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ABSTRACT 

Dilithium1  is a lattice-based digital signature, one of the finalist 

candidates in the NIST's standardization process for post-quantum 

cryptography. In this paper, we propose a first side-channel attack 

on the process of signature generation of Dilithium. During the 

Dilithium signature generation process, we used NTT encryption 

single-trace for machine learning-based profiling attacks. In 

addition, it is possible to attack masked Dilithium using sparse 

multiplication. The proposed method is shown through 

experiments that all key values can be exposed 100% through a 

single-trace regardless of the optimization level. 

CCS CONCEPTS 

• Security and privacy → Security in hardware → Hardware 

attacks and countermeasures → Side-channel analysis and 

countermeasures • Security and privacy → Cryptography → 

Public key (asymmetric) techniques → Digital signatures 
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1 INTRODUCTION 

The digital signatures are a way of proving the identity of the sender 

in the network. As the non-face-to-face society becomes 

mainstream due to the Covid-19 virus, the importance of digital 

signatures that provide authentication is increasing. Digital 

signatures mainly adopt the public key infrastructure (PKI), which 
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is based on the difficulty of the problems, such as factorization and 

discrete logarithm. However, the construction based on these 

problems can succumb to Shor’s [1] algorithm, which can defeat 

these systems in polynomial time, using a quantum computer. 

Recently, experts estimated that quantum computers would be 

arriving 10 to 15 years [2]. Therefore, the existing cryptographic 

systems should be replaced by a system that is resistant to quantum 

computers. 

The national institute of standards and technology (NIST) 

announced the standardization of post-quantum cryptography 

(PQC) in December 2016 to address these issues. Over the years, 

standardization has been made for algorithm submitted to public-

key encryption, key encapsulation mechanism, and digital 

signature. The third-round candidate algorithms were announced in 

July 2020, and the remaining algorithms are seven finalists and 

eight alternative algorithms [4]. Among finalists, digital signatures 

include three algorithms, two lattice-based (CRYSTALS-

DILITHIUM, FALCON), and one multivariate-based (Rainbow). 

NIST considered three aspects of the evaluation criteria used to 

compare candidate algorithms in the PQC standardization process: 

1) security, 2) cost and performance, and 3) algorithm and 

implementation characteristics [3]. NIST also explicitly states that 

it wants to “collect more information about the costs of 

implementing in a way that provides resistance to side-channel 

attacks”. Therefore, the side-channel attack case for this is of 

considerable importance. 

Side-channel attacks [5] is an attack to extract cryptographic 

keys using side-channel information, such as power consumption, 

electromagnetic radiation, and execution time, when cryptographic 

algorithms operate. The method of side-channel attack is 

differential power analysis (DPA), cache attack (CA), template 

attack (TA), Fault attack (FA), etc., which are used for attacks on 
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many cryptographic. Lattice-based digital signatures are also at risk 

for various side-channel attacks. In the lattice-based digital 

signatures, the main target operations of side-channel attacks 

include polynomial multiplication [12], gaussian sampling [13, 14], 

and number-theoretic transform (NTT) [6, 7] operation. 

1.1 Related Works 

The first single-trace attack on lattice-based schemes targeting NTT 

is the attack of Primas et al. [6] in CHES 2017. However, this attack 

is not applicable because NTT is currently implemented as 

constant-time; the timing information of modular operations is no 

longer available. This attack was improved by Pessl et al. [7]. They 

did a template attack using information when data loading and 

storing during NTT encryption. They succeeded in a single-trace 

attack over Kyber, but they said that it is really difficult to apply an 

improved attack in Dilithium. They restored the full key of Kyber 

with a probability of at first time 57% and restored the full key to 

95%, using lattice reduction described in Primas et al. [6]. 

1.2 Our Contribution 

In this work, we show a single-trace attack on Dilithium for the first 

time. We present a novel side-channel attack using NTT encryption. 

In addition, even if the countermeasure is applied to the Dilithium, 

we can show that single-trace attacks are possible through 

polynomial multiplication. 

1.1.2 First single-trace attacks on Dilithium 

We present single-trace attacks on Dilithium [9]. The target 

operation is NTT encryption. We used the leaked information in 

load, save, and Montgomery reduction operation of power 

consumption trace. The method of attack is a machine learning-

based profiling attack. We describe the proposed attack that uses a 

single-trace to find the full key at 100% regardless of an 

optimization level. 

1.1.2 First single-trace attacks on Masked Dilithium 

We present single-trace attacks on Masked Dilithium [10]. The 

target operation is sparse multiplication. We used the leaked 

information in load, save, and multiplication operation of power 

consumption trace. The method of attack is a machine learning-

based profiling attack. We describe the proposed attack that uses a 

single-trace to find the full key at 100% regardless of an 

optimization level. 

2 PRELIMINARIES 

2.1 Notation 

For a prime number 𝑞 = 8380417 , we let 𝑅  and 𝑅𝑞  the rings 

ℤ[𝑥]/(𝑋256 + 1)  and ℤ𝑞[𝑥]/(𝑋256 + 1) , respectively. 

Multiplication of two polynomials 𝑎, 𝑏 ∈ 𝑅𝑞 is denoted as 𝑎 ∙ 𝑏 ∈

𝑅𝑞. The 𝑖-th   coefficient of polynomial 𝑎 ∈ 𝑅𝑞 is denoted as 𝑎[𝑖]. 

Matrices and vectors of polynomials in 𝑅𝑞  are denoted as 𝑎 ∈

𝑅𝑞
𝑘×ℓ, 𝑏 ∈ 𝑅𝑞

ℓ . The NTT domain representation is denoted as 𝑎̂ =

NTT(𝑎) ∈ ℤ𝑞
256  of a polynomial 𝑎 ∈ 𝑅𝑞 , and Point-wise 

multiplication is denoted as 𝑐̂ = 𝑎̂ ∘ 𝑏̂. 

2.2 Side-channel leakage model 

We assume that the intermediate value of devices is related to the 

power consumption trace. Therefore, it is assumed that if a device 

uses a secret value of 𝑠 as the intermediate value, the information 

related to the 𝑠 can leak from the power consumption trace. 

𝑃𝑡𝑜𝑡𝑎𝑙~𝑠 ( 𝑃𝑡𝑜𝑡𝑎𝑙 ∶ power consumption, ~ ∶ relation ) 

2.3 Number theoretic transform (NTT) 

In lattice-based schemes, polynomial multiplication is considered 

as one of the most expensive operations. To efficiently compute 

this, NTT-based multiplication of polynomials is often adopted. 

When the 512-th root of unity in modulo 𝑞 is 𝑟, the domain can be 

changed using isomorphic such as ℤ𝑞[𝑋]/(𝑋 − 𝑟𝑖) ≅ ℤ𝑞 , and the 

multiplication on the ring 𝑅𝑞 can be easily multiplied by pointwise 

multiplication. 

2.4 Machine Learning based profiling attack 

A profiling attack is an attack method that generates a profile 

through another device with the same or similar specifications as 

the attack device and finds a secret key by comparing the 

probability of matching the profile with the trace obtained from an 

actual attack device. The attack is divided into two phases: a 

learning phase and an attack phase. During the learning phase, 

generate the profile to be used in the attack phase. In order to do so, 

the learning phase determines which values to learn and which 

models to use. These are called labeling and modeling, respectively. 

In this paper, the secret keys are chosen as the labeling value, and 

the modeling uses a multi-layer perceptron (MLP). The MLP 

consist of three layers (input layer, hidden layer, outpour layer), and 

each layer has a node, which learns the secret keys by changing its 

weight. 

3 DILITHIUM ALGORITHM 

Dilithium is a lattice-based digital signature algorithm and is 

designed based on Module-LWE and Module-SIS problems. The 

principle of Dilithium is ‘Fiat-Shamir with abort’ and ‘public key 

(PK) compression’. The algorithm consists of three stages: key 

generation, signature generation, and signature verification, and 

supports a NIST category 1, 2, and 3. 

3.1 Dilithium algorithms 

We describe Dilithium signature generation and NTT encryption 

schemes [9]. 

Table 1: Dilithium signature generation scheme.  

1 Procedure SignGen (𝑠𝑘, 𝑀 ∈ {0,1} ∗) 

2   𝐴̂ ∈ 𝑅𝑞
𝑘×ℓ ≔ ExpandA(𝜌) 

3   𝜇 = 𝐶𝑅𝐻(𝑡𝑟 ∥ 𝑀) 

4   𝜅 = 0, (𝑧, ℎ) =⊥ 

5   𝜌′ ∈ {0,1}384 ≔ 𝐶𝑅𝐻(𝐾 ∥ 𝜇) 

6   𝑠1̂ = NTT(𝑠1) 

7   𝑠2̂ = NTT(𝑠2) 
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8   𝑡0̂ = NTT(𝑡0) 

9   while (𝑧, ℎ) =⊥ do 

10        𝑦 ∈ 𝑆𝛾1−1
ℓ ≔ ExpandMask(𝜌′ ∥ 𝜅) 

11        𝑦̂ = NTT(𝑦) 

12        𝑤 = INTT(𝐴̂ ∘ 𝑦̂) 

13        (𝑤1, 𝑤0) = 𝐷𝑞(𝑤, 2𝛾2) 

14        𝑐 ∈ 𝐵60 = 𝐻(𝜇 ∥ 𝑤1) 

15        𝑐̂ = NTT(𝑐) 

16        𝑧 = 𝑦 + INTT(𝒄̂ ∘ 𝒔𝟏̂) 

17        𝑟 = INTT(𝒄̂ ∘ 𝒔𝟐̂) 

18        (𝑟1, 𝑟0) ≔ 𝐷𝑞(𝑤 − 𝑟, 2𝛾2) 

19       If ‖𝑧‖∞ ≥ 𝛾1 − 𝛽 or ‖𝑟0‖∞ ≥ 𝛾2 − 𝛽  
            𝑜𝑟 𝑟1 ≠ 𝑤1 then (𝑧, ℎ) =⊥ 

20       else 

21           𝑔 = INTT(𝒄̂ ∘ 𝒕𝟎̂) 

22           ℎ = MakeHint(−𝑔, 𝑤 − 𝑟 + 𝑔, 2𝛾2) 

23           if ‖𝑟‖∞ ≥ 𝛾2 𝑜𝑟 𝑤𝑡(ℎ) > 𝑤 𝑡ℎ𝑒𝑛 

24               (𝑧, ℎ) =⊥ 

25       end 

26 end 

27 return 𝜎 = (𝑧, ℎ, 𝑐) 

 The operations used for attacking Dilithium 

highlighted in red, and those used for attacking 

masked Dilithium are shown is blue 

Table 2: Dilithium NTT scheme.  

1 Procedure NTT (𝑝[𝑁]) 

2   𝑘 = 1 

3   for (𝑙𝑒𝑛 = 128; 𝑙𝑒𝑛 > 0;   𝑙𝑒𝑛 ≫= 1) 

4         for (𝑠𝑡𝑎𝑟𝑡 = 0; 𝑠𝑡𝑎𝑟𝑡 < 𝑁; 𝑠𝑡𝑎𝑟𝑡 = 𝑗 + 𝑙𝑒𝑛)  

5         𝑧𝑒𝑡𝑎 = 𝑧𝑒𝑡𝑎𝑠[𝑘]  
6         𝑘 ≔ 𝑘 + 1  

7         for ( 𝑗 = 𝑠𝑡𝑎𝑟𝑡; 𝑗 < 𝑠𝑡𝑎𝑟𝑡 + 𝑙𝑒𝑛; + + 𝑗) 

8               𝑡 = Mont_r((𝑢𝑖𝑛𝑡64)𝑧𝑒𝑡𝑎 ∗ 𝑝[𝑗 + 𝑙𝑒𝑛]) 

9               𝑝[𝑗 + 𝑙𝑒𝑛] = 𝑝[𝑗] + 2 ∗ 𝑄 − 𝑡 

10               𝑝[𝑗] = 𝑝[𝑗] + 𝑡 

𝑧𝑒𝑡𝑎𝑠 : precomputed table for converting to NTT domain 

Mont_r : Montgomery reduction, 𝑄 ∶ prime, 𝑁 : dimension 

NTT operation consists of a total of eight stages. The stage is 

determined by 𝑙𝑒𝑛  variable of Table 2. The value of the 𝑙𝑒𝑛 

according to a stage is as follows: stage 𝑚 → 𝑙𝑒𝑛 = 28−𝑚. In the 

first stage, the 𝑝[𝑗] value is a secret value, and load, Montgomery 

reduction, and save operations occur in the highlighted operation in 

colors. Therefore, at line 6 in Table 1, information related to 𝑠1 will 

be included in the power consumption trace. Line 7,8 is the same. 

3.2 Masked Dilithium 

The masking scheme for Dilithium was first proposed by Milgliore 

et al. [8]. However, due to problems with limitation performance 

and target boards, they focused on the optimized version of 

modulus, a power of two, not prime modulus. Therefore, NTT 

multiplication is not available. For this reason, we have taken the 

polynomial multiplication as the target operation, not NTT, for 

masked Dilithium. The specific open source did not exist, so the 

attack was carried out in sparse multiplication, an efficient 

multiplication in Dilithium.  

3.2.1 Boolean Masking. Masking is a generic and provable 

countermeasure to side-channel attacks. For example, Sensitive 

variables 𝑥 is divided into several shares by masking, such as  𝑥 =

𝑥0 ⊕ 𝑥1 ⊕ ⋯ ⊕ 𝑥𝑑 , uniformly random shares 𝑥𝑖 ′𝑠 . Therefore, 

sensitive variables such as 𝑠1, 𝑠2, 𝑡0 will share sensitive information. 

3.2.2 Sparse Multiplication. NTT and INTT operations are no 

longer necessary. Thus, highlighted in blue for Table 1, it is 

replaced by an operation 𝑐 ∙ 𝑠1 . In addition, sensitive 𝑠1  that 

became Boolean masking is like 𝑠1 = 𝑠1[0] ⊕ 𝑠1[1] ⊕ ⋯ ⊕ 𝑠1[𝑑]. 

Therefore, 𝑐 ∙ 𝑠1  consists of: 𝑐 ∙ 𝑠1[0] ⊕ 𝑐 ∙ 𝑠1[1] ⊕ ⋯ ⊕ 𝑐 ∙ 𝑠1[𝑑] . 

Each multiplication follows a sparse multiplication because 𝑐 

consists of 60 ± 1′𝑠. 

Table 3: Sparse multiplication 

1 Procedure Sparse multiplication (𝑐, 𝑠1[𝑘]) 

2   𝐻 = 60 

3   for 𝑖 from 0 to 𝐻 − 1 do 

4         pos = 𝑐_𝑝𝑜𝑠[𝑖] 
5         for 𝑗 from 0 to 𝑝𝑜𝑠 − 1 do  

6               𝑝𝑑[𝑗] = 𝑝𝑑[𝑗] − 𝑐_𝑠𝑖𝑔𝑛[𝑖] ∗ 𝑠1[𝑘][𝑗 + 𝑁 − 𝑝𝑜𝑠] 

7   for 𝑗 from 0 to 𝑁 − 1 do 

8                𝑝𝑑[𝑗] = 𝑝𝑑[𝑗] + 𝑐_𝑠𝑖𝑔𝑛[𝑖] ∗ 𝑠1[𝑘][𝑗 − 𝑝𝑜𝑠] 

9 return 𝑝𝑑 

Because of the sparse property of c,  c can be expressed using 

position ( 𝑐_𝑝𝑜𝑠 ) and sign (𝑐_𝑠𝑖𝑔𝑛 ∈ {−1,1})  lists [11]. The 

highlighted in red is the boolean masking value, which can be 

leaked from load, multiplication, and save operation because 

c_sign  is ±1 . Therefore, information related to s1[k][j]  will be 

included in the power consumption trace. 

4 Proposed single-trace attacks on Dilithium 

In order to obtain all secret keys in Dilithium, two of three 𝑡0, 𝑠1, 𝑠2 

must be obtained. Then we can use two equations 𝑡 = 𝐴 ∙ 𝑠1 + 𝑠2, 

𝑡1 = 𝑝𝑜𝑤𝑒𝑟2𝑅𝑜𝑢𝑛𝑑𝑞(𝑡, 𝑑)  to get the remaining values [9]. 

Because 𝐴 and 𝑡1 are public keys, we can find the remaining values 

using the two equations. In this paper, we aim to find 𝑠1, 𝑠2. This is 

because each coefficient of 𝑠1 and 𝑠2 are [−𝜂, 𝜂], so the secret keys 

can be restored if only a maximum of 15 values can be 

distinguished (𝜂 ∈ {3,5,6,7}). 

 
 Figure 1: NTT encryption stage 1 
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NTT encryption (lines 7-10 in Table 2) is divided into two cases by 

stage in Fig. 1. Case 1: Not used as input for Montgomery 

reductions. Case 2: Used as input to Montgomery reduction.  

 

Figure 2: Result 32bit hex value 𝐌𝐨𝐧𝐭_𝐫 according to secret 

value ( NTT stage 1 ) 

For Case 1, the output 𝑝[𝑖] = 𝑝[𝑖] + 𝑡 does not give a significant 

difference according to the other 𝑝[𝑖] values. However, in Case 2, 

it can be seen that there is a significant difference in the value of 𝑡 

according to the different 𝑝[𝑖 + 𝑙𝑒𝑛]  as shown in Fig. 2. Thus, 

depending on the secret value 𝑝[𝑖 + 𝑙𝑒𝑛] , there is a significant 

difference in the intermediate value 𝑡. This difference also results 

in a significant difference in power consumption trace information. 

Therefore, we attack Case 2 for each stage and restore the full secret 

keys. The procedure for a proposed single-trace attack is as shown 

in Fig. 3.  

 
Figure 3: Flow chart of single-trace attacks  

4.1.1 Stage 𝑚 : Set attack coefficients 

 
Figure 4: Attack coefficients for each stage  

When a target stage is 𝑚 , Case 2 exists 2𝑚 − 1  times. For 

convenience, the attack coefficients were chosen as shown in Fig. 

4, because the attack on any Case 2 could restore the secret keys. 

Therefore, in stage 𝑚, we target from 𝑝[28−𝑚] to 𝑝[29−𝑚 − 1]. To 

learn this, we generate a power consumption trace corresponding 

to lines 7-10 in Table 2. Afterward, we can get target coefficients 

through the process in sections from 4.1.2 to 4.1.4. If there are 

previous attack stages, the secret keys restored from the previous 

attack stages are fixed and then generates a power consumption 

trace. For example, in stage 2, we have known the coefficients from 

𝑝[128]  to 𝑝[255] , which are targets in stage 1. Thus, when 

attacking the coefficients from 𝑝[64]  to 𝑝[127] , we generate a 

learning trace that fixes the coefficient from 𝑝[128] to 𝑝[255] . 

Because the non-fixed coefficients can affect the next stage attacks. 

4.1.2 PoI Selection 

The power consumption-based side-channel attack assumes that the 

intermediate value used in a cryptographic algorithm operation is 

related to power consumption. Therefore, the secret key that we 

want to find has a location that is relevant to the power consumption, 

and that location is called points of interest (PoI). Pearson 

correlation coefficient is used to find a location related to the secret 

keys, i.e., to find PoI. The Pearson correlation coefficient equation 

is as follows. 

𝜌 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑛

𝑖

√∑ (𝑋𝑖 − 𝑋̅)2𝑛
𝑖 √∑ (𝑌𝑖 − 𝑌̅)2𝑛

𝑖

    ⋯  (1) 

The Pearson correlation coefficient equation is a formula that 

calculates the association between two groups, and its value is 

between -1 and 1. The greater the value of the absolute value, the 

more relevant the two groups are. We calculated the Pearson 

correlation between power consumption traces of NTT operation 

and 𝑝[𝑖] + 𝑡 ( stage 1:  𝑡 = 0 ), as presented in Fig. 5. 

 

Figure 5: PoI selection of NTT operation ( stage 1 ) 

4.1.3 Learning phase 

In the learning phase, select the label value and model. The label 

value is the secret keys 𝑠1 or 𝑠2, and the model use MLP. Details 

of the secret keys and MLP are in Table 4 and 5, respectively. The 

MLP of Table 5 is not the optimal model and is just the model used 

in the experiment. 

𝑠1[𝑖] is a 32bit value, and the first and second bytes of 𝑠1[𝑖] are 

always the same, i.e., 0Byte and 1Byte are always 0𝑥00 and 0𝑥7𝐹, 

respectively. And third byte is determined by fourth byte, i.e., 

2Byte is 0𝑥𝐷𝐹 when 3Byte is 0𝑥𝐹𝐴 to 0𝑥𝐹𝐹, and the rest is 0𝑥𝐸0. 



Novel Single-Trace ML Profiling Attacks on NIST 3 Round 

candidate Dilithium 
ICEA 2020, December 2020, Republic of Korea 

 

 5 

Therefore, generating profiles for the fourth bytes (3Byte) of 𝑠1[𝑖] 
is only needed. The total number of necessary profiling per 

coefficient is 2𝜂 + 1. 

Table 4: 32bit secret value of 𝒔𝟏[𝒊]  

Hex value by Byte 

 0Byte 1Byte 2Byte 3Byte 

-7 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐴 

-6 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐵 

-5 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐶 

-4 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐷 

-3 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐸 

-2 0𝑥00 0𝑥7𝐹 0𝑥𝐷𝐹 0𝑥𝐹𝐹 

-1 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥00 

0 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥01 

2 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥02 

3 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥03 

4 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥04 

5 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥05 

6 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥06 

7 0𝑥00 0𝑥7𝐹 0𝑥𝐸0 0𝑥07 

Table 5: Network structure for Multi-Layer Perceptron  

Layer node (in, out) Kernel initializer 

InputLayer (𝑥, 𝑥) - 

Batch Normal (𝑥, 𝑥) - 

Dense (𝑥, 32) he_uniform 

Batch Normal (32,32) - 

ReLU (32,32) - 

Dense (32, 𝑦) he_uniform 

Softmax (𝑦, 𝑦) - 

* 𝑥 : PoI section of power consumption trace 

* Input Normalization : all values are within the range [−1,1] 
* Loss function : categorical_crossentropy 

* Optimizer : adam(lr=0.001, epsilon=1e-08) 

* Batch size and epochs: 32 and maximum 100, respectively 

* 𝑦 : Labeling value (3Byte) 

4.1.4 Attack phase 

In the attack phase, returns the guessed key through the probability 

of matching the profile generated in the learning phase with the 

target single-trace. The secret keys are restored by matching the 

learned profile with the PoI section of the attack single-trace. 

4.1.5 Profiling attack of 𝑝[0] 

After completing from stage 1 to stage 8 profiling attack, we can 

get from 𝑝[1]  to 𝑝[255] . However, 𝑝[0]  is always included in 

Case 1, so attacks using Montgomery reduction are not applicable. 

Instead, we restored the 𝑝[0] using another method. First, because 

we known form 𝑝[1] to 𝑝[255], we can generate learning trace 

fixed from 𝑝[1] to 𝑝[255] of stage 8 (𝑝[0] is random secret). In 

addition, 𝑝[0] affects all coefficients (256 coefficients) after stage 

8 operations. Therefore, even if there is not a significant difference 

in the intermediate value according to 𝑝[0], 𝑝[0] can be restored. 

Because 𝑝[0] affects the intermediate of all coefficients, the sum of 

differences can be significant. Therefore, 𝑝[0] can be restored by 

using load, save, and addition information (line 9,10 in Table 2) 

that leaks from all coefficients without the Montgomery reduction, 

as shown in Fig. 6. Thus, we can restore 𝑝[0] through the profiling 

attack. 

 
Figure 6: PoI of 𝒑[𝟎] between 41 coefficients of NTT stage 8   

5 Proposed single-trace attacks on Masked 

Dilithium 

In this section, the contents described in Section 3.2 are addressed 

here. The attack procedure is similar to Section 4. 

5.1.1 PoI selection 

Similar to section 4.1.2, we calculated the Pearson correlation 

between power consumption traces of sparse multiplication and 

boolean masked secret keys, as presented in Fig. 7. 

 

Figure 7: PoI selection of Sparse Multiplication 

5.1.2 Learning phase 

Similar to section 4.1.3, but masked coefficients of 𝑠1  is shared 

32bit random values, shown in Table 6, we have to distinguish 256 

values for each of the four bytes. So, we generate 256 profiles each 

of 0, 1, 2, 3bytes, the total number of required profiling per 

coefficient is 1024. 

5.1.3 Attack phase 

In the attack phase, returns the guessed key through the probability 

of matching the profile generated in the learning phase with the 

target single-trace. The secret keys are restored by matching the 

learned profile with the PoI section of the attack single-trace. 

Table 6: 32bit secret value of 𝒔𝟏[𝒌][𝒊]  
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Hex value by Byte 

 0Byte 1Byte 2Byte 3Byte 

 Random Random Random Random 

6 Experimental results 

In this section, we perform an experiment on Dilithium that 

supports the NIST category 1 ( Dilithium II ). The Dilithium III and 

IV are similarly applicable. The experiment used the open-source 

implementation of Dilithium submitted to the NIST submission. In 

the case of Masked Dilithium, an open-source did not yet exist, 

referring to the open-source of qTESLA sparse multiplication [11]. 

Our target platform is ChipWhisperer UFO STM32F3 board 

equipped with ARM Cortex-M4 microcontroller, and the sampling 

rate is 29.54 MS/s. Implementations were compiled using gcc-arm-

none-eabi-9-2019-q4-major, and we used compiler options as 

described in Table 7 and  8. 

6.1 Dilithium  

The number of traces used in the learning phase was 2000, and the 

attack phase was 8000. At all optimization levels, the average 

attack success rates for 8000 random secret keys are as shown in 

Table 7 and Fig. 8.  

Table 7: Single-trace attacks on NTT operation   

NTT Success rate (%) 

Optimization Level Dilithium-II 

-O0 100% 

-O1 100% 

-O2 100% 

-O3 100% 

-Os 100% 

 

6.2 Masked Dilithium  

The number of traces used in the learning phase was 9000, and the 

attack phase was 8000. At all optimization levels, the average 

attack success rates for 8000 random secret keys are as shown in 

Table 8 and Fig. 8.  In the case of masked Dilithium, all boolean 

masking values were found, and the final values were finally 

restored through relation 𝑠1 = 𝑠1[0] ⊕ 𝑠1[1] ⊕ ⋯ ⊕ 𝑠1[𝑑]. 

Table 8: Single-trace attack on Sparse multiplication 

Sparse multiplication Success rate (%) 

Optimization Level Dilithium-II 

-O0 100% 

-O1 100% 

-O2 100% 

-O3 100% 

-Os 100% 

7 Conclusion 

In this paper, we propose a single-trace attacks in NTT encryption 

during Dilithium signature generation process. It was shown that 

NTT operation could be vulnerable because the full key can be 

derived 100% regardless of the optimization level using the 

profiling attack for each stage of NTT. This is also applicable to 

other cryptographic schemes that perform NTT operations. In the 

case of masked Dilithium, secure countermeasure should be 

considered, since implementation vulnerabilities may also exist as 

presented in this paper. 

Figure 8: Success rate graph by Epoch 
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