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Abstract. It was long thought that symmetric cryptography was only
mildly affected by quantum attacks, and that doubling the key length
was sufficient to restore security. However, recent works have shown that
Simon’s quantum period finding algorithm breaks a large number of MAC
and authenticated encryption algorithms when the adversary can query
the MAC/encryption oracle with a quantum superposition of messages.
In particular, the OCB authenticated encryption mode is broken in this
setting, and no quantum-secure mode is known with the same efficiency
(rate-one and parallelizable).
In this paper we generalize the previous attacks, show that a large class
of OCB-like schemes is unsafe against superposition queries, and discuss
the quantum security notions for authenticated encryption modes. We
propose a new rate-one parallelizable mode named QCB inspired by TAE
and OCB and prove its security against quantum superposition queries.

Keywords: authenticated encryption, lightweight cryptography, QCB, post-
quantum cryptography, provable security, tweakable block ciphers.

1 Introduction

The cryptographic community has launched many competitions and standard-
ization efforts recently. The most recent ones are the CAESAR competition
for authenticated encryption (AE) and the NIST standardization processes for
post-quantum public-key primitives (PQC) [22] and lightweight cryptography
(LWC) [23]. While these competitions have attracted a lot of attention, they
have represented rather disjoint efforts: the PQC process focuses on public key
cryptography, and post-quantum security has remained out of the scope of most
schemes submitted to the LWC process and to the CAESAR competition. A
few exceptions exist, like the LWC second-round candidate Saturnin [12] for
instance, which proposes a block cipher and an AE mode aiming at post-quantum



security. This is understandable because the impact of quantum computers on
symmetric cryptography is expected to be quite limited, and doubling the key
length is usually considered a sufficient measure to resist quantum attacks (such
as exhaustive key search with Grover’s algorithm).

Security in the superposition model. However, recent work [18, 27] have shown that
many MAC and authenticated encryption modes are broken in the superposition
model using Simon’s quantum period finding algorithm [28]. In this model, the
adversary is capable of accessing a quantum encryption oracle, and of encrypting
quantum states. Though the practical significance of attacks in this model is
an unsettled issue in the community and opinions might differ, there is a clear
consensus on the importance of having provable security in this scenario. First
of all, this model is non-trivial, meaning that there exist secure schemes in this
model.d It also offers better composability, even if we are interested only in
quantum adversaries making classical queries. Finally, it captures intermediate
scenarios with some level of quantum interaction between the attacker and the
oracle and covers the scenarios of obfuscation or white-box encryption.

Though lightness and security against quantum adversaries are two very
different topics, let us remark that they are not orthogonal. In particular, Sat-
urnin is a submission to the LWC effort claiming security in the superposition
model, based on a block cipher. But its authenticated encryption mode is not
parallelizable and requires two encryption calls per message block. More precisely,
it uses the encrypt-then-MAC construction and combines a quantum-secure
mode of encryption (the Counter Mode) with a quantum-secure MAC similar to
HMAC/NMAC.

Towards a quantum-safe rate-one AE mode. OCB [19] is one of the most influential
authenticated encryption modes. OCB3 is parallelizable, and is a rate-one scheme,
using just one block cipher call per block of message. It is proven secure in the
classical setting provided that its underlying block cipher is a strong PRP [6].
Nevertheless, several attacks in a quantum superposition setting that use Simon’s
algorithm [28] were proposed in [18], with a complexity that is linear in the size
of the state. These attacks, that we recall in Section 3, can efficiently recover a
hidden secret period if the attacker is allowed to query messages in superposition.

Our work started with the idea to make OCB post-quantum: we wanted to
identify its weaknesses, correct them and obtain a proof of quantum security. The
main contribution of this paper is to fill this gap and to propose such a mode
together with a proof of security.

Results and Organization of the Paper. In Section 2, we recall some standard
definitions and technical material for our quantum security proofs and attacks.
Note that contrary to most of the recent works on this topic, we shall not
require Zhandry’s random oracle recording technique [30] and we will use instead
d For example, indistinguishability under quantum encryption queries can be achieved
by the Counter Mode from a classical PRP assumption [2].
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simpler proof arguments, that we introduce here. We also introduce an extension
of Hosoyamada and Sasaki’s truncation technique [16] that allows to compose
any linear function with a quantum oracle and compute it with a single query.
In Section 3, we define an OCB-like mode with more complex offsets. The previous
quantum attack on OCB used the fact that the difference between some offsets
was independent of the nonce. We show how to attack this modified OCB with
a single quantum query, yielding an attack that can be applied regardless of
the nonce dependence. In Section 4, we define quantum-secure tweakable block
ciphers. We are interested in adversaries making queries with classical tweaks
and a superposition of messages, a setting which corresponds to the attacks on
OCB. In this setting, we prove the security of two constructions and notably
propose the key-tweak insertion TBC, which requires a related-key secure block
cipher. In Section 5 we define the new rate-one parallelizable quantum safe
mode, QCB, and propose two instances: one using Saturnin with the key-tweak
insertion TBC and one using the dedicated TBC TRAX-L-17 [3]. We prove
in Section 6 the security of QCB if it is used with a secure TBC. We use two
notions: IND-qCPA [8] and BZ-unforgeability [7]. We discuss other possible
definitions in Section 7. In particular, we show that the recent “qIND-qCPA”
notion of [13] leads to an attack against all practical modes of operation.

2 Preliminaries

We open this section with standard notations for permutations, block ciphers and
AEAD schemes. We also define the quantum oracle access that will be given to
such a scheme in our proof. We recall some standard results and definitions related
to quantum provable security. Finally, we introduce our new linear post-processing
lemma (Lemma 2) that we will use in Section 3 and Section 7.

2.1 Definitions and Notations

We let Pn denote the set of permutations acting on {0, 1}n. By x $←− S we mean
that x is taken uniformly at random from the set S. We let Af(·) ⇒ b (resp.
Af(�) ⇒ b) denote an algorithm that performs classical queries to oracle f (resp.
quantum queries to f) and outputs b. We write Af±(· or �) when A has access
to the f and the f−1 oracle, which we blend into a single oracle f±.

Block Ciphers. A block cipher with key space {0, 1}k and message space {0, 1}n is
a map E : {0, 1}k × {0, 1}n → {0, 1}n such that for every key K ∈ {0, 1}k, M 7→
E(K,M) is a permutation of {0, 1}n. We let EK denote the map M 7→ E(K,M).
If E is a block cipher then its inverse is the map E−1 : {0, 1}k×{0, 1}n → {0, 1}n
defined by E−1(K,C) = E−1

K (C).

AEADs. An authenticated encryption scheme with associated data (AEAD) is
specified by a tuple of sets (K, IV,A,M, C) where K is the key space, IV is
the IV space, A is the associated data space, M is the message space, and C
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is the ciphertext space, and a pair of deterministic algorithms (Enc,Dec) with
signatures

Enc : K × IV ×A×M→ C
Dec : K × IV ×A× C →M∪ {⊥}.

We require an AEAD scheme to be correct, i.e., for all (K, IV,A,M) ∈ K×IV ×
A×M,

Dec (K, IV,A,Enc (K, IV,A,M)) = M.

We write EncK (IV,A,M) for Enc (K, IV,A,M) and similarly DecK (IV,A,C).
Note that this is the most generic definition of an AEAD, but in our case, we will
replace the ciphertext space C by C × T , and the scheme will output a ciphertext
C of variable length and an authentication tag T ∈ T of fixed size. As we consider
AEADs based on block ciphers, C and M will be cut into blocks that we index
M0, . . . ,M` (resp. C0, . . . , C`) where ` is the block length of M (resp. of C).

Quantum Computing. In this paper, an adversary is a quantum algorithm that
accesses one or more oracles. We use the quantum circuit model, whose basics
can be found in [24]. A quantum algorithm is initiated with a set of m qubits
(two-level quantum systems) in a fixed state |0〉. The state of the algorithm lies
in a Hilbert space of dimension 2m, with a canonical basis {|i〉 , 0 ≤ i ≤ 2m − 1}.
Basic unitary operators, coined quantum gates (drawn from a universal gate
set), are applied on the qubits. These computations are interleaved with oracle
calls and partial measurements, which transform a pure state (an element of the
Hilbert space) into a mixed state (a probability distribution of pure states).

2.2 Quantum Oracles and Query Model

We model quantum oracle access to any function f : X → Y as a unitary
operation: |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 (this is the standard oracle) or as |x〉 |y〉 7→
(−1)y·f(x) |x〉 |y〉 (this is the phase oracle). Standard and phase oracles are well-
known to be equivalent; that is, a single query to one can be emulated with a
single query to the other.

Choice of IVs. During the AEAD calls, IVs are classical and distinct. The only
difference here with previous works (e.g. [8, 2]) is that the IVs are not necessarily
chosen at random. In the security games for AEAD that we will define and use
in Section 6, we start the game by an initialization phase in which the adversary
declares the IVs that he is going to query. This includes the case where the IVs
are random, provided that no collision occurs (which would add a generic term
to the adversary’s advantage). This also includes the case where the IVs are
generated using a counter. The rationale of this definition is that it is easier to
reason with a fixed set of pre-declared IVs, and we found that it included most
practical use cases that we could think of.
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Quantum Query Model. The input plaintext and AD will be in superposition.
Furthermore, the bit-length of the message, AD and ciphertext have to be chosen
classically and cannot differ within a query; that is, we encrypt a superposition
of messages of a fixed length. We let the adversary choose the bit-length of the
message and AD in the queries between 0 and n` for a fixed ` (which determines
the maximal number of blocks to be queried). Thus, ` will intervene as a parameter
in our bounds, together with the number of queries q.

Hence, our encryption and decryption oracles are actually families of unitary
operators, indexed by these lengths and by the IV choice. As the ciphertext will
be longer than the plaintext, we consider that the encryption oracles for messages
of m bits outputs c(m) > m bits. Conversely, messages of distinct lengths may
be encrypted to ciphertexts of the same length. Hence, the decryption oracle of a
ciphertext of c bits writes a canonical encoding of either the message or ⊥ on c
bits. We write these oracles Om,a,IVEncK

and Oc,a,IVDecK
respectively, with 0 ≤ m, a ≤ `n.

The encryption Om,a,IVEncK
is a standard oracle for EncK with messages of length

m, AD of length a and a fixed IV ∈ IV:

|A〉︸︷︷︸
a qubits

|M〉︸︷︷︸
m qubits

|X〉︸︷︷︸
c(m)
qubits

7→ |A〉 |M〉 |X ⊕ EncK (IV,A,M)〉︸ ︷︷ ︸
c(m) qubits

.

The decryption Oc,a,IVDecK
is a standard oracle for DecK with ciphertexts of

length c, AD of length a and a fixed IV:

|A〉︸︷︷︸
a qubits

|C〉︸︷︷︸
c qubits

|Y 〉︸︷︷︸
c qubits

7→


|A〉 |C〉

∣∣∣Y ⊕ M̂〉 if C = EncK (IV,A,M)
with M̂ the encoding of M

|A〉 |C〉
∣∣∣Y ⊕ ⊥̂〉 with ⊥̂ the encoding of ⊥

Counting Data, Time and Memory. While the oracles authorize messages, AD
and ciphertexts to take any number of bits, the modes that we will consider are
built on block ciphers with a fixed block size n. Hence, we can count the data
complexity in the number of blocks queried: a query to EncK or to OEncK

with
r blocks costs r data. We count the time complexity either in the number of
quantum gates, or in the number of block cipher calls, as a quantum standard
oracle. We consider the cost of a single block cipher call to be marginal with
respect to the other terms, as it is polynomial in n, making these definitions
equivalent. The memory will also be counted in n-bit registers, either classical or
quantum.

2.3 Distances

Usually, in game-based definitions, the adversary’s advantage is a difference
in probabilities to output 1 or 0. However, since our adversaries are quantum,
their final state is a quantum state. It is well-known that the Euclidean distance
between quantum states is related to the distance between the distributions that
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result from measuring these states. Thus, the probabilistic interpretation of the
adversary’s result (measuring 0 or 1) can be replaced by an Euclidean distance.

Definition 1 (Euclidean distance). The Euclidean distance between |φ〉 =∑
αi |i〉 and |ψ〉 =

∑
βi |i〉 is given by: ‖ |φ〉 − |ψ〉 ‖ =

√∑
i |αi − βi|2.

Two quantum states |φ〉 =
∑
αi |i〉 and |ψ〉 =

∑
βi |i〉, obtained after running

an adversary in two different scenarios, incur two distributions D and D′ over the
states in the computational basis (we could also take another basis, without any
change, since composing by a unitary operator leaves the distance unchanged).
These distributions are such that D(i) = |αi|2 and D′(i) = |βi|2. The total
variation distance between D and D′ is defined as

∑
i |D(i)−D′(i)| and equal to∑

i ||αi|2 − |βi|2|. Then we have:

Lemma 1 ([5], Lemma 3.6). If ‖ |φ〉 − |ψ〉 ‖ ≤ ε, then
∑
i ||αi|2 − |βi|2| ≤ 4ε.

The decision of a quantum adversary to output 0 or 1 is conditioned only on
its final state. Thus, if two adversaries have similar end states, they can only win
with similar probabilities.

Corollary 1. Let A be a quantum adversary that outputs a bit b. Let B be another
adversary that also outputs a bit b, and let |ψ〉 and |φ〉 be their respective states
after the last oracle query, before measuring their output in the computational
basis. Then:

|Pr [A(·) = 1]− Pr [B(·) = 1] | ≤ 4‖ |ψ〉 − |φ〉 ‖ .

In practice, we will consider a game in which some parameter is selected
at random (e.g. the key K), then the game runs and the final state of the
adversary depends on K. We are interested in the quantity |Pr

K
$←K

[A(·) = 1]−
Pr

K
$←K

[B(·) = 1] | which determines the difference in advantage between the two
adversaries. We have: Pr

K
$←K

[A(·) = 1] =
∑
k∈K Pr [K = k] Pr [A(·) = 1|K = k].

That is, we can write:

|Pr
K

$←K
[A(·) = 1]− Pr

K
$←K

[B(·) = 1] | ≤ 1
|K|

∑
k∈K

|Pr [A(·) = 1|K = k]− Pr [B(·) = 1|K = k] |

≤ 4
|K|

∑
k

‖ |ψk〉 − |φk〉 ‖

where |ψk〉 and |φk〉 are the final states conditioned on the fact that the selected
key is k. So in practice, we will fix all the random parameters, compute the
euclidean distance between the end states and take the average.

2.4 Query magnitude

We will use a “query magnitude” argument, taken from [4]. Considering an oracle
O with arbitrarily defined input and output registers, we modify O on a subset
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D of its inputs to make the oracle O′. If an algorithm asks queries to O, but puts
only “low amplitude” on the inputs of D, then changing O into O′ does not have
any significant impact on the final state.

Theorem 1 (Adapted from [4], Theorem 3.3). Let A be a quantum algo-
rithm that makes q queries to an oracle O and let |ψ0〉, . . . , |ψq〉 be the current
state before each query (|ψq〉 is the final state). Let O′ be an oracle that is the
same as O, except on some subset D of its inputs, A′ be the same as A, except
that every query to O is replaced by a query to O′, and |ψ′i〉 the state of A′. Let
PD be the projector on the basis states x, a, y such that x ∈ D. Then:

‖ |ψq〉 −
∣∣ψ′q〉 ‖ ≤ 2

∑
i

|PD(|ψi〉)| .

2.5 On Random Functions and Permutations

We will use the following results from the literature. First of all, as shown by
Zhandry, it is impossible to distinguish a random function with n-bit domain
from a random permutation with probability bigger than O

(
q3

2n

)
with q queries

(where the constant in the O is fixed by the theorem); and conversely. We refer
to this statement as PRF-PRP switching.

Theorem 2 ([29], Theorem 3.1). Let h : {0, 1}n → {0, 1}m be a random
function. Any quantum algorithm making q quantum queries to h can only find a
collision with probability at most O

(
q3

2m

)
. If n ≤ m, then any quantum algorithm

making q queries cannot distinguish h from a random injective function except
with probability O

(
q3

2m

)
.

Second, we use a theorem by Boneh and Zhandry that shows that a quantum
algorithm making q queries to a random oracle with a domain of exponential size
can only output q + 1 valid {input, output} pairs with negligible probability.

Theorem 3 ([7], Theorem 4.1). Let A be a quantum algorithm making q
queries to a random oracle h : {0, 1}n → {0, 1}m, and producing k > q pairs
(xi, yi) ∈ {0, 1}n×{0, 1}m. The probability that the xi are distinct and yi = h(xi)
for all 1 ≤ i ≤ k is at most:

1
2mk

q∑
r=0

(
k
r

)
(2m − 1)r .

If k = q + 1 then the adversary succeeds with probability at most q+1
2m .

We will use the terminology “(q, q+ 1) security game” to refer to the game in
which A accesses Oh q times and must produce q + 1 valid pairs. An alternative
proof of Theorem 3 for the q, q + 1 case can be found in the full version of [1].
By combining this theorem with Theorem 2, we obtain a similar statement for
random permutations.
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Corollary 2. There exists a constant c such that, if A is a quantum algorithm
making q queries to a random permutation Π : {0, 1}n → {0, 1}n and trying to
produce q + 1 valid input-output pairs, then A can only suceed with probability at
most: c q

3

2n .

The term in Corollary 2 is simply the sum of the PRP-PRF distinguishing
advantage and the (q, q + 1) advantage. The former grows much faster with q,
but we will mostly use Corollary 2 with a single query, where both terms are
O (2−n).

2.6 Computing a Linear Function of a Quantum Oracle

In [16] Hosoyamada and Sasaki show that given quantum oracle access for a
function:

|x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉

it is possible to compute the truncation of the output f(x) on some bits and make
a quantum query to Trunc(f(x)) using only one quantum query to f . We now
extend this result, and show that it is possible to compute any linear function of
the output using only one quantum query. This is especially important with the
oracles we will be using, since they involve nonces that are changed at each new
quantum query.

The core observation in [16] is simple: the state |0〉+ |1〉 is invariant whether
we XOR a 0 or a 1 on it. Hence, before the query, in the output register, we can
set the qubits we want to drop to |0〉+ |1〉 and the qubits we want to keep to |0〉.
We will now extend this result, with the following lemma:

Lemma 2 (Computing a linear function of a quantum oracle). Let f :
{0, 1}n → {0, 1}m be a function, Of : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉. Let g : {0, 1}m →
{0, 1}o be an F2-linear function. Then it is possible to construct the oracle
Og◦f : |x〉 |y〉 7→ |x〉 |y ⊕ (g ◦ f)(x)〉 using a single query to Of .

Proof. Let Og be a quantum oracle that implements g, assume we are given the
quantum state

|x〉 |y〉

We first add an ancilla register containing the uniform superposition on m bits.
We then have the state

|x〉 |y〉
2m−1∑
z=0
|z〉

Then, we apply Og with register z as input and y as output, and we get

|x〉
2m−1∑
z=0
|y ⊕ g(z)〉 |z〉
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Then, we apply Of with register x as input and z as output. We get

|x〉
2m−1∑
z=0
|y ⊕ g(z)〉 |z ⊕ f(x)〉

Finally, we reapply Og with register z as input and y as output. We get

|x〉
2m−1∑
z=0
|y ⊕ g(z)⊕ g(z ⊕ f(x))〉 |z ⊕ f(x)〉

As g is linear, we have g(z) ⊕ g(z ⊕ f(x)) = g(f(x)). Hence, the state can be
rewritten as

|x〉 |y ⊕ g(f(x))〉
2m−1∑
z=0
|z ⊕ f(x)〉

This state can then be simplified, as the z register contains the uniform superpo-
sition over m bits, independently of the value of f(x), to

|x〉 |y ⊕ g(f(x))〉
2m−1∑
z=0
|z〉

We can now remove the z register, as it is not entangled with the others, and
obtain the quantum state we wanted.

Remark 1. Lemma 2 can also be applied if the quantum oracle to f uses a group
law different from ⊕ to update its output register. In that case, g shall be a linear
function for the corresponding group law.

3 Offsets don’t work

In this section we start by recalling the superposition attacks on OCB from [18].
We will next present a first attempt to repair it, that consisted on tweaking the
value of the offsets, along with the new original superposition attack that shows
that any offset-based variant can be broken by Simon attacks.

3.1 Simon’s attack on OCB

OCBe [19] is one of the most influential authenticated modes. OCB3 is represented
on Figure 1, with ∆i = gray(i) · EK(0n) (using a finite field multiplication) and
∆IV
i = ∆i ⊕ FK(IV ), with F a simple function of K and IV and gray(i) the

gray encoding of i.
OCB3 is classically proven secure if its underlying cipher is a strong PRP.

e Three versions of OCB have been proposed. We focus here on the last one, OCB3,
while all three suffer from similar superposition attacks.

9



M0

∆IV
0

EK

∆IV
0

C0

M1

∆IV
1

EK

∆IV
1

C1

. . .

M`

∆IV
`

EK

∆IV
`

C`

M0 ⊕ . . .⊕M`

∆IV
`+1

EK

∑
iEK(Ai ⊕∆i)

Tag

Fig. 1. OCB3. (Mi) is the message, (Ai) is the associated data.

Simon’s algorithm. Simon’s algorithm, proposed in [28] allows to solve effi-
ciently, with a complexity of O(n), the following problem when we are allowed
to ask superpositions queries to F :

Given a Boolean function F on n bits and the promise that there exists s
such that, for any x 6= y, F(x) = F(y) ⇐⇒ x = y ⊕ s, find s.

Simon’s algorithm recover a vector orthogonal to the period with a single
quantum query; with O(n) queries, the period is deduced with linear algebra. It
still works if the promise is partially fulfilled, that is we may have f(x) = f(y)
and x 6= y ⊕ s, as shown for example in [18]. For comparison, classically, the best
algorithm requires Ω

(√
2n
)
queries.

Quantum Superposition Attacks on OCB. Two polynomial-time attacks
against OCB that require quantum superposition queries to the construction
were proposed in [18]. They both use Simon’s algorithmf.

The main weakness of OCB is that the nonce only influences the construction
through the value ∆, which is XORed to the internal state. The scenario of
the attack considers that the attacker has access to a superposition oracle that
given a superposition of messages as input, returns the superposition of their
encryption. The key is a secret value and the nonce is different for each query.

The first attack considers an empty message, and two variable identical blocks
of associated data. The output is then

EK(IV )⊕ EK(x⊕∆1)⊕ EK(x⊕∆2)

This function is periodic, of period ∆1⊕∆2. The function we can query each time
is nonce-dependent, but the period is not. This allows to use Simon’s algorithm
to recover the period.

The second attack uses the same idea, but attacks the encryption part
and not the authentication. Its core idea is to consider the xor of two distinct

f One attack on OCB presented in [18] was partial, as it assumed without any mention
the use of Lemma 2.
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blocks i and j that encrypt the same message block. This is equal to fi,j(x) =
EK(∆i ⊕ x)⊕ EK(∆j ⊕ x)⊕∆i ⊕∆j .

This function is periodic, of period ∆i ⊕∆j = (gray(i)⊕ gray(j)) · EK(0n).
We can then use Simon’s algorithm, and this time we need to use Lemma 2 to
compute the XOR of two blocks using only one query.

Both attacks recover the difference of two offsets, which is sufficient to make
some forgeries.

3.2 A First (Failed) Attempt to Fix OCB

In order to make OCB quantum-resistant, one can try to avoid those attacks by
making the influence of the encrypted nonce different for each block, such that it
is not possible to have a nonce-independent period. For instance, ∆i could be
changed to a multiple of EK(IV ): ∆i = i · EK(IV ).

This way, the previous attack could only recover one bit of EK(IV ) at a time,
which is useless if the nonce changes for each query.

New superposition attack for any nonce-based solution. Actually, the
previous proposal is still unsafe, but it requires a new more advanced attack that
we present here. This evolved attack is inspired by the multiple-period attacks
from [9]. Its core idea is to leverage the possibility to encrypt a long message to
construct multiple copies of the periodic function, in such a way that one query
will likely be enough to recover all the bits of the period.

Let g be the function that maps the sequence (x1, x2, . . . , x2n−1, x2n) to
(x1 ⊕ x2, x3 ⊕ x4, . . . , x2n−1 ⊕ x2n).

We consider the function

f(x1, . . . , xn) = g ◦OCB(x1, x1, x2, x2, . . . , xn, xn)

Reusing the notation fi,j(x) = EK(∆i ⊕ x)⊕ EK(∆j ⊕ x)⊕∆i ⊕∆j , we have

f(x1, . . . , xn) = (f1,2(x1), f3,4(x2), . . . f2n−1,2n(xn))

Hence, Simon’s algorithm allows us to sample one vector orthogonal to each
of the periods of the involved fi,j . As these periods are linearly dependent, this
is enough to recover completely the value EK(IV ), assuming n is large enough.

Conclusion. This attack shows that a solution based on offsets is unlikely to
work. After this failed attempt, we decided to move one step backwards. OCB
can be seen as an instantiation of the mode TAE or ΘCB, which is defined with
a Tweakable Block Cipher (TBC). The TBC used in OCB is the LRW mode [21],
which builds upon a block cipher, and is quantumly broken [18]. The attacks
that we gave all seem to stem from the TBC itself, not the mode.
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4 Quantum-secure Tweakable Block Ciphers

In this section, we define quantum-secure tweakable block ciphers (TBCs). We
give two TBC constructions based on a block cipher. The first one requires a
pseudorandom permutation (PRP) security assumption; the second one requires
the ideal cipher model, which we will recall below. Both entail quantum security
guarantees which we will explicit.

4.1 Definitions
Definition 2. Let E be a block cipher. Let A be an oracle algorithm (making
either classical or quantum queries depending on the case) which outputs a bit.
The advantage of A against the PRP and Strong PRP (SPRP) security of E is
defined as:

AdvPRP
E(∗)(A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[AEK(∗) ⇒ 1]− Pr
Π

$←−Pn

[AΠ(∗) ⇒ 1]

∣∣∣∣∣∣
AdvSPRP

E(∗) (A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[AE
±
K

(∗) ⇒ 1]− Pr
Π

$←−Pn

[AΠ
±(∗) ⇒ 1]

∣∣∣∣∣∣
Depending on the access that the adversary has (classical or quantum) to the

messages, we replace the ∗ symbol by · (classical) or � (quantum).

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space
{0, 1}k, tweak space {0, 1}t, and message space {0, 1}n is a map Ẽ : {0, 1}k ×
{0, 1}t × {0, 1}n → {0, 1}n such that for every key K ∈ {0, 1}k and every tweak
T ∈ {0, 1}t, M 7→ Ẽ(K,T,M) is a permutation of {0, 1}n. We let ẼK denote
the map (T,M) 7→ Ẽ(K,T,M). If Ẽ is a TBC then its inverse is the map
Ẽ−1 : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n defined by Ẽ−1(K,T,C) being the
unique M such that Ẽ(K,T,M) = C. A tweakable permutation with tweak space
{0, 1}t and message space {0, 1}n is a map Π̃ : {0, 1}t × {0, 1}n → {0, 1}n such
that for every tweak T ∈ {0, 1}t, M 7→ Π̃(T,M) is a permutation of {0, 1}n. We
let P̃t,n denote the set of all tweakable permutations with tweak space {0, 1}t
and message space {0, 1}n.
Definition 3. Let A be an oracle algorithm making (classical or quantum)
queries and which outputs a bit. The advantage of A against the TPRP, resp.
strong TPRP (STPRP) security of Ẽ is defined as

AdvTPRP
Ẽ

(A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[AẼK(∗,∗) ⇒ 1]− Pr
Π̃

$←−P̃t,n

[AΠ̃(∗,∗) ⇒ 1]

∣∣∣∣∣∣
AdvSTPRP

Ẽ
(A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[AẼ
±
K

(∗,∗) ⇒ 1]− Pr
Π̃

$←−P̃t,n

[AΠ̃
±(∗,∗) ⇒ 1]

∣∣∣∣∣∣ .
12



Depending on the access that the adversary has (classical or quantum) to
the messages and to the tweaks, we replace the ∗ symbols by · (classical) or �
(quantum).

Pre-declaration of Tweaks. In the proofs of this section, we consider TBCs
queried in superposition over the message space and classically over the tweaks
space. We formalize this as follows: the adversary is given access to a family of
standard oracles for Ẽ±K(T,�) indexed by the tweak space. Before each oracle
call, she performs a partial measurement on her current state, extracts a classical
tweak value and sets this value for the call. This is the most general setting. In
our proofs, we consider a more specific case of pre-selected tweaks. Before the
first oracle call, the adversary declares a set of tweak values {T1, . . . , Tm}. While
running, she chooses her tweaks only in this set. Thus, the bounds that we will
obtain will depend on m (the total number of available tweaks) and on the total
number of queries q made by the adversary. Note that the two are independent,
as tweaks may be reused and the adversary may declare more tweaks than needed.
We use the notation Adv(S)TPRP

Ẽ(·,�)
(A) for this restricted case.

TBCs from Block Ciphers. In this section, we will define and construct
TBCs from block ciphers. For some of these constructions, we will prove security
in the ideal cipher model. In the quantum setting, this model was previously
considered by Hosoyamada and Yasuda [17] to analyze the Davies-Meyer and
Merkle-Damgard constructions. This means that the underlying block cipher
E is chosen uniformly at random from the set BCk,n of all block ciphers with
key space {0, 1}k and message space {0, 1}n at the beginning of the (S)TPRP
distinguishing game and the adversary is allowed to make quantum queries to
E± (specifying the key and the plaintext/ciphertext). The advantage is then
defined as

Adv(S)TPRP
Ẽ

(A) :=

∣∣∣∣∣∣∣∣∣∣
Pr

K
$←−{0,1}k

E
$←−BCk,n

[A
Ẽ

(±)
K

(∗,∗),E±�(�)
⇒ 1]− Pr

Π̃
$←−P̃t,n

E
$←−BCk,n

[A
Π̃(±)(∗,∗),E±�(�)

⇒ 1]

∣∣∣∣∣∣∣∣∣∣
.

(Note that the adversary has access to E± even in the non-strong TPRP defini-
tion.)

4.2 Impossibility results

In order to illustrate the difficulties of building a quantum-secure TBC, even in
a weak sense, let us first consider a few examples.
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LRW. The LRW mode [21] uses an almost 2-xor universal hash function family
H and adds h ∈ H to the key.

ẼK,h(T, x) = EK(h(T )⊕ x)⊕ h(T )

An ε-almost 2-XOR universal hash function family H is such that for all
x, y, z with x 6= y, the probability of h(x)⊕ h(y) = z is small (less than ε) when
h is chosen at random. Classically, it is a strong TBC, meaning security against
adaptive chosen-ciphertext attacks.

However, the LRW mode is not a quantum-secure TBC even if we allow only
classical queries to the tweaks. This was shown in [18], with an attack that is
close to the OCB attacks: by querying only two classical tweaks T0, T1, one can
build a function: f(x) = Ek(h(T0)⊕ x)⊕ h(T0)⊕ Ek(h(T1)⊕ x)⊕ h(T1) which
is periodic, of period h(T0)⊕ h(T1). Using Simon’s algorithm, we can recover the
period of this function in O (n) queries. This provides a powerful distinguisher,
as this property is extremely unlikely with random permutations. Note that this
distinguisher still applies for any function h, even if it is an unknown qPRF.

The CMT Mode. We also consider the CMT (CBC-MAC Tweaked) mode
from [21]: ẼK(T, x) = EK(T⊕EK(x)). It is proven in [21] to be a secure tweakable
block cipher (indistinguishable from a family of random permutations), but not
strong (where we would have also access to the inverse). The issue with this
construction is that it uses two block cipher calls for one TBC call, which is
inefficient regarding our application in mind (a rate-one AEAD).

Proposition 1 (Theorem 1 in [21]). Let AẼ(·,·) be an adversary making q
queries, and distinguishing between the actual ẼK for a random K and a family
of random permutations ΠT . Then:

AdvTPRP
Ẽ(·,·)

(A) ≤ AdvPRP
E (2q) + 17q2 − q

2n+1 .

Thus, the CMT mode is a secure TBC construction if E is a PRP.

The classical proof of security [21] uses the classical proof for CBC-MAC,
but CBC-MAC was also attacked in [18] using Simon’s algorithm. In fact, with
superposed tweaks, there exists a trivial distinguisher: choose two messages x1, x2
and call ẼK(T, x1)⊕ẼK(T, x2) in superposition over T , recover the hidden period
EK(x1)⊕ EK(x2) with Simon’s algorithm.

Remark 2. CMT is not a Strong TPRP, as the following (known) attack distin-
guishes it from a family of PRPs within two encryption and decryption queries:

1. encrypt the same x under tweaks T1 and T2, obtain C1 = EK(T1⊕EK(x)), C2 =
EK(T2 ⊕ EK(x));

2. decrypt C1 under tweak T2 and C2 under tweak T1.

With the CMT mode, one obtains twice the same value: E−1
K (T1 ⊕ T2 ⊕ EK(x)).
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Key-tweak Insertion. We will consider the key-tweak insertion TBC, built
from a block cipher E as: ẼK(T,M) = EK⊕T (M). As the CMT mode, it admits
a simple distinguisher based on Simon’s algorithm if the tweaks are queried
in superposition: this is the quantum related-key attack of [26]. It consists of
emulating access to the function f(�) = EK⊕�(0)⊕ E�(0) which admits K as
a period, and using Simon’s algorithm again.

Despite these negative results, we will now prove the security of the CMT
and key-tweak insertion TBCs if they are queried with classical, random or
non-adaptive tweaks.

4.3 Proofs

Let ẼK(T, x) denote EK(T ⊕EK(x)), the CMT mode. In Appendix A, we prove
its security when ẼK(T, x) is accessed in superposition over x, but with classical,
pre-selected tweaks only, that we formalize in the following proposition:

Proposition 2. Let AẼ(·,�) be an adversary making q queries to Ẽ (or a random
permutation family), with a set of tweaks of size m, and distinguishing between
the actual ẼK for a random K and a family of random permutations ΠT . Then:

AdvTPRP
Ẽ(·,�)

(A) ≤ AdvqPRP
E (2q) +O

((
q3m

2n/2

)2/3)
.

Next, we consider Ẽ±K(t, x) = E±K⊕t(x), the key-tweak insertion TBC. We
need here the ideal cipher model: E is selected at random from all ciphers. (The
probabilities are taken on average on E, but we omit this average for simplicity.)
In Appendix B, we prove the Strong TPRP security of this TBC when queried
under classical pre-selected tweaks with the following proposition:

Proposition 3. Let A be an adversary making q queries to Ẽ± and q′ queries
to E±, with a set of tweaks of size m. Then:∣∣∣∣∣∣ Pr
K

$←−K
[A

Ẽ±
K

(·,�),E±�(�)
⇒ 1]− Pr

{ΠT }
$←−Pn

[A
Π±(·,�),E±�(�)

⇒ 1]

∣∣∣∣∣∣ ≤ 8
√
mq′2

2n .

5 Definition of QCB

In this section, we describe the QCB mode, an AEAD based on a Tweakable Block
Cipher. It is similar to the TAE mode [20, 21] and to ΘCB [25, 19]. Throughout
this section, Ẽk,t will denote a TBC used with key k and tweak t, of block size
n. We separate the tweak space in a cartesian product: T = D × IV × L. Thus,
tweaks are triples (D, IV, j) where D is a domain separator, IV will be an IV,
and j will be a block index. Only 5 values of domain separator need to be used.
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The mode is defined in Algorithm 1 and represented on Figure 2 and Figure 3.
When the message and AD are cut in blocks, the last block (M∗ and a∗ respec-
tively) may be empty. We define the padding scheme pad(M∗) as appending 10∗
(a 1 followed by as many zeroes as necessary to fill the block). Note that due to
the padding and structure of QCB, the ciphertext C is always longer than the
plaintext M (by n bits at most).

Algorithm 1 QCB
Input: message M , associated data A, IV , key K
Requirements: Initialization vectors should not be reused
Output: ciphertext C, tag T

1: Pad the initialization vector if necessary
2: Split M into full blocks M0,M1, . . .M` and a final block M∗ (partial or

empty)
3: Split A into A0, A1, . . . Aj , A∗
4: for all i = 0 to ` do
5: Ci ← ẼK,(0,IV,i)(Mi) . Encryption of block i
6: end for
7: C∗ ← ẼK,(1,IV,`)(pad(M∗)) . Encryption of the final block
8: T ← 0
9: for all i = 0 to j do

10: T ← T ⊕ ẼK,(2,IV,i)(Ai) . Absorb AD block i
11: end for
12: T ← T ⊕ ẼK,(3,IV,j)(pad(A∗)) . Absorb the final AD block
13: T ← T ⊕ ẼK,(4,IV,`) (M0 ⊕ . . .⊕M` ⊕ pad(M∗))
14: return C = (C0‖C1‖ . . . ‖C`‖C∗), T

M0

ẼK,(0,IV,0)

C0

M1

ẼK,(0,IV,1)

C1

. . .

M`

ẼK,(0,IV,`)

C`

pad(M∗)

ẼK,(1,IV,`)

C∗

Fig. 2. QCB, encryption.
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A0

ẼK,(2,IV,0)

A1

ẼK,(2,IV,1) . . .

. . .

Aj

ẼK,(2,IV,j)

pad(A∗)

ẼK,(3,IV,j)

M0 ⊕ . . .⊕M` ⊕ pad(M∗)

ẼK,(4,IV,`)

T

Fig. 3. QCB, processing of the associated data and computation of the tag.

Avoiding Quantum Attacks. We include the IV in the tweak when processing the
AD, because otherwise there is a quantum attack based on Deutsch’s algorithm
(see Appendix C). In Section 6, we will prove that QCB is secure assuming a
weak quantum-secure TBC. We will use the following property, which follows
from its definition.

Proposition 4 (Number of tweaks (informal)). For a given IV , there exists
a set of tweaks T (IV ) of size |T (IV )| = 5` such that any QCB query comprised
of at most `n (included) bits of AD and `n bits of message can only reach tweaks
in the set T (IV ).

Proof. The tweaks are of the form (d, IV, i) where i is a block number between 0
and ` (included) and d a domain separator that takes 5 values.

Instantiation with Saturnin: Saturnin-QCB. We propose to instantiate QCB
with the block cipher Saturnin [12], a second-round candidate of the NIST
LWC process [23]. Saturnin has 256-bit blocks and keys. In addition, the cipher
admits a domain separator D of 4 bits. The other modes of operation of the
Saturnin submission use values from 0 to 8 included, so we use D = 9, 10, 11, 12
and 13 in Algorithm 1. More precisely, the authors of [12] define a variant
of Saturnin with 16 Super-rounds aiming at an increased security margin
in the related-key scenario, denoted Saturnin16. We define: Ẽk,(D,IV,i)(x) =
SaturninD16(k ⊕ (IV ||i), x), where we use the key-tweak insertion construction
of Section 4 to turn SaturninD16 into a TBC with 256-bit tweaks. The IV and
the block number are simply concatenated. We use IVs of at most 160 bits
and authorize up to 295 blocks of data. Note that this construction motivates
further inquiry of related-key attacks, as it can only be secure if Saturnin16 is
related-key secure.

Instantiation with a Dedicated TBC: TRAX-QCB. Block ciphers of 256 bits
seem more convenient for post-quantum security. However, they are relatively
rare (for example, Saturnin is the only such one in the LWC standardization
process). Fortunately, it is possible to instantiate QCB with a dedicated TBC
with 256-bit blocks, the TRAX-L-17 cipher of [3]. It has smaller tweaks of 128
bits, contrary to the key-tweak-insertion TBC with Saturnin, but it has the
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advantage of being a dedicated design, with possibly a better security than the
tight bound for the key-tweak-insertion. 128 bits allow to fit the 3 bits required
for domain separation, 80 bits of IV and 45 bits of block numbering. Thus we
can encrypt at most 245 − 1 blocks of plaintext and AD.

6 Security of QCB

The significant quantum attacks on modes of operation either recover the key or
create forgeries using Simon’s algorithm. We will show that such attacks cannot
apply to QCB if the underlying TBC is weakly quantum-secure (i.e. secure under
classical queries to the tweaks). We show that:

• QCB is IND-qCPA secure (Section 6.2): an adversary making quantum
encryption queries cannot distinguish between the encryptions of two classical
challenge messages;

• QCB is BZ-unforgeable (Section 6.3): an adversary making q quantum encryp-
tion queries cannot output q + 1 valid {IV,AD, ciphertext, tag} quadruples.

Note that we discuss other possible (and impossible) security definitions
in Section 7. Note also that in this section, we consider that an adversary makes q
queries of maximal block length b each, and chooses the block length adaptively.

6.1 Definitions

In all our definitions, the adversary makes q superposition queries with distinct
pre-declared IVs. The messages and ADs both have a maximal length of ` complete
blocks, and we will bound the advantage depending on q and `. We will use
superscripts for separate queries, and subscripts for individual blocks within a
query.

IND-qCPA. First of all, we recall the definition of the IND-qCPA security game
from [8]. In [8], each call to the encryption oracle contains randomness. We
extend slightly this definition by making the adversary capable of choosing his
IVs. However, we request this choice to be non-adaptive. Thus, the adversary
specifies at the start of the game the sequence of IVs that she is going to use. In
practice these IVs can either be specified by a counter or chosen at random.

IND-qCPA game

Key generation: K $← K, b $← {0, 1}
Initialization: A sends to the challenger a sequence of distinct

IVs: {IV 1, . . . , IV q}, one for each subsequent query

A can perform challenge queries and encryption queries. At the
kth query, the current IV is IV k.
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Challenge queries: A chooses two {message,AD} pairs
(M0, A0), (M1, A1) of the same length and sends them to
the challenger. The challenger encrypts (IV,M b, Ab) with the
current IV and returns the result.

Encryption queries: A chooses a message and AD pair (M,A)
length, the encryption oracle encrypts (IV,M,A) to A with
the current IV.

Guess: A outputs a bit b′ and wins if b = b′.

For each query, the message and AD length are chosen between
0 and `n bits for a fixed ` (superposed messages must have the
same length).

The IND-qCPA advantage of an adversary A against an AEAD E is defined
as:

AdvIND-qCPA
E (A) =

∣∣∣∣Pr [A succeeds]− 1
2

∣∣∣∣
BZ. We define our unforgeability game, which we name “Boneh-Zhandry” (BZ)
by analogy with the definition of unforgeability of [7] (which initially concerns
MACs).

BZ game

Key generation: K $← K
Initialization: A sends to the challenger a sequence of distinct

IVs: {IV 1, . . . , IV q}, one for each subsequent query

Encryption queries: A chooses a message and AD length, the
encryption oracle is called on the input registers of A, with
the current IV.

Forgeries: A produces q + 1 quadruples {A, IV,C, T} and suc-
ceeds if all these quadruples are valid, that is, for all quadru-
ples, there exists an M such that the encryption of (IV,M,A)
is (C, T ).

6.2 IND-qCPA Security

Theorem 4. Let QCB[Ẽ] denote the QCB function with oracle access to the
tweakable blockcipher Ẽ, and let QCB[Π̃] be the same function with oracle access
to an ideal tweakable random permutation Π̃. We consider adversaries making q
queries of block length ≤ ` to QCB[Ẽ], then we have:
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AdvInd-qCPA
QCB[Ẽ]

(A) ≤ AdvTPRP
Ẽ(·,�)

(5`q) (1)

where we take the maximal advantage over all adversaries querying Ẽ(·,�) with
at most 5`q pre-declared tweaks. In the case of the key-tweak insertion TBC
of Section 4, we consider adversaries making also q′ queries to E± and we have:

AdvInd-qCPA
QCB[Ẽ]

(A) ≤ AdvTPRP
Ẽ(·,�),E�(�)

(5`q, q′) ≤ 8
√

5`qq′2
2n . (2)

Proof. Suppose A is an adversary trying to break the IND-qCPA security of
QCB[Ẽ]. A performs q encryption or challenge queries of maximum block length
` (the exact bit length of the queries can be chosen freely in the range 0, . . . , n`).
If we are in the ideal cipher model, let q′ be the number of queries done to
Epm. Consider the query number i made to QCB (encryption or challenge).
From Proposition 4, in this query, the tweakable block cipher Ẽ is queried with
tweaks in the set T (IV i) having a fixed size |T (IV i)| = 5`.

We can therefore see A as an algorithm performing at most q` queries to Ẽ,
with each tweak lying in the fixed set T = ∪qi=1T (IV i) with |T | ≤ 5q`. If we
replace Ẽ with Π̃ for a random Π̃, we get:∣∣∣∣AdvInd-qCPA

QCB[Ẽ]
(A)−AdvInd-qCPA

QCB[Π̃]
(A)
∣∣∣∣ ≤ AdvTPRP

Ẽ(·,�)
(5`q, q′) . (3)

Finally, consider an adversary A playing an IND-qCPA game with QCB[Π̃].
Recall that in the challenge phase, A picks two classical plaintext-AD pairs
(M0, A0) and (M1, A1) of the same length, after which the challenger picks a
random bit b and gives A (Cb, T b), the encryption (and tag) of (M b, Ab). Since
the tweaks used for computing this encryption are all different from all the
tweaks used during the query phase, and since Π̃ is an ideal tweakable random
permutation, the distribution of (Cb, T b) is independent of the distribution of
the responses received by A during the query phase. Since b is a random bit, if
b′ is the bit output by A, the probability that b = b′ is always 1/2. Furthermore,
this holds irrespective of the choice of A. Thus,

AdvInd-qCPA
QCB[Π̃]

(A) = 0. (4)

Our first result follows directly by putting this inequality into Equation 3. In
the case of the key-tweak insertion TBC, we consider that the adversary also
accesses E± and we combine this inequality with Proposition 3, in order to
obtain Equation 2.

6.3 Unforgeability

Now, we prove that QCB is unforgeable under our definition.
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Theorem 5. Let A be an adversary making q superposition queries to QCB, of
maximally ` blocks each (message and AD), and q′ queries to E. Let A succeed
if it outputs q + 1 valid quadruples (A, IV,C, T ). Then the success probability of
A is upper bounded as:

Pr [A succeeds] ≤ AdvTPRP
Ẽ±(·,�)

(B) + 3 + c

2n

where c is a the constant from Corollary 2 and B an adversary querying Ẽ± with
at most 5q` pre-declared tweaks, making at most q` queries.

In the case of the key-tweak insertion TBC of Section 4, we consider adver-
saries making also q′ queries to E± and we have:

Pr [A succeeds] ≤ 8
√

5`qq′2
2n + 3 + c

2n .

Proof. Let G0 be the original BZ game in which A interacts with QCB, instan-
tiated with the TBC Ẽ and a randomly selected key k. Let G1 be the game in
which Ẽ is replaced by a family of independent random permutations Πt for all
tweaks t.

Lemma 3. PrG0 [A succeeds] ≤ PrG1 [A succeeds] + AdvTPRP
Ẽ±($,�)

(5q`, q′) .

Proof. The proof of this lemma comes from the argument used in Theorem 4. In
G0, A performs q encryption queries of block length at most `. Consider the ith

query. From Proposition 4, in this query, the tweakable block cipher Ẽ is queried
with tweaks in the set T (IV i) having a fixed size |T (IV i)| = 5`.

We can therefore see A as an algorithm performing at most q` queries to Ẽ,
with each tweak lying in the fixed set T = ∪qi=1T (IV i) with |T | ≤ 5q`. If we
replace Ẽ with Π̃ for a random Π̃, we go from G0 to G1. We therefore, have

Pr
G0

[A succeeds] ≤ Pr
G1

[A succeeds] + AdvTPRP
Ẽ±($,�)

(5q`, q′) . �

Our goal is now to bound PrG1 [A succeeds]. We run A. Let I = {IV ′i |
1 ≤ q} be the q declared IVs that A uses during its encryption queries. Let
also S = {(Ai, IV i, Ci, T i) | 1 ≤ i ≤ q + 1} denote the forge-set, i.e., the q + 1
quadruples in A’s output. Finally, let [[·]] denote block-length. We define the
following bad events:

• bad-a: For some i, IV i 6∈ I.
• bad-b: For some i, k 6= i, IV i = IV k ∈ I, and [[Ci]] 6= [[Ck]]
• bad-c: For some i, k 6= i, IV i = IV k ∈ I, [[Ci]] = [[Ck]], and [[Ai]] 6= [[Ak]].
• bad-d: For some i, k 6= i, IV i = IV k ∈ I, [[Ci]] = [[Ck]], and [[Ai]] = [[Ak]].

A succeeds in G1 when the q + 1 quadruples she outputs are valid. As the
q+ 1 outputs shall be distinct and |I| = q, this implies that one of the bad events
has occurred. We therefore have

Pr
G1

[A succeeds] ≤ Pr
G1

[bad-a] + Pr
G1

[bad-b] + Pr
G1

[bad-c] + Pr
G1

[bad-d] . (5)
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We bound separately the probability of each bad event in order to con-
clude. For a quadruple (A, IV,C, T ), with A = (A0, . . . , Aj , pad(A∗)) and C =
(C1, . . . , C`, pad(C∗)), we define Mi := Π−1

(0,IV,i)(Ci), pad(M∗) := Π−1
(1,IV,`)(C∗)

and MCS := pad(M∗) ⊕
(⊕`

i=0 Mi

)
. If the quadruple (A, IV,C, T ) is valid in

game G1, this gives us

Π(4,IV,`)(MCS)⊕Π(3,IV,j)(pad(A∗))⊕
(

j⊕
i=0

Π(2,IV,i)(Ai)
)

= T. (6)

From there, we have for each i ∈ {0, . . . , `}

Mi = Π−1
(4,IV,`)

(
T ⊕Π(3,IV,j)(pad(A∗))⊕

(
j⊕
i=0

Π(2,IV,i)(Ai)
))

⊕ pad(M∗)⊕

⊕
k 6=i

Mk

 . (7)

This means that from a valid quadruple (A, IV,C, T ), we can reconstruct
each Mi = Π−1

(0,IV,i)(Ci) without any query to Π0,IV,i or Π−1
0,IV,i (but with access

to other Πt and Π−1
t , in particular to compute pad(M∗) and the Mk for k 6= i).

Similarly, for each i ∈ {0, . . . , j}, we have

Π(2,IV,i)(Ai) = T ⊕Π(4,IV,`)(MCS)⊕Π(3,IV,j)(pad(A∗))⊕

⊕
k 6=i

Π(2,IV,k)(Ak)

 .

(8)
This means that for a valid quadruple (A, IV,C, T ), we can reconstruct each

Π(2,IV,i)(Ai) without any query to Π(2,IV,i) or Π−1
(2,IV,i) (but with access to other

Πt and Π−1
t ).

With these 2 constructions in mind, we can bound the probability of each
bad event with the following lemmata.

Lemma 4.
Pr
G1

[bad-a] ≤ 1
2n .

Proof. Assume A outputs a quadruple (Ai, IV i, Ci, T i) with IV i /∈ I. Since
IV i /∈ I, the permutations Π0,IV i,0 and Π−1

0,IV i,0 have not been queried to
compute the quadruple. From the above discussion, if the quadruple is valid,
we know how to construct a valid input/output pair (M i

0, Π(0,IV i,0)(M i
0) = Ci0)

without any calls to Π0,IV i,0 or Π−1
0,IV i,0. Because Π0,IV i,0 is a uniformly random

permutation and independent from the others, this happens with probability
1

2n . �
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Lemma 5.
Pr
G1

[bad-b] ≤ 1
2n .

Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, and [[Ci]] 6= [[Ck]]. Without loss of generality, we
assume that there exists u such that IV i = IV ′u, and `i = [[Ci]] is different from
the output block length `′u of query number u (which is a fixed value of the query).
This property must be true for i or for k. If the adversary succeeds, the quadruple
(Ai, IV i, Ci, T i) must be valid even though the function Π4,IV i,`i has never been
queried. Let ji = [[Ai]]. From (Ai, IV i, Ci, T i), we define M i

u := Π−1
(0,IV i,u)(C

i
u),

pad(M i
∗) := Π−1

(1,IV i,`i)(C
i
∗) andM i

CS := pad(M i
∗)⊕

(⊕`i

u=0 M
i
u

)
. If the quadruple

(Ai, IV i, Ci, T i) is valid, we have

Π4,IV i,`i(M i
CS) = T i ⊕Π(3,IV i,ji)(pad(Ai∗))⊕

 ji⊕
u=0

Π(2,IV i,u)(Aij)

 .

This means we can construct a pair (M i
CS , Π4,IV i,`i(M i

CS)) without any calls
to Π4,IV i,`i or Π−1

4,IV i,`i . Since Π4,IV i,`i is a uniformly random permutation and
independent from the others, this happens with probability 1

2n . �

Lemma 6.
Pr
G1

[bad-c] ≤ 1
2n .

Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, [[Ci]] = [[Ck]] and [[Ai]] 6= [[Ak]]. Without loss of
generality, we assume that there exists u such that IV i = IV ′u, and ji = [[Ai]]
is different from the AD block length j′u queried in query u. (This happens
either for index i or index k). We focus on this quadruple (Ai, IV i, Ci, T i) for
which Π3,IV i,ji has never been queried. We let `i = [[Ci]]. we define M i

u :=
Π−1

(0,IV i,u)(C
i
u), pad(M i

∗) := Π−1
(1,IV i,`i)(C

i
∗) andM i

CS := pad(M i
∗)⊕

(⊕`i

u=0 M
i
u

)
.

If the quadruple is valid, we have

Π(3,IV,ji)(pad(Ai∗)) = T i ⊕Π4,IV i,`i(M i
CS)⊕

 ji⊕
u=0

Π(2,IV i,u)(Aiu)

 .

This means we can construct a pair (pad(Ai∗), Π(3,IV i,ji)(pad(Ai∗))) without any
calls to Π(3,IV i,ji) or its inverse. Since it is a uniformly random permutation and
independent from the others, this happens with probability 1

2n . �

Lemma 7. Let c be the constant of Corollary 2, we have

Pr
G1

[bad-d] ≤ c

2n .
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Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, [[Ci]] = [[Ck]] := ` and [[Ai]] = [[Ak]] := j. This means
we can write Ci = (C1

0 , . . . , C
i
`, C

i
∗), Ai = (Ai0, . . . , Aij , pad(Ai∗)) and similarly for

Ck, Ak. Assume the 2 quadruples are valid, we distinguish 2 cases:

• ∃u,Ciu 6= Cku . From the construction following Equation 7, we can construct
two different input/output pairs (M i

u, Π0,IV i,u(M i
u) = ciu) and (Mk

u , Π0,IV i,u(Mk
u ) =

Cku) without additional queries to Π±0,IV i,u. However, there has been only 1
call to Π0,IV i,u during the game (since each IV in the challenge queries is
different). Therefore, we have from Corollary 2 that this can happen with
probability at most c

2n .
• ∃u,Aiu 6= Aku. From the construction following Equation 7, we can construct
two different input/output pairs (Aiu, Π2,IV i,u(Aiu)) and (Aku, Π2,IV i,u(Aku))
without additional queries to Π±2,IV i,u. We conclude using a similar argument
as above.

In order to conclude, notice that we have to be in one of the 2 cases above if the
2 quadruples are valid, otherwise they are equal. �

The theorem follows from Equation 5 and Lemmas 3–7.

7 Discussion on Security Notions

In this section, we take a broader viewpoint at suitable notions of quantum security
for a combined AEAD mode. In particular, we introduce a new attack that breaks
the qIND-qCPA notion given in [13] for all online modes (hence all practical
AEAD modes). We also discuss the recent definition of blind unforgeability which
is given in [1].

7.1 The qIND-qCPA Notion and Attacking all Online Modes

It is well-known that for any mode of encryption that XORs a keystream to
the message, IND-CPA security implies IND-qCPA. In other words, a quantum
adversary does not benefit from having superposition query access. This comes
from the malleability of such a mode.

Lemma 8 ([2], informal). Define an encryption mode as EK(M ; IV ) = M ⊕
f(K, IV ) where IV is a randomly chosen IV and f is any function. If EK is
IND-CPA, then it is also IND-qCPA.

Informal. Given a quantum adversary B that attacks the IND-qCPA security
notion, we can construct an adversary A that attacks the IND-CPA security of
the mode. A simulates B. Whenever B makes a superposition query, A simulates
this query by querying EK(0; IV ) and XORing this value on the input register
of B.
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Algorithm 2 Distinguisher on the one-time pad
Input: superposition access to an n-bit function F
Output: either “F is a one-time pad” or “F is a random function”

1: Construct the state: 1√
2n

∑2n−1
x=0 |x〉 |0〉

2: Query F : 1√
2n

∑2n−1
x=0 |x〉 |F (x)〉

3: XOR x in the output: 1√
2n

∑2n−1
x=0 |x〉 |F (x)⊕ x〉

4: Apply Hadamard gates on the first register
5: Measure a value y0 from the first register.
6: if y0 = 0 then
7: return “F is a one-time pad”
8: else
9: return “F is a random function”

10: end if

However, such a mode also admits a well-known quantum distinguishing
attack using a single superposition query. This attack applies regardless of the
function f chosen, and in particular if f is a random oracle (this is the one-time
pad).

Lemma 9 (Folklore, [10]). With a single quantum query to F , Algorithm 2
returns “F is a one-time pad” with probability 1 if F is a one-time pad and “F
is a random function” with probability 1− 1

2n−1 if F is a random function.

Proof. Note that we can see Algorithm 2 as a call to a generalized version of the
Deutsch-Jozsa algorithm [14] for distinguishing whether the function x 7→ F (x)⊕x
is constant or not using a single query.

If F is a one-time pad, then F (x) ⊕ x = f(K, IV ), say, for some function
f of the IV and key. Then the state before Step 4 is 1√

2n

∑2n−1
x=0 |x〉 |f(K, IV )〉;

after Step 4 it becomes |0〉 |f(K, IV )〉 and we measure 0 with certainty. If F is a
random function, the state before measurement is:

1
2n

2n−1∑
y=0

2n−1∑
x=0

(−1)x·y |y〉 |F (x)⊕ x〉 .

The amplitude of |0〉 in the first register depends on the number of preimages
of P (x)⊕ x. Each value α of P (x)⊕ x contributes independently to the squared
amplitude of y = 0 by the amount:

(
1

2n

∑
x,P (x)⊕x=α(−1)x·0

)2
, i.e.

(
r

2n

)2 if
P (x)⊕x has r preimages. Since we assume that F is a random function, for each
constant r, the average number of images with r preimages is 1

r!e [15]. Hence, the
expected probability to measure y = 0 in the end, over all random functions, is:

∞∑
r=0

2n

r!e

( r
2n
)2

= 1
2ne

∞∑
r=0

r2

r! = 1
2ne

∞∑
r=0

(
r(r − 1)

r! + r

r!

)
= 2

2n .
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Note that this also works if F is a random permutation instead of a random
function (up to PRF-PRP switching). The fact that such an attack exists, although
these modes are IND-qCPA secure, demonstrates a strictly stronger power of
the adversary when it is only required to distinguish the function instead of
breaking a more elaborate security notion. This makes quantum challenge queries
inherently more powerful. However, they are challenging to define in a non-trivial
way, as was observed in [8].

The qIND-qCPA Notion. In [13], Chevalier, Ebrahimi and Vu propose the
“qIND-qCPA” security game where an adversary must distinguish between a
quantum oracle for EK(M ; IV ) = M ⊕ f(K, IV ) (with IV selected uniformly at
random at each new query) and a random oracle. They use Zhandry’s recording
technique [30] in the latter case. We shall not define the qIND-qCPA security
notion in full detail and merely remark that there are no classical challenge
queries as in IND-qCPA, and that by design, the one-time pad attack is valid.

We are now going to extend the previous distinguisher in order to attack
not only keystream-based modes like CTR, but all “online” modes. By “online”
mode, we mean a mode of encryption in which the plaintext blocks are read and
encrypted in sequence, so that the first ciphertext block C0 depends only on the
first plaintext block M0, the second ciphertext block C1 depends only on M0,M1,
etc. In fact, we can extend this definition to a much more general setting in which
one bit of the complete ciphertext, say the last one, is independent from one bit
of the complete plaintext, say the first one. For the sake of simplicity, we consider
messages of a fixed size (since we make a single query anyway).

Lemma 10. Let EK(M ; IV ) be an encryption function of messages of length
m, where the first ciphertext bit is independent of the last plaintext bit. Then
there exists a quantum adversary AO making a single query to its oracle O and
distinguishing EK(M ; IV ) (“real world”) from a random family of permutations
ΠK,IV (M) (“random world”) with probability of success 3

4 ≥
1
2 .

Proof. Our distinguisher is based on Deutsch-Jozsa’s algorithm and on the post-
processing of quantum oracles of Lemma 2. The adversary fixes all the bits of
M except the last one to an arbitrary value, say 0, and puts |0〉+ |1〉 in the last
bit. She queries the oracle and truncates the output to its first bit. Her state
becomes:

|0〉 |f(0)〉+ |1〉 |f(1)〉

where f is the first ciphertext bit as a function of the last plaintext bit (after the
other bits have been fixed). She then uses Deutsch-Josza’s algorithm to determine
whether f is constant or non-constant. If f is constant, she decides that this is
the real world and otherwise, the random world.

• In the random world (O = ΠK,IV (M)), this f should remain a random
function. Thus the outputs are equal only with probability 1

2 : the guess is
correct with probability 1

2 .
• In the real world, f is always constant. The guess is always correct.
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Overall, the adversary is correct with probability 1
2
(
1 + 1

2
)

= 3
4 . Using a full

block instead of a mere bit makes the success probability exponentially close to 1
with a single query, as in the one-time pad attack.

A consequence of this attack is that, while the qIND-qCPA definition seems
nontrivial, it cannot be achieved by an online mode, including e.g. CBC or our
proposal QCB.

Corollary 3. No online mode of encryption is qIND-qCPA secure.

The issue with the definition lies in the adversary’s power in distinguishing
random from constant functions within a single query. If we require the adversary
to distinguish the mode from an ideal online mode, instead of a random permu-
tation, our attack should not be applicable anymore. However, the definition and
proofs of security may be far more involved, and we leave further exploration of
this topic as an open problem.

7.2 Unforgeability for a Combined AEAD Mode

The Blind Unforgeability notion was introduced in [1] as a replacement for BZ-
unforgeability for MACs. In [1], the authors prove that it is possible to create
a MAC scheme (given by a pair MacK , VerK) such that, after having made q
superposition queries to some subset of the message space, one can forge the
MAC of another message outside this space. Despite that, the MAC that they
give is BZ-secure.

Note that the example given in [1] is very technical, and relies heavily on the
fact that the MAC treats differently different subsets of its input. This is usually
not the case for practical constructions (including QCB).

Blind-unforgeability (BU) is a stronger security notion defined with the
following game: the adversary is given access to a blinded version of MacK , that
returns ⊥ on some fraction ε of the message space. To win, the adversary has to
output a valid forgery in this space. In the game, the uniform random blinding
Bε is created by putting every message of the message space with probability ε.
Alternatively, the adversary could choose her own blinding, but this is equivalent
for inverse-polynomial values of ε: in [1] (Theorem 2) the authors prove that an
adversary capable of outputting a “good” forgery will still do so even if the MAC
has been blinded.

BU game
Setup: the adversary selects a parameter ε < 1. The challenger

picks a random key K, a random bit b, a random blinding Bε
which is a fraction of the message spaceM of size ε.

Forgery: the adversary produces a pair (M,T ) and wins if M ∈
Bε and VerK(M,T ) = >.

27



Encryption queries: the adversary queries the “blinded” MAC:

M 7→

{
⊥ if M ∈ Bε,
MacK(M) otherwise .

(9)

The following result, together with the example given in [1], shows that
BU-unforgeability is a strictly stronger notion than BZ-unforgeability for a MAC.

Theorem 6 ([1], Theorem 1). Any BU-unforgeable MAC is BZ-unforgeable.

This notion is adapted for a standalone MAC. In our case, we consider a
combined AEAD mode, and we would need to adapt the definition. We can
propose, for example, to blind the message space. We select a subset Bε of
message, AD and IVs (possibly the same pairs of AD and message for all IVs,
or selected differently for each one). We give the adversary access to an oracle
that encrypts (IV,A,M) if it does not belong to Bε and otherwise, returns ⊥.
The adversary then succeeds if she outputs a valid quadruple (A, IV,C, T ) whose
corresponding message M is such that (IV,A,M) ∈ Bε.

The main difference with the original BU definition is that the condition of
success relies on the message M , which is not necessarily an output of the forgery
(the adversary can forge on an unknown message M). Despite that, we conjecture
that this definition is non-trivial and that it might be proven for QCB. This
proof would likely be more technical than our original one, and we leave it as an
open problem.

8 Conclusion

In this paper, we designed the first AEAD of rate one with quantum security
guarantees. With a definition similar to TAE and OCB, our proposal, QCB,
retains high security guarantees as soon as it is used with a quantum-secure
tweakable block cipher. We explicited this security requirement and proposed a
construction based on a block cipher, in the ideal cipher model: the key-tweak
insertion of Section 4.

In the classical setting, the LRW construction provides a TBC of rate one
(one block cipher call per TBC call) from a PRP assumption. Ours requires
related-key security for the underlying block cipher. Although we do not rule
out the possibility of a rate-one TBC without related-key security, the LRW
approach does not seem applicable.

Thus, an interesting open question is whether it is possible to build a post-
quantum AEAD of rate one from a block cipher, with a qPRP assumption only.
It may be possible to obtain directly the security without relying explicitly on a
secure TBC, though this was the subject of our first attempt, which failed due
to a new attack on OCB with a single query.
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In our security proofs, we used the IND-qCPA and BZ security notions
for indistinguishability and unforgeability. Other security definitions have been
proposed in the more recent literature and seem worth investigating. In this paper,
we showed that the qIND-qCPA notion of [13] rules out all online encryption
modes (in which some part of the output is independent on some part of the
input). Nevertheless, it might be possibly to re-adapt it for the usual AEAD
setting.
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Appendix

We give below the delayed proofs of security for the CMT and key-tweak insertion
TBCs.

A Proof of Security of the CMT Mode

In this section, we let ẼK denote EK(T ⊕ EK(x)), the CMT mode. We re-
call Proposition 2:

Proposition 2. Let AẼ(·,�) be an adversary making q queries to Ẽ (or a random
permutation family), with a set of tweaks of size m, and distinguishing between
the actual ẼK for a random K and a family of random permutations ΠT . Then:

AdvTPRP
Ẽ(·,�)

(A) ≤ AdvqPRP
E (2q) +O

((
q3m

2n/2

)2/3)
.

We start the proof with a technical lemma.

Lemma 11. Fix m distinct tweaks t1, . . . , tm ∈ {0, 1}n. Then, choose S random
distinct values x1, . . . , xS ∈ {0, 1}n. We have

Pq,S := Pr[∃i, j ∈ [m],∃k, l ∈ [S] : ti ⊕ xk = tj ⊕ xl] ≤
S(S + 1)m2

2(2n − S) .

Proof. Let T = {ti ⊕ tj}i,j∈[m]. We have |T | ≤ m2. First notice that because the
ti are distinct, we have Sm,1 = 0. We now write

Pm,S+1 = Pr[∃i, j ∈ [m],∃k, l ∈ [S + 1] : ti ⊕ xk = tj ⊕ xl]
= Pr[∃i, j ∈ [m],∃k, l ∈ [S] : ti ⊕ xk = tj ⊕ xl] + Pr[∃i, j ∈ [m],∃k ∈ [S] : ti ⊕ xk = tj ⊕ xS+1]
= Pm,S + Pr[∃k ∈ [S] : xS+1 ∈ {t⊕ xk}t∈T ]

≤ Pm,S + Sm2

2n − S since xS+1 is chosen uniformly from {0, 1}n\{x1, . . . , xS}.

This gives

Pm,S+1 =
S∑
k=1

km2

2n − k ≤
S∑
k=1

km2

2n − S = S(S + 1)m2

2(2n − S) .

Notice that if we take S =
√

ε2n

m2 � 2n, we have Pm,S+1 = O(ε).

Proof of Proposition 2. We consider a sequence of hybrid games, starting from
the real setting and going to ΠT . Let G1 be a game in which A interacts with
Ẽ±(·,�), with a key K chosen at random.
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Game G1

K
$←− K.

ẼK(t, x) := EK(t⊕ EK(x)).
Run AẼK (·,�).

Game G2

Π
$←− Pn.

Π̃ := Π(t⊕Π(x)).
Run AΠ̃(·,�).

Game G3

F
$←− Fn.

Π̃ := F (t⊕ F (x)).
Run AΠ̃(·,�).

Let G2 be a game in which A interacts with Π̃ = Π(t⊕Π(x)), where Π is a
permutation selected at random. Then by definition of qPRP security:∣∣∣∣Pr

G1
[A ⇒ 1]− Pr

G2
[A ⇒ 1]

∣∣∣∣ ≤ Advq-PRP
E (2q)

since we have to replace E by Π a total of 2q times. Next, we introduce another
game G3 in which Π is replaced by a random oracle F . By the PRP-PRF
switching lemma (Theorem 2):∣∣∣∣Pr

G2
[A ⇒ 1]− Pr

G3
[A ⇒ 1]

∣∣∣∣ ≤ O( q3

2n

)
where n is the block and tweak size; because the queries of the adversary contain
2q queries to Π in total.

Let t1, . . . , tm be the tweaks declared by the adversary. Note that we could
have m ≥ q. The adversary is only allowed to choose his tweaks from this
predefinite set. We can consider this set to be constant and reason on average on
it; note that the tweaks could be random, but their randomness is independent
from the choice of the permutations. We introduce a game G4 in which F is
replaced by a random oracle G with a codomain X = G({0, 1}n) reduced to a
size S, being such that no collision of the form:

G(x)⊕ ti = G(x′)⊕ tj =⇒ G(x)⊕G(x′) = ti ⊕ tj

occurs for any pair x, x′ of inputs and ti, tj of tweaks. The set X is chosen at
random, depending on the tweaks, and its definition implies that the sets ti ⊕X
are all pairwise disjoint. This sets a rather restrictive upper bound on S. More
precisely, we use Lemma 11: by picking elements for X uniformly at random,
the bound S =

√
ε2n

m2 ensures that the probability that one of the pairwise sums
collides with one of the ti ⊕ tj is O (ε). We shall then take ε small enough to
ensure that this case does not occur.

Game G4
Choose X at random of size S

G
$←− {{0, 1}n → X}

Gt(t, x) := G(t⊕G(x)).
Run AGt(·,�).

Game G5
Choose X at random of size S

G
$←− {{0, 1}n → X}

H(ti, x) :=
{

0 if x ∈
⋃
i
(ti ⊕X)

G(ti ⊕G(x)) otherwise
Run AH(·,�).

The adversary cannot distinguish between G3 and G4 unless she finds a
collision of G within 2q queries, or if the choice of X was a bad one. By the
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collision bound with small range:∣∣∣∣Pr
G3

[A ⇒ 1]− Pr
G4

[A ⇒ 1]
∣∣∣∣ ≤ O(q3

S

)
+O (ε) .

Our goal is to use this oracle G with a reduced image to show independence
between the queries G(ti ⊕G(x)) in G4.

In G4, the results of queries to G(ti ⊕ G(x)) for different tweaks are not
necessarily independent, although the inputs to the outer G are disjoints subsets
of its domain. We consider the set Y =

⋃
i(ti ⊕X). This is a set of size O (mS)

which, depending on the values of the ti and our choice of X (both of which are
fixed within the game and uncontrolled by the adversary), can be any subset of
{0, 1}n of size O (mS). We introduce a new game G5 (still depending on X) in
which we replace each query to G(ti ⊕ G(x)) by a query to an oracle H(ti,�)
that: on input x ∈ Y , replies 0, and on input x /∈ Y , replies by G(ti ⊕G(x)).

As we perform the same projector on all oracles (the inputs that are modified
are the same), we can replace all of them at once. Consider the state

∣∣φYj 〉 of
A during G5 before the j-th query to any of the oracles Hi and |ψj〉 the state
during G4 at the same moment (note that only G5 depends on Y ). We show that
both games will look equivalent to the adversary, because she cannot know Y .
At the end of the games:

‖
∣∣φYq+1

〉
− |ψq+1〉 ‖ ≤ 2

∑
1≤j≤q

|PY (|ψj〉)|,

where PY is the projector on the part of the state which corresponds to inputs
x ∈ Y . We take the average over all choices of Y .

E
Y

(
‖
∣∣φYq+1

〉
− |ψq+1〉 ‖

)
≤ 2E

Y

 ∑
1≤j≤q

|PY (|ψj〉)|

 .

On the left, we swap the sums over j and Y . A given x is in a given Y with
probability mS

2n , and our choices are symmetric. Let N be the total number of
choices for Y that we make. For a given j we compute:∑

Y

|PY |ψj〉 |2 =
∑
Y

∑
x∈Y
|Px |ψj〉 |2 = NmS

2n
∑

x∈{0,1}n

|Px |ψj〉 |2 = NmS

2n

and we use Jenssen’s inequality to show that:(∑
Y

|PY (|ψj〉)|
)2

≤ N
∑
Y

|PY |ψj〉 |2 ≤
N2mS

2n =⇒ E
Y

(∑
Y

|PY (|ψj〉)|
)
≤
√
mS

2n .

Thus we can bound:

E
Y

(
‖
∣∣φYq+1

〉
− |ψq+1〉 ‖

)
≤ 2q

√
mS

2n = 2
√
q2mS

2n
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and by Corollary 1: ∣∣∣∣Pr
G4

[A ⇒ 1]− Pr
G5

[A ⇒ 1]
∣∣∣∣ ≤ 8

√
q2mS

2n .

Having done that, we remark that the queries in G5 are now (finally) totally
independent: they are of the form Fi(ti ⊕G(x)) where G is a random function
with codomain X and Fi is an independent random function with domain and
codomain X. We can replace them by Fi(x) directly. The Fi are (at most) q
different small-range random functions, to which the adversary makes a total of
q queries. We can replace them by full-range random functions and the difference
in distinguishing advantage will be O

(
q3

S

)
.

Finally, we replace them by independent permutations of {0, 1}n and the
difference in distinguishing advantage is: O

(
q3

2n

)
.

Thus the total bound that we get is:

AdvTPRP
Ẽ(·,�)

(A) ≤ AdvqPRP
E (2q) +O

(
q3

2n

)
+O

(
q3

S

)
+O (ε) + 8

√
q2mS

2n .

Meanwhile, we know that S =
√

ε2n

m2 , which gives a bound:

AdvTPRP
Ẽ(·,�)

(A) ≤ AdvqPRP
E (2q) +O

(
q3m√
ε2n/2 + ε+ ε1/4

2n/4

)
.

which makes the first two terms dominant, with a bound O
((

q3m
2n/2

)2/3
)
.

Remark 3. Proposition 2 shows that qPRP security is enough to obtain a weak
quantum-secure TBC in our sense, albeit with two block cipher calls. However,
the proof is definitely not tight. This tightness is mainly lost when we modify the
codomain of the random function G in order to make the q queries independent.

The best attack that we can give is the following.

Lemma 12. There exists a quantum algorithm that for any E, makes q queries
to a TBC Ẽ(·,�) and outputs “CMT” with probability O

(
q3/2n

)
if Ẽ is a CMT

mode, and probability O
(
q3/22n) if Ẽ is a family of random permutations.

Proof. The difference between a CMT construction and a family of random
permutations can be detected when an internal collision t1⊕EK(x1) = t2⊕EK(x2)
occurs. Since the adversary can only make queries to the full construction, she
observes that EK(t1 ⊕ EK(x1)) = EK(t2 ⊕ EK(x2)). Collisions between Πt1(x1)
and Πt2(x2) for a permutation family Π can occur at random. But in the CMT
case, we also have EK(t1 ⊕ 1⊕ EK(x1)) = EK(t2 ⊕ 1⊕ EK(x2)) (and the same
for any constant instead of 1).
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Thus, we define a function: f(t, x) = (Ẽ(t, x), Ẽ(t⊕ 1, x)) and we look for a
collision of f . In the CMT case, such a collision indicates, with almost certainty,
that we have found an internal collision t1 ⊕ EK(x1) = t2 ⊕ EK(x2). In the
random case, it will happen only with smaller probability. The quantum attack
does:

1. Query f(ti, 0) for q/2 tweaks ti (this means q/2 internal values ti ⊕ Ek(0))
2. With Grover’s algorithm, search a (0, x) such that ∃i, f(0, x) = f(ti, 0), (0, x) 6=

(ti, 0)
3. Measure after q/2 iterations and output “CMT” if a collision is found. In the

CMT case, this happens with probability O
(
q3/2n

)
and O

(
q3/22n) in the

random case (we can decrease it arbitrarily by increasing the output size of
f).

This concludes the proof.

Remark 4. The attack of Lemma 12 does not work if the tweaks are used only
once, or if they are random, as a standard Grover search in Step 2 is inapplicable.
We can resort to the classical collision attack, which succeeds with probability
O
(
q2/2n

)
.

B Proof of Security of the Key-tweak Insertion TBC

In this section, we let ẼK(T, x) denote EK⊕T (x), the key-tweak insertion TBC.
We need here the ideal cipher model: E is selected at random from all ciphers.
We recall Proposition 3:

Proposition 3. Let A be an adversary making q queries to Ẽ± and q′ queries
to E±, with a set of tweaks of size m. Then:∣∣∣∣∣∣ Pr
K

$←−K
[A

Ẽ±
K

(·,�),E±�(�)
⇒ 1]− Pr

{ΠT }
$←−Pn

[A
Π±(·,�),E±�(�)

⇒ 1]

∣∣∣∣∣∣ ≤ 8
√
mq′2

2n .

Proof of Proposition 3. We will consider hybrid games, where we change the
oracles that A accesses and bound the difference between her probabilities of
success.

Let t1, . . . , tm be the tweaks of the declared set. This list is not deterministic,
but it is given by the game, and does not depend on the adversary’s state (in
particular, it is non-adaptive). Thus, it suffices to reason with an arbitrary list
and to take the average over all possibilities (the bound obtained will be the
same in all cases). Note that the definition of our hybrid games will be dependent
on this list.

Let G0 be the “real world” in wich A interacts with Ẽ± and E±, for k $← K.
We also define the game G0[K] where a key K is fixed.
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Game G0

∀k ∈ K, Ek
$←− Pn.

K
$←− K.

ẼK(t, x) := Et⊕K(x).

Run A
Ẽ±

K
(·,�),E±�(�)

.

Game G0[K]
∀k ∈ K, Ek

$←− Pn.
ẼK(t, x) := Et⊕K(x).

Run A
Ẽ±

K
(·,�),E±�(�)

.

We have by definition

Pr[∀k∈K,Ek

$←−Pn

K
$←−K

: A
Ẽ±

K
(·,�),E±�(�)

⇒ 1] = Pr[G0 ⇒ 1]

= E
K

$←−K
(Pr[G0[K]⇒ 1) .

Let G1 be a hybrid game in which Ẽ± is replaced by a family of permutations
Πt1 , . . . ,Πtm , and E± is replaced by E′±, which is equal to E± for all keys,
except K ⊕ t1, . . . ,K ⊕ tm, where we constrain: E′±K⊕ti = Πti .

Game G1[K]
∀i ∈ [m], Πti

$←− Pn.

∀k ∈ K, E′k
$←− Pn.

∀i ∈ [m], EK⊕ti := Πti , ∀k /∈ {K ⊕ ti}i∈[m], Ek := E′k.

Run A
Π±(·,�),E±�(�)

.

Notice that if we define ẼK(t, x) := Et⊕K(x), we have in this game that ∀i ∈

[m],∀x, ẼK(ti, x) = Πti(x), which implies thatA
Ẽ±

K
(·,�),E±�(�)

= A
Π±(·,�),E±�(�)

when we only query Πt(x) for tweaks t = t1, . . . , tm.

Lemma 13. For any key K ∈ K,

Pr[G0[K]⇒ 1] = Pr[G1[K]⇒ 1]. (10)

Proof. The two games are syntactically equivalent. The only change is in the
order in which we select the new permutations at random. In G0, we first pick Ek
for each k ∈ K and we define Ẽ accordingly. In G1[K], we select first randomly the
permutations for Ẽ and then the other permutations Ek for k /∈ {K⊕ti}i∈[m]. �

Next, we create another hybrid G2 in which A interacts with the family Π,
and the unmodified E±, which is then independent of Π.

Game G2

∀i ∈ [m], Πti

$←− Pn.
∀k ∈ K, E′k

$←− Pn.
∀k ∈ K, Ek := E′k.

Run A
Π±(·,�),E±�(�)

.
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Notice that it is equivalent to write directly Ek
$←− Pn in this game but writing

it the way we did will make notations easier in the proof.
We will show that the difference between these two games is small, on average

on K. To show this, notice that going from G1[K] to G2, we only change Ek for
k ∈ {K⊕ ti}i∈[m] and using query magnitude arguments, we show that this leads
to a small change in the game value, on average on K.

Lemma 14.

E
K

$←−K
(Pr[G1[K]⇒ 1]− Pr[G2 ⇒ 1]) ≤ 8

√
mq′2

2n . (11)

Proof. Let G1[K,E′, Π] and G2[E′, Π] be the games G1[K] and G2 where we
additionally fix all the choices of E′k and Πti . Let us also fix such a choice E′
and Π. Let |ψi〉 the state of A in G2[E′, Π] before the ith query to E±�(�) and∣∣φKi 〉 the state of A in G1[K,E′, Π] at the same point.

Between the two games G1[K,E′, Π] and G2[E′, Π], we change the choice of
E±k only for k ∈ {K ⊕ ti}i∈[m]. After q′ queries, we therefore have by Theorem 1:

‖
∣∣φKq′+1

〉
− |ψq′+1〉 ‖ ≤ 2

∑
1≤i≤q′

|PK,t1,...,tm |φi〉 |

where PK,t1,...,tm is the projector on the part of the input that corresponds to a
key k ∈ {K ⊕ ti}i∈[m]. When K cycles over all possible keys, K = {0, 1}n, the
set {K ⊕ ti}i∈[m] describes {0, 1}n exactly m times. Thus, we have:∑

K∈K
|PK,t1,...,tm |φi〉 |2 = m

∑
x∈{0,1}n

|Px |φi〉 |2 = m

by normalization, and by Jensen’s inequality:(∑
K∈K

|PK,t1,...,tm |φi〉 |

)2

≤ |K|
∑
K∈K

|PK,t1,...,tm |φi〉 |2 = 2nm .

Afterwards, we use Corollary 1:∣∣∣Pr[G1[K,E′, Π]⇒ 1]− Pr[G2[E′, Π]⇒ 1]
∣∣∣ ≤ 4‖

∣∣φKq′+1
〉
− |ψq′+1〉 ‖

≤ 8
∑

1≤i≤q′
|PK,t1,...,tm |φi〉 |

and we take the average over K:

E
K

(∣∣∣Pr[G1[K,E′, Π]⇒ 1]− Pr[G2[E′, Π]⇒ 1]
∣∣∣) ≤ 8

|K|
∑

1≤i≤q′

∑
K∈K

|PK,t1,...,tm |φi〉 |

≤ 8
√
q′2m

2n .

37



This holds for all E′, Π hence by taking the average over these, we have

E
K

(∣∣∣Pr[G1[K]⇒ 1]− Pr[G2 ⇒ 1]
∣∣∣) ≤ 8

√
q′2m

2n .

which concludes the proof of the lemma. �

We can now finish the proof of our theorem. Game G2 is the ideal world.
Combining our two lemmata, we can conclude:∣∣∣Pr[G0 ⇒ 1]− Pr[G2 ⇒ 1]

∣∣∣ ≤ 8
√
mq′2

2n .

Remark 5. Making the proof work for general adaptative tweaks, which are
chosen by the adversary depending on her current state, turned out to be much
more difficult than we initially anticipated. In particular, our query magnitude
argument cannot be used as is, since we do not know in advance the positions at
which we would like to change the outputs of E±. Despite that, we conjecture
that the same bound can be achieved for adaptive tweaks, as there does not seem
to be any better attack. We leave this as an open question.

The bound given by Proposition 3 is not tight because of the √ . However,
for a constant success probability, the bound is matched by the following attack.
Lemma 15. There exists a quantum algorithm that for any E, makes q queries
to the TBC, q′ queries to E and succeeds in recovering the key of a key-tweak
insertion TBC with probability O

(
qq′2

2n

)
(thus distinguishing the instance from a

random family of permutations).
Proof. The attack runs in three phases:
1. The adversary makes q queries of the form EK⊕i(0) for i = 0, . . . , q − 1 and

stores the couples EK⊕i(0), EK⊕i⊕1(0) in a database D.
2. Using Grover’s algorithm, the adversary searches for an element z such

that (Ez(0), Ez⊕1(0)) ∈ D. As D is of size q, Grover search would require
O
(√

2n

q

)
queries to succeed with constant probability. After q′ queries, the

probability of success is O
(
qq′2

2n

)
.

3. Let t, z be the obtained pair such that Ez(0) = EK⊕t(0) and Ez⊕1(0) =
EK⊕t⊕1(0). The use of two elements makes the probability of a false positive
(a random collision) exponentially low. The adversary then concludes that
z = K ⊕ t i.e. K = z ⊕ t and checks that the key was correctly guessed.

If the TBC queried is a random family of permutations, then no solution exists
at Step 2. After running q′ iterations of Grover search, the attacker measures a
random element that does not pass the check.
Remark 6. The attack of Lemma 15 works even if the adversary does not control
the tweaks queried. It requires O (q) quantum-accessible classical memory. If the
tweaks are controlled (but still non adaptatively), the offline Simon’s algorithm
of [11] reduces the memory down to O

(
n2) qubits. The attack then is exactly

the related-key attack of [11, Section 6.1]
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C Attack on a Weakened QCB

In this section, we describe a forgery attack on a variant of QCB in which the IV
is not used in the AD processing. It is also applicable to ΘCB3 [25, 19], and it is
the first quantum forgery attack on this mode when used with an ideal TBC.

In this case, the tag of the empty message and one block of associated data is

T = f(IV )⊕ ẼK,(2,0)(a0)

Hence, we can query the one-bit input function

T (x) = f(IV )⊕ ẼK,(2,0)(0||x)

Using Lemma 2, we can compute the i-th output bit of this function, that we
note Ti(x).

We propose to use Deutsch’s algorithm, which allows to tell in one query
wether a one-bit input, one-bit output function is constant or not, on the function
Ti(x). It will be constant if and only if the i-th bit of ẼK,(2,0)(0||0)⊕ẼK,(2,0)(0||1)
is 0. Hence, in n queries (one to each of the Ti(x)), we can fully recover the value
of ẼK,(2,0)(0||0) ⊕ ẼK,(2,0)(0||1). This is enough to make some forgeries, as it
allows to compute a valid tag for any message with the associated data 1 given
the tag for the same message with the associated data 0. We could also proceed
similarly for any values of the type ẼK,(2,i)(a)⊕ ẼK,(2,i)(b).

Note that this attack cannot be applied to QCB, as it requires the AD to be
encrypted independently of the IV. Since the IV is used in all blocks in QCB, it
is impossible for the adversary to mount such an attack, which relies on re-using
the encryptions of some AD blocks of previous queries.
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