Towards Fine-Grained One-Way Functions from Strong Average-Case Hardness

Chris Brzuska1, Geoffroy Couteau2

1 Aalto University, Finland
2 IRIF, CNRS, France

Abstract. Constructing one-way function from average-case hardness is a long-standing open problem. A positive result would exclude Pessiland (Impagliazzo ’95) and establish a highly desirable win-win situation: either (symmetric) cryptography exists unconditionally, enabling many of the important primitives which are used to secure our communications, or all \textsc{NP} problems can be solved efficiently on the average, which would be revolutionary for algorithmists and industrials. Motivated by the strong interest of establishing such win-win results and the lack of progress on this seemingly very hard question, we initiate the investigation of weaker yet meaningful candidate win-win results. Specifically, we study the following type of win-win results: either there are \textit{fine-grained} one-way functions (FGOWF), which relax the standard notion of a one-way function by requiring only a fixed polynomial gap (as opposed to superpolynomial) between the running time of the function and the running time of an inverter, or nontrivial speedups can be obtained for all \textsc{NP} problems on the average. We obtain three main results:

- We introduce the \textit{Random Language Model} (RLM), which captures idealized average-case hard languages, analogous to how the random oracle model captures idealized one-way functions. In the RLM, we rule out an idealized version of Pessiland, where ideally hard languages would exist yet even weak forms of cryptography would fail. Namely, we provide a construction of a FGOWF (with quadratic hardness gap) and prove its security in the RLM.
- On the negative side, we prove a strong oracle separation: we show that there is no black-box proof that either FGOWF exist, or non-trivial speedup can be obtained for all \textsc{NP} languages on average (i.e., there is no exponentially average-case hard \textsc{NP} languages).
- We provide a second strong negative result for an even weaker candidate win-win result: there is no black-box proof that either FGOWF exist, or non-trivial speedups can be obtained for all \textsc{NP} languages on average \textit{when amortizing over many instances} (i.e., there is no exponentially average-case hard \textsc{NP} languages whose hardness amplifies optimally through parallel repetitions). This separation forms the core technical contribution of our work.

Our results lay the foundations for a program towards building fine-grained one-way functions from strong forms of average-case hardness, following the template of constructions in the Random Language Model. We provide a preliminary investigation of this program, showing black-box barriers toward instantiating our idealized constructions from natural hardness properties.
Table of Contents

1. Introduction .. 3
 1.1 Excluding Pessiland: a Program for Putting Algorithms and Cryptography in a Win-Win Situation ... 3
 1.2 Fine-Grained Cryptography: the Quest for Minimal Cryptographic Hardness 4
 1.3 Our Contribution: Towards a Weak Exclusion of Pessiland....................... 4
 1.4 A Core Technical Lemma: the Hitting Lemma 7
 1.5 Related Work .. 8

2. Preliminaries ... 9
 2.1 Computational Models and Oracles ... 9
 2.2 Fine-Grained One-Way Functions .. 9
 2.3 Languages ... 10
 2.4 Pairwise independent hash-functions .. 10

3. Technical Overview: FGOWFs in the Random Language Model 11
 3.1 Block-Finding Hardness of \(L \)... 11

4. Technical Overview: no FGOWFs from Average-Case Hardness 12
 4.1 Language Description ... 13
 4.2 Inexistence of FG-OWF Relative to Chk.. 13

5. Technical Overview: no FG-OWF from Non-Amortizable Hardness 14
 5.1 Defining the Oracle Distribution \(T \)... 15
 5.2 Proving Theorem 14 .. 17
 5.3 Proving Theorem 15 .. 19

6. The Hitting Lemma ... 20
 6.1 Proof of the Hitting Lemma – Proof Structure 21
 6.2 Proof of Claim 2: \(B_Q \)’s Strategy is the Best Possible Strategy 22
 6.3 Proof of Claim 3: B’s Number of Hits ... 26
 6.4 Application to Hardness in the Random Language Model 28
 6.5 Application to Good Inversion ... 29
 6.6 Application to Language Hardness... 29

 7.1 Average-Case Hardness of \(DL \).. 30
 7.2 Block-Finding Hardness of \(DL \)... 30
 7.3 A FG-OWFD from a Block-Finding Hard Language Distribution 32

8. Oracle Separation Between Fine-Grained One-Way Functions and Average-Case Hardness 34
 8.1 The Oracle Distribution ... 34
 8.2 Average-Case Hardness of \(DL \) .. 35
 8.3 Inexistence of FG-OWFD Relative to Chk... 35

9. Black-Box Separation Between FG-OWF and Self-Amplifiable Average-Case Hardness 36
 9.1 Self-Amplifying Average-Case Hard Language 36
 9.2 Black-Box Separation Between Self-Amplifiable Average-Case Hard Languages and FG-OWF ... 37

10. Proof of the Self-Amplifiable Average-Case Hardness Theorem 41
 10.1 The Emulation Lemma .. 42
 10.2 Applying The Hitting Lemma ... 45
 10.3 Proof of Theorem 32 from the Emulation Lemma and the Hitting Lemma 46

11. Proof of the Inversion Lemma .. 48
1 Introduction

In his celebrated 1995 position paper [Imp95], Impagliazzo describes his personal view of the study of average-case complexity, an emergent (at the time) and fundamental area of computational complexity initiated in a seminal work of Levin [Lev86], which aims to characterize NP problems which are not only hard for a worst-case choice of inputs, but also for natural distributions over the inputs. In Impagliazzo’s view, our current understanding of the landscape of complexity theory is best described by considering five possible worlds we might live in, which are now commonly known as the five worlds of Impagliazzo, corresponding to the five possible outcomes regarding the existence of worst-case hardness in NP, average-case hardness in NP, one-way function, and public-key cryptography. The corresponding five worlds, Algorithmica, Heuristica, Pessiland, Minicrypt, and Cryptomania, and their relations are summarized on Figure 1. Algorithmica and Heuristica correspond to the “algorithmist’s wonderland”, where all NP languages can be decided efficiently on the average. Cryptomania and Minicrypt correspond to the “cryptographer’s wonderland”, where one-way functions (and therefore, stream ciphers, signatures, pseudorandom functions, etc.) exist. Eventually, Pessiland is what Impagliazzo describes as “the worst of all possible worlds”: a world in which many NP problems might be untractable (even on natural instances), yet no one-way function (and thus no cryptography) exists.

1.1 Excluding Pessiland: a Program for Putting Algorithms and Cryptography in a Win-Win Situation

The five worlds of Impagliazzo naturally suggest an ambitious and challenging program, whose aim is to rule out the existence of the middle world Pessiland, by proving that the existence of

3 Though we heard that lately, some cryptographers have been found dreaming of an even higher heaven, the mysterious land of Obfustopia.
hard-on-average problems in \(\text{NP} \) implies the existence of one-way functions (OWF). Such a result would demonstrate that one of the following is true: either some cryptographic primitives exist unconditionally, thus putting the mathematical foundations of data security on firm grounds, or all algorithmic problems of interest (i.e., those of the class \(\text{NP} \)) can be solved efficiently (meaning, in polynomial time) on the average. Hence, excluding Pessiland would show, in an informal sense, that any answer to the fundamental questions about the existence of hardness in \(\text{NP} \) would provide a useful outcome – either efficient, generic algorithms, or secure cryptographic primitives.

While the importance of this program has been well recognized, it has proven especially hard to pursue, and essentially no progress have been made toward excluding Pessiland in the past two-and-a-half decades. A partial explanation for this lack of success was given by Wee [Wee06], who showed that any exclusion of Pessiland must crucially rely on non-black-box techniques. In fact, as Wee notes, this was already observed in an unpublished work of Impagliazzo and Rudich. Therefore, there cannot be any black-box construction of OWF from the existence of average-case hard languages in \(\text{NP} \).

1.2 Fine-Grained Cryptography: the Quest for Minimal Cryptographic Hardness

In fact, the non-existence of a black-box construction is not specific to Pessiland: similar separation results are known between any two of Impagliazzo’s worlds [IR90,FF93,BT03,ACGM06,BB15]. However, the situation is much more satisfying than for Pessiland: at the bottom of the world hierarchy, for Heuristica, stronger exponential worst-case assumptions are known to imply that \(\text{avgP} \neq \text{DistNP} \) [Yao82,WB86,Sud97,STV01]. At the top of the hierarchy, another weaker yet nontrivial implication is known: Exponential Minicrypt (the world in which there exist exponentially hard OWFs, but no public-key cryptography) still implies the existence of a weak but useful form of public-key cryptography, namely, fine-grained public-key cryptography [Mer78,BGI08].

The traditional definition of a cryptographic primitive requires that some procedure can be run in polynomial time (e.g. exchanging random keys) while guaranteeing that breaking the primitive (e.g. finding the exchanged key for a passive observer) requires superpolynomial computational resources. Fine-grained cryptography relaxes this notion, by requiring only that breaking the primitive should be polynomially harder than executing the procedure. In fact, the very first work on public-key cryptography, the 1974 project proposal of Merkle[4] (published much later in [Mer78]) achieves exactly such a weak notion of security: Merkle shows that an ideal OWF (modeled as a random oracle) can be used to construct a key agreement protocol where the honest parties run in time \(n \), while the best attack requires time \(n^2 \). The assumption of an ideal OWF was later relaxed to the existence of exponentially hard OWFs by Biham, Goren and Ishai [BGI08]. Hence, in essence, Merkle establishes a weak exclusion of Minicrypt, by showing that strong hardness in Minicrypt already implies some nontrivial form of public-key cryptography, with a quadratic gap between the attacker’s runtime and the honest parties’ runtime.

1.3 Our Contribution: Towards a Weak Exclusion of Pessiland

The above result suggests a natural relaxation of Impagliazzo’s program: rather than ruling out Pessiland entirely, one could hope to show that sufficiently strong (e.g. exponential) average-case hardness suffices to construct weak (fine-grained) OWFs. Such a result would still have a very desirable win-win flavor: it would show that either all \(\text{NP} \) problems admit nontrivial (subexponential) algorithms on the average, or there must exist some form of cryptography, with a polynomial security gap. As the computational power increases, such a gap translates to an increasingly larger runtime gap on concrete instances, hopefully leading to sufficiently large concrete security margin in realistic situations. In this work, we initiate the study of such weak exclusions of Pessiland, obtaining both positive and negative results.

The Random Language Model. We start our investigation by considering an idealized model for average-case hardness, which we call the Random Language Model (RLM). Analogously to the Random Oracle Model (ROM), where the parties have access to an oracle implementing a truly random function which models an idealized OWF [BR93], the RLM provides oracle access to a truly random NP-language L. In the RLM, each bitstring $x \in \{0,1\}^n$ belongs to L with probability exactly $1/2$, and the membership witness for a word $x \in L \cap \{0,1\}^n$ is a uniformly random bitstring from $\{0,1\}^n$. To check membership to the language, the parties have access to an oracle Chk which, on input a pair $(x, w) \in \{0,1\}^n \times \{0,1\}^n$, returns 1 if $x \in L$ and w is the right corresponding witness, and 0 otherwise. Finding out whether a random bitstring $x \in \{0,1\}^n$ belongs to L requires 2^{n-1} calls to Chk on the average.

The RLM captures idealized hard language where it is not only (exponentially) hard to decide language membership, but it is also hard to sample an element of the language with probability significantly better than $1/2$ (hence, in particular, it is also hard to generate a word together with the corresponding witness). This captures hard languages where no further structure is assumed beyond the possibility to efficiently check a candidate witness; note that the ability to sample instances together with their witness is exactly the additional structure which implies the existence of one-way functions [Imp95], hence the question of building one-way functions from average-case hardness asks precisely about whether this can be done without assuming this additional structure to start with.

The RLM gives rise to a natural two-step program for establishing a weak exclusion of Pessiland:

– finding an (unconditional) construction of a fine-grained OWF given access to an idealized language, and
– finding natural properties (which, ideally, should plausibly be satisfied by concrete languages of interest) which a language must satisfy to instantiate the above construction in the plain model.

Our motivation for pursuing this two-step program stems from the success which the same approach enjoyed in the Random Oracle Model. We already mentioned Merkle’s construction of fine-grained key agreement in the ROM, which was later shown to be instantiateable under exponential OWFs. A similar approach was used to construct non-interactive zero-knowledge proofs (NIZKs) in the ROM, using the celebrated Fiat-Shamir heuristic [FSS7], which was later shown to be instantiateable with correlation-intractable hash function [CGH98]. This approach led to a fruitful line of work [KRR17,CCR18,HL18,CCH+19] which recently culminated with the construction of NIZKs under the learning with error assumption [PS19], solving a long standing open problem. Further results include, e.g., ROM instantiability via Universal Computational Extractors [BHK13,BM14] as well as deterministic encryption and password hashing, first built in the Random Oracle Model [BB07] and later instantiated under the exponential hardness of the decision Diffie-Hellman problem [Zha16,Zha19].

A Fine-Grained OWF in the RLM. Our first contribution solves the first step of the above program, by providing an unconditional construction of a fine-grained one-way function in the Random Language Model (RLM). Our fine-grained OWF exhibits a quadratic hardness gap (if we denote by n the cost of evaluating the function, measured as a number of calls to the random language, then inverting the function requires $O(n^2)$ oracle calls). Our construction bears some similarities to Merkle’s construction of key agreement; in fact, both construction can be combined to achieve a construction of key agreement from a random language with security gap $O(n^{1.5})$. While we did not attempt to prove it, we conjecture that the security gap achieved by our construction is optimal (for Merkle’s key agreement, the optimality of the construction was proven in [BM09]).

More precisely, it requires 2^{n-1} calls to Chk on the average to find a witness of language membership if x is indeed in the language. In turn, it requires 2^n calls to confirm that there is indeed no witness if x is not in the language.
Theorem 1 (Informal). In the Random Language model, there exists a fine-grained one-way function which can be evaluated with n oracle calls, but cannot be inverted with $o(n^2)$ calls to the random language.

At a (very) high level, the construction proceeds as follows: suppose that there exists hard puzzles where sampling a random puzzle p is easy (it takes time, say, $O(1)$), but finding the unique solution $s = s(p)$ to the puzzle, and verifying that a candidate solution s to the puzzle is correct, are comparatively harder (they take some much larger respective times N_1 and N_2 with $N_1 \approx N_2$). For example, such puzzles can be constructed by sampling $|s|$ words $(x_1, \ldots, x_{|s|})$, and asking for the length-$|s|$ bitstring of the bits indicating for each word x_i whether it belongs to a given hard language L. Then we construct a fine-grained OWF as follows: an input to the function is a list of n puzzles (p_1, \ldots, p_n) for some bound n, and an integer $i \leq n$. The function $F(p_1, \ldots, p_n, i)$ first solves the puzzle p_i, and outputs the solution $s(p_i)$ together with (p_1, \ldots, p_n). Evaluating F takes time $O(n) + N_1$; on the other hand, when L is an ideally hard language, inverting F requires brute-forcing many of the p_i, which takes time $O(n \cdot N_2)$. Setting $n \approx N_1 \approx N_2$ gives a quadratic hardness gap. We refer to Section 3 for a technical overview and Section 7 for a formal proof of our positive result in the RLM.

Average-Case Hard Languages and Fine-Grained OWF. We then investigate the possibility of instantiating the above construction in the standard model. Our main results here are negative and rule out relativizing (black-box) constructions: we show that there does not exist any fine-grained OWF, even with an arbitrarily small polynomial security gap $N^{1+\varepsilon}$ (for any absolute constant $\varepsilon > 0$), that makes black-box use of an (even exponentially) average-case hard language.

Theorem 2 (Informal). There is an oracle relative to which there exists an exponentially secure average-case hard language, but any candidate fine-grained OWF f can be inverted with probability $O(1)$ and $\tilde{O}(N)$ calls to the oracle, where N denotes the number of oracle calls to compute f in the forward direction.

Interestingly, our oracle separation crucially relies on a language which is highly amortizable, i.e., deciding membership of many words (x_1, \ldots, x_k) to the language L requires roughly as much time (i.e., oracle calls) as deciding membership of a single word x to L. This should intuitively not come as a surprise, as our construction of fine-grained OWF in the RLM crucially relies on the hardness of solving the language membership problem for a very large number of challenge words. See Section 4 for an overview of the oracle separation between average-case hardness and fine-grained OWFs and Section 8 for the full proof.

Black-Box Separation Between Non-Amortizable Average-Case Hard Languages and Fine-Grained OWF. We therefore investigate whether non-amortizability (which states, roughly, that deciding membership of k random instances to L should take $O(k)$ times longer than deciding membership of a single instance to L) suffices to construct fine-grained OWFs. Before we elaborate on our result, we explain some additional motivations for studying the power of non-amortizability.

A Weaker Yet Meaningful Win-Win Result. First, constructing fine-grained one-way functions from non-amortizable (exponentially) average-case hard languages would still constitute a very interesting win-win result: it would show that either weak forms of cryptography exist unconditionally, or nontrivial speedups can be achieved for all NP problems when amortizing over many random instances.

Non-Amortizability Helps Circumvent Black-Box Impossibilities. Second, non-amortizability features have proven to be a key approach to overcoming black-box impossibility results for cryptographic primitives. For example, the Biham-Goren-Ishai construction \cite{BG10} of fine-grained key
agreement from exponential OWFs only provides an inverse-polynomial bound on the probability that an attacker retrieves the shared key when relying on Yao’s XOR Lemma. In turn, when relying on a (plausible) version of the XOR Lemma stating that success probability decreases exponentially fast in the number of XORed instances, the adversary’s success probability can be brought down to negligible. Yet, this “Dream XOR Lemma” cannot be proven under black-box reductions [BG10].

An even more striking example is given by Simon’s celebrated black-box separation between one-way functions and collision-resistant hash functions [Sim98]: Holmgren and Lombardi [HL18] recently showed that a one-way product function (i.e., a OWF that amplifies twice, meaning that inverting \(f \) on two random images \((y_1, y_2)\) takes twice the time of inverting \(f \) on a single random image) suffices to circumvent Simon’s impossibility result and build a collision-resistant hash function (in a black-box way).

A Black-Box Separation. Motivated by the above, we investigate the possibility of building fine-grained OWFs from non-amortizable average-case hard languages (i.e., languages whose average-case hardness amplifies through parallel repetitions). Unfortunately, our result turns out to be negative: we prove that there is no black-box construction of an \(N^{1+\varepsilon} \)-hard OWF (where \(N \) is the time it takes to evaluate the function in the forward direction), for an arbitrary constant \(\varepsilon > 0 \), even from an exponentially average-case hard language whose hardness amplifies at an exponential rate through parallel repetition. Conceptually, our second negative result separates fine-grained one-way functions from a much stronger primitive and can thus be seen as a much stronger result. Note, however, that technically, the two negative results are incomparable since the first one rules out relativizing reductions whereas the latter rules out black-box reductions, see the beginning of Section 3 for a discussion.

Theorem 3 (Informal). There is no black-box construction of an \(N^{1+\varepsilon} \)-hard OWF, for an arbitrary constant \(\varepsilon > 0 \), from exponentially average-case hard languages whose hardness amplifies at an exponential rate through parallel repetition.

1.4 A Core Technical Lemma: the Hitting Lemma

At the heart of both our positive result in the Random Language Model and our black-box separations is an important and non-trivial technical lemma, which we call the Hitting Lemma. At a high level, the Hitting Lemma provides a strong Chernoff-style bound on the number of witnesses which an adversary can possibly find given oracle access to the relation of a hard language. More precisely, we state the Hitting Lemma in an abstract way, as a game with the following structure:

- First, a list of sets \(V_i \) is chosen. Each set \(V_i \) has size bounded by some value \(2^n \) and can be thought of as the set of candidate witnesses for a size-\(n \) word.
- In each set \(V_i \), a uniformly random witness \(r_i \) is chosen. The sets \(V_i \) are allowed to have different sizes, to capture the more general setting where the adversary already obtained preliminary information excluding candidate witnesses.
- Eventually, the adversary interacts with an oracle \(\text{Guess}_{r_1 \ldots r_L} \) which, on input \((i, x)\), returns 1 if \(x = r_i \) and \(\perp \) otherwise.

We call a query \((i, x)\) such that \(\text{Guess}_{r_1 \ldots r_L}(i, x) = 1 \) a hitting query (or a hit). The goal of the adversary is to get as many distinct hits as possible within a bounded number of queries. Intuitively, the most natural strategy to maximize the number of hits is to proceed as follows: first pick the smallest set \(V_i \), and query arbitrary positions one by one, until a hit is obtained. Then, pick the second smallest set \(V_j \) and keep proceeding the same way, until all of the \(r_i \) are found or the query budget is exhausted.

In essence, the Hitting Lemma states that the above natural strategy is essentially the best possible strategy, in a strong sense. Namely, denoting \(m_Q \) the average number of hits obtained by a \(Q \)-query adversary following the above strategy, the Hitting Lemma shows that for any possible
adversarial strategy, the probability of getting $O(m_Q) + c$ distinct hits using Q queries decreases exponentially with c (for some explicit constant in the $O(\cdot)$). Furthermore, the Hitting Lemma extends directly to the non-uniform setting, where the adversary is allowed to receive an arbitrary k-bit advice about the Guess oracle: our bound shows that this advice cannot provide more than k additional hits. More precisely, for any possible adversarial strategy where the adversary receives an arbitrary k-bit advice about the oracle, the probability of getting $O(m_Q) + k + c$ hits decreases exponentially with c.

Analogy with the ROM. In the Random Oracle Model, a long line of work (see for example [Hel80], [Unr07], [DGK17], [CDGS18] and references therein) has established the hardness of inverting an idealized random function in a non-uniform setting, given a bounded-length advice about the oracle. These results have proven to be important and powerful tools to reason about the Random Oracle Model. At a high level, the hitting lemma provides a comparable tool in the Random Language Model, and captures the hardness of deciding language membership for an idealized hard language, even given a non-uniform advice, and even when the adversary tries to amortize over many instances.

Applying the Hitting Lemma. The hitting lemma shows up on three different occasions in our work. First, we use it to show that random languages satisfy a strong hardness property, **block finding hardness**, where the adversary tries to find a sequence of words such that the list of bits indicating which words belong to the language is equal to some target string. In turn, this strong hardness property is shown to imply a fine-grained one-way function. Second, in our strongest oracle separation, we will exhibit an oracle relative to which there exists a non-amortizable average-case hard language, but no fine-grained one-way function. Here, the hitting lemma will be used to show that a carefully designed one-way function inverter, which provides some measurable leakage about the random language, cannot be used to significantly improve the ability of the adversary to decide language membership. Eventually, still in our strongest oracle separation, we will need to show that our carefully-crafted one-way function inversion oracle successfully inverts any candidate fine-grained one-way function with good probability; here, the hitting lemma allows to show that tweaking a candidate one-way function by limiting its access to the random language leaves its input-output behavior unchanged (over many input-output relations) with high probability, and therefore inverting this “tweaked” one-way function candidate suffices to invert the original candidate with high probability.

1.5 Related Work

We already pointed out that Merkle’s construction [Merkle78] provides the first example of fine-grained cryptography (as well as the first known example of public-key cryptography). It was further studied in [BG10], [BM09], and generalized to the quantum setting in [BS08], [BHK+11]. Fine-grained cryptography has only become an explicit subject of study recently. The work of [BRSV17], [BRSV18] constructs proofs of work from explicit fine-grained average-case hard languages which can be based on the exponential-time hypothesis (ETH), and explicitly poses the problem of building fine-grained one-way functions (while showing some barriers for basing them on ETH via natural approaches). The work of [DVV16] studies a different form of fine-grained cryptography, showing cryptosystems secure against resource-bounded adversaries, such as adversaries in NC1, under a worst-case hardness assumption. Eventually, the work of [LLW19] is the most closely related to ours: it shows constructions of fine-grained one-way functions and fine-grained encryption schemes from the average-case hardness of concrete problems, such as the Zero-k-Clique problem.

While progress on building one-way functions from average-case hardness have remained elusive, several works have investigated other useful forms of hardness which could possibly reside in Pessiland. In [Wee06], Wee shows that the existence of non-trivial succinct 2-round argument systems for some languages in NP cannot be excluded from Pessiland in a black-box way. In a recent preprint [PV19], Pass and Venkitasubramaniam show that TFNP (the class of total NP search problems) is unconditionally hard in Pessiland.
Besides new ideas, our oracle separation relies on several established techniques. We use the two-oracle technique by Simon [Sim98] where one oracle implements the base primitive and the second oracle breaks constructions built from this primitive. As we argue about the efficiency of the constructed one-way function, we use similar techniques to Gennaro and Trevisan [GT00] who describe the emulation of a random oracle based on a bounded-length string, implicitly applying a compression argument. We use Borel-Cantelli to extract a single oracle from a distribution of random oracles as the seminal work on black-box separations by Impagliazzo and Rudich [IR89]. In order to make our oracle deterministic, we use the hashing trick of Valiant-Vazirani [VV85] to obtain a unique value out of many pre-image for a one-way function. In particular, we hash evaluation paths similar to Bogdanov and Brzuska [BB15] who separate size-verifiable one-way functions from NP-hardness.

2 Preliminaries

Notations. For any \(n \in \mathbb{N} \), \([n]\) denote the set \(\{1, \cdots, n\} \).

2.1 Computational Models and Oracles

Throughout this paper, algorithms will be represented as families of boolean circuits (one for every possible input length), and the main measure of efficiency will be circuit size (i.e., the number of its wires). We extend circuits to oracle circuits in a natural way, by allowing circuits to have oracle gates. The size of an oracle circuit will be measured as for a standard circuit, as the number of its wires. Typically, if an oracle takes an \(n \)-bit entry as input and outputs an \(m \)-bit response, this will be modeled by a fan-in-\(n \) fan-out-\(m \) oracle gate (hence this gate will contribute \(n + m \) to the total circuit size).

As in the standard model for boolean circuit, the wires typically carry bit values. For simplicity and readability, we will generally allow the wires to directly carry other special symbols, such as \(\perp \) and \(\text{err} \) (converting a circuit in this model to a "purely boolean" circuit only introduces some constant blowup which has no impact on our asymptotic results). By default, even when we do not mention it explicitly, we allow all (standard and oracle) gates to receive the symbol \(\text{err} \) as one of their inputs; in which case, they output the \(\text{err} \) symbol as well on all their output wires.

2.2 Fine-Grained One-Way Functions

We start by introducing the notion of a fine-grained one-way function (FG-OWF). At a high level, an \((\varepsilon, \delta)\)-FG-OWF is a function \(f \) (modeled as a family \(\{f_m\}_m \) of circuits, one for each input size) such that all circuits of size \(o(|f|^{1+\delta}) \) have probability at most \(\varepsilon \) to find a preimage of \(f(x) \) for a random input \(x \).

Definition 4 (Fine-Grained One-Way Function). Let \(\varepsilon : \mathbb{N} \mapsto \mathbb{R}^+ \) be a positive function and \(\delta > 0 \) be a constant. A function \(f : \{0,1\}^* \mapsto \{0,1\}^* \) is an \((\varepsilon, \delta)\)-fine-grained one-way function if for all circuit families \(C = \{C_m\}_{m \in \mathbb{N}} \) and all large enough \(m \), if \(|C_m| < |f_m|^{1+\delta} \), then it holds that

\[
\Pr_{z \mapsto \{0,1\}^m} \left[C_m(f(z), 1^m) \in f^{-1}(f(z)) \right] \leq \varepsilon(m).
\]

One can also consider a slightly weaker notion, namely a fine-grained one-way function distribution (FG-OWFD), were the hardness of inversion should hold with respect to a randomly sampled function \(f \) from a distribution \(D \).

Definition 5 (Fine-Grained One-Way Function Distribution). Let \(\varepsilon : \mathbb{N} \mapsto \mathbb{R}^+ \) be a positive function and \(\delta > 0 \) be a constant. A distribution \(D \) over functions \(f : \{0,1\}^* \mapsto \{0,1\}^* \) is an \((\varepsilon, \delta)\)-fine-grained one-way function distribution if for all circuit families \(C = \{C_m\}_{m \in \mathbb{N}} \) and all large enough \(m \), if \(|C_m| < |f_m|^{1+\delta} \) for all \(f \) in the support of \(D \), then it holds that

\[
\Pr_{z \mapsto \{0,1\}^m, f \mapsto D} \left[A(f(z), 1^m) \in f^{-1}(f(z)) \right] \leq \varepsilon(m).
\]
Any distribution over FG-OWFs induces a FG-OWFD, but the converse need not hold in general.

2.3 Languages

The class NP contains all languages \(\mathcal{L} \) of the form \(\mathcal{L} = \{x \mid \exists w, (|w| = \text{poly}(|x|)) \land (\mathcal{R}(x, w) = 1)\} \), where \(\mathcal{R} \) is a relation computable by a polysize uniform circuit. This definition naturally extends to the case where an oracle \(\mathcal{O} \) is available; in this case, we say that the oracle language \(\mathcal{L}^\mathcal{O} \) is in \(\text{NP}^\mathcal{O} \) if it is of the above form, where \(\mathcal{R} \) is computable by a uniform oracle circuit with \(|\mathcal{R}| = \text{poly}(|x|) \).

When the oracle \(\mathcal{O} \) is clear from the context, we will sometimes abuse this notation and simply say that the oracle language \(\mathcal{L}^\mathcal{O} \) is in NP. For a string \(x \), we will denote by \(\mathcal{L}(x) \) the bit which is 1 if \(x \in \mathcal{L} \), and 0 otherwise. We will also extend this definition to vectors of strings \(\vec{x} \) in a natural way.

Average-Case Hard Languages. We now define (exponentially) average-case hard languages (EACHLs). Note that the exponential hardness in the following definition refers to the success probability of the algorithm.

Definition 6 (Exponential Average-Case Hardness). A language \(\mathcal{L} \) is exponentially average-case hard if for any circuit family \(\mathcal{C} = \{C_n\}_{n \in \mathbb{N}} \) and all large enough \(n \),

\[
\Pr_{x \sim \{0,1\}^n}[C_n(x) = \mathcal{L}(x)] \leq \frac{1}{2} + \frac{|C_n|}{2^n}.
\]

Note that in the most common definition of EACHLs, one usually not consider an exact bound \(|C_n|\), and instead define a language to be exponentially hard if a polysize uniform circuit \(\mathcal{C}_n \) finds \(\mathcal{L}(x) \) with probability at most \(1/2 + \text{poly}(n)/2^n \) for a random word \(x \in \{0,1\}^n \). However, since we will work in the fine-grained setting, we settle for a stricter definition, with an explicit relation between the running time of \(\mathcal{C}_n \) and the probability of finding \(\mathcal{L}(x) \). Similarly as for FG-OWFs, we can also define a weaker notion of exponential average-case hard language distributions (EACHLD):

Definition 7 (Exponential Average-Case Hard Language Distribution). A distribution \(D \) over languages \(\mathcal{L} \) is exponentially average-case hard if for any circuit family \(\mathcal{C} = \{C_n\}_{n \in \mathbb{N}} \) and all large enough \(n \),

\[
\Pr_{x \sim \{0,1\}^n, \mathcal{L} \sim D}[C_n(x) = \mathcal{L}(x)] \leq \frac{1}{2} + \frac{|C_n|}{2^n}.
\]

Note that any distribution over EACHLs induces an EACHLD, but the converse need not hold in general.

2.4 Pairwise independent hash-functions

Definition 8. For all \(j, i \in \mathbb{N} \), we call a distribution \(\mathcal{H}_{j,i} \) over functions \(h : \{0,1\}^j \rightarrow \{0,1\}^{i+2} \) a distribution of pairwise independent hash-functions, if for all \(p, p' \in \{0,1\}^j \) with \(p \neq p' \), it holds that

\[
\begin{align*}
\Pr_{h \sim \mathcal{H}_{j,i+2}}[h(p) = 0^{i+2}] &= 2^{-i-2} \\
\Pr_{h \sim \mathcal{H}_{j,i+2}}[h(p') = 0^{i+2}] &= 2^{-i-2} \\
\Pr_{h \sim \mathcal{H}_{j,i+2}}[h(p) = h(p') = 0^{i+2}] &= 2^{-2i-4}
\end{align*}
\]

The following fact is used, e.g., by Valiant and Vazirani in their randomized reduction which solves SAT given a UniqueSAT oracle [VV85].

Claim 1 For all sets \(S \subseteq \{0,1\}^j \) such that \(2^i \leq |S| \leq 2^{i+1} \), it holds that

\[
\Pr_{h \sim \mathcal{H}_{j,i+2}}[\exists p \in S : h(p) = 0^{i+2}] \geq \frac{1}{8}.
\]

10
3 Technical Overview: FGOWFs in the Random Language Model

We first introduce the Random Language Model (RLM), which captures idealized average-case hard languages, in the same way that random oracles capture idealized one-way functions.

We define a random language \(\mathcal{L} \) as follows: for each integer \(n \) and each word \(x \in \{0, 1\}^n \), sample a uniformly random bit \(B[x] \). Then the elements of \(\mathcal{L} \) are all \(x \) with \(B[x] = 1 \). For notational convenience, we extend this notation to vectors: given a vector \(\vec{x} \) of words, \(B(\vec{x}) \) denotes the vector of the bits \(B[x_i] \). For each \(x \in \{0, 1\}^n \), we also sample a uniformly random witness \(W[x] \leftarrow \{0, 1\}^n \). To check membership to the language, we introduce an oracle \(\text{Chk} \) defined as follows: on input a pair \((x, w)\), the oracle checks whether \(B[x] = 0 \) or \(w \neq W[x] \). If one of these conditions hold, it outputs \(\bot \); otherwise, it outputs 1 (See Figure 2). It is relatively easy to see that to check membership of a candidate word \(x \) to \(\mathcal{L} \) given access to \(\text{Chk} \), the best possible strategy is to query \((x, w)\) for all possible values \(w \in \{0, 1\}^n \), hoping to hit the uniformly random value \(W[x] \). Hence, deciding membership of a word \(x \) to \(\mathcal{L} \) requires on the average \(2^{n-1} \) queries to \(\text{Chk} \), which shows that \(\mathcal{L} \) is (exponentially) average-case hard.

We show that, in the RLM, there is an explicit construction of a FG-OWF \(f \) such that every adversary running in time \(N(n)^{2-\nu} \) for an arbitrarily small constant \(\nu \) has only a negligible probability of inverting \(f \) (in \(n \)) — id est, there exists a \((\text{negl}(n), 1 - \nu)\)-FG-OWF, where \(\text{negl}(n) \) denotes some negligible function of \(n \). In order to construct this FG-OWF, we will prove a useful intermediate lemma which shows that a random language actually satisfies a very strong hardness notion, which we call block-finding hardness, which states (roughly) that given many blocks of words, and the language membership bits for one of these blocks, finding out which block they correspond to essentially requires to brute-force the language membership of most words.

3.1 Block-Finding Hardness of \(\mathcal{L} \)

Informally, we say that a language satisfies block-finding hardness if for any adversary \(A \) and any large enough \(n \), the following holds: The adversary \(A \) is given \(N \leq 2^n/k \) many length-\(k \) vectors \(\vec{x}_i \) of distinct words \(x_{i,j} \in \{0, 1\}^n \) together with the string \(s = B[\vec{x}_i] \) (the vector of language membership bits for the words in \(\vec{x}_i \)) for a uniformly random block index \(i \leftarrow [N] \). If \(A \) finds the block index \(i \) with probability significantly better than guessing, it must make \(O(N \cdot 2^n) \) queries to \(\text{Chk} \). Intuitively, this means that (up to polylogarithmic factors) the best strategy to find \(i \) is to find out the language membership bits of some of the words in each of the blocks, by brute-forcing every possible witness for these words, until one finds membership bits that are consistent with \(s \). Slightly more formally, we show the following:

Lemma 9 (Block-Finding Hardness of \(\mathcal{L} \) — Informal Version). For any adversary \(A \), \(n \in \mathbb{N} \), block size \(k \), and number of blocks \(N \) (with \(k \cdot N \leq 2^n \)), and any tuple of blocks \((\vec{x}_i)_{i \leq N} = (x_{i,1}, \ldots, x_{i,k})_{i \leq N} \) such that all the \(x_{i,j} \) are distinct:

\[
\Pr_{i \leftarrow [N]} [C_n((\vec{x}_j)_j, B[\vec{x}_i]) = i] \leq \frac{1}{O(N)} \cdot \left(\frac{|C_n|}{2^n} + 1 \right) \cdot 2^{O(k)}.
\]

\(\text{More formally, since we consider an oracle sampled from a distribution over oracles, as for the Random Oracle Model, this captures average-case hard language distributions, i.e., the hardness of a language is averaged over the choice of the instance and the sampling of the oracle.} \]
Theorem 11. For any $\varepsilon > 0$, there exists a $(\text{neg}(m), 1 - \varepsilon)$-fine-grained one-way function distribution in the Random Language Model.

4 Technical Overview: no FGOWFs from Average-Case Hardness

Next, we study the possibility of instantiating the above construction using an average-case hard language, instead of an idealized language. At first sight, it is not clear that average-case hardness
suffices, since our construction relies on the block-finding hardness of the language, a seemingly much stronger property. Indeed, we show that there exists no construction of essentially any non-trivial FG-OWF making a black-box use of an exponentially average-case hard language. To do so, we exhibit an oracle distribution relative to which there is an exponentially average-case hard language, but no FG-OWF, even with arbitrarily small hardness gap. This proof is the only part of our paper that does not require the hitting lemma.

4.1 Language Description

We start by introducing our language. Our oracle defines a somewhat exotic language: for each integer k, we let all words $x \in \{0,1\}^n$ such that $k = \lceil \log n \rceil$ have the same random witness $w \leftarrow \{0,1\}^{2^k}$, and we put either all these words simultaneously inside or outside the language, by picking the same random membership bit b_k for all of them. Intuitively, this provides an extreme example of a language which is still hard to decide (since given a word $x \in \{0,1\}^n$, one must still enumerate over 2^{2^k} candidate witnesses to find out whether $x \in \mathcal{L}$), but whose hardness does not amplify at all (since finding a witness for a single word x gives the witness for all words whose bitlength is close to that of x). This aims at capturing the intuition that any candidate FG-OWF built from an average-case hard language \mathcal{L} must somehow leverage some amplification properties of the hardness of \mathcal{L}. Then, the oracle Chk is similar as before: on input (x, w), it returns \perp if $x \notin \mathcal{L}$ or w is not the right witness for x, and 1 otherwise. We will show that any oracle adversary A requires $O(2^n)$ queries to decide membership of a word $x \in \{0,1\}^n$ to \mathcal{L}. The proof is relatively straightforward and relies on the fact that the membership of x to \mathcal{L} remains random conditioned on the view of A as long as A did not make any hit, i.e., a query with the right witness for x.

4.2 Inexistence of FG-OWF Relative to Chk

Next, we show that for any constant δ, there exists an oracle algorithm A such that for any candidate FG-OWF f, A (given access to Chk) of size bounded by $|f|^{1+\delta}$ which inverts f with probability 0.99. The adversary works as follows: for any integer k, it checks whether the function will make “too many” queries of the form (x, w) with x of length n such that $k = \lceil \log n \rceil$ (we call this a k-query), where “too many” is defined as $(2^{2^k})^\varepsilon$ for a value $\varepsilon = (1 + \delta/2)^{-1}$. Intuitively, making more than this number of queries ensures that f will have a noticeable probability of making a hitting query. For all such “heavy queries”, A makes all possible (2^{2^k}) queries to Chk with respect to some fixed word x, until he finds the witness. A also does the same for all k-queries with $k \leq B(\varepsilon)$ for some bound $B(\varepsilon)$ to be determined later, even when they do not correspond to heavy query (this is to avoid some “border effects” of small queries in the probability calculations). Note that this allows A to find the witness for all words of length n such that $k = \lceil \log n \rceil$, since they all share the same witness.

A defines the following oracle-less function f' that contains all the hardcoded witnesses that A recovered. Now, on input x, f' runs exactly as f and if f makes a k-query x for some k, then f' proceeds as follows:

- If k corresponds to a heavy query, then, using (2^{2^k}) queries, A already computed the witness for all k-queries and thus f' contains the hardcoded witness to correctly answer the query.
- If k does not correspond to a heavy query, f' simulates the answer of the oracle as \perp.

We prove that with high probability (at least 0.999), the function f' agrees with f on a random input x; this is because f' disagrees with f only if there is a k-query with $k > 10$ where f makes less than $(2^{2^k})^\varepsilon$ queries, yet hits a witness (for all other types of queries, A finds the witness by brute-force, hence it can always simulate correctly the answer of the oracle). But this happens only with probability $1 - \sum_{k=B(\varepsilon)+1}^{\infty} (2^{2^k})^\varepsilon \cdot 2^{-2^k}$, which is bounded by 0.999 by picking a sufficiently large
bound \(B(\varepsilon)\) such that \((1 - \varepsilon)2^{B(\varepsilon)} > B(\varepsilon)\). Then, by a straightforward probability calculation, the probability of successfully inverting \(f\) on a random input \(x\) can be lower-bounded by \(0.999^2 > 0.99\), which concludes the proof.

5 Technical Overview: no FG-OWF from Non-Amortizable Hardness

Note that the techniques from our simpler oracle separation crucially exploit that the hardness of the average-case hard language implemented by \(\text{Chk}\) does not amplify well (in fact, this is the reason why the hitting lemma is not needed in the analysis). We are thus interested in understanding whether we can still provide a black-box impossibility result even when the underlying average-case hard language satisfies non-amortizable exponential hardness, or whether non-amortizable average-case hard languages suffice to construct a fine-grained one-way function.

We call a language \(L\) (exponentially) self-amplifiable average-case hard if for any superlogarithmic (computable, total) function \(\ell(\cdot)\), for any circuit family \(\mathcal{C} = \{C_n : \{0,1\}^{\ell(n) - n} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}}\) of size at most \(2^\Omega(n) \cdot \ell(n)\), and for all large enough \(n \in \mathbb{N}\),

\[
\Pr_{\bar{x} \leftarrow \{0,1\}^n} [C_n(\bar{x}) = \mathcal{L}(\bar{x})] \leq \text{poly}(n) \cdot 2^{-\left(\ell(n) - \frac{\Omega(|C_n|)}{2^{\ell(n)}}\right)}.
\]

Informally, this means that to find the language membership bits of \(\ell(n)\) challenge words, the best an adversary \(\mathcal{C}_n\) can do (up to polylogarithmic factors in \(|\mathcal{C}_n|\) and constant factors in \(n\)) is to brute-force as many membership bits as it can (roughly, \(\tilde{O}(|\mathcal{C}_n|)/2^n\) since brute-forcing a single membership bit requires \(O(2^n)\) queries), and guessing the \(\ell(n) - \tilde{O}(|\mathcal{C}_n|)/2^n\) missing membership bits at random. Note that self-amplifiable average-case hardness is especially interesting when the circuit \(\mathcal{C}_n\) is allowed to run in time larger than \(2^n\) (for small circuits, of size much smaller than \(2^n\), the standard average-case hardness notion already bounds their probability of guessing correctly a single entry of \(\mathcal{L}(\bar{x})\)). In this range, the \(\text{poly}(n)\) factor in our definition is absorbed in the \(\tilde{O}(|\mathcal{C}_n|)\) term in the exponent (note also that adversaries of size larger than \(2^\Omega(n) \cdot \ell(n)\) can solve the full challenge by brute-force).

Our main result rules out black-box reductions from any exponentially self-amplifiable average-case hard language to fine-grained one-way functions, with arbitrarily small hardness gap. Slightly more formally, we prove the following theorem:

Theorem 12 (Informal). There exists an oracle \(O\) and an oracle language \(\mathcal{L}^O\) such that for any fine-grained one-way function \(f\), there exists an (inefficient) adversary \(A\) that inverts \(f\) with probability close to 1 such that \(\mathcal{L}\) remains exponentially self-amplifiable average-case hard against any candidate reduction \(\mathcal{C}\) given oracle access to both \(O\) and \(A\).

In the nomenclature of Reingold, Vadhan and Trevisan [RTV04], we rule out a \(\forall\exists\)-weakly-reduction, a slightly weaker notion than a relativizing reduction. The result would turn into a full oracle separation when the fine-grained one-way function \(f\) were given black-box access to the adversary \(A\) as well. Reingold, Vadhan and Trevisan point out that in some cases, the adversary \(A\) can be embedded into the oracle \(O\), but doing so did not seem straightforward for our case and is left as an open question. In the CAP nomenclature of Baecher, Brzuska and Fischlin [BBF13], we rule out NNN reductions, since the construction \(f\) can depend on the language \(\mathcal{L}\), and the reduction \(\mathcal{C}\) can depend on both, the adversary and the primitive, i.e., each of these dependencies can be seen as non-black-box, thus NNN. We prove Theorem 12 which is phrased in terms of reductions by establishing Theorem 13, which is phrased in terms of oracle worlds.

Theorem 13 (Language Hardness and Good Inversion, Informal). There exists an oracle \(O\) and an oracle \(\text{Inv}\) such that for all oracle functions \(f\), there exists an inverter \(A\) of size \(|A| = \tilde{O}(|f|)\) which, given oracle access to \((O, \text{Inv})\) and input \((f, y)\), outputs a preimage of \(y\) with respect to \(f^O\) with probability close to 1. Moreover, there exists an oracle language \(\mathcal{L}^O\) which is exponentially self-amplifiable average case hard against any candidate reduction \(\mathcal{C}\) given oracle access to \((O, \text{Inv})\).
Theorem 13 is slightly different from our main theorem: the inverter \mathcal{A} is now required to be efficient, but gets the help of an additional oracle Inv. Furthermore, the reduction C is now given oracle access to (O, Inv) instead of (O, \mathcal{A}); the implication follows from the fact that the code of \mathcal{A} is linear in its input size, and thus, its code can be hardcoded into the code of C, hence the reduction $C^{O,\mathcal{A}}$ in our main theorem can be emulated by a reduction $C^{O,\text{Inv}}$ in Theorem 13 where $|C_{\mathcal{A}}| \approx |C|$. To prove Theorem 13 we rely on a standard method in oracle separations: we first prove a variant of Theorem 15 with respect to a distribution over oracles O, Inv (where both the success probability of the inverter and the probability of breaking the self-amplifiable average-case hardness of \mathcal{L} will be Ω over the random choice of O, Inv as well). Then, we apply the Borel-Cantelli lemma to show that with measure 1 over the choice of the oracle, the oracle is “good” and thus, in particular, a single good oracle exists as required by Theorem 13.

In summary, to prove Theorem 13 we prove two theorems relative to an explicit distribution \mathcal{T} over oracles O, Inv:

Theorem 14 (Language Hardness, Informal). For any $\ell : \mathbb{N} \to \mathbb{N}$, circuit family $C = \{C_n\}_n$, and for all large enough $n \in \mathbb{N}$,
\[
\Pr_{\bar{x} \leftarrow \{0,1\}^\ell} \left[(C_n^{O,\text{Inv}}(\bar{x}) = \mathcal{L}_n^O(\bar{x})) \right] \leq \text{poly}(n) \cdot 2^{-\left(\ell(n) - \frac{O(|C_n|)}{2^{O(n\ell)}} \right)}.
\]

Theorem 15 (Efficient Inversion, Informal). Let $f : \{0, 1\}^* \to \{0, 1\}^*$ be an oracle function. There exists an efficient inverter $\mathcal{A}^{O,\text{Inv}}(f, \cdot)$ for f. More precisely, \mathcal{A} is of size $|A| = \tilde{O}(|f|)$ and for sufficiently large $m \in \mathbb{N}$, it holds that
\[
\Pr_{z \leftarrow \{0,1\}^m} \left[f^O(\mathcal{A}^{O,\text{Inv}}(f, f^O(z))) = f^O(z) \right] \approx 1.
\]

5.1 Defining the Oracle Distribution \mathcal{T}

The distribution \mathcal{T} samples a triple (W, B, H) where:

- B defines a random language \mathcal{L}: for every $x \in \{0, 1\}^*$, $B[x]$ is set to 0 or 1 with probability $1/2$;
- W defines a set of random witnesses: for any $n \in \mathbb{N}$ and $x \in \{0, 1\}^n$, $W[x]$ is set to a uniformly random bitstring w_x of length n.
- H contains a pairwise independent hash-function for every triple (i, C, y), where $i \in \mathbb{N}$, C is an encoding of a circuit and y is a bitstring.

A sample (W, B, H) from \mathcal{T} defines a pair of oracles (O, Inv), where $O = (\text{Chk}, \text{Pspace})$ is defined as follows:

- Chk is a membership checking oracle: on input (x, w), it returns \bot if $W[x] = w$, and $B[x]$ otherwise. Note that this means that relative to Chk, \mathcal{L} is a random language in $\text{NP} \cap \text{co-NP}$, since Chk allows to check both membership and non-membership in \mathcal{L}, given the appropriate witness. A hit is a query to Chk which does not output \bot. To emphasize the dependency of \mathcal{L} on O, we use the notation \mathcal{L}^O.
- Pspace is a PSPACE oracle which allows the caller to efficiently perform computations that do not involve calls to the oracles Chk, Inv.

We now turn our attention to the oracle Inv, which is the most involved component: Inv must be defined such that there is an efficient oracle algorithm \mathcal{A} which can, given access to O, Inv, invert any candidate one-way function f^O, yet no algorithm (reduction) can break the self-amplifiable average-case hardness of the language \mathcal{L}^O, given access to O, Inv. Hence, the goal of Inv is, given an input (f, y), to help compute preimages z of y with respect to the oracle function f^O, but with carefully chosen safeguards to guarantee that Inv cannot be abused to decide the language \mathcal{L}^O. Our solution relies on two crucial safeguards, which we describe below.
First Safeguard: Removing Heavy Paths. The oracle Inv refuses to invert functions f on outputs y if the query-path from the preimage z to y in f^O is “too lucky” with respect to O. To understand this, consider the following folklore construction of a worst-case one-way function f: on input (x, w), it queries Chk(x, w) and outputs $(x, 1)$ if the check succeeds, and $(x, 0)$ otherwise. Then, querying Inv on input $(f, (x, 1))$ allows the adversary to find the witness w associated to x efficiently, since the function f makes only a single query and thus the inversion query Inv$(f, (x, 1))$ has small cost for A.

But since f^O is a normal (average-case) one-way function, we can allow ourselves to not invert on a too lucky evaluation path, if we can show that we still invert sufficiently often. Concretely, on input (f, y), the oracle Inv computes the set S of all paths from an input z to $y = f^O(z)$, i.e., the sequence of input-output pairs. Then, for all $k \leq |f|$, Inv discards from this set S all k-heavy paths, which are the paths along which the number of Chk hits on k-bit inputs is much higher than expected, i.e., $N(k)/2^{k-1}$, where $N(k)$ is the number of Chk gates with k-bit inputs in f.

If S is not empty, then Inv samples a uniformly random element from S and returns the set of the queries made on the path to the adversary. Since oracles need to be deterministic, we derandomize the sampling via the use of the pairwise independent hash-function stored in the third output H of T at $H[\log |S|, f, y]$ by the Valiant-Vazirani [VV85] trick that ensures that with probability $\frac{1}{2}$, there is only a unique value in S that hashes to $0^{\log(|S|)-1}$. Note that returning to the adversary the set of query-answer pairs suffices, as the adversary can then use the Pspace oracle to find an input z that leads to y with this set of query-answer pairs produced by f^O. I.e., the Pspace uses the set to emulate the answers to queries made by f and discards a candidate z whenever it makes a query not in the set.

Second Safeguard: Shaving high levels. We shave all Chk-gates of $|f|$ that are for large input length k, i.e., for all Chk-gates with input length k such that $|f| \leq 2^k$. To do so, we replace f by a shaved function f_s where the answers of such Chk queries are hardcoded to be \bot. The probability (over O and z) that this changes the behaviour of f is equal to the probability of making a hit on one of these high levels and thus $2^{-\frac{m(k-1)}{6}}$ for the smallest k such that $|f| \leq 2^k$, i.e., $k \geq 6 \log(|f|)$. Thus, $2^{-\frac{m(k-1)}{6}} \leq m^{-3}$, where $m = |z|$. Note that later, in the Borel-Cantelli Lemma, we need to sum over these bad events, and thus, it is important that the sum of m^{-3} over all m is a constant.

Putting Everything Together. Finally, with the above two safeguards, our oracle Inv works as follows: on input (f, y), it first shaves f of its higher-level Chk gates, computing $f_s \leftarrow \text{shave}(f)$.

Determining an appropriate bound on much higher is crucial to avoid that deciding C^O becomes too easy.

We return to this issue shortly.
5.2 Proving Theorem 14

Then, it constructs the set S of all paths from some input z to $y = f^O_s(z)$, where a path is defined to be the set of all query pairs to O made during the evaluation of f_s on z. Afterwards, it removes from S all paths which are too heavy, where a path is called heavy if there is a k such that it contains a number $N(k) \cdot k$-Chk queries, out of which more than $O(N(k))/2^k \log^2 |f|$ are hits. Eventually, it returns a path from this set S of light paths using the hashing trick to derandomize the sampling.

As we already outlined, the last output H of T is therefore a set which contains, for every possible triple (i, f, y) where i is an integer, f is an oracle function, and y is a bitstring, a hash function $h = H[i, f, y]$. The guarantee offered by h is that for any set S' of size $2^{i-1} \leq |S'| \leq 2^i$, the probability of the random choice of $h = H[i, f, y]$ that S' contains exactly one entry s such that $h(s) = 0$ is at least $1/8$. Hence, after it computes the set S of light paths, Inv compute the unique integer i such that $2^{i-1} \leq |S| \leq 2^i$, retrieves $h \leftarrow H[i, f, y]$, and output the unique path $p \in S$ such that $h(p) = 0$, or \bot if there is no unique such path. Note that this oracle Inv can fail to return a valid path from an input z to the target output y in f for three reasons: because shaving caused f_s to differ from f on input z (we show that this is unlikely for a random z), because the path from z to y is heavy (again, we show that this is unlikely), and because there is not a unique $p \in S$ such that $h(p) = 0$ (but with probability at least $1/8$, there will be a unique such p). This last source of failure can be later removed by a straightforward parallel amplification, by querying Inv on many pairs (f_i, y) where the f_i are functionally equivalent variants of f (in which case the corresponding $h_k = H[i, f_k, y]$ are independently random by construction). Note that we could have also hardcoded “true” randomness into Inv instead of using the hashing trick. However, as we will see, the hashing trick enables a compression argument since (a) the hash-functions are sampled independently from W and B and (b) the sampling can be emulated when only knowing a single element in the set as well as the size of the set S. Details follow in the next section.

5.2 Proving Theorem 14

Fix a function $\ell : \mathbb{N} \to \mathbb{N}$, a circuit family C, and an integer $n \in \mathbb{N}$. We want to bound the probability, over the choice of $\vec{x} \leftarrow \{0, 1\}^{\ell(n) \cdot n}$ and $(O, \text{Inv}) \leftarrow T$, that $C_n^{O, \text{Inv}}(\vec{x}) = C^{O}(\vec{x})$. We proceed in two steps:

- First, we prove an emulation lemma which states that there is an explicit algorithm Emu^O which emulates $C_n^{O, \text{Inv}}$ without calling the oracle Inv, but using instead some partial information $g(W, B, H)$ about (W, B, H). By emulating, we mean that $\text{Emu}^O(\vec{x}, g(W, B, H)) = C_n^{O, \text{Inv}}(\vec{x})$, and Emu makes the same number of queries to O as C_n.

- Second, we use the hitting lemma, which we already mentioned in Section 3 (in the technical overview about the existence of FG-OWFs in the RLM), to bound the number of hits on \vec{x} that Emu can possibly make (where a hit on \vec{x} is a query of the form $(x_i, W[x_i])$ to Chk, from which Emu learns whether $x_i \in C^O$).

The Emulation Lemma. Concretely, we give an explicit algorithm Emu such that $\text{Emu}^O(L, \vec{x}, C_n) = C_n^{O, \text{Inv}}(\vec{x})$ and Emu makes the same queries to O as C_n, where the leakage string L contains the following information:

- The sets H and $(W_{\vec{x}}, B_{\vec{x}})$ of all witnesses and membership bits except for those corresponding to the entries of \vec{x} (intuitively, this corresponds to giving to Emu all information about Inv which is sampled independently of the $W[x_i], B[x_i]$ and does not help with finding $C^O(\vec{x})$).
- The sets $(W_{\text{Hit}}, B_{\text{Hit}})$ which contains all Chk-hits on \vec{x} in paths obtained by C_n through queries to Inv.
- The set W_{Ref} which contains all other (non-hitting) Chk-query pairs in paths obtained by C_n through queries to Inv.
- A list I which for each query (f, y) of C_n to Inv indicates whether this query returned \bot or not, and if it did not, the value i which was used to select the hash function $h = H[i, f, y]$.

17
The emulation proceeds in a relatively natural way: \texttt{Emu} simply runs \(C_n \) internally on input \(\vec{x} \), forwarding its queries to \(O \). Each time \(C_n \) makes a query \((f,y)\) to \texttt{Inv}, \texttt{Emu} first retrieves from \(I \) the information whether \texttt{Inv} outputs \(\bot \) or not. If it does not, \texttt{Emu} tries all possible inputs \(z \) to \(f^{O} \), but without actually querying \(O \): for each possible input \(z \), \texttt{Emu} runs \(f^{O}(z) \) by retrieving the answers of \(O \) from the sets \((W_{\vec{x}},B_{\vec{x}},W^{\text{Hit}},B^{\text{Hit}},W^{\text{Hit}})\). If \(f^{O}(z) \) makes a query whose answer is not contained in these sets, \texttt{Emu} discards this candidate \(z \). If \(f^{O}(z) \neq y \), \texttt{Emu} also discards \(z \).

After trying all inputs to \(f \), \texttt{Emu} has a set \(S' \) of candidate inputs \(z \), with a corresponding path. Then, it retrieves the index \(i \) from \(I \) and selects \(h \leftarrow H[i,f,y] \), and sets the output of \texttt{Inv} on \((f,y)\) to be the unique path \(p \) associated to some \(z \in S' \) such that \(h(p) = 0 \); by construction, it will be guaranteed that there is a unique such path. The correctness of the emulation follows by construction and by definition of the sets \((W_{\vec{x}},B_{\vec{x}},W^{\text{Hit}},B^{\text{Hit}},W^{\text{Hit}})\) which \texttt{Emu} gets as input.

This emulation highlights the rationale behind the design of \texttt{Inv}: the use of a hash function \(h \) to select the output guarantees that, on top of the sets \((W_{\vec{x}},B_{\vec{x}},W^{\text{Hit}},B^{\text{Hit}},W^{\text{Hit}})\), \texttt{Emu} will only need to receive a relatively small amount of additional “leakage”, corresponding to the list of all values \(i \) for each query to \texttt{Inv}. Now, by definition, \(i \) is at most \(\log |S| \), where \(S \) is a set of paths in \(f \), hence \(|S| \leq 2^{|f|} \). Therefore, \(i \leq |f| \), hence \(i \) can be represented using at most \(\log |f| \) bits. By construction, a query \((f,y)\) to \texttt{Inv} can leak information about \(\vec{x} \) only if \(|f| \geq 2n/c \), because otherwise all \texttt{n-Chk} gates gets removed by \texttt{shave}(\(f \)). Hence, our emulator gets a total amount of leakage about \(\vec{x} \) bounded by \(|C_n|/2^{O(n)} \). From there, we want to prove that

\[
\Pr_{\vec{x} \leftarrow \{0,1\}^\ell} \left[\text{c}_{\text{Emu}}(\vec{x}) = \ell^{O}(\vec{x}) \right] \leq \text{poly}(n) \cdot 2^{-\left(\ell(n) - \frac{O(|C_n|)}{2^{O(n)}}\right)}.
\]

We will do so by proving that

\[
\Pr_{\vec{x} \leftarrow \{0,1\}^\ell} \left[\text{Emu}^O(L,\vec{x},C_n) = \ell^{O}(\vec{x}) \right] \leq \text{poly}(n) \cdot 2^{-\left(\ell(n) - \frac{O(|C_n|)}{2^{O(n)}}\right)}. \tag{1}
\]

Bounding Equation \(1\) is the goal of the hitting lemma.

Applying the Hitting Lemma. The hitting lemma states that for any circuit \(C_n \), any algorithm \(A \) having only access to the inputs and oracles of \(C_n \)’s emulator (i.e., \(B \) has only access to the oracle \(O \) and \(L \)) cannot possibly make too many hit, even though the emulator gets \(|C_n|/2^{O(n)} \) bits of leakage about the oracle. Let \(\text{Hit}_{B}(L,\vec{x},C_n) \) be the random variable that counts the number of hits on \(\vec{x} \) made by \(A \) on input \((L,\vec{x},C_n)\).

Lemma 16 (Hitting Lemma with Advice, Informal). For every \(\ell(\cdot) \), positive integers \(q \), large enough \(n \), challenge \(\vec{x} \), \(L \) with \(|W^{\text{Hit}}| = q \) and list \(I \) represented by a string length \(|I| = |C_n|/2^{O(n)} \), adversaries \(C_n,B \), and for every integer \(c \geq 1 \),

\[
\Pr_{(W,B,H) \leftarrow \mathcal{T},L,I} \left[\text{Hit}_{B}(L,\vec{x},C_n) \geq \frac{O(|C_n|) + q}{2n} + c + |I| \right] \leq \frac{1}{2^{|x|}},
\]

where \(\gamma \geq 1 \), and where the probability is taken over the random sampling of \((W,B,H) \leftarrow \mathcal{T} \), conditioned on \(L \).

We first explain how the hitting lemma implies Equation \(1\). First, if \texttt{Emu} got a total number of hits \(t \) on \(\vec{x} \), either through queries to \(O \) or through the hits contained in \(W^{\text{Hit}} \), then conditioned on all observation seen by \texttt{Emu}, \(\ell(n) - t \) bits of \(\ell^{O}(\vec{x}) \) are truly undetermined. Hence,

\[
\Pr_{\vec{x} \leftarrow \{0,1\}^\ell} \left[\text{Emu}^O(L,I,\vec{x},C_n) = \ell^{O}(\vec{x}) \mid \text{Emu got at most } t \text{ hits on } \vec{x} \text{ in total} \right] \leq 2^{-(\ell - t)}.
\]

Now, the number of hits seen by \texttt{Emu} is bounded by \(\text{Hit}_{\text{Emu}}(L,I,\vec{x},C_n) + |W^{\text{Hit}}| \), where \(|W^{\text{Hit}}| \) is at most \(\text{poly}(n) \cdot \frac{O(|C_n|)}{2^{O(n)}} \): this follows from the fact that the number of hits in \(W^{\text{Hit}} \) is bounded by
Eventually, the success probability of \(\text{Inv} \) on input \((f, y)\) only returns light paths, which cannot contain more than \(\text{poly}(n) \cdot \frac{O(1)}{2^n} \) hits. The result follows by relying on the fact that

\[
\Pr_{\vec{x} \leftarrow \{0,1\}^n, (\mathbf{O, Inv})} \left[\text{Emu}^O(L_f, \vec{x}, C_n) = \mathcal{L}^O(\vec{x}) \right] \\
= \sum_t \Pr[\text{Emu} \text{ got at most } t \text{ hits on } \vec{x}] \cdot \Pr[\text{Emu}^O(L_f, \vec{x}, C_n) = \mathcal{L}^O(\vec{x}) | \text{Emu} \text{ got } t \text{ hits}] \\
\leq \sum_t 2^{-(t-t)} \cdot \Pr[\text{Emu} \text{ got at most } t \text{ hits on } \vec{x}] .
\]

Now, the bound of Equation 11 will be obtained by plugging the bound on

\[
\Pr[\text{Emu} \text{ got at most } t \text{ hits on } \vec{x}] \leq \text{Hit}^O_{\text{Emu}}(L, \vec{x}, C_n) + |W^\text{Hit}|,
\]

by using the hitting lemma to bound \(\text{Hit}^O_{\text{Emu}}(L, \vec{x}, C_n)\). The proof then follows from the hitting lemma, to which we devote Section 6.

5.3 Proving Theorem 15

Let \(f : \{0,1\}^* \rightarrow \{0,1\}^* \) be an oracle function. We exhibit an efficient inverter \(A^{\text{inv}}(f, .) \) for \(f \), such that

\[
\Pr_{z \leftarrow \{0,1\}^m, (\mathbf{O, Inv})} \left[f^O(A^{\text{inv}}(f, f^O(z))) = f^O(z) \right] \approx 1.
\]

\(A \) works as follows: to invert a function \(f : \{0,1\}^m \rightarrow \{0,1\}^* \) given an image \(y \), it queries \(\text{Inv} \) \(\log^3 m \) times on independent inputs \((f_k, y)\), where each \(f_k \) are syntactically different but functionally equivalent to \(f \) (this guarantees that the failure probabilities introduced by the choice of the hash function \(h \) are independent). Then, it takes a path \(p \) returned by any successful query to \(\text{Inv} \) (if any), and returns a uniformly random preimage \(z \) consistent with this path (this requires a single query to the PSPACE oracle). The proof that \(A \) is a successful inverter proceeds by a sequence of lemmas.

First, we define \(f^{\text{approx}}_s \) to be defined as \(f_s = \text{shave}(f) \), except that it outputs \(\perp \) on any input \(z \) such that the path in \(f^O_s(z) \) is not light.

First Lemma. The first lemma states that

\[
\Pr_{z \leftarrow \{0,1\}^m} [f^O_s(f^{\text{approx}}_s(z)) = f^O_s(z)] \approx 1.
\]

This lemma will follow again from the Hitting lemma, which provides a strong concentration bound on the probability that the path of \(f^O_s(z) \) is light: by this concentration bound, it follows that the path is light with probability at least \(1 - \log |f| \cdot 2^{-O(\log^2 |f|)} \) (recall that a path is heavy if, for some \(k \), it contains \(N(k) \) \(k \)-\(\text{Chk} \) queries, and more than \(O(N(k)) + \log^2 |f| \) hits).

Second Lemma. The second lemma states that

\[
\Pr_{z \leftarrow \{0,1\}^m} [f^O_s(z) = f^O(z)] \approx 1.
\]

This lemma follows from the definition of shaving: since only \(\text{Chk} \) gates with \(k \geq 6 \log |f| \) are shaved, the probability that \(f^O_s(z) \neq f^O(z) \) is bounded \(\sum_{k \geq 6 \log |f|} 2^{-\frac{k}{6}} \leq 4/m^3 \). Combining the above lemmas with an averaging argument, we will show that

\[
\Pr_{z \leftarrow \{0,1\}^m, (\mathbf{O, Inv})} \left[f^O(A^{\text{inv}}(f, f^O(x))) = f^O(x) \right] \approx 1 - \left(\frac{7}{8} \right)^{\log^3 m}.
\]
Note that \(\mathcal{A} \), on input \(f \), sends \(\log^3 m \leq \log^3 |f| \) queries to \(\text{Inv} \), selects one of the path from the successful queries, and queries it to the PSPACE oracle to select the preimage \(z \) it outputs. Therefore, the size of \(\mathcal{A} \) is \(|\mathcal{A}| = \tilde{O}(|f|) \).

6 The Hitting Lemma

For any \(\vec{r} = r_1 \cdots r_\ell \), we define an oracle \(\text{Guess}_r(i, r^*) \) as taking an input \(r^* \) and an index \(i \) and checking whether \(r_i = r^* \). If so, the oracle returns 1. Else, the oracle returns \(\perp \). We define \(\text{Hit}^{\text{Guess}_r}(\mathcal{A}) \) as the number of distinct queries \(\mathcal{A} \) makes which returns something different than \(\perp \).

Lemma 17 (Abstract Hitting Lemma). For every positive integer \(q \), large enough \(n, \ell = \ell(n) \), sets \(V_1, \cdots, V_\ell \) of size \(1 \leq |V_i| \leq 2^n \) such that \(q = \ell \cdot 2^n - \sum_{i=1}^\ell |V_i| \), for every adversary \(\mathcal{A} \), and for every integer \(c \geq 1 \),

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_\ell} \left[\text{Hit}^{\text{Guess}_r}(\mathcal{A}) \geq \frac{16 \cdot \text{qry}_A + q}{2^n} + c \right] \leq \frac{\alpha}{2^\gamma c},
\]

for some \(\alpha > 0 \), and \(\gamma > 1 \).

The hitting lemma gives a strong Chernoff-style bound on the number of distinct hits which an arbitrary adversary \(\mathcal{A} \) can make using \(\text{qry}_A \) queries. The strength of this bound allows to derive almost immediately a useful corollary, which shows that the bound degrades gracefully even if \(\mathcal{A} \) is additionally given an arbitrary advice string of bounded size about the truth table of the \text{Guess} oracle:

Corollary 18 (Abstract Hitting Lemma with Advice). For every positive integers \((q, k) \), large enough \(n, \ell = \ell(n) \), sets \(V_1, \cdots, V_\ell \) of size \(1 \leq |V_i| \leq 2^n \) such that \(q = \ell \cdot 2^n - \sum_{i=1}^\ell |V_i| \), for every pair of adversaries \((\mathcal{A}_1, \mathcal{A}_2)\), and for every integer \(c \geq 1 \),

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_\ell} \left[a \leftarrow \mathcal{A}_1(\vec{r}) : |a| \leq k \wedge \text{Hit}^{\text{Guess}_r}(\mathcal{A}_2(a)) \geq \frac{16 \cdot \text{qry}_A + q}{2^n} + c \right] \leq \frac{\alpha \cdot 2^k}{2^\gamma c},
\]

or equivalently

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_\ell} \left[a \leftarrow \mathcal{A}_1(\vec{r}) : |a| \leq k \wedge \text{Hit}^{\text{Guess}_r}(\mathcal{A}_2(a)) \geq \frac{16 \cdot \text{qry}_A + q}{2^n} + k + c \right] \leq \frac{\alpha}{2^\gamma c},
\]

for some \(\alpha > 0 \), and \(\gamma > 1 \).

Proof. The proof follows by reduction to the hitting lemma through a simple guessing argument: assume toward contradiction that the above bound does not hold; that is, there is an adversary \((\mathcal{A}_1, \mathcal{A}_2)\) such that

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_\ell} \left[a \leftarrow \mathcal{A}_1(\vec{r}) : |a| \leq k \wedge \text{Hit}^{\text{Guess}_r}(\mathcal{A}_2(a)) \geq \frac{16 \cdot \text{qry}_A + q}{2^n} + k + c \right] \geq \frac{\alpha}{2^\gamma c}.
\]

We construct an adversary \(\mathcal{A}[a] \) by sampling \(a \leftarrow \{0, 1\}^k \) and defining \(\mathcal{A}[a] \), which has \(a \) hard-coded in its description, to compute \(\mathcal{A}_2(a) \). Note that for any \(\vec{r} \in [v_1] \times \cdots \times [v_\ell] \), it holds that \(\Pr_{\vec{r} \leftarrow \{0, 1\}^k} [a_2(\vec{r}) = a] = 1/2^k \). Therefore,

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_\ell, a \leftarrow \{0, 1\}^k} \left[\text{Hit}^{\text{Guess}_r}(\mathcal{A}[a]) \geq \frac{16 \cdot \text{qry}_A + q}{2^n} + k + c \right] > \frac{\alpha}{2^\gamma c} \cdot \frac{1}{2^k}.
\]
Let \(c' \leftarrow c + k \). By a standard averaging argument, there must therefore exist a string \(a \in \{0, 1\}^k \) such that

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_\ell} \left[\text{Hit}^{-\text{Guess}}(\mathcal{A}[a]) \geq \frac{16 \cdot \text{qry} + q}{2^n} + c' \right] \geq \frac{\alpha}{2^{\gamma c}} \cdot \frac{1}{2^k} \]

\[
= \frac{\alpha}{2^{\gamma c}} \cdot \frac{2^{\gamma k}}{2^k} \]

\[
> \frac{\alpha}{2^{\gamma c}} \text{ since } \gamma > 1.
\]

However, the above contradicts the hitting lemma, which concludes the proof. \(\square \)

Remark 19. Considering an adversary receiving an arbitrary length-\(k \) advice string about the truth table \(r_1 \cdots r_\ell \) of the oracle \texttt{Guess} is analogous to performing an analysis in the Random Oracle Model with Auxiliary Input. Starting with the celebrated work of Hellman on time-space trade-offs for inverting a random permutation [Hel80], this model developed into a long line of research (see [Unm71,DGK17,CDGS18] and references therein). The model allows the adversary to inspect the entire truth table of the random oracle in a preprocessing phase and to store a bounded-length auxiliary input string to help it with inverting the oracle. Our hitting lemma captures, in essence, the hardness of finding a witness in the Random Language Model (in a strong sense), analogous to the hardness of inverting the random function in the Random Oracle Model, and the above corollary extends this hardness result to adversaries with an arbitrary bounded auxiliary input.

6.1 Proof of the Hitting Lemma — Proof Structure

The goal of \(\mathcal{A} \) is to find as many distinct \(r_i \)'s as possible, where each \(r_i \) is sampled randomly from a set \(V_i \) of size \(|V_i| \leq 2^n \), given access to an oracle which indicates whether a guess is correct or not. Intuitively, \(\mathcal{A} \)'s best possible strategy is to first choose the smallest set \(V_{i_1} \), query its elements to \texttt{Guess} (in arbitrary order) until it finds \(r_{i_1} \), then move on to the second smallest set \(V_{i_2} \), and so on. The proof of the abstract hitting lemma closely follows this intuition: we first show that this strategy is indeed the best possible strategy, then bound it’s success probability using a second moment concentration bound. Formally, for any \(Q \geq 1 \), let \(\mathcal{B}_Q \) be a \(Q \)-query adversary that implements the following simple strategy: order \(V_1, \ldots, V_\ell \) by increasing size, as \(V_{\sigma(1)}, \ldots, V_{\sigma(\ell)} \) for some fixed permutation \(\sigma \) such that \(|V_{\sigma(1)}| \leq \cdots \leq |V_{\sigma(\ell)}| \). For every \(i \leq \ell \), let \(v_i \leftarrow |V_{\sigma(i)}| \), and let \(f_i \) be an arbitrary bijection between \([v_i] \) and \(V_{\sigma(i)} \). The algorithm \(\mathcal{B}_Q \) is given on Figure 3.

```
Algorithm \( \mathcal{B}_Q \)

\[
\text{qry} \leftarrow 0; r_1^*, \ldots, r_{\ell}^* \leftarrow \perp
\]

\text{for } i = 1 \text{ to } \ell :

\text{for } j \in [1, v_i] :

\text{qry} \leftarrow \text{qry} + 1

\text{if } \text{qry} = Q \text{ then return } (r_1^*, \ldots, r_{\ell}^*)

\text{if } \text{Guess}(i, f_i(j)) \text{ then } r_{\sigma(i)}^* \leftarrow f_i(j); \text{break}

\text{return } (r_1^*, \ldots, r_{\ell}^*)
```

Fig. 3: \(Q \)-query adversary \(\mathcal{B}_Q \)

The adversary \(\mathcal{B}_Q \) sequentially queries the values of the sets \(V_i \) ordered by increasing size, following an arbitrary ordering of the values inside each \(V_i \), until it finds \(r_i \) (after which it moves
to the next smallest larger set) or exhausts its budget of Q queries. To simplify notations, for any vector $\vec{u} \in [v_1] \times \cdots \times [v_t]$, we write $\pi(\vec{u}) = f^{-1}_t(u_{\sigma(1)}), \cdots, f^{-1}_t(u_{\sigma(t)})$. Observe that for any $t \in \mathbb{N}$,

$$\Pr_{\vec{r} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\text{Hit}_{\vec{r}}(B_Q) \geq t \right] = \Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\text{Hit}_{\vec{u}}(B_Q) \geq t \right] = \Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i=1}^{t} u_i \leq Q \right],$$

where the last equality follows from the fact that B_Q queries the positions one by one in a fixed order, and needs exactly u_i queries to find $r_{\sigma(i)} = f_{\sigma(i)}(u_i)$ for $i = 1$ to t. The proof of the hitting lemma derives directly from two claims. The first claim states that no Q-query adversary can make t distinct hits with probably better than that of B_Q:

Claim 2 (B_Q’s strategy is the best possible strategy) For every integers $n, Q, \ell = \ell(n)$, sets V_1, \ldots, V_ℓ of size $1 \leq |V_i| \leq 2^n$, and for any Q-query algorithm A and integer t,

$$\Pr_{\vec{r} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\text{Hit}_{\vec{r}}(A) \geq t \right] \leq \Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i=1}^{t} u_i \leq Q \right].$$

By construction, the average number of hits $\mathbb{E}_{\vec{r}}[\text{Hit}_{\vec{r}}(B_Q)]$ made by B_Q is the largest value m such that $\sum_{i=1}^{m} \frac{v_i + 1}{2} \leq Q$. Recall that $q = \ell \cdot 2^n - \sum_{i=1}^{\ell} |V_i| = \ell \cdot 2^n - \sum_{i=1}^{\ell} v_i$ and $v_i \leq 2^n$ for every i, which implies in particular that $\sum_{i=1}^{m} v_i \geq m \cdot 2^n - q$. This gives us a simple bound on m as a function of $Q, q,$ and 2^n:

$$\frac{\sum_{i=1}^{m} v_i + 1}{2} \leq Q \iff m + \sum_{i=1}^{m} v_i \leq 2Q \iff m + m \cdot 2^n - q \leq 2Q \iff m \leq \frac{2Q + q}{2^n + 1}.$$

The second claim states, in essence, that the probability over \vec{r} that B_Q does t hits decreases exponentially with the distance of t to the mean m (up to some multiplicative constant). More precisely,

Claim 3 (Bounding B_Q’s number of hits) There exists constants $\alpha > 0$ and $\gamma > 1$ such that for every $\ell(\cdot)$, positive integers $q, Q, \ell \cdot 2^n - \sum_{i=1}^{\ell} v_i$, with $1 \leq v_i \leq 2^n$ such that $q = \ell \cdot 2^n - \sum_{i=1}^{\ell} v_i$, and for every integer $c \geq 1$,

$$\Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i=1}^{t} u_i \leq Q \right] \leq \frac{\alpha}{2^{\gamma c}},$$

where

$$t = \frac{16 \cdot Q + q}{2^n} + c.$$

6.2 Proof of Claim 2: B_Q’s Strategy is the Best Possible Strategy

Fix an integer t and an arbitrary family of adversaries $A = \{A_Q\}_{Q \in \mathbb{N}}$ for each possible number of query Q. We say that A_Q is non-wasteful if it satisfies the following constraints:

1. A_Q is deterministic;
2. \(A_Q \) never makes the exact same query twice;
3. If any query of \(A_Q \) hits in a set \(V_i \), \(A_Q \) will never make any more query in \(V_i \).

We call queries prohibited by items 2 and 3 forbidden queries. For item 1, observe that by a standard averaging argument, for any fixed \(t \) and any randomized adversary \(A_Q \) with random tape \(R \), there is a deterministic adversary \(A' \) such that \(\Pr \left[\text{Hit}_{\text{Guess}}(A') \geq t \right] \geq \Pr \left[\text{Hit}_{\text{Guess}}(A_Q(R)) \geq t \right] \). To see this, set \(R' \leftarrow \max_R \Pr \left[\text{Hit}_{\text{Guess}}(A_Q(R)) \geq t \right] \) and define \(A' \) to be \(A_Q \) with \(R' \) hardcoded in its circuit. For items 2 and 3, observe that for any adversary \(A_Q \) that makes \(f \) forbidden queries, we can construct a \((Q-f)\)-query adversary \(A' \) such that \(\Pr \left[\text{Hit}_{\text{Guess}}(A') \geq t \right] = \Pr \left[\text{Hit}_{\text{Guess}}(A_Q) \geq t \right] \), by letting \(A' \) run \(A_Q \) internally and retrieving locally the answers to any forbidden query (such answers are known by definition) rather than querying them to \(\text{Guess} \). Therefore, without loss of generality, in the following, we can restrict our attention to non-wasteful adversaries when upper-bounding \(\Pr \left[\text{Hit}_{\text{Guess}}(A') \geq t \right] \).

To simplify notations, for any \(Q \) and \(t \), we let \(p_t(A_Q) \) and \(p_t(A_Q) \) denote the left and right hand terms of the claim respectively, that is:

\[
p_t(A_Q) \leftarrow \Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}_{\text{Guess}}(A) \geq t \right], \text{ and } \\
p_t(A_Q) \leftarrow \Pr_{\vec{r} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i=1}^t u_i \leq Q \right] = p_t(B_Q).
\]

We prove Claim 2 by induction over \(Q \):

Base Case. For \(Q = 1 \), there are three cases to distinguish: if \(t = 0 \), then \(p_0(A_1) = p_{0,1} = 1 \) vacuously; if \(t > 1 \), then \(p_t(A_1) = p_{t,1} = 0 \) vacuously. It remains to prove the bound for \(t = 1 \).

Let \((j, x) \) be \(A_1 \)’s query (which is deterministically fixed given \(A_1 \)). Since \(A_1 \) made no query before and \(r_j \) is uniformly random over \(V_j \), the probability that \(x = r_j \) is exactly \(p_1(A_1) = 1/v_{\sigma^{-1}(j)} \). Furthermore, since the \(v_i \)’s are monotonically increasing,

\[
p_{1,1} = \Pr_{\vec{r} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i=1}^1 u_i \leq 1 \right] = \Pr[u_1 = 1] = 1/v_1 \geq 1/v_{\sigma^{-1}(j)} = p_1(A_1).
\]

Induction. Fix an integer \(Q \). For the induction step, we make the following hypothesis: for every integer \(n \), \(\ell = \ell(n) \), sets \(V_1, \ldots, V_{\ell} \) of size \(1 \leq |V_i| \leq 2^n \), and for any \((Q-1)\)-query algorithm \(A' \) and any integer \(t \),

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}_{\text{Guess}}(A') \geq t \right] \leq \Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\sum_{i=1}^t u_i \leq Q - 1 \right].
\]

We bound the probability that \(A_Q \) makes more than \(t \) distinct hits. Let \((j, x) \) denote the first query of \(A_Q \) (which is deterministically fixed given \(A_Q \)), and let \(j' \leftarrow \sigma^{-1}(j) \). We first bound the probability conditioned on \((j, x) \) being a hit: there exists a \((Q-1)\)-query adversary \(A' \) such that

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}_{\text{Guess}}(A_Q) \geq t \mid x = r_j \right] = \Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}_{\text{Guess}}(A') \geq t - 1 \right],
\]

where \(\vec{r}_j \) denotes the length-\(\ell - 1 \) vector \(r_1 \cdots r_{j-1} r_{j+1} \cdots r_{\ell} \). \(A' \) is given access to \(\text{Guess}_{\vec{r}_j} \) and is constructed as follows: it runs \(A_Q \) internally, forwarding any query \((i, y)\) to \(\text{Guess}_{\vec{r}_j} \) for any \(i \neq j \). When \(A_Q \) issues a query of the form \((j, y)\), \(A' \) inputs \(1 \) to \(A_Q \) on behalf of \(\text{Guess} \) (that is, it assumes that \((j, y)\) is a hit). Observe that conditioned on \(A_Q \)’s first query \((j, x)\) being a hit (i.e., the event
x = r_j), since A_Q is non-wasteful and will therefore never make any further query of the form (j, y), A’ perfectly emulates a valid run of A_Q with access to Guess_r, hence it makes exactly the same number of hits minus one (the minus one corresponds to the first hit, which A’ does not actually query). Therefore, we have

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}_r} (A_Q) \geq t \land x = r_j \right] = \Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}_r} (A_Q) \geq t \mid x = r_j \right] \cdot \Pr_{r_j \leftarrow V_j} [x = r_j] \\
= \Pr_{\vec{r}_j \leftarrow V_j \times V_{j-1} \times V_{j+1} \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}_{r_j}} (A') \geq t - 1 \right] \cdot \frac{1}{|V_j|}
\]

where the last inequality follows from the induction hypothesis, and S denote the first t - 1 u_i’s with i ≠ j’ (i.e., S = [t - 1] if t < j’, and S = [t] \ {j’} otherwise. Observe that

\[
\Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i \in S} u_i \leq Q - 1 \right] \cdot \frac{1}{v_{j'}} = \Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i \in S} u_i \leq Q - 1 \right] \cdot \Pr_{u_{j'} \leftarrow [v_{j'}]} [u_{j'} = 1] = \Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i \in S} u_i \leq Q - 1 \land u_{j'} = 1 \right] \text{by independency (j' \notin S)}.
\]

We now distinguish two cases: either j' ≤ t, in which case

\[
\Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i \in S} u_i \leq Q - 1 \land u_{j'} = 1 \right] = \Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i=1}^{t} u_i \leq Q \land u_{j'} = 1 \right], \quad (2)
\]

or j' > t, in which case S = [t - 1]:

\[
\Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i \in S} u_i \leq Q - 1 \land u_{j'} = 1 \right] = \Pr_{\vec{u} \leftarrow [v_1] \times \cdots \times [v_t]} \left[\sum_{i=1}^{t-1} u_i \leq Q - 1 \land u_{j'} = 1 \right]. \quad (3)
\]

We now bound the probability that A_Q makes at least t distinct hits conditioned on (j, x) not being a hit; let V_j' denote the set V_j \ {x}. There exists a (Q - 1)-query adversary A’ such that

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}_{r_j}} (A_Q) \geq t \mid x \neq r_j \right] = \Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_j' \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}_{r_j}} (A') \geq t \right],
\]

where A’ runs A_Q internally, assumes that A_Q’s first query (j, x) is not a hit, and forward all subsequent queries of A_Q to Guess_{r_j}. Since A_Q is non-wasteful, it will never query x again, hence the probability that A’ makes at least t hits when r_j is sampled from V_j' is exactly the conditional probability that A_Q makes at least t hits when r_j is sampled from V_j = V_j' \ {x}, conditioned on x not being a hit. Therefore, we have

\[
\Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}_{r_j}} (A_Q) \geq t \land x \neq r_j \right] = \Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}_{r_j}} (A_Q) \geq t \mid x \neq r_j \right] \cdot \Pr_{r_j \leftarrow V_j} [x \neq r_j] \\
= \Pr_{\vec{r} \leftarrow V_1 \times \cdots \times V_j' \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}_{r_j}} (A') \geq t \right] \cdot \left(1 - \frac{1}{|V_j|} \right)
\]

24
\[
\leq \Pr_{\mathbf{u} \leftarrow [v_1] \times \cdots \times [v_j]} \left[\sum_{i=1}^{t} u_i \leq Q - 1 \right] \cdot \left(1 - \frac{1}{v_{j'}} \right),
\]
where \(v_{j'} = |V_{j'}| = |V_j| - 1 = v_j - 1 \). This gives us
\[
\Pr_{\mathbf{u} \leftarrow [v_1] \times \cdots \times [v_j]} \sum_{i=1}^{t} u_i \leq Q - 1 \cdot \left(1 - \frac{1}{v_{j'}} \right) = \Pr_{\mathbf{u} \leftarrow [v_1] \times \cdots \times [v_j]} \sum_{i=1}^{t} u_i \leq Q - 1 \cdot \Pr_{u_{j'} \leftarrow [v_j]} [u_{j'} > 1].
\]

We again distinguish two cases: either \(j' \leq t \), in which case
\[
\Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q - 1 \right] \cdot \Pr_{u_{j'} \leftarrow [v_j]} [u_{j'} > 1] = \Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q \right] \cdot \Pr_{u_{j'} \leftarrow [v_j]} [u_{j'} > 1] = \Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q \wedge u_{j'} > 1 \right],
\]
since sampling \(u_{j'} \leftarrow [v_j] - 1 \) and setting \(u_{j'} \leftarrow u_{j'} + 1 \) is the same as sampling \(u_{j'} \leftarrow \mathbf{v}_{j} \) conditioned on \(u_{j'} > 1 \). Recall that from Equation 2, we had that when \(j' \leq t \),
\[
\Pr_{\mathbf{F} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}}(A_Q) \geq t \wedge x = r_j \right] \leq \Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q \wedge u_{j'} = 1 \right],
\]
and we just showed that when \(j' \leq t \),
\[
\Pr_{\mathbf{F} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}}(A_Q) \geq t \wedge x \neq r_j \right] \leq \Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q \wedge u_{j'} > 1 \right].
\]
Combining the above inequalities gives
\[
\Pr_{\mathbf{F} \leftarrow V_1 \times \cdots \times V_t} \left[\text{Hit}^{\text{Guess}}(A_Q) \geq t \right] \leq \Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q \right].
\]
It remains to address the case \(j' > t \):
\[
\Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q - 1 \right] \cdot \Pr_{u_{j'} \leftarrow [v_j]} [u_{j'} > 1] = \Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q - 1 \right] \cdot \Pr_{u_{j'} \leftarrow [v_j]} [u_{j'} > 1] \quad \text{since } j' > t
\]
\[
= \Pr_{\mathbf{u}} \left[\sum_{i=1}^{t} u_i \leq Q - 1 \wedge u_{j'} > 1 \right].
\]
\[
\leq \Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i=1}^{t-1} u_i \leq Q - 1 \land u_{j'} > 1 \right]
= \Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i \in [t-1] \cup \{j'\}} u_i \leq Q \land u_{j'} > 1 \right].
\]

Recall that from Equation 3, we had that when \(j' > t \),
\[
\Pr_{\vec{r} \sim V_1 \times \ldots \times V_t} \left[\text{Hit}_{\text{Guess}}(A_Q) \geq t \wedge x = r_j \right] \leq \Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i=1}^{t-1} u_i \leq Q - 1 \land u_{j'} = 1 \right]
= \Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i \in [t-1] \cup \{j'\}} u_i \leq Q \land u_{j'} = 1 \right].
\]

Combining the two inequalities, we get
\[
\Pr_{\vec{r} \sim V_1 \times \ldots \times V_t} \left[\text{Hit}_{\text{Guess}}(A_Q) \geq t \right] \leq \Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i=1}^{t-1} u_i \leq Q - 1 \land u_{j'} = 1 \right]
\leq \Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i \in [t-1] \cup \{j'\}} u_i \leq Q \right]
\leq \Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i=1}^{t} u_i \leq Q \right] \text{ since } v_{j'} \geq v_t,
\]
which concludes the proof by induction.

6.3 Proof of Claim 3: Bounding B’s Number of Hits

To complete the proof of the hitting lemma, it remains to bound the probability that \(B_Q \) makes more than \(t \) hits (which is equal to \(\Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i=1}^{t} u_i \leq Q \right] \)). The proof relies on the following second-moment concentration bound:

Lemma 20 (Bernstein). Let \(X_1, \ldots, X_m \) be independent zero-mean random variables, and let \(M \) be a bound such that \(|X_i| \leq M \) almost surely for \(i = 1 \) to \(m \). Let \(X \) denote the random variable \(\sum_{i=1}^{m} X_i \). It holds that
\[
\Pr \left[X > B \right] \leq \exp \left(-\frac{B^2}{2 \sum_{i=1}^{m} \mathbb{E}[X_i^2] + \frac{3}{2} M B} \right).
\]

We now introduce a few notations. For \(i = 1 \) to \(m \), we let \(u_i \) denote the random variable associated to \(u_i \sim [v_i] \), \(X_i \) denote the zero-mean random variable \(\mathbb{E}[u_i] - u_i \), and \(X \leftarrow \sum_{i=1}^{m} X_i \).

We let \(M \leftarrow (2^n - 1)/2 \). Note that \(\mathbb{E}\left[\sum_{i=1}^{m} u_i \right] = \sum_{i=1}^{m} (v_i + 1)/2 \leq (m \cdot 2^n - q)/2 + m \), and for any \(i \in [1, m], |X_i| \leq |u_i - \mathbb{E}[u_i]| \leq (v_i - 1)/2 \leq M \). Let
\[
B \leftarrow \frac{m \cdot 2^n - q}{2} - (Q + 1),
\]
which satisfies \(B < \sum_{i=1}^{m} X_i \geq \mathbb{E}\left[\sum_{i=1}^{m} u_i \right] - Q \).

Therefore, by the bound of Bernstein (Lemma 20),
\[
\Pr_{\vec{u} \sim [v_1] \times \ldots \times [v_t]} \left[\sum_{i=1}^{m} u_i \leq Q \right] = \Pr \left[\sum_{i=1}^{m} X_i \geq \mathbb{E} \left[\sum_{i=1}^{m} u_i \right] - Q \right]
\]

26
We therefore obtain
\[
\Pr \left[\sum_{i=1}^{m} X_i > B \right] \leq \exp \left(-\frac{B^2}{2 \sum_{i=1}^{m} \mathbb{E}[X_i^2] + \frac{2}{3} MB} \right).
\]

Hence, to upper bound \(\Pr_{\bar{u} \leftarrow [v_1] \times \cdots \times [v_1]} [\sum_{i=1}^{t} u_i \leq Q] \), it suffices to lower bound
\[
\sum_{i=1}^{m} \mathbb{E}[X_i^2] + \frac{2}{3} MB.
\]

First, for \(i = 1 \) to \(m \), denoting \(t_i = (v_i - 1)/2 \),
\[
\mathbb{E}[X_i^2] = \frac{1}{v_i} \cdot \sum_{k=-t_i}^{t_i} k^2 = \frac{2}{v_i} \cdot \frac{t_i(t_i+1)(2t_i+1)}{6} = \frac{t_i(t_i+1)}{3} = \frac{v_i^2 - 1}{12}.
\]

Furthermore, since \(v_i \leq 2^n \) for \(i = 1 \) to \(m \) and \(\sum_{i=1}^{m} v_i \leq m \cdot 2^n - q \),
\[
\sum_{i=1}^{m} v_i^2 \leq (m \cdot 2^n - q) \cdot 2^n,
\]
which gives
\[
\sum_{i=1}^{m} \mathbb{E}[X_i^2] \leq \frac{1}{12} \cdot ((m \cdot 2^n - q) \cdot 2^n - m) \leq \frac{(m \cdot 2^n - q) \cdot 2^n}{12}.
\]

Moreover,
\[
MB \leq \frac{2^n - 1}{2} \cdot \frac{(m \cdot 2^n - q) - 2(Q + 1)}{2}
\]

hence, denoting by \(\mu > 0 \) arbitrarily small constant, for every sufficiently large \(n \), it holds that
\[
\sum_{i=1}^{m} \mathbb{E}[X_i^2] + \frac{MB}{3} \leq \frac{(m \cdot 2^n - q) \cdot 2^n + ((m \cdot 2^n - q) - 2(Q + 1)) \cdot (2^n - 1)}{12}
\]
\[
\leq \frac{(m \cdot 2^n - q) \cdot (2^n+1 - 1) - (Q + 1) \cdot (2^n+1 - 2)}{12}
\]
\[
\leq (2^n+1 - 1) \cdot \frac{(m \cdot 2^n - q) - (Q + 1) \cdot (1 - \mu)}{12},
\]
where the last inequality uses the fact that
\[
\frac{2^n+1 - 2}{2^n+1 - 1} \geq 1 - \mu \text{ for } n \geq \log \left(1 + \frac{1}{\mu} \right).
\]

We therefore obtain
\[
\frac{B^2}{2 \sum_{i=1}^{m} \mathbb{E}[X_i^2] + \frac{2}{3} MB} \geq \frac{3}{(2^{n+2} - 2)} \cdot \frac{((m \cdot 2^n - q) - 2(Q + 1))^2}{(m \cdot 2^n - q) - (Q + 1) \cdot (1 - \mu)}.
\]

Now, setting
\[
m \leftarrow \frac{16 \cdot Q + q}{2^n} + c
\]
where \(c \geq 1 \), we have \(m \cdot 2^n - q = 16 \cdot Q + 2^n c \). Therefore,
\[
\frac{(m \cdot 2^n - q) - 2(Q + 1)}{(m \cdot 2^n - q) - (Q + 1) \cdot (1 - \mu)} = \frac{16 \cdot Q + 2^n c - 2(Q + 1)}{16 \cdot Q + 2^n c - (Q + 1) \cdot (1 - \mu)}.
\]

Now, we will show
Claim 4

\[
\frac{16 \cdot Q + 2^n c - 2(Q + 1)}{16 \cdot Q + 2^n c - (Q + 1) \cdot (1 - \mu)} \geq \frac{16 - 2}{16 - (1 - \mu)} = \frac{14}{15 + \mu} = \delta.
\]

Observe that for the claim to hold, it suffices to have

\[
16 \cdot Q + 2^n c - 2(Q + 1) \geq \delta \cdot (16 \cdot Q + 2^n c - (Q + 1) \cdot (1 - \mu))
\]

\[
\iff 0 \leq (1 - \delta) \cdot (16 \cdot Q + 2^n c) + (Q + 1) \cdot (\delta(1 - \mu) - 2)
\]

\[
\iff 0 \leq (1 - \delta) \cdot (16 \cdot Q + Q(\delta(1 - \mu) - 2) + (1 - \delta)2^n c + \delta(1 - \mu) - 2).
\]

Now, since \(\delta = 14/(15 + \mu) \), and \(1 > \mu > -1 \), we have \(0 < \delta < 1 \). Therefore, for every \(c \geq 1 \) and every sufficiently large \(n \), it holds that \((1 - \delta)2^n c + \delta(1 - \mu) - 2 \geq 0 \), and the above becomes

\[
0 \leq Q(16(1 - \delta) + \delta(1 - \mu) - 2)
\]

\[
\iff 0 \leq 16(1 - \delta) + \delta(1 - \mu) - 2
\]

\[
\iff \gamma \geq (16 - 2)/(16 - (1 - \mu)) = 14/(15 + \mu),
\]

and the claim follows. Therefore,

\[
\frac{B^2}{2 \sum_{i=1}^m \mathbb{E}[X_i^2] + \frac{2}{3}MB} \geq \frac{3 \cdot \delta}{(2^{n+2} - 2)} \cdot (16 \cdot Q + 2^n c - 2(Q + 1))
\]

\[
\geq \frac{3 \cdot \delta}{(2^{n+2} - 2)} \cdot (14 \cdot Q + 2^n c - 2)
\]

\[
\geq \frac{3 \cdot \delta}{(2^{n+2} - 2)} \cdot (2^n c - 2) \text{ since } Q \geq 0
\]

\[
\geq \frac{3 \cdot \delta}{4 - 2^{1-n} c - \frac{2^{n+2} - 2}{6\delta}}
\]

\[
\geq \frac{3 \cdot \delta}{4} - \frac{3\delta}{2} = \frac{3 \cdot \delta}{4} (c - 2)
\]

Eventually,

\[
\exp\left(-\frac{B^2}{2 \sum_{i=1}^m \mathbb{E}[X_i^2] + \frac{2}{3}MB}\right) \leq \exp\left(\log e \cdot \frac{3 \cdot \delta}{4} (c - 2)\right).
\]

Now, denoting

\[
\gamma \leftarrow \log e \cdot \frac{3 \cdot \delta}{4}.
\]

Furthermore, choosing \(\mu < 1/13 \) (\(\mu > 0 \) is an arbitrarily small constant), we get \(13\mu + 15 < 16 \). Working out this inequality further, we get \(\delta = 14/(15 + \mu) > (3/4) \log e \), hence \(\gamma > 1 \). Furthermore,

\[
\exp\left(-\frac{3 \cdot \delta}{2}\right) = \alpha > 0.
\]

which concludes the proof of Claim 4 and of the hitting lemma.

6.4 Application to Hardness in the Random Language Model

Recall that the proof of language hardness in the Random Language Model relies on a hitting lemma to show block-finding hardness (informally stated as Lemma 10, it omits the constants included the formal Lemma 22). It can be derived from the Abstract Hitting Lemma with Advice by making the following mapping of concepts:
– We can see V_i as the relevant set of witnesses for x_i, each of size 2^n. In this case, $q = \sum_{i=1}^{\ell} 2^n - |V_i| = 0$.
– The number of queries q_{ry_A} is upper bounded by $|A|$.
– The k-bit string $B[y_i]$ is treated as some arbitrary k-bit advice about the oracle which the adversary is given as input.

The other two applications concern our main separation result (Sections 9, 10, and 11) where we rely on the Hitting Lemma twice, once to analyze the success probability of our inversion algorithm and once to argue about language hardness.

6.5 Application to Good Inversion

The proof of good inversion relies on a hitting lemma to show that “shaving off” the heavy queries and omitting “heavy paths” is a modification of the function which, with high probability over the choice of the oracle and the input to the function, does not change the output of the function. We later show that if the function values changes with probability ν, then inverting this ν-close function yields a correct pre-image with probability $1 - 2\nu$. In order to use the Hitting Lemma to bound ν, we need to calculate the probability over the choice of the oracle and a random input z that there are “too many” hits on the evaluation path of z. Formally stated in Lemma 39, this claim again views V_i as the relevant set of witnesses for x_i, each of size 2^n. As before, $q = \sum_{i=1}^{\ell} 2^n - |V_i| = 0$.

As before, we might obtain a constant multiple D of the expected number h of hits. However, for any additional c hits we make, the probability of making this many hits decays exponentially in c, i.e. the probability of making $Dh + c$ hits or more is upper bounded by $2^{\alpha \gamma c}$.

We now turn to the main application of the hitting lemma which relies on it in its most general form.

6.6 Application to Language Hardness

In the analysis of Language Hardness in the oracle setting, we will apply several transformation to our adversary before applying the hitting lemma. These transformations will allow our adversary to have a set of non-hitting queries and a set of hitting queries. For such an adversary, we will count as a hit only those queries which are “new”, i.e., the already known hitting queries will not count towards the adversary’s number of hits. I.e., as a first step, for the analysis of (additional) hits, we remove those x_i from the challenge, for which the adversary knows a hit already. For each of the other x_i, we consider V_i the set of all possible witnesses minus the set of witness candidates ruled out by the set of non-hitting query. Thereby, q becomes equal to the set of non-hitting queries.

Conditional sampling based on the knowledge which the adversary has, but this conditional sampling merely corresponds to sampling from smaller V_i, since each of the witnesses are sampled uniformly at random. In summary:

– Only count hits on x_i where the adversary does not know a hitting query a priori.
– Consider V_i as the set of potential witnesses for x_i minus the set of witness candidates ruled out by the set of non-hitting query. Thereby, q becomes equal to the set of non-hitting queries.
– Conditional sampling based on the knowledge which the adversary has merely means to sample a uniform witness for each x_i from the remaining (smaller) witness set (which is isomorphic to V_i).

7 A Fine-Grained One-Way Function in the Random Language Model

In this section, we introduce the Random Language Model (RLM), which captures the notion of an idealized average-case hard language, analogous to how the Random Oracle Model captures the
notion of an idealized OWF. In this model, a random language \(L \) is initially sampled by putting each string \(x \in \{0,1\}^* \) inside or outside of \(L \) with independent probability \(1/2 \). Then, to each word \(x \in L \) is associated a uniformly random witness \(w_x \sim \{0,1\}^{|x|} \). Eventually, an oracle \(\text{O} \) allows to check membership to \(L \): on input \((x,w) \), it returns 1 if \(x \in L \) and \(w = W[x] \), and \(\bot \) otherwise. The sampling procedure and the oracle \(O = \text{O} \) are represented on Figure 2. Observe that the sampling procedure \(T \) induces a language distribution:

\[DL = \{ L^O = \{ x \in \{0,1\}^* \mid B[x] = 1 \} \mid (B,W) \leftarrow T \}. \]

7.1 Average-Case Hardness of \(DL \)

We prove that the language distribution \(DL \) induced by the sampling procedure \(T \) is an exponentially average-case hard language distribution. Actually, we prove a stronger statement (which we call strong average-case hardness of \(DL \)): the language distribution \(DL \) satisfies exponential average-case hardness with respect to arbitrary words, and not simply random words. That is, for any circuit family \(C = \{ C_n \}_{n \in \mathbb{N}} \) and all large enough \(n \),

\[\Pr_{x \leftarrow \{0,1\}^n} [C_n(x) = L(x)] \leq \frac{1}{2} + \frac{|C_n|}{2^n}. \]

Proof. Let \(n \in \mathbb{N} \) be an integer. Consider sampling an oracle \(O = \text{O} \[W,B \] \); let \(C = \{ C_n \}_{n} \) be a circuit family which, on input a string \(x \in \{0,1\}^n \), makes up to \(|C_n| \) queries to \(\text{O} \[W,B \] \), and outputs a guess \(b \) for the value of \(B(x) \). Let \((W_x,B_x) \) be \((W,B) \) where the values of \(W[x] \) and \(B[x] \) are undetermined (and the oracle always returns \(\bot \) when queried on this \(x \)). Let \(\text{Hit}(\text{O} \[W_x,B_x \],x) \) be the event that on input \(x \), and with access to oracle \(\text{O} \[W_x,B_x \], C_n \) queries the pair \((x,W[x]) \) to its oracle. We have that for all \(x \in \{0,1\}^* \), for all \(\text{O} \[W_x,B_x \] \):

\[\Pr_{w \leftarrow \{0,1\}^n} [\text{Hit}(\text{O} \[W_x,B_x \],x)] \leq |C_n|/2^n. \]

Now, if no such hitting query occurred, the conditional probability of \(x \) being in the language is 1/2:

\[\Pr_{w \leftarrow \{0,1\}^n} [L(x) = 1 \mid \neg \text{Hit}(\text{O} \[W_x,B_x \],x)] = \frac{1}{2} \]

Putting the two equations together, we obtain that

\[
\begin{align*}
\Pr_{x \leftarrow \{0,1\}^n,L \leftarrow DL} [C_n(x) = L(x)] \\
\leq \Pr_{x \leftarrow \{0,1\}^n,L \leftarrow DL} [C_n(x) = L(x) \mid \neg \text{Hit}(\text{O} \[W_x,B_x \],x)] \cdot 1 \\
+ 1 \cdot \Pr_{x \leftarrow \{0,1\}^n,L \leftarrow DL} [\text{Hit}(\text{O} \[W_x,B_x \],x)] \\
\leq \frac{1}{2} + \frac{|C_n|}{2^n},
\end{align*}
\]

which concludes the proof.

7.2 Block-Finding Hardness of \(DL \)

We now establish a much stronger result about the hardness of \(DL \): suppose we are given many length-\(k \) blocks of inputs \((x_i)_{i \leq N} = (x_{i,1}, \ldots, x_{i,k})_{i \leq N} \), together with the language membership bits \(B[x_{i,1}, \ldots, x_{i,k}] \) of the \(i \)-th block, where \(i \) is a random block index. We prove, informally, that finding the index \(i \) (with probability significantly better than the random guess) requires of the order of \(N \cdot 2^n \) queries — id est, brute-forcing language membership of words from each of the \(N \) blocks — up to logarithmic factors. This is summarized in the following lemma:
Lemma 22 (Hitting Lemma – Specialized Version). For every integers $n, N, k \in \mathbb{N}$ with $kN \leq 2^n$, the family of circuits \mathcal{C}_n makes some number $T \leq |\mathcal{C}_n|$ of queries to $\text{Chk}(W, B)$, and outputs a guess i' for the value of i. Each time \mathcal{C}_n makes a query of the form $(x_{i,j}, w)$ such that $w = w_{x_{i,j}}$ (i.e., the adversary found the right witness for x), we say that the adversary made a hit. We first provide a concentration bound on the number of hits the adversary can make; $\text{Hit}_{\mathcal{C}_n}^\text{Chk}(\vec{x})$ denote the random variable corresponding to the number of hits made by $\mathcal{C}_n^{\text{Chk}}(\vec{x})$ through queries to Chk. Our concentration bound relies on the Advice-String version of the Hitting Lemma [18]. We state its specialized version here:

Lemma 21 (Block-Finding Hardness of $\mathcal{D}L$). For any circuit family \mathcal{C}, we have that for all $n \in \mathbb{N}$, any block size k, and number of blocks N (with $k \cdot N \leq 2^n$), and any tuple of blocks $(\vec{x}_i)_{i \leq N} = (x_{i,1}, \ldots, x_{i,k}) \leq N$ such that all the $x_{i,j}$ are distinct:

$$\Pr_{L \leftarrow D_{\mathcal{L}}, i \leftarrow [N]} [C_n((\vec{x}_j)_j, L(\vec{x}_i)) = i] \leq \frac{1}{O(N)} \cdot \left(\frac{\gamma k}{2^n} + 1 \right) \cdot 2^k,$$

for some explicit constant $\gamma > 1$.

Proof. Let $n, N, k \in \mathbb{N}$ be integers with $kN \leq 2^n$. Let $\mathcal{C} = \{C_n\}_n$ be a family of circuits where C_n, on input $(\vec{x}_j)_{j \leq N}, L(\vec{x}_i)$, makes some number $T \leq |\mathcal{C}_n|$ of queries to $\text{Chk}(W, B)$, and outputs a guess i' for the value of i. Each time C_n makes a query of the form $(x_{i,j}, w)$ such that $w = w_{x_{i,j}}$ (i.e., the adversary found the right witness for x), we say that the adversary made a hit. We first provide a concentration bound on the number of hits the adversary can make; $\text{Hit}_{\mathcal{C}_n}^\text{Chk}(\vec{x})$ denote the random variable corresponding to the number of hits made by $\mathcal{C}_n^{\text{Chk}}(\vec{x})$ through queries to Chk. Our concentration bound relies on the Advice-String version of the Hitting Lemma [18]. We state its specialized version here:

Lemma 22 (Hitting Lemma – Specialized Version). For every integers $n, N, k \in \mathbb{N}$ with $kN \leq 2^n$, vector $\vec{y} = (y_1, \ldots, y_k, N)$, circuit family $\mathcal{C} = \{C_n\}_n$, and for every integer $c \geq 1$,

$$\Pr_{(W, B) \rightarrow T, i \leftarrow [N]} [\text{Hit}_{\mathcal{C}_n}^\text{Chk}(\vec{y}, B[\vec{y}_i]) \geq \frac{D \cdot |\mathcal{C}_n|}{2^n} + k + c] \leq \frac{\alpha}{2^{\gamma c}},$$

with constants $D = 16$, $\alpha > 0$, and $\gamma > 1$.

To see that Hitting Lemma with Advice [18] implies Lemma 22 we see V_i (as defined in Lemma 22) as the relevant set of witnesses for y_i, each of size 2^n, so that $q = 0$. The number of queries of C_n are upper bounded by the size $|\mathcal{C}_n|$ of C_n. Finally, the advice string $B[\vec{y}_i]$ is of length k.

In addition to the concentration bound in Lemma 22 in hand, observe that for any $M \leq N$, the probability that C_n finds i conditioned on making at most M hits out of $T \leq |\mathcal{C}_n|$ queries is upper bounded by

$$\Pr_{L \leftarrow D_{\mathcal{L}}, i \leftarrow [N]} [C_n((\vec{x}_j)_j, L(\vec{x}_i)) = i \mid \text{Hit}_{\mathcal{C}_n}^\text{Chk}(\vec{y}, B[\vec{y}_i]) < M] \leq \frac{N - M}{N} \cdot \left(\frac{1}{N - M + 1} + \frac{M - 1}{N} \right) = \frac{M}{N},$$

where M/N is the probability that i is the index of a block on which no hit is obtained, in which case all blocks were no hits have been made are equiprobable conditioned on the view of C_n. Therefore, we have for any $M \leq N$,

$$\Pr_{L \leftarrow D_{\mathcal{L}}, i \leftarrow [N]} [C_n((\vec{x}_j)_j, B[\vec{x}_i]) = i] \leq \Pr_{L \leftarrow D_{\mathcal{L}}, i \leftarrow [N]} [C_n((\vec{x}_j)_j, B[\vec{x}_i]) = i \mid \text{Hit}_{\mathcal{C}_n}^\text{Chk}(\vec{y}, B[\vec{y}_i]) < M] \cdot 1$$

$$+ 1 \cdot \Pr_{L \leftarrow D_{\mathcal{L}}, i \leftarrow [N]} [\text{Hit}_{\mathcal{C}_n}^\text{Chk}(\vec{y}, B[\vec{y}_i]) \geq M]$$

$$\leq \frac{M}{N} + \alpha \cdot 2^{-\gamma(M - D \cdot |\mathcal{C}_n|/2^n - k)}.$$

In particular, when $D\gamma|\mathcal{C}_n| > 2^n$, using $M = (\log N + 1) \cdot D \cdot |\mathcal{C}_n|/2^n$,

$$\Pr_{L \leftarrow D_{\mathcal{L}}, i \leftarrow [N]} [C_n((\vec{x}_j)_j, B[\vec{x}_i]) = i] \leq \frac{(\log N + 1) \cdot D \cdot |\mathcal{C}_n|}{N \cdot 2^n} + \alpha \cdot 2^{-\gamma(\log N \cdot D \cdot |\mathcal{C}_n|/2^n - k)}$$
\[
\frac{1}{O(N)} \cdot \left(\frac{|C_n|}{2^n} + \alpha \cdot \left(\frac{1}{N} \right)^{D \gamma |C_n|/2^n} \cdot 2^{\gamma k} \right) \\
\leq \frac{1}{O(N)} \cdot \left(\frac{|C_n|}{2^n} + 1 \right) \cdot 2^{\gamma k}.
\]

When \(D \gamma |C_n| \leq 2^n \), using \(M = \log N \),

\[
\Pr_{L \leftarrow D_L}[C_n((x_j)_{j \leq N}, B[x_j]) = i] \leq \log N \cdot \frac{N}{\log N} \cdot 2^{-\gamma \log N + \gamma D \cdot |C_n|/2^n - k} \\
\leq \frac{1}{O(N)} \cdot \left(\frac{1}{N} \right)^{\gamma} \cdot 2^{\gamma D |C_n|/2^n} \cdot 2^{\gamma k} \\
\leq \frac{1}{O(N)} \cdot \left(\frac{1}{N} \right)^{\gamma} \cdot \left(\frac{2^{\gamma D |C_n|/2^n}}{2^n} + 1 \right) \cdot 2^{\gamma k} \text{ since } 2^x \leq x + 1 \text{ when } x \in [0, 1] \\
\leq \frac{1}{O(N)} \cdot \left(\frac{|C_n|}{2^n} + 1 \right) \cdot 2^{\gamma k} \text{ since } \gamma > 1.
\]

This concludes the proof.

7.3 A FG-OVFD from a Block-Finding Hard Language Distribution

We now show that the existence of a block-finding hard language distribution gives rise to a fine-grained one-way function. The construction is relatively straightforward: fix an arbitrary constant \(1 > \varepsilon > 0 \), a security parameter \(\lambda = 2^n \in \mathbb{N} \), a block size \(k(n) = \varepsilon \cdot n/(2\gamma) \), and a number of blocks \(N(n) = 2^n/k \). Let \(I \subset \{0, 1\}^{n \cdot k \cdot N} \) denote the space of all \(N \)-tuples of length-\(k \) vectors \((x_{j,1}, \ldots, x_{j,k})\) over \(\{0, 1\}^n \), such that for any \((j, j') \leq N \) and \((j, \ell) \leq k \) with \((j, \ell) \neq (j', \ell')\), it holds that \(x_{j,\ell} \neq x_{j',\ell'} \) (i.e., no two vector components are equal, across all vectors in the \(N \)-tuple). The function \(F_L \) takes inputs from \(I \times [N] \). On input \(((x_j)_{j \leq N}, i) \in I \times [N] \), it computes the value of \(L(x_i) \) by trying all possible witnesses; this takes at most \(k \cdot 2^n \) oracle calls. Then, it outputs \((x_j)_{j \leq N}\) together with \(\bar{s} = L(x_i) \). The function \(F_L \) is represented on Figure 4.

Security of \(F \). We prove that \(F_L \) is a FG-OVFD with near-quadratic hardness gap in the Random Language Model.

Theorem 23. The function distribution \(F_L \) is a \((\text{polylog}(\lambda) \cdot \lambda^{-\varepsilon/2}, 1 - \varepsilon) \)-fine-grained one-way function distribution.

Proof. To invert \(F \), the adversary \(A \) must find some \(i^* \) such that \(L(x_i^*) = \bar{s} \). Since all words in the input are distinct and belong to \(L \) with independent uniform probability \(1/2 \), the probability (over the randomness of \(D_L \)) that there exists \(i^* \neq i \) with \(L(x_i^*) = L(x_i^*) \) is upper bounded by \((1/2)^k \). Therefore, for any \(X = (x_j)_{j \leq N} \) and any adversary \(|A| \) of size \(|A| \leq |F_L|^{2-\varepsilon} \):

\[
\Pr_{L \leftarrow D_L,i \leftarrow [N]} \left[A(F_L(X,i),1^k) \in F_L^{-1}(F_L(X,i)) \right]
\]
\[
\Pr_{\mathcal{L} \leftarrow \mathcal{D}, i \leftarrow [N]} \left[A(F_{\mathcal{L}}(X, i), 1^\lambda) = i \right] + \frac{1}{2^k}
\]

\[
\leq \frac{1}{O(N)} \cdot \left(1 + \frac{(k \cdot 2^n)^{2-\varepsilon}}{2^{n-1}} \right) \cdot 2^{\gamma k} + \frac{1}{2^k}
\]

\[
\leq \frac{1}{O(2^n)} \cdot \left(1 + \frac{n \cdot (2n^{-1}/\gamma)^{2-\varepsilon}}{2^{n-1}} \right) \cdot 2^{\varepsilon n/2} + \frac{1}{2^{\varepsilon n/2\gamma}}
\]

\[
= \text{polylog}(\lambda) \cdot \lambda^{-\varepsilon/2},
\]

which concludes the proof.

Security Amplification. The previous construction achieves a near-quadratic hardness gap, but only guarantee an inverse polynomial inversion probability. However, it is straightforward to strengthen the construction to achieve negligible inversion probability in the RLM. The idea, given the security parameter \(\lambda = 2^n \), is to emulate \(n = \log \lambda \) independent random languages over \(\{0, 1\}^n \), as follows: define the language \(\mathcal{L}_u \), for \(u \in \{1, \cdots, n\} \), to be the language \(\mathcal{L}_u = \{ x \in \{0, 1\}^n \mid u|\ x \in \mathcal{L} \} \). One can easily check that, in the Random Language Model, the \(\mathcal{L}_u \) are independent random languages over \(\{0, 1\}^n \). Then, a new FG-OWFD \(F' \) is obtained by using \(n = \log \lambda \) parallel instances of the previous construction \(F \) instantiated with \(k = n^2 \) and \(N = 2^n/n^2 \), where each of the \(n \) instances uses a different language \(\mathcal{L}_u \). A straightforward calculation shows that for any \(\varepsilon > 0 \), any adversary running in time bounded by \((\text{time}_{F'}(X_1,i_1,\cdots,X_n,i_n))^{2-\varepsilon} \) inverts \(F' \) with probability at most \(\text{polylog}(\lambda) \cdot \lambda^{-\varepsilon/\log \lambda} \), which is negligible.

Theorem 24. For any \(\varepsilon > 0 \), there exists a \((\negl(\lambda), 1-\varepsilon) \)-fine-grained one-way function distribution in the Random Language Model.
8 Oracle Separation Between Fine-Grained One-Way Functions and Average-Case Hardness

The result of the previous section shows that given an idealized average-case hard language, one can construct a fine-grained one-way function with near-quadratic hardness gap. This provides the first positive result toward excluding Pessiland: it shows that in an idealized version of Pessiland, there exists a weak version of Minicrypt. However, to concretely instantiate the result of Section 7, one needs an average-case hard language satisfying a very strong and exotic security requirement, namely, block-finding hardness. This is unsatisfying, as it does not seem that this result establishes an interesting win-win situation: the inexistence of weak Minicrypt implies the inexistence of languages with block-finding hardness, but it is not clear whether the latter implies any useful generic algorithmic improvements. A much more desirable result would be to show that the inexistence of weak Minicrypt rules out the existence of average-case hard languages generically. However, in this section, we establish a strong barrier toward obtaining such a result: we show that there is no black-box construction of FG-OWFs (represented as families of oracle circuits), even with arbitrarily small polynomial gap, from (even exponentially) average-case hard language. We prove this result by building an oracle relative to which there exists an exponentially hard average-case hard language in $\text{NP} \cap \text{co-NP}$, yet all functions which can be evaluated in time n can be inverted in time $\tilde{O}(n)$.

Theorem 25. There exists an oracle distribution \mathcal{O} relative to which there exists a exponentially hard average-case language distribution in NP, but every family $\{C_n\}$ of oracle circuits is not an (ϵ, δ)-fine-grained one-way function.

8.1 The Oracle Distribution

The sampling procedure and the oracle Chk are represented on Figure 5. We define the time of a query to Chk to be $\text{time}(\text{Chk}(x, w)) = 1$ for any (x, w). Observe that the sampling procedure \mathcal{T} induces a language distribution:

$$\mathcal{DL} = \{\mathcal{L}^O = \{x \in \{0, 1\}^* \mid B[x] = 1\} \mid (B, W) \leftarrow \mathcal{T}\}.$$

Fig. 5: Distribution \mathcal{T} for sampling a random language $\mathcal{L}^O = \{x \in \{0, 1\}^* \mid B[x] = 1\}$ with the associated list of witnesses W. The oracle $\text{Chk}[W, B]$ allows to check membership of a word $x \in \mathcal{L}^O$ given the witness $W[x]$.
8.2 Average-Case Hardness of \mathcal{DL}

Claim 5 The language distribution \mathcal{DL} is exponentially average-case hard.

Proof. Let C be an oracle circuit family. For $k \in \mathbb{N}$, we denote by Chk_{k} a Chk oracle, where all witnesses are determined except for w_{k}. On x values such that $k = \lceil \log |x| \rceil$, Chk_{k} returns \bot throughout; we denote by \mathcal{DL}_{k} the corresponding language distribution. Let $n \in \mathbb{N}$ be an integer. Let $\text{Hit}(\text{Chk}_{k}, w_{k}, x)$ be the event that on input x, and with access to oracle Chk_{k}, C_{n} queries a pair (x^{*}, w_{k}) to its oracle. We have that for all $k \in \mathbb{N}$, for all Chk_{k}, for all $x \in \{0,1\}^{*}$ such that $k = \lceil \log |x| \rceil$,

$$\Pr_{w_{k}} [\text{Hit}(\text{Chk}_{k}, w_{k}, x)] \leq |C_{n}|/2^{|w_{k}|} \leq |C_{n}|/2^{|x|}.$$

Now, if such a hitting query does not occur, then the conditional probability of x being in the language is $\frac{1}{2}$:

$$\Pr_{w_{k}} [\mathcal{L}(x) = 1 \mid \neg \text{Hit}(\text{Chk}_{k}, w_{k}, x)] = \frac{1}{2}.$$

Putting the two equations together, we obtain that for any $x \in \{0,1\}^{n}$ and k such that $k = \lceil \log n \rceil$

$$\Pr_{\mathcal{L} \leftrightarrow \mathcal{DL}} [C_{n}(x) = \mathcal{L}(x)] \leq \Pr_{\mathcal{L} \leftrightarrow \mathcal{DL}} [C_{n}(x) = \mathcal{L}(x) \mid \neg \text{Hit}(\text{Chk}, x, r)] \cdot 1 + 1 \cdot \Pr_{\mathcal{L} \leftrightarrow \mathcal{DL}, w_{k} \leftrightarrow \{0,1\}^{k}} [\text{Hit}(\text{Chk}_{k}, w_{k}, x)]$$

$$\leq \frac{1}{2} + \frac{|C_{n}|}{2^{n}}$$

as desired.

8.3 Inexistence of FG-OWFD Relative to Chk

We now prove the following:

Claim 6 For any constant $\delta > 0$, there exists a family $C = \{C_{n}\}_{n}$ of oracle circuits with the following properties: for any candidate one-way function $f : \{0,1\}^{*} \rightarrow \{0,1\}^{*}$ represented as a family of oracle circuits $\{f_{n}\}_{n}$, for all large enough n, C_{n} makes $o(|f_{n}|^{1+\delta})$ queries and successfully inverts f_{n} on a random image with probability at least 0.99.

Proof. Let $f : \{0,1\}^{*} \rightarrow \{0,1\}^{*}$ be a function computed by a family $\{f_{n}\}_{n}$ or oracle circuits. Let $\delta > 0$ be a constant. We set

$$\varepsilon := \frac{1}{1 + \frac{\delta}{2}}.$$

We first introduce some notations. We say that a query x to Chk is a k-query if $\lceil \log |x| \rceil = k$. For $k \in \mathbb{N}$, we let $q_{k} = q_{k}(n) \leq N$ denote the number of k queries made by f on an input of length n (i.e., the number of Chk gates with k-bit inputs in f_{n}); note that $|f_{n}| \geq \sum_{k} k \cdot q_{k}(n)$. We now construct an inverter A for f. Before receiving the challenge y to invert, A does the following; define $t = t(\varepsilon)$ to be the smallest integer above 10 such that $(1 - \varepsilon) \cdot 2^{t} > t$ (which exists since $\varepsilon < 1$).

For every $k \in [1, \cdots , t]$, as well as for every $k > t$ such that $q_{k} \geq (2^{2k})^{\varepsilon}$, A enumerates over all strings $s_{k,i}$ $(1 \leq i \leq 2^{2k})$ of length 2^{k}. For each string $s_{k,i}$, and queries Chk$(0^{2^{k}}, s_{k,i})$. Observe that by definition of Chk, there exists a single i^{*} such that Chk$(0^{2^{k}}, s_{k,i^{*}})$ does not return \bot. A identifies i^{*} and stores $b_{k} \leftarrow \text{Chk}(0^{2^{k}}, s_{k,i^{*}})$ and $w_{k} \leftarrow s_{k,i^{*}}$.

We define f' to be the following (oracle-less) function: on input x, f' runs $f_{|x|}(x)$. Each time f makes a k-query Chk(u,v), f' simulates the answer of Chk as follows:

- if $k \leq t(\varepsilon)$, or if $q_{k} \geq (2^{2k})^{\varepsilon}$, f' checks whether $w_{|\log |u||} = v$ and outputs $b_{|\log |u||}$ if the check succeeds, and \bot otherwise;
- else, f' sets the (simulated) answer of Chk to be 0.

On input a value y, which is the output of f on an n-bit input, A picks a uniformly random n-bit string x' in the set $\{(f')^{-1}(y)\}$ (if there is none, A sets $x' \leftrightarrow \bot$) and outputs x'.

35
Efficiency. For any \(k > t \), observe that \(A \) makes exactly \(2^{2k} \) queries if and only if \(q_k \geq (2^k)^\varepsilon \); else, it makes no queries. Hence, it always holds that \(A \) makes at most \(q_k^{1/\varepsilon} \) queries for any given \(k > t \). Therefore, the circuit size of \(A \) can be upper-bounded (up to a constant factor) by

\[
\sum_{k > t} k \cdot q_k^{1/\varepsilon} + \sum_{k=1}^{t(\varepsilon)} 2^{2k} \leq \left(\sum_{k > t} k \cdot q_k \right)^{1/\varepsilon} + \sum_{k=1}^{t(\varepsilon)} 2^{2k} = O(|f_n|^{1+\delta/2}) = o(|f_n|^{1+\delta}).
\]

Success Probability. We now analyze the probability that our inverter succeeds, i.e., that \(f^{Chk}(x') = y \), over the random choice of \(y \) and the oracle \(Chk \). Let us denote

\[
\alpha(n) := \Pr_{Chk,x \leftarrow \{0,1\}^n} [f^{Chk}(x) = f'(x)].
\]

We now bound \(\alpha(n) \). First observe that \(f' \) perfectly simulates the answers of \(Chk \) for any \(k \)-query with \(k \leq t \). Fix any \(k > t \), and any \(k \)-query \((u,v) \). Observe that if \(q_k \geq (2^k)^\varepsilon \), then \(Chk \) perfectly simulates the answer of \(Chk \) (since it uses the right witness \(w_k \)). Else, if \(q_k < (2^k)^\varepsilon \), then since the probability over a random choice of \(Chk \) that \(Chk(u,v) \neq \perp \) is equal to \(\Pr_{w_k \leftarrow \{0,1\}^x} [v = w_k] \), which can be upper bounded by \(2^{-2k} \), we have the following: by a union bound, on any given input \(x \), \(f'(x) \) correctly simulates all the calls of \(f^{Chk}(x) \) to \(Chk \) with probability at least

\[
\beta(n) = 1 - \sum_{k=11}^{\infty} (2^{2k})^\varepsilon \cdot 2^{-2k}.
\]

Observe now that when this happens, it necessarily holds that \(f^{Chk}(x) = f'(x) \). Therefore, we have \(\alpha(n) \geq \beta(n) \).

We now bound \(\beta(n) \) (recall that \((1 - \varepsilon) \cdot 2^t > t \) and \(t > 10 \) by definition of \(t \)):

\[
\sum_{k=t+1}^{\infty} 2^{(\varepsilon-1)\cdot 2^k} < \sum_{k=11}^{\infty} 2^{-k} < 10^{-3}
\]

which gives \(\alpha(n) > 0.999 \). Now, we conclude by observing that

\[
\Pr_{Chk,x \leftarrow \{0,1\}^n,x' \leftarrow ((f')^{-1}(f^{Chk}(x)))} [f^{Chk}(x') = f^{Chk}(x)] \\
\geq \alpha(n) \cdot \Pr_{Chk,x \leftarrow \{0,1\}^n,x' \leftarrow ((f')^{-1}(f^{Chk}(x)))} [f^{Chk}(x') = f'(x)] \\
\geq \alpha(n)^2 \cdot \Pr_{x \leftarrow \{0,1\}^n,x' \leftarrow ((f')^{-1}(f^{Chk}(x)))} [f'(x') = f'(x)] \\
= \alpha(n)^2 > 0.99
\]

where the second inequality follows by observing that

\[
\{x' : x \leftarrow \{0,1\}^n,x' \leftarrow ((f')^{-1}(f^{Chk}(x)))\}
\]

is just the uniform distribution.

9 Black-Box Separation Between FG-OWF and Self-Amplifiable Average-Case Hardness

9.1 Self-Amplifying Average-Case Hard Language

Definition 26. A language \(\mathcal{L} \) is (exponentially) self-amplifiable average-case hard if there is a constant \(c \) and a quasilinear function \(q(\cdot) \) such that for any superlogarithmic function \(\ell(\cdot) \), for any uniform circuit family \(\mathcal{C} = \{ \mathcal{C}_n : \{0,1\}^{\ell(n)} \rightarrow \{0,1\}^n \}_{n \in \mathbb{N}} \) such that \(q(|\mathcal{C}_n|) < 2^{c \cdot n} \cdot \ell(n)/2 \), and for all large enough \(n \in \mathbb{N} \),

\[
\Pr_{x \leftarrow \{0,1\}^n} [\mathcal{C}_n(\vec{x}) = \mathcal{L}(\vec{x})] \leq \text{poly}(n) \cdot 2^{-\left(\ell(n) - \frac{q(|\mathcal{C}_n|)}{2}\right)}.
\]
To explain the meaning of Definition 20, consider a circuit C_n that implements the following trivial strategy: it only contains check gates and queries the challenge words at random (harcoded) positions, one by one, until it finds the corresponding witness and language membership bit, after which it moves to the next word. Then, for any challenge word x, for which it found the corresponding witness and language membership bit b_i, it outputs b_i; for all other words, it outputs a random guess. On average, this circuit should find $\approx |C_n|/(n^{2n}) = O(|C_n|)/2^n$ language membership bits. By guessing uniformly at random the $\ell(n) - O(|C_n|)/2^n$ remaining membership bits of the challenge, it succeeds with probability

$$2^{-\left(\ell(n) - O(|C_n|)/2^n\right)}.$$

Therefore, Definition 20 states, in essence, that no adversary can do much better (note that if $|C_n| = O(2^n)$, then the poly(n) is already subsumed by the polylogarithmic leverage in $|C_n|$). The restriction on the size of circuits to $q(|C_n|) < 2^{c_n} \cdot \ell(n)/2$ captures the fact that circuits of size $O(\ell(n)) \cdot 2^{O(n)}$ are already large enough to solve the full challenge \vec{x} via brute-force queries, hence requiring hardness against such circuits is meaningless. The above definition can be also adapted to an oracle language L^O.

Definition 27. Let O be an oracle and let L^O be an oracle language. L^O is (exponentially) self-amplifiable average-case hard relative to O if there is a constant c and a quasilinear function $q(\cdot)$ such that for any superlogarithmic function $\ell(\cdot)$, for any uniform circuit family $C = \{C_n : \{0,1\}^{\ell(n) \cdot n} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}}$ such that $q(|C_n|) < 2^{c_n} \cdot \ell(n)/2$, and for all large enough $n \in \mathbb{N}$,

$$\Pr_{\vec{x} \leftarrow \{0,1\}^n} \left[L^O_n(\vec{x}) = L^O(\vec{x}) \right] \leq \text{poly}(n) \cdot 2^{-\ell(n) - \frac{O(|C_n|)}{2^{c_n}}}. \quad (4)$$

9.2 Black-Box Separation Between Self-Amplifiable Average-Case Hard Languages and FG-OWF

We prove the following theorem which establishes a black-box separation between exponentially self-amplifying average-case hard and fine-grained one-way functions.

Theorem 28. There exists an oracle O and an induced language L^O such that for all uniform candidate constructions $f = (f_m)_{m \in \mathbb{N}}$ of a fine-grained one-way function there exists an (inefficient) adversary A that inverts f with probability $1 - \frac{1}{\text{superpoly}(m)}$ on inputs z of length m, and such that there is a constant c and a quasilinear function $q(\cdot)$ such that for all superlogarithmic function $\ell : \mathbb{N} \rightarrow \mathbb{N}$ and uniform circuits $C = \{C_n\}_{n \in \mathbb{N}}$ with $q(|C_n|) < 2^{c_n} \cdot \ell(n)/2$, and for all large enough $n \in \mathbb{N}$,

$$\Pr_{\vec{x} \leftarrow \{0,1\}^n} \left[L^O_n(\vec{x}) = L^O(\vec{x}) \right] \leq \text{poly}(n) \cdot 2^{-\ell(n) - \frac{O(|C_n|)}{2^{c_n}}}. \quad (4)$$

The remainder of this paper will be devoted to the proof of Theorem 28. To help the reader with getting a bird eye view of the proof, we represent the general structure of the proof on Figure 6, with pointers to all relevant theorems, lemmas, claims and sections. Note that \mathcal{C} is typically called a reduction. The above statements constitute a black-box separation since there exists a successful adversary A which does not help the reduction \mathcal{C} to decide L^O when \mathcal{C} is given oracle access to A.

We now simplify the statement of Theorem 28 as follows.

Theorem 29 (Language Hardness and Good Inversion). There exists an oracle O and an oracle Inv such that for all uniform oracle functions $f = (f_m)_{m \in \mathbb{N}}$, there exists an inverter $A^{O,\text{Inv}}$ which satisfies, on input f_m and $y \in \text{Im}(f_m)$ and for sufficiently large $m \in \mathbb{N}$,

$$\Pr_{\vec{x} \leftarrow \{0,1\}^m} \left[f^O_m(A^{O,\text{Inv}}(f_m, f^O_m(z))) = f^O_m(z) \right] \geq 1 - \frac{1}{\text{poly}(m)}. \quad (5)$$

Furthermore, A can be represented as a uniform family of circuits $\mathcal{A} = \{A_m\}_{m \in \mathbb{N}}$ such that for any $m \in \mathbb{N}$, $|A_m| = O(|f_m|)$. Moreover, there exists an oracle language L^O such that for any $\ell : \mathbb{N} \rightarrow \mathbb{N}$, any uniform circuit family $\mathcal{C} = \{C_n : \{0,1\}^{\ell(n) \cdot n} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}}$, and for all large enough $n \in \mathbb{N}$,

$$\Pr_{\vec{x} \leftarrow \{0,1\}^n} \left[L^O_n(\vec{x}) = L^O(\vec{x}) \right] \leq \text{poly}(n) \cdot 2^{-\ell(n) - \frac{O(|C_n|)}{2^{c_n}}}. \quad (6)$$
Claim 7 Theorem 29 implies Theorem 28

Proof. The oracle O and the language L^O is the same in both theorems. Now, to prove Theorem 28 consider a candidate construction f. Then, by Theorem 29, A_{Inv}^O is a good inverter for f. We can think of A_{Inv}^O as $(A_{\text{Inv}}^O)^O$ to emphasize that A_{Inv} is a uniform oracle algorithm with oracle O.

Now, we need to show that no black-box reduction C exists for f and $(A_{\text{Inv}}^O)^O$. Consider a black-box reduction $C^O,(A_{\text{Inv}}^O)^O$. We build a reduction $C_{A}^{O,\text{inv}}$ by “pushing the code of A into C”: each time C queries A on some input (f_m,y), C_A runs the size-$\tilde{O}(|f_m|)$ circuit A_{m}^{inv} using the oracle Inv. Since this increases the size of C_{A} by at most $\tilde{O}(|f_m|)$ each time C makes a query (f_m,y) to A (and the circuit size of $|C|$ is at least the sum of the length of all its queries to A), it holds that $|C_{A}| = \tilde{O}(|C|)$. Hence, we can apply Inequality 6 to it which then yields Inequality 4.

9.3 Oracle Definition

In Figure 7 we describe our oracle. For an intuitive explanation of the various components of this oracle, we refer the reader to the technical overview in Section 5.
Theorem Statement

oracles is language hardness and good inversion probability of O_D where A

Theorem 33 (Good Inversion).

Looking ahead, the oracle Chk in the above definition will correspond either to the actual oracle Chk defined on Figure 7 or to alternative variants which will be introduced and used in our analysis. For any $k \in \mathbb{N}$, we denote by k-$P^O_f(z)$ the set of k-Chk' queries in $P^O_f(x)$ (id est, the set of pairs $(q,a) \in P^O_f(z)$ such that $q \in \{0,1\}^k \times \{0,1\}^k$), and by k-$H^O_f(z)$ the subset of k-$P^O_f(z)$ of query pairs which are hits (id est of the form (q,a) with $a \neq \bot$). Note that since f is specified via a circuit, the size of k-$P^O_f(x)$ is independent from O'.

Definition 31 (Light Path). Given an oracle $O' = (Chk', \text{Pspace})$, an oracle function $f^{O'}$, and an input z, we say that the path $P^O_f(z)$ from z to $f^{O'}(z)$ in f is k-light if

$$|k-H^O_f(z)| \leq D \cdot \frac{|k-P^O_f(z)|}{2^{k-1}} + \log^2 |f|,$$

where $D = 16$ is a constant. We say that a path is light if it is k-light for all $k \in \mathbb{N}$.

9.4 Theorem Statement

Given (W, B, H) in the support of T, we denote by $L^O = \{x \in \{0,1\}^* \mid B[x] = 1\}$ denote the associated hard language, where $O = (Chk[B,W], \text{Pspace})$. We now first state our theorems regarding language hardness and good inversion probability of A for distributions of oracles and then show via Borel-Cantelli that a single such oracle exists and, even stronger, that the measure of such good oracles is 1.

Theorem 32 (Language Hardness). For any $\ell : \mathbb{N} \mapsto \mathbb{N}$, uniform circuit family $C = \{C_n\}_n$, and for all large enough $n \in \mathbb{N}$,

$$\Pr_{\vec{x} \leftarrow \{0,1\}^{\ell(n)}(W,B,H) \leftrightarrow T} [r_n^{O,lw}(\vec{x}) = L^O(\vec{x})] \leq \text{poly}(n) \cdot 2^{-\ell(n) - O(C_n)} \cdot \frac{\log(n)}{\log\log(n)}, \tag{7}$$

where $O = (Chk[B,W], \text{Pspace})$.

The proof of Theorem 32 is given in Section 10.

Theorem 33 (Good Inversion). Let $f : \{0,1\}^* \mapsto \{0,1\}^*$ be an oracle function. We show that $A_{\text{inv}}(W,B,H)(f,.)$ is an efficient inverter for f, i.e., for sufficiently large $m \in \mathbb{N}$, it holds that

$$\Pr_{z \leftarrow \{0,1\}^{\ell(n)}(B,W,H) \leftrightarrow T} [f_m^{O}(A_{\text{inv}}(W,B,H)(f_m^{O}(z))) = f_m^{O}(z)] \geq 1 - \mu(m), \tag{8}$$

where $O = (Chk[B,W], \text{Pspace})$ and A is given in Figure 8 and $\mu(m) = 1/m^{2.5}$.

Intuitively, the adversary A works as follows: to invert a function $f_m : \{0,1\}^m \mapsto \{0,1\}^*$ given an image y, it queries $lw \log^3 m$ times on independent inputs (f_m^k, y), where the f_m^k are syntactically different but functionally equivalent to f, to ensure that the failure probability introduced by the hashing is independent across the instances. Then, it takes a path p returned by any successful query to lw (if any), and returns a uniformly random preimage z consistent with this path (this requires a single query to the PSPACE oracle). The proof of Theorem 33 is given in Section 11.
for any superlogarithmic function and from Inequality 7, we obtain that there is a constant given the witness associated list of witnesses.

Fig. 7: Distribution \mathcal{T} for sampling a random language $L^O = \{x \in \{0, 1\}^* \mid B[x] = 1\}$ with the associated list of witnesses W. The oracle $\text{Chk}[W, B]$ allows to check membership of a word $x \in L^O$ given the witness $W[x]$, and Inv allows to invert an arbitrary function. Here, $\text{Qry}_k(C)$ denotes the number of queries $\text{Chk}[W, B](x, w)$ for some x with $|x| = k$. The function $\text{bot}_k(C)$ returns a circuit C, where each queries of length k have been replaced by a hardcoded \perp answer symbol. The function $\text{bitstr}_{|C|}$ maps each set to a bitstring of length $|C|$.

\textbf{Claim 8} \textit{Theorem 32 and Theorem 33 imply Theorem 29.}

\textit{Proof.} We recall that the Borel-Cantelli Lemma states that for each sequence of events E_n with $\sum_{n \in \mathbb{N}} \text{Pr}(B, W, H) \leftrightarrow \mathcal{T} [E_n] = O(1)$, it holds that the measure of the limit $\limsup_{n \to \infty} E_n$ is 0, where

$$\limsup_{n \to \infty} E_n := \bigcup_{N \in \mathbb{N}^n} \bigcap_{n \geq N} E_n.$$

Using a standard averaging argument (see e.g. the splitting lemma from [PS96]), from Inequality 8 we obtain that

$$\text{Pr}_{\mathcal{T}}[\mathcal{T} \leftrightarrow \mathcal{T} \mid \exists z \in \{0, 1\}^n : f_m(A^O, \text{Inv}[W, B, H], f_m, f_m^O(z)) \neq f_m^O(z)] \geq \mu(m)/2 \leq \mu(m)/2, \quad (9)$$

and from Inequality 7 we obtain that there is a constant c and a quasilinear function $q(\cdot)$ such that for any superlogarithmic function $\ell(\cdot)$, for any uniform circuit family $C = \{C_n : \{0, 1\}^{\ell(n) \cdot n} \rightarrow \{0, 1\}^n \}_{n \in \mathbb{N}}$ such that $q(|C_n|) < 2^{\ell(n) \cdot \ell(n)/2}$, and for all large enough $n \in \mathbb{N}$,

$$\text{Pr}_{\mathcal{T}}[\mathcal{T} \leftrightarrow \mathcal{T} \mid \exists z \in \{0, 1\}^n : f_m(A^O, \text{Inv}[W, B, H], f_m, f_m^O(z)) \neq f_m^O(z)] \leq (\ell(n) \cdot q(|C_n|))^{-1} \cdot \text{poly}(n) \cdot 2^{-\frac{q(|C_n|)}{\text{superpoly}(n)}} \leq \frac{1}{\text{superpoly}(n)}. \quad (10)$$

$$\text{Pr}_{\mathcal{T}}[\mathcal{T} \leftrightarrow \mathcal{T} \mid \exists z \in \{0, 1\}^n : f_m(A^O, \text{Inv}[W, B, H], f_m, f_m^O(z)) \neq f_m^O(z)] \leq \frac{1}{\text{superpoly}(n)}. \quad (11)$$

40
Fig. 8: Inverter \(A \). \(\text{unif}(Z, r) \) samples (approximately) uniformly from set \(Z \) using randomness \(r \).
\(\text{encode}(f_m, i) \) returns an encoding \(f_m, i \). \(\text{Sample} \) can be implemented via a \(\text{PSPACE} \) oracle by asking for \(z \) bitwise with multiplicative overhead \(|z| \).

Let \(C \) and \(f \) be as in Theorem 32 and Theorem 33. We define event \(E_{C,f}^n \) over the sampling of \((W, B, H) \) as true when for \(\mathcal{O} = (\text{Chk}[B, W], \text{Pspace}) \) and \(\text{Inv}[B, W, H] \), it holds that

\[
\Pr_{\mathcal{X} \leftarrow \{(0,1)\}^n} \left[f^\mathcal{O}(A^\mathcal{O, Inv}_m(f_m, i_m(z))) = f^\mathcal{O}_m(z) \right] \leq \frac{1}{m^{2.5}}.
\]

and

\[
\Pr_{\mathcal{X} \leftarrow \{(0,1)\}^n} \left[C^\mathcal{O, Inv}_m(\mathcal{X}) = C^\mathcal{O}_m(\mathcal{X}) \right] \leq \frac{1}{\text{superpoly}(m)}.
\]

By Inequality 9 and Inequality 10 we then obtain that

\[
\Pr_{\mathcal{(B,W,H)} \leftarrow \mathcal{T}} \left[E_{C,f}^n \right] \leq \frac{1}{m^2}
\]

and thus,

\[
\Pr_{\mathcal{(B,W,H)} \leftarrow \mathcal{T}} \left[\lim_{n \to \infty} E_{C,f}^n \right] = 0.
\]

Hence, with probability 1 over the choice of \((B, W, H)\), event \(E_n \) holds for all but finitely many \(n \). As we regard uniform circuits \(C \) and functions \(f \), there is a countable number of them, and the measure of the union of countably many measure zero events is zero and thus, with measure 1 over \(\mathcal{T} \), Inequality 7 and Inequality 8 holds for the induced oracles \(\mathcal{O} = (\text{Chk}[B, W], \text{Pspace}) \) and \(\text{Inv}[B, W, H] \), respectively. Thus, in particular, oracles \(\mathcal{O} \) and \(\text{Inv} \) with the desired properties exist.

10 Proof of the Self-Amplifiable Average-Case Hardness Theorem

The core of the proof consists of two lemmas:

- The emulation lemma states that for any adversary \(A \) which, given access to \(\mathcal{O} \), makes a given number of hits, there exists another adversary \(B \) which emulates \(A \), in the sense that \(B \) makes exactly the same queries to \(\text{Chk} \) as \(A \) (and, in particular, makes the same number of hits), but is not given access to \(\text{Inv} \). Instead, \(B \) receives an advice string, computed from the truth table \(T \) of \(\mathcal{O} \), which provably contains only a bounded amount of information about the witnesses and language membership bits of the challenge string.

- The hitting lemma gives a Chernoff-style bound on the number of hits that any adversary \(B \), which is only given access to \(\text{Chk} \) and receives in addition an advice string about \(T \) of which only a bounded part contains possible information about the challenge string, can make after doing at most \(Q \) queries to \(\text{Chk} \). A generic formulation of the hitting lemma is given (and proven) in Section 6.
10.1 The Emulation Lemma

For any \(u \in \{0,1\}^n \), we define the table \(W_x[u] \) as equal to \(W[u] \) if \(u \notin x \) and as \(\perp \) if \(u \notin x \). Analogously, for any \(u \in \{0,1\}^n \), we define the table \(B_x[u] \) as equal to \(B[u] \) if \(u \notin x \) and as \(\perp \) if \(u \notin x \). Given a list \(I \), we denote \(I.append(x) \) the function which appends a value \(x \) at the end of the list \(I \), and \(I.getlast() \) the function which returns the item at the end of the list \(I \) (and removes it from \(I \)).

Lemma 34 (Emulation Lemma). There exists an emulator \(\text{Emu} \) such that for every function \(\ell : \mathbb{N} \to \mathbb{N} \), every oracle circuit family \(\{C_n : \{0,1\}^{\ell(n)} \to \{0,1\}^{\ell(n)}\}_{n \in \mathbb{N}} \) with access to \(O = (\text{Chk}, \text{Inv}, \text{Pspace}) \), every \(n \in \mathbb{N} \), every \(\bar{x} \in \{0,1\}^{\ell(n)} \), and every \((W, B, H)\) in the support of \(T \), the following conditions hold:

1. \(\text{Emu}^{\text{Chk}, \text{Pspace}}(\text{Leak}^{\text{Pspace}}(W, B, H, x, C_n), W_{\bar{x}}, B_{\bar{x}}, \bar{x}, C_n) = C_n^O(\bar{x}) \), and

2. \(\text{Emu} \) and \(C_n \) make exactly the same queries to \(\text{Chk} \) (hence in particular, the same number of queries to \(\text{Chk} \)),

where the function \(\text{Leak} \) is given on Figure 5.

Proof. The emulator \(\text{Emu} \) is represented on Figure 9. We now argue why properties 1 and 2 of Lemma 34 hold. Observe that \(\text{Emu} \) internally runs \(A^O(\bar{x}) \), but using a new oracle \(O' \) whose behavior it simulates. This oracle \(O' \) is identical to \(O \), except that \(\text{Emu} \) replaces the standard inversion oracle \(\text{Inv} \) by a locally emulated version of \(\text{Inv} \) (denoted \(\text{Inv}_\text{emu}[L] \)) which relies on the information about \(O \) which are given to \(\text{Emu} \) in the form of a list \(L \). Hence, it is clear that property 2 will hold if \(\text{Inv}_\text{emu}[L] \) correctly emulates \(\text{Inv} \) during the computation of \(A \): if, for any call made by \(A \) on input \(\bar{x} \) to the inversion oracle, the answer of \(\text{Inv}_\text{emu}[L] \) is the same as the answer of \(\text{Inv} \), then \(A^O(\bar{x}) \) will clearly return the same \(\bar{b} \) as \(A^O(\bar{x}) \), and will make exactly the same calls to \(\text{Chk} \) in the process (which is provided as part of both \(O \) and \(O' \)). It remains to argue the following:

Claim 9 For any call made by \(A \) on input \(\bar{x} \) to the inversion oracle, the answer of \(\text{Inv}_\text{emu}[L] \) is the same as the answer of \(\text{Inv} \).

There are three differences between \(\text{Inv}_\text{emu}[L] \) and \(\text{Inv} \), which are highlighted in blue on Figure 9. In both cases, the set \(S \) of candidate preimages is computed by looking at all bitstrings \(z \in \{0,1\}^n \) such that the path obtained by running \(C_s(z) \) (i.e., the list of all queries to \(\text{Chk} \) made by \(C_s \) on input \(z \)) is light (see Definition 31) and ends at \(y \). The three differences are:

1. for \(\text{Inv} \), the path is computed by running \(C_s \) with oracle access to \((\text{Chk}, \text{Pspace}) \), while for \(\text{Inv}_\text{emu}[L] \), the path is computed by running \(C_s \) with oracle access to \((\text{Chk}_\text{emu}[L], \text{Pspace}) \).
2. The values \(z \) whose corresponding path contains an \(\text{err} \) symbol are discarded from \(S \) in \(\text{Inv}_\text{emu}[L] \).
3. The value \(i \) is computed as \(\max_{i \in \mathbb{N}} 2^{i-1} \leq |S| \leq 2^i \) in \(\text{Inv} \), while in \(\text{Inv}_\text{emu}[L] \), it is taken from the end of the list \(I \) (and subsequently removed from the list).

Let us first show that the value \(i \) obtained is the same for \(\text{Inv}_\text{emu}[L] \) and \(\text{Inv} \). This follows from the way \(I \) is constructed: \(I \) is obtained as the first output of \(\text{Leak}(W, B, H, \bar{x}, A) \). This leakage function fully simulates a run of \(A \) on input \(\bar{x} \) internally (which it can do since it contains the full truth table \(W, B, H \) of the oracle \(O \)), hence it can perfectly emulate its behavior), and stores some partial information during this simulated run. This is formalized by running internally \(A \) on input \(\bar{x} \) with access to the modified oracle \(O' = (\text{Chk}_{\text{ leaks}}, W, B, \bar{x}, A) \), where \(\text{Chk}_{\text{ leaks}}(W, B, \bar{x}) \) and \(\text{Inv}_{\text{ leaks}}(W, B, \bar{x}) \) behave exactly as \(\text{Chk}, \text{Inv} \) from the viewpoint of \(A \), but store information in the sets \(W^\text{hit}, W^\text{rhit}, B^\text{hit} \) and in the list \(I \) along the way. \(I \) is constructed through each call to \(\text{Inv}_{\text{ leaks}}(W, B, \bar{x}) \) by appending the values \(i \) computed as \(\max_{i \in \mathbb{N}} 2^{i-1} \leq |S| \leq 2^i \) (exactly as in \(\text{Inv} \)). Hence, as long as \(A \) (emulated by \(\text{Emu} \)) will, on input \(\bar{x} \), make exactly the same calls to \(\text{Inv}_\text{emu}[L] \) as it does to \(\text{Inv} \) in the real execution, \(\text{Inv}_\text{emu}[L] \) will use exactly the same values \(i \) (taken from \(i \)) as those computed by \(\text{Inv} \).
Leak(W, B, H, \vec{x}, A)

$I \leftarrow \emptyset; \ W^\text{Hit} \leftarrow \emptyset$

$W^\text{Hit} \leftarrow \emptyset; \ B^\text{Hit} \leftarrow \emptyset$

$O' \leftarrow (\text{Chk}_{\text{leak}}[W, B, \vec{x}], \text{Inv}_{\text{leak}}[W, B, \vec{x}], \text{Pspace})$

$\vec{b} \leftarrow \mathcal{A}^O$

\text{return } ($I, W^\text{Hit}, B^\text{Hit}$)

Chk_{leak}([W, B, \vec{x}](u, w))

if $u \in \vec{x}$

if $W[u] \neq w$:

$W^\text{Hit}[u] \leftarrow W^\text{Hit}[u] \cup \{w\}$

if $W[u] = w$:

$B^\text{Hit}[u] \leftarrow B[u]$

$W^\text{Hit}[u] \leftarrow W[u]$

if $W[u] = w$

return $B[u]$

return \bot

Inv_{leak}([W, B, \vec{x}, H](C, y))

$m \leftarrow \text{input-size}(C)$

$C_s \leftarrow \text{shave}(C)$

$O' \leftarrow (\text{Chk}[W, B], \text{Pspace})$

$S := \{p : \exists z \in \{0,1\}^m : C^O_z(z) = y \land p = P^O_{C_s}(z) \text{ is light}\}$

$i \leftarrow \max\{2^{i-1} \leq |S| \leq 2^i\}$

$h \leftarrow H[i, C, y]$

if $\exists p \in S$ s. t.

$h(p) = 0^i$ then

$\text{bs} \leftarrow \text{bitstr}_{C_i}(P^O_{C_s}(z))$

$h(\text{bs}) = 0^i$ then

$O' \leftarrow (\text{Chk}_{\text{leak}}[W, B, \vec{x}], \text{Pspace})$

$C^O_z(z)$

$I \leftarrow I.\text{append}(i)$

return $P^O_{C_s}(z)$

$I \leftarrow I.\text{append}(\bot)$

else return \bot

Emu_{\text{Chk,Pspace}}([I, W^\text{Hit}, B^\text{Hit}, H, W_p, B_\vec{x}, \vec{x}, A])

$L \leftarrow (I, W^\text{Hit}, B^\text{Hit}, H, W_{\vec{x}}, B_{\vec{x}})$

$O' \leftarrow (\text{Chk}, \text{Inv}_{\text{emu}}[L], \text{Pspace})$

$\vec{b} \leftarrow \mathcal{A}^O(\vec{x})$

\text{return } \vec{b}

Chk_{emu}([L](u, w))

if $u \in \vec{x}$

if $u \in W^\text{Hit}[u]$:

return \bot

if $u \in W^\text{Hit}[u]$:

return $B^\text{Hit}[u]$

return \bot

Inv_{emu}([L](C, y))

$a \leftarrow I.\text{getlast}()$

if $a = \bot$: return \bot

$m \leftarrow \text{input-size}(C)$

$C_s \leftarrow \text{shave}(C)$

$O' \leftarrow (\text{Chk}_{\text{emu}}[L], \text{Pspace})$

$S := \{p : \exists z \in \{0,1\}^m : C^O_z(z) = y \land p = P^O_{C_s}(z) \text{ is light} \land err \notin P^O_{C_s}(z)\}$

$i \leftarrow a$

$h \leftarrow H[i, C, y]$

if $\exists p \in S$ s. t.

$bs \leftarrow \text{bitstr}_{C_i}(p)$

$h(\text{bs}) = 0^i$ then

return $P^O_{C_s}(z)$

else return \bot

Fig. 9: The left column contains an algorithmic description of Leak, and the right column contains an algorithmic description of Emu.
It remains to show that each call to \(\text{Inv}_{\text{emu}}[L] \) made by \(\mathcal{A} \) on input \(\bar{x} \) will return the same answer as what \(\text{Inv} \) would have returned on the same query. We prove it by induction and consider a given call to \(\text{Inv}_{\text{emu}}[L] \), assuming that all previous calls to \(\text{Inv}_{\text{emu}}[L] \) returned the same answer as \(\text{Inv} \). Let us denote \(S \) the set associated to \(\text{Inv} \) and \(S_{\text{emu}} \) the set associated to \(\text{Inv}_{\text{emu}}[L] \). First, we show that \(S_{\text{emu}} \subseteq S \): any path included in \(S_{\text{emu}} \) is, by definition, a path such that \(C_\mathcal{O}(z) = y \) for some \(z \), where \(\mathcal{O} \) is the oracle (\(\text{Chk}_{\text{emu}}, \text{Pspace} \)). This emulated \(\text{Chk} \) oracle only answer queries whose answer is contained in either \(\text{W}^\text{Hit} \) or \(\text{W}^\text{Rep} \) (for all other queries, it answers \(\text{err} \) and the corresponding path is not added to \(S_{\text{emu}} \)). By construction, any query pair in either \(\text{W}^\text{Hit} \) or \(\text{W}^\text{Rep} \) has been added there when emulating a run of \(\mathcal{A} \) on input \(\bar{x} \) with access to \(\text{Chk}_{\text{leak}} \), which answers queries exactly as the true oracle \(\text{Chk} \) by definition (\(\text{Chk}_{\text{leak}} \) knows the full truth table of \(\text{Chk} \); its only job is to store a subset of the queries in \(\text{W}^\text{Hit} \) and \(\text{W}^\text{Rep} \), namely, those that query one of the words from the challenge vector \(\bar{x} \)). Hence, any valid path from \(z \) to \(y \) with respect to \(\mathcal{O} \) is a valid path from \(z \) to \(y \) with respect to \(\mathcal{O}' = (\text{Chk}, \text{Pspace}) \), therefore \(S_{\text{emu}} \subseteq S \).

Next, we consider the path \(p \) from \(S \) that satisfies \(h(\text{bs}) = 0^t \) with \(\text{bs} \leftarrow \text{bitstr}_C(p) \); there is a unique such path unless \(\text{Inv} \) returns \(\bot \). By definition of \(\text{Inv}_{\text{leak}} \), each time there is a unique such path from \(z \) to \(y \) in \(S \), then the circuit \(C_z \) is ran on input \(z \) with the oracle (\(\text{Chk}_{\text{emu}}[L], \text{Pspace} \)) (see the lines in blue in the description of \(\text{Inv}_{\text{leak}} \) on Figure 9). This implies that all queries made along the path from \(z \) to \(y \) which are not already in \(\text{W}^\text{Hit} \) and \(\text{W}^\text{Rep} \). As a consequence, the oracle \(\text{Chk}_{\text{emu}} \) will never return \(\text{err} \) on any query made along this path, but will instead return exactly the same answers as \(\text{Chk} \). This implies that \(p \) also belongs to the set \(S_{\text{emu}} \).

Summarizing, when there is a unique path \(p \in S \) such that \(h(\text{bs}) = 0^t \) with \(\text{bs} \leftarrow \text{bitstr}_C(p) \), then the path \(p \) belongs to \(S_{\text{emu}} \) as well, and since \(S_{\text{emu}} \subseteq S \), it is also the unique path in \(S_{\text{emu}} \) such that \(h(\text{bs}) = 0^t \) (where, as we already argued, the value \(i \) is the same as with \(\text{Inv} \)). On the other hand, when there is no such unique path \(p \), then \(\text{Inv} \) returns \(\bot \). This implies that when the function \(\text{Leak}^\text{Pspace} \) runs internally \(\mathcal{A}' \) with the oracle \(\mathcal{O}' = (\text{Chk}_{\text{leak}}[W, B, \bar{x}], \text{Inv}_{\text{leak}}[W, B, \bar{x}], \text{Pspace}) \) to generate the emulation material \((I, \text{W}^\text{Rep}, \text{W}^\text{Hit}, B^\text{Hit}, H) \), the oracle \(\text{Inv}_{\text{leak}} \) will add \(\bot \) to the list \(I \) (see the lines in blue in the description of \(\text{Inv}_{\text{leak}} \) on Figure 9), hence \(\text{Inv}_{\text{emu}} \) will retrieve \(\bot \) from \(I \) (see the lines in blue in the description of \(\text{Inv}_{\text{emu}} \) on Figure 9) by our induction hypothesis. Therefore, it will output \(\bot \) as well, which completes the induction.

Bounding the Length of the Emulation String. Fix \(\ell(\cdot), n \), a challenge vector \(\bar{x} \in \{0, 1\}^n \), and a circuit family \(\mathcal{C} = \{C_n : \{0, 1\}^{n \cdot \ell(n)} \rightarrow \{0, 1\}^n \}_{n \in \mathbb{N}} \). For \((W, B, H) \) in the support of \(\mathcal{T} \), denoting \((I, \text{W}^\text{Rep}, \text{W}^\text{Hit}, B^\text{Hit}, H) \leftarrow \text{Leak}^\text{Pspace}(W, B, H, \bar{x}, C_n) \), we say that \(I \) is represented by a string \(\text{rep} \) if there is a deterministic algorithm \(\text{Reconstruct}^\text{Pspace} \) which, given \((H, W, _B, \bar{x}, C_n) \), outputs \(I \). Observe that without loss of generality, if \(\text{rep} \) represents \(I \), we can assume that \(\text{Emu}_{\text{Chk}, \text{Pspace}} \) gets \(\text{rep} \) instead of \(I \) as input (since it can recompute \(I \) locally, without any call to the oracles, from \(\text{rep} \) and its other inputs). We now bound the size of \(\text{rep} \).

Lemma 35 (Emulation String Length). There exists an algorithm \(\text{Reconstruct} \) such that for every function \(\ell(\cdot) \), every circuit family \(\mathcal{C} = \{C_n : \{0, 1\}^{n \cdot \ell(n)} \rightarrow \{0, 1\}^n \}_{n \in \mathbb{N}} \), and every large enough \(n \in \mathbb{N} \), for all \(\bar{x} \subseteq \{0, 1\}^n \), every \((W, B, H) \) in the support of \(\mathcal{T} \), denoting \((I, \text{W}^\text{Rep}, \text{W}^\text{Hit}, B^\text{Hit}, H) \leftarrow \text{Leak}^\text{Pspace}(W, B, H, \bar{x}, C_n) \), it holds that \(I = \text{Reconstruct}^\text{Pspace}(\text{rep}, H, W, B, \bar{x}, \bar{C}_n) \), for some string \(\text{rep} \) satisfying

\[
|\text{rep}| = \frac{\tilde{O}(\ell(C_n))}{2^{n/6}}.
\]

Proof. Consider a query \((C, y) \) to \(\text{Inv}_{\text{leak}}[W, B, \bar{x}, H] \). Every such query will result in appending an integer \(i \) to the list \(I \), where \(i \) is computed from the set \(S \) of path from some input \(z \) to \(y \) in
$C_s = \text{shave}(C)$. Assume that $|C| < 2^{n/6}$. Then, by definition of the shave function, it holds that C_s does not contain any n-Chk gate. Therefore, no path in C_s from any input z can possibly contain any query to \vec{x}. This implies that the S can be fully computed solely from C_s, y and $W_\vec{x}, B_\vec{x}$ (i.e. the full information about the oracle Chk, except for all witnesses and languages membership bits for the words in \vec{x}).

Now, the circuit C_n can contain at most $|C_n|/2^{n/6}$ Inv gates which take as input a circuit C of size at least $2^{n/6}$. Furthermore, for every query (C, y) to $\text{Inv}_{\text{leak}}[W, B, \vec{x}, H]$, the integer i appended to the list I is of size at most $\log |S| + 1$, where S is a set of paths from some input to y in $C_0 = \text{shave}(C)$, and the number of such path is trivially bounded by $2^{|C|} \leq 2^{|C|}$ (by definition of shave, $|\text{shave}(C)| \leq |C|$). Therefore, the bitlength of i is at most

$$\log(\log |S| + 1) \leq \log(\log(2^{|C|}) + 1) = \log(|C| + 1) = O(\log |C_n|).$$

We now define the string rep that represents I: rep is a self-delimiting encoding (e.g. a prefix-free encoding) of the sub-list of I of all integer i appended to I through a query (C, y) to $\text{Inv}_{\text{leak}}[W, B, \vec{x}, H]$ with $|C| \geq 2^{n/6}$. Using any efficient prefix-free encoding (it is well known that a list containing items of total length t can be prefix-free encoded with a string of length at most $t + O(\log t)$), the length of rep can therefore be bounded by

$$|\text{rep}| \leq \tilde{O}(\frac{|C_n|}{2^{n/6}} \cdot O(\log |C_n|)) = \tilde{O}(\frac{|C_n|}{2^{n/6}}).$$

Eventually, the reconstruction algorithm Reconstruct works as follows: on input $(\text{rep}, H, W_\vec{x}, B_\vec{x}, \vec{x}, C_n)$, it reconstructs I by running $\text{Leak}_{\text{Pspace}}(W, B, H, \vec{x}, C_n)$ internally. For each call to $\text{Inv}_{\text{leak}}[W, B, \vec{x}, H]$ made by $\text{Leak}_{\text{Pspace}}$, if the query (C, y) satisfies $|C| < 2^{n/6}$, Reconstruct can locally compute the value i to append to I solely from C_s, y and $W_\vec{x}, B_\vec{x}$. Else, Reconstruct retrieves the value i from the string rep. This concludes the proof.

\[\square \]

10.2 Applying The Hitting Lemma

We want to apply the hitting lemma (Lemma 17) to prove the following: for any circuit C_n, any algorithm A having only access to the inputs and oracles of C_n’s emulator (i.e., A has only access to the oracles Chk, Pspace and $W_\vec{x}, B_\vec{x}$, $\text{Leak}_{\text{Pspace}}(W, B, H, \vec{x}, C_n)$) cannot possibly make too many hits out of Q queries, for any Q. Recall that the hitting lemma is a strong Chernoff-type bound, which shows that the probability of making c more hits than some number (that depends on Q and the information in $W_\vec{x}, B_\vec{x}$, $\text{Leak}_{\text{Pspace}}(W, B, H, \vec{x}, C_n)$) decreases exponentially with c. In the following lemma, we treat $\text{Leak}(W, B, H, \vec{x}, C_n)$ as a given and abstract properties of Emu into a class of adversaries that have access to a Chk oracle. Note that $\text{Leak}_{\text{Pspace}}(W, B, H, \vec{x}, C_n) = (I, W^{\text{Hit}}, W^{\text{Hit}}, B^{\text{Hit}}, H)$.

We denote by $I(W, B, \vec{x}, C_n)$ the first component of Leak.

Notations. Given an adversary A with access to the oracles Chk, Pspace, we let:

- $L \leftarrow (I, W^{\text{Hit}}, W^{\text{Hit}}, B^{\text{Hit}}, H, W_\vec{x}, B_\vec{x})$;
- $\text{Hit}_{\text{Chk}, \text{Pspace}}(L, \vec{x}, C_n)$ denote the random variable corresponding to the number of hits made by $dL^{\text{Chk}, \text{Pspace}}(L_\vec{x}, C_n)$ through queries to Chk of the form (x_i, w), where x_i is a component of \vec{x} such that $W^{\text{Hit}}[x_i] = \bot$ (i.e., Hit counts the new hitting queries with respect to components of \vec{x} which are not already contained in W^{Hit});
- qy_A denote the number of Chk gates in the circuit A.

45
With these notations, we can now state the version of the Hitting Lemma which we need in this section. Note that the notation \((W, B, H) \leftrightarrow T|L\) means that \((W, B, H)\) is sampled from \(T\) conditioned on being consistent with \(L\):

Lemma 36 (Hitting Lemma with Advice – Specialized Version). For every \(\ell(\cdot)\), positive integers \(q,\) large enough \(n\), challenge \(\bar{x} = (x_1, \ldots, x_{\ell(n)})\), witness sets \(W_{\bar{z}}, W_{\bar{z}}^{\text{Hit}}\) with bit sets \(B_{\bar{z}}, B_{\bar{z}}^{\text{Hit}}\), non-hitting set \(W_{\text{Hit}}^\text{rep}\) of size \(q\), function \(I\), adversaries \(A, C_n\), and for every integer \(c \geq 1\),

\[
\Pr_{(W,B,H) \leftrightarrow T|L} \left[\text{Hit}_{A}^{\text{Pspace}}(L, \bar{x}, C_n) \geq D \cdot \text{qry}_B + q \right] \leq \frac{\alpha \cdot \ell \cdot \text{rep}}{2^\gamma},
\]

with \(L = (I, W_{\text{Hit}}, W_{\text{Hit}}^{\text{rep}}, B_{\text{Hit}}^{\text{Hit}}, H, W_{\bar{z}}^{\text{Hit}}, B_{\bar{z}}^{\text{Hit}}, |\text{rep}| \leq \tilde{O}(|C_n|)/2^{n/6}\), constants \(D = 16\), \(\alpha > 0\), and \(\gamma > 1\), where the probability is taken over the random sampling of \((W, B, H) \leftrightarrow T\), conditioned on \(L\).

Lemma 36 follows from the abstract hitting lemma with advice (Corollary 18) by mapping the respective sets as follows: We first remove the \(x_i\) values for which hits are registered in \(W_{\text{Hit}}^\text{rep}\) from \(\bar{x}\). Note that \(\text{Hit}_{A}^{\text{Pspace}}(L, \bar{x}, C_n)\) only counts hits not already contained in \(W_{\text{Hit}}\). Next, for each of the remaining \(x_i\), we denote by \(V_i\) the set of witnesses which are not already contained as a non-hit in \(W_{\text{Hit}}^\text{rep}\). Eventually, recall that the abstract hitting lemma with advice does not make any assumption about the power of the adversary (beyond the fact that it makes a bounded number of queries) and allows the adversary to be given a bounded length advice string which can depend arbitrarily on the truth table of the oracle. Therefore, we apply the abstract hitting lemma with an adversary \((A')^{\text{Pspace}}\) where \(A^{\text{Pspace}}\) only emulates the \(W_{\text{Hit}}^\text{rep}\) oracle in exponential time. \(A\) has \((W_{\text{Hit}}, W_{\text{Hit}}^{\text{rep}}, B_{\text{Hit}}^{\text{Hit}}, H)\) and the reconstruction string \(\text{rep}\) hardcoded in its description (by Lemma 35) the value of \(I\) can be reconstructed as \(\text{Reconstruct}_{\text{Pspace}}^{\text{rep}}(H, W_{\bar{z}}^{\text{Hit}}, B_{\bar{z}}^{\text{Hit}}, \bar{x}, C_n)\), using an advice string \(\text{rep}\) of length bounded by \(\tilde{O}(|C_n|)/2^{n/6}\), and uses it to reconstruct \(I\) before running \(A\) on input \((L, \bar{x}, C_n)\). Given this mapping, bounding \(\text{Hit}_{A}^{\text{Pspace}}(L, \bar{x}, C_n)\) becomes identical to bounding \(\text{Guess}_{\text{Pspace}}(A')\) where the oracle \(\text{Guess}\) is defined with respect to the witness sets \(V_i\) given above, using the fact that sampling \(r\) from \(V_1 \times \cdots \times V_t\) is identical to sampling the witnesses for each \(x_i\) from \(\{0,1\}^n\) conditioned on the witnesses not being equal to any non-hit contained in \(W_{\text{Hit}}\).

10.3 Proof of Theorem 32 from the Emulation Lemma and the Hitting Lemma

We now prove Theorem 32 assuming the Emulation Lemma (Lemma 34) and the Hitting Lemma with Advice (Lemma 36). Fix a function \(\ell(\cdot)\) and a uniform circuit family \(\mathcal{C} = \{C_n : \{0,1\}^{\ell(n)} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}}\). Given \((W, B, H)\) in the support of \(T\), we let \(L_0 = \{x \in \{0,1\}^r : B[x] = 1\}\). Let \(p\) denote the quantity

\[
p = \Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^r} \left(C_n^{\text{Inv}} \left(\bar{x} \right) = L_0(\bar{x}) \right).
\]

By the Emulation Lemma (Lemma 34), there exists an algorithm \(E_{\text{mu}}\) such that

\[
p = \Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^r} \left(\left[L \leftrightarrow \text{Leak}_{\text{Pspace}}^{\text{Pspace}}(W, B, H, \bar{x}, C_n) : \Emu_{\text{Pspace}}^{\text{Pspace}}(L, W_{\bar{z}}^{\text{Hit}}, B_{\bar{z}}^{\text{Hit}}, \bar{x}, C_n) = L_0(\bar{x}) \right] \right);
\]

furthermore, \(\Emu_{\text{Pspace}}^{\text{Pspace}}\), on input \((L, W_{\bar{z}}^{\text{Hit}}, B_{\bar{z}}^{\text{Hit}}, \bar{x}, C_n)\), makes exactly the same number of queries to \(C_n^{\text{Inv}}(\bar{x})\) (in particular, \(\Emu_{\text{Pspace}}\) makes at most \(|C_n|\) queries to \(C_n^{\text{Inv}}\)). We now bound \(p\). Let \(X_{\text{Emu}} = X_{\text{Emu}}(W, B, H, \bar{x}, C_n)\) be a random variable which counts the total number of hits (among the words of \(\bar{x}\)) contained in \(W_{\text{Hit}}\) and made by \(\Emu_{\text{Pspace}}^{\text{Pspace}}(L, W_{\bar{z}}^{\text{Hit}}, B_{\bar{z}}^{\text{Hit}}, \bar{x}, C_n)\). Then for any \(t \in \mathbb{N}\),

\[
\Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^r} \left(\left[\Emu_{\text{Pspace}}^{\text{Pspace}}(L, W_{\bar{z}}^{\text{Hit}}, B_{\bar{z}}^{\text{Hit}}, \bar{x}, C_n) = L_0(\bar{x}) \right] \right) \left\lfloor X_{\text{Emu}} = t \right\rfloor \leq 2^{t-\ell(n)}.
\]

46
Indeed, conditioned on $X_{Emu} = t$ for some integer t, at most t bits of $\mathcal{O}(\bar{x})$ are fully determined, and all other remaining bits are truly undetermined (since all other information obtained by Emu through queries to Chk or contained in $(W^{\text{Hit}}, W, B, \bar{x}, H)$ are sampled independently of $\mathcal{L}(\bar{x})$ by the distribution T), hence the bound. Furthermore, a trivial bound on X_{Emu} is $t(n)$ (the number of entries in \bar{x}). Therefore,
\[
p = \Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^n} \left[\text{Emu}^{\text{Chk, Pspace}}(L, W, B, \bar{x}, C_n) = \mathcal{O}(\bar{x}) \right] = \\
\sum_{t=1}^{\ell} \Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^n} \left[\text{Emu}^{\text{Chk, Pspace}}(L, W, B, \bar{x}, C_n) = \mathcal{O}(\bar{x}) \mid X_{Emu} = t \right] \cdot \Pr [X_{Emu} = t] \leq \sum_{t=1}^{\ell} 2^{t-t(n)} \cdot \Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^n} \left[X_{Emu} = t \right].
\]

Furthermore, the size of $|W^{\text{Hit}}|$ satisfies the following bound:

Claim 10 For every function $\ell(\cdot)$, every circuit family $C = \{C_n : \{0,1\}^{n,\ell(n)} \rightarrow \{0,1\}^n\}_{n \in \mathbb{N}}$, and every large enough $n \in \mathbb{N}$, for all $\bar{x} \subseteq \{0,1\}^n$, every (W, B, H) in the support of T, denoting $(I, W^{\text{Hit}}, W^{\text{Hit}}, B^{\text{Hit}}, H) \leftarrow \text{Leak}(W, B, H, \bar{x}, C_n)$, it holds that
\[
|W^{\text{Hit}}| = \text{poly}(n) \cdot \tilde{O}(|C_n|) \frac{2^n}{2^n}.
\]

Proof. The set W^{Hit} contains all hits made through queries to Inv. More precisely, every hit contained in W^{Hit} belongs to a light path from some input z to y in a circuit $C_s = \text{shave}(C)$, where (C, y) is a query to Inv. By the definition of a light path, the number of hits contained in any given light path is at most
\[
|n \cdot H^O_{C_s}(z)| \leq \frac{|n \cdot P^O_{C_s}(z)|}{2^{n-1}} + \log^2 |C_s| \leq \frac{|C_s|}{2^{n-1}} + \log^2 |C_s|.
\]

Furthermore, by definition of shave, if $|C| < 2^n$, no hits will be added to W^{Hit}, and $|C_s| \leq |C|$. Therefore, any query (C, y) can add at most $\text{poly}(n) \cdot \tilde{O}(|C|)/2^{n-1}$ hits to W^{Hit}. Since the total size of all queries (C, y) to Inv made by C_n is at most $|C_n|$, the bound follows. \hfill \Box

Therefore,
\[
\Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^n} \left[X_{Emu} = t \right] \leq \Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^n} \left[\text{Hit}^{\text{Chk, Pspace}}_{Emu}(L, \bar{x}, C_n) \geq t - \text{poly}(n) \cdot \tilde{O}(|C_n|) \frac{2^n}{2^n} \right]
\]

Since $\text{Hit}^{\text{Chk, Pspace}}_{Emu}$ counts the number of hits made by $\text{Emu}^{\text{Chk, Pspace}}(L, W, B, \bar{x}, C_n)$, which means that $\text{Hit}^{\text{Chk, Pspace}}_{Emu} = X_{Emu} - |W^{\text{Hit}}|$ by definition. By the Hitting Lemma with Advice (Lemma 36), for every $c \in \mathbb{N}$, it holds that
\[
\Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^n} \left[\text{Hit}^{\text{Chk, Pspace}}_{Emu}(L, \bar{x}, C_n) \geq D \cdot \text{qry}_A + q + c \right] \leq \alpha \cdot 2^{\left|\text{rep}\right|} \frac{2^n}{2^n},
\]

where D is some constant, q is the number of entries in W^{Hit}, $\alpha > 0$ and $\gamma > 1$. Since A makes exactly the same number of queries to Chk as C_n, a straightforward bound on qry_A is $|C_n|$. Furthermore, it also holds that $q \leq |C_n|$, since q is the number of non-hitting Chk queries made by C_n through queries to Inv, and the total number of Chk queries made by C_n (directly or through calls to Inv) is at most $|C_n|$. Hence,
\[
\Pr_{(W,B,H) \leftrightarrow T, \bar{x} \leftrightarrow \{0,1\}^n} \left[\text{Hit}^{\text{Chk, Pspace}}_{A}(L, \bar{x}, C_n) \geq \frac{O(|C_n|)}{2^n} + c \right] \leq \alpha \cdot 2^{\left|\text{rep}\right|} \frac{2^n}{2^n},
\]

47
and therefore for any \(t \in \mathbb{N} \), since \(|\text{rep}| = \tilde{O}(|C_n|) = \text{poly}(n) \cdot \tilde{O}(|C_n|)\), setting
\[
c \leftarrow t - \text{poly}(n) \cdot \frac{\tilde{O}(|C_n|)}{2^n} - \frac{O(|C_n|)}{2^n} = t - \text{poly}(n) \cdot \frac{\tilde{O}(|C_n|)}{2^{O(n)}},
\]
we get
\[
\Pr_{(W, B, H)} \left[T, x \leftarrow \{0, 1\}^{\ell(n)} \left[X_{\text{Emu}} = t \right] \leq \frac{\alpha \cdot 2^{\text{poly}(n)} \cdot \frac{\tilde{O}(|C_n|)}{2^{O(n)}}}{2^t \gamma t}.
\]
Eventually, this gives
\[
p \leq \sum_{t=1}^{\ell} 2^{t-\ell(n)} \cdot \frac{\alpha \cdot 2^{\text{poly}(n)} \cdot \frac{\tilde{O}(|C_n|)}{2^{O(n)}}}{2^t \gamma t} = \alpha \cdot 2^{\text{poly}(n)} \cdot \frac{\tilde{O}(|C_n|)}{2^{O(n)}} \sum_{t=1}^{\ell} 2^{(1-\gamma)t}
\leq \beta \cdot 2^{\text{poly}(n)} \cdot \frac{\tilde{O}(|C_n|)}{2^{O(n)}} - \ell(n)
\]
for some constant \(\beta = \alpha \cdot \sum_{t=1}^{\infty} 2^{(1-\gamma)t} \), which exists since \(\gamma > 1 \)
\[
\leq 2^{\text{poly}(n)} \cdot \frac{\tilde{O}(|C_n|)}{2^{O(n)}} - \ell(n)
\]
by absorbing the \(\beta \) in the \(\tilde{O}() \),
which concludes the proof of Theorem \[32\].

11 Proof of the Inversion Lemma

We now prove Theorem \[33\]. The proof proceeds as follows. We first show that on a random input \(f \) and its shaved counterpart \(f_s \) return the same value with high probability over the choice of the oracle \(O \). We define a function \(f_{\text{approx}} \) which returns an error when it is evaluating a heavy path and we bound the probability over a random choice of the input and the oracle \(O \) that \(f_s \) and \(f_{\text{approx}} \) return a different value. We then show that inverting \(f_{\text{approx}} \) uniformly suffices to invert \(f \) with overwhelming probability, essentially losing the error between \(f \) and \(f_{\text{approx}} \) twice, once in the forward and once in the backward direction. Additionally, we loose a small factor due to the universal hashing in the oracle. For convenience, we write \(f \) instead of \(f_m \).

Definition 37 (approximate \(f \)). Let \(f \) be an oracle circuit with \(O = \text{Chk}, \text{PSPACE} \). We define \(f_s := \text{shave}(f) \) and
\[
f_{\text{approx}}^O(z) \mapsto \begin{cases} f_s^O & \text{if } P_{f_s}^O(z) \text{ is light,} \\ \bot & \text{else,} \end{cases}
\]

Lemma 38 (\(f_{\text{approx}} \approx f_s \)).

\[
\Pr_{O, z \leftarrow \{0, 1\}^m} \left[f_{\text{approx}}^O(z) = f_s^O(z) \right] \geq 1 - \frac{1}{\text{superpoly}(|f|)},
\]

where \text{superpoly} denotes some explicit superpolynomial function.

Proof.
\[
\Pr_{O, z \leftarrow \{0, 1\}^m} \left[f_{\text{approx}}^O(z) \neq f_s^O(z) \right] \\
= \Pr_{O, z \leftarrow \{0, 1\}^m} \left[P_{f_s}^O(z) \text{ is not light.} \right] \\
= \Pr_{O, z \leftarrow \{0, 1\}^m} \left[\exists k \geq 1 : P_{f_s}^O(z) \text{ is not } k\text{-light.} \right] \\
\leq \sum_{k=1}^{k'} \Pr_{O, z \leftarrow \{0, 1\}^m} \left[P_{f_s}^O(z) \text{ is not } k\text{-light.} \right]
\]

48
We now prove that for each \(k \), the probability over \(O \) and \(z \) that \(|k-H_f^O(z)| \leq \frac{|k-P_f^O(z)|}{2^{k-1}} + \log^2 |f| \) is upper bounded by \(2^{-O(|f|^2/|f|)} \). To be able to show this, we use a specialized version of the abstract Hitting Lemma [17] stated below. We map the parameters as follows: For each \(k \in \mathbb{N} \), we consider the hits made on any of the possible \(x \in \{0,1\}^k \), i.e., for each \(x \in \{0,1\}^k \), we consider a set \(V_i \) with \(2^k \) candidate witnesses, i.e., \(\ell = 2^k \) and \(|V_1| = \ldots = |V_i| = 2^k \) and thus \(q = \ell \cdot k - \sum_{i=1}^{2^k} |V_i| = 0 \).

The adversary \(A \) in the hitting lemma corresponds to the function \(f \). However, let us make the sampling of \(O \) explicit to fully appreciate the mapping between \(A \) and \(f \). Namely, \(O \) consists of a PSPACE oracle which we consider a part of \(A \). Since the Hitting Lemma does not have efficiency constraints, \(A \) can simply emulate PSPACE inefficiently. Additionally, sampling \(O \) consists of sampling \((W,B,H) \leftarrow \mathcal{T} \). We consider the sampling of \(H \) as part of \(A \) (since it is independent of the witnesses of length \(k \)). Additionally, denoting by \(W_{\{0,1\}^k} \) and \(B_{\{0,1\}^k} \) the set of witnesses and language membership bits for \(x \in \{0,1\}^k \setminus \{0,1\}^k \), we can consider the sampling of \(W_{\{0,1\}^k} \) and \(B_{\{0,1\}^k} \) as part of \(A \) since it is independent of the witnesses and membership bits sampled for \(x \in \{0,1\}^k \). Let us denote by \(\text{Hit}^{Chk}_{A\text{random}}(f, \{0,1\}^k, H, W_{\{0,1\}^k}, B_{\{0,1\}^k}) \) the number of \(k \)-hits which the so-constructed adversary makes, and observe that this number is equal to \(|k-H_f^O(z)| \), since \(A \) merely runs \(f \) internally. Hence, we obtain the following customized Hitting Lemma from Lemma [17].

Lemma 39. For any \(c, k \in \mathbb{N} \),

\[
\Pr((W, B, H) \leftarrow \mathcal{T}, z \leftarrow \{0,1\}^m) \left[\text{Hit}^{Chk}_{A\text{random}}(f, \{0,1\}^k, H, W_{\{0,1\}^k}, B_{\{0,1\}^k}) \geq \frac{16 \cdot k \cdot P_f^O(z)}{2^k} + c \right] \leq \frac{\alpha}{2^{c^2}},
\]

for some \(\alpha > 0 \) and \(\gamma > 1 \).

Therefore, for any \(c, k \in \mathbb{N} \),

\[
\Pr_{O,z \leftarrow \{0,1\}^m} \left[|k-H_f^O(z)| \leq \frac{|k-P_f^O(z)|}{2^{k-1}} + c \right] \leq \Pr_{O,z \leftarrow \{0,1\}^m} \left[|k-H_f^O(z)| \leq 16 \cdot \frac{|k-P_f^O(z)|}{2^k} + c \right] \leq 2^{-O(c)}.
\]

From Inequality [13] and Inequality [14] we now obtain

\[
\Pr_{O,z \leftarrow \{0,1\}^m} \left[f_s^O(z) \neq f_s^O(z) \right] \\
\leq \sum_{k=1}^{k'} \Pr_{O,z \leftarrow \{0,1\}^m} \left[|k-H_f^O(z)| \leq 16 \cdot \frac{|k-P_f^O(z)|}{2^k} + \log^2 |f| \right] \\
\leq \sum_{k=1}^{k'} 2^{-O(|f|^2/|f|)} \leq |f| \cdot 2^{-O(|f|^2/|f|)}
\]

where inequality (*) follows from the fact that \(k' \leq |f| \). This concludes the proof of Lemma [38].

Lemma 40 \((f_s \approx f)\).

\[
\Pr_{O,z \leftarrow \{0,1\}^m} \left[f_s^O(z) = f_s^O(z) \right] \geq 1 - \frac{4}{m^2}.
\]
Proof.

\[
\Pr_{O,z \leftarrow \{0,1\}^m} \left[f^O(z) \neq f^O(z) \right] = \Pr_{O,z \leftarrow \{0,1\}^m} \left[\exists k \geq 6 \log(|C|) : k\cdot H^O_f(z) \neq \emptyset \right] \\
\leq \sum_{k \geq 6 \log(|C|)} \Pr_{O,z \leftarrow \{0,1\}^m} \left[k\cdot H^O_f(z) \neq \emptyset \right] \\
\leq \sum_{k \geq 6 \log(|C|)} 2^{-\frac{3k}{2}} \leq \sum_{k \geq 6 \log(|C|)} 2^{-\frac{3}{2}} \leq 2^2 \cdot 2^{-3 \log(|C|)} \leq \frac{4}{m^3}
\]

Putting Lemma 38 and Lemma 40 together, we obtain

Lemma 41 (f_{approx} \approx f).

\[
\Pr_{O,z \leftarrow \{0,1\}^m} \left[f_{approx}(z) = f^O(z) \right] \geq 1 - \nu(m),
\]

where \(\nu(m) = \frac{1}{\text{superpoly}(m)} + \frac{4}{m^3} \leq \frac{1}{m^2 \pi} \).

An averaging argument yields from Inequality 15 that

\[
\Pr_{(B,W) \leftarrow \mathcal{T}} \left[\Pr_{z \leftarrow \{0,1\}^m} \left[f^O(z) = f_{approx}^O(z) \right] \geq 1 - 2\nu(m) \right] \geq 1 - 2\nu(m),
\]

where \(\mathcal{O} \) denotes \(\text{Chk}[B,W], \text{Inv}[B,W] \). We say that such an oracle \(\mathcal{O} \) is \((1 - 2\nu(m))\)-good and refer to the functions \(f^O \) and \(f_{approx}^O \) as \((1 - 2\nu(m))\)-close w.r.t. \(\mathcal{O} \). We now show that if two functions \(f \) and \(f_{approx} \) are \((1 - 2\nu(m))\)-close, then \(f_{approx} \) can be used to approximately invert \(f \), losing the approximation error \(\nu(m) \) twice since we need to apply it to the original \(x \) as well as the inverse \(x' \), see Inequality 16.

Lemma 42 (Approximate Inversion). Let \(f \) and \(f_{approx} \) be two \((1 - 2\nu(m))\)-close functions, then

\[
\Pr_{z \leftarrow \{0,1\}^m} \left[f(f_{approx}^{-1}(f(z),1^m)) = f(z) \right] \geq 1 - 4\nu(m),
\]

where we denote by \(f_{approx}^{-1}(f(z),1^m) \) a uniformly random sample from \(f_{approx}^{-1}(f(z),1^m) \).

Proof (Lemma 42). We first lower bound the probability by considering only the case where \(f(z) = f(s(z)) \).

\[
\Pr_{z \leftarrow \{0,1\}^m} \left[f(f_{approx}^{-1}(f(z),1^m)) = f(z) \right] \\
\geq \Pr_{z \leftarrow \{0,1\}^m} \left[f(f_{approx}^{-1}(f(z),1^m)) = f(z) \wedge f(z) = f_{approx}^{-1}(z) \right] \\
= \Pr_{z \leftarrow \{0,1\}^m} \left[f(f_{approx}^{-1}(f_{approx}(z),1^m)) = f(z) \wedge f(z) = f_{approx}^{-1}(z) \right] \tag{17}
\]

Observe that when \(z \) is uniformly distributed over \(\{0,1\}^m \), then \(z' \leftarrow f_{approx}^{-1}(f_{approx}(z),1^m) \) is uniformly distributed. By considering only the case that \(f(z') = f_{approx}(z') \), we lower bound (18) by the following term:

\[
\Pr_{z \leftarrow \{0,1\}^m, z' \leftarrow f_{approx}^{-1}(f_{approx}(z),1^m)} \left[f(z') = f(z) \wedge f(z) = f_{approx}^{-1}(z) \right] \\
\geq \Pr_{z \leftarrow \{0,1\}^m, z' \leftarrow f_{approx}^{-1}(f_{approx}(z),1^m)} \left[f(z') = f(z) \wedge f(z) = f_{approx}(z) \wedge f(z') = f_{approx}(z') \right] \\
= \Pr_{z \leftarrow \{0,1\}^m, z' \leftarrow f_{approx}^{-1}(f_{approx}(z),1^m)} \left[f(z) = f_{approx}(z) \wedge f(z') = f_{approx}(z') \right]
\]

The last equation follows since, by definition of \(z' \), it holds that \(f_{approx}(z') = f_{approx}(z) \) and thus, \(f(z) = f_{approx}(z) \) and \(f(z') = f_{approx}(z') \) imply that also \(f(z) = f(z') \). Using a union bound, we obtain Lemma 42

\[
\Pr_{z \leftarrow \{0,1\}^m, z' \leftarrow f_{approx}^{-1}(f_{approx}(z),1^m)} \left[f(z) = f_{approx}(z) \wedge f(z') = f_{approx}(z') \right] \geq 1 - 4\nu(m) \tag{19}
\]
Figure \textcolor{red}{8} describes our inverter \mathcal{A} that inverts f_{approx} uniformly provided that it returns an answer at all. We now show that for all $y \in \text{Im}(f)$, \mathcal{A} returns a uniformly random pre-image of y with probability at least $1 - \left(\frac{7}{8}\right)^{\log^3(m)}$.

Lemma 43 (Approximate Inversion II). Let f be an oracle function with oracles $O = \text{Chk}, \text{Pspace}$ and let f_{approx} be as in Definition \ref{def:approx}. For all $W_0, B_0, y \in \text{Im}(f)$ and $z' \in \{0,1\}^m$, it holds that

$$\Pr[H \leftrightarrow H_r \leftrightarrow \{0,1\}^{101m}] \left[z' = \mathcal{A}_{\text{Chk}[W_0, B_0], \text{Inv}[W_0, B_0, H_0], \text{Pspace}}(y) \right] \geq \left(1 - \frac{7}{8}\log^3(m) - 2^{-100m}\right) \cdot \Pr\left[z' = f_{\text{approx}}^{-1, \text{Chk}[W_0, B_0], \text{Pspace}}(y)\right] \tag{20}$$

where, by abuse of notation, we denote by $f_{\text{approx}}^{-1, \text{Chk}[W_0, B_0], \text{Pspace}}(y)$ a uniformly random sample from said set.

Proof. For each y, sampling via $z \leftarrow \text{unif}(Z, r)$ might make y more or less likely than it should be by at most 2^{-100m}, and each of the for loops succeeds with probability at least $\frac{1}{8}$ by Claim \ref{claim:unif} since \mathcal{H} is a pairwise independent hash-function distribution. We can thus prove Inequality \ref{eq:approx} in two game-hops, bounding the difference each time, see Figure \textcolor{red}{10}.

Putting Lemma \ref{lem:approx-1} and Lemma \ref{lem:approx-2} together, we obtain the following Lemma.

Lemma 44 (\mathcal{A} inverts quite uniformly).

$$\Pr[W, B, H] \leftrightarrow T, z \leftrightarrow \{0,1\}^m \left[f^O(\mathcal{A}_{\text{Chk}[W, B, H], \text{Inv}[W, B, H]}(f^O(z))) = f^O(z) \right] \geq \left(1 - \frac{7}{8}\log^3(m) - 2^{-100m}\right)(1 - 4\nu),$$

where $O = (\text{Chk}[W, B], \text{Pspace})$.

Proof (Lemma \ref{lem:approx}). Throughout the following, $O = (\text{Chk}[W, B], \text{Pspace})$, $O_0 = (\text{Chk}[W_0, B_0], \text{Pspace})$ and f_0 be an oracle function with oracles $O_0 = (\text{Chk}[W_0, B_0], \text{Pspace})$.

$$\Pr[W, B, H] \leftrightarrow T, z \leftrightarrow \{0,1\}^m \left[f^O(\mathcal{A}_{O_0, \text{Inv}[W_0, B_0, H]}(f^O(z))) = f^O(z) \right] = \sum_{W_0, B_0, z_0} 2^{-m} \Pr[(W_0, B_0, *) = (W, B, H) \leftrightarrow T] \cdot \Pr[H \leftrightarrow H_r \leftrightarrow \{0,1\}^{101m}\left[z' = \mathcal{A}_{O_0, \text{Inv}[W_0, B_0, H]}(f^O(z_0)) \right] \cdot \delta_{f^O(z')} = f^O(z_0)]$$

$$= \sum_{W_0, B_0, z_0} 2^{-m} \Pr[(W_0, B_0, *) = (W, B, H) \leftrightarrow T] \cdot \Pr[H \leftrightarrow H_r \leftrightarrow \{0,1\}^{101m}] \left[z' = \mathcal{A}_{O_0, \text{Inv}[W_0, B_0, H]}(f^O(z_0)) \right] \cdot \delta_{f^O(z')} = f^O(z_0)]$$

$$\geq \sum_{W_0, B_0, z_0} 2^{-m} \Pr[(W_0, B_0, *) = (W, B, H) \leftrightarrow T] \cdot \Pr[H \leftrightarrow H_r \leftrightarrow \{0,1\}^{101m}] \left[z' = \mathcal{A}_{O_0, \text{Inv}[W_0, B_0, H]}(f^O(z_0)) \right] \cdot \delta_{f^O(z')} = f^O(z_0)]$$

$$= \left(1 - \frac{7}{8}\log^3(m) - 2^{-100m}\right) \sum_{W_0, B_0, z_0} 2^{-m} \Pr[(W_0, B_0, *) = (W, B, H) \leftrightarrow T] \cdot \Pr[f^O(f_{\text{approx}}^{-1, O_0}(f^O(z_0)))) = f^O(z_0)]$$

$$\geq (1 - \frac{7}{8}\log^3(m) - 2^{-100m})(1 - 4\nu) \geq 1 - \frac{1}{m^{2.5}}.$$

51
Fig. 10: Proof of Lemma 43
References

