
Novel Single-Trace ML Profiling Attacks on NIST 3 Round

candidate Dilithium

Il-Ju Kim
Kookmin University
Republic of Korea

kimij2905@kookmin.ac.kr

Tae-Ho Lee
Kookmin University
Republic of Korea

20141932@koominac.kr

Jaeseung Han
Kookmin University
Republic of Korea

jae1115@kookmin.ac.kr

Bo-Yeon Sim
Kookmin University
Republic of Korea

qjduslsl@kookmin.ac.kr

Dong-Guk Han
Kookmin University
Republic of Korea

christa@kookmin.ac.kr

ABSTRACT

Dilithium1 is a lattice-based digital signature, one of the finalist

candidates in the NIST's standardization process for post-quantum

cryptography. In this paper, we propose a first side-channel attack

on the process of signature generation of Dilithium. During the

Dilithium signature generation process, we used NTT encryption

single-trace for machine learning-based profiling attacks. In

addition, it is possible to attack masked Dilithium using sparse

multiplication. The proposed method is shown through

experiments that all key values can be exposed 100% through a

single-trace regardless of the optimization level.

CCS CONCEPTS

• Security and privacy → Security in hardware → Hardware

attacks and countermeasures → Side-channel analysis and

countermeasures • Security and privacy → Cryptography →

Public key (asymmetric) techniques → Digital signatures

KEYWORDS

Dilithium, side-channel attack, lattice-base, digital signature

ACM Reference format:

I. Kim, T. Lee, J. Han, B. Sim, and D. Han. 2020. In Proceedings of ACM

Woodstock conference, El Paso, Texas USA, July 1997 (WOODSTOCK’97),

4 pages. https://doi.org/10.1145/123 4

1 INTRODUCTION

The digital signatures are a way of proving the identity of the sender

in the network. As the non-face-to-face society becomes

mainstream due to the Covid-19 virus, the importance of digital

signatures that provide authentication is increasing. Digital

signatures mainly adopt the public key infrastructure (PKI), which

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

is based on the difficulty of the problems, such as factorization and

discrete logarithm. However, the construction based on these

problems can succumb to Shor’s [1] algorithm, which can defeat

these systems in polynomial time, using a quantum computer.

Recently, experts estimated that quantum computers would be

arriving 10 to 15 years [2]. Therefore, the existing cryptographic

systems should be replaced by a system that is resistant to quantum

computers.

The national institute of standards and technology (NIST)

announced the standardization of post-quantum cryptography

(PQC) in December 2016 to address these issues. Over the years,

standardization has been made for algorithm submitted to public-

key encryption, key encapsulation mechanism, and digital

signature. The third-round candidate algorithms were announced in

July 2020, and the remaining algorithms are seven finalists and

eight alternative algorithms [4]. Among finalists, digital signatures

include three algorithms, two lattice-based (CRYSTALS-

DILITHIUM, FALCON), and one multivariate-based (Rainbow).

NIST considered three aspects of the evaluation criteria used to

compare candidate algorithms in the PQC standardization process:

1) security, 2) cost and performance, and 3) algorithm and

implementation characteristics [3]. NIST also explicitly states that

it wants to “collect more information about the costs of

implementing in a way that provides resistance to side-channel

attacks”. Therefore, the side-channel attack case for this is of

considerable importance.

Side-channel attacks [5] is an attack to extract cryptographic

keys using side-channel information, such as power consumption,

electromagnetic radiation, and execution time, when cryptographic

algorithms operate. The method of side-channel attack is

differential power analysis (DPA), cache attack (CA), template

attack (TA), Fault attack (FA), etc., which are used for attacks on

ICEA 2020, December 12-15, 2020, Gangwon, Republic of Korea

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6843-8/20/10. . . $15.00

https://doi.org/10.1145/123_4

ICEA 2020, December 12-15, 2020, Gangwon, Republic of Korea I. Kim et al.

2

many cryptographic. Lattice-based digital signatures are also at risk

for various side-channel attacks. In the lattice-based digital

signatures, the main target operations of side-channel attacks

include polynomial multiplication [12], gaussian sampling [13, 14],

and number-theoretic transform (NTT) [6, 7] operation.

1.1 Related Works

The first single-trace attack on lattice-based schemes targeting NTT

is the attack of Primas et al. [6] in CHES 2017. However, this attack

is not applicable because NTT is currently implemented as

constant-time; the timing information of modular operations is no

longer available. This attack was improved by Pessl et al. [7]. They

did a template attack using information when data loading and

storing during NTT encryption. They succeeded in a single-trace

attack over Kyber, but they said that it is really difficult to apply an

improved attack in Dilithium. They restored the full key of Kyber

with a probability of at first time 57% and restored the full key to

95%, using lattice reduction described in Primas et al. [6].

1.2 Our Contribution

In this work, we show a single-trace attack on Dilithium for the first

time. We present a novel side-channel attack using NTT encryption.

In addition, even if the countermeasure is applied to the Dilithium,

we can show that single-trace attacks are possible through

polynomial multiplication.

1.1.2 First single-trace attacks on Dilithium

We present single-trace attacks on Dilithium [9]. The target

operation is NTT encryption. We used the leaked information in

load, save, and Montgomery reduction operation of power

consumption trace. The method of attack is a machine learning-

based profiling attack. We describe the proposed attack that uses a

single-trace to find the full key at 100% regardless of an

optimization level.

1.1.2 First single-trace attacks on Masked Dilithium

We present single-trace attacks on Masked Dilithium [10]. The

target operation is sparse multiplication. We used the leaked

information in load, save, and multiplication operation of power

consumption trace. The method of attack is a machine learning-

based profiling attack. We describe the proposed attack that uses a

single-trace to find the full key at 100% regardless of an

optimization level.

2 PRELIMINARIES

2.1 Notation

For a prime number 𝑞 = 8380417 , we let 𝑅 and 𝑅𝑞 the rings

ℤ[𝑥]/(𝑋256 + 1) and ℤ𝑞[𝑥]/(𝑋256 + 1) , respectively.

Multiplication of two polynomials 𝑎, 𝑏 ∈ 𝑅𝑞 is denoted as 𝑎 ∙ 𝑏 ∈

𝑅𝑞. The 𝑖-th coefficient of polynomial 𝑎 ∈ 𝑅𝑞 is denoted as 𝑎[𝑖].

Matrices and vectors of polynomials in 𝑅𝑞 are denoted as 𝑎 ∈

𝑅𝑞
𝑘×ℓ, 𝑏 ∈ 𝑅𝑞

ℓ . The NTT domain representation is denoted as 𝑎̂ =

NTT(𝑎) ∈ ℤ𝑞
256 of a polynomial 𝑎 ∈ 𝑅𝑞 , and Point-wise

multiplication is denoted as 𝑐̂ = 𝑎̂ ∘ 𝑏̂.

2.2 Side-channel leakage model

We assume that the intermediate value of devices is related to the

power consumption trace. Therefore, it is assumed that if a device

uses a secret value of 𝑠 as the intermediate value, the information

related to the 𝑠 can leak from the power consumption trace.

𝑃𝑡𝑜𝑡𝑎𝑙~𝑠 (𝑃𝑡𝑜𝑡𝑎𝑙 ∶ power consumption, ~ ∶ relation)

2.3 Number theoretic transform (NTT)

In lattice-based schemes, polynomial multiplication is considered

as one of the most expensive operations. To efficiently compute

this, NTT-based multiplication of polynomials is often adopted.

When the 512-th root of unity in modulo 𝑞 is 𝑟, the domain can be

changed using isomorphic such as ℤ𝑞[𝑋]/(𝑋 − 𝑟𝑖) ≅ ℤ𝑞 , and the

multiplication on the ring 𝑅𝑞 can be easily multiplied by pointwise

multiplication.

2.4 Machine Learning based profiling attack

A profiling attack is an attack method that generates a profile

through another device with the same or similar specifications as

the attack device and finds a secret key by comparing the

probability of matching the profile with the trace obtained from an

actual attack device. The attack is divided into two phases: a

learning phase and an attack phase. During the learning phase,

generate the profile to be used in the attack phase. In order to do so,

the learning phase determines which values to learn and which

models to use. These are called labeling and modeling, respectively.

In this paper, the secret keys are chosen as the labeling value, and

the modeling uses a multi-layer perceptron (MLP). The MLP

consist of three layers (input layer, hidden layer, outpour layer), and

each layer has a node, which learns the secret keys by changing its

weight.

3 DILITHIUM ALGORITHM

Dilithium is a lattice-based digital signature algorithm and is

designed based on Module-LWE and Module-SIS problems. The

principle of Dilithium is ‘Fiat-Shamir with abort’ and ‘public key

(PK) compression’. The algorithm consists of three stages: key

generation, signature generation, and signature verification, and

supports a NIST category 1, 2, and 3.

3.1 Dilithium algorithms

We describe Dilithium signature generation and NTT encryption

schemes [9].

Table 1: Dilithium signature generation scheme.

1 Procedure SignGen (𝑠𝑘, 𝑀 ∈ {0,1} ∗)

2 𝐴̂ ∈ 𝑅𝑞
𝑘×ℓ ≔ ExpandA(𝜌)

3 𝜇 = 𝐶𝑅𝐻(𝑡𝑟 ∥ 𝑀)

4 𝜅 = 0, (𝑧, ℎ) =⊥

5 𝜌′ ∈ {0,1}384 ≔ 𝐶𝑅𝐻(𝐾 ∥ 𝜇)

6 𝑠1̂ = NTT(𝑠1)

7 𝑠2̂ = NTT(𝑠2)

Novel Single-Trace ML Profiling Attacks on NIST 3 Round

candidate Dilithium
ICEA 2020, December 2020, Republic of Korea

 3

8 𝑡0̂ = NTT(𝑡0)

9 while (𝑧, ℎ) =⊥ do

10 𝑦 ∈ 𝑆𝛾1−1
ℓ ≔ ExpandMask(𝜌′ ∥ 𝜅)

11 𝑦̂ = NTT(𝑦)

12 𝑤 = INTT(𝐴̂ ∘ 𝑦̂)

13 (𝑤1, 𝑤0) = 𝐷𝑞(𝑤, 2𝛾2)

14 𝑐 ∈ 𝐵60 = 𝐻(𝜇 ∥ 𝑤1)

15 𝑐̂ = NTT(𝑐)

16 𝑧 = 𝑦 + INTT(𝒄̂ ∘ 𝒔𝟏̂)

17 𝑟 = INTT(𝒄̂ ∘ 𝒔𝟐̂)

18 (𝑟1, 𝑟0) ≔ 𝐷𝑞(𝑤 − 𝑟, 2𝛾2)

19 If ‖𝑧‖∞ ≥ 𝛾1 − 𝛽 or ‖𝑟0‖∞ ≥ 𝛾2 − 𝛽
 𝑜𝑟 𝑟1 ≠ 𝑤1 then (𝑧, ℎ) =⊥

20 else

21 𝑔 = INTT(𝒄̂ ∘ 𝒕𝟎̂)

22 ℎ = MakeHint(−𝑔, 𝑤 − 𝑟 + 𝑔, 2𝛾2)

23 if ‖𝑟‖∞ ≥ 𝛾2 𝑜𝑟 𝑤𝑡(ℎ) > 𝑤 𝑡ℎ𝑒𝑛

24 (𝑧, ℎ) =⊥

25 end

26 end

27 return 𝜎 = (𝑧, ℎ, 𝑐)

 The operations used for attacking Dilithium

highlighted in red, and those used for attacking

masked Dilithium are shown is blue

Table 2: Dilithium NTT scheme.

1 Procedure NTT (𝑝[𝑁])

2 𝑘 = 1

3 for (𝑙𝑒𝑛 = 128; 𝑙𝑒𝑛 > 0; 𝑙𝑒𝑛 ≫= 1)

4 for (𝑠𝑡𝑎𝑟𝑡 = 0; 𝑠𝑡𝑎𝑟𝑡 < 𝑁; 𝑠𝑡𝑎𝑟𝑡 = 𝑗 + 𝑙𝑒𝑛)

5 𝑧𝑒𝑡𝑎 = 𝑧𝑒𝑡𝑎𝑠[𝑘]
6 𝑘 ≔ 𝑘 + 1

7 for (𝑗 = 𝑠𝑡𝑎𝑟𝑡; 𝑗 < 𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑒𝑛; + + 𝑗)

8 𝑡 = Mont_r((𝑢𝑖𝑛𝑡64)𝑧𝑒𝑡𝑎 ∗ 𝑝[𝑗 + 𝑙𝑒𝑛])

9 𝑝[𝑗 + 𝑙𝑒𝑛] = 𝑝[𝑗] + 2 ∗ 𝑄 − 𝑡

10 𝑝[𝑗] = 𝑝[𝑗] + 𝑡

𝑧𝑒𝑡𝑎𝑠 : precomputed table for converting to NTT domain

Mont_r : Montgomery reduction, 𝑄 ∶ prime, 𝑁 : dimension

NTT operation consists of a total of eight stages. The stage is

determined by 𝑙𝑒𝑛 variable of Table 2. The value of the 𝑙𝑒𝑛

according to a stage is as follows: stage 𝑚 → 𝑙𝑒𝑛 = 28−𝑚. In the

first stage, the 𝑝[𝑗] value is a secret value, and load, Montgomery

reduction, and save operations occur in the highlighted operation in

colors. Therefore, at line 6 in Table 1, information related to 𝑠1 will

be included in the power consumption trace. Line 7,8 is the same.

3.2 Masked Dilithium

The masking scheme for Dilithium was first proposed by Milgliore

et al. [8]. However, due to problems with limitation performance

and target boards, they focused on the optimized version of

modulus, a power of two, not prime modulus. Therefore, NTT

multiplication is not available. For this reason, we have taken the

polynomial multiplication as the target operation, not NTT, for

masked Dilithium. The specific open source did not exist, so the

attack was carried out in sparse multiplication, an efficient

multiplication in Dilithium.

3.2.1 Boolean Masking. Masking is a generic and provable

countermeasure to side-channel attacks. For example, Sensitive

variables 𝑥 is divided into several shares by masking, such as 𝑥 =

𝑥0 ⊕ 𝑥1 ⊕ ⋯ ⊕ 𝑥𝑑 , uniformly random shares 𝑥𝑖 ′𝑠 . Therefore,

sensitive variables such as 𝑠1, 𝑠2, 𝑡0 will share sensitive information.

3.2.2 Sparse Multiplication. NTT and INTT operations are no

longer necessary. Thus, highlighted in blue for Table 1, it is

replaced by an operation 𝑐 ∙ 𝑠1 . In addition, sensitive 𝑠1 that

became Boolean masking is like 𝑠1 = 𝑠1[0] ⊕ 𝑠1[1] ⊕ ⋯ ⊕ 𝑠1[𝑑].

Therefore, 𝑐 ∙ 𝑠1 consists of: 𝑐 ∙ 𝑠1[0] ⊕ 𝑐 ∙ 𝑠1[1] ⊕ ⋯ ⊕ 𝑐 ∙ 𝑠1[𝑑] .

Each multiplication follows a sparse multiplication because 𝑐

consists of 60 ± 1′𝑠.

Table 3: Sparse multiplication

1 Procedure Sparse multiplication (𝑐, 𝑠1[𝑘])

2 𝐻 = 60

3 for 𝑖 from 0 to 𝐻 − 1 do

4 pos = 𝑐_𝑝𝑜𝑠[𝑖]
5 for 𝑗 from 0 to 𝑝𝑜𝑠 − 1 do

6 𝑝𝑑[𝑗] = 𝑝𝑑[𝑗] − 𝑐_𝑠𝑖𝑔𝑛[𝑖] ∗ 𝑠1[𝑘][𝑗 + 𝑁 − 𝑝𝑜𝑠]

7 for 𝑗 from 0 to 𝑁 − 1 do

8 𝑝𝑑[𝑗] = 𝑝𝑑[𝑗] + 𝑐_𝑠𝑖𝑔𝑛[𝑖] ∗ 𝑠1[𝑘][𝑗 − 𝑝𝑜𝑠]

9 return 𝑝𝑑

Because of the sparse property of c, c can be expressed using

position (𝑐_𝑝𝑜𝑠) and sign (𝑐_𝑠𝑖𝑔𝑛 ∈ {−1,1}) lists [11]. The

highlighted in red is the boolean masking value, which can be

leaked from load, multiplication, and save operation because

c_sign is ±1 . Therefore, information related to s1[k][j] will be

included in the power consumption trace.

4 Proposed single-trace attacks on Dilithium

In order to obtain all secret keys in Dilithium, two of three 𝑡0, 𝑠1, 𝑠2

must be obtained. Then we can use two equations 𝑡 = 𝐴 ∙ 𝑠1 + 𝑠2,

𝑡1 = 𝑝𝑜𝑤𝑒𝑟2𝑅𝑜𝑢𝑛𝑑𝑞(𝑡, 𝑑) to get the remaining values [9].

Because 𝐴 and 𝑡1 are public keys, we can find the remaining values

using the two equations. In this paper, we aim to find 𝑠1, 𝑠2. This is

because each coefficient of 𝑠1 and 𝑠2 are [−𝜂, 𝜂], so the secret keys

can be restored if only a maximum of 15 values can be

distinguished (𝜂 ∈ {3,5,6,7}).

 Figure 1: NTT encryption stage 1

ICEA 2020, December 12-15, 2020, Gangwon, Republic of Korea I. Kim et al.

4

NTT encryption (lines 7-10 in Table 2) is divided into two cases by

stage in Fig. 1. Case 1: Not used as input for Montgomery

reductions. Case 2: Used as input to Montgomery reduction.

Figure 2: Result 32bit hex value 𝐌𝐨𝐧𝐭_𝐫 according to secret

value (NTT stage 1)

For Case 1, the output 𝑝[𝑖] = 𝑝[𝑖] + 𝑡 does not give a significant

difference according to the other 𝑝[𝑖] values. However, in Case 2,

it can be seen that there is a significant difference in the value of 𝑡

according to the different 𝑝[𝑖 + 𝑙𝑒𝑛] as shown in Fig. 2. Thus,

depending on the secret value 𝑝[𝑖 + 𝑙𝑒𝑛] , there is a significant

difference in the intermediate value 𝑡. This difference also results

in a significant difference in power consumption trace information.

Therefore, we attack Case 2 for each stage and restore the full secret

keys. The procedure for a proposed single-trace attack is as shown

in Fig. 3.

Figure 3: Flow chart of single-trace attacks

4.1.1 Stage 𝑚 : Set attack coefficients

Figure 4: Attack coefficients for each stage

When a target stage is 𝑚 , Case 2 exists 2𝑚 − 1 times. For

convenience, the attack coefficients were chosen as shown in Fig.

4, because the attack on any Case 2 could restore the secret keys.

Therefore, in stage 𝑚, we target from 𝑝[28−𝑚] to 𝑝[29−𝑚 − 1]. To

learn this, we generate a power consumption trace corresponding

to lines 7-10 in Table 2. Afterward, we can get target coefficients

through the process in sections from 4.1.2 to 4.1.4. If there are

previous attack stages, the secret keys restored from the previous

attack stages are fixed and then generates a power consumption

trace. For example, in stage 2, we have known the coefficients from

𝑝[128] to 𝑝[255] , which are targets in stage 1. Thus, when

attacking the coefficients from 𝑝[64] to 𝑝[127] , we generate a

learning trace that fixes the coefficient from 𝑝[128] to 𝑝[255] .

Because the non-fixed coefficients can affect the next stage attacks.

4.1.2 PoI Selection

The power consumption-based side-channel attack assumes that the

intermediate value used in a cryptographic algorithm operation is

related to power consumption. Therefore, the secret key that we

want to find has a location that is relevant to the power consumption,

and that location is called points of interest (PoI). Pearson

correlation coefficient is used to find a location related to the secret

keys, i.e., to find PoI. The Pearson correlation coefficient equation

is as follows.

𝜌 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛

𝑖

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖 √∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖

 ⋯ (1)

The Pearson correlation coefficient equation is a formula that

calculates the association between two groups, and its value is

between -1 and 1. The greater the value of the absolute value, the

more relevant the two groups are. We calculated the Pearson

correlation between power consumption traces of NTT operation

and 𝑝[𝑖] + 𝑡 (stage 1: 𝑡 = 0), as presented in Fig. 5.

Figure 5: PoI selection of NTT operation (stage 1)

4.1.3 Learning phase

In the learning phase, select the label value and model. The label

value is the secret keys 𝑠1 or 𝑠2, and the model use MLP. Details

of the secret keys and MLP are in Table 4 and 5, respectively. The

MLP of Table 5 is not the optimal model and is just the model used

in the experiment.

𝑠1[𝑖] is a 32bit value, and the first and second bytes of 𝑠1[𝑖] are

always the same, i.e., 0Byte and 1Byte are always 0𝑥00 and 0𝑥7𝐹,

respectively. And third byte is determined by fourth byte, i.e.,

2Byte is 0𝑥𝐷𝐹 when 3Byte is 0𝑥𝐹𝐴 to 0𝑥𝐹𝐹, and the rest is 0𝑥𝐸0.

Novel Single-Trace ML Profiling Attacks on NIST 3 Round

candidate Dilithium
ICEA 2020, December 2020, Republic of Korea

 5

Therefore, generating profiles for the fourth bytes (3Byte) of 𝑠1[𝑖]
is only needed. The total number of necessary profiling per

coefficient is 2𝜂 + 1.

Table 4: 32bit secret value of 𝒔𝟏[𝒊]

Hex value by Byte

 0Byte 1Byte 2Byte 3Byte

-7 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐴

-6 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐵

-5 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐶

-4 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐷

-3 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐸

-2 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐹

-1 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥00

0 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥01

2 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥02

3 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥03

4 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥04

5 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥05

6 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥06

7 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥07

Table 5: Network structure for Multi-Layer Perceptron

Layer node (in, out) Kernel initializer

InputLayer (𝑥, 𝑥) -

Batch Normal (𝑥, 𝑥) -

Dense (𝑥, 32) he_uniform

Batch Normal (32,32) -

ReLU (32,32) -

Dense (32, 𝑦) he_uniform

Softmax (𝑦, 𝑦) -

* 𝑥 : PoI section of power consumption trace

* Input Normalization : all values are within the range [−1,1]
* Loss function : categorical_crossentropy

* Optimizer : adam(lr=0.001, epsilon=1e-08)

* Batch size and epochs: 32 and maximum 100, respectively

* 𝑦 : Labeling value (3Byte)

4.1.4 Attack phase

In the attack phase, returns the guessed key through the probability

of matching the profile generated in the learning phase with the

target single-trace. The secret keys are restored by matching the

learned profile with the PoI section of the attack single-trace.

4.1.5 Profiling attack of 𝑝[0]

After completing from stage 1 to stage 8 profiling attack, we can

get from 𝑝[1] to 𝑝[255] . However, 𝑝[0] is always included in

Case 1, so attacks using Montgomery reduction are not applicable.

Instead, we restored the 𝑝[0] using another method. First, because

we known form 𝑝[1] to 𝑝[255], we can generate learning trace

fixed from 𝑝[1] to 𝑝[255] of stage 8 (𝑝[0] is random secret). In

addition, 𝑝[0] affects all coefficients (256 coefficients) after stage

8 operations. Therefore, even if there is not a significant difference

in the intermediate value according to 𝑝[0], 𝑝[0] can be restored.

Because 𝑝[0] affects the intermediate of all coefficients, the sum of

differences can be significant. Therefore, 𝑝[0] can be restored by

using load, save, and addition information (line 9,10 in Table 2)

that leaks from all coefficients without the Montgomery reduction,

as shown in Fig. 6. Thus, we can restore 𝑝[0] through the profiling

attack.

Figure 6: PoI of 𝒑[𝟎] between 41 coefficients of NTT stage 8

5 Proposed single-trace attacks on Masked

Dilithium

In this section, the contents described in Section 3.2 are addressed

here. The attack procedure is similar to Section 4.

5.1.1 PoI selection

Similar to section 4.1.2, we calculated the Pearson correlation

between power consumption traces of sparse multiplication and

boolean masked secret keys, as presented in Fig. 7.

Figure 7: PoI selection of Sparse Multiplication

5.1.2 Learning phase

Similar to section 4.1.3, but masked coefficients of 𝑠1 is shared

32bit random values, shown in Table 6, we have to distinguish 256

values for each of the four bytes. So, we generate 256 profiles each

of 0, 1, 2, 3bytes, the total number of required profiling per

coefficient is 1024.

5.1.3 Attack phase

In the attack phase, returns the guessed key through the probability

of matching the profile generated in the learning phase with the

target single-trace. The secret keys are restored by matching the

learned profile with the PoI section of the attack single-trace.

Table 6: 32bit secret value of 𝒔𝟏[𝒌][𝒊]

ICEA 2020, December 12-15, 2020, Gangwon, Republic of Korea I. Kim et al.

6

Hex value by Byte

 0Byte 1Byte 2Byte 3Byte

 Random Random Random Random

6 Experimental results

In this section, we perform an experiment on Dilithium that

supports the NIST category 1 (Dilithium II). The Dilithium III and

IV are similarly applicable. The experiment used the open-source

implementation of Dilithium submitted to the NIST submission. In

the case of Masked Dilithium, an open-source did not yet exist,

referring to the open-source of qTESLA sparse multiplication [11].

Our target platform is ChipWhisperer UFO STM32F3 board

equipped with ARM Cortex-M4 microcontroller, and the sampling

rate is 29.54 MS/s. Implementations were compiled using gcc-arm-

none-eabi-9-2019-q4-major, and we used compiler options as

described in Table 7 and 8.

6.1 Dilithium

The number of traces used in the learning phase was 2000, and the

attack phase was 8000. At all optimization levels, the average

attack success rates for 8000 random secret keys are as shown in

Table 7 and Fig. 8.

Table 7: Single-trace attacks on NTT operation

NTT Success rate (%)

Optimization Level Dilithium-II

-O0 100%

-O1 100%

-O2 100%

-O3 100%

-Os 100%

6.2 Masked Dilithium

The number of traces used in the learning phase was 9000, and the

attack phase was 8000. At all optimization levels, the average

attack success rates for 8000 random secret keys are as shown in

Table 8 and Fig. 8. In the case of masked Dilithium, all boolean

masking values were found, and the final values were finally

restored through relation 𝑠1 = 𝑠1[0] ⊕ 𝑠1[1] ⊕ ⋯ ⊕ 𝑠1[𝑑].

Table 8: Single-trace attack on Sparse multiplication

Sparse multiplication Success rate (%)

Optimization Level Dilithium-II

-O0 100%

-O1 100%

-O2 100%

-O3 100%

-Os 100%

7 Conclusion

In this paper, we propose a single-trace attacks in NTT encryption

during Dilithium signature generation process. It was shown that

NTT operation could be vulnerable because the full key can be

derived 100% regardless of the optimization level using the

profiling attack for each stage of NTT. This is also applicable to

other cryptographic schemes that perform NTT operations. In the

case of masked Dilithium, secure countermeasure should be

considered, since implementation vulnerabilities may also exist as

presented in this paper.

Figure 8: Success rate graph by Epoch

REFERENCES
[1] Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and

factoring. In: 35th Annual Symposium on Foundation of Computer Science.

pp. 124-134. IEEE Computer Society (1994)

[2] Wang, Y., Li, Y., Yin, Z., Zeng, B., 16-qubit IBM universal quantum

computer can be fully entangled. Npj Quantum Information, 4(1):46,2018.

[3] Alagic, G., Alperin-Sheriff, J., Apon, D., Cooper, D., Dang, Q., Kelsey, J.

Liu, Y.K., Miller, C., Moody, D. Peralta, R. et al.: Status report on the second

round of the nist pqc standardization process. NIST, Tech. Rep., July (2020)

[4] NIST: Post-Quantum Cryptography, Round 3 Submissions, NIST Computer

Security Resource Center. https://csrc.nist.gov/News/2020/pqc-third-round-

candidate-announcement (2020)

[5] Kocher, P.C.: Timing attacks on implementations of diffie-hellman, rsa, dss,

and other systems. In: Annual International Cryptology Conference. pp. 104-

113. Springer (1996)

[6] Primas, R., Pessl, P. Mangard, S.: Single-trace side-channel attacks on

masked lattice-based encryption. In: International Conference on

Cryptographic Hardware and Embedded Systems. pp. 513-533. Springer

(2017)

[7] Pessl, P. Primas, R.: More practical single-trace attcks on the number

theoretic transform. In: International Conference on Cryptology and

Information Security in Latin America. pp. 130-149. Springer (2019)

[8] Ian Editor (Ed.). 2008. The title of book two (2nd. ed.). University of Chicago

Press, Chicago, Chapter 100. DOI: http://dx.doi.org/10.1007/3-540-09237-4

[9] Ducas, L. Kiltz, E., Lepoint, T. Lyubashevesky, V., Schwabe, P., Seiler, G.,

Stehlé, D.: CRYSTALS-Dilithium: Algorithm Specifications and Supporting

Documentation. Submission to the NIST post-quantum project (2020)

[10] Migliore, V., Gérard, B., Tibouchi, M., & Fouque, P. A. (2019, June).

Masking Dilithium. In International Conference on Applied Cryptography

and Network Security (pp. 344-362). Springer, Cham..

[11] Bindel, N., Akleylek, S., Alkim, E., Barreto, P. S., Buchmann, J., Krämer,

J., ... & Zanon, G. (2020). Submission to NIST’s post-quantum project (2nd

round): lattice-based digital signature scheme qTESLA.

[12] Espitau, T., Fouque, P. A., Gérard, B., & Tibouchi, M. (2017, October). Side-

channel attacks on BLISS lattice-based signatures: Exploiting branch tracing

against strongswan and electromagnetic emanations in microcontrollers. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security (pp. 1857-1874).

[13] Bruinderink, L. G., Hülsing, A., Lange, T., & Yarom, Y. (2016, August).

Flush, gauss, and reload–a cache attack on the bliss lattice-based signature

scheme. In International Conference on Cryptographic Hardware and

Embedded Systems (pp. 323-345). Springer, Berlin, Heidelberg.

[14] Pessl, P., Bruinderink, L. G., & Yarom, Y. (2017, October). To BLISS-B or

not to be: Attacking strongSwan's Implementation of Post-Quantum

Signatures. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security (pp. 1843-1855).

file:///D:/_Dilithium_/ICEA2020_Novel%20Single_Trace%20ML%20Profiling%20Attacks%20on%20NIST%203%20Round%20candidate%20Dilithium_2020_0924.docx%23fig4
file:///D:/_Dilithium_/ICEA2020_Novel%20Single_Trace%20ML%20Profiling%20Attacks%20on%20NIST%203%20Round%20candidate%20Dilithium_2020_0924.docx%23fig4
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
http://dx.doi.org/10.1007/3-540-09237-4

