
QCB: Efficient Quantum-secure Authenticated
Encryption

Ritam Bhaumik1, Xavier Bonnetain2,3, André Chailloux1, Gaëtan Leurent1,
María Naya-Plasencia1, André Schrottenloher4, and Yannick Seurin5

1 Inria, Paris, France
firstname.lastname@inria.fr

2 Institute for Quantum Computing, Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, Canada

3 Université de Lorraine, CNRS, Inria, Nancy, France
4 Cryptology Group, CWI, The Netherlands

first.last@m4x.org
5 ANSSI, Paris, France
first.last@m4x.org

Abstract. It was long thought that symmetric cryptography was only
mildly affected by quantum attacks, and that doubling the key length
was sufficient to restore security. However, recent works have shown that
Simon’s quantum period finding algorithm breaks a large number of MAC
and authenticated encryption algorithms when the adversary can query
the MAC/encryption oracle with a quantum superposition of messages.
In particular, the OCB authenticated encryption mode is broken in this
setting, and no quantum-secure mode is known with the same efficiency
(rate-one and parallelizable).
In this paper we generalize the previous attacks, show that a large class
of OCB-like schemes is unsafe against superposition queries, and discuss
the quantum security notions for authenticated encryption modes. We
propose a new rate-one parallelizable mode named QCB inspired by TAE
and OCB and prove its security against quantum superposition queries.

Keywords: authenticated encryption, lightweight cryptography, QCB, post-
quantum cryptography, provable security, tweakable block ciphers.

1 Introduction

The cryptographic community has launched many competitions and standard-
ization efforts recently. The most recent ones are the CAESAR competition
for authenticated encryption (AE) and the NIST standardization processes for
post-quantum public-key primitives (PQC) [27] and lightweight cryptography

© IACR 2021. This is the full version of the paper published by Springer-Verlag
in the proceedings of ASIACRYPT 2021. The published version is available at:
https://doi.org/10.1007/978-3-030-92062-3_23

https://doi.org/10.1007/978-3-030-92062-3_23

(LWC) [28]. While these competitions have attracted a lot of attention, they
have represented rather disjoint efforts: the PQC process focuses on public key
cryptography, and post-quantum security has remained out of the scope of most
schemes submitted to the LWC process and to the CAESAR competition. A
few exceptions exist, like the LWC second-round candidate Saturnin [16] for
instance, which proposes a block cipher and an AE mode aiming at post-quantum
security. This is understandable because the impact of quantum computers on
symmetric cryptography is expected to be quite limited, and doubling the key
length is usually considered a sufficient measure to resist quantum attacks (such
as exhaustive key search with Grover’s algorithm).

Security in the superposition model. However, recent works [22, 32] have shown
that many MAC and AE modes are broken in the superposition model using
Simon’s quantum period finding algorithm [33]. In this model, the adversary is
capable of accessing a quantum encryption oracle, and of encrypting quantum
states. Though the practical significance of attacks in this model is an unsettled
issue in the community and opinions might differ, there is a clear consensus on
the importance of having provable security in this scenario. First of all, this
model is non-trivial, meaning that there exist secure schemes in this model.f
It also offers better composability, even if we are interested only in quantum
adversaries making classical queries. Finally, it captures intermediate scenarios
with some level of quantum interaction between the attacker and the oracle and
covers the scenarios of obfuscation or white-box encryption.

Though lightness and security against quantum adversaries are two very
different topics, let us remark that they are not orthogonal. In particular, Sat-
urnin is a submission to the LWC effort claiming security in the superposition
model, based on a block cipher. But its authenticated encryption mode is not
parallelizable and requires two encryption calls per message block. More precisely,
it uses the encrypt-then-MAC construction and combines a quantum-secure
mode of encryption (the Counter Mode) with a quantum-secure MAC similar to
HMAC/NMAC.

Towards a quantum-safe rate-one AE mode. OCB [23] is one of the most influential
authenticated encryption modes. OCB3 is parallelizable, and is a rate-one scheme,
using just one block cipher call per block of message. It is proven secure in the
classical setting provided that its underlying block cipher is a strong PRP [8].
Nevertheless, several attacks using Simon’s algorithm [33] were proposed in [22],
with a complexity that is linear in the size of the state. These attacks, that we
recall in Section 3, can efficiently recover a hidden secret period if the attacker is
allowed to query messages in superposition.

Our work started with the idea to make OCB post-quantum secure: we wanted
to identify its weaknesses, correct them and obtain a proof of quantum security.
The main contribution of this paper is to fill this gap and to propose such a mode
together with a proof of security.

f For example, indistinguishability under quantum encryption queries can be achieved
by the Counter Mode from a classical PRP assumption [3].

2

Results and Organization of the Paper. In Section 2, we recall some standard
definitions and technical material for our quantum security proofs and attacks.
Note that contrary to most of the recent works on this topic, we shall not
require Zhandry’s random oracle recording technique [35] and we will use instead
simpler proof arguments, that we introduce here. We also introduce an extension
of Hosoyamada and Sasaki’s truncation technique [20] that allows to compose
any linear function with a quantum oracle and compute it with a single query.
In Section 3, we define an OCB-like mode with more complex offsets. The previous
quantum attack on OCB used the fact that the difference between some offsets
was independent of the nonce. We show how to attack this modified OCB with
a single quantum query, yielding an attack that can be applied regardless of
the nonce dependence. In Section 4, we define quantum-secure tweakable block
ciphers. We are interested in adversaries making queries with classical tweaks and
a superposition of messages, a setting which corresponds to the attacks on OCB.
In this setting, we propose the key-tweak insertion TBC, which requires a related-
key secure block cipher. In Section 5 we define the new rate-one parallelizable
quantum safe mode, QCB, and propose two instances: one using Saturnin with
the key-tweak insertion TBC and one using the dedicated TBC TRAX-L-17 [4].
We prove in Section 6 the security of QCB if it is used with a secure TBC. We use
two notions: IND-qCPA [10] and BZ-unforgeability [9]. We discuss other possible
definitions in Section 7.

2 Preliminaries

We open this section with standard notations for permutations, block ciphers and
AEAD schemes. We also define the quantum oracle access that will be given to
such a scheme in our proof. We recall some standard results and definitions related
to quantum provable security. Finally, we introduce our new linear post-processing
lemma (Lemma 2) that we will use in Section 3 and Section 7.

2.1 Definitions and Notations

We let Pn denote the set of permutations acting on {0, 1}n. By x $←− S we mean
that x is taken uniformly at random from the set S. We let Af(·) ⇒ b (resp.
Af(�) ⇒ b) denote an algorithm that performs classical queries to oracle f (resp.
quantum queries to f) and outputs b. We write Af±(· or �) when A has access
to the f and the f−1 oracle, which we blend into a single oracle f±.

Block Ciphers. A block cipher with key space {0, 1}k and message space {0, 1}n is
a map E : {0, 1}k × {0, 1}n → {0, 1}n such that for every key K ∈ {0, 1}k, M 7→
E(K,M) is a permutation on {0, 1}n. We let EK denote the mapM 7→ E(K,M).
If E is a block cipher then its inverse is the map E−1 : {0, 1}k×{0, 1}n → {0, 1}n
defined by E−1(K,C) = E−1

K (C).

3

AEADs. An authenticated encryption scheme with associated data (AEAD) is
specified by a tuple of sets (K, IV,A,M, C) where K is the key space, IV is
the IV space, A is the associated data space, M is the message space, and C
is the ciphertext space, and a pair of deterministic algorithms (Enc,Dec) with
signatures

Enc : K × IV ×A×M→ C
Dec : K × IV ×A× C →M∪ {⊥} .

We require an AEAD scheme to be correct, i.e., for all (K, IV,A,M) ∈ K×IV ×
A×M,

Dec (K, IV,A,Enc (K, IV,A,M)) = M .

We write EncK (IV,A,M) for Enc (K, IV,A,M) and similarly DecK (IV,A,C).
Note that this is the most generic definition of an AEAD, but in our case, we will
replace the ciphertext space C by C × T , and the scheme will output a ciphertext
C of variable length and an authentication tag T ∈ T of fixed size. As we consider
AEADs based on block ciphers, C and M will be parsed into blocks that we index
M0, . . . ,M` (resp. C0, . . . , C`) where ` is the block length of M (resp. of C).

Quantum Computing. In this paper, an adversary is a quantum algorithm that
accesses one or more oracles. We use the quantum circuit model, whose basics
can be found in [29]. A quantum algorithm is initiated with a set of m qubits
(two-level quantum systems) in a fixed state |0〉. The state of the algorithm lies
in a Hilbert space of dimension 2m, with a canonical basis {|i〉 , 0 ≤ i ≤ 2m − 1}.
Basic unitary operators, called quantum gates (drawn from a universal gate
set), are applied on the qubits. These computations are interleaved with oracle
calls and partial measurements, which transform a pure state (an element of the
Hilbert space) into a mixed state (a probability distribution of pure states). For
ease of notation, we often omit normalization factors from quantum states (e.g.,

1√
2 (|0〉+ |1〉) can be written |0〉+ |1〉).

2.2 Quantum Oracles and Query Model

We model quantum oracle access to any function f : X → Y as a unitary
operation: |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉 (this is the standard oracle) or as |x〉 |y〉 7→
(−1)y·f(x) |x〉 |y〉 (this is the phase oracle). Standard and phase oracles are well-
known to be equivalent.

Choice of IVs. In the classical setting, the security of IV-based AEADs draws on
the fact that the IVs of successive queries are distinct and/or randomly chosen.
So far, all security notions defined in the quantum setting have followed this
setting [10, 3, 17], by considering randomness-based modes where the random
IV is chosen at each new (quantum) query. Although a non-trivial extension to
superposition IVs might be possible, it remains out of scope of our work.

In this paper, we will use classical and distinct IVs, but relax the randomness
assumption. In the security games for AEAD defined and used in Section 6, we

4

start the game by an initialization phase in which the adversary declares the IVs
that he is going to query. This makes our reasoning easier and (as we will justify
in Section 6) it includes the cases where IVs are generated at random, or with a
stateful counter.

Quantum Query Model. The input plaintext and AD will be in superposition.
Furthermore, the bit-length of the message, AD and ciphertext have to be chosen
classically and cannot differ within a query; that is, we encrypt a superposition
of messages of a fixed length. We let the adversary choose the bit-length of the
message and AD in the queries between 0 and n` for a fixed ` (which determines
the maximal number of blocks to be queried). Thus, ` will intervene as a parameter
in our bounds, together with the number of queries q.

Hence, our encryption and decryption oracles are actually families of unitary
operators, indexed by these lengths and by the IV choice. As the ciphertext will
be longer than the plaintext, we consider that the encryption oracles for messages
of m bits output c(m) > m bits. Conversely, messages of distinct lengths may be
encrypted to ciphertexts of the same length. Hence, the decryption oracle of a
ciphertext of c bits writes a canonical encoding of either the message or ⊥ on c
bits. We write these oracles Om,a,IVEncK

and Oc,a,IVDecK
respectively, with 0 ≤ m, a ≤ `n.

The encryption Om,a,IVEncK
is a standard oracle for EncK with messages of length

m, AD of length a and a fixed IV ∈ IV:

|A〉︸︷︷︸
a qubits

|M〉︸︷︷︸
m qubits

|X〉︸︷︷︸
c(m)
qubits

7→ |A〉 |M〉 |X ⊕ EncK (IV,A,M)〉︸ ︷︷ ︸
c(m) qubits

.

The decryption Oc,a,IVDecK
is a standard oracle for DecK with ciphertexts of

length c, AD of length a and a fixed IV:

|A〉︸︷︷︸
a qubits

|C〉︸︷︷︸
c qubits

|Y 〉︸︷︷︸
c qubits

7→

 |A〉 |C〉
∣∣∣Y ⊕ M̂〉 if C = EncK (IV,A,M)

|A〉 |C〉
∣∣∣Y ⊕ ⊥̂〉 otherwise

with M̂ the encoding of M and ⊥̂ the encoding of ⊥.

Counting Data, Time and Memory. While the oracles authorize messages, AD
and ciphertexts to take any number of bits, the modes that we will consider are
built on block ciphers with a fixed block size n. Hence, we can count the data
complexity in the number of blocks queried: a query to EncK or to OEncK

with
` blocks costs ` data. We count the time complexity either in the number of
quantum gates, or in the number of block cipher calls, as a quantum standard
oracle. We consider the cost of a single block cipher call to be marginal with
respect to the other terms, as it is polynomial in n, making these definitions
equivalent. The memory will also be counted in n-bit registers, either classical or
quantum.

5

2.3 Distances

Usually, in game-based definitions, the adversary’s advantage is a difference
in probabilities to output 1 or 0. However, since our adversaries are quantum,
their final state is a quantum state. It is well-known that the Euclidean distance
between quantum states is related to the distance between the distributions that
result from measuring these states. Thus, the probabilistic interpretation of the
adversary’s result (measuring 0 or 1) can be replaced by a Euclidean distance.

Definition 1 (Euclidean distance). The Euclidean distance between |φ〉 =∑
αi |i〉 and |ψ〉 =

∑
βi |i〉 is given by: ‖ |φ〉 − |ψ〉 ‖ =

√∑
i |αi − βi|2 .

Two quantum states |φ〉 =
∑
αi |i〉 and |ψ〉 =

∑
βi |i〉, obtained after running

an adversary in two different scenarios, incur two distributions D and D′ over the
states in the computational basis (we could also take another basis, without any
change, since composing by a unitary operator leaves the distance unchanged).
These distributions are such that D(i) = |αi|2 and D′(i) = |βi|2. The total
variation distance between D and D′ is defined as

∑
i |D(i)−D′(i)| and equal

to
∑
i ||αi|2 − |βi|2|. From Lemma 3.6 in [7], we obtain:

∑
i ||αi|2 − |βi|2| ≤

4‖ |φ〉 − |ψ〉 ‖ .
The decision of a quantum adversary to output 0 or 1 is conditioned only on

its final state. Thus, if two adversaries have similar end states, they can only win
with similar probabilities.

Lemma 1. Let A be a quantum adversary that outputs a bit b. Let B be another
adversary that also outputs a bit b, and let |ψ〉 and |φ〉 be their respective states
after the last oracle query, before measuring their output in the computational
basis. Then:

|Pr [A(·) = 1]− Pr [B(·) = 1] | ≤ 4‖ |ψ〉 − |φ〉 ‖.

In practice, we will consider a game in which some parameter is selected
at random (e.g., the key K), then the game runs and the final state of the
adversary depends on K. We are interested in the quantity |Pr

K
$←K

[A(·) = 1]−
Pr

K
$←K

[B(·) = 1] | which determines the difference in advantage between the two
adversaries. We have: Pr

K
$←K

[A(·) = 1] =
∑
k∈K Pr [K = k] Pr [A(·) = 1|K = k].

That is, we can write:

|Pr
K

$←K
[A(·) = 1]− Pr

K
$←K

[B(·) = 1] |

≤ 1
|K|

∑
k∈K

|Pr [A(·) = 1|K = k]− Pr [B(·) = 1|K = k] |

≤ 4
|K|

∑
k

‖ |ψk〉 − |φk〉 ‖ ,

where |ψk〉 and |φk〉 are the final states conditioned on the fact that the selected
key is k. So in practice, we will fix all the random parameters, compute the
euclidean distance between the end states and take the average.

6

2.4 Query magnitude

We will use a “query magnitude” argument, taken from [6]. Considering an oracle
O with arbitrarily defined input and output registers, we modify O on a subset
D of its inputs to make the oracle O′. If an algorithm asks queries to O, but puts
only “low amplitude” on the inputs of D, then changing O into O′ does not have
any significant impact on the final state.

Theorem 1 (Adapted from [6], Theorem 3.3). Let A be a quantum algo-
rithm that makes q queries to an oracle O and let |ψ0〉, . . . , |ψq〉 be the current
state before each query (|ψq〉 is the final state). Let O′ be an oracle that is the
same as O, except on some subset D of its inputs, A′ be the same as A, except
that every query to O is replaced by a query to O′, and |ψ′i〉 the state of A′. At
each step of the circuit computation, we let |x〉 |y〉 |a〉 denote the basis states,
where |x〉 is the input to O (or O′), |y〉 is the output register and |a〉 the rest of
the qubits. Let PD be the projector on the basis states such that x ∈ D. Then:

‖ |ψq〉 −
∣∣ψ′q〉 ‖ ≤ 2

∑
i

|PD(|ψi〉)| .

2.5 On Random Functions and Permutations

We will use the following results from the literature. First of all, as shown by
Zhandry, it is impossible to distinguish a random function with n-bit domain
from a random permutation with probability bigger than O

(
q3

2n

)
with q queries

(where the constant in the O is fixed by the theorem); and conversely. We refer
to this statement as PRF-PRP switching.

Theorem 2 ([34], Theorem 3.1). Let h : {0, 1}n → {0, 1}m be a random
function. Any quantum algorithm making q quantum queries to h can only find a
collision with probability at most O

(
q3

2m

)
. If n ≤ m, then any quantum algorithm

making q queries cannot distinguish h from a random injective function except
with probability O

(
q3

2m

)
.

Second, we use a theorem by Boneh and Zhandry that shows that a quantum
algorithm making q queries to a random oracle with a domain of exponential size
can only output q + 1 valid {input, output} pairs with negligible probability.

Theorem 3 ([9], Theorem 4.1). Let A be a quantum algorithm making q
queries to a random oracle h : {0, 1}n → {0, 1}m, and producing k > q pairs
(xi, yi) ∈ {0, 1}n×{0, 1}m. The probability that the xi are distinct and yi = h(xi)

for all 1 ≤ i ≤ k is at most: 1
2mk

∑q
r=0

(
k
r

)
(2m − 1)r . If k = q + 1 then the

adversary succeeds with probability at most q+1
2m .

We will use the terminology “(q, q+ 1) security game” to refer to the game in
which A accesses Oh q times and must produce q + 1 valid pairs. An alternative

7

proof of Theorem 3 for the q, q + 1 case can be found in the full version of [1].
By combining this theorem with Theorem 2, we obtain a similar statement for
random permutations.

Corollary 1. There exists a constant c such that, if A is a quantum algorithm
making q queries to a random permutation Π : {0, 1}n → {0, 1}n and trying to
produce q + 1 valid input-output pairs, then A can only succeed with probability
at most: c q

3

2n .

The term in Corollary 1 is simply the sum of the PRP-PRF distinguishing
advantage and the (q, q + 1) advantage. The former grows much faster with q,
but we will mostly use Corollary 1 with a single query, where both terms are
O (2−n).

2.6 Computing a Linear Function of a Quantum Oracle

In [20] Hosoyamada and Sasaki show that given access to a standard oracle Of
for a function f , it is possible to make a quantum query to Trunc(f(x)), the
truncation of the output f(x) to some bits, using only one quantum query to f .
We now extend this result, and show that it is possible to compute any linear
function of the output using only one quantum query. This is especially important
with the oracles we will be using, since they involve IVs that are changed at each
new quantum query.

The core observation in [20] is simple: the state |0〉+ |1〉 is invariant whether
we XOR a 0 or a 1 on it. Hence, before the query, in the output register, we can
set the qubits we want to drop to |0〉+ |1〉 and the qubits we want to keep to |0〉.
We will now extend this result, with the following lemma:

Lemma 2 (Computing a linear function of a quantum oracle). Let
f : {0, 1}n → {0, 1}m be a function, Of : |x〉 |y〉 7→ |x〉 |y ⊕ f(x)〉. Let g :
{0, 1}m → {0, 1}o be an F2-linear function. Then it is possible to construct the
oracle Og◦f : |x〉 |y〉 7→ |x〉 |y ⊕ (g ◦ f)(x)〉 using two queries to Og and a single
query to Of .

Proof. Let Og be a quantum oracle that implements g, assume we are given the
quantum state |x〉 |y〉. We first add an ancilla register containing the uniform
superposition on m bits. We then have the state |x〉 |y〉

∑2m−1
z=0 |z〉 . Then, we

apply Og with register z as input and y as output, and we get

|x〉
2m−1∑
z=0
|y ⊕ g(z)〉 |z〉 .

Then, we apply Of with register x as input and z as output. We get

|x〉
2m−1∑
z=0
|y ⊕ g(z)〉 |z ⊕ f(x)〉 .

8

Finally, we reapply Og with register z as input and y as output. We get

|x〉
2m−1∑
z=0
|y ⊕ g(z)⊕ g(z ⊕ f(x))〉 |z ⊕ f(x)〉 .

As g is linear, we have g(z) ⊕ g(z ⊕ f(x)) = g(f(x)). Hence, the state can be
rewritten as

|x〉 |y ⊕ g(f(x))〉
2m−1∑
z=0
|z ⊕ f(x)〉 .

This state can then be simplified, as the z register contains the uniform superpo-
sition over m bits, independently of the value of f(x), to

|x〉 |y ⊕ g(f(x))〉
2m−1∑
z=0
|z〉 .

We can now remove the z register, as it is not entangled with the others, and
obtain the quantum state we wanted.

Remark 1. Lemma 2 can also be applied if the quantum oracle to f uses a group
law different from ⊕ to update its output register. In that case, g shall be a linear
function for the corresponding group law.

3 Offsets don’t work

In this section we start by recalling the superposition attacks on OCB from [22].
We will next present a first attempt to repair it, that consists of tweaking the
value of the offsets, along with a new original superposition attack that shows
that any offset-based variant can be broken using Simon’s algorithm.

3.1 Attack with Simon’s Algorithm on OCB

OCBg [23] is one of the most influential authenticated modes. OCB3 is represented
in Figure 1, with ∆i = gray(i) · EK(0n) (using a finite field multiplication) and
∆IV
i = ∆i ⊕ FK(IV), with F a simple function of K and IV and gray(i) the

gray encoding of i.
OCB3 is classically proven secure if its underlying cipher is a strong PRP.

Simon’s algorithm. Simon’s algorithm, proposed in [33] allows to solve effi-
ciently, with a complexity of O(n), the following problem when we are allowed
to ask superposition queries to F :
g Three versions of OCB have been proposed. We focus here on the last one, OCB3,
while all three suffer from similar superposition attacks.

9

M0

∆IV
0

EK

∆IV
0

C0

M1

∆IV
1

EK

∆IV
1

C1

. . .

M`

∆IV
`

EK

∆IV
`

C`

M0 ⊕ . . .⊕M`

∆IV
`+1

EK

⊕
iEK(Ai ⊕∆i)

Tag

Fig. 1. OCB3. (Mi) is the message, (Ai) is the associated data.

Given a Boolean function F on n bits and the promise that there exists s
such that, for any x 6= y, F(x) = F(y) ⇐⇒ x = y ⊕ s, find s.

Simon’s algorithm recovers a vector orthogonal to the period with a single
quantum query; with O(n) queries, the period is deduced with linear algebra. As
shown in [22], a sufficient condition on F is that there exists no “unwanted period”
t 6= s such that F(x ⊕ t) = F(x) holds with probability ≥ 1

2 . For comparison,
classically, the best algorithm requires Ω

(√
2n
)
queries.

Quantum Superposition Attacks on OCB. Two polynomial-time attacks
against OCB that require quantum superposition queries to the construction
were proposed in [22]. They both use Simon’s algorithmh.

The main weakness of OCB is that the nonce only influences the construction
through the value ∆, which is XORed to the internal state. The scenario of
the attack considers that the attacker has access to a superposition oracle that
given a superposition of messages as input, returns the superposition of their
encryption. The key is a secret value and the IV is different for each query.

The first attack considers an empty message, and two variable identical blocks
x of associated data. The output is then

EK(FK(IV))⊕ EK(x⊕∆1)⊕ EK(x⊕∆2) .

This function is periodic, of period ∆1 ⊕∆2. It is IV-dependent, but the period
is not. This allows to use Simon’s algorithm to recover the period.

The second attack uses the same idea, but attacks the encryption part and
not the authentication. Its core idea is to consider the XOR of two distinct
blocks i and j that encrypt the same message block. This is equal to fi,j(x) =
EK(∆IV

i ⊕ x)⊕ EK(∆IV
j ⊕ x)⊕∆IV

i ⊕∆IV
j .

h One attack on OCB presented in [22] was partial, as it assumed without any mention
the use of Lemma 2.

10

This function is periodic, of period ∆IV
i ⊕∆IV

j = (gray(i)⊕gray(j))·EK(0n) .
We can then use Simon’s algorithm, and this time we need to use Lemma 2 to
compute the XOR of two blocks using only one query.

Both attacks recover the difference of two offsets, which is sufficient to make
some forgeries. Note that in both cases, the existence of an unwanted period
t would imply a high-probability higher-order differential of EK , which would
result in a classical break.

3.2 A First (Failed) Attempt to Fix OCB
To protect a mode vulnerable to Simon’s algorithm, Alagic and Russell [2]
proposed to replace the XOR by modular addition. However, this merely increases
the attack complexity from polynomial to subexponential [15], which does not
give acceptable security levels for standard block sizes (e.g., 256 bits).

In order to make OCB quantum-resistant, we will rather try to avoid these
attacks entirely. Our first idea is to avoid having an IV-independent period, by
making the influence of EK(IV) different for each block. For instance, ∆i could
be changed to a multiple of EK(IV): ∆i = i · EK(IV) . (The multiplication is
still done in the finite field, like in OCB’s offsets). This way, the previous attack
could only recover one bit of EK(IV) at a time, which is useless if the IV changes
for each query.

New superposition attack for any nonce-based solution. Actually, the
previous proposal is still unsafe, but it requires a new more advanced attack that
we present here. This evolved attack is inspired by the multiple-period attacks
from [11]. Its core idea is to leverage the possibility to encrypt a long message to
construct multiple copies of the periodic function, in such a way that one query
will likely be enough to recover all the bits of the period.

Let g be the function that maps the sequence (x1, x2, . . . , x2n−1, x2n) to
(x1 ⊕ x2, x3 ⊕ x4, . . . , x2n−1 ⊕ x2n).

We consider the function

f(x1, . . . , xn) = g ◦OCB(x1, x1, x2, x2, . . . , xn, xn)

Reusing the notation fi,j(x) = EK(∆i ⊕ x)⊕ EK(∆j ⊕ x)⊕∆i ⊕∆j , we have

f(x1, . . . , xn) = (f1,2(x1), f3,4(x2), . . . f2n−1,2n(xn))

This function is periodic, of period:

s = ∆1⊕∆2, . . . ,∆2n−1⊕∆2n = (1⊕2) ·EK(IV), . . . , ((2n−1)⊕(2n)) ·EK(IV)

We can also bound the probability of unwanted collisions. If f admits an unwanted
period t with probability greater than 1

2 , then one of the fi,j would also admit
an unwanted period ti,j with probability greater than 1

2n . As before, this is
impossible if EK does not admit a high-probability higher-order differential.

Hence, Simon’s algorithm allows us to sample one vector orthogonal to each
of the periods of the involved fi,j . As these periods are linearly dependent, this
is enough to recover completely the value EK(IV), assuming n is large enough.

11

Conclusion. This attack shows that a solution based on offsets is unlikely to
work. After this failed attempt, we decided to move one step backwards. OCB
can be seen as an instantiation of the mode TAE or ΘCB, which is defined with
a Tweakable Block Cipher (TBC). The TBC used in OCB is the LRW mode [25],
which builds upon a block cipher, and is quantumly broken [22]. The attacks
that we gave all seem to stem from the TBC itself, not the mode.

4 Quantum-secure Tweakable Block Ciphers

In this section, we define quantum-secure tweakable block ciphers (TBCs). We
give a TBC construction based on a block cipher in the ideal cipher model, which
we will recall below, and explicitly provide its security guarantees.

4.1 Definitions

Definition 2. Let E be a block cipher. Let A be an oracle algorithm (making
either classical or quantum queries depending on the case) which outputs a bit.
The advantage of A against the PRP and Strong PRP (SPRP) security of E is
defined as:

AdvPRP
E(∗)(A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[AEK(∗) ⇒ 1]− Pr
Π

$←−Pn

[AΠ(∗) ⇒ 1]

∣∣∣∣∣∣
AdvSPRP

E(∗) (A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[AE
±
K

(∗) ⇒ 1]− Pr
Π

$←−Pn

[AΠ
±(∗) ⇒ 1]

∣∣∣∣∣∣
Depending on the access that the adversary has (classical or quantum) to the

messages, we replace the ∗ symbol by · (classical) or � (quantum).

Tweakable Block Ciphers. A tweakable block cipher (TBC) with key space
{0, 1}k, tweak space {0, 1}t, and message space {0, 1}n is a map Ẽ : {0, 1}k ×
{0, 1}t × {0, 1}n → {0, 1}n such that for every key K ∈ {0, 1}k and every tweak
T ∈ {0, 1}t, M 7→ Ẽ(K,T,M) is a permutation of {0, 1}n. We let ẼK denote
the map (T,M) 7→ Ẽ(K,T,M). If Ẽ is a TBC then its inverse is the map
Ẽ−1 : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n defined by Ẽ−1(K,T,C) being the
unique M such that Ẽ(K,T,M) = C. A tweakable permutation with tweak space
{0, 1}t and message space {0, 1}n is a map Π̃ : {0, 1}t × {0, 1}n → {0, 1}n such
that for every tweak T ∈ {0, 1}t, M 7→ Π̃(T,M) is a permutation of {0, 1}n. We
let P̃t,n denote the set of all tweakable permutations with tweak space {0, 1}t
and message space {0, 1}n.

Definition 3. Let A be an oracle algorithm making (classical or quantum)
queries and which outputs a bit. The advantage of A against the TPRP, resp.

12

strong TPRP (STPRP) security of Ẽ is defined as

AdvTPRP
Ẽ(∗,∗)

(A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[AẼK(∗,∗) ⇒ 1]− Pr
Π̃

$←−P̃t,n

[AΠ̃(∗,∗) ⇒ 1]

∣∣∣∣∣∣
AdvSTPRP

Ẽ(∗,∗)
(A) :=

∣∣∣∣∣∣ Pr
K

$←−{0,1}k

[AẼ
±
K

(∗,∗) ⇒ 1]− Pr
Π̃

$←−P̃t,n

[AΠ̃
±(∗,∗) ⇒ 1]

∣∣∣∣∣∣ .
Depending on the access that the adversary has (classical or quantum) to

the messages and to the tweaks, we replace the ∗ symbols by · (classical) or �
(quantum).

The modified (S)TPRP Game. In the proofs of this section, we consider an
adversary A playing a modified (S)TPRP game that consists of three phases:

• Pre-Declaration Phase: In the first phase, A declares a set of m tweaks
{T1, . . . , Tm}.

• Quantum Phase: In the second phase, A gets access to a standard oracle
implementing either Ẽ(±)

K or Π̃(±), and can make q1 quantum queries with
classical tweaks, subject to the restriction that the tweak is always chosen
from the set of pre-declared tweaks {T1, . . . , Tm}, then measures its final
state and outputs s0 classical bits;

• Classical Phase: In the final phase, A makes an additional q2 classical queries
to the oracle, this time with no restriction on the set of tweaks that can be
queried, such that the queries are deterministic functions of the s0 classical
bits output at the end of the previous phase.

Thus, the bounds that we will obtain will depend on the number of pre-declared
tweaks m, the number of quantum queries q1 made by A, the number of classical
bits s0 output at the end of the quantum phase, and the number of classical
queries q2 made by A. Note that in the quantum phase some of the pre-declared
tweaks may be used multiple times, and some can be ignored entirely. We use
the notation Adv(S)TPRP

Ẽ(·,�)
(A) for this restricted case.

TBCs from Block Ciphers. In this section, we will construct a TBC from
a block cipher, and prove security in the ideal cipher model. In the quantum
setting, this model was previously considered by Hosoyamada and Yasuda [21]
to analyze the Davies-Meyer and Merkle-Damgard constructions. This means
that the underlying block cipher E is chosen uniformly at random from the set
BCk,n of all block ciphers with key space {0, 1}k and message space {0, 1}n at the
beginning of the (S)TPRP distinguishing game and the adversary is allowed to
make quantum queries to E± (specifying the key and the plaintext/ciphertext).

13

The advantage is then defined as

Adv(S)TPRP
Ẽ

(A) :=

∣∣∣∣∣∣∣∣∣∣
Pr

K
$←−{0,1}k

E
$←−BCk,n

[A
Ẽ

(±)
K

(∗,∗),E±�(�)
⇒ 1]− Pr

Π̃
$←−P̃t,n

E
$←−BCk,n

[A
Π̃(±)(∗,∗),E±�(�)

⇒ 1]

∣∣∣∣∣∣∣∣∣∣
.

(Note that the adversary has access to E± even in the non-strong TPRP defini-
tion.)

4.2 Impossibility Results

In order to illustrate the difficulties of building a quantum-secure TBC, even in
a weak sense, let us first consider a few examples.

LRW. The LRW mode [25] uses an almost 2-XOR universal hash function family
H and adds h ∈ H to the key:

ẼK,h(T, x) = EK(h(T)⊕ x)⊕ h(T) .

An ε-almost 2-XOR universal hash function family H is such that for all
x, y, z with x 6= y, the probability of h(x)⊕ h(y) = z is small (less than ε) when
h is chosen at random. Classically, LRW is a strong TBC.

However, the LRW mode is not a quantum-secure TBC even if we allow only
classical queries to the tweaks. This was shown in [22], with an attack that is
close to the OCB attacks: by querying only two classical tweaks T0, T1, one can
build a function: f(x) = Ek(h(T0)⊕ x)⊕ h(T0)⊕ Ek(h(T1)⊕ x)⊕ h(T1) which
is periodic, of period h(T0)⊕ h(T1). Using Simon’s algorithm, we can recover the
period of this function in O (n) queries. This provides a powerful distinguisher,
as this property is extremely unlikely with random permutations. Note that this
distinguisher still applies for any function h, even if it is an unknown qPRF.

Key-tweak Insertion. We will consider the key-tweak insertion TBC, built from
a block cipher E as: ẼK(T,M) = EK⊕T (M). It admits a simple distinguisher
based on Simon’s algorithm if the tweaks are queried in superposition: this is the
quantum related-key attack of [31]. Indeed, the function f(�) = EK⊕�(0)⊕E�(0)
admits K as a period, and so we can use Simon’s algorithm again.

4.3 Proof of Security for the Key-tweak Insertion TBC

Let Ẽ±K(T, x) = E±K⊕T (x) denote the key-tweak insertion TBC. The following
proposition shows the STPRP security of this TBC in the ideal cipher model
against an adversary playing the modified STPRP game described earlier. We
give its proof in Appendix A.

14

Proposition 1. Let A be an adversary who makes q1 quantum queries to an
oracle implementing Ẽ±K or Π̃± with a pre-declared set of tweaks of size m, and
q′ queries to E±, followed by outputting s0 bits and making q2 classical queries
to the same oracle. Then:∣∣∣∣∣∣ Pr

K
$←−K

[A
Ẽ±

K
(·,�),E±�(�)

⇒ 1]− Pr
{ΠT }

$←−Pn

[A
Π±(·,�),E±�(�)

⇒ 1]

∣∣∣∣∣∣
≤ 8
√
mq′2

2k +
√

q2s0

2 · 2k .

Notice that the above bound depends on m but not on q1 which is reminiscent
of the classical security bound of this TBC (see [5], Theorem 6.3 and Corollary 6.5)
that depends on the number of different tweaks used and not on the number of
queries to Ẽ±.i

We do not explicit how this set of tweaks is determined. It could for example
be chosen by the adversary. In that case of course we should not allow him to
have a complete control over the size of this set, i.e., the choice of m, or else he
could choose m extremely large which would make the above bound useless.

This proposition implies the security when the adversary queries non-adaptive
tweaks (so they are predetermined from the start) in which case m = q1, but also
allows some adaptivity from a predefined set of tweaks for which we can control
the size.

When proving the quantum security of QCB in Section 6, we will use the
above proposition, but we will be able to control the value of m which will not
be significantly larger than q1.

4.4 Other Directions

Quantum-secure TBCs have been independently considered by Hosoyamada and
Iwata in [19]. They used a stronger notion of security where tweaks can be queried
in superposition, and showed how to construct such a TBC from a block cipher.
Their TBC (LRWQ) does not use the ideal cipher model, and only requires the
block cipher to be secure as a qPRP. However, they use three block cipher calls
for each TBC call, one to process the tweak, and two for the plaintext (before
and after XORing the encrypted tweak). Thus, this construction cannot achieve
the efficiency that we target. Note that they bound the adversary’s advantage,
after q queries, by O(

√
q6/2n), compared to a classical O(

√
q2/2n) (assuming

respectively that the cipher behaves as a qPRP, and a PRP).

5 Definition of QCB

In this section, we describe the QCB mode, an AEAD based on a Tweakable Block
Cipher. It is similar to the TAE mode [24, 25] and to ΘCB [30, 23]. Throughout

i Theorem 6.3 in [5] is about related-key attacks, but this implies a corresponding
result for the key-tweak insertion TBC, see Theorem 7.1 of the same paper.

15

Algorithm 1 QCB
Input: message M , associated data A, IV , key K
Requirements: Initialization vectors should not be reused
Output: ciphertext C, tag T

1: Pad the initialization vector if necessary
2: Split M into full blocks M0,M1, . . .M` and a final block M∗ (partial or

empty)
3: Split A into A0, A1, . . . Aj , A∗
4: for all i = 0 to ` do
5: Ci ← ẼK,(0,IV,i)(Mi) . Encryption of block i
6: end for
7: C∗ ← ẼK,(1,IV,`)(pad(M∗)) . Encryption of the final block
8: T ← 0
9: for all i = 0 to j do

10: T ← T ⊕ ẼK,(2,IV,i)(Ai) . Absorb AD block i
11: end for
12: T ← T ⊕ ẼK,(3,IV,j)(pad(A∗)) . Absorb the final AD block
13: T ← T ⊕ ẼK,(4,IV,`) (M0 ⊕ . . .⊕M` ⊕ pad(M∗))
14: return C = (C0‖C1‖ . . . ‖C`‖C∗), T

this section, ẼK,t will denote a TBC used with key K and tweak t, of block size
n. We separate the tweak space in a cartesian product: T = D × IV × L. Thus,
tweaks are triples (D, IV, j) where D is a domain separator, IV will be an IV,
and j will be a block index. Only 5 values of domain separator need to be used.

The mode is defined in Algorithm 1 and represented in Figure 2 and Figure 3.
When the message and AD are cut in blocks, the last block (M∗ and a∗ respec-
tively) may be empty. We define the padding scheme pad(M∗) as appending 10∗
(a 1 followed by as many zeroes as necessary to fill the block). Note that due to
the padding and structure of QCB, the ciphertext C is always longer than the
plaintext M (by n bits at most).

M0

ẼK,(0,IV,0)

C0

M1

ẼK,(0,IV,1)

C1

. . .

M`

ẼK,(0,IV,`)

C`

pad(M∗)

ẼK,(1,IV,`)

C∗

Fig. 2. QCB, encryption.

16

A0

ẼK,(2,IV,0)

A1

ẼK,(2,IV,1) . . .

. . .

Aj

ẼK,(2,IV,j)

pad(A∗)

ẼK,(3,IV,j)

⊕
iMi ⊕ pad(M∗)

ẼK,(4,IV,`)

T

Fig. 3. QCB, processing of the associated data and computation of the tag.

Avoiding Quantum Attacks. It is important to include the IV in the tweak
when processing the AD. Otherwise, there is a quantum forgery attack based on
Deutsch’s algorithm [14]. In Section 6, we will prove that QCB is secure assuming
a weak quantum-secure TBC. We will use the following property, which follows
from its definition.

Proposition 2 (Number of tweaks (informal)). For a given IV , there
exists a set of tweaks T (IV) of size |T (IV)| = 5(`+ 1) such that any QCB query
comprised of at most `n (included) bits of AD and `n bits of message can only
reach tweaks in the set T (IV).

Proof. The tweaks are of the form (d, IV, i) where i is a block number between 0
and ` (included) and d a domain separator that takes 5 values.

Instantiation with Saturnin: Saturnin-QCB. We propose to instantiate QCB
with the block cipher Saturnin [16], a second-round candidate of the NIST
LWC process [28]. Saturnin has 256-bit blocks and keys. In addition, the cipher
admits a domain separator D of 4 bits. The other modes of operation of the
Saturnin submission use values from 0 to 8 included, so we use D = 9, 10, 11, 12
and 13 in Algorithm 1. More precisely, the authors of [16] define a variant
of Saturnin with 16 Super-rounds aiming at an increased security margin
in the related-key scenario, denoted Saturnin16. We define: Ẽk,(D,IV,i)(x) =
SaturninD16(k ⊕ (IV ||i), x), where we use the key-tweak insertion construction
of Section 4 to turn SaturninD16 into a TBC with 256-bit tweaks. The IV and
the block number are simply concatenated. We use IVs of at most 160 bits and
authorize up to 295 blocks of data. This construction motivates further inquiry
of related-key attacks, as it needs Saturnin16 to be related-key secure.

Instantiation with a Dedicated TBC: TRAX-QCB. Block ciphers of 256 bits
seem more convenient for post-quantum security. However, they are relatively
rare (for example, Saturnin is the only such one in the LWC standardization
process). Fortunately, it is possible to instantiate QCB with a dedicated TBC
with 256-bit blocks, the TRAX-L-17 cipher of [4]. It has smaller tweaks of 128
bits, contrary to the key-tweak-insertion TBC with Saturnin, but it has the

17

advantage of being a dedicated design, with possibly a better security than the
tight bound for the key-tweak-insertion. 128 bits allow to fit the 3 bits required
for domain separation, 80 bits of IV and 45 bits of block numbering. Thus we
can encrypt at most 245 − 1 blocks of plaintext and AD.

6 Security of QCB

We show that, if the underlying TBC is secure under classical tweak queries:

• QCB is IND-qCPA secure (Section 6.2): an adversary making quantum
encryption queries cannot distinguish between the encryptions of two classical
challenge messages;

• QCB is BZ-unforgeable (Section 6.3): an adversary making q quantum en-
cryption queries cannot output q+ 1 valid IV/AD/ciphertext/tag quadruples.

We discuss other possible (and impossible) security definitions in Section 7.

6.1 Definitions

In all our definitions, the adversary makes q superposition queries with distinct
pre-declared IVs. The messages and ADs both have amaximal length of ` complete
blocks, but the exact length of queries can be chosen adaptively. We will bound
the advantage depending only on q and `. We will use superscripts for separate
queries, and subscripts for individual blocks within a query.

IND-qCPA. First of all, we recall the definition of the IND-qCPA security game
from [10]. In [10], each call to the encryption oracle contains randomness. We
extend slightly this definition by making the adversary capable of choosing his
IVs. However, we request this choice to be non-adaptive. Thus, the adversary
specifies at the start of the game the sequence of IVs that she is going to use.

IND-qCPA game

Key generation: K $← K, b $← {0, 1}.
Initialization: A sends to the challenger a sequence of distinct IVs:

(IV 1, . . . , IV q), one for each subsequent query.

A can perform q − 1 encryption queries and one challenge query (at the
very end or somewhere in between). For the kth query, the current IV is
IV k.

Encryption queries: A chooses a message and AD pair (M,A), the
encryption oracle encrypts (IV,M,A) with the current IV and returns
the output (C, T) to A. Queries can be in superposition.

Challenge query: A chooses two classical message/AD pairs (M0, A0),
(M1, A1) of the same length and sends them to the challenger. The

18

challenger encrypts (IV,M b, Ab) with the current IV and returns the
output (Cb, T b).

Guess: A outputs a bit b′ and wins if b = b′.

For each query, the message and AD length are chosen between 0 and `n
bits for a fixed ` (superposed messages must have the same length).

The IND-qCPA advantage of an adversary A against an AEAD E is:

AdvIND-qCPA
E (A) =

∣∣∣∣Pr [A succeeds]− 1
2

∣∣∣∣ .
BZ. We define our “Boneh-Zhandry” (BZ) unforgeability game, which is analogous
to the definition of unforgeability for MACs of [9].

BZ game

Key generation: K $← K.
Initialization: A sends to the challenger a sequence of distinct IVs:

(IV 1, . . . , IV q), one for each subsequent query.

Encryption queries: A chooses a message and AD pair (M,A), the
encryption oracle encrypts (IV,M,A) with the current IV and returns
the output (C, T) to A. Queries can be in superposition.

Forgeries: A produces q + 1 quadruples (A, IV,C, T) with any IVs of
her choice and succeeds if all these quadruples are valid, that is,
for each quadruple, there exists an M such that the encryption of
(IV,M,A) is (C, T).

Note that verifying the forgery attempts requires additional queries. Since we
assumed a limit on the message and AD lengths of ` blocks at most, we will also
impose this limit on the forgery attempts of the adversary.

In practice, IVs are often either specified by a counter or chosen at random.
We argue here that our security definitions are stronger than these 2 scenarios:

• If the challenger chooses at random IV i for each encryption query. Then, he
could as well generate all the possible IV 1, . . . , IV q from the start. In our
model, an adversary can generate IV 1, . . . , IV q at random and send them to
the challenger. The security is the same as before except that the adversary
knows the different IVs. This can only help the adversary so being secure in
our model implies security in the model where the IVs are chosen at random
by the challenger.

• If the IVs are determined by a counter controlled by the challenger. The
adversary can decide when he starts the attack and even assume he has
control over the first IV which we call IV1, then the set of IVs will be

19

{IV1, IV1 + 1, . . . , IV1 + (q − 1)}. In our model, an adversary can do that by
declaring this set so again, our model is strongerj.

In the IND-qCPA and BZ definitions above, the adversary chooses a sequence
of distinct IVs: (IV 1, . . . , IV q). When proving the security of QCB with oracle
access to a tweakable block cipher Ẽ, this immediately implies that the set T
of possible tweaks to Ẽ is T = ∪qi=1T (IV i) hence |T | ≤ 5(`+ 1)q where ` is the
maximal block length of encryption queries. This control on the size of T allows
us to use Proposition 1 in a meaningful way.

6.2 IND-qCPA Security

Theorem 4. Let QCB[Ẽ] denote the QCB function with oracle access to the
tweakable blockcipher Ẽ. We consider adversaries making q queries of block length
≤ ` to QCB[Ẽ], then we have:

AdvInd-qCPA
QCB[Ẽ]

(A) ≤ AdvTPRP
Ẽ(·,�)

(5(`+ 1)q) , (1)

where the right-hand term is the maximal advantage over all adversaries querying
Ẽ(·,�) with at most 5(`+ 1)q pre-declared tweaks.

Proof. Suppose A is an adversary trying to break the IND-qCPA security of
QCB[Ẽ]. A performs q encryption or challenge queries of maximum block length
` (the exact bit length of the queries can be chosen freely in the range 0, . . . , n`).
Consider the query number imade to QCB (encryption or challenge). From Propo-
sition 2, in this query, the tweakable block cipher Ẽ is queried with tweaks in
the set T (IV i) having a fixed size |T (IV i)| = 5(`+ 1).

We can therefore see A as an algorithm performing at most q(2`+ 3) queries
to Ẽ, with each tweak lying in the fixed set T = ∪qi=1T (IV i) with |T | ≤ 5q(`+ 1)
(each query contains at most ` message and AD blocks, padding blocks and a
final checksum block). If we replace Ẽ with Π̃ for a random Π̃, we get:∣∣∣∣AdvInd-qCPA

QCB[Ẽ]
(A)−AdvInd-qCPA

QCB[Π̃]
(A)
∣∣∣∣ ≤ AdvTPRP

Ẽ(·,�)
(5(`+ 1)q) . (2)

Finally, consider an adversary A playing an IND-qCPA game with QCB[Π̃].
Recall that in the challenge phase, A picks two classical plaintext/AD pairs
(M0, A0) and (M1, A1) of the same length, after which the challenger picks a
random bit b and gives (Cb, T b)—the encryption (and tag) of (M b, Ab)—to A.
Since the tweaks used for computing this encryption are all different from all the
tweaks used during the query phase, and since Π̃ is an ideal tweakable random

j There is only one case in which the use of a counter may enable an adversary to
choose his IVs adaptively: he may wait for the counter to increase in order to reach a
wanted IV. But the IV increases only when a message is encrypted so waiting for an
IV increase should be essentially considered as costly as performing a query, which
implies that the IVs that will be used will be in {IV1, . . . , IV1 + (q − 1)} .

20

permutation, the distribution of (Cb, T b) is independent of the distribution of
the responses received by A during the query phase. Since b is a random bit, if
b′ is the bit output by A, the probability that b = b′ is always 1/2. Furthermore,
this holds irrespective of the choice of A. Thus,

AdvInd-qCPA
QCB[Π̃]

(A) = 0. (3)

Our result follows directly by putting this equality into Equation 2.

Theorem 4 is the only result required if we use a dedicated TBC. If we want to
use a block cipher, we can replace Ẽ by the key-tweak insertion TBC of Section 4.
The security will then hold in the ideal cipher model. We use Proposition 1 in the
special case where s0 = 0 (in the reduction, there is no second phase of classical
queries).

Corollary 2. In the case of the key-tweak insertion TBC of Section 4, we
consider adversaries making also q′ queries to E± and we have:

AdvInd-qCPA
QCB[Ẽ]

(A) ≤ AdvTPRP
Ẽ(·,�),E�(�)

(5(`+ 1)q, q′) ≤ 8
√

5(`+ 1)qq′2
2n . (4)

6.3 Unforgeability

Now, we prove that QCB is BZ-unforgeable. Again, the first statement holds in
the standard model, the second in the ideal cipher model.

Theorem 5. Let A be an adversary making q superposition queries to QCB, of
maximally ` blocks each (message and AD), and q′ queries to E. Let A succeed
if it outputs q + 1 valid quadruples (A, IV,C, T). Then the success probability of
A is upper bounded as:

Pr [A succeeds] ≤ AdvSTPRP
Ẽ±(·,�)

(B) + 3 + c

2n ,

where c is the constant from Corollary 1 and B an adversary playing the
modified STPRP game against Ẽ±, who uses at most 5q` pre-declared tweaks,
makes at most q` queries in the quantum phase, saves at most (q + 1)(2`+ 4)n
classical bits to carry on to the next phase, and makes at most (q + 1)(2` + 2)
queries in the classical phase.

In the case of the key-tweak insertion TBC of Section 4, we consider adver-
saries making also q′ queries to E± and we have:

Pr [A succeeds] ≤ 8
√

5`qq′2
2n + 3

√
`2nq2

2n .

Proof. Let G0 be the original BZ game in which A interacts with QCB, instan-
tiated with the TBC Ẽ and a randomly selected key k. Let G1 be the game in
which Ẽ is replaced by a family of independent random permutations Πt for
all tweaks t. We first show the following lemma, where B is as described in the
theorem statement.

21

Lemma 3. PrG0 [A succeeds] ≤ PrG1 [A succeeds] + AdvSTPRP
Ẽ±(·,�)

(B) .

Proof. The proof of this lemma is similar, but not equivalent to the proof of
Theorem 4. In G0, A performs q encryption queries of block length at most
`. Consider the ith query. From Proposition 2, in this query, the tweakable
block cipher Ẽ is queried with tweaks in the set T (IV i) having a fixed size
|T (IV i)| = 5(`+ 1).

We can therefore use A to create a strong TPRP adversary B for our modified
game. B first declares the tweak-set T = ∪qi=1T (IV i) with |T | ≤ 5q(`+ 1), and
then runs A, performing at most q` queries to Ẽ, with each tweak lying in T . A
outputs q+ 1 quadruples, which B stores in s0 classical bits; since each quadruple
has at most 2` + 4 n-bit blocks (` + 1 each for A and C, one each for IV and
T), s0 ≤ (q + 1)(2` + 4)n. Finally, the validity of these quadruples is checked
using q2 non-adaptive classical queries to the TBC (decryption attempts); each
quadruple needs at most 2`+ 2 TBC calls to verify (`+ 1 each for A and C), so
q2 ≤ (q + 1)(2`+ 2).

If we replace Ẽ with Π̃ for a random Π̃, we go from G0 to G1. We therefore
have

Pr
G0

[A succeeds] ≤ Pr
G1

[A succeeds] + AdvSTPRP
Ẽ±(·,�)

(B) . �

Our goal is now to bound PrG1 [A succeeds]. We run A. Let I = {IV ′i |
1 ≤ i ≤ q} be the q declared IVs that A uses during its encryption queries. Let
also S = {(Ai, IV i, Ci, T i) | 1 ≤ i ≤ q + 1} denote the forge-set, i.e., the q + 1
quadruples in A’s output. Finally, let [[·]] denote block-length. We define the
following disjoint bad events which correspond to A winning the game:

• bad-a: For some i, IV i 6∈ I.
• bad-b: For some i, k 6= i, IV i = IV k ∈ I, and [[Ci]] 6= [[Ck]]
• bad-c: For some i, k 6= i, IV i = IV k ∈ I, [[Ci]] = [[Ck]], and [[Ai]] 6= [[Ak]].
• bad-d: For some i, k 6= i, IV i = IV k ∈ I, [[Ci]] = [[Ck]], and [[Ai]] = [[Ak]].

A succeeds in G1 when the q + 1 quadruples she outputs are valid. As the
q+ 1 outputs shall be distinct and |I| = q, this implies that one of the bad events
has occurred. We therefore have

Pr
G1

[A succeeds] ≤ Pr
G1

[bad-a] + Pr
G1

[bad-b] + Pr
G1

[bad-c] + Pr
G1

[bad-d] . (5)

We bound separately the probability of each bad event in order to con-
clude. For a quadruple (A, IV,C, T), with A = (A0, . . . , Aj , pad(A∗)) and C =
(C1, . . . , C`, pad(C∗)), we define Mi := Π−1

(0,IV,i)(Ci), pad(M∗) := Π−1
(1,IV,`)(C∗)

and MCS := pad(M∗) ⊕
(⊕`

i=0 Mi

)
. If the quadruple (A, IV,C, T) is valid in

game G1, this gives us

Π(4,IV,`)(MCS)⊕Π(3,IV,j)(pad(A∗))⊕
(

j⊕
i=0

Π(2,IV,i)(Ai)
)

= T . (6)

22

From there, we have for each i ∈ {0, . . . , `}

Mi = Π−1
(4,IV,`)

(
T ⊕Π(3,IV,j)(pad(A∗))⊕

(
j⊕
i=0

Π(2,IV,i)(Ai)
))

⊕ pad(M∗)⊕

⊕
k 6=i

Mk

 . (7)

This means that from a valid quadruple (A, IV,C, T), we can reconstruct
each Mi = Π−1

(0,IV,i)(Ci) without any query to Π0,IV,i or Π−1
0,IV,i (but with access

to other Πt and Π−1
t , in particular to compute pad(M∗) and the Mk for k 6= i).

Similarly, for each i ∈ {0, . . . , j}, we have

Π(2,IV,i)(Ai) = T ⊕Π(4,IV,`)(MCS)⊕Π(3,IV,j)(pad(A∗))⊕

⊕
k 6=i

Π(2,IV,k)(Ak)

 .

(8)
This means that for a valid quadruple (A, IV,C, T), we can reconstruct each

Π(2,IV,i)(Ai) without any query to Π(2,IV,i) or Π−1
(2,IV,i) (but with access to other

Πt and Π−1
t).

With these 2 constructions in mind, we can bound the probability of each
bad event with the following lemmas.

Lemma 4.
Pr
G1

[bad-a] ≤ 1
2n .

Proof. Assume A outputs a quadruple (Ai, IV i, Ci, T i) with IV i /∈ I. Since
IV i /∈ I, the permutations Π0,IV i,0 and Π−1

0,IV i,0 have not been queried to
compute the quadruple. From the above discussion, if the quadruple is valid,
we know how to construct a valid input/output pair (M i

0, Π(0,IV i,0)(M i
0) = Ci0)

without any calls to Π0,IV i,0 or Π−1
0,IV i,0. Because Π0,IV i,0 is a uniformly random

permutation and independent from the others, this happens with probability
1

2n . �

Lemma 5.
Pr
G1

[bad-b] ≤ 1
2n .

Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, and [[Ci]] 6= [[Ck]]. Without loss of generality, we
assume that there exists u such that IV i = IV ′u, and `i = [[Ci]] is different from
the output block length `′u of query number u (which is a fixed value of the query).
This property must be true for i or for k. If the adversary succeeds, the quadruple
(Ai, IV i, Ci, T i) must be valid even though the function Π4,IV i,`i has never been
queried. Let ji = [[Ai]]. From (Ai, IV i, Ci, T i), we define M i

v := Π−1
(0,IV i,v)(C

i
v),

23

pad(M i
∗) := Π−1

(1,IV i,`i)(C
i
∗) andM i

CS := pad(M i
∗)⊕

(⊕`i

u=0 M
i
u

)
. If the quadruple

(Ai, IV i, Ci, T i) is valid, we have

Π4,IV i,`i(M i
CS) = T i ⊕Π(3,IV i,ji)(pad(Ai∗))⊕

 ji⊕
v=0

Π(2,IV i,v)(Aij)

 .

This means we can construct a pair (M i
CS , Π4,IV i,`i(M i

CS)) without any calls
to Π4,IV i,`i or Π−1

4,IV i,`i . Since Π4,IV i,`i is a uniformly random permutation and
independent from the others, this happens with probability 1

2n . �

Lemma 6.
Pr
G1

[bad-c] ≤ 1
2n .

Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, [[Ci]] = [[Ck]] and [[Ai]] 6= [[Ak]]. Without loss of
generality, we assume that there exists u such that IV i = IV ′u, and ji = [[Ai]]
is different from the AD block length j′u queried in query u. (This happens
either for index i or index k). We focus on this quadruple (Ai, IV i, Ci, T i) for
which Π3,IV i,ji has never been queried. We let `i = [[Ci]]. we define M i

u :=
Π−1

(0,IV i,u)(C
i
u), pad(M i

∗) := Π−1
(1,IV i,`i)(C

i
∗) andM i

CS := pad(M i
∗)⊕

(⊕`i

u=0 M
i
u

)
.

If the quadruple is valid, we have

Π(3,IV,ji)(pad(Ai∗)) = T i ⊕Π4,IV i,`i(M i
CS)⊕

 ji⊕
u=0

Π(2,IV i,u)(Aiu)

 .

This means we can construct a pair (pad(Ai∗), Π(3,IV i,ji)(pad(Ai∗))) without any
calls to Π(3,IV i,ji) or its inverse. Since it is a uniformly random permutation and
independent from the others, this happens with probability 1

2n . �

Lemma 7. Let c be the constant of Corollary 1, we have

Pr
G1

[bad-d] ≤ c

2n .

Proof. Assume A outputs two quadruples (Ai, IV i, Ci, T i) and (Ak, IV k, Ck, T k)
such that IV i = IV k ∈ I, [[Ci]] = [[Ck]] := ` and [[Ai]] = [[Ak]] := j. This means
we can write Ci = (C1

0 , . . . , C
i
`, C

i
∗), Ai = (Ai0, . . . , Aij , pad(Ai∗)) and similarly for

Ck, Ak. Assume the 2 quadruples are valid, we distinguish 2 cases:

• ∃u,Ciu 6= Cku . According to the construction following Equation 7, we can
construct two different input/output pairs (M i

u, Π0,IV i,u(M i
u) = Ciu) and

(Mk
u , Π0,IV i,u(Mk

u) = Cku) without additional queries to Π±0,IV i,u. However,
there has been only 1 call to Π0,IV i,u during the game (since each IV in the
challenge queries is different). Therefore, we have from Corollary 1 that this
can happen with probability at most c

2n .

24

• ∃u,Aiu 6= Aku. From the construction following Equation 7, we can construct
two different input/output pairs (Aiu, Π2,IV i,u(Aiu)) and (Aku, Π2,IV i,u(Aku))
without additional queries to Π±2,IV i,u. We conclude using a similar argument
as above.

In order to conclude, notice that we have to be in one of the 2 cases above if the
2 quadruples are valid, otherwise they are equal. �

The first assertion of the theorem follows from Equation 5 and Lemmas 3–7.
For the second assertion specific to the key-tweak insertion TBC, we use the
following additional lemma to bound AdvSTPRP

Ẽ±(·,�)
(B).

Lemma 8. When B plays the modified STPRP game against the key-tweak
insertion TBC of Section 4 and makes an additional q′ queries to E±,

AdvSTPRP
Ẽ±(·,�)

(B) ≤ 8
√

5`qq′2
2n + 3

√
`2nq2

2n .

Proof. From Proposition 1 and the definition of AdvSTPRP
Ẽ±(·,�)

(B), we have

AdvSTPRP
Ẽ±(·,�)

(B) ≤ 8
√
mq′2

2k +
√

q2s0

2 · 2k ,

where m, q1, s0, q2 are defined as in Proposition 1. From the description of B in
the theorem statement, we can plug in the bounds

m ≤ 5q`, q1 ≤ q`,
s0 ≤ (q + 1)(2`+ 4)n, q2 ≤ (q + 1)(2`+ 2),

and put k = n to get

AdvSTPRP
Ẽ±(·,�)

(B) ≤
√

5`qq′2
2k +

√
2(q + 1)2(`+ 1)(`+ 2)n

2n .

Finally to obtain the bound in the lemma we apply the simplification

2(q + 1)2(`+ 1)(`+ 2) ≤ 9q2`2

which holds for any reasonable choice of q and ` (for instance, q ≥ 2, ` ≥ 2 and
q + ` ≥ 6).

Substituting the bound from Lemma 8 in the first inequality of the theorem
yields the second inequality, thus completing the proof.

7 Discussion on Security Notions

In this section, we take a broader viewpoint at suitable notions of quantum
security for a combined AEAD mode. In particular, we show an attack that
breaks the qIND-qCPA notion [26, 18] for all online modes (hence all practical
AEAD modes). We also discuss the definition of blind unforgeability from [1].

25

7.1 The qIND-qCPA Notion and Attacking all Online Modes

It is well-known that for any mode of encryption that XORs a keystream to
the message, IND-CPA security implies IND-qCPA. In other words, a quantum
adversary does not benefit from having superposition query access. This comes
from the malleability of such a mode.

Lemma 9 ([3], informal). Define an encryption mode as EK(M ; IV) = M ⊕
f(K, IV) where IV is a randomly chosen IV and f is any function. If EK is
IND-CPA, then it is also IND-qCPA.

Informal. Given a quantum adversary B that attacks the IND-qCPA security
notion, we can construct a (quantum) adversary A that attacks the IND-CPA
security of the mode. A simulates B. When B wants a quantum query, A queries
EK(0; IV) and XORs this value on the input register of B.

However, such a mode also admits a well-known quantum distinguishing
attack using a single superposition query (see e.g. [12]). This attack applies
regardless of f , and in particular if f is a random oracle (the one-time pad).

The qIND-qCPA Notion. In [18], Chevalier, Ebrahimi and Vu propose the
“qIND-qCPA” security game where an adversary must distinguish between a
quantum oracle for EK(M ; IV) = M ⊕ f(K, IV) (with IV selected uniformly at
random at each new query) and a random oracle. They use Zhandry’s recording
technique [35] in the latter case. They also show that certain modes like CFB,
OFB and CTR are insecure under this notion. By design, the qIND-qCPA security
notion makes the one-time pad attack valid.

We can extend the one-time pad distinguisher in order to attack not only
keystream-based modes like CTR, but all “online” modes. By “online” mode, we
mean a mode of encryption in which the plaintext blocks are read and encrypted
in sequence, so that the first ciphertext block C0 depends only on the first
plaintext block M0, the second ciphertext block C1 depends only on M0,M1, etc.
In fact, it is enough to have one bit of the complete ciphertext, say the last one,
independent from one bit of the complete plaintext, say the first one. For the
sake of simplicity, we consider messages of a fixed size (since we make a single
query anyway). Note that a similar result was proposed in [17].

Lemma 10. Let EK(M ; IV) be an encryption function of messages of length
m, where the first ciphertext bit is independent of the last plaintext bit. Then
there exists a quantum adversary AO making a single query to its oracle O and
distinguishing EK(M ; IV) (“real world”) from a random family of permutations
ΠK,IV (M) (“random world”) with probability of success 3

4 ≥
1
2 .

Proof. Our distinguisher is based on Deutsch-Jozsa’s algorithm and on the post-
processing of quantum oracles of Lemma 2. The adversary fixes all the bits of M
except the last one to an arbitrary value, say 0, and puts |0〉+ |1〉 in the last bit.
She queries the oracle and truncates the output to its first bit. Her state becomes:

26

|0〉 |f(0)〉+ |1〉 |f(1)〉, where f is the first ciphertext bit as a function of the last
plaintext bit (after the other bits have been fixed). She then uses Deutsch-Josza’s
algorithm to determine whether f is constant or non-constant. If f is constant,
she decides that this is the real world and otherwise, the random world.
• In the random world (O = ΠK,IV (M)), this f should remain a random

function. Thus the outputs are equal only with probability 1
2 : the guess is correct

with probability 1
2 . • In the real world, f is always constant. The guess is always

correct.
Overall, the adversary is correct with probability 1

2
(
1 + 1

2
)

= 3
4 . Using a full

block instead of a mere bit makes the success probability exponentially close to 1
with a single query, as in the one-time pad attack.

A consequence of this attack is that, while the qIND-qCPA definition seems
nontrivial, it cannot be achieved by an online mode, including e.g. CBC or our
proposal QCB. If we require the adversary to distinguish the mode from an
ideal online mode, instead of a random permutation, our attack should not be
applicable anymore. However, the definition and proofs of security may be far
more involved, and we leave further exploration of this topic as an open problem.

7.2 Unforgeability for a Combined AEAD Mode

The Blind Unforgeability notion was introduced in [1] as a replacement for BZ-
unforgeability for MACs. In [1], the authors prove that it is possible to create a
BZ-secure MAC scheme (given by a pair MacK , VerK) such that, after having
made q superposition queries to some subset of the message space, one can forge
the MAC of another message outside this space.

Note that the example given in [1] is very technical, and relies heavily on the
fact that the MAC treats differently different subsets of its input. This is usually
not the case for practical constructions (including QCB).

Blind-unforgeability (BU) is a stronger security notion defined with the
following game: the adversary is given access to a blinded version of MacK , that
returns ⊥ on some fraction ε of the message space. To win, the adversary has to
output a valid forgery in this space. In the game, the uniform random blinding
Bε is created by putting every message of the message space with probability ε.
Alternatively, the adversary could choose her own blinding, but this is equivalent
for inverse-polynomial values of ε: in [1] (Theorem 2) the authors prove that an
adversary capable of outputting a “good” forgery will still do so even if the MAC
has been blinded.

BU game
Setup: the adversary selects a parameter ε < 1. The challenger picks

a random key K, a random blinding Bε which is a fraction of the
message spaceM of size ε.

27

Forgery: the adversary produces a pair (M,T) and wins if M ∈ Bε and
VerK(M,T) = >.

MAC queries: the adversary queries the “blinded” MAC:

M 7→

{
⊥ if M ∈ Bε,
MacK(M) otherwise .

(9)

The following result, together with the example given in [1], shows that
BU-unforgeability is a strictly stronger notion than BZ-unforgeability for a MAC.

Theorem 6 ([1], Theorem 1). Any BU-unforgeable MAC is BZ-unforgeable.

This notion is adapted for a standalone MAC. In our case, we consider a
combined AEAD mode, and we would need to adapt the definition. We can
propose, for example, to blind the message space. We select a subset Bε of
message, AD and IVs (possibly the same pairs of AD and message for all IVs,
or selected differently for each one). We give the adversary access to an oracle
that encrypts (IV,A,M) if it does not belong to Bε and otherwise, returns ⊥.
The adversary then succeeds if she outputs a valid quadruple (A, IV,C, T) whose
corresponding message M is such that (IV,A,M) ∈ Bε.

The main difference with the original BU definition is that the condition of
success relies on the message M , which is not necessarily an output of the forgery
(the adversary can forge on an unknown message M). Despite that, we conjecture
that this definition is non-trivial and that it might be proven for QCB. This
proof would likely be more technical than our original one, and we leave it as an
open problem.

8 Conclusion

In this paper, we designed the first AEAD of rate one with quantum security
guarantees. With a definition similar to TAE and OCB, our proposal, QCB,
retains high security guarantees as soon as it is used with a quantum-secure
tweakable block cipher. We explicited this security requirement and proposed a
construction based on a block cipher, in the ideal cipher model: the key-tweak
insertion of Section 4.

In the classical setting, the LRW construction provides a TBC of rate one
(one block cipher call per TBC call) from a PRP assumption. Ours requires
related-key security for the underlying block cipher. Although we do not rule
out the possibility of a rate-one TBC without related-key security, the LRW
approach does not seem applicable.

Thus, an interesting open question is whether it is possible to build a post-
quantum AEAD of rate one from a block cipher, with a qPRP assumption only.
It may be possible to obtain directly the security without relying explicitly on a

28

secure TBC, though this was the subject of our first attempt, which failed due
to a new attack on OCB with a single query.

In our security proofs, we used the IND-qCPA and BZ security notions for
indistinguishability and unforgeability. We note that other security definitions
have been proposed in the more recent literature and seem worth investigating.

Acknowledgements. We thank the reviewers from EUROCRYPT 2021, CRYPTO
2021 and ASIACRYPT 2021 for their helpful feedback and insights, which
helped us improve the paper and correct technical errors. This project has
received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agree-
ment no. 714294 - acronym QUASYModo). A. S. is supported by ERC-ADG-
ALGSTRONGCRYPTO (project 740972).

References

[1] Alagic, G., Majenz, C., Russell, A., Song, F.: Quantum-access-secure message
authentication via blind-unforgeability. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020, Part III. LNCS, vol. 12107, pp. 788–817. Springer, Heidelberg (May
2020)

[2] Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on
hidden shifts. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III.
LNCS, vol. 10212, pp. 65–93. Springer, Heidelberg (Apr / May 2017)

[3] Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of
the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.)
Post-Quantum Cryptography - 7th International Workshop, PQCrypto 2016. pp.
44–63. Springer, Heidelberg (2016)

[4] Beierle, C., Biryukov, A., dos Santos, L.C., Großschädl, J., Perrin, L., Udovenko,
A., Velichkov, V., Wang, Q.: Alzette: A 64-bit ARX-box - (feat. CRAX and
TRAX). In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part III. LNCS,
vol. 12172, pp. 419–448. Springer, Heidelberg (Aug 2020)

[5] Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: RKA-PRPs,
RKA-PRFs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol.
2656, pp. 491–506. Springer, Heidelberg (May 2003)

[6] Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.V.: Strengths and weak-
nesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

[7] Bernstein, E., Vazirani, U.V.: Quantum complexity theory. In: STOC. pp. 11–20.
ACM (1993)

[8] Bhaumik, R., Nandi, M.: Improved security for OCB3. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 638–666. Springer,
Heidelberg (Dec 2017)

[9] Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johans-
son, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608.
Springer, Heidelberg (May 2013)

[10] Boneh, D., Zhandry, M.: Secure signatures and chosen ciphertext security in a
quantum computing world. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 361–379. Springer, Heidelberg (Aug 2013)

29

[11] Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J.
(eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Heidelberg (Aug 2017)

[12] Bonnetain, X.: Hidden Structures and Quantum Cryptanalysis. (Structures cachées
et cryptanalyse quantique). Ph.D. thesis, Sorbonne University, France (2019),
https://tel.archives-ouvertes.fr/tel-02400328

[13] Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline Simon’s algorithm.
In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part I. LNCS, vol. 11921,
pp. 552–583. Springer, Heidelberg (Dec 2019)

[14] Bonnetain, X., Leurent, G., Naya-Plasencia, M., Schrottenloher, A.: Quantum
linearization attacks. Private communication

[15] Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and
implications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS,
vol. 11272, pp. 560–592. Springer, Heidelberg (Dec 2018)

[16] Canteaut, A., Duval, S., Leurent, G., Naya-Plasencia, M., Perrin, L., Pornin,
T., Schrottenloher, A.: Saturnin: a suite of lightweight symmetric algorithms for
post-quantum security. IACR Trans. Symm. Cryptol. 2020(S1), 160–207 (2020)

[17] Carstens, T.V., Ebrahimi, E., Tabia, G., , Unruh, D.: On quantum indistinguisha-
bility under chosen plaintext attack. Cryptology ePrint Archive, Report 2020/596
(2020), https://eprint.iacr.org/2020/596

[18] Chevalier, C., Ebrahimi, E., Vu, Q.H.: On the security notions for encryption in a
quantum world. QCrypt 2020 (2020), https://eprint.iacr.org/2020/237

[19] Hosoyamada, A., Iwata, T.: Provably quantum-secure tweakable block ciphers.
IACR Trans. Symmetric Cryptol. 2021(1), 337–377 (2021), https://doi.org/10.
46586/tosc.v2021.i1.337-377

[20] Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks:
Applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco,
R. (eds.) SCN 18. LNCS, vol. 11035, pp. 386–403. Springer, Heidelberg (Sep 2018)

[21] Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ci-
phers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith,
S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 275–304. Springer,
Heidelberg (Dec 2018)

[22] Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric
cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (Aug
2016)

[23] Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 306–327. Springer,
Heidelberg (Feb 2011)

[24] Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (Aug 2002)

[25] Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. Journal of Cryp-
tology 24(3), 588–613 (Jul 2011)

[26] Mossayebi, S., Schack, R.: Concrete security against adversaries with quantum
superposition access to encryption and decryption oracles (2016)

[27] National Institute of Standards and Technology (NIST): Submission requirements
and evaluation criteria for the post-quantum cryptography standardization process
(Dec 2016)

[28] National Institute of Standards and Technology (NIST): Submission requirements
and evaluation criteria for the lightweight cryptography standardization process
(Aug 2018)

30

https://tel.archives-ouvertes.fr/tel-02400328
https://eprint.iacr.org/2020/596
https://eprint.iacr.org/2020/237
https://doi.org/10.46586/tosc.v2021.i1.337-377
https://doi.org/10.46586/tosc.v2021.i1.337-377

[29] Nielsen, M.A., Chuang, I.L.: Quantum information and quantum computation.
Cambridge: Cambridge University Press 2(8), 23 (2000)

[30] Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (Dec 2004)

[31] Rötteler, M., Steinwandt, R.: A note on quantum related-key attacks. Inf. Process.
Lett. 115(1), 40–44 (2015)

[32] Santoli, T., Schaffner, C.: Using simon’s algorithm to attack symmetric-key cryp-
tographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)

[33] Simon, D.R.: On the power of quantum computation. In: 35th FOCS. pp. 116–123.
IEEE Computer Society Press (Nov 1994)

[34] Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(7&8), 557–567 (2015)

[35] Zhandry, M.: How to record quantum queries, and applications to quantum
indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II.
LNCS, vol. 11693, pp. 239–268. Springer, Heidelberg (Aug 2019)

31

Appendix

A Proof of Security of the Key-tweak Insertion TBC

In this section, we let ẼK(T, x) denote EK⊕T (x), the key-tweak insertion TBC.
We need here the ideal cipher model: E is selected at random from all ciphers.
We recall Proposition 1:
Proposition 1. Let A be an adversary who makes q1 quantum queries to an
oracle implementing Ẽ±K or Π̃± with a pre-declared set of tweaks of size m, and
q′ queries to E±, followed by outputting s0 bits and making q2 classical queries
to the same oracle. Then:∣∣∣∣∣∣ Pr

K
$←−K

[A
Ẽ±

K
(·,�),E±�(�)

⇒ 1]− Pr
{ΠT }

$←−Pn

[A
Π±(·,�),E±�(�)

⇒ 1]

∣∣∣∣∣∣
≤ 8
√
mq′2

2k +
√

q2s0

2 · 2k .

Proof of Proposition 1. Note that in the second phase, the adversary does not
query the ideal cipher oracle E±.

Let A1 be the part of the adversary that runs the first phase (quantum
queries) and A2 that runs the second phase (classical queries).

Let t1, . . . , tm be the tweaks of the declared set. This list is not deterministic,
but it is given by the game, and does not depend on the adversary’s state (in
particular, it is non-adaptive). Thus, it suffices to reason with an arbitrary list
and to take the average over all possibilities (the bound obtained will be the
same in all cases). Note that the definition of our hybrid games will be dependent
on this list.

Let G0 be the “real world” in which A interacts with Ẽ± and E±, for K $← K.
We also define the game G0[K] where a key K is fixed.

Game G0

∀K ∈ K, EK
$←− Pn.

K
$←− K.

ẼK(t, x) := Et⊕K(x).

Run A
Ẽ±

K
(·,�),E±�(�)

.

Game G0[K]
EK

$←− Pn.
ẼK(t, x) := Et⊕K(x).

Run A
Ẽ±

K
(·,�),E±�(�)

.

We have by definition:

Pr
[
∀K∈K,EK

$←−Pn

K
$←−K

: A
Ẽ±

K
(·,�),E±�(�)

⇒ 1
]

= Pr[G0 ⇒ 1]

= E
K

$←−K
(Pr[G0[K]⇒ 1) .

32

Let G1 be a hybrid game in which Ẽ± is replaced by a family of permutations
Πt1 , . . . ,Πtm , and E± is replaced by E′±, which is equal to E± for all keys,
except K ⊕ t1, . . . ,K ⊕ tm, where we constrain: E′±K⊕ti = Πti .

Game G1[K]
∀i ∈ [m], Πti

$←− Pn.

∀K′ ∈ K, E′K′
$←− Pn.

∀i ∈ [m], EK⊕ti := Πti , ∀K′ /∈ {K ⊕ ti}i∈[m], EK′ := E′K′.

Run A
Π±(·,�),E±�(�)

.

Notice that if we define ẼK(t, x) := Et⊕K(x), we have in this game that

∀i ∈ [m],∀x, ẼK(ti, x) = Πti(x), which implies that we have A
Ẽ±

K
(·,�),E±�(�)

=
A
Π±(·,�),E±�(�)

when we only query Πt(x) for tweaks t = t1, . . . , tm.
Let

∣∣φK〉 be the final state of A1 in game G0[K] and
∣∣χK〉 its final state in

game G1[K].

Lemma 11. For any key K ∈ K,∣∣φK〉 =
∣∣χK〉 . (10)

Proof. During the first phase, since the quantum queries concern only tweaks of
the pre-declared set, the two games are syntactically equivalent. The only change
is in the order in which we select the new permutations at random. In G0, we
first pick EK′ for each K ′ ∈ K and we define Ẽ accordingly. In G1[K], we select
first randomly the permutations for Ẽ and then the other permutations EK′ for
K ′ /∈ {K ⊕ ti}i∈[m]. �

Next, we create another hybrid G2 in which A interacts with the family Π,
and the unmodified E±, which is then independent of Π.

Game G2

∀i ∈ [m], Πti

$←− Pn.
∀K ∈ K, E′K

$←− Pn.
∀K ∈ K, EK := E′K.

Run A
Π±(·,�),E±�(�)

.

Notice that it is equivalent to write directly EK
$←− Pn in this game but

writing it the way we did will make notations easier in the proof. Let |ψ〉 be the
final state of A1 in game G2. Using a query magnitude argument, we will bound
the difference between |ψ〉 and

∣∣φK〉 on average over K. In other words, A1 does
not see the difference between the real and ideal worlds.

Lemma 12. Consider a fixed choice of E′ and Π. Let
∣∣φK〉 and |ψ〉 be the final

states of A1, respectively in G1[K] and G2. Then:

E
K

$←−K

(
‖
∣∣φK〉− |ψ〉 ‖) ≤ 2

√
mq′2

2k . (11)

33

Proof. Let G1[K,E′, Π] and G2[E′, Π] be the games G1[K] and G2 where we
additionally fix all the choices of E′k and Πti . Let us also fix such a choice E′
and Π. Let |ψi〉 the state of A1 in G2[E′, Π] before the ith query to E±�(�) and∣∣φKi 〉 the state of A1 in G1[K,E′, Π] at the same point.

Between the two games G1[K,E′, Π] and G2[E′, Π], we change the choice of
E±K′ only for K ′ ∈ {K ⊕ ti}i∈[m]. After q′ queries, we therefore have by Theorem
1:

‖
∣∣φKq′+1

〉
− |ψq′+1〉 ‖ ≤ 2

∑
1≤i≤q′

|PK,t1,...,tm |φi〉 | ,

where PK,t1,...,tm is the projector on the part of the input that corresponds to a
key k ∈ {K ⊕ ti}i∈[m]. When K cycles over all possible keys, K = {0, 1}k, the
set {K ⊕ ti}i∈[m] describes {0, 1}k exactly m times. Thus, we have:∑

K∈K
|PK,t1,...,tm |φi〉 |2 = m

∑
x∈{0,1}k

|Px |φi〉 |2 = m .

By normalization, and by Jensen’s inequality:(∑
K∈K

|PK,t1,...,tm |φi〉 |

)2

≤ |K|
∑
K∈K

|PK,t1,...,tm |φi〉 |2 = 2km .

We then take the average over K:

E
K

$←−K

(
‖
∣∣φK〉− |ψ〉 ‖) ≤ 2

√
mq′2

2k .

�

Now, we consider the complete run of A1 followed by A2. Let us fix a choice
of E±, Π± and K.∣∣∣Pr[G0[K,E±, Π±]⇒ 1]− Pr[G2[E±, Π±]⇒ 1]

∣∣∣
≤
∣∣∣Pr[AE

±
·⊕K

(·)
2

∣∣φK〉⇒ 1]− Pr[AΠ
±(·,�)

2 |ψ〉 ⇒ 1]
∣∣∣

We introduce the distance between
∣∣φK〉 and |ψ〉 (still with a fixed choice of

E± and Π±):

≤
∣∣∣Pr[AE

±
·⊕K

(·)
2

∣∣φK〉⇒ 1]− Pr[AE
±
·⊕K

(·)
2 |ψ〉 ⇒ 1]

∣∣∣
+
∣∣∣Pr[AE

±
·⊕K

(·)
2 |ψ〉 ⇒ 1]− Pr[AΠ

±(·,�)
2 |ψ〉 ⇒ 1]

∣∣∣
≤ 4‖AE

±
·⊕K

(·)
2

∣∣φK〉−AE±·⊕K
(·)

2 |ψ〉 ‖

+
∣∣∣Pr[AE

±
·⊕K

(·)
2 |ψ〉 ⇒ 1]− Pr[AΠ

±(·,�)
2 |ψ〉 ⇒ 1]

∣∣∣
≤ 4‖

∣∣φK〉− |ψ〉 ‖+
∣∣∣Pr[AE

±
·⊕K

(·)
2 |ψ〉 ⇒ 1]− Pr[AΠ

±(·,�)
2 |ψ〉 ⇒ 1]

∣∣∣ .
34

Since we are interested in bounding EE±
(∣∣∣PrK [G0 ⇒ 1]− PrΠ± [G2 ⇒ 1]

∣∣∣),
the first term on average over K will be bounded by 8

√
mq′2

2k . Now we have to
study the run of A2, which is completely classical (|ψ〉 is measured before the
run). We have

|ψ〉 = A
Π±(·,�),E±�(�)
1 |0〉

since |ψ〉 was obtained by running A1 in game G2 (where there is no key).
Thus when we measure it, its result depends on Π± and E±. Note also that
in AE

±
·⊕K

(·)
2 |ψ〉, we may assume that Π± and E± are modified to agree on the

tweaks of the pre-declared set (as above in the first phase). Thus, the adversary
cannot distinguish simply by re-querying a tweak of the first phase. We consider
the following setting: after step 1, A1 outputs z which has s0 bits. Then A2 takes
z as input and performs q2 non adaptive queries (t1, x1), . . . , (tq2 , xq2) to Ẽ±. We
require these queries to be a deterministic function of z. We want to bound

E
E±,Π±,z,K

(
Pr[AE

±
·⊕K

(·)
2 (z)⇒ 1]− Pr[AΠ

±(·,�)
2 (z)⇒ 1]

)
where z may depend on E± and K is independent of everything. For each z,
we can extract deterministically q2 non adaptative queries (t1, x1), . . . , (tq2 , xq2)
(that depend on z) that will be done to Ẽ±. For a choice of key K, this means
A2 queries EK⊕t1(x1), . . . , EK⊕tq2

(xq2). We therefore define for each z and K
the set SzK = {K ⊕ t1, . . . ,K ⊕ tq2} of queried keys. For each z, each K0 ∈ K
appears in exactly q2 different sets SzK (the sets SzK0⊕ti for i ∈ {1, . . . , q2}). With
our notations, we can rewrite the above as

E
z,K,E±

Sz
K

Π±
Sz

K

(
Pr
K

[AE
±
·⊕K

(·)
2 (z)⇒ 1]− Pr[AΠ

±(·,�)
2 (z)⇒ 1]

)
where taking the expectation of E±Sz

K
means we only specify the function EK0

for K0 ∈ SzK , and similarly for Π±Sz
K
. This is equivalent to the previous quantity

since for a fixed z,K A2 makes calls only to functions E±K0
for K0 ∈ SzK .

Let XK be the distribution associated to EK for each K ∈ {0, 2k−1}. Because
we are in the IC model, each XK is the uniform distribution over the set Pn of
permutations on n bits. Let X = X0, . . . , X2k−1 and let sp = log2(|Pn|). Let O
be the output distribution after the first step on s0 bits and let XK(O = z) be
the distribution of EK conditioned on A1 outputting z after the first step. We
have H(X) = 2ksp and

H(X|O) ≥ H(X)−H(O) ≥ 2ksp − s0

Let XSz
K

= XK⊕t1 , . . . , XK⊕tq2
and

XSz
K

(O = z) = XK⊕t1(O = z), . . . , XK⊕tq2
(O = z).

Let also X<K = X0, . . . , XK−1. We have

35

∑
K∈K

H(XSz
K

(O = z)) ≥
∑
K∈K

∑
K′∈Sz

K

H(XK′(O = z)|X<K′(O = z))

= q2
∑
K∈K

H(XK(O = z)|X<K(O = z))

= q2H(X(O = z))

where to have the first inequality, we write XSz
K

= Xi1 , . . . , Xiq2
with i1 <

i2 < · · · < iq2 and

H(XSz
K

(O = z)) =
q2∑
j=1

H(Xij (O = z)|Xi1(O = z), . . . , Xij−1(O = z))

≥
q2∑
j=1

H(Xij (O = z)|X<ij (O = z))

=
∑

K′∈Sz
K

H(XK′(O = z)|X<K′(O = z)).

From there, we have

E
z:K $←K

[
H(XSz

K
(O = z))

]
≥ E

z:K $←K
q2H(X(O = z))

= q2H(X|O) ≥ q2sp −
q2s0

2k .

We then use Pinsker’s inequality to bound the Statistical distance between
XK (the uniform distribution) and the one obtained conditioned on the output
z.

E
z;K $←K

[
SD(XSz

K
(O = z), XSz

K
)
]

≤ E
z;K $←K

[√
1
2D

(
XSz

K
(O = z), XSz

K

)]

= E
z;K $←K

[√
1
2
(
q2sp −H(XSz

K
(O = z))

)]

≤
√

1
2

(
q2sp − E

z:K $←K

[
H(XSz

K
(O = z))

])
≤
√

q2s0

2 · 2k

The relation between the relative entropy D and the difference between the
entropies comes from the fact that XSz

K
is the uniform distribution. We then use

concavity of the root function.
We bound the distance between the 2 games by bounding the difference when

we replace each EK0 for K0 ∈ SzK on average over the choice of keys K and over

36

the output z, with a random permutation Π (which means that we replace each
XK0(O = z) with XK0).

Remark 2. Making the proof work for general adaptative tweaks, which are
chosen by the adversary depending on her current state, turned out to be much
more difficult than we initially anticipated. In particular, our query magnitude
argument cannot be used as is, since we do not know in advance the positions at
which we would like to change the outputs of E±. Despite that, we conjecture
that the same bound can be achieved for adaptive tweaks, as there does not seem
to be any better attack. We leave this as an open question.

The bound given by Proposition 1 is not tight because of the √ . However,
for a constant success probability, the first term in the bound is matched by the
following attack.

Lemma 13. There exists a quantum algorithm that for any E, makes q queries
to the TBC, q′ queries to E and succeeds in recovering the key of a key-tweak
insertion TBC with probability O

(
qq′2

2k

)
(thus distinguishing the instance from a

random family of permutations).

Proof. The attack runs in three phases:

1. The adversary makes q queries of the form EK⊕i(0) for i = 0, . . . , q − 1 and
stores the couples EK⊕i(0), EK⊕i⊕1(0) in a database D.

2. Using Grover’s algorithm, the adversary searches for an element z such
that (Ez(0), Ez⊕1(0)) ∈ D. As D is of size q, Grover search would require
O
(√

2n

q

)
queries to succeed with constant probability. After q′ queries, the

probability of success is O
(
qq′2

2k

)
.

3. Let t, z be the obtained pair such that Ez(0) = EK⊕t(0) and Ez⊕1(0) =
EK⊕t⊕1(0). The use of two elements makes the probability of a false positive
(a random collision) exponentially low. The adversary then concludes that
z = K ⊕ t i.e. K = z ⊕ t and checks that the key was correctly guessed.

If the TBC queried is a random family of permutations, then no solution exists
at Step 2. After running q′ iterations of Grover search, the attacker measures a
random element that does not pass the check.

Remark 3. The attack of Lemma 13 works even if the adversary does not control
the tweaks queried. It requires O (q) quantum-accessible classical memory. If the
tweaks are controlled (but still non adaptatively), the offline Simon’s algorithm
of [13] reduces the memory down to O

(
k2) qubits. The attack then is exactly

the related-key attack of [13, Section 6.1]

37

