
Byzantine Ordered Consensus without Byzantine Oligarchy

Yunhao Zhang,† Srinath Setty,⋆ Qi Chen,⋆ Lidong Zhou,⋆ and Lorenzo Alvisi†
†Cornell University ⋆Microsoft Research

Abstract
The specific order of commands agreed upon when run-
ning state machine replication (SMR) is immaterial to fault-
tolerance: all that is required is for all correct deterministic
replicas to follow it. In the permissioned blockchains that
rely on Byzantine fault tolerant (BFT) SMR, however, nodes
have a stake in the specific sequence that ledger records, as
well as in preventing other parties from manipulating the se-
quencing to their advantage. The traditional specification of
SMR correctness, however, has no language to express these
concerns. This paper introduces Byzantine ordered consensus,
a new primitive that augments the correctness specification of
BFT SMR to include specific guarantees on the total orders
it produces; and a new architecture for BFT SMR that, by
factoring out ordering from consensus, can enforce these guar-
antees and prevent Byzantine nodes from controlling ordering
decisions (a Byzantine oligarchy). These contributions are in-
stantiated in Pompē,1 a BFT SMR protocol that is guaranteed
to order commands in a way that respects a natural extension
of linearizability.

1 Introduction
This paper aims to add a new dimension to state machine
replication (SMR) [62], a fundamental building block in fault-
tolerant distributed computing, by introducing a way to ex-
press, reason about, and enforce specific properties about how
the SMR protocol orders the commands it receives.

SMR coordinates a set of replicas of a deterministic service
so that, collectively, they implement the abstraction of a single,
correct server. In particular, the protocol sequences client-
issued requests to produce a total order, which correct replicas
then follow when processing the requests. As long as the
system includes sufficiently many correct replicas, voting on
replica outputs guarantees that clients of the replicated service
can recognize and accept only output values that would have
been generated by a correct server.

SMR totally orders client requests by running an instance
of consensus for each position in the request sequence. The
only requirement on the sequence agreed upon is that it even-
tually contains all requests from correct clients. Indeed, if all
SMR is used for is fault-tolerance, no further legislation is
necessary: the specific sequence of states that correct replicas
traverse is immaterial.

1The urban ritual of the pompē (πομπή, or procession) was central to civic
and religious life in the Byzantine empire.

Not so, however, when SMR is used (typically, in a Byzan-
tine fault tolerant (BFT) configuration) across multiple ad-
ministrative domains to support a blockchain. Consider, for
instance, permissioned blockchains like Libra [3], CCF [60],
or HyperLedger Fabric [6]: the specific order of transactions
held by their ledger can have significant financial implica-
tions [24, 47]. The nodes running these protocols are not
just interested in converging on an agreed-upon ledger: they
have a real stake in the specific sequence that ledger records,
as well as in preventing other parties from manipulating the
sequencing to their advantage.

The traditional specification of correctness for (BFT) SMR,
however, has no language for addressing such concerns; be-
cause it attaches no significance to the sequence it produces,
it is intrinsically incapable of characterizing what makes a
total order “right” or “wrong”.

Our aim in this paper is to introduce a framework for ex-
pressing and enforcing such distinctions. A key challenge
is that the lack of expressiveness in the correctness specifi-
cation of SMR has deep architectural roots. Specifically, in
standard leader-based SMR [16, 43], the ordering of a com-
mand is hardcoded in the protocol that adds the command to
the ledger: the leader runs concurrently a set of consensus
instances, each dedicated to filling a specific ledger position
with a command of its choosing.

Thus, we pursue a two-pronged approach: for expressive-
ness, we expand the correctness specification of the BFT SMR
primitive; for enforcement, we articulate a new architecture
for BFT replication that makes it possible to implement in
practice our newly-introduced correctness requirements.

Our first contribution is to introduce Byzantine ordered
consensus, a new primitive that augments the correctness
specification of BFT SMR to include the enforcement of
specific guarantees on the total orders it produces. The new
specification allows the nodes that implement a replicated
state machine to associate an ordering indicator to the com-
mands they ultimately agree upon. Through these indicators,
nodes can express how they would like commands to be or-
dered with respect to one another. The correctness conditions
for Byzantine ordered consensus specify, given a set of input
⟨ordering indicator, command⟩ pairs, the set of allowable total
orders for the commands.

To identify meaningful correctness conditions in the pres-
ence of Byzantine nodes, we draw inspiration from classic
work in social choice theory [7, 9, 11] and explore the lim-
its of what can be guaranteed in the presence of Byzantine

nodes. In particular, we ask: is it possible to prevent Byzantine
nodes from dictating the ordering of commands? And, at the
other end of the spectrum, is it possible to completely prevent
Byzantine nodes from wielding influence on that order? We
find that, while eliminating Byzantine influence is provably
impossible, new mechanisms can prevent the establishment
of a Byzantine oligarchy.

Simply expressing these correctness conditions, however,
is not enough: we need the means to enforce them. Our second
main contribution is to introduce a new general architecture
for BFT protocols that factors ordering out of consensus: it
cleanly separates the process of establishing the relative order
of commands from the consensus step necessary to add those
ordered commands to the ledger. This separation completely
eliminates the leader’s ability to control a command’s position
in the ledger; at the same time, it retains the simplicity and
efficiency of having a leader in charge of the consensus step.

Finally, we design, implement, and evaluate Pompē, a BFT
SMR protocol based on Byzantine ordered consensus that
enforces ordering linearizability, a new correctness condition
that prevents a Byzantine oligarchy and offers correct nodes a
meaningful guarantee about the order ultimately recorded in
the ledger. Informally, it ensures that if the lowest timestamp
that any correct node assigns to command c2 is larger than the
highest timestamp that any correct node assigns to c1, then c1
will precede c2 in the ledger.

We implement Pompē by extending prior state-of-the-art
BFT implementations [1, 2]. Our experimental evaluation
demonstrates that while Pompē incurs higher latencies than
its baselines, Pompē can achieve higher throughput at com-
petitive latencies by batching commands in both the ordering
step and the consensus step. For example, with n = 4 nodes
in a single datacenter, a version of Pompē that extends order-
ing linearizability to HotStuff [2, 67] achieves a throughput
of approximately 360,000 commands/s at a latency of about
53 ms, which corresponds to 40% higher throughput and 6%
higher latency than HotStuff. Additionally, since in Pompē
nodes can order multiple commands in parallel, we find that,
if the computing resources assigned to each node are scaled
up proportionally with the number of nodes, Pompē can sus-
tain its high throughput in settings with 100 nodes distributed
over three geo-distributed datacenters.

2 Background and motivation
The increasing popularity of blockchains as a platform for co-
operation and data sharing among mutually distrustful parties
has brought about a renewed interest in Byzantine fault toler-
ance (BFT). In particular, permissioned blockchains, which
promise a platform for executing commands without trusting
a centralized authority, have adopted as their core the standard
BFT SMR architecture [62]. Transitioning BFT to this new
application domain has introduced some new challenges. One
that has received much attention is scalability. Traditional
BFT SMR protocols have typically targeted deployments in-

volving a number of nodes in the single digits, while some
permissioned blockchains envision running BFT at scales that
are two orders of magnitude or larger. A new breed of BFT
SMR protocols have raised to this challenge, finding clever
ways to pipeline requests and streamline the communication
required to achieve consensus [10, 31, 50, 54, 68].

In this paper we address a different challenge that emerges
when applying BFT SMR in a blockchain context, one funda-
mental enough to bring into question whether this primitive is
sufficiently expressive to serve as the basis for this new class
of applications.

Consider the correctness specification of SMR: it requires
all correct nodes replicating a service to traverse the same
set of states and produce the same outputs. If replicas are
deterministic, an expedient way to satisfy this requirement is
to ensuring that all correct replicas process the same sequence
of inputs: identical inputs translate into identical states and
outputs. As long as these inputs are valid client commands,
the correctness specification assigns no semantic meaning to
the particular order in which they are executed by the replicas:
that order is simply a syntactic mechanism used to achieve
the desired safety property.

In blockchains, however, the specific order adopted by the
underlying SMR protocol tends to have rich semantic impli-
cations, which often translate into substantially different fi-
nancial rewards for the parties involved. Allowing some users
to front-run their commands ahead of others clearly gives
them an unfair advantage in applications such as auctions and
exchanges [47, 57]; indeed, a recent paper [24] details how
bots have reaped from unsuspecting parties profits in excess
of $6M by replicating, within the Ethereum network, transac-
tion manipulation strategies already notorious in traditional
exchanges [47]. Yet, order manipulation (including censor-
ship, selective inclusion, command reordering, and command
injection) does not, per se, violate the specification of SMR,
the technology at the core of projects like Libra [3].

Unfortunately, adding the “BFT” qualifier to SMR does not
help address these concerns: all it does is to ensure that the
standard SMR specification continues to hold even if some
nodes are Byzantine. The crux, rather, is that the correctness
expectations of blockchain users do not stop at requiring all
ledgers to hold the same total order: which order matters.

A symptom of the discomfort caused by this semantic gap
is the growing focus on curbing the discretion of the single
node that, in Paxos-like BFT SMR, leads the consensus de-
cisions: if Byzantine, this leader node can single-handedly
control the ledger’s order. Proposed solutions include rotating
leaders [13, 21, 68]; holding leaders accountable for their ac-
tions [33, 35]; or developing outright “leaderless” protocols
that give no node a special role in the execution of consen-
sus [23, 44, 54]. These efforts are a step in the right direction,
but they also, arguably, miss the point. While it is clear enough
that leaving a single leader in full control of the ledger’s order
is undesirable, they fiddle with a low-level mechanism with-

out offering a way to express the correctness guarantees that
such mechanisms, whatever they may be, should enforce. Re-
cent work on order-fairness [38], concurrent with ours, takes a
further step forward by adding to consistency and liveness the
additional requirement of transactional order-fairness; how-
ever, it offers neither a general framework for synthesizing
desirable ordering guarantees from the ordering preferences
of individual nodes, nor tries to precisely characterize the
degree to which Byzantine nodes can affect ordering.

This paper argues that the correct approach to bridge the
current semantic gap is instead to start from first principles.
Thus, we introduce a new primitive, Byzantine ordered con-
sensus, that expands the correctness specifications of BFT
SMR so it can express specific correctness guarantees about
the total orders it produces. Inspired by classic work in so-
cial choice theory [7, 9, 11], Byzantine ordered consensus
lets participating nodes not only propose commands, but also
indicate how they prefer to see them ordered. Essentially,
Byzantine ordered consensus makes it possible to specify
which total orders a correct BFT SMR is allowed to produce,
given the nodes’ ordering preferences. For example, assuming
that nodes use as their ordering preference the time they first
see a command, we show that it is possible to require total
orders that satisfy a natural generalization of linearizability:
ordering linearizability, which ensures that, if the highest
timestamp from all correct nodes for command c1 is lower
than the lowest timestamp from all correct nodes for c2, c1 is
ordered before c2.

The design space for ordering properties that we explore is
delimited by two overarching concerns. On the one hand, we
want to curb as much as possible the clout of Byzantine nodes;
on the other hand, we want to ensure that the preferences of
correct nodes will carry weight in the final ordering.

These goals can sometimes align; in particular, when it
comes to preventing Byzantine nodes from solely controlling
the ledger’s final ordering. As we noted above, the standard
approach to BFT SMR allows a Byzantine leader to alone dic-
tate which command commits in which consensus instance,
independent of what other nodes prefer. We aim for, and de-
fine, guarantees (such as ordering linearizability) that prevent
such Byzantine dictatorships. Indeed, we show that it is pos-
sible to rule out a Byzantine oligarchy, in which Byzantine
nodes are jointly able to determine the ordering decisions,
regardless of the correct nodes’ ordering preferences.

Sometimes, however, we find these goals fundamentally
at odds with one another: in particular, we find that ensuring
that each correct node has a saying in the final order makes
it impossible, in general, to completely prevent Byzantine
nodes from influencing the final order. This is the price, if
you wish, of operating in a Byzantine democracy.

3 Byzantine ordered consensus
Byzantine ordered consensus generalizes BFT SMR to expose
the ordering aspect explicitly, but preserves the same system

model, which consists of a distributed system of n nodes
(with at most f Byzantine faults) that act as clients as well
as servers: they both propose commands and execute them.
This model simplifies our presentation without any loss of
generality; we discuss how it relates to different real-world
deployment scenarios in Section 8.

Ordering indicators. As in standard BFT SMR, nodes in
Byzantine ordered consensus propose commands as inputs
and output a consistent totally-ordered ledger. Unlike standard
BFT SMR, each node associates a proposed command c with
an ordering indicator o, which is metadata indicating the
node’s ordering preference for c, so proposals are of the form
⟨o, c⟩. Let O denote the set of ordering indicators; we define
an order-before relation≺o onO×O as follows: For any pair
of proposals ⟨o1, c1⟩ and ⟨o2, c2⟩, where o1, o2 ∈ O, o1 ≺o o2
indicates a preference to order c1 before c2.

Examples of ordering indicators include timestamps, se-
quence numbers, and dependency sets or graphs. For time-
stamps (or sequence numbers), the order-before relation ≺o

can simply be the < relation on timestamps (or sequence
numbers), while for dependency sets/graphs, ≺o can be the
subset/subgraph relation on dependency sets or graphs.

Profiles, executions, and traces. We refer to a set of ⟨o, c⟩
proposals as a profile. Let P i and PC denote, respectively, the
set of proposals from node i and the set of proposals from all
correct nodes. Given a command c, we say that c ∈ PC if and
only if there exists a correct node i and an ordering indicator
o, such that ⟨o, c⟩ ∈ P i.

In an execution, correct nodes follow their prescribed pro-
tocol and input their proposals from PC , whereas Byzantine
nodes and the network are under the control of an adversary.
For a given profile, an execution can produce different traces;
each trace captures a single deterministic run of the protocol,
recording the behavior of all nodes (both correct and Byzan-
tine) as well as of the adversarial network. Although all traces
of an execution take as input the same PC , the content of
the ledger on which correct nodes agree may be different for
different traces, because of the actions of Byzantine nodes or
the behavior of the network. But what is the degree to which
Byzantine nodes can exert their influence on a given protocol?
And what is the price to curb it?

The politics of Byzantium. A minimum guarantee that any
protocol should offer is to make it impossible for Byzantine
nodes to dictate the ordering of the ledger’s entries. It is out of
concern for ensuring this guarantee that recent work in BFT
SMR has focused on limiting the leader node’s discretion in
making ordering decision. The formal structure offered by
Byzantine ordered consensus allows us to move past the inad-
equacies of the current mechanisms used to drive consensus
and focus instead on a precise characterization of what any
such mechanism should guarantee. In particular, we capture
the intuition that Byzantine nodes can dictate the ordering
decisions through the notion of Byzantine oligarchy.

Byzantine Oligarchy. A protocol execution is subject to a
Byzantine oligarchy if and only if, for all profiles of correct
nodes PC , for all pairs of commands c1 and c2 in PC , there
exists a trace for PC that results in c1 before c2 in the ledgers
of correct nodes and another trace for PC that results in c2
before c1 in the ledgers of correct nodes.

Intuitively, this definition conveys that, in a Byzantine oli-
garchy, the actions of Byzantine nodes can determine the
ordering of any two commands c1 and c2, regardless of the
ordering indicators from correct nodes.

Can we do more, and completely eliminate any influence
of Byzantine nodes over the ledger’s final ordering? The
framework offered by Byzantine ordered consensus allows
us to prove that this target can be achieved only at the price
of denying correct nodes a voice in the ordering decision.
The intuition is simple: since in general it is impossible to
distinguish a priori between correct and Byzantine nodes, a
policy that enfranchises the first group necessarily also gives
some influence to the second.

To formalize this intuition, we introduce two new notions.
First, we express what it means for a protocol to allow the
ordering preferences of its nodes to influence the ledgers’ final
total order. Note that, if a node can influence the outcome,
then there will be some circumstances in which the node’s
preferences will actually determine the outcome. The second
notion we introduce characterizes the impact of according
such influence to a Byzantine node.

Free Will. We say that a protocol respects the nodes’ free
will if and only if (i) for all profiles of correct nodes PC , there
exists a trace for PC , such that all commands in PC appear
in the ledgers of correct nodes in the trace and (ii) there exist
two profiles PA and PB, such that, for all commands c1 and
c2 that appear in both profiles, there exists a trace for PA that
results in c1 before c2 in the ledgers of correct nodes and there
exists a trace for PB that results in c2 before c1 in the ledgers
of correct nodes.

Free will rules out (i) arbitrarily denying proposed com-
mands and (ii) trivial and predetermined ordering mechanisms
(e.g., ordering commands by their hash values) .

Byzantine Democracy. We say that a protocol upholds
Byzantine democracy if and only if there exists a profile of
correct nodes PC , such that for all pairs of commands c1 and
c2 in PC , there exists a trace for PC that results in c1 before
c2 in the ledgers of correct nodes and another trace for PC

that results in c2 before c1 in the ledgers of correct nodes.
Unlike a Byzantine oligarchy, a Byzantine democracy gives

Byzantine nodes sway over the final ledger only for some
profiles of correct nodes, rather than all of them.

We are now ready to formulate a theorem that places fun-
damental limits to the degree to which it is possible to curb
the influence of Byzantine nodes.

Theorem 3.1. Free will =⇒ Byzantine democracy.

Proof. Consider the following n + 1 profiles, where P#1 =

PA and P#n+1 = PB and every node proposes the same com-
mands (though, possibly, with different ordering preferences)
in PA and PB.

PA = P#1 = P1
A ∪ P2

A ∪ ... ∪ Pn−1
A ∪ Pn

A

P#2 = P1
B ∪ P2

A ∪ ... ∪ Pn−1
A ∪ Pn

A

P#3 = P1
B ∪ P2

B ∪ ... ∪ Pn−1
A ∪ Pn

A

...

P#n = P1
B ∪ P2

B ∪ ... ∪ Pn−1
B ∪ Pn

A

PB = P#n+1 = P1
B ∪ P2

B ∪ ... ∪ Pn−1
B ∪ Pn

B

In profile P#i, the proposals of the first i− 1 nodes are the
same as in as in PB; those of the other n− i + 1 nodes are the
same as in PA. Because free will (condition (ii)) holds, there
is a trace for P#1 for which the ledgers of correct nodes order
c1 before c2, and a trace for P#n+1 where instead they appear
in the opposite order. And, also because free will (condition
(i)) holds, for each index k, there exists a trace for P#k, such
that c1 and c2 appear in the final ledgers. Then, there must
exist some index i for which the relative order of c1 and c2
switches when going from P#i to P#i+1. Consider the the
smallest such i. P#i and P#i+1 only differ in what node i
proposes: in P#i node i’s proposals come from PA; in P#i+1,
they come from PB. Hence, by choosing whether to P i

A or P i
B,

node i determines the relative order of c1 and c2.
If i is Byzantine, then Byzantine democracy holds for the

following correct profile:

PC = P1
B ∪ ... ∪ P i−1

B ∪ P i+1
A ... ∪ Pn

A

The definition of Byzantine democracy makes clear that
there exist some profiles that allow Byzantine nodes to con-
trol ordering decisions. A natural question then is: can we
design protocols that, by construction, enforce guarantees
that specify profiles on which Byzantine nodes can have no
influence? And what would such properties look like? We
address the second question next, leaving the answer to the
first to Section 4.

Ordering properties. Since under standard BFT assump-
tions (Section 4) correct nodes are more than two thirds of
the total (a supermajority!), the profiles less likely to be influ-
enced by Byzantine nodes are intuitively those in which the
voting preferences of correct nodes are aligned. We examine
two natural ordering properties that one might want to see
holding in such profiles; other definitions are possible.

The first requires that, if the ordering indicators of correct
nodes are unanimous on how to relatively order two com-
mands, their preference should be reflected in the final ledger.
Ordering unanimity: For all profiles of correct nodes PC ,
for all commands c1 and c2 that appear in PC and in the

ledgers of correct nodes, if, for every correct node i, ⟨o1, c1⟩ ∈
P i ∧ ⟨o2, c2⟩ ∈ P i ⇒ o1 ≺o o2, and there exists at least one
correct node j, such that ⟨o1, c1⟩ ∈ P j ∧ ⟨o2, c2⟩ ∈ P j holds,
then c1 must precede c2 in the ledgers of correct nodes.

The second ordering property is inspired by linearizabil-
ity [36], which orders a command c1 before a command c2 if
the first ends before the second starts.
Ordering linearizability: For all profiles of correct nodes PC ,
for all commands c1 and c2 in PC and in the ledgers of correct
nodes, let O1 = {o1|⟨o1, c1⟩ ∈ PC} and O2 = {o2|⟨o2, c2⟩ ∈
PC}, if o1 ≺o o2 holds for all o1 ∈ O1 and o2 ∈ O2, then c1
must precede c2 in the ledgers of correct nodes.

Informally, the “lowest” and “highest” ordering indicators
in O1 (or O2) indicate when c1 (or c2) start and end in the
collective perception of correct nodes. Hence, by analogy
with linearizability, if all ordering indicators in O1 are lower
than those in O2, then c1 is to be ordered before c2.

Unfortunately, even when correct nodes are unanimous,
their wishes are not guaranteed to come true. The issue again
arises from the tension between the desire of giving a voice
to every correct node and the inability to distinguish a priori
between correct and Byzantine nodes.

Theorem 3.2. No protocol can uphold both free will and
ordering unanimity.

Proof (sketch). Consider the four-node profile (f = 1) in
Figure 1. It is an example of what classic social choice theory
calls a Condorcet cycle [11, 22]: for any two commands ci

and ci+1 (modulo 4) , three nodes prefer the first before the
second; the fourth begs to differ.

P1 = {⟨1, c1⟩, ⟨2, c2⟩, ⟨3, c3⟩, ⟨4, c4⟩}
P2 = {⟨1, c2⟩, ⟨2, c3⟩, ⟨3, c4⟩, ⟨4, c1⟩}
P3 = {⟨1, c3⟩, ⟨2, c4⟩, ⟨3, c1⟩, ⟨4, c2⟩}
P4 = {⟨1, c4⟩, ⟨2, c1⟩, ⟨3, c2⟩, ⟨4, c3⟩}

FIGURE 1—A Condorcet cycle

Since any single node may be Byzantine, the requirement
of ordering unanimity applies to all ordering preferences
endorsed by at least three nodes—but in this example they
form a cycle, and thus cannot be all satisfied.

Like ordering unanimity, ordering linearizability also
promises to respect the collective preferences of correct nodes;
fortunately, unlike the former property, it is achievable. What
allows ordering linearizability to escape the Condorcet cy-
cle trap is a simple insight: it expresses ordering preferences
in terms of real-time happened before, a relation that is in-
herently acyclical. Indeed, as we show next, it is not only
achievable, but can be efficiently implemented.

4 Pompē
Pompē is a new protocol explicitly designed for Byzantine
ordered consensus that preserves the same interface as a stan-

dard BFT protocol: clients propose commands and correct
nodes reach consensus on a sequence of committed com-
mands. In addition to satisfying the standard safety and live-
ness properties of BFT SMR, Pompē introduces an ordering
phase for Byzantine ordered consensus and prevents Byzan-
tine oligarchies by enforcing ordering linearizability.

A new architecture. Pompē’s two-phase architecture is de-
signed to mirror the decoupling of ordering from consensus
made possible by the ordered consensus primitive. First, an
ordering phase decides the total ordering of commands, “lock-
ing” the relative position among the commands proposed in
this phase in a way that Byzantine nodes cannot alter; then, a
consensus phase allows all correct nodes to agree on a stable
prefix of the final sequence, following the total ordering deci-
sions in the ordering phase, and to record it in the ledger. We
refer to commands in the ledgers of correct nodes as stable
commands. Note that, since the total order of commands that
have completed the ordering phase cannot be changed during
the consensus phase, it is again safe to put a single leader node
in charge of finalizing consensus. Thus, Pompē can retain the
performance benefits of leader-based BFT SMR without fears
of enabling a Byzantine oligarchy.

System model. As in prior works in the BFT SMR literature,
we consider a distributed system with a set of n = 3f + 1
nodes, where up to f nodes can be Byzantine (i.e., deviate arbi-
trarily from their prescribed protocol) and the rest are correct.
We assume the existence of standard cryptographic primi-
tives (unforgeable digital signatures and collision-resistant
hash functions) and that cryptographic hardness assumptions
necessary to realize these primitives hold. Furthermore, we
assume that each node holds a private key to digitally sign
messages, and that each node knows the public keys of other
nodes in the system. We consider an adversarial network that
can drop, reorder, or delay messages. However, for liveness
properties, we assume that the network satisfies a weak form
of synchrony [16, 27, 28]. Finally, we assume that each node
has access to a timer, which produces monotonically increas-
ing timestamps each time it is queried.

4.1 Protocol description

We now describe how Pompē instantiates each of the phases
in our new architecture. Throughout the protocol, we assume
that correct recipients of messages that are not well-formed
(e.g., because they carry an incorrect signature) will drop
them: we omit these actions in the interest of brevity.

(1) Ordering phase. Pompē uses timestamps as ordering
indicators. To “lock” a position for a command in a total
order, Pompē proceeds in two steps.

In the first step, a node Ni with a command c collects
signed timestamps on c from a quorum of 2f + 1 nodes. The
median timestamp in the set of 2f + 1 signed timestamps is
the assigned timestamp for c, and it determines the position
of c in the total order. Because there are at most f Byzantine

nodes, by picking the median value, the assigned timestamp
is both upper- and lower-bounded by timestamps from correct
nodes. This is the key observation that allows the protocol to
achieve ordering linearizability.

To lock this position in the total order for c, in the second
step Ni broadcasts c along with its assigned timestamp and
waits for it to be accepted by a quorum 2f + 1 nodes (we
explain below what it means for a command to be accepted). If
a command c is accepted by a quorum of 2f +1 nodes, c is not
only guaranteed to be included in the totally-ordered ledgers
of correct nodes, but also that its position in the ledgers is
determined by the assigned timestamp of c. We refer to such
commands as sequenced.

Local state. Each node maintains the following local data
structures: (1) localAcceptThresholdTS, an integer, initialized
to 0, that tracks what Nj believes to be, currently, the latest
possible timestamp of any stable command in the ledger;
(2) localSequencedSet, a set, initially empty, that tracks all
commands that the node has accepted; (3) highTS, an n-sized
vector of integers where highTS[i], initialized to 0, stores the
highest timestamp received from node Ni; and (4) highTSMsgs,
an n-sized vector of messages where highTSMsgs[i], initialized
to null, stores the message signed by node Ni that carried the
value currently stored in highTS[i].

To complete our discussion of each node’s local state, we
first need to introduce a simple protocol that nodes use to
update their timers.

The protocol. Let T be the (f + 1)th highest timestamp in
highTS. Because at most f nodes are Byzantine, T is upper-
bounded by a timestamp from a correct node. Let each node
reset its timer to T whenever T is higher than the current
value of the local timer. Periodically, each node broadcasts its
current value of T in a Sync message to indicate that all correct
nodes can now set their timer to be T or higher. To prove to
its recipients that the T value is valid, the Sync message also
includes the sender’s highTSMsgs vector. □

We are now ready to define two additional data structures:
(4) globalSyncTS stores the highest T received so far in a Sync
message; and (5) localSyncTS stores instead the node’s local
timestamp at the time it received that Sync message.

Actions. Each node Ni with a command c executes the
following two steps to lock a position for c in a total ordering
of commands:

1. Ni broadcasts ⟨RequestTS, c⟩σNi
and waits for responses

from 2f + 1 nodes, where σNi is a signature on the payload
using Ni’s private key.

• A node Nj responds with ⟨ResponseTS, c, ts⟩σNj
, where ts

is a timestamp from Nj’s local timer.

2. Ni broadcasts ⟨Sequence, c, T⟩σNi
, where T is a set of 2f + 1

responses received in the first step, and waits for responses
from a quorum of 2f + 1 nodes.

• A node Nj accepts the broadcast message and adds

it to its localSequencedSet if the assigned timestamp
of c is higher than localAcceptThresholdTS. If so, Nj re-
sponds with ⟨SequenceResponse, ack, h⟩σNj

; otherwise, it
responds with ⟨SequenceResponse, nack, h⟩σNj

, where h
is the cryptographic hash of the Sequence message.

The second step above is crucial to establish stable prefixes
in the sequence of commands. Intuitively, it requires every
correct node Nj to refuse sequencing commands if their time-
stamp may be lower than that of a stable command. Note that,
during sufficiently long periods of synchrony (which are nec-
essary for liveness), nodes can get their commands sequenced
in just two round-trips—a lower latency than recent BFT pro-
tocols [18, 68]. However, sequenced commands are not yet
suitable for execution until they become stable: only then they
are guaranteed that commands with lower timestamps will
not be sequenced.

Nodes can execute commands speculatively in their localSe-
quencedSet, but they must wait for the consensus phase to
finish before externalizing output and be ready to perform
selective reexecution if their speculation is incorrect.

(2) Consensus phase. The principal goal of the consensus
phase is to ensure that all correct nodes agree that a certain
prefix of the total order constructed in the previous phase is
now stable, meaning that the prefix is forever immutable.

To accomplish this, Pompē employs any standard leader-
based BFT SMR protocol (e.g., [16, 31, 68]) that offers a
primitive to agree on a value for each slot in a sequence
of consensus slots. We generically refer to this protocol as
Consensus. For simplicity, we assume that each consensus slot
is associated with non-overlapping time intervals [ts, ts′) such
that ts′ > ts, and that for the first consensus slot ts = 0. We
further assume that the mapping from consensus slot numbers
to time intervals is common knowledge. In practice, this can
be implemented by making the interval of the first consensus
slot as [0,τ), where τ is the system initialization time, and
then assigning each subsequent consensus slot a fixed window
of time (e.g., [ts, ts + 100 ms)). Note that this does not mean
that nodes must agree on a value during these time intervals.

For liveness, Pompē relies on a bound ∆ on the sum of
two terms: the maximum difference ∆1 between the values
returned, at any time, by local timers of correct processes,
which in turn depends on the time it takes for a Sync to travel
from one node to another and be processed at the recipient;
and the maximum time ∆2 needed by a correct node to exe-
cute the ordering phase (we assume that these bounds include
additional slack to account for clock drifts across nodes).
Pompē’s safety properties hold even when ∆ does not hold,
but, during sufficiently long periods of synchrony (which is
necessary for liveness), we assume that the bound holds for
proving liveness (Section 4.2).

Local state. The local state of each node is a totally-
ordered ledger, initially empty.

Actions. Suppose that consensus slot k maps to time inter-

val [ts, ts′), meaning that all commands with assigned time-
stamp in this interval are expected to be included in this slot.
If node Ni wishes to serve as a leader in reaching consensus
on a value for slot k using Consensus, it proceeds as follows.

1. Ni broadcasts ⟨Collect, k⟩σNi
, and waits for responses from

2f + 1 nodes.

• Node Nj waits until two conditions hold. First, the value
of Nj’s globalSyncTS is higher than ts′, meaning that some
node sent Nj a Sync message with T ≥ ts′. Second, since
that Sync message was received, a time interval of at
least ∆ has elapsed on Nj’s timer (i.e., Nj’s timer reads
at least localSyncTS +∆). Note that, during sufficiently
long periods of synchrony, these delays give all correct
nodes enough time to sequence all their commands with
assigned timestamps lower than ts′ before Nj advances
its localAcceptThresholdTS to ts′. In more detail, after ∆1,
all correct nodes should have received and processed a
Sync message with T ≥ ts′ to set their local timer to be
at least T , so after this point, any new command entering
the ordering phase will not have an assigned timestamp
lower than ts′. After an additional ∆2, any command
with an assigned timestamp lower than ts′ must have
completed the ordering phase.

• Nj updates its localAcceptThresholdTS ←
max(ts′, localAcceptThresholdTS).

• Nj responds with ⟨CollectResponse, k,S⟩σNj
, where S is

the set of messages in the localSequencedSet of Nj with
assigned timestamps in the interval [ts, ts′).

2. Ni runs Consensus to agree on value U for consensus slot
k, where U is the union of CollectResponse messages from
2f + 1 nodes for consensus slot k.

Constructing a totally-ordered ledger. Once a prefix of
consensus slots are agreed upon, nodes can construct a totally-
ordered prefix of the ledger by sorting commands in each slot
(of the prefix) by their assigned timestamps, breaking ties
by their cryptographic hashes. When a node adds a proposal
to its totally ordered ledger, it can execute them in the order
specified by the ledger.

4.2 Proofs of safety and liveness

This section proves that Pompē satisfies ordering lineariz-
ability and a strengthened version of liveness in addition to
standard safety properties.

Theorem 4.1 (Consistency). For every pair of correct nodes
Ni and Nj with local ledgers Li and Lj, the following holds:
Li[k] = Lj[k] ∀k :: 0 ≤ k ≤ min(len(Li), len(Lj)), where
len(·) computes the number of entries in a ledger.

Proof. By the safety properties of BFT SMR, every pair of
correct nodes agrees on the same value for each consensus slot.
Furthermore, the transformation from values in consensus
slots to a totally-ordered ledger is deterministic. Together,

these observations imply the desired result.

Theorem 4.2 (Validity). If a correct node appends a com-
mand c to its local totally-ordered ledger, then at least one
node in the system proposed c in the ordering phase.

Proof. Each command in the ledger of a correct node is con-
structed from a valid value agreed upon in one of the con-
sensus slots. Furthermore, for a given consensus slot k with
assigned time interval [ts, ts′), by our construction, a valid
value is a set of CollectResponse messages for slot k from at
least 2f + 1 nodes, where each CollectResponse contains com-
mands with timestamps in the interval [ts, ts′). Additionally,
for a command to have an assigned timestamp, it must have
been proposed in the first step of the ordering phase. Together,
these observations imply the statement of the theorem.

Lemma 4.1. The assigned timestamp of a command is
bounded by timestamps provided by correct nodes.

Proof. By assumption, there are at most f Byzantine nodes.
Thus, at least f + 1 (out of 2f + 1) timestamps provided in the
ordering phase for a given command are from correct nodes.
Furthermore, the assigned timestamp of a command discards f
lowest and f highest timestamps in the 2f +1 ResponseTS mes-
sages, thus the assigned timestamp of a command is bounded
by timestamps provided by correct nodes.

Theorem 4.3 (Ordering linearizability). If the highest time-
stamp provided by any correct node for a command c1 is
lower than the lowest timestamp provided by any correct
node for another command c2 and if both c1 and c2 are com-
mitted, then c1 will appear before c2 in the totally-ordered
ledgers constructed by correct nodes.

Proof. By Lemma 4.1, the assigned timestamp of a command
is bounded by timestamps provided by correct nodes. As a
result of this and the pre-condition in the statement of the
theorem, the assigned timestamp of c1 will be smaller than
the assigned timestamp of c2. Thus, if both c1 and c2 are
committed, c1 will appear before c2 in the totally-ordered
ledgers of correct nodes because nodes sort commands by
their assigned timestamps.

Lemma 4.2. During sufficiently long periods of synchrony,
a correct node can get its command (along with its assigned
timestamp) added to localSequencedSet of at least 2f +1 nodes.

Proof (sketch). Suppose a correct node executes the first step
of the ordering phase for its command c and obtains an as-
signed timestamp of ts. During sufficiently long periods of
synchrony, by the choice of ∆, a Sequence message that in-
cludes c will reach 2f + 1 correct nodes and be added to their
localSequencedSet before they advance their localAcceptThresh-
oldTS past ts, which implies the statement of the lemma.

Lemma 4.3. If a command c with assigned timestamp ts is
added to localSequencedSet of at least 2f +1 nodes, then c will
eventually be included in the value committed by a unique
consensus slot whose time interval includes ts.

Proof (sketch). Let k denote the consensus slot whose time
interval includes ts. When a leader broadcasts Collect for con-
sensus slot k, the local timers on correct nodes will eventually
meet the condition required to send CollectResponse messages.
Since c appears in the localSequencedSet of at least 2f + 1
nodes, and, by assumption, since at most f of them are Byzan-
tine, at least f +1 nodes will include c in their CollectResponse
for consensus slot k. Denote these f + 1 nodes with C.

Since Pompē’s use of BFT SMR requires proposals that
are constructed by taking a union of 2f + 1 CollectResponse
messages, a leader must include at least one message from
nodes in C. Thus, c must be included to construct a valid
proposal for consensus slot k. These combined with the live-
ness property of the employed BFT SMR protocol (which
ensures that a valid value will eventually be chosen for each
consensus slot) implies the desired result.

Theorem 4.4 (Strong liveness). During sufficiently long pe-
riods of synchrony, a correct node can get an assigned time-
stamp for its command c such that c will eventually be in-
cluded in the total order constructed by correct nodes at a
position determined by the assigned timestamp of c.

Proof. During sufficiently long periods of synchrony, by
Lemmas 4.2 and 4.3, c will eventually be included in the
value committed by a unique consensus slot whose time inter-
val includes the assigned timestamp of c. Since the algorithm
to construct a total ordering of commands from values com-
mitted by consensus slots sorts commands by their assigned
timestamps, the position of c is determined by the assigned
timestamp of c.

4.3 Byzantine influence in Pompē

Pompē greatly diminishes the leverage of Byzantine nodes.
Once a command is sequenced, Byzantine nodes can neither
censor it nor affect its position in the totally-ordered ledgers
of correct nodes. Furthermore, they cannot violate ordering
linearizability. Nonetheless, as we saw in Sections 2 and 3,
in a Byzantine democracy, it is impossible to completely
eliminate the influence of Byzantine nodes, and Pompē is not
immune from it.

Byzantine democracy in action. Consider the following ex-
ecution of Pompē, where n = 4 and f ≤ 1. There are two
commands, c1 and c2, that in the ordering phase obtained the
following timestamps from a quorum of 2f + 1 nodes.

N1 N2 N3

c1 0 3 3
c2 1 4 2

Assume, without loss of generality, that N3 is Byzantine,
and that the remaining nodes are correct. The timestamps
make clear that correct nodes prefer to order c1 before c2.
However, since the median timestamp of c1 is higher than the
median timestamp of c2, it is c2 that will be ordered before c1.
On a positive note, we observe that, in the normal case where
the timers on correct nodes are sufficiently synchronized and
network delays are small, this window of vulnerability to
Byzantine manipulation is small.

Early stopping and deferred selective inclusion. Pompē
cannot prevent a Byzantine node from obtaining an assigned
timestamp for its command, but not proceeding with the rest
of the ordering phase, as this misbehavior is indistinguishable
from what may result from a network failure. This ambiguity
allows a Byzantine node (possibly with the aid of a Byzantine
leader) to decide later, during the consensus phase, whether
or not to include its timestamped-but-not-yet-sequenced com-
mand in the ledger.

Preventing or reliably detecting this type of misbehavior
is impossible, but mechanisms to mitigate the risks and raise
suspicion do exist. One possibility is for each node to employ
an append-only linear hash chain to record the timestamps
it assigns to other nodes’ commands. Nodes exchange those
hash chains and refer to the corresponding hash value (in the
hash chain) in each ResponseTS message. Such hash chains
constrain the ability for Byzantine nodes to assign timestamps
abnormally (e.g., out of order), and allow after-the-fact au-
diting (which could be used to expose nodes that routinely
timestamp their commands, but do not always sequence those
commands). In addition, a correct node Ni can piggyback
the tail of a hash chain of all previously timestamped com-
mands of Nj whenever Nj requests a timestamp; this makes
it hard for a Byzantine Nj to blame on the network when
silently dropping an earlier timestamped command. An alter-
native mechanism is for correct nodes to hide their commands
using a threshold encryption scheme until those commands
are totally ordered. This additional step prevents Byzantine
nodes from observing the contents of other timestamped com-
mands before deciding whether to drop their timestamped
commands.

5 Implementation

We implement two variants of Pompē, where the artifacts dif-
fer in the specific BFT protocol they employ for the consen-
sus phase. Specifically, we extend two prior state-of-the-art
leader-based BFT protocols: SBFT [31] and HotStuff [68].
SBFT implements a variant of PBFT [16] that includes many
optimizations for scalability. HotStuff uses a rotating leader
paradigm while incurring low network costs and serves as the
foundation of the Libra blockchain [3]. For SBFT, we use its
implementation in VMware’s Concord [1], and for HotStuff,
we use the authors’ implementation [2].

base extensions

Concord [1] 22,141 1122
HotStuff [68] 4,983 900

FIGURE 2—Number of lines of C++ code in Pompē, which we build
atop a base BFT library with a set of extensions.

Ease of implementation. Implementing Pompē atop an ex-
isting consensus protocol involves modest system effort. Fig-
ure 2 reports the numbers of lines of code we add to the base
BFT protocol implementations. These extensions primarily
focus on implementing the two steps of the ordering phase
in our new architecture. Specifically, we implement four new
message types, as described in Section 4. We then imple-
ment message handlers to sign and verify timestamps and to
manage data structures for localSequencedSet and localAccept-
ThresholdTS. Additionally, we modify the leader logic so that,
for each time interval, a leader starts a consensus phase after
assembling a proposal by collecting responses from a quorum
of 2f + 1 nodes, as described in Section 4. The rest of the
consensus protocol is unmodified: the leader of an instance
runs the original consensus protocol for a slot with a proposal
assembled as described above. Within each slot, commands
are ordered by their assigned timestamps.

Optimizations. In Pompē’s consensus phase, the
CollectResponse message used for consensus slot k con-
tains all commands in a node’s localSequencedSet whose
assigned timestamp falls within the time interval associated
with k. This can lead to large message sizes. However, when
the network is synchronous and correct nodes respond in a
timely manner, CollectResponse messages will contain the
same set of commands. Therefore, we optimize Pompē by
having CollectResponse messages sent to the leader carry only
a hash of the set commands in the sender’s localSequencedSet.
The leader compares the hash of its own localSequencedSet
with the hashes carried in the CollectResponse messages
received from 2f other nodes. If the hashes match, then
the leader proceeds to reach consensus for slot k on the
commands from its localSequencedSet, using the 2f +1 signed
hash values (those received from the other nodes as well as
its own) as proof that 2f + 1 nodes reported the same set
of commands. Otherwise, the leader requests a new set of
CollectResponse messages, this time including the actual set
of commands. We enable this optimization by default.

6 Experimental evaluation
This section experimentally evaluates Pompē. We ask two
main questions: (1) How does the performance of Pompē
compare with that of state-of-the art BFT protocols? (or, what
is the price of transitioning from a Byzantine oligarchy to
a Byzantine democracy that enforces Byzantine-tolerant or-
dering guarantees?) and (2) What is the impact of separating
ordering from consensus on end-to-end performance? Fig-

ure 3 provides a summary of our findings.
We choose as baselines two prior state-of-the-art BFT pro-

tocol implementations: Concord [1, 31] and HotStuff [2, 68].
Both are leader-based (and hence subject to Byzantine oli-
garchy) and hardcode ordering decisions within consensus.
As described in Section 5, we implement two variants of
Pompē, both upholding ordering linearizability (and hence
free of Byzantine oligarchy), by augmenting those two BFT
protocols. We refer to Pompē that extends HotStuff as Pompē-
HS, and to Pompē that extends Concord as Pompē-C.

Methodology, testbed, and metrics. We run our experi-
ments on 100 Standard D16s_v3 (16 vcpus, 64 GB memory)
VMs on the Azure cloud platform spanning three datacenters,
each running Ubuntu Linux 18.04: 34 in West US, 33 in South-
East Asia, and 33 in North Europe. We run single-datacenter
experiments using VMs in the West US.

We report results only for failure-free executions, as fail-
ures do not alter how Pompē performs relative to its baselines.

Our workload is generated by clients that submit their com-
mands in a closed loop, i.e., they wait to receive a response to
their currently outstanding command before submitting the
next one. To run experiments with different loads, we vary the
number of clients. For HotStuff and Pompē-HS, as in prior
work [67], we run experiments where commands are random,
32-bytes-long values.2

Similarly, for Concord and Pompē-C, as in prior work [31],
we use a benchmark that writes a random value to a randomly-
selected key in a key-value store.

Our principal performance metrics are client-perceived
latency (measured in ms) and throughput (in com-
mands/second). To measure latency, each client records the
latency of each command using its local clock, and our scripts
aggregate latencies across clients and across commands. For
throughput, we compute the total number of commands pro-
cessed by the system and divide it by the duration of the
experiment. To measure the peak throughput of a given sys-
tem, we increase the number of clients until saturation.

Since Pompē separates ordering from consensus, clients in
Pompē receive two responses, one for confirming the relative
position of the command in the totally-ordered ledger (when
a command is sequenced; see Section 4 for details), and an-
other for the execution result of the command. Therefore, we
report two types of latency for Pompē, which we refer to as
ordering latency and consensus latency. Since our baselines
hardcode ordering decisions within consensus, both ordering
and consensus complete at the same time, so, for baselines,
we report a single type of latency.

6.1 End-to-end performance: Throughput and latency

We begin by measuring the performance of Pompē and its
baselines in a four-node configuration (we report results for
2The HotStuff implementation reaches consensus not on actual commands,
but on their 32-byte-long cryptographic hashes; clients communicate the
actual commands to the replica nodes outside of the consensus protocol.

Pompē incurs higher latency than its baselines, but by batching in both phases, Pompē achieves higher throughput at competative latencies §6.1,6.2
Pompē’s throughput degrades when n increases, but Pompē can scale up each node for higher throughput §6.3
Pompē incurs modest network overheads over its baselines §6.4

FIGURE 3—Summary of evaluation results.

throughput median latency
(cmds/s) (ms)

HotStuff (βc = 1) 474 8.2
HotStuff (βc = 800) 253,360 49.9
Pompē-HS (βo = 1) 1,642 2.3 (o), 47.7 (c)
Pompē-HS (βo = 200) 361,687 5.7 (o), 53.1 (c)

Concord (βc = 1) 40 53
Concord (βc = 800) 6,633 67
Pompē-C (βo = 1) 1,415 17 (o), 67 (c)
Pompē-C (βo = 200) 249,221 18 (o), 74 (c)

FIGURE 4—Peak throughput and median latency for Pompē and its
baselines in a single datacenter with n = 4 nodes. Pompē’s leader
starts the consensus phase every 50 ms with ∆ = 10 ms. Pompē’s
ordering latency is denoted with “o”, its consensus latency with “c”.

larger system sizes in the next subsection). We run clients on
a separate set of virtual machines so that clients and nodes do
not contend for computing resources.

A note about batching. Batching is a standard technique
in SMR protocols to increase throughput at the cost of higher
latency by amortizing the cost of running consensus across all
the commands in a batch. Both Pompē and its baselines can
take advantage of it, and we report experiments for different
batch sizes. However, Pompē’s separation of ordering from
consensus has two significant implications for batching.

First, it eliminates the unintended leverage that Byzantine
nodes can gain through batching even in BFT SMR protocols
that rotate leaders out of concern for “fairness”. The larger the
batch, the larger the number of commands whose ordering is
left to the unchecked discretion of the current leader: through-
put gains thus come at the cost of expanding opportunities for
Byzantine oligarchy. Pompē removes these concerns: its or-
dering guarantee (e.g., ordering linearizability) is unaffected
by either the existence of batches or by their sizes.

Second, separating order and consensus affects the trade-
off between latency and throughput that comes with batch-
ing. When Pompē’s baselines do not batch commands, they
achieve lower latency and lower peak throughput than Pompē.
Latency is higher under Pompē because a leader in Pompē
must wait for a fixed time window before initiating a pro-
posal; peak throughput is higher because Pompē implicitly
batches commands whose timestamps fall within a time win-
dow during consensus. However, when the baselines batch
commands to match Pompē’s latencies, they achieve signif-
icantly higher peak throughput than Pompē. Pompē’s peak
throughput is lower because nodes must produce and validate
signed timestamps during the ordering phase, which causes
nodes to saturate earlier.

throughput median latency
(cmds/s) (ms)

HotStuff (βc = 800) 6,160 915.8
Pompē-HS (βo = 200) 315,753 259.7 (o), 1518.1 (c)

Concord (βc = 800) 1,461 616
Pompē-C (βo = 200) 172,774 325 (o), 1415 (c)

FIGURE 5—Peak throughput and median latency for Pompē and
its baselines with n = 4 nodes spanning three geo-distributed data-
centers. Batch sizes are as in the single datacenter experiments in a
single datacenter. Pompē’s leader starts the consensus phase every
500 ms with ∆ = 400 ms.

Fortunately, the separation gives Pompē an additional
batching opportunity: each node can execute the ordering
phase once to assign a single timestamp to an ordered se-
quence of its own commands (or of commands from clients
that belong to the same organization as the node). Such batch-
ing does not affect Pompē’s ordering properties (e.g., ordering
linearizability) because each batch contains commands from
a single node. The throughput boost that comes from this addi-
tional source of batching can more than make up for Pompē’s
lost ground, but raises the question of how to fairly compare
the Pompē variants to their baselines.

We balance these different considerations in our experi-
ments as follows: if, in a configuration with n nodes, the
baseline’s consensus protocol uses a batch size βc = S(> 1),
then we allow each node in corresponding variant of Pompē
to use batches of size βo = S/n during its ordering phase.

Performance results. Figure 4 shows peak throughput and
median latency at peak throughput for Pompē and its base-
lines, for different batch sizes. Since Pompē-C and Pompē-HS
perform similarly compared with their respective baselines,
so we focus only on Pompē-HS.

Performance without batching. When βo = 1, Pompē-
HS’s median ordering latency is 28% of the median latency
of HotStuff with βc = 1, while its peak throughput is about
3.5× higher than HotStuff’s. The lower ordering latency is
due to Pompē’s ordering phase, which incurs only two RTTs
compared to the four RTTs required by HotStuff; the higher
throughput, perhaps surprisingly given that βo = 1, is instead
due to batching. In Pompē-HS, setting βo = 1 means that
nodes do not batch in the ordering phase; however, since
Pompē-HS does not start consensus until a time window has
elapsed, it can still collect commands from multiple clients:
for a 50 ms time window, we observed an effective batch size
of 82 commands. Unsurprisingly, the flip side of this higher
throughput is significantly higher consensus latency. Pompē-
HS starts the consensus phase every 50 ms; with ∆ = 10 ms,

FIGURE 6—Latency vs. throughput for HotStuff and Pompē-HS in a geo-distributed deployment. The left and right graphs show respectively
the maximum ordering latency and consensus latency experienced by different percentiles of the fastest commands. The experimental setup is
the same as in Figure 5. Pompē-HS achieves higher throughput at the cost of higher consensus latency, even as its low ordering latency lets
nodes know quickly when their commands are guaranteed to appear in the ledger.

every client waits on average 35 ms for the next consensus
phase, ultimately leading to a consensus latency of 47.7 ms.

Performance with batching. We fix the batch size for
HotStuff to βc = 800 commands, and accordingly set the
ordering-phase batch size of each of the four nodes in Pompē-
HS to βo = 200. Unsurprisingly, the throughput increases
significantly for both Pompē-HS and HotStuff, respectively
by 220× and 535× over the values we measured for Pompē-
HS (βo = 1) and HotStuff (βc = 1): both systems are CPU-
bound, and batching allows them to amortize the cost of
cryptographic operations across all commands in a batch. In
absolute terms, we find that Pompē-HS achieves 1.4× the
throughput of HotStuff; as discussed earlier, the reason is the
additional batching effect due to the 50 ms interval that in
Pompē-HS separates successive invocations of consensus.

6.2 Performance with a geo-distributed setup

We consider next a geo-distributed setup, where n = 4 nodes
are deployed in three separate datacenters, with one datacenter
running two nodes. We use the same batch size as in the single
datacenter setup (i.e., βc = 800 for baselines and βo = 200
for each node’s ordering phase for the corresponding Pompē
variants).

Peak throughput. Figure 5 shows our results. For HotStuff,
geo-replication causes throughput to drop dramatically, to
only 2.4% of its value for the same configuration in a sin-
gle datacenter. For geo-distributed Pompē-HS instead the
loss is much more contained: throughput is at 87.3% of its
single-datacenter value. Two main factors explain these re-
sults. First, as in the single-datacenter case, Pompē-HS can
take advantage of effective batching, now with a time interval
between successive proposal of 500 ms and ∆ = 400 ms;
second, HotStuff is hampered by its use of rotating leaders,
as a new leader does not propose a new batch until after
collecting enough votes for the previous leader’s batch: in a
geo-distributed setting, this delay can become significant and
negatively affect throughput.

Latency. Figure 6 shows the maximum ordering and consen-
sus latencies experienced by the fastest 50%, 90%, and 99%
of commands. The key take-away is that Pompē-HS achieves

higher throughput at the cost of higher consensus latencies.
As expected, in Pompē-HS both types of latency stay stable
until system saturation. HotStuff’s latency drops at the be-
ginning because, with more clients, it fills up a batch more
quickly while also increasing the throughput. Furthermore,
the ordering latency is lower than the median consensus la-
tency (since the latter adds more communication rounds to
the former) meaning that nodes can get early notification for
when their commands are guaranteed to appear in the ledger.

6.3 Scalability

To understand how well Pompē scales to a larger number
of nodes, we experiment with increasing values of n. We
vary the number of nodes in an experiment from 4 to 100.
Our results for Pompē-C (in comparison with its baseline
Concord) are qualitatively similar to our results for Pompē-
HS (in comparison with HotStuff), so we focus on Pompē-HS.

HotStuff uses the same batch size as before (i.e., βc = 800).
For Pompē-HS, we experiment with three configurations.

1. Light: We set βo = 800/n and allocate a single VM to each
node regardless of n.

2. Scale-up: We set βo = 800/n and, as n increases, so does
proportionally the number of VMs associated with each
node to equal ⌊n/4⌋. So, for example, for n = 4, we use
one VM per node; but when n = 10, each node uses two.

3. Fixed batch: We set βo = 200 regardless of n.

Figures 7 and 8 depict throughput and latency achieved by
Pompē and its baselines for different values of n.

Throughput. HotStuff scales well as n grows, whereas
throughput quickly degrades under Pompē-HS (light). This is
because batch sizes under Pompē-HS (light) are inversely pro-
portional to n, so throughput degrades as n increases. This is
confirmed by the scaling behavior of Pompē-HS (fixed batch)
where βo = 200 regardless of n. Of course, using a fixed βo

regardless of n may not be desirable.
Fortunately, we find that Pompē-HS (scale-up) can achieve

a behavior similar to Pompē-HS (fixed batch) without having
to use a fixed βo. In Pompē-HS (scale up), each node uses
multiple VMs to run the ordering phase, thereby avoiding

FIGURE 7—Peak throughput and median latency of different configurations of Pompē-HS and of HotStuff as a function of the number of
nodes (n) in a geo-distributed deployment. The light blue cross at n = 31 depicts the performance of Pompē-HS (scale up) with 3 VMs per
node; the blue square above it shows the predicted throughput when each node is assigned ⌊31/4⌋ = 7 VMs. The prediction is based on
benchmarks showing that the ordering phase scales near linearly as more VMs are assigned to each node. The blue squares connected by a
dotted line at n = 61 and n = 100 are similarly predicted rather than measured.

the throughput degradation experienced by Pompē-HS (light).
Our testbed has 100 nodes, so we could only run Pompē-HS
(scale-up) for n ∈ {4, 10, 16}. For higher values of n, we
predict the throughput of Pompē-HS (scale-up) using experi-
mental results from smaller-scale experiments and additional
benchmarks that we used to validate that the ordering phase
achieves a near-linear scaling as each node gets more VMs.

Latency. For both Pompē-HS and HotStuff, latency stays
relatively stable when the system scales out. This is because
latency is dominated by network communication in a geo-
distributed deployment.

6.4 Network overhead

Compared to its baselines, Pompē incurs higher network costs
to attach timestamps with each command and for executing a
separate ordering phase. To understand the increased network
costs, we use n = 4 and experiment with both Pompē and
its baselines. We experiment with Pompē-HS (βo = 1) and
HotStuff (βc = 1), and record the total number of bytes sent
by each node during the experiment. We find that Pompē-HS
incurs about 18% higher network costs compared to HotStuff,
which, we believe, is a tolerable price for the stronger ordering
properties ensured by Pompē.

7 Related work
Leader-based BFT protocols. There is a long line of work
on practical Byzantine consensus protocols [10, 17, 20, 31,
34, 41, 42, 49–52, 59, 65, 66], starting with the seminal work
of PBFT [16]. These works focus on improving performance,
round complexity, fault models, etc. Some works also focus
on using trusted hardware to improve fault thresholds [10, 19,
37, 46]. However, all of them employ a special leader node to
orchestrate both ordering and consensus, so they suffer from
both Byzantine dictatorship and Byzantine oligarchy.

There are some works that defend against faulty leaders,
but they focus only on preventing faulty leaders from affecting
the system’s performance or defenses for a restricted class of
attacks. For example, Aardvark [21] employs periodic leader
changes to prevent a faulty leader from exercising full control

over the system’s performance. It achieves this by having cor-
rect nodes set an expectation on minimal acceptable through-
put that a leader must ensure and trigger a leader election in
case the current leader fails to meet its expectation. While
Aardvark [21] focuses on achieving acceptable performance
in the presence of faulty leaders, Prime [5] targets a different
performance property: any transaction known to a correct
node is executed in a timely manner. The Prime Ordering pro-
tocol consists of a pre-ordering phase and a global ordering
phase. Unlike Pompē’s ordering phase, the pre-ordering phase
imposes only a partial order, rather than a timestamp-based
global ordering in Pompē.

Instead of monitoring leaders to detect (or prevent) certain
attack vectors, Pompē separates ordering from consensus,
which completely eliminates a leader’s power in selecting
which transactions to propose and in what order. More gener-
ally, our work provides the first systematic study of properties
desirable when employing BFT protocols for systems that
span multiple administrative domains, proves what are impos-
sible, and designs mechanisms to realize desirable properties
that are achievable.

Rotating leaders. BART [4] enables cooperative services to
tolerate both Byzantine faults and rational (selfish) behavior
under the new BAR (Byzantine, altruistic, and rational) model.
The consideration of rational behavior leads to an RSM de-
sign with rotating leaders, which has now become a standard
practice for blockchains based on BFT [3, 18, 68]. However,
the rotating leader paradigm still suffers from Byzantine dic-
tatorship because a Byzantine node can still dictate ordering
when it is in the leadership role, whereas Pompē achieves
stronger properties by separating ordering from consensus.

Leaderless BFT protocols. Recognizing the implications
of relying on a special leader, Lamport offers a leaderless
Byzantine Paxos protocol [44]. Unfortunately, it relies on
a synchronous consensus protocol to instantiate a “virtual”
leader, which requires at least f + 1 rounds, where f is the
maximum number of faulty nodes in the system and the du-
ration of each round must be set to an acceptable round trip
delays. When the number of nodes is high or when nodes

FIGURE 8—Scalability of Pompē-C and Concord in a geo-distributed deployment. Peak throughput and median latency with varying number
of nodes (n). We use βc = 800 for the baseline; see the text for different configurations of Pompē.

are geo-distributed, this protocol adds unacceptable latencies.
Democratic Byzantine Fault Tolerance (DBFT) [23] is an-
other leaderless Byzantine consensus protocol, which builds
on Psync, a binary Byzantine consensus algorithm. As in
Lamport’s leaderless protocol [44], Psync terminates in O(f)
message delays, where f is the number of Byzantine faulty
nodes, even though DBFT relies on a weak coordinator for a
fast path through optimistic execution.

EPaxos [55] is a Paxos [43] variant in which proposed
transactions are ordered without relying on a single leader.
But EPaxos ensures safety and liveness only in a crash fault
model, and it is unclear how to ensure those properties in a
Byzantine fault model, which is our target setting.

Building on the work of Cachin et al. [14, 15], Honeybad-
gerBFT [54] and BEAT [26] propose leaderless protocols
that preserve liveness even in asynchronous and adversarial
network conditions. To achieve these properties, they rely
on randomized agreement protocols, which bring significant
complexity and costs. Unfortunately, these works do not de-
fend against the formation of a Byzantine oligarchy nor do
they satisfy ordering linearizability.

Censorship-resistance. HoneybadgerBFT [54] and He-
lix [8] run consensus on transactions encrypted with a thresh-
old encryption scheme to prevent malicious nodes from cen-
soring transactions, but faulty nodes can always filter trans-
actions based on metadata, a point made by Herlihy and
Moir [35]. In contrast, Pompē’s separation of ordering from
consensus offers a simple mechanism to prevent censorship:
once a correct node executes the ordering phase, the transac-
tion is not only guaranteed to be included in the ledgers of
correct nodes, it will also be included in a position determined
by the assigned timestamp of the transaction.

Accountability and proofs. Herlihy and Moir [35] pro-
pose several mechanisms to hold participants accountable
in a consortium blockchain. These techniques extend and
generalize prior work on accountability [32, 33] and un-
trusted storage [48, 53]. Similarly, nodes can produce suc-
cinct (zero-knowledge) proofs of their correct operation,
which other nodes can efficiently verify [12, 58, 63, 64].
Recent work [45, 56] employs such proofs to reduce CPU
and network costs in large-scale replicated systems (e.g.,
blockchains). Unfortunately, such proofs do not prevent a

Byzantine leader node from deciding which commands to
propose and in what order.

Order fairness. Recent work by Kelkar et al. [38] also recog-
nizes the need to introduce a new ordering property for BFT,
which they characterize as order fairness. Their work shows
that a natural definition of Receive-Order-Fairness, which
states that the total order of commands in the consensus output
must follow the actual receiving order of at least a γ-fraction
of all nodes (if they agree), is impossible to achieve, due to
the Condorcet paradox. They relax Receive-Order-Fairness
and define Block-Order-Fairness, where ordering constraints
apply only to blocks of commands.

Starting from a similar motivation, our work takes a differ-
ent direction, with both theoretical and practical implications.

First, rather than trying to characterize the fairness of a
particular ordering, we introduce the notions of Byzantine
oligarchy and Byzantine democracy to focus on the degree to
which it is possible (and impossible) to curtail the influence of
Byzantine nodes in determining any given order of commands.
Thus, while Kelkar et al. observe that protocols that order
commands using timestamps from a quorum of nodes are not
suitable for ensuring fairness (as they suffer from the type of
manipulations described in Section 4.3), we are able to prove
(see Theorem 3.1) that any protocol is subject to these types
of manipulations in a Byzantine democracy, as long as we
uphold free will.

Further, we choose to express our ordering properties as
a function of the preferences of correct nodes, rather than
some γ-fraction of all the nodes (some of which could be
Byzantine); we believe this choice was instrumental in de-
riving clean definitions for ordering unanimity and ordering
linearizability.

Our different design choices have also significant practical
consequences. While Pompē can use any existing BFT pro-
tocol in its consensus phase, Kelkar et al. design a compiler
to automatically convert a standard consensus protocol into
one that satisfies order fairness. However, protocols output
by this compiler require more resources than a standard BFT
protocol for the same level of fault tolerance; for example, in
the same setting as in standard BFT (leader-based, partial syn-
chrony network model) with γ set to 1 (their best case), these
protocols require at least 4f + 1 nodes to tolerate f Byzan-

tine failures, rather than the 3f + 1 nodes needed by Pompē.
Further, the practicality of these compiler-produced protocols
is unclear, since to date they appear to have been neither im-
plemented nor evaluated, whereas Pompē is competitive with
state-of-the-art BFT protocol implementations.

Permissionless blockchains. A trend in the blockchain com-
munity is to avoid energy-intensive proof-of-work mechanism.
This has led to permissionless blockchains that employ a BFT
protocol among a set of nodes chosen based on different mech-
anisms (e.g., verifiable random functions, financial stake, etc.)
to agree on a value [25, 30, 39, 40]. Pompē can be used as a
building block in some of these blockchains.

Social choice theory. Social choice theory studies desirable
properties in the context of elections. A seminal work in this
area is by Kenneth Arrow [7], who won the Nobel Prize in
Economics Sciences in 1972 for this work. Arrow’s work
defines properties such as non-dictatorship and unanimity,
which inspired our definitions of Byzantine oligarchy and or-
dering unanimity. Following Arrow’s work, Gibbard and Sat-
terthwaite defined the manipulation property and proved that
any voting rule is either dictatorial or manipulable [29, 61].
This property inspired our definition of Byzantine democracy.
Finally, in the past two decades, computer scientists became
interested in social choice theory, leading to the creation of
the field of computational social choice [11].

8 Discussion
Deployment models. Section 4 describes our protocol in
a simplified deployment model centered on nodes, without
explicitly mentioning clients, for ease of exposition. This is
a reasonable model in the context of our target application
of permissioned blockchains, where each node is owned and
operated by a separate organization: we can expect clients
that belong to an organization to submit their transactions to
a node owned by the same organization (so the incentives of
clients and nodes are aligned). This deployment model also
increases the opportunity for batching in the ordering phase
at each node on behalf of all clients in the same organization.

Nevertheless, other deployment models are possible (e.g.,
those involving clients explicitly without associating them
with trusted organizational nodes). Pompē’s separation of or-
dering from consensus makes the following possible: each
client executes the ordering phase with nodes for its com-
mands and nodes execute the consensus phase. The protocol
does have to account for the revised client/node communica-
tion pattern in the calculation of the delay (previously, ∆) in
the consensus phase to ensure liveness, as well as handling
duplicate requests from clients to different nodes to ensure
that one of the nodes is correct and will accept the request.

Powerful network adversaries. Our network model as-
sumes partial synchrony (as do prior BFT protocols). This
does not eliminate a network-level adversary from affect-
ing the assigned timestamps of commands. For example, a

powerful adversary that controls the entire network connect-
ing honest nodes can selectively reorder or delay messages
among honest nodes to bias timestamps assigned to com-
mands. Unfortunately, it appears impossible to completely
curb the influence of such powerful network adversaries.

Another commonly adopted network-adversary model [51]
assumes that an adversary cannot influence the network con-
necting correct nodes. In this model, an adversary does not
gain additional power in biasing the assigned timestamps
beyond what Byzantine nodes could already do.

Command dependencies or replay protection. As in prior
BFT protocols, Pompē does not consider dependencies among
different commands, nor does it prevent the same command
from appearing multiple times in the total order. However,
one can embed additional metadata inside commands (e.g.,
nonces, explicit dependencies, etc.), which correct nodes can
use at the time of execution (i.e., after Pompē’s consensus
phase outputs a total order) to enforce dependencies among
commands or to defend against replay attacks.

9 Concluding remarks
Pompē is a new, practical, and surprisingly simple BFT proto-
col that demonstrates an ideal world of Byzantine democracy,
where free will is respected, under the “constitution” of order-
ing linearizability, and is not subject to Byzantine oligarchy.
And this ideal world has been shown to operate competitively
against the traditional world with Byzantine dictatorship.

Pompē’s source code along with instructions to reproduce
our experimental results will be available from: https://
github.com/pompe-org.

Acknowledgments

We thank Frans Kaashoek (our shepherd) and the anonymous OSDI
reviewers for their thorough and insightful comments. Trevor Eberl,
Jim Jernigan, and Kris Zentner offered timely help with setting up
a large-scale cluster on Azure. The initial steps towards a theory
of Byzantine ordered consensus benefited from early conversations
with Florian Suri-Payer and Mahimna Kelkar, and the help of Mao-
fan Yin was invaluable in making it possible to use HotStuff as one
of our baselines. This work was supported in part by NSF grants
CSR-17620155 and CNS-CORE 2008667.

References
[1] Concord Byzantine fault tolerant state machine replication

library. https://github.com/vmware/concord-bft,
2018.

[2] libhotstuff: A general-purpose BFT state machine replication
library with modularity and simplicity.
https://github.com/hot-stuff/libhotstuff, 2018.

[3] State machine replication in the Libra blockchain.
https://developers.libra.org/docs/state-machine-
replication-paper, 2020.

[4] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-P. Martin,
and C. Porth. BAR fault tolerance for cooperative services. In

https://github.com/pompe-org
https://github.com/pompe-org
https://github.com/vmware/concord-bft
https://github.com/hot-stuff/libhotstuff
https://developers.libra.org/docs/state-machine-replication-paper
https://developers.libra.org/docs/state-machine-replication-paper

Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 45–58, 2005.

[5] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine
replication under attack. IEEE Transactions on Dependable
and Secure Computing, 8(4):564–577, July 2011.

[6] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. De Caro, D. Enyeart, C. Ferris,
G. Laventman, Y. Manevich, et al. Hyperledger fabric: a
distributed operating system for permissioned blockchains. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), 2018.

[7] K. J. Arrow. Social choice and individual values, volume 12.
Yale University Press, 1951.

[8] A. Asayag, G. Cohen, I. Grayevsky, M. Leshkowitz,
O. Rottenstreich, R. Tamari, and D. Yakira. A fair consensus
protocol for transaction ordering. In Proceedings of the
International Conference on Network Protocols (ICNP), 2018.

[9] D. Austen-Smith and J. S. Banks. Positive political theory I:
Collective preference, volume 1. University of Michigan
Press, 2000.

[10] J. Behl, T. Distler, and R. Kapitza. Hybrids on steroids:
SGX-based high performance BFT. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys),
2017.

[11] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. D.
Procaccia. Handbook of computational social choice.
Cambridge University Press, 2016.

[12] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and
M. Walfish. Verifying computations with state. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[13] E. Buchman. Tendermint: Byzantine fault tolerance in the age
of blockchains. Master’s thesis, The University of Guelph,
2016.

[14] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and
efficient asynchronous broadcast protocols. In Proceedings of
the International Cryptology Conference (CRYPTO), pages
524–541, 2001.

[15] C. Cachin and J. A. Poritz. Secure intrusion-tolerant
replication on the internet. In Proceedings of the Internal
Conference on Dependable Systems and Networks (DSN),
pages 167–176, 2002.

[16] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer
Systems (TOCS), 20(4):398–461, Nov. 2002.

[17] M. Castro, R. Rodrigues, and B. Liskov. BASE: Using
abstraction to improve fault tolerance. ACM Transactions on
Computer Systems (TOCS), pages 236–269, 2003.

[18] B. Y. Chan and E. Shi. Streamlet: Textbook streamlined
blockchains. Cryptology ePrint Archive, Report 2020/088,
2020.

[19] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz.
Attested append-only memory: Making adversaries stick to
their word. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 189–204, 2007.

[20] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi,
M. Dahlin, and T. Riche. UpRight cluster services. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 277–290, 2009.

[21] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine
faults. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages
153–168, 2009.

[22] M. d. Condorcet. Essay on the application of analysis to the
probability of majority decisions. Paris: Imprimerie Royale,
1785.

[23] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. DBFT:
Efficient leaderless byzantine consensus and its application to
blockchains. In Proceedings of the International Symposium
on Network Computing and Applications (NCA), 2018.

[24] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov,
L. Breidenbach, and A. Juels. Flash boys 2.0: Frontrunning,
transaction reordering, and consensus instability in
decentralized exchanges. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2020.

[25] P. Daian, R. Pass, and E. Shi. Snow white: Robustly
reconfigurable consensus and applications to provably secure
proof of stake. In Proceedings of the International Financial
Cryptography Conference, 2019.

[26] S. Duan, M. K. Reiter, and H. Zhang. BEAT: Asynchronous
BFT made practical. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS), pages
2028–2041, 2018.

[27] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM (JACM),
35(2), Apr. 1988.

[28] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process. In
Proceedings of the Symposium on Principles of Database
Systems, pages 1–7, 1983.

[29] A. Gibbard. Manipulation of voting schemes: a general result.
Econometrica: Journal of the Econometric Society, pages
587–601, 1973.

[30] Y. Gilad, R. Hemo, S. M. Micali, G. Vlachos, and
N. Zeldovich. Algorand: Scaling Byzantine agreements for
cryptocurrencies. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2017.

[31] G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. K. Reiter, D.-A. Seredinschi, O. Tamir, and A. Tomescu.
SBFT: A scalable decentralized trust infrastructure for
blockchains. arxiv:1804/01626v1, Apr. 2018.

[32] A. Haeberlen, P. Kouznetsov, and P. Druschel. The case for
Byzantine fault detection. In Proceedings of the USENIX
Workshop on Hot Topics in System Dependability (HotDep),
2006.

[33] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview:
practical accountability for distributed systems. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 175–188, 2007.

[34] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K.
Reiter. Zzyzx: Scalable fault tolerance through Byzantine
locking. In Proceedings of the Internal Conference on
Dependable Systems and Networks (DSN), pages 363–372,
2010.

[35] M. Herlihy and M. Moir. Enhancing accountability and trust
in distributed ledgers. CoRR, abs/1606.07490, 2016.

[36] M. P. Herlihy and J. M. Wing. Linearizability: A correctness

condition for concurrent objects. ACM Transactions on
Programming Languages and Systems (TOPLAS), 12(3), July
1990.

[37] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V.
Mohammadi, W. Schröder-Preikschat, and K. Stengel.
CheapBFT: Resource-efficient Byzantine Fault Tolerance. In
Proceedings of the ACM European Conference on Computer
Systems (EuroSys), pages 295–308, 2012.

[38] M. Kelkar, F. Zhang, S. Goldfeder, and A. Juels.
Order-fairness for Byzantine consensus. In Proceedings of the
International Cryptology Conference (CRYPTO), 2020.

[39] A. Kiayias, A. Russell, B. David, and R. Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain
protocol. In Proceedings of the International Cryptology
Conference (CRYPTO), 2017.

[40] E. Kokoris-Kogias, P. Jovanovic, N. Gailly, I. Khoffi,
L. Gasser, and B. Ford. Enhancing Bitcoin security and
performance with strong consistency via collective signing. In
Proceedings of the USENIX Security Symposium, 2016.

[41] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong.
Zyzzyva: Speculative Byzantine fault tolerance. In
Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 45–58, 2007.

[42] R. Kotla and M. Dahlin. High throughput Byzantine fault
tolerance. In Proceedings of the Internal Conference on
Dependable Systems and Networks (DSN), pages 575–584,
2004.

[43] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, May 1998.

[44] L. Lamport. Leaderless Byzantine Paxos. In Proceedings of
the International Symposium on Distributed Computing
(DISC), pages 141–142, Dec. 2011.

[45] J. Lee, K. Nikitin, and S. Setty. Replicated state machines
without replicated execution. In Proceedings of the IEEE
Symposium on Security and Privacy (S&P), 2020.

[46] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda.
TrInc: Small Trusted Hardware for Large Distributed Systems.
In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 1–14,
2009.

[47] M. Lewis. Flash boys: A Wall Street revolt. W. W. Norton &
Company, 2014.

[48] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[49] J. Li and D. Maziéres. Beyond one-third faulty replicas in
Byzantine fault tolerant systems. In Proceedings of the
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2007.

[50] J. Liu, W. Li, G. O. Karame, and N. Asokan. Scalable
Byzantine consensus via hardware-assisted secret sharing.
IEEE Transactions on Computers, 68(1), 2019.

[51] S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic. XFT:
practical fault tolerance beyond crashes. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 485–500, 2016.

[52] J.-P. Martin and L. Alvisi. Fast Byzantine consensus. IEEE
Transactions on Dependable and Secure Computing,

3(3):202–215, July 2006.
[53] R. C. Merkle. A digital signature based on a conventional

encryption function. In Proceedings of the International
Cryptology Conference (CRYPTO), 1988.

[54] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The Honey
Badger of BFT Protocols. In Proceedings of the ACM
Conference on Computer and Communications Security
(CCS), 2016.

[55] I. Moraru, D. G. Andersen, and M. Kaminsky. There is more
consensus in egalitarian parliaments. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP),
pages 358–372, 2013.

[56] A. Ozdemir, R. S. Wahby, and D. Boneh. Scaling verifiable
computation using efficient set accumulators. In Proceedings
of the USENIX Security Symposium, 2020.

[57] D. C. Parkes, C. Thorpe, and W. Li. Achieving trust without
disclosure: Dark pools and a role for secrecy-preserving
verification. In Proceedings of the Conference on Auctions,
Market Mechanisms and Their Applications (AMMA), 2015.

[58] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio:
Nearly practical verifiable computation. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), May 2013.

[59] D. Porto, J. a. Leitão, C. Li, A. Clement, A. Kate, F. Junqueira,
and R. Rodrigues. Visigoth fault tolerance. In Proceedings of
the ACM European Conference on Computer Systems
(EuroSys), pages 8:1–8:14, 2015.

[60] M. Russinovich, E. Ashton, C. Avanessians, M. Castro,
A. Chamayou, S. Clebsch, M. Costa, C. Fournet, M. Kerner,
S. Krishna, et al. CCF: A framework for building confidential
verifiable replicated services. Technical report, Microsoft
Research Technical Report MSR-TR-2019-16, 2019.

[61] M. A. Satterthwaite. Strategy-proofness and arrow’s
conditions: Existence and correspondence theorems for voting
procedures and social welfare functions. Journal of Economic
Theory, 10(2):187–217, 1975.

[62] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: A tutorial. ACM Computing
Surveys, 22(4):299–319, Dec. 1990.

[63] S. Setty, S. Angel, T. Gupta, and J. Lee. Proving the correct
execution of concurrent services in zero-knowledge. In
Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Oct. 2018.

[64] S. Setty, S. Angel, and J. Lee. Verifiable state machines:
Proofs that untrusted services operate correctly. ACM SIGOPS
Operating Systems Review, 54(1):40–46, Aug. 2020.

[65] J. Sousa, A. Bessani, and M. Vukolic. A byzantine
fault-tolerant ordering service for the hyperledger fabric
blockchain platform. In 2018 48th annual IEEE/IFIP
international conference on dependable systems and networks
(DSN), pages 51–58. IEEE, 2018.

[66] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and
M. Dahlin. Separating agreement from execution for
Byzantine fault tolerant services. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), pages
253–267, 2003.

[67] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham.
HotStuff: BFT consensus in the lens of blockchain. CoRR,
abs/1803.05069, 2018.

[68] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham.

HotStuff: BFT consensus with linearity and responsiveness. In
Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC), 2019.

	1 Introduction
	2 Background and motivation
	3 Byzantine ordered consensus
	4 Pompe
	4.1 Protocol description
	4.2 Proofs of safety and liveness
	4.3 Byzantine influence in Pompe

	5 Implementation
	6 Experimental evaluation
	6.1 End-to-end performance: Throughput and latency
	6.2 Performance with a geo-distributed setup
	6.3 Scalability
	6.4 Network overhead

	7 Related work
	8 Discussion
	9 Concluding remarks

