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Abstract. By design, TLS (Transport Layer Security) is a 2-party, end-
to-end protocol. Yet, in practice, TLS delegation is often deployed: that
is, middlebox proxies inspect and even modify TLS traffic between the
endpoints. Recently, industry-leaders (e.g., Akamai, Cloudflare, Telefon-
ica, Ericcson), standardization bodies (e.g., IETF, ETSI), and academic
researchers have proposed numerous ways of achieving safer TLS del-
egation. We present LURK the LURK (Limited Use of Remote Keys)
extension for TLS 1.2, a suite of designs for TLS delegation, where the
TLS-server is aware of the middlebox. We implement and test LURK .
We also cryptographically prove and formally verify, in Proverif, the se-
curity of LURK . Finally, we comprehensively analyze how our designs
balance (provable) security and competitive performance.

1 Introduction

Decades ago, Internet protocols were designed such that the application logic
operated only at the endpoints. However, today, this end-to-end paradigm is
impeded primarily by the fact that traffic is now processed by a series of mid-
dleboxes before it is presented to the end user, normally in a personalised form
(e.g., via user-customised web-acceleration and compression). Content delivery
networks (CDN) have traditionally been at the core of this, but now they are just
one of the many players in the field, alongside massive IoT (Internet of Things)
and the rising 5G networks enabled by edge computing. We shall refer to this
internet-traffic mediation by middleboxes as “collaborative content-delivery”.
The latter is forecast [55] to increase even further the number of players collabo-
rating in the delivery of content and services over the Internet. To this end, tech
giants (Akamai, Cloudflare, Telefonica, Ericcson) and standardisation bodies
(ETSI, IETF) alike have recently devoted considerable attention to third-party-
driven security [54].

For unencrypted traffic, collaborative content-delivery fits the following ar-
chitecture. A third party which is “on path” between the end-client and the
end-server simply processes packets, and in this way, using a principle called im-
plicit signalling [18]. The endpoints are largely unaware of the mediated content-
delivery by the third party. Since this design implies a high level of trust placed



on the mediating point, we will refer to it as a TTP (trusted third party). On
the other hand, encryption of application-data, e.g., via TLS has become much
more common. Normally, the record layer of TLS follows a design of end-to-end
encryption between two purported interlocutors, e.g., a client and a server. Yet,
as we already mentioned, collaborative content-delivery and/or traffic servicing
is both a chronic and an acute need. As such, collaborative delivery over TLS-
encrypted traffic is already largely adopted, e.g., by CDNs. This is most often
referred to as SSL inspection or TLS delegation. Their edge servers hold a
valid X.509 certificate for the domain(s) and an associated private key on behalf
of the web-servers for which they deliver content. In this way, the CDN-owned
TTP is still invisible to the end-user, as it impersonates the end web-server in a
manner akin to that of implicit signaling.

At the same time as collaborative delivery with implicit signaling has become
ubiquitous, the Internet Architecture Board (IAB) calls for making all proxies
collaborating in traffic delivery visible to the endpoints [18]. Meanwhile, there
exist architectures that meet somewhere in the middle: they are more practi-
cal than fully visible proxying, and side with the IAB on reducing the TTP’s
invisibility. Concretely, in these cases, the mediating party is still invisible to
the client, but not to the web-server, at least during the secure-channel es-
tablishment, e.g., the TLS handshake. We refer to these as server-controlled
TLS delegations. Such designs appeared first in a patent by the CDN-giant
Akamai [16]. In this modus operandi, the CDN provisions the public key and
associated X.509 certificate for the domain it delivers, but the associated private
key remains on the web-servers’ side. The CDN queries the web-server via an
API for operations where designated private key is needed. In 2015, Cloudflare
commercialized a version of this, in a product called Keyless SSL [49]. However,
these designs obviously require modifications to the TLS server and sometimes
even the TLS handshake (i.e., the secure-channel establishment part of TLS).
Also, the resulting three-party “TLS-like” protocol arguably raises questions
w.r.t. what it should guarantee and what it does actually guarantee. To this
end, in 2017, Bhargavan et al. [5] used a provable-security approach to show
several vulnerabilities on Keyless SSL. They also advanced 3(S)ACCE-K-SSL,
an alternative design of a 2 party Authenticated and Confidential Channel Es-
tablishment (ACCE) where the handshake is run in the presence of middleboxes
such as CDN edge servers. 3(S)ACCE-K-SSL provably achieves stronger security
goals than Keyless SSL, albeit with reduced design-efficiency.

Contributions

1. We propose a suite of new designs for practical and provably secure server-
controlled TLS delegation, in which the mediating party has limited and remote
access to end-server. We call our designs LURK that meets in the middle be-
tween the (insecure) Keyless SSL [49] and the (provably secure but inefficient)
3(S)ACCE-K-SSL [5]. In fact, LURK has different variants which offer a balance
between security and practicality. For instance, we remove the content-soundness
requirement in 3(S)ACCE-K-SSL [5], as it needs an expensive PKI. Similarly,
for efficiency reasons, only certain LURK variants attain a new TLS-delegation



property called accountability [5]. Meanwhile, all LURK designs require chan-
nel security and entity authentication in the collaborative, 3-party setting. Also,
LURK does takes into account recommendations made for KeylessSSL w.r.t. its
replay-driven insecurities based on corruption of content-delivery party [5], by
building in new mechanisms to avoid replay attacks.

2. LURK is a generic design to accommodate most authenticated key-exchange
(AKE) protocols. In this paper, we instantiated it with TLS 1.2, which we call
LURK .

3. Using the recent 3(S)ACCE formal security model for proxied AKE [5], we
provide cryptographic proofs that LURK achieves its security goals.

4. In LURK , we include a “freshness mechanism” to counter replay attacks 6.
As such, we encode LURK in RSA mode in the automatic protocol-verifier
ProVerif and we formally check that perfect forward secrecy holds in LURK in
RSA mode. With a further formalisation in ProVerif, we show that the elusion
of our “freshness mechanism” would in fact lead to the same type of attacks as
found in Keyless SSL. Thus, we formally prove that our “freshness mechanism”
does indeed aid to ensure perfect forward secrecy in LURK in RSA mode.

5. We implement the more efficient variants of LURK and test them in practice.

Why LURK? The purpose of LURK based on TLS 1.2 is to provide
the necessary agility required during the transition from TLS 1.2 to TLS 1.3,
all the while preventing that bespoke TLS 1.2 communications operate inse-
curely. While TLS 1.3 has seen a remarkably fast adoption from large companies
(Facebook, Google, Microsoft, Akamai) as well as standardization bodies such
as 3GPP, TLS 1.2 is the de-facto version of TLS used worldwide. It is likely that
the transition from TLS 1.2 to TLS 1.3 “in the wild” will take some time. In
fact, many services rely on so-called legacy devices, such as video on demand
being provided by Customer Premises Equipment (CPE); for these, the move to
TLS 1.3 is expected to take significantly longer. One of LURK ’s aim is to bridge
this gap and improve the security of existing TLS 1.2 deployment.

2 LURK ’s Use Cases

Our proposed architecture, LURK , practically splits a TLS server into two
micro-services: the LURK Engine and the Cryptographic Service (Crypto Ser-
vice). This enables that the ownership of long-term cryptographic credentials
and the execution of the bulk of the TLS handshake be operated by independent
parties. The following use-cases could grasp the benefits of such an architecture.

6 Since TLS 1.2 RSA mode does not ensure forward secrecy, placing a mediating party
in between the client and the server can lead to replay attacks. This was shown for
Keyless SSL TLS 1.2 in RSA mode, and a repair was proposed via the 3(S)ACCE-
K-SSL design [5]; our replay-prevention mechanism differs from this design.



2.1 Complex CDN-ing

Firstly, the Streaming Video Alliance (SVA) [51] brings together content providers,
commercial CDN operators and network operators to collaborate on a partner-
ship that allows to seamlessly provide abilities to offload video-based content
to caches deep into the network-operator’s edge. Secondly, leveraging work of
the IETF CDN Interconnection Working Group (CDNI) [12], the Open Caching
Working Group (OCWG) [40] has specified an architecture as well as an API to
enable the delegation of content from between CDNs. An upstream CDN (uCDN)
is a CDN that is willing to delegate content to a downstream CDN (dCDN).
CDNI and OCWG look at making this type of uCDN-to-dCDN delegation more
workable. However, in this case of complex CDN-ing, placing trust on possibly
unknown dCDNs to handle private keys on behalf of the content-owner is a big
ask. So, this type of CDN-ing can benefit from the LURK architecture to enable
delegation of encrypted content without sharing the private keys. Concretely, the
LURK architecture allows uCDNs to delegate across the different administrative
domains to dCDNs, without sharing long-term security credentials.

Current implementations of this architecture, in the absence of LURK , are
forced to implement inferior solutions. For instance, they use short expiry of
keys which cause operations overheads. Or, they create dedicated sub-domains
for the dCDN’s use, which cause security risks. Lastly, sometimes the usage
of the dCDN’s domain is enforced, simply to avoid sharing long-term security
credentials.

The LURK framework allows for encrypted TLS handshake without sharing
the private key to the delegated CDN. This makes LURK a natural fit for
delegation of video streaming sessions across different administrative domains.
The latency overhead could be solved by leveraging TEE and extending the
trusted domain of the delegating CDN into the delegated CDN’s infrastructure.

2.2 Service-to-Service Platforms

In service-based architectures, there are often service-mesh technologies called
upon to create representation of a service as the interconnection of micro-services.
In middle parties in these interconnections are called mesh proxies or sidecars.
A recurrent feature is the interconnection of sidecars with TLS based on short
lived private keys. An example is Istio [25], running on the Kubernetes Engine.
In Istio, a particular component in the service-mesh control-plane is in charge
of frequently triggering private-key rotation (e.g., Istio Citadel). It is a fact that
such component plays a critical role and its corruption may lead to exposure of
the managed secrets.

To solve the problem of the large amount of trust placed on the service-mesh
control-plane, we could look at the LURK Crypto Service be deployed in vir-
tual multi-tenant environments. To solve the issue, in fact, we would need an
in-extremis solution where we colocate the Crypto Service with the TLS Engine.
Bearing in mind that the latter can be deployed on untrusted platforms, a re-
quirement is the availability of a root-of-trust, such as TEEs (Trusted Execution



Environments, e.g., Intel SGX [24], in order to instantiate the Crypto Service
inside it.

At an initial assessment, we expect that a LURK deployment with the Crypto
Service inside a TEE and the Engine implemented by sidecars: (1) enables a
tighten control over the private keys alongside the necessary cryptographic op-
erations on it; and (2) reduces the critical role of entities in charge of frequent key
rotation and certificate renewal. Nonetheless, a challenge remains provisioning
of TEE and managing the lifecycle of the Crypto Service inside it. IETF created
the Trusted Execution Environment Provisioning Working Group (TEEP) [52]
which we follow closely.

3 Related Work

3.1 Client-Invisible, Server-Controlled TLS Delegation

By server-controlled and client-invisible delegation, we mean that the TLS client
is unaware of the middlebox and the latter is mandated/commissioned to dele-
gate traffic by the TLS server.

Up to date, there are seven comprehensive such mechanisms, all used for or
by CDNs. In Table 1, we summarise these as well as LURK , from the viewpoint
of: a) the changes needed to the TLS Client; b) the important credentials over
which the TLS Server (content owner) maintains control during the delegation;
c) the ability of the TLS Server (content owner) to audit the delegated TLS
session.

From LURK ’s stance, as we envisage this used with legacy clients, the
TLS Client must not be updated. For security reasons, the ability to audit the
middlebox is clearly also vital. As such, we see from Table 1, that LURK is
a competitive solution on this desirable space of secure, backwards-aware TLS
delegation. More details on every mechanism listed in Table 1 are provided in
Appendix D.

We now detail Table 1. Liang et al. [30] show that CDN providers are depend-
ing on TLS delegation, yet that TLS delegation is not appropriately handled.
To this end, Liang et al. measured that 19 out of 20 CDNs and found that
only 31.2 % of web sites on CDN using HTTPS present a Valid Certificate.
Nonetheless, we recount all TLS delegation mechanisms for CDN-ing.

First, Liang et al. [30] showed that sharing the private key and names is
a common practice for CDNs. In this way, the content owner gives up all its
identity credentials with no control over them, which constitutes an obvious
security threat.

Second, another way to provide collaborative delivery is to delegate using
certificates or equivalent. The content owner may issue a signing intermediary
CA to delegate the emission of keys owned by the CDN associated to the con-
tent owner name. However, the X.509 Name Constraints certificate extension [8]
does not apply to the Subject Alternative Name (SAN), but only to the Com-
mon Name (CN) in the Distinguished Name (DN) while certificate validation



Mechanism
Impact on TLS

Client
CO∗ control capabilities

CO∗ audit
capabilities

Shared long-term
private key [30]

– – –

X.509 Name
Constraints [8]

X.509 parsing long-term private key, name –

Delegated
Credentials [3]

TLS ext. name –

STAR [44] – name –

DANE [20] DNSSEC name –

Stickler [29] browser plugin
long-term private key, name,

content
–

KeylesSSL [49] – long-term private key, name –

3(S)ACCE-K-SSL [5] – long-term private key, name yes

LURK – long-term private key, name yes

Table 1: Client-Invisible, Server-Controlled TLS Delegation for CDNs —(*) CO:
Content Owner

considers DNS names in DN/CN or in SAN. As a result, there is not enough
control in the certificates that may be validated.

Third, one has the option of delegated credentials [3]. This is similar in essence
to certificate delegation but the delegation is performed on a TLS specific struc-
ture and validated by the Client. Client integration does not make the mechanism
viable for legacy TLS 1.2 Clients.

Fourth, Short-Term, Automatically-Renewed (STAR) certificates [44], [43]
describes a method where the domain name owner or the content owner au-
thorides the Certificate Authority (CA) to renew the certificate when requested
by the CDN - using using ACME [2]. For both Delegated credentials and STAR,
the content-owner will regain control of the identity/ credentials after the delega-
tion expires, however, during the delegation, the content-owner has little control
or audit-powers over the CDN machines.

Fifth, the DANE design [20] takes advantage of DNSSEC to provide keys used
to establish the TLS session. Although an elegant solution, there is currently not
enough support for DANE by browser vendors.

Sixth, Gilad et al. [17] and Levy et al. [29] present an alternative, called
Stickler, which involves decryption by the browser, that is at the application
layer. With Stickler, upon downloading the home page, the content-origin pro-
vides a Loader. The Loader is sent over the secure TLS channel and can retrieve
the JavaScript (RootJS) from the proxy, validating the software. The software
is then able to retrieve the signed objects from the mirror and checks them.

Seventh, KeylessSSL [5] is said –by their proprietors Cloudflare– not perform
delegation but split the TLS into services and provide the ability for the content
owner to keep the control of the identity credentials while other part of the deliv-
ery is let to the CDN. As no changes are required on the Client, it can be of use



with legacy devices. But, in 2017, Bhargavan et al. [5] used a provable-security
approach to show several vulnerabilities on KeylessSSL; they also advanced an
alternative design, called 3(S)ACCE-K-SSL, that provably achieve stronger se-
curity goals, albeit via a much less efficient design.

We also carried out the same type of comparison with TLS-delegation mech-
anisms where the client is aware of the middlebox, i.e, Client-visible TLS Dele-
gation.

3.2 Client-visible TLS Delegation

On the client side, CDN-ing (as per the above) is not explicitly signalled. In
other words, the CDN provider is assimilated to the content owner from the
client’s perspective. While this might be acceptable with one-to-one configura-
tions, automated CDN collaborations like those envisioned by CDNI [12] seem to
introduce a federated platform for content where the TLS termination is hardly
controlled by the Client or the content owner, but where the TLS communication
is composed of multiple intermediaries. In this context, the client and content
owner may be willing to have a closer view on the different intermediaries. In-
deed, multiple initiatives have been taken to have middleboxes partake in TLS
sessions with an explicit agreement and negotiation of all parties involved [36],
[39]. We recount these initiatives below.

First, SplitTLS [47] is commonly seen as the simplest architecture where the
middlebox impersonates the endpoint. The client side requires to trust the root
certificate of the middlebox that impersonates all servers. On the server side,
such architecture could be interpreted as a TLS front end or a security gateway.

Second, Explicit Trusted Proxy [31] moves a step forward and lets the client
indicate the use of a proxy but did not provide additional control on the proxy.

Third, TLS ProxyInfo [33] and TLS Keyshare Extension [38] ensure that
both endpoints are aware of the existence of the proxy, while enabling client to
authenticate the server. Yet, arguably, a shared key does not provide sufficient
accountability or control on what is actually performed by the middlebox.

Fourth, multi-context TLS (mcTLS) [37] allows for the endpoints and mid-
dboxes to establish different access-level keys (read/write keys) per middlebox
and per different data-fragments (e.g., HTTP headers, body).

Fifth, [4] showed mcTLS to be insecure and proposed a new provably-secure
but less efficient design, in the same vain of visible and accountable proxying
over TLS.

Sixth, Transport Layer Middlebox Security Protocol (TLMSP) [15] also im-
proves on mcTLS by adding more measures to evaluate the transformations on
data performed by each middlebox. Yet this design does not enable incremental
deployment.

Seventh, Middlebox TLS (mbTLS) enables middleboxes to leverage SGX to
attest processing performed by them, while middlebox aware TLS (maTLS) [28]
uses a specific certification model.

Eighth, BlindBox [45] and Embark [27] adopt a different approach where
middleboxes operate over encrypted content.



Table 2 recounts most of the aforementioned initiatives w.r.t the main chal-
lenges each attempts to overcome: 1). the ability to authenticate end points as
well as middleboxes (Auth); 2). the ability to restrict or control operations per-
formed by each intermediary node (Content); 3). the ability for one endpoint to
evaluate the overall security of the channel (E2E). Ensuring these capabilities
impact the complexity of the establishment of the TLS session; this determines
whether it can be implemented via a TLS extension (TLS ext.), like LURK is,
or via more complex settings (New setup).

Mechanism Auth Content E2E TLS Impact

Split TLS (client) – – – Root Cert.
Split TLS (server) – – –
Explicit Trusted
Proxy

– – – TLS ext.

TLS ProxyInfo x – x TLS ext.
TLS Keyshare x – x TLS ext
mcTLS x data, action (read, write) x New setup

TLMSP x
data, actions, path order,

modification
x New setup

mbTLS x TEE x New setup
maTLS x certification x New setup,
Blindbox, Embark x encryption x New setup

Table 2: Mechanisms for Client-Visible TLS Delegation

3.3 Keyless SSL and 3(S)ACCE-K-SSL

As we can see from Table 1, LURK aligns itself most with KeylessSSL [49] and
3(S)ACCE-K-SSL [5]. In fact, these CDN-driven architectures appeared first in
a patent by Akamai [16]: i.e., TLS-delegation systems where the TLS long-term
private key stays on the server-side and the associated certificate goes with the
middlebox, who can therefore impersonate the server in a way invisible to the
client. In 2015, Cloudflare commercialised a version of this, in a product called
KeylessSSL [49]. However, KeylessSSL obviously required modifications to the
TLS handshake (i.e., the secure-channel establishment part of TLS). Also, the
resulting three-party “TLS-like” protocol arguably raises questions w.r.t. what
it should guarantee and what it does actually guarantee. To this end, in 2017,
Bhargavan et al. [5] used a provable-security approach to show several vulner-
abilities on KeylessSSL: e.g., forward-secrecy attacks, signing oracle attacks or
cross-protocol attacks, etc. So, Bhargavan et al. [5] advanced an alternative de-
sign, called 3(S)ACCE-K-SSL, that provably achieves stronger security goals
than KeylessSSL, albeit with reduced design-efficiency.



By cherry-picking just the security guarantees achievable in the real-world7

and by some different design choices8, LURK offers a more efficient design than
3(S)ACCE-K-SSL. Concretely, just to fix the forward-secrecy attack in Key-
lessSSL, the 3-(S)ACCE-K-SSL design requires 3 RTTs, which is prohibitive for
the provided benefit. LURK addresses this concern by providing similar level of
security with a single RTT. What is more, unlike 3(S)ACCE-K-SSL, we imple-
mented and extensively tested LURK ’s performance, to aid further still with
particular option/implementation choices.

Note that 3-(S)ACCE-K-SSL aims to achieve a strong property called content-
soundness, for which it requires one certificate per every content-unit (e.g., 1
HTML page, 1 HTTP header, etc.) delivered. This is arguably un-achievable
in real life. Yet, the content-soundness property is interesting in that it crypto-
graphically certifies each content-unit that the middlebox is allowed to deliver;
but, in practice, the solutions are weaker, based on CDN configurations and
access-control policies.

Last but not least, we offer several variants of LURK , each with different
options (e.g., LURK Variant 1 can support session ID resumption if needed,
whereas LURK Variant 2 does not and does attain accountability like 3-(S)ACCE-
K-SSL). To this end, it could be considered that our LURK Variant 1 is a secure
version of KeylessSSL, whereas our LURK Variant 2 is an even more secure, be-
ing real-life alternatives to 3-(S)ACCE-K-SSL.

Here are some further comparisons with KeylessSSL.

On Decrypting Oracles When RSA authentication is used by the TLS client to
authenticate the TLS server, the TLS client provides an encrypted premaster
secret that is decrypted by the TLS server and used to generate the master
secret. With KeylessSSL, the decryption is performed by the Crypto Service,
while the computation of the master secret is performed by the Engine9. Such
design makes the key server subject to chosen ciphertext attack as an attacker
that gains access to the Crypto Service is able to gather information by obtaining
the decryption of chosen ciphertexts. Opening such attacks raises at least three
concerns: 1) placing the Crypto Service under a DoS-like attack, 2) opening
the Crypto Service to cryptanalysis attacks (cipher text attacks) to recover the
key, 3) opening the Crypto Service to replay attacks with old premaster and
compromise an old session. These problems were signaled and discussed at length
in [5].

With LURK , even in its weaker version 1, the Crypto Service outputs the
master secret which prevents cipher text attack. In addition, a freshness mech-
anism protects LURK against replay attacks. As a result, the Crypto Service
makes these attacks unfeasible by design.

7 We do not require 3(S)ACCE-K-SSL’s content-soundness.
8 To add Perfect Forward Secrecy (PFS) to LURK in RSA mode, we do not run the

whole handshake on behalf of the Engine (which 3(S)ACCE-K-SSL did to repair
KeylessSSL).

9 In KeylessSSL, the terminology is not that of a Crypto Service and an Engine, but
we use this for easiness.



In LURK , we implement two ways for the Crypto Service to generate the
master secret: RSA and Extended RSA. This makes LURK a bit more complex
than KeylessSSL, but we do avoid the aforementioned worries w.r.t. KeylessSSL’s
Crypto Service returning the premaster secret.

As per the above, the LURK Engine needs to send different parameters
depending on the authentication method used to establish the TLS session. In
the case of RSA Extended, the full handshake needs to be provided which results
in a significant increase of the payload. As per Section 7, hen the Crypto Service
and the LURK Engine are located in the same data center, in the worst case,
RSA extended mode has 2.09-time greater latency than in RSA mode. With
TCP TLS, this means an observed latency is 20 ms, which is unlikely to be
perceived by the end user.

When the Crypto Service and the LURK Engine are not located in the same
data center, the experimented latency will be the one associated between the
two sites. While RSA and Extended RSA will experiment that same propagation
time that is directly associated to the distances, they will experiment a difference
depending of the transmission which is directly related to the capacity of the link.
In the light of KeylessSSL measurements provided by Cloudflare [50] between
a data center in London and San Francisco the observed propagation can be
roughly be estimated to 10,840 ms. A low entry bar of 10 Gbps inter-data center
connectivity would make a few additional kilo bytes unnoticed. As a potential
drawbacks introduced by LURK over KeylessSSL seems insignificant compared
to the additional security provided by LURK .

On LURK ’s Proof of Handshake The proof of handshake consists in attesting
that the LURK request occurs in a context of a TLS exchange which is based
on the computation of the Finished message. In TLS RSA mode, the handshake-
exchange can be entirely computed by an attacker acting as both the TLS client
and the TLS server. To this end, the PoH also proves that the TLS client knows
the premaster secret, which makes such an attack meaningless, without any need
to decrypt the premaster secret.

On Signing Oracles ECDHE (Elliptic Curve Diffie Hellman) authentication in
TLS includes the following operations: 1) generation of some ingredients includ-
ing the public part of the TLS-server DH public key and the TLS randoms; 2)
these ingredients are hashed and then signed. With KeylessSSL only the sign-
ing operation is performed by the Crypto Service. Because the Crypto Service
receives the output of the hash, it is not able to check whether it is actually
signing TLS parameters of a given session. Instead it is blindly signing some
random bits of a given length. This is discussed in [5].

Unlike in KeylessSSL, the LURK ’s Crypto Service performs both the hashing
and the signing operation. I.e., it is the ingredients of the hash and not the
hash that the LURK Engine provides to the Crypto Service. This enables the
Crypto Service to check the input parameters and validate these parameters.
E.g., typically only specific curves may be provided. Upon receiving a public



value, the Crypto Service needs to check the public value is on the specified
curve.

To enforce further checks, LURK adds also the Proof of Ownership (PoO)
that proves the knowledge by the LURK Engine of the private key.

So, like in RSA mode, in DHE mode LURK provides larger parameters to
the Crypto Service than KeylessSSL does. Yet, for the same reasons as above,
the efficiency impact visible to the end-user is limited and do not overweight the
extra security provided by LURK .

The table below summarises the comparisons made between these 3 designs

RTT
PFS /

Anti-Replay
PoO PoH

Decrypting-
oracle

protection

Signing-
oracle

Protection

LURK 1 φ yes yes yes yes
3(S) ACCE-K-SSL 3 2-ACCE no yes yes yes
Keyless SSL 1 – no – no no

Table 3: Novelty of LURK versus 3(S) ACCE-K-SSL and KeylessSSL

4 LURK : Delegated Secure Delivery with Server Control

LURK is a suite of designs to delegate TLS 1.2 credentials without any changes
on the TLS Client, whilst it does split the standard TLS Server into two services:
1). a Cryptographic Service (“Crypto Service” for short), denoted by S , which
performs cryptographic operations associated to the private key of the TLS
Server; 2). a LURK Engine (“Engine” for short), denoted by E , which performs
the remainder of the TLS server-side process. The Crypto service and the LURK
Engine can be collocated10 services or not. These two services communicate
using the LURK protocol. In other words, LURK facilitates “oracle”-like calls that
the Engine E makes to Crypto Service S , needed for the signing or decryption
operations that a TLS-server normally does. The queries from the LURK Engine
to the Crypto Service are performed over a mutually-authenticated and secure
channel with exported keys (e.g., EAP-TLS or other “TLS-like” protocol), which
—as shown by [11]—can be transformed into a provably secure authenticated key
exchange protocol where the exported keys are indistinguishable from random.
Whilst the limited and restricted use of the Crypto Service is akin to that of
an HSM (Hardware Security Module), the enforcement mechanisms in place to
achieve such restricted usage in LURK differ from those in an HSM.

10 In CDN, the LURK Engine is hosted by the CDN provider at the edge node, while
the Cryptographic Service is hosted by the content owner.



4.1 The LURK Designs

LURK instantiated with TLS 1.2, called LURK, is parametric in a security pa-
rameter s, as well as on a function11 called the “freshness function” and denoted
ϕ. This is a pseudorandom function (PRF). There is a fresh key k, indistinguish-
able from random, exported from the AKE protocol run between the Engine and
the Crypto Service, at each run of LURK. In each such run, the key k is also
used to key an instance of the PRF ϕ. In that sense, when we sometimes write
“ϕ(·)” we mean ϕk(·), where both ϕ and k are re-chosen/re-established at every
new session.

LURK in RSA Mode. Figure 1 presents the LURK protocol12. based on
TLS 1.2 in RSA-mode. We propose two slightly different variants of LURK in
RSA mode.

TLS Client C LURK Engine E Crypto Service S

Generate NC←R{0, 1}n
NC−−−−−→

Mutually-auth.,
Secure Channel

with Exported Key k←−−−−−−−−−−−−→
Generate Ni←R{0, 1}n

Compute NE ← ϕk(Ni)

Check CertS

NE ,CertS←−−−−−−−

pmk←R{0, 1}m
KEC ← Encpk(pmk)
msk ←
PRFpmk(L1,NC‖NE )
ck← PRFmsk(L2,NE‖NC )
FinC ← PRFmsk(L3, τ)

KEC ,FinC−−−−−−−−−→

τ =

[NC, . . . , KEC ], Ni,

opt. : FinC
=============⇒ pmk← Decsk(KEC )

NE = ϕk(Ni)

msk← PRFpmk(L1,NC‖NE )

Var.2: ck← PRFmsk(L2,NE‖NC )

opt.: Verify FinC ; a.k.a. PoH

V ar.1− msk ⊕ k

V ar.2− ck ⊕ k⇐=============
Var.1: Read msk
Var.1: ck← PRFmsk(L2,NE‖NC )

Var.2: Read ck
Calculate FinE ← PRFmsk(L3, τ)

Decrypt and check FinE

AEck(FinE )⇐========
Record layer: application data

AEck(−)⇐=======⇒ Record layer: application data

Fig. 1: LURK based on TLS 1.2 in RSA mode: Two Variants

11 We do not hard code this function in the design as per the guidelines of [21]. In
this way, if concrete implementations have already allocated the space for different
possibilities, then deprecation of specific choices and replacements are more easily
made.

12 Please see Appendix A of the long version of the paper [32] for details on TLS 1.2



As per Fig. 1, the handshake starts as expected on the client side. Thereafter,
there are some differences. First, the server-nonce, here denoted NE , is computed
by the LURK Engine in a different manner than in TLS 1.2. RSA mode. The
LURK Engine generates a nonce Ni at random; the length of Ni is parametric in
a security parameter. In practice, in line with TLS parameters, this length can be
chosen to be, e.g., 28×8 bits. Second, the LURK Engine applies the ϕ function to
Ni. It is the result of ϕ(Ni), i.e., NE = ϕ(Ni), that stands in for the “TLS server
random” and is sent back by the LURK Engine to the Client. Third, the TLS
Client then sends the client key-exchange message KEC containing the encrypted
pre-master secret pmk, alongside the client-finished messages FinC . Fourth, the
LURK Engine forwards these (with or without the FinC ), along with Ni and
all elements of the transcript τ to the Crypto Service. Then, the Crypto Service
computes NE as ϕ(Ni), retrieves the pmk, verifies the FinC message (if it was
sent) and then computes the master secret msk. Note that the sending by the
Engine of the FinC message to be verified by the Crypto Service is optional and
we also refer to it as the Proof of Handshake (PoH).

Henceforth, LURK branches out in two variants. In Variant 1, the Crypto
Service sends back the master-secret msk to the LURK Engine, whereas in Vari-
ant 2, the channel key ck is sent back to the LURK Engine. Either message, msk
or ck, is sent encrypted with the exported key. Then, the protocol between the
Engine and the TLS Client follows the normal TLS interaction and record-layer
communication.

LURK in RSA Extended Mode. LURK in RSA Extended mode only
differs from LURK in RSA in that the master secret msk is generated using the
transcripts of the handshake instead of the nonces NC and NE .

LURK in DHE Mode. W.r.t. LURK in DHE mode, we also propose
two variants. The first is presented in Figure 2, and the second in Figure 9
—found in Appendix C. In the first variant of LURK in DHE mode (Fig. 2),
the LURK Engine generates the DHE keypair (v, gv mod p) and KEE . It sends
the key share KEE to the Crypto Service together with NC and Ni, as well as
—optionally —a Proof of Ownership of v, denoted PoO(v); the latter can be
seen as a non-interactive proof of knowledge of the secret exponent v.

The Crypto Service would only accept a specific data-structure for the mes-
sages received at this step and it will decline the communication otherwise. Then,
the Crypto Service verifies the PoO (if it was sent), it then computes the hash
sv, and signs this hash. Then, the Crypto Service returns this signature to the
LURK Engine. From here on, the Crypto Service continues the TLS handshake
with the Client as expected. After the use of the DHE keypair and the Ni nonce,
the LURK Engine deletes them off its memory.

In the second variant of LURK in DHE modeFigure 9 —found in Ap-
pendix C), the Crypto Service executes more operations on behalf of the Engine
than in Variant 1. Namely, the Crypto Service generates the ephemeral DHE ex-
ponent v, it therefore generates the pmk value and it only returns to the LURK
Engine the channel key. In fact, our Variant 2 of LURK in DHE mode is an
efficiency-driven variation of the 3(S)ACCE-K-SSL design proposed in [5]. Con-



TLS Client C LURK Engine E Crypto Service S

Generate NC←R{0, 1}n
NC−−−−−−→

Mutually-auth.,
Secure Channel

with Exported Key k←−−−−−−−−−−−−→
Generate Ni←R{0, 1}n

NE ← ϕ(Ni)

Check CertS

NE ,

CertS←−−−− Generate v←RZp
KEE ← (p‖g‖gv mod p)

NC,Ni,KEE ,

optional:PoK(v)
============⇒ optional:

Check PoK

or proof of ownership (PoO)

NE ← ϕ(Ni)

sv← H(NC‖NE‖KEE )

PSign← Signsk(sv)

PSign⇐=======

Check PSign against NC ,NE ,KEE

KEE ,

PSign←−−−−
Generate u←RZp
KEC ← gu (mod p)
pmk← (KEE )

u mod p

KEC−−−−−−−→ pmk← (KEC )
v mod p

msk← PRFpmk(L1,NC‖NE )
ck← PRFmsk(L2,NE‖NC )

msk← PRFpmk(L1,NC‖NE )
ck← PRFmsk(L2,NE‖NC )

FinC ← PRFmsk(L3, τ)
AEck(FinC )========⇒

Decrypt and check
FinC

FinE ← PRFmsk(L4, τ)

Decrypt and check FinE

AEck(FinE )⇐========

Record layer: application data
AEck(−)⇐=======⇒Record layer: application data

Fig. 2: LURK based on TLS 1.2 in DHE mode: Variant 1

cretely, our Variant 2 of LURK in DHE mode does not require the heavy PKI
that 3(S)ACCE-K-SSL needs for the content-soundness property (i.e., one cer-
tificate per each fragment delivered), as we do not aim to achieve this property
—see section 3.3.

Note: A detailed specification of LURK , to the level of the network layer,
packet formats, inner options, etc. is available at [35]. Section 6 will also provide
detail in this regard.

4.2 LURK ’s Security Goals

TLS is a 2-party authenticated key exchange (AKE) protocol and LURK is a
3-party AKE protocol. The security of AKEs like TLS, i.e., AKEs with a key
confirmation step, is formalised via the authenticated and confidential channel
establishment (ACCE) model [26]. Meanwhile, [5] put forward 3(S)ACCE, an
ACCE-based model with formalisms and security requirements for “server-side
delegated authenticated key-exchanges”. So, for assessing LURK ’s security, we



use the 3(S)ACCE model. We describe below the threat model and security
requirements at the high-level; for the formal version, please refer to Appendix B
, where we recall both the ACCE and the 3(S)ACCE models.

Threat Model. To recall, ACCE models are session-based: i.e., Clients, En-
gines and Services are parties which have multiple instances/sessions running,
and the security definitions rest on “data agreements” and no “bad” event oc-
curring in the interleaving of these sessions, even in the presence of an adversary.
Our attacker is a 3(S)ACCE adversary who can compromise the LURK Engine,
as well as the different end-points, i.e., the Client and the Crypto Service. Not all
3 parties can be compromised in the same LURK execution. The attacker also
controls the network, within the realms of the type of channel (i.e., he cannot
change a secure channel into an insecure one). In the 3(S)ACCE model (recalled
in Appendix B), these adversarial actions are formalised via oracle calls to a
challenger simulating the protocol-execution.

Security Requirements for LURK. The 3(S)ACCE formalism introduces
four security requirements for proxied AKE protocols as described below (given
formally in Appendix B).

Entity Authentication (EA) [5]. An EA attacker can corrupt parties (i.e.,
making them do arbitrary actions), can open new sessions, can probe the results
of sessions and can send its own messages. We say that there is an EA attack
by an EA attacker if there exists a session of type X ending correctly, but
there is no honest session of type Y that was started with X. Above, X,Y can
either be Client or Crypto Service and X is different from Y . In most cases,
we are interested in the case where X is “Client” and Y is “Crypto Service”,
i.e., the EA views the authentication of the Crypto Service being forged to a
given Client. We say a server-side delegated authenticated key exchange achieves
entity-authentication if there is no EA attack onto the protocol.

In the 3(S)ACCE formal model [5], the notion of “mixed-2-ACCE entity
authentication” also appears; it is called mixed because “to the left” of the
Engine —there is an unilateral authentication protocol, and “to the right” of
the Engine —there is a mutually authenticated protocol, and the attacker needs
to play the EA game both to the left and to the right at the same time.

Channel Security. We say a server-side delegated authenticated key exchange
achieves channel security if no channel attacker can find the channel key of a
session belonging to a party it did not corrupt. Notably, the attacker can corrupt
a LURK Engine at a time t and thus can learn its full state at that time, and use
it henceforth to find the channel key of sessions that took place before time t.
This type of attack is known as an attack against perfect forward secrecy (PFS).
It is well-known that TLS 1.2 in RSA mode does not achieve perfect forward
secrecy, and nor does Keyless SSL in RSA mode [5].

Accountability [5]. We say a server-side delegated authenticated key exchange
achieves accountability if the Crypto Service is able to compute the channel keys
used by the Client and the middle party, which in our case is the LURK Engine.
This empowers the Crypto Service to audit the activity of the LURK Service at
the record layer, should this be required.



So, the LURK designs are expected to achieve channel security, entity au-
thentication and accountability. Our position is that the first two requirements
are essential (and should be demanded of all LURK designs); meanwhile, we
view accountability as an optional security requirement, which one can consider
trading off for the sake of efficiency.

4.3 LURK ’s Design Choices: Different Levels of Security &
Efficiency

LURK ’s Freshness Function ϕ. We included this mechanism in LURK in RSA
mode to aid the enforcing of (channel security with) perfect forward secrecy. In
simple terms, if an adversary A gathers plaintext information from a handshake,
then A will get NE and KEC but not the Ni nonce sent on the secure channel
between the Engine and the Crypto Service. If later on, at time t, the adversary
A corrupts the Engine E , said adversary will not find the old the Ni nonce in
E ’s memory; we specifically require that Ni be deleted from E ’s memory at the
end of its use. As such, since we require ϕ to be a non-programmable13 PRF [10],
the value NE produced as ϕ(Ni) cannot be guessed by the attacker. Since ϕ is
a PRF, ϕ is also non-invertible and the adversary A cannot produce Ni out of
NE neither. So, A cannot present an old query to the Crypto Service. We will
further discuss the PFS guarantees of LURK in RSA mode in Section 5.

We note that —whilst some cryptographic assumptions are needed—LURK
in RSA mode builds in a PFS-enforcing mechanism that is more communication-
effective than the repairs made to Keyless SSL via 3(S)ACCE-K-SSL in [5] (i.e.,
in LURK , the Crypto Service does not need to send NE to the Engine at the
beginning of the handshake).

LURK : Session Resumption vs. Accountability. Session resumption is a mech-
anism whereby the middle party in a proxied TLS connection can produce a new
channel key ck without contacting the end-server, just by exchanging new nonces
with the client and using an old msk. Variant 1 of LURK in RSA mode, the msk
is returned to the TLS Engine E , and so the latter could perform session resump-
tion. That said, LURK does not provide a mechanism for session resumption
in its specification. And, in Variant 2 of LURK in RSA mode, the channel key
ck is returned to the TLS Engine E , and so the latter can simply not perform
session resumption.

So, if we modified LURK to explicitly open for session resumption, then —in
practice—Variant 1 of LURK in RSA mode could become more communication-
efficient than Variant 2 of LURK in RSA mode. Yet, Variant 2 of LURK in RSA
mode achieves the aforementioned security requirement called accountability14.
Thus, Variant 2 of LURK in RSA mode is closer to 3(S)ACCE-K-SSL in RSA
mode in [5] (which also attains accountability); however, recall that LURK in

13 Non-programmability is just a detail pertaining to formal proofs: the great majority
PRFs are non-programmable; see Appendix B for details.

14 Following [5], it is known that session-resumption and accountability are mutually
exclusive.



RSA mode is more efficient that 3(S)ACCE-K-SSL in obtaining channel security
with PFS.

Protection Against Signing Oracles. In LURK , based on TLS 1.2, in RSA
mode, the role of ϕ is to enforce freshness and as such prevent replay attacks.

Protection Against Malicious Services. In practical settings, the ephemeral
secret v of the Engine may not always be regenerated, e.g, see Section 6.4 of
RFC7525. As such, if the Engine operated with a static v, plus a malicious Crypto
Service learnt this value v at a given time and thereafter became malicious,
then the said Crypto Service could impersonate the Engine and inject unwanted
messages to the Client. This can not only compromise the Client’s security, but
breaks the assumptions of the collaborative setup whereby the Engine always
mediates the LURK connections between the Client and the Service. This is why
we do not send the ephemeral secret v, from the Engine to the Crypto Service.

Protection Against Cross-Protocol Attacks. In the design-description, we men-
tioned the fact the Crypto Service would only accept specific data-structures for
incoming messages and it will decline the communication otherwise. This is de-
tailed further in our low-level specification found at [35]. These elements protect
against cross-protocol attacks or injection attacks by a malicious Engine who
would send illicit data to the Service.

5 Formal Security Proofs & Analyses

We now discuss our formal security analysis of LURK in two parts. First, in
Subsection 5.1, we provide the computational-security results 15 for Variants 1
and 2 of LURK in RSA mode and for Variant 1 of LURK in DHE mode.
This is done w.r.t. all security requirements mentioned in Section 4, including
accountability.

Secondly, in Subsection 5.2, we use symbolic verification to show that LURK
in RSA mode achieves PFS within its channel-security property.

5.1 Cryptographic-Analysis of LURK

In what follows, we state our provable-security results w.r.t. LURK . Using the
3(S)ACCE model in [5], we present the formal theorems and proofs of these
statements in Appendix E.

Entity-Authentication Result.

15 Computational or provable-security formalisms for security analysis consider mes-
sages as bitstrings, attackers to be probabilistic polynomial-time algorithms who
will attempt to subvert cryptographic primitives, and attacks to have a probabilistic
dimension the security parameters; e.g., [5] is a provable-security model for server-
side delegated authenticated key exchange. Contrarily, symbolic models for security
analysis abstract messages to algebraic terms, cryptographic primitives to be ideal
and not subject to subversion by the adversary, and the attacks be possibilistic
flaws mounted via a set of Dolev-Yao rules [14] applied over interleaved protocol
executions.



If TLS 1.2 is secure w.r.t. unilateral entity authentication, if the protocol
between the Engine and the Service is a secure AKE protocol with exported keys
indistinguishable from random [11], if the two protocols ensure 3(S)ACCE mixed
entity authentication [5], if the signature and hash in TLS 1.2 DHE mode are
secure in their respective threat models, if the encryption in TLS 1.2 RSA mode
is secure, then Variant 1 of LURK in DHE mode and Variants 1 and 2 of LURK
in RSA mode are entity-authentication secure in the 3(S)ACCE model.

This is formalised and proven in Theorem 1 in Appendix E.
Channel Security Result.
If TLS 1.2 is secure w.r.t. unilateral entity authentication, if the protocol

between the Engine and the Service is a secure AKE protocol with exported keys
indistinguishable from random [11], if the two protocols ensure 3(S)ACCE mixed
entity authentication [5], if the signature in TLS 1.2 DHE mode is secure in its
threat models plus, respectively, if the encryption in TLS 1.2 in RSA mode is
secure and the freshness function is a non-programmable PRF [9], then Variant 1
of LURK in DHE mode and, respectively, Variants 1 and 2 of LURK in RSA
mode attain channel security in the 3(S)ACCE model.

This is formalised and proven in in Theorem 2 in Appendix E.
Accountability Result.
If TLS 1.2 is secure w.r.t. unilateral entity authentication, if the protocol

between the Engine and the Service is a secure AKE protocol with exported keys
indistinguishable from random [11], if the two protocols ensure 3(S)ACCE mixed
entity authentication, and the freshness function is a non-programmable PRF [9],
then Variant 2 of LURK in RSA mode attains accountability in the 3(S)ACCE
model.

This is formalised and proven in Theorem 3 in Appendix E.

5.2 Symbolic Verification of LURK in RSA Mode

In Appendix E and Subsection 5.1, we prove and respectively recount that LURK
in RSA mode attains channel security. Now, we aim to focus on the PFS side
of the channel security property. Namely, we use computer-assisted analysis to
show that the bespoke way in which LURK in RSA mode introduces and uses
the freshness function ϕ –which henceforth we call the “freshness mechanism”–
does indeed attain channel security with PFS.

We use the ProVerif [6] symbolic verifier given that it is fully automated, sup-
ports an unlimitted number of protocol sessions and can prove various security
properties such as secrecy and correspondence [7]. ProVerif is based on applied
pi-calculus [1]. As such, the protocol entities in our protocol (i.e., the Client,
the LURK Engine, the Crypto Service) are modelled as applied-pi processes ex-
ecuting in parallel. The attacker is a separate process modelling a Dolev-Yao
adversary [14].

Weak LURK. To reach our goal, we also model and check a modified version
of LURK in RSA mode, in which the freshness function is not present. In simple
terms, in this version the Engine chooses the nonce NE directly and sends it to
the client and the Crypto Service, without locally generating Ni and inputting it



to the freshness function ϕ to compute NE . These differences, which yield what
we refer to as “weak-LURK”, are presented in Figure 3.

TLS Client C LURK Engine E Crypto Service S

Generate NC←R{0, 1}n
NC−−−−−−−→ ‘-authenticated AKE←−−−−−−−−−−−−→

Generate NE←R{0, 1}n

Check CertS

NE ,CertS←−−−−−−−
KEC ,FinC−−−−−−−−−−→

τ=[NC ,..., KEC ], NE, FinC=======================⇒
. . . . . . . . . . . .
. . . . . . . . . . . .

Fig. 3: “Weak LURK ”: LURK in RSA mode stripped of the freshness mechanism

Symbolic Formalisation of LURK ’s Requirements. First, recall that if
an attacker corrupting the Engine can get hold of the master secret msk from an
old session and he has observed the handshake of said session, then the attacker
can compute the channel key for that session. This would be failing the property
of channel security with PFS. Second, we need to formalise the property of
channel security (with PFS) in ProVerif.

In the verification process, part of the aspects above would be abstracted
into property over execution-traces, encoding that a master secret msk cannot
be learnt by an attacker who corrupts the Engine. More generally, in symbolic-
verification tools, this would be a secrecy property, which allows one to verify
that particular sensitive data is never inferred by the attacker in any protocol
execution. But, we are also interested in seeing if ProVerif would find an actual
replay attack whereby an attacker who corrupts the Engine learns not any msk
but specifically an old msk. In ProVerif, this can be done via a correspondence
property, which allows one to verify associations between stages in protocol ex-
ecutions, such as links between event occurring. That is, we formalise the verifi-
cation of channel security (with PFS) via a secrecy property w.r.t. (old) master
secrets, together with a correspondence property which checks if it is possible to
re-query the Crypto Server on past cryptographic material such as old client or
server random values. We check these properties in “weak LURK ” vs (Variant 1
of) LURK in RSA mode, both encoded in ProVerif.

Symbolic Analysis of Channel Security with PFS in “Weak LURK”.
Our results show that “weak LURK ” fails to achieve security against corrupted
Engines performing replay attacks. Failure of the anti-replay properties implies
PFS failure: the attacker is able to query the Crypto Service and retrieve old
master secrets. This is also confirmed by violating the secrecy property over the
client master secret. ProVerif is able to show an attack trace with the attacker
acting as an Engine and retrieving an old master secret as a result of querying
the Crypto Service with captured data on the public channel.

Symbolic Analysis of Channel Security with PFS in LURK. As op-
posed to “weak LURK ”, LURK introduces the freshness mechanism. We model



the freshness function ϕ as a pseudorandom function which cannot be inverted
by the attacker (i.e., we rely on the “private” attribute in ProVerif). The results
of the analysis show that, in LURK, clear server random values can be accessed
only by legitimate parties, i.e., received by the Crypto Service. In addition, the
correspondence property holds for LURK, guaranteeing that retrieval of past
master secrets is no longer possible by querying the Crypto Service with cryp-
tographic material inferred from the public channel. This formally proves that
LURK employing the freshness mechanism is resilient against replay attacks
from corrupted Engines.

As by product, our ProVerif-based demonstration that Weak LURK fails to
ensure PFS (PFS) is also a new and automatic way of showing that Keyless SSL
in RSA mode has a replay attack and does not attain PFS; this was only shown
with “pen and paper” before, in [5]. To this end, the two analyses above also
prove that our freshness mechanism represents a viable alternative to the solution
proposed in [5] to patch the Keyless SSL protocol’s PFS problems (which was
to have the end-server generate the server random for the middlebox).

Analysis of Channel Security with PFS: Summary. Table 4 gives de-
tails on the property-encoding and summarises the results of the verification.
Our ProVerif code can be found at [41].

6 System Implementation

pylurk [42], a Python implementation of LURK , follows a modular Python
implementation depicting a client/server setup between a LURK client (i.e.,
engine) and a LURK server (i.e., crypto service). We implemented Variants 1
of LURK in RSA and DHE mode. Our implementation supports UDP, TCP,
TCP+TLS, HTTP and HTTPS for the interaction between the engine and the
crypto service. UDP + DTLS has not been implemented because we were not
able to find a suitable DTLS library in Python. Furthermore, UDP+DTLS would
end up in a stateful protocol which removes the main characteristics of UDP. As
a result, we followed the similar design as DoT [23] and DoH [19] and limited our
scope for the CDN use case to TCP+TLS and HTTPS. UDP is left to the usage
of LURK in a TEE (Trusted Execution Environment) or in containerised envi-
ronments where exchanges are performed on a given platform without exposure
to the network.

We leveraged the socketserver module [46] for TCP and UDP implementa-
tion, the http.server [22] module for the HTTP implementation and SSL [48]
as a TLS/SSL wrapper for socket objects to enable packets protection. We mod-
ified the TCPServer module implementation to allow multiple requests exchange
per established session, eventually protected by TLS, with the client, which im-
proves the performance. However, we left the http.server class unchanged.
Hence, when HTTP is used in combination with TLS, a TLS exchange is per-
formed for each TCP session per request which results in a non optimal case.

As LURK server provides cryptographic services, we use the Cryptodome [13]
package to allow the server to enforce cryptography primitives, while specific



Security
with PFS

Code Excerpt Comments

“Weak LURK”, without the freshness mechanism

Secrecy query secret mastersecretclient .
query secret srv rnd .

Result: False. Both properties
fail. Attack: an attacker assuming
the role of the Engine obtains an
old master secret with a replay at-
tack.

Antireplay
/ Corresp.

query encpremaster :bitstring,
srvrand :bitstring;
inj-event(keyserver received −

encpremaster
(encpremaster , srvrand)) =⇒

inj-event(edge resent encpremaster
(encpremaster , srvrand)).

Result: False. The query asserts
that reception by the Crypto Ser-
vice of a distinct pair of encrypted
premaster secret with a server ran-
dom NE occurring only once in the
same protocol run. The property
fails, Attack: trace showing a re-
play of the same encrypted pre-
master Enc(pmk) and same server
random NE in two distinct in-
stances of the Crypto Service pro-
cess.

LURK in RSA mode (Variant 1 encoded), with freshness mechanism

Secrecy query secret mastersecretclient .
query secret clearSrvRnd .

Result: True. Both properties
hold. Server random values may
now be accessed only by legitimate
parties and old master secrets can-
not be obtained/inferred by the at-
tacker.

Antireplay
/ Corresp.

query srvRand :bitstring;
inj-event(keyserver recvd srvrnd −

clear(srvRand)) =⇒
inj-event(edge sent srvrnd clear

(srvRand)).

Result: True. The query asserts
that reception by the Crypto Ser-
vice of one given server random
NE occurs only once, as a result of
an Engine transmitting this value.
The property holds, guaranteeing
that retrieval of old master secrets
is no longer possible by re-querying
Crypto Service with cryptographic
material inferred from the public
channel.

Table 4: ProVerif Analysis of Channel Security of “Weak LURK ” and LURK in
RSA Mode.



elliptic curve operations, such as the proof of ownership (PoO) of the DHE
exponent, are enabled through tinyec [53]. Our implementation allows the use
of SHA256, SHA384 and SHA512 for the generation of the master secret. The
freshness function ϕ is specified as SHA256. Other options can easily be added.

In RSA mode, the TLS Handshake is provided to the crypto service which
also enforces the usage of specific cipher suites. In our case, we enforced the
following cipher suites: TLS RSA WITH AES 128 GCM SHA256 and
TLS RSA WITH AES 256 GCM SHA384. Encryption of the premaster secret
was performed using a 2048-bit public key.

In DHE mode, namely ECDHE (Elliptic Curve Diffie Hellman), we enforced
the use of secure hash functions in the signature scheme (SHA256 and SHA512)
for both RSA and ECDSA. Similarly, secure elliptic curves (secp256r1, secp384r1,
secp521r1) have been implemented for the generation of ECDHE, as well as for
ECDSA signature. Experiments have limited the test to an RSA signature with
SHA256 using a 2048-bit public key. ECDHE was performed using secp256r1.
Again, other options can easily be added to the implementation.

Lastly, in RSA mode, the last message between the crypto service and the
engine is sent (e.g., msk) instead of its encryption under the exported key k. This
is because the channel is already secure and the said encryption is simply needed
for strong 3(S)ACCE provable-security results but adds nothing to practical
security. Note that more details on the system implementation can be found in
Section 3 of our long version of this manuscript [32].

7 Performance Evaluation

We now investigate the performance of LURK vs. that of a classical TLS 1.2
handshake, and study how different design and implementation choices in LURK
impact its overall performance in terms of latency and CPU overhead. Further,
we provide a comprehensive comparison of LURK with other works in the lit-
erature in Section 6 of our long version of this manuscript [32], given the space
limitation herein. For all experiments, we use the Variants 1 of LURK in the
pylurk [42] implementation (Section 6). Our prototype runs on Xubuntu 18.04,
on an Intel i7-2820QM CPU (2.3GHz) with 16GB RAM. All our results are
derived by averaging over 50 iterations.

7.1 Latency

For a given configuration, lLURK = preq +RTT + presp, is the measured latency
where preq and presp represent the latency introduced by the treatment of the
request and response, respectively, at various layers such as application (parsing,
building, processing the LURK messages) and transport (handling HTTP, TCP,
TLS with associated interruption or processing). RTT is the round-trip time be-
tween the Engine and the Crypto Service. We measure RTT on a local network,
approximating the latency within a data center. The overhead of LURK com-
pared to a standard TLS handshake can roughly be approximated as the latency



between the Engine and the Crypto Service and can be estimated to: δ = lLURK

lTLS
.

Note that such overhead is negligible if a UDP exchange is performed on a local
host between the LURK Engine and the Crypto Service.

Figure 4a shows the latency in seconds for different LURK modes (i.e., RSA,
RSA-extended and ECDHE) for different transport configurations (i.e., local
UDP, UDP, TCP, HTTP). Figure 4b depicts the latency ratio of having LURK
in RSA mode over TCP+TLS and HTTPS, compared to LURK in RSA mode
over TCP, HTTP. In these cases, the PRF function in TLS and the ϕ freshness
function we introduced in LURK are set to SHA256. Figures 5a – 6b show the
latency ratio of LURK with particular options enabled vs. the average-times of
a reference implementation without those options in place. We also consider a
particular instantiation of ϕ freshness function, the PRF used in generating the
master secret, the use of a PoH, the use of a specific PoO vs. the respective lack
of such choices. The measurements shown in Figures 5a – 6b are performed over
UDP.

On transport protocols The increased latency overhead introduced by TCP
over UDP (i.e., a factor of 1.02 in RSA mode, 1.16 in RSA-Extended mode, and
1.02 in ECHDE mode) is a result of the TCP session establishment between an
engine and the Crypto Service for all the requests (Figure 4a). In contrast, the
additional latency overhead observed by HTTP over TCP (i.e., a factor of 1.46 in
RSA mode, 1.25 in RSA-Extended mode and 1.50 for LURK in ECDHE mode)
and by HTTPS over TCP+TLS depicted in Figure 4a and Figure 4b respectively,
is due to the TCP session establishment for each new request between an engine
and the Crypto Service.

While UDP provides optimal performance, the lack of delivery control makes
it a poor candidate for LURK. Further, we identify no clear benefit from using
HTTP instead of TCP, as for instance, the use of HTTP generates larger pay-
loads. TLS does not impose measurable latency. As a result, we recommend that
the engine and the Crypto Service be connected via a long term TCP session
protected by TLS.

Further, we note that the latency overhead introduced by LURK over TLS
is limited in ECDHE mode but not in RSA mode, given that LURK implied
more changes to TLS 1.2 in RSA mode (e.g., use of freshness function, more
interaction between the engine and the Crypto Service) than that in DHE mode.
Figure 4b shows that in RSA mode, the additional costs added onto TLS (e.g.,
via the introduction of the freshness function) are negligible for TCP+TLS;
however, for HTTPS, LURK (vs. TLS) increases the latency by a factor of 1.3.
With TCP+TLS, the overhead of using LURK over the standard TLS 1.2 is
estimated to be: δRSA = 1.27, δRSAExt. = 1.24, δECDHE = 1.05.

On TLS modes Figure 4a depicts that the latency of LURK varies with the
underlying TLS mode. In fact, increased latency overhead is observed when using
RSA extended and ECDHE modes in comparison to RSA mode. For example,
LURK increases the latency by a factor of 2.2 and 3.73, in RSA Extended and
ECDHE modes respectively, in comparison to RSA mode for TCP connections.
The difference between RSA and RSA Extended is due to the additional pro-



(a) LURK over secure transport protocols.

(b) LURK in RSA mode over secure transport.

Fig. 4: Latency Measurements



(a) Freshness function overhead.

(b) TLS PRF overhead.

Fig. 5: Latency Measurements (cont’d)



(a) PoH overhead.

(b) PoO overhead.

Fig. 6: Latency Measurements (cont’d)



cessing and communication of the full TLS handshake. Whereas, the difference
between ECDHE and RSA is mostly due to the cryptographic operations in-
volved (e.g., more costly mathematical computations in ECHDE).
Other choices Figure 5a shows the latency ratio of ϕ being set to SHA256
vs. ϕ being non-existent. The measured ratio is 1.016, 0.99 and 1.00 for RSA,
RSA Extended and ECDHE modes, respectively which implies that the impact
of ϕ on the overall latency is negligible. Figure 5b depicts the RTT-degradation
when TLS 1.2’s PRF is being set to SHA384 and SHA512, compared to the
more-standard SHA256; this choice has negligible impact on the overall latency.

Figure 6a shows that our added PoH has negligible impact (1.066) on RSA-
Extended, given that a full handshake-transcript is already provided. In contrast,
our added PoH increases the latency by 2.39 for RSA mode. However, note that
the latency of LURK in RSA mode with added PoH is comparable to that of
TLS 1.2 in RSA-Extended mode. Figure 6b depicts the impact of our added PoO
of the DHE exponent over the average ECDHE latency. The impact observed is
relatively negligible.

7.2 CPU Overhead

We load the Crypto Service with a rate of 100 requests per second, with a number
of blocking clients operating in parallel. The results, shown in Fig. 7, confirm that
the use of TLS over TCP has little impact on the performance of just TCP itself,
which is due to an efficient TLS library. HTTP and HTTPS seem to perform
better than TCP, especially for LURK in RSA-Extended mode. This is due
to the efficient input/output processing managed by the HTTP libraries used,
on one hand. On the other hand, the TCP implementation requires additional
processing given the increased interactions between the user and the kernel (i.e.,
reading the LURK Header and the remaining bytes of the LURK request)

CPU consumption for LURK in ECDHE mode remained quite stable for
different transport protocols. This is in part due to the fact that the additional
processing required for handshakes is quite minimal compared to the crypto-
graphic operations. But, processing the handshakes yield additional CPU over-
head in the case of using LURK in RSA and RSA-Extended modes. Concretely,
the Crypto Service in RSA-Extended mode requires 1.39 times more resources
than for LURK in RSA mode. In ECDHE mode, it requires 2.08 times more
than for LURK in RSA mode.

8 Discussions, Future Work & Conclusions

Our suite of designs, called LURK , aim to offer provably secure server-controlled
TLS delegation, in a manner that achieves competitive performance. Our drive
for this was motivated in real-life use-cases calling for server-controlled TLS del-
egation, such as complex CDN-delegations and service-to-service platforms. On
the one hand, one can see LURK as a way to improve the security of Key-
lessSSL [49], in a spirit similar to that of the recent 3(S)ACCE-KSL protocol



Fig. 7: CPU Overheads of the Crypto Service in different LURK modes.

in [4]. On the other hand, unlike the 3(S)ACCE-KSL scheme, we do not require
that LURK attains the expensive, content-soundness requirement w.r.t. TLS-
delegation, which –in turn– does away with the need for an arguably infeasible
PKI infrastructure. Meanwhile, in some of its variants, LURK attains all other
relevant security requirements of 3(S)ACCE-KSL, i.e., channel security, entity
authentication and accountability; for these, in the long version [32], we pro-
vide cryptographic proofs in a suited 3-party authenticated key-exchange formal
model. Moreover, we use protocol-verification (in ProVerif) to show that design-
mechanisms that specifically separate LURK from KeylessSSL while achieving
their intended, specific goals, i.e., enforce forward secrecy. Our studies focus on
LURK instantiated with TLS 1.2, as this is still the most widely used version of
TLS and will likely remain so for some foreseeable future, especially for legacy
devices. Our specifications go down to the API level, providing details down to
network and packet level for the communications within the TLS delegation. This



delegation, in LURK , is envisaged as a modular design, where the middle entity
and the end-server operate in a service-to-service fashion. Lastly, our Python
implementation and performance-testing of LURK show that it is a competitive
solution for TLS-delegation. Overall, in this paper, our LURK constructs show
that server-controlled TLS delegation is possible with both provable guarantees
of real-world security and competitive efficiency.

W.r.t. future directions, we are actively working towards LURK based on
TLS 1.3 [34]. In the long version of this paper [32], there are more details on
this.

Also, the primary objective of our implementation, pylurk, was to build an
initial testbed. Immediate future work involves, for instance, the extension of
the interface to gRPC to better fit containerised environments. In addition, the
integration of Curve25519 and Curve448 for both signatures (Ed25519, Ed448)
as well as ECDHE (X25519, X448) are expected to be supported. One parallel
line focuses on a C implementation of the Crypto Service, in line with the most
notable TLS libraries.
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A TLS 1.2

We show the TLS 1.2 handshake (i.e., the secure-channel establishment part of
TLS 1.2) in Figure 8.

Client Server Client Server
pk sk pk sk

NC←R{0, 1}8·28
NC

−−−−−−−−−→ NC←R{0, 1}8·28
NC

−−−−−−−−−→
NS←R{0, 1}8·28 NS←R{0, 1}8·28

∗ Choose DH group (p, q, g)
v←RZq. Set KES ← gv (mod p)
∗ Set PSign := Signsk(τ[NC ,g]).

SHello,CertS
←−−−−−−−−−

SHello,CertS ,KES ,p,g

←−−−−−−−−−
∗PSign

←−−−−−−−−
Verify CertS , get pk Verify CertS (∗ and PSign)
pmk←R{0, 1}46·8 u←RZq
Set KEC ← Encpk(pmk) Set KEC ← gu (mod p)

KEC
−−−−−−−−−→

KEC
−−−−−−−−−→

pmk← Decsk(KEC ) pmk← (gv)u (mod p) pmk← (gu)v (mod p)
msk← PRFpmk(NC‖NS ) msk← PRFpmk(NC‖NS ) msk← PRFpmk(NC‖NS ) msk← PRFpmk(NC‖NS )
ck← PRFmsk(L1,NS‖NC ) ck← PRFmsk(L1,NS‖NC ) ck← PRFmsk(L1,NS‖NC ) ck← PRFmsk(L1,NS‖NC )
FinC ← PRFmsk(L2‖1‖τ[NC ,KEC ]) FinC ← PRFmsk(L2‖1‖τ[NC ,KEC ]) FinC ← PRFmsk(L2‖1‖τ[NC ,KEC ]) FinC ← PRFmsk(L2‖1‖τ[NC ,KEC ])

ΓC ← AEck(FinC )
ΓC

−−−−−−−−−→ Decrypt ΓC , verify. ΓC ← AEck(FinC )
ΓC

−−−−−−−−−→ Decrypt ΓC , verify.
FinS ← PRFmsk(L2‖2‖τ[NC ,ΓC ]) FinS ← PRFmsk(L2‖2‖τ[NC ,ΓC ]) FinS ← PRFmsk(L2‖2‖τ[NC ,ΓC ]) FinS ← PRFmsk(L2‖2‖τ[NC ,ΓC ])

Decrypt ΓS , verify.
ΓC

←−−−−−−−−− ΓS ← AEck(FinS ) Decrypt ΓS , verify.
ΓC

←−−−−−−−−− ΓS ← AEck(FinS )

Record layer messages ←−−−−−−−→ Record layer messages Record layer messages ←−−−−−−−→ Record layer messages

Fig. 8: TLS 1.2 handshake. Left: in RSA mode; Right: in DHE mode.

TLS 1.2 Handshake in RSA Mode. The client C sends a nonce NC to
the server S, which responds with its own nonce NS and a certificate CertS
containing an RSA public key. The client then generates and sends a pre-master
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secret pmk encrypted under the server’s public key. The server decrypts pmk
and the client and server both compute a master secret msk using pmk and the
two nonces. To complete the handshake, both client and server use msk to MAC
the full handshake transcript and send (in an encrypted form) these MACs to
each other in finished messages (FinC ,FinS ). At the end of the handshake, both
client and server derive channel keys ck from msk and the two nonces, used for
authenticated encryption of record-layer data.

TLS 1.2 in RSA mode does not provide forward secrecy, which means that
if an adversary records a TLS 1.2-RSA connection and later compromises the
server’s private key, it can decrypt the pmk, derive the connection keys, and read
old application data.

TLS 1.2 Handshake in RSA Mode. The client and server first exchange
nonces and the server certificate as in RSA mode. Then the server chooses a
Diffie-Hellman group (p, q, g) (represented by an elliptic curve or by an explicit
prime field) and generates a keypair (v, gv(mod p)). It signs the nonces, the
group, and its Diffie-Hellman public value with its certificate private key and
sends them to the client, which then generates its own keypair (u, gu(mod p)).
Both client and server then compute the pre-master secret pmk as guv (mod p).
The rest of the protocol and computations (msk, ck,FinC ,FinS ) proceed as in
the RSA mode.

B The 3(S)ACCE Model, Other Security Details

B.1 The (S)ACCE Models [26]

We briefly describe the authenticated and confidential channel establishment
(ACCE) security model. We use the notations Brzuska et al. [11].

Parties and instances. The ACCE model considers a set P of parties, which
can be either clients C ∈ C or servers S ∈ S . Parties are associated with
private keys sk and their corresponding, certified public keys pk. The adversary
can interact with parties in concurrent or sequential executions, called sessions,
associated with single party instances. We denote by πmi the m-th instance (ex-
ecution) of party Pi. Each instance is associated with the following attributes:

◦ the instance’s secret, resp. public keys πmi .sk := ski and πmi .pk := pki of
Pi. In unilaterally-authenticated handshakes, clients have no such parame-
ters, thus we set πmi .sk = πmi .pk := ⊥.

◦ the role of Pi as either the initiator or responder of the protocol, πmi .ρ ∈
{init, resp}.
◦ the session identifier, πmi .sid of an instance, set to ⊥ for non-existent

sessions.

◦ the partner identifier, πmi .pid set to ⊥ for non-existent sessions. This at-
tribute stores either a party identifier Pj , indicating the party that Pi be-
lieves it is running the protocol with (in unilateral authentication, clients are
associated with a label “Client”).



◦ the acceptance-flag πmi .α, originally set to ⊥ while the session is ongo-
ing, but which turns to 1 or 0 as the party accepts or rejects the partner’s
authentication.

◦ the channel-key, πmi .ck, which is set to ⊥ at the beginning of the session,
and becomes a non-null bitstring once πmi ends in an accepting state.

◦ the left-or-right bit πmi .b, sampled at random when the instance is gen-
erated. This bit is used in the key-indistinguishability and channel-security
games.

◦ the transcript πmi .τ of the instance, containing the suite of messages re-
ceived and sent by this instance, as well as all public information known to
all parties.

The definition of ACCE security heavily relies on the notion of partnering.
Two instances πmi and πnj are said to be partnered if πmi .sid = πnj .sid 6= ⊥.

Games and adversarial queries. In ACCE security, the adversary interacts
with parties by calling oracles. It can generate new instances of Pi by calling the
NewSession(Pi, ρ, pid) oracle. It can send messages by calling the Send(πmi ,M)
oracle. It can learn the party’s secret keys via Corrupt(Pi) queries, and it can
learn channel keys (for accepting instances) by querying Reveal(πmi ). A Test(πmi )
query outputs either the real channel keys πmi .ck computed by the accepting
instance πmi or random keys of the same size. As opposed to standard AKE
security, in the ACCE game, the adversary is also given access to two oracles,
Encrypt(πmi , l,M0,M1, H) and Decrypt(πmi , C,H), which allow some access to the
secure channel established by two instances. The output of both these oracles
depends on the hidden bit πmi .b for any instance πmi .

The adversary’s advantage to win is defined in terms of its success in two
security games, namely entity authentication and channel security, the latter of
which is subject to the following freshness definition.

Session freshness. A session πmi is fresh with intended partner Pj , if, upon
the last query of the adversary A , the uncorrupted instance πmi has finished its
session in an accepting state, with πmi .pid = Pj , for an uncorrupted Pj , such
that no Reveal query was made on πmi , π

n
j .

ACCE Entity Authentication (EA). In the EA game, the adversary queries
the first four oracles above and its goal is to make one instance, πmi of an un-
corrupted Pi accept maliciously. That is, πmi must end in an accepting state,
with partner ID Pj , also uncorrupted, such that no other unique instance of
Pj partnering πmi exists. The adversary’s advantage in this game is its winning
probability.

ACCE Security of the Channel (SC). In this game, the adversary A can
use all the oracles except Test and must output, for a fresh instance πmi , the
bit πmi .b of that instance. The adversary’s advantage is the absolute difference
between its winning probability and 1

2 .

Mixed-ACCE Entity Authentication (mEA) [5]. In the mEA game, spe-
cific to proxied AKE, the adversary queries the first four oracles above and its



goal is to make one instance, πmi of an uncorrupted Pi accept maliciously. That
is, πmi must end in an accepting state, with partner ID Pj also uncorrupted,
such that no other unique instance of Pj partnering πmi exists. Furthermore, let
flagmi denote the mode-flag for the instance πmi . Furthermore, if flagmi = 0, then
Pi must be a client only. The adversary’s advantage in this game is its winning
probability.

B.2 The 3(S)ACCE Model [5]

In [5], an adaptation of the (S)ACCE model for 3 parties was introduced. It was
called 3(S)ACCE and it covers also the case where a middle party collaborates
in the exchange as per LURK , that is in a server-mandated manner. However,
3(S)ACCE also covers the case where the client is aware of the middle party.
This does not concern the case of LURK .

3(S)ACCE introduces several new notions compared to ACCE which are
instrumental in the formalisation: pre-channel keys (i.e., the equivalent in pmk
in TLS), modification/additions of ACCE attributes (e.g., the partner attribute
returns as set of instances), new notion of freshness for sessions, new adversarial
oracles to account for the corruption of the middle party, etc. Some of these
directly view the 3(S)ACCE security notion of content soundness that does not
concern us.

3(S)ACCE Partnering. One essential modification from the (S)ACCE model
to the 3(S)ACCE is concerning the notion of partnering of sessions. We do not
detail all the intricacies of 3(S)ACCE partnering, but we summarise its crux.
For LURK , there are 4 instances of parties that form one partnering: a Client
instance, one Engine instance (for the left-side communication), another Engine
instance (for the right-side communication), a Service instance. This type of
partnering, allows [5] to re-use 2-party security definitions for authentication
and channel security.

Accountability is a new security notion introduced in [5] specifically for
server-mandated collaborative delivery. Since the Client has no way of distin-
guishing the Engine from the Service, the Service is given enough cryptographic
material of the handshake such that it is able to audit the secure channel estab-
lished between the Client and the Engine. The aim is that in this way one makes
sure that the Engine is unable to “hurt” the Client.

Without giving details of all of the oracles (as they will be clear from the
context and the ACCE definition above), we do re-count below all the 3(S)ACCE
security definitions that concern us.

Main 3(S)ACCE Security Definitions [5].

Entity Authentication (EA) [5]. In the entity authentication game, the ad-
versary A can query the new oracle RegParty and traditional 2-ACCE oracles.
Finally, A ends the game by outputting a special string “Finished” to its chal-
lenger. The adversary wins the EA game if there exists a party instance πmi
maliciously accepting a partner Pj ∈ {S ,E }, according to the following defini-
tion.



Definition 1 (Winning condition – EA game). An instance πmi of some party
Pi is said to maliciously accept with partner Pj ∈ {S ,E } if the following holds:

– πmi .α = 1 with πmi .pid = Pj .name 6= “Client′′;
– No party in πmi .PSet is corrupted, no party in πmi .InstSet was queried in

Reveal queries;
– There exists no unique πnj ∈ Pj .Instances such that πnj .sid = πmi .sid;
– If Pi ∈ C , there exists no party Pk ∈ E such that: RegParty(Pk, ·,Pj) has

been queried, and there exists an instance π`k ∈ πmi .InstSet.

The adversary’s advantage, denoted AdvEAΠ (A ), is defined as its winning prob-
ability i.e.:

AdvEAΠ (A ) := P[A wins the EA game],

where the probability is taken over the random coins of all the NP parties in the
system.

Channel Security (CS) [5]. In the channel security game, the adversary A
can use all the oracles (including RegParty) adaptively, and finally outputs a
tuple consisting of a fresh party instance πji and a bit b′. The winning condition
is defined below:

Definition 2 (Winning Conditions – CS Game). An adversary A breaks the
channel security of a 3(S)ACCE protocol, if it terminates the channel security
game with a tuple (πji , b

′) such that:

– πmi is fresh with partner Pj;
– πmi .b = b′.

The advantage of the adversary A is defined as follows:

AdvSCΠ (A ) :=
∣∣P[A wins the SC game]− 1

2

∣∣,
where the probability is taken over the random coins of all the NP parties in the
system.

Accountability (Acc) [5]. In the accountability game the adversary may ar-
bitrarily use all the oracles in the previous section, finally halting by outputting
a “Finished” string to its challenger. We say A wins if there exists an instance
πmi of a client Pi such that the following condition applies.

Definition 3 (Winning Conditions – Acc). An adversary A breaks the ac-
countability for instance πmi of Pi ∈ C , if the following holds simultaneously:

(a) πmi .α = 1 such that πmi .pid = Pj .name for an uncorrupted Pj ∈ S ;
(b) There exists no instance πnj ∈ Pj .Instances such that πnj .ck = πmi .ck;
(c) There exists no probabilistic algorithm Sim (polynomial in the security pa-

rameter) which given the view of Pj (namely all instances πnj ∈ Pj .Instances
with all their attributes), outputs πmi .ck.



The adversary’s advantage is defined as its winning probability, i.e.:

AdvAccv2−LURK−RSA(A ) := P[A wins the Acc game],

where the probability is taken over the random coins of all the NP parties in the
system.

B.3 Programmable PRFs

“Programmable PRFs” [10] capture PRFs that behave randomly to someone
who does not know the key of its instances, but not to someone who knows said
keys. In other words, there exist functions called “programmable PRFs” that are
PRFs, but that contain trapdoors, i.e., there exist chosen input values related to
the key of the PRF instances, and for these inputs the PRF output is not random
to those having provided the input. The notion of non-programmable PRFs
comes to fill in the gap of security proofs that would need the PRF assumption
at their bases, yet the adversary knows the keys of said PRF and/or the key of
the PRF instance is used somewhere else in the protocol (and thus the “classical”
PRF assumption does not apply).

Dishonest Engines do know their keys of PRF instances used in our con-
struction, so they can exploit programmable PRFs. Also the key exported from
the AKE protocol run between the Engine and the Service is used to key said
PRF as well as at the end of the LURK handshake between the Engine and the
Service. As such, we will need to assume that, e.g., the freshness function φ, is a
non-programmable PRF. Note that most PRFs are non-programmable PRFs.

C LURK in DHE mode —Variant 2

Variant 2 of LURK in DHE mode is in fact the same as the 3(S)ACCE-K-
SSL design [5], with the exception that we do not require that each fragment
of data delivered by the Engine be certified by a X.509 certificate. As such,
our handshake is lighter with fewer verifications, but our design cannot achieve
the content-soundness property that 3(S)ACCE-K-SSL can achieve. However,
due to the similarities mentioned, we do not include cryptographic proofs for
Variant 2 of LURK in DHE mode, as for channel security, entity authentication
and accountability these would be same as for the 3(S)ACCE-K-SSL design
in [5].

D Related-work Details

D.1 More Details on Client-Invisible, Server-Controlled TLS
Delegation

We now detail Table 1. Liang et al. [30] show that CDN providers are depending
on TLS delegation, yet that TLS delegation is not appropriately handled. To



TLS Client C LURK Engine E Crypto Service S

Generate NC←R{0, 1}n
NC−−−−−−−→

Mutually-auth.,
Secure Channel

with Exported Key k←−−−−−−−−−−−−→
NE⇐======= Generate NE←R{0, 1}m

Check CertS

NE ,CertS←−−−−−−−
τ=[NC ,..., ]=============⇒

Generate v←RZp
KEE ← (p‖g‖gv mod p)

sv← H(NC‖NE‖KEE )

PSign← Signsk(sv)

PSign⇐=======
Check PSign against NC ,NE ,KEE

KEE ,PSign←−−−−−−−
Generate u←RZp
KEC ← gu (mod p)
pmk← (KEE )

u mod p
msk← PRFpmk(L1,NC‖NE )
ck← PRFmsk(L2,NE‖NC )
FinC ← PRFmsk(L3, τ)

KEC ,FinC−−−−−−−−−−→ KEC ,FinC===========⇒ pmk← (KEC )
v mod p

ck← PRFmsk(L2,NE‖NC )

Check FinC

FinE ← PRFmsk(L4, τ)

AEck(FinE ),ck⊕k⇐============
Decrypt and check FinE

AEck(FinE )⇐========
Read ck

Record layer: application data
AEck(−)⇐=======⇒ Record layer: application data

Fig. 9: LURK based on TLS 1.2 in DHE mode: Variant 2; in line with the
3(S)ACCE-K-SSL design [5]

this end, Liang et al. measured that 19 out of 20 CDNs and found that only 31.2
% of web sites on CDN using HTTPS present a Valid Certificate. Nonetheless,
we recount all TLS delegation mechanisms for CDN-ing.

First, Liang et al. [30] showed that sharing the private key and names is
a common practice for CDNs. In this way, the content owner gives up all its
identity credentials with no control over them, which constitutes an obvious
security threat.

Second, another way to provide collaborative delivery is to delegate using
certificates or equivalent. The content owner may issue a signing intermediary
CA to delegate the emission of keys owned by the CDN associated to the con-
tent owner name. However, the X.509 Name Constraints certificate extension [8]
does not apply to the Subject Alternative Name (SAN), but only to the Com-
mon Name (CN) in the Distinguished Name (DN) while certificate validation



considers DNS names in DN/CN or in SAN. As a result, there is not enough
control in the certificates that may be validated.

Third, one has the option of delegated credentials [3]. This is similar in essence
to certificate delegation but the delegation is performed on a TLS specific struc-
ture and validated by the Client. Client integration does not make the mechanism
viable for legacy TLS 1.2 Clients.

Fourth, Short-Term, Automatically-Renewed (STAR) certificates [44], [43]
describes a method where the domain name owner or the content owner au-
thorides the Certificate Authority (CA) to renew the certificate when requested
by the CDN - using using ACME [2]. For both Delegated credentials and STAR,
the content-owner will regain control of the identity/ credentials after the delega-
tion expires, however, during the delegation, the content-owner has little control
or audit-powers over the CDN machines.

Fifth, the DANE design [20] takes advantage of DNSSEC to provide keys used
to establish the TLS session. Although an elegant solution, there is currently not
enough support for DANE by browser vendors.

Sixth, Gilad et al. [17] and Levy et al. [29] present an alternative, called
Stickler, which involves decryption by the browser, that is at the application
layer. With Stickler, upon downloading the home page, the content-origin pro-
vides a Loader. The Loader is sent over the secure TLS channel and can retrieve
the JavaScript (RootJS) from the proxy, validating the software. The software
is then able to retrieve the signed objects from the mirror and checks them.

Seventh, KeylessSSL [5] is said –by their proprietors Cloudflare– not perform
delegation but split the TLS into services and provide the ability for the content
owner to keep the control of the identity credentials while other part of the deliv-
ery is let to the CDN. As no changes are required on the Client, it can be of use
with legacy devices. But, in 2017, Bhargavan et al. [5] used a provable-security
approach to show several vulnerabilities on KeylessSSL; they also advanced an
alternative design, called 3(S)ACCE-K-SSL, that provably achieve stronger se-
curity goals, albeit via a much less efficient design.

D.2 More Details on Client-visible TLS Delegation

On the client side, CDN-ing (as per the above) is not explicitly signalled. In
other words, the CDN provider is assimilated to the content owner from the
client’s perspective. While this might be acceptable with one-to-one configura-
tions, automated CDN collaborations like those envisioned by CDNI [12] seem to
introduce a federated platform for content where the TLS termination is hardly
controlled by the Client or the content owner, but where the TLS communication
is composed of multiple intermediaries. In this context, the client and content
owner may be willing to have a closer view on the different intermediaries. In-
deed, multiple initiatives have been taken to have middleboxes partake in TLS
sessions with an explicit agreement and negotiation of all parties involved [36],
[39]. We recount these initiatives below.

First, SplitTLS [47] is commonly seen as the simplest architecture where the
middlebox impersonates the endpoint. The client side requires to trust the root



certificate of the middlebox that impersonates all servers. On the server side,
such architecture could be interpreted as a TLS front end or a security gateway.

Second, Explicit Trusted Proxy [31] moves a step forward and lets the client
indicate the use of a proxy but did not provide additional control on the proxy.

Third, TLS ProxyInfo [33] and TLS Keyshare Extension [38] ensure that
both endpoints are aware of the existence of the proxy, while enabling client to
authenticate the server. Yet, arguably, a shared key does not provide sufficient
accountability or control on what is actually performed by the middlebox.

Fourth, multi-context TLS (mcTLS) [37] allows for the endpoints and mid-
dboxes to establish different access-level keys (read/write keys) per middlebox
and per different data-fragments (e.g., HTTP headers, body).

Fifth, [4] showed mcTLS to be insecure and proposed a new provably-secure
but less efficient design, in the same vain of visible and accountable proxying
over TLS.

Sixth, Transport Layer Middlebox Security Protocol (TLMSP) [15] also im-
proves on mcTLS by adding more measures to evaluate the transformations on
data performed by each middlebox. Yet this design does not enable incremental
deployment.

Seventh, Middlebox TLS (mbTLS) enables middleboxes to leverage SGX to
attest processing performed by them, while middlebox aware TLS (maTLS) [28]
uses a specific certification model.

Eighth, BlindBox [45] and Embark [27] adopt a different approach where
middleboxes operate over encrypted content.

Table 5 recounts most of the aforementioned initiatives w.r.t the main chal-
lenges each attempts to overcome: 1). the ability to authenticate end points as
well as middleboxes (Auth); 2). the ability to restrict or control operations per-
formed by each intermediary node (Content); 3). the ability for one endpoint to
evaluate the overall security of the channel (E2E). Ensuring these capabilities
impact the complexity of the establishment of the TLS session; this determines
whether it can be implemented via a TLS extension (TLS ext.), like LURK is,
or via more complex settings (New setup).

Mechanism Auth Content E2E TLS Impact

Split TLS (client) – – – Root Cert.
Split TLS (server) – – –

Explicit Trusted Proxy – – – TLS ext.
TLS ProxyInfo x – x TLS ext.
TLS Keyshare x – x TLS ext

mcTLS x data, action (read, write) x New setup
TLMSP x data, actions, path order, modification x New setup
mbTLS x TEE x New setup
maTLS x certification x New setup

Blindbox, Embark x encryption x New setup

Table 5: Mechanisms for Client-Visible TLS Delegation



E LURK ’s Proofs

We now present different security proofs for LURK, using the 3(S)ACCE model
in [5] and recalled in Section B.

E.1 Entity Authentication Proofs

We now prove the entity-authentication security of LURK in all variants.

Theorem 1. Let P be the unilaterally-authenticated TLS 1.2 handshake (as
seen by the Client) and P ′ be the AKE protocol between Engine and Crypto
Service which, at each session, exports a key k indistinguishable from random.
Assume that P and P ′ are together mEA-secure.

We denote by nP the number of parties in the system.
Consider a (t, q)-adversary A against the EA-security of the protocol LURK,

running at most t queries and creating at most q party instances per party, where
A ’s advantage is written AdvEAΠ (A ).

If such an adversary exists, then there exist adversaries A1 against the SACCE
security of P , A2 against the ACCE security of P ′, A3 against the mEA security
of P and P ′, A4 against the AKE security of P ′ with exported key k, A5 –in
the TLS-DHE mode– against the existential unforgeability (EUF-CMA) of the
signature used to generate PSign and A6 against the hash function H, or A7 –in
the TLS-RSA mode– against the channel security of P , each adversary running
in time t′ ∼ O(t) and instantiating at most q′ = q instances per party, such that

• For Variant 1 of LURK in DHE mode:

AdvEAΠ (A ) ≤ 2nP
2 · Adv2-ACCEP ′ (A2) +

2nP
3 · AdvmEAP,P ′ (A3) +

nP · AdvUnforgSign (A5) + nP · AdvColl.ResH (A6) +

nP
3 · Adv2-ACCEP ′ (A2) + 2nP

3 · AdvAKE(A4).

• For Variants 1 and 2 of LURK in RSA mode:

AdvEAΠ (A ) ≤ 2nP
2 · Adv2-ACCEP ′ (A2) +

2nP
3 · AdvmEAP,P ′ (A3) +

nP
2 · AdvSC−SACCEP (A7)

nP
3 · Adv2-ACCEP ′ (A2) +

nP
3 · AdvAKE(A4)

Proof. Our proof has the following hops:
Game G0: This game works as the EA-game recalled in Section B.
Game G1: This is the same game as the EA-game, except that the adversary
can no longer win if its winning instance πmi belongs to a Service.



In the EA definition, the only way the adversary can win if the party Pi is
a Service is if the accepting instance πmi for which A wins has to accept for
πmi .pid = Pj .name with Pj is an Engine. Since such an attacker must guess the
identity of the Service that will maliciously accept, and the Engine that is being
impersonated, we have that

|Pr[AG0
wins]−Pr[AG1

wins]| ≤ nP
2 · Adv2-ACCEP ′ (A2).

Game G2: This game behaves as G1, except we now rule out the possibility
that the party Pi, holding the “winning” instance, is an Engine. If that is the
case, then its partner party Pj can only be a Service. In a similar way to the
above, we can reduce this to the ACCE-EA security of P ′, namely,

|Pr[AG1
wins]−Pr[AG2

wins]| ≤ nP
2 · Adv2-ACCEP ′ (A2).

Game G3: In this game, the adversary may only win against an instance πmi of
a client.

In this game, we rule out the possibility of the adversary winning in a di-
rect Client-Service handshake. More formally, we rule out the possibility that
πmi .pid = Pj .name such that Pj is a Service and Pi is a client, such that there
exists an instance πnj such that πmi .sid = πnj .sid. In other words, G3 corresponds
to G0 with the restriction that Pi is a client and the targeted instance πmi has
the related partnering: πmi .pid = Pj .name with Pj being a Service and such
that there exists some Engine Pk and an instance πpk such that πpk and πmi are
2-partnered (they have the same session ID).

So, the advantage of the adversary in G3 is basically building on the advan-
tage of A3 (with A3 playing in the mEA game and as being interested in the
sessions where he queries with the flag flagmi being 0, since we are in the case of
P is a client). Next, we will show more clearly that

|Pr[AG3
wins]−Pr[AG2

wins]| ≤ nP
3 · AdvmEAP,P ′ (A3) +∆,

where ∆ is obtained as per the below.
We first prove that, not only is an Engine the real partner and a Service is

the intended partner, but it also holds that: there exists a matching instance
π`k such that π`k and πnj are also 2-partnered, and furthermore, the session key
πmi .ck is computed as expected from the premaster secret pmk of πnj and the
transcript of πmi . In this case, we recall that the partnering in 3(S)ACCE gives
πmi these “party-partners” πmi .PSet= {Pi,Pj ,Pk} and these “instance-partners”
πmi .InstSet={πmi , πnj , π

p
k, π

`
k}.

Impersonation Succeses in G3:
• TLS-DHE To begin with, we focus on the transcript of πmi .

We now rule out the possibility that the client accepts Px as if it were Pk,
which is bounded, first by the collision-resistance of the hash function H, and
secondly, by the unforgeability in the signature PSign: nP · AdvUnforgSign (A5), ac-
counting for getting which party the signature is generated for.
• TLS-RSA In this setting, the equivalent security is guaranteed by the fact
that the encryption is under the public key of the purported partner Pk of πmi .



The only adversarial success-option is the case of having a party that is not
Pk decrypt the encrypted pre-master key.

To this end, we can build a reduction to the SACCE security of the underlying
protocol P , such that the adversary can learn the secret bit of instance πmi
(by learning the pre-master secret and then computing the channel key). The
probability Pr[AG3

wins] is increased by nP
2 · AdvCS−SACCEP (A7).

We now resume our proof on G3, fixing the three parties Pi,Pj ,Pk. (This
implies a factor of nP

3 in all the added advantages below).
We reduce the remaining winning probability in our EA game in our protocol

to mEA-security assumption with respect to P and P ′. The adversary AG3 is
fed information by the adversary A3 which plays the mEA game with respect
to the P and P ′ protocols. Whenever AG3

queries information for Client-Engine
sessions, the queries made via A3 are with flagmi = 0. Whenever AG3

queries
Engine-Service information, the queries made via A3 are with flaglk = 1. So, the
probability Pr[AG3

wins] is increased by the factor nP
3 · AdvmEAP,P ′ (A3)16.

W.r.t. our current EA game, we also note that the EA definition further stip-
ulates that no Reveal query can be made on the instances πmi .InstSet partnered
with πmi . W.r.t. the our current EA game and the mEA-game, the simulation
for RegParty, NewSession,Corrupt,Reveal clearly work with no issue, as in the
2(S)ACCE, TLS cases. The difference (between the our 3-party EA setting and
the 2-party mEA setting) occurs for the Send oracle, since in order to simulate
correctly the record-layer transcript of the Engine-Service session between π`k
and πnj . Here, on this Engine-Server side, we need to reduce to the capabilities
of adversary A2 who is challenging the security of the ACCE protocol P ′. The
adversary A2 will query Reveal on this session (this is allowed in the EA game)
and simulate the rest.

In particular, in RSA mode, to simulate sending ck ⊕ k or msk ⊕ k, the
adversary A3 (who can challenge the security of the inner P ′ in the mEA game)
chooses at random a value r and sends r, sending this to the Engine. Thus,
in RSA mode, the probability that AG3

win is increased is augmented by nP
3 ·

Adv2-ACCEP ′ (A2) + nP
3 · AdvAKE(A4). The above simulation for G3 is perfect. In

particular, note that with protocol P ′ not containing a key-confirmation step
and k is indistinguishable from random. So, sending r simulates perfectly sending
msk⊕k or ck⊕k. In DHE mode, there is nothing to simulate, and the probability
that AG3

win is increased is augmented by nP
3 · Adv2-ACCEP ′ (A2)

If the adversary AG3 wins for some session πmi , then A3 (in the mEA game
with the flag flagmi being 0) verifies if there exists a unique instance πpk such
that πmi .sid = πpk.sid. If this instance does not exist, this A3 will have πmi
as its own winning instance. Otherwise, if the adversary AG3

does not win,
it must be that A4 will find an instance πnj of Pj holding pmk (in RSA) or

16 Note that in this bound we only give the dominant fact, since we do not count
specifically the C-E sessions of P as per the queries with flagmi being 0, even though
we are in the case of P is a client.



(p, g,KES ;CertE ;PSign) (in DHE mode) corresponding to πmi .ck, but such
that there exists no matching, unique π`k, also holding that pmkor (p, g,KES ;CertE ;PSign),
so that π`k, π

n
j are 2-partnered. In this latter case, A4 wins.

This concludes the proof and, step-by-step, we yielded the indicated bound.

E.2 Channel Security Proofs

Theorem 2. Let P be the unilaterally-authenticated TLS 1.2 handshake (as
seen by the Client), and P ′ be the AKE protocol between Engine and Crypto
Service which, at each session, exports a key k indistinguishable from random.

Consider a (t,q)-adversary A against the SC-security of the protocol LURK
running at most t queries and creating at most q party instances per party. We
denote by nP the number of parties in the system, and denote A ’s advantage by
AdvSCΠ (A ).

If such an adversary exists, then there exist adversaries A1 against the SACCE
security of P , A2 against the ACCE security of P ′, A3 against the AKE security
of P ′ with exported key k and either: A4 against the existential unforgeability
(EUF-CMA) of the signature algorithm used to generate PSign (for TLS-DHE),
or A4 against the channel security of P (for TLS-RSA), each adversary running
in time t′ ∼ O(t) and instantiating at most q′ = q instances per party, A5 against
the non-programmable PRF ϕ, such that

• For Variant 1 of LURK in DHE mode:

AdvSCΠ (A ) ≤ (2nP
2 + 2nP

3) · Adv2-ACCEP ′ (A2)

+ nP
2Adv2-SACCEP (A1) + nPAdvUnforgSign (A4)

+nP
3(AdvAKE(A3) + Adv2-SACCEP (A1)).

• For Variants 1 and 2 of LURK in RSA mode:

AdvSCΠ (A ) ≤ (2nP
2 + 2nP

3) · Adv2-ACCEP ′ (A2) + (nP
3 +

+nP
2)Adv2-SACCEP (A1) + nP

3AdvAKE(A3)

+nP
2AdvSC−SACCEP (A4) + nP

3 · AdvnpPRF(A5).

Proof. Our proof has the following hops:
Game G0: This game works as the SC-game recounted in Appendix B .
Games G0-G3: We make similar successive reductions as in the previous proof to
obtain the game G3 which behaves as the original game but with the restriction
that Pi is a client, and for the targeted instance πmi it holds that: πmi .pid =
Pj .name with Pj being a Service and such that there exists some Engine Pk and
an instance πpk such that πpk and πmi are 2-partnered (they have the same session
ID).

The loss through to game G3 is as follows:

Pr[AG2 wins] ≤ Pr[AG3 wins] + nP
2 · Adv2-SACCEP (A1)

+2nP
2 · Adv2-ACCEP ′ (A2).



Winning game 3: This proof goes similarly to the one before, except that in
the simulation of adversaries A1 and A2 we use a simulation akin to that of the
SC-game, in particular with respect to simulating the encryption and decryption
queries. The total success probability of the adversary is given by:

– For DHE :

Pr[AG3 wins] ≤ 1

2
+ nP

3(AdvAKE(A3) + Adv2-SACCEP (A1)

+Adv2-ACCEP ′ (A2)) + nP · AdvUnforgSign (A4).

– For RSA :

Pr[AG3
wins] ≤ 1

2
+ nP

3(AdvAKE(A3) + Adv2-SACCEP (A1)

+Adv2-ACCEP ′ (A2)) + nP
2 · AdvAKE(A3)

nP
3 · AdvnpPRF(A5).

In the last probability, the nP
3 ·AdvnpPRF(A5) factor comes from the attacker

in game 3 looking to break the non-programmable PRF assumption and produce
an adaptive NE across several session to learn msk or ck for a new session.

E.3 Accountability Proofs

Theorem 3. Let P be the unilaterally-authenticated TLS 1.2 handshake (as
seen by the Client), and P ′ be the AKE protocol between Engine and Crypto
Service which, at each session, exports a key k indistinguishable from random.

Consider a (t,q)-adversary A against the Acc-security of Variant 2 of LURK
in RSA Mode, running at most t queries and creating at most q party instances
per party. We denote by nP the number of parties in the system, and denote
A ’s advantage by AdvAccv2−LURK−RSA(A ). If such an adversary exists, then there
exists adversary A1 against the SACCE security of P running in time t′ ∼ O(t)
and instantiating at most q′ = q instances per party, such that:
AdvAccv2−LURK−RSA(A ) ≤ 2 · nP

2 · Adv2-SACCEP (A1)

Proof. Our proof has the following hops:

Game 0: This game works as the Acc- game recalled Appendix B . We say
that an adversary A breaks the accountability for an instance πmi with Pi ∈ C ,
if the following conditions are verified:

(a) the acceptance flag for πmi is set (i.e., πmi .α = 1) such that πmi .pid = Pj .name
for an uncorrupted Pj ∈ S and πmi .ck = ck;

(b) There exists no instance πnj ∈ Pj .Instances such that πnj .ck = πmi .ck;

(c) There exists no probabilistic polynomial algorithm Sim which given the view
of Pj (namely all instances πnj ∈ Pj .Instances with all their attributes),
outputs ck.



We wish to show that, whenever condition (a) holds, then either the reverse of
(b) or the reverse of condition (c) holds (except with negligible probability). We
also need a simulator that fulfils condition (c). We first rule out a few exceptions.
Game G1: The adversary begins by guessing the identities of the targeted client
Pi and of the server Pj such that πmi is the instance for which accountability is
broken, and for which it holds πmi .pid = Pj .name. As a consequence, we have:

Pr[AG0
wins] ≤ nP

2 ·Pr[AG1
wins].

We assume there exists an Engine party Pk such that there exists an instance
πpk with πpk.sid = πmi .sid. There are two options.

First, the Engine could try to run the handshake on its own (there exist no
instances πnj , π

`
x such that πmi .pck is in fact πmi .ck as per the protocol descrip-

tion). Note that for this first option it does not necessarily have to hold that
π`x is an instance of Pk, i.e., the Engine talking to the Client. In that case ,we
can construct a reduction from this case to the server-impersonation security
of the protocol P ′ (recall that the honest server Pj cannot be corrupted). For
TLS-RSA, this is equivalent to decrypting the premaster secret; so, we lose a
term Adv2-SACCEP (A1).

Or, there exist instances πnj , π
`
x such that πmi .pck is in fact πmi .ck as per the

protocol description. In this case, the simulator is trivial, namely, the simulator
consists in simply seeking an instance πnj such that the record transcript of that
instance contains the transcript of πmi .τ , i.e., the same tuple of nonces, key-
exchange elements, and a verifying client finished message. Output the key ck
sent to the Engine by that instance as the key of πmi . We also note that if the
client finished message does not verify, then the Engine has to generate its own
Finished message; if the adversary does that, we can construct a reduction from
this game to the SACCE-security of P ′ (i.e., the standard TLS 1.2 handshake run
between the client and the uncorrupted server), in which the adversary (possibly
a collusion of all the malicious Engine) simulates all but parties Pi,Pj and will
win by outputting the same instance and random sampling bit as the underlying
adversary. So, we lose another term Adv2-SACCEP (A1).

This yields the given bound, i.e.,

Pr[AG0 wins] ≤ 2 · nP
2 · Adv2-SACCEP (A1).
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