · Pb +Rb.

Fig. 18: FSS Gate for Multiplication G×, b refers to party id.

54

I.3 Proof of Lemma 3

Proof. Let x0 = x
(0)
0 + 2s · x(1)

0 and x1 = x
(0)
1 + 2s · x(1)

1 , where x
(0)
b = xb[0,s) and x

(1)
b = xb[s,n). Also,

x = x0 + x1 − 2n · t(n). Hence, we can write

x = x
(0)
0 + 2s · x(1)

0 + x
(0)
1 + 2s · x(1)

1 − 2n · t(n)

= 2s · (x(1)
0 + x

(1)
1)− 2n · t(n) + x

(0)
0 + x

(0)
1

= 2s · (x(1)
0 + x

(1)
1 + t(s))− 2n · t(n) + x

(0)
0 + x

(0)
1 − 2s · t(s)︸ ︷︷ ︸
<2s

The sum of the last 3 terms in the above expression is < 2s. Thus,

(x�L s) = x
(1)
0 + x

(1)
1 + t(s) − 2n−s · t(n)

= (x0 �L s) + (x1 �L s) + t(s) − 2n−s · t(n)

I.4 Proof of Lemma 4

Proof. All the equations below are over UN . Substring function on signed integer x ∈ SN is defined as:
x[0,i) = (x mod N)[0,i) ∈ U2i . Similarly, the bit function on signed x ∈ SN is: x[i] = (x mod N)[i]. Using
mathematical definitions of logical right shift and arithmetic right shift, it is easy to see that:

(x�A s) ≡s (x[0,n−1) �L s) +

s∑
i=0

2n−s−1+i · x[n−1] (12)

Next, we observe the following:

x[n−1] . . . x[n−1] . . . x[n−1]︸ ︷︷ ︸
n

= 2n − x[n−1]

x[n−1] . . . x[n−1]︸ ︷︷ ︸
s+1

0 . . . 0︸ ︷︷ ︸
n−s−1

= 2n−s−1 · (2n − x[n−1])

x[n−1] . . . x[n−1]︸ ︷︷ ︸
s+1

0 . . . 0︸ ︷︷ ︸
n−s−1

= 2n − 2n−s−1 · x[n−1]

Now, we can rewrite the LHS of the above equation as:

s∑
i=0

2n−s−1+i · x[n−1] = 2n − 2n−s−1 · x[n−1]

Using the above in Equation 12, we get

(x�A s) ≡s (x[0,n−1) �L s)− 2n−s−1 · x[n−1] (13)

Next, note that x[0,n−1) = x0[0,n−1) + x1[0,n−1) over U2n−1 . Hence, using Lemma 3, following holds over Z
and hence, also over UN .

(x[0,n−1) �L s) = (x0[0,n−1) �L s) + (x1[0,n−1) �L s) + t(s) − 2n−s−1 · t(n−1)

Replacing this in Equation 13, we get our final expression.

55

	Function Secret Sharing for Mixed-Mode and Fixed-Point Secure Computation
	Introduction
	MPC with Preprocessing Through FSS
	Our Contributions
	Other Related Works
	Organization

	Preliminaries
	Data Types and Operators
	Function Secret Sharing
	FSS Gates

	Optimized Distributed Comparison Function
	Public Intervals and Multiple Interval Containments
	Realizing FSS gate for [p,q] using FSS scheme for f<(N-1)+rin,1
	FSS Gate for Multiple Interval Containments

	Applications of Public Intervals
	Splines with Public Intervals
	Bit Decomposition

	FSS Gates for Fixed-Point Arithmetic
	Fixed-Point Addition and Multiplication
	Logical Right Shift
	Arithmetic Right Shift
	Comparison

	FSS Barrier for Fixed-Point Multiplication
	References
	Realizing the Dealer
	Extending Doerner-shelat to DCF
	Distributed Generation via Generic 2PC

	Malicious Security
	Comparison with Garbled Circuits
	Garbled Circuits in the Preprocessing Model
	Garbled Circuits vs Our Protocols

	FSS Gates Syntax
	Additional Preliminaries
	Representing Functions
	Secure Computation with Preprocessing
	Secure Computation from FSS

	Optimized DCF: Proof and Dual DCF
	Proof of DCF Theorem
	Dual Distributed Comparison Function (DDCF)

	Proofs and Supplemental Material for [sec:comp-ic]Section 4
	Proof of correctness of [fig:IC-simple]Fig. 2
	Proof of [lem:interval-reduction]Lemma 1
	Proof of [lem:ic:1dcf]Lemma 2
	Interval Containment using f<(N-1)+rin,N-1 and f(N-1)+rin,1
	FSS Gate for Multiple Interval Containments

	Applications of Public Intervals
	Most Significant Non-Zero Bit (MSNZB)
	Bit Decomposition

	Proofs and Supplemental Material for [sec:fss-fixed-point]Section 6
	Addition
	Multiplication
	Proof of [lem:lrs]Lemma 3
	Proof of [lem:ars]Lemma 4

