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Abstract. In this work we develop optimized software implementations
for ForkAE, a second round candidate in the ongoing NIST lightweight
cryptography standardization process. Moreover, we analyze the perfor-
mance and efficiency of different ForkAE implementations on two em-
bedded platforms: ARM Cortex-A9 and ARM Cortex-M0.

First, we study portable ForkAE implementations. We apply a decryp-
tion optimization technique which allows us to accelerate decryption by
up to 35%. Second, we go on to explore platform-specific software op-
timizations. In platforms where cache-timing attacks are not a risk, we
present a novel table-based approach to compute the SKINNY round
function. Compared to the existing portable implementations, this tech-
nique speeds up encryption and decryption by 20% and 25%, respectively.

Additionally, we propose a set of platform-specific optimizations for pro-
cessors with parallel hardware extensions such as ARM NEON. Without
relying on parallelism provided by long messages (cf. bit-sliced implemen-
tations), we focus on the primitive-level ForkSkinny parallelism provided
by ForkAE to reduce encryption and decryption latency by up to 30%.

We benchmark the performance of our implementations on the ARM
Cortex-M0 and ARM Cortex-A9 processors and give a comparison with
the other SKINNY-based schemes in the NIST lightweight competition
– SKINNY-AEAD and Romulus.

Keywords: Authenticated encryption · Lightweight implementation ·
ForkAE · NIST LWC.

1 Introduction

The immense growth of small embedded devices that are connected in the In-
ternet of Things (IoT) mandates the adequate development of their respective
security mechanisms. To secure the communication between such devices one
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most commonly requires the use of lightweight symmetric authenticated encryp-
tion schemes. The competition for dedicated standards for lightweight symmetric
authenticated encryption (AE) and/or hashing algorithms that is run at present
by the U.S. National Institute of Standards and Technology (NIST) is a clear
indication of the benefits and demand for such algorithms in practice. Besides se-
curity, achieving good performance in software implementations is an important
criterion for all candidates in the second round of this standardization process.
In their call for submissions, NIST states that the algorithms should preferably
be “ ...optimized to be efficient for short messages (e.g., as short as 8 bytes).”
and “Compact hardware implementations and embedded software implementa-
tions with low RAM and ROM usage should be possible.” In this work we focus
on ForkAE [1, 2], a NIST lightweight cryptography (LWC) second round candi-
date which is particularly optimized for the processing of such short messages.
ForkAE uses a novel building block called forkcipher [2, 3] which enables one
primitive call per data block for secure authenticated ecnryption with associated
data AEAD. Forkcipher in ForkAE is instantiated with the ForkSkinny primitive
which reuses the SKINNY [5] round and tweakey functions. The SKINNY-based
nature of ForkSkinny gives us a natural reference point for comparison with the
rest of the SKINNY-based candidates in the competition SKINNY-AEAD [6]
and Romulus [9]. Moreover, software implementation results come with distinct
advantages and optimization techniques when one deals with general versus spe-
cific platforms. In this work we aim to illustrate the advantages of ForkAE in all
those aspects.

Contributions. Our contributions in this work are as follows.

1. We analyze portable ForkAE implementations across a range of platforms
and show that decryption latency can be significantly reduced (up to 35%) by
preprocessing the tweakey schedule. Our new decryption approach achieves
code size reduction (up to 31%) in addition to speed-up, at the cost of higher
memory usage.

2. We explore platform-specific optimizations. Our first implementation, suit-
able for systems where (cache-) timing attacks are not applicable, accelerates
ForkAE encryption and decryption by 20% to 25%, respectively, by repre-
senting the forward and inverse round functions as a series of table lookups.
We also explore the speed-memory trade-off for this implementation strategy.

3. We provide a second platform-specific implementation which targets plat-
forms with SIMD (Single Instruction Multiple Data) parallel hardware ex-
tensions. Our implementation is developed to exploit the data-level paral-
lelism present in ForkAE. Our results indicate that the efficiency and perfor-
mance of ForkAE on such platforms can be significantly increased, reducing
encryption and decryption latency by up to 30%.

4. We benchmark the performance of our implementations on the ARM Cortex-
M0 and ARM Cortex-A9 processors, illustrating the improved software per-
formance of ForkAE. Benchmark results are compared with the other SKINNY-
based schemes in the second round of the NIST LWC standardization process
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SKINNY-AEAD and Romulus. All implementations described in this paper
are publicly available at [8].

2 Background on ForkAE

ForkAE uses a forkcipher primitive that was specifically designed for use in
authenticated encryption of short messages. More concretely, it produces a 2n-bit
output from an n-bit input block via the secret key K and a public tweak T . The
forward computation corresponds to calculating two independent permutations
of the input block at a reduced computational cost (compared to two tweakable
block cipher calls). A forkcipher can be obtained following the so-called iterate-
fork-iterate [2] paradigm by using a round based (tweakable) block cipher to
transform the input block M a fixed number of rounds into the intermediate
state M ′ which is then “forked”(duplicated) and further iterated in two separate
branches, producing the outputs C0 and C1. M can be computed backwards from
C0 or C1 and in addition, either of the ciphertext blocks can be computed from
the other via the so-called reconstruction functionality.

2.1 The Tweakable Forkcipher ForkSkinny

ForkAE uses the ForkSkinny forkcipher primitive which is based on the lightweight
tweakable block cipher SKINNY [5]. The key and tweak are processed following
the TWEAKEY approach [10]. ForkSkinny uses the SKINNY round function
(RF) and tweakey schedule (TKS) to update its intermediate state and tweakey.
The state of the second branch is also modified by an additional branch con-
stant value (BC). The general processing of M under tweakey K‖T to C0‖C1 in
ForkSkinny is depicted in Figure 1 and all details can be found in the ForkAE
submission document [1].

Tw
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Fig. 1: Outline of ForkSkinny.

ForkSkinny comes in four instances [1], differing in the block (64- and 128-
bit) and the tweakey (192-, 256- and 288-bit) sizes. Each instance is denoted as
ForkSkinny-n-t where n and t are the block- and the tweakey size, respectively,
in bits. The size of the key (128 bits) is the same for all instances. Each instance
has a fixed number of rinit rounds before the forking step and a fixed number of
r0 = r1 rounds in each branch after the forking point.
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2.2 The ForkSkinny Round Function and Tweakey Schedule

The ForkSkinny round function (RF) consists of the same five operations as the
SKINNY round function and they are described by their effect on the internal
state. The internal state (IS) is represented by a 4x4 matrix where each cell
contains 8 bits (if n = 128) or 4 bits (n = 64) of data. In the beginning of the
cipher evaluation, the input block is loaded into the internal state in a row-wise
manner. The operations of the round function are listed below:
SubCells: Each cell of the internal state is substituted according to the SKINNY
S-boxes [5].
AddConstants: Constants are added to the first column of the IS. These con-
stants are generated by a Linear-Feedback-Shift-Register (LFSR) [1].
AddRoundTweakey: Round-tweakey material is added to the internal state in the
first two rows.
ShiftRows: The cells in the second row of the internal state are rotated one
position to the right. The third row is rotated 2 cells and the fourth row 3 cells.
MixColumns: Each column of the internal state is modified by a multiplication
with a binary matrix M [5].

At the beginning of the encryption procedure, a tweakey state is created as a
set of 4x4 matrices with cells of the same size as those of the internal state. The
tweakey matrices are then filled row-wise with the tweak and the key. This results
in the matrices TK1, TK2 and possibly TK3. In each round, the first two rows of
each of the matrices are jointly added to the first two rows of the internal state
(i.e., in AddRoundTweakey). After that, the tweakey state is updated to create
the next round-tweakey. The update consists of a permutation of the cells and
modification of the first two rows of TK2 and TK3 (if any) with an LFSR.

The ForkAE submission specifies two different modes of operation for do-
main extension of ForkSkinny: a parallel PAEF and a sequential SAEF [1]. The
presented optimizations in this work are focused at the primitive level (i.e.,
ForkSkinny) due to its higher impact on short message processing.

3 Portable Implementations of ForkAE

When carefully designing software in a low-level language, it is possible to obtain
efficient and secure implementations that can be compiled for a broad range of
platforms. In the design of such software, careful attention should be spent to
efficiently use the memory and avoid side-channel vulnerabilities.

In a concurrent work, Weatherley [15] explores efficient software for lightweight
cryptographic primitives on general 32-bit platforms. This includes implementa-
tions of all instances of ForkAE. These implementations aim to perform well on
32-bit embedded microprocessors and are designed to execute in constant time
with constant-cache behaviour [15]. In this section, we propose an optimization
that increases the performance of ForkAE decryption in these implementations.
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3.1 Decryption Optimization

For decryption, the evaluation of ForkSkinny requires the final round-tweakey to
be computed. In the existing portable implementation from [15], this is achieved
by fast-forwarding the tweakey state until the end of the tweakey schedule. The
resulting round-tweakey is then inverted on-the-fly every round. By introducing
many duplicate calculations, this approach causes ForkSkinny decryption to be
significantly slower than encryption.

Duplicate calculations can be avoided when the tweakey schedule is iterated
once and the portion of the round-tweakey that needs to be added to the internal
state is saved in memory. This way, the correct round-tweakey can be directly
accessed during the round function evaluation. This ensures that the tweakey
schedule is only calculated once and significantly reduces the decryption time.
This implementation strategy introduces a higher memory usage as the round-
tweakeys needs to be stored in memory. However, instead of storing the full
round-tweakeys, we show that it is sufficient to store only the relevant rows of
the tweakey state. Moreover, these can readily be added together to reduce the
memory footprint even more (cf. Section 2.2).

This new decryption approach achieves a significant speed-up and code size
reduction, at the expense of higher memory usage. The ROM size is reduced
because the round function code no longer needs to include tweakey calculations.

4 Lookup Table Implementations of ForkAE

Lookup tables can be used to speed up the calculations without introducing a
security risk in platforms that are not vulnerable to cache-timing attacks. The
original proposal of the Rijndael cipher for the Advanced Encryption Standard
(AES) proposes very efficient implementations for 32-bit platforms, by combining
multiple steps of the round function in table look ups [7]. In this section we show
how, in a similar way, the SKINNY round function in ForkAE can be translated
into a combination of table look ups. For the inverse round function, such a
transformation is more complex. Here, the different steps of the inverse round
must first be reordered, defining a modified inverse round function for which a
table-base implementation can be derived.

4.1 Tabulating the Round Function

We represent the internal state at the beginning of the SKINNY round function
by the matrix A (eq. (1)). For variants of ForkSkinny with a block size n = 128,
the elements ai,j of this matrix are 8-bit values. In Equation (5), we write the
effect of the round function on a column aj to obtain the column bj of the state
B =

(
b0 b1 b2 b3

)
at the end of the round. In this equation S[a] denotes the

output of the S-box of the SubCells step for input a. The binary matrix M
(eq. (2)) defines the MixColumns operation and the matrix X contains the con-
stants that are added in the AddConstants step (eq. (3)). The addition is always
a bit-wise addition. This corresponds to an XOR operation and is denoted with
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the operator ⊕. Indices should be taken modulo 4, as the ShiftRows operation
is a rotation. The values TKi,j contain the round-tweakey material that is added
in the AddRoundTweakey step (eq. (4)).

A =


a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

 (1)

M =


1 0 1 1
1 0 0 0
0 1 1 0
1 0 1 0

 (2)

X =


c0 0 2 0
c1 0 0 0
2 0 0 0
0 0 0 0

 (3)

TKi,j = TK1i,j ⊕ TK2i,j(⊕TK3i,j) (4)

Unfortunately, constants and tweakey material should be added before ShiftRows
and MixColumns. We solve this problem by splitting the round function in three
terms and distributing the matrix multiplication with M .

bj =


b0,j
b1,j
b2,j
b3,j

 = M ·




S[a0,j ]
S[a1,j−1]
S[a2,j−2]
S[a3,j−3]

⊕


x0,j

x1,j−1

x2,j−2

x3,j−3

⊕


TK0,j

TK1,j−1

0
0


 (5)

With the lookup tables T0...T3 defined in eq. (6), we can now calculate the first
term as in eq. (7). For ForkSkinny instances with n = 128, each of these tables
has 256 entries of 32-bit (one for every possible input a) and thus takes up 1 kB of
memory. To avoid having to store 4 kB of tables in memory, it is possible to store

only one table T =
(
S[a] S[a] S[a] S[a]

)>
and mask it according to the needed

vector. This approach needs an extra 4 logical AND operations per column, but
has a smaller ROM size because only one table of 1 kB needs to be stored.

T0[a] =


S[a]
S[a]

0
S[a]

 , T1[a] =


0
0

S[a]
0

 , T2[a] =


S[a]

0
S[a]
S[a]

 , T3[a] =


S[a]

0
0
0

 (6)

M ·


S[a0,j ]

S[a1,j−1]
S[a2,j−2]
S[a3,j−3]

 = T0[a0,j ] ⊕ T1[a1,j−1] ⊕ T2[a2,j−2] ⊕ T3[a3,j−3] (7)

The second term corresponds to the values added in the AddConstants step and
can be calculated by applying the Shiftrows and MixColumns step to the matrix
X, resulting in the matrix from eq. (8). For j = 0, 1, 2 the j-th column of this
matrix ACj needs to be added with the first term. The first two columns of this
matrix are different for every round, but can also be stored in a lookup table.

The final term involves the application of ShiftRows and MixColumns to the
round-tweakey. This corresponds to an addition of the column Kj (eq. (9)).
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AC =


c0 0 0 0
c0 0 2 0
0 c1 2 0
c0 0 0 0

 (8) Kj =


TK0,j

TK0,j

TK1,j−1

TK0,j

 (9)

Finally, every column bj of the output of the round function can be calculated as
in Equation (10), requiring 5 table lookups and 5 XOR operations per column.
For the third column, the constant lookup can be omitted as it is always the
same. The final column does not feature any constants, saving another lookup
and XOR. This results in a total cost for calculating the round function of 18
table lookups, 19 XOR operations and the cost of constructing the columns Kj .

bj = T0[a0,j ] ⊕ T1[a1,j−1] ⊕ T2[a2,j−2] ⊕ T3[a3,j−3] ⊕ACj ⊕Kj (10)

4.2 The Inverse Round Function

In order to be able to implement the inverse round function in a similar way as the
forward round, the SubCells step needs to be the first step of the inverse round
and the ShiftRows step needs to come before the MixColumns step, which is not
the case. In order to obtain an inverse round function where the SubCells inv

steps comes first, steps of consecutive rounds need to be combined in a new
round and a different first and final round need to be defined. We illustrate this in
Figure 3. However, in this approach the ShiftRows inv step still comes after the
MixColumns inv step and designing an efficient table-lookup implementation is
still not possible. To solve this problem we noted that the sequence of operations
from Figure 2a, can be also be calculated with the sequence of operations from
Figure 2b, allowing to delay the ShiftRows inv step. Here, we shift in advance
the round-tweakey material and the constants, so that they are added to the
correct part of the row that is not yet shifted.

When the ShiftRows inv operation is calculated after the addition of shifted
round-tweakey material and shifted constants, it comes before the SubCells inv

step. Now, the SubCells inv and ShiftRows inv can easily be swapped be-
cause the ShiftRows inv step does not modify the value within a cell and
SubCells inv operates on individual cells [7]. With this reordering of opera-
tions, it becomes possible to define the new inverse rounds as in Figure 4. In
the calculation of these n − 1 new inverse rounds the first three steps can now
be combined into table lookups. The table-based implementation is even more
simple here, because the round-tweakey material and constants are added at
the end of the round and their columns do not need to be mixed in advance.
The tables are different than for the forward round, but also here the possibility
exists to use only one table to reduce the memory size of the implementation.

4.3 64-bit instance

The round function transformation can also be applied to the instance where n =
64 and the cells of the internal state contain 4-bit values. However, with a single
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ShiftRows inv

AddRoundTweakey

AddConstants

(a)

AddRoundTweakey shifted

AddConstants shifted

ShiftRows inv

(b)

Fig. 2: Delaying the
ShiftRows inv step in the
inverse round function.

First round

MixColums inv

ShiftRows inv

AddRoundTweakey

AddConstants

(n-1) rounds

SubCells inv

MixColums inv

ShiftRows inv

AddRoundTweakey

AddConstants

Final round

SubCells inv

Fig. 3: Definition of a new
inverse round that starts
with the SubCells inv step.

First round

MixColums inv

AddRoundTweakey shifted

AddConstants shifted

(n-1) rounds

SubCells inv

ShiftRows inv

MixColums inv

AddRoundTweakey shifted

AddConstants shifted

Final round

SubCells inv

ShiftRows inv

Fig. 4: Definition of new
inverse round with delayed
ShiftRows inv step.

byte containing two cells of the internal state, designing software that calculates
this table-based round function becomes more difficult. A lot of overhead is
needed to transform the state to a column representation, to select the correct
4-bit values, to construct the round-tweakey columns, etc. A possible solution
to this is to split the cells of the internal state in separate bytes, i.e. using bytes
that are half empty. Both ways of implementing the 64-bit lookup table round
function were tested, but could not provide a speed-up.

5 Parallel Implementations of ForkAE

Cryptographic algorithms often feature data-level parallelism. As a result, they
can be made more efficient or achieve higher performance when Single Instruc-
tion, Multiple Data (SIMD) hardware is available. Examples of such implemen-
tations are the bit-sliced implementation of AES from [11] using x86 Streaming
SIMD Extensions (SEE) instructions, or the SKINNY implementation from [12]
using x86 Advanced Vector Extensions (AVX). These bit-sliced implementations
exploit the parallelism of processing multiple input blocks of long messages. As
such, they are not well-suited for processing short messages.

To increase efficiency for the short messages typical for lightweight appli-
cations, the performance of a single primitive call needs to be improved. This
section explores the data-level parallelism in ForkSkinny, and how it can be
exploited in a SIMD-enabled processor. Specifically, we use the ARM NEON
extension, available in the ARM Cortex-A9 processor of the Zynq ZYBO plat-
form [4].
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5.1 Parallelism in the Round Function

When looking at the round function, the S-box layer is the most promising
subject for SIMD acceleration, because it works on the entire state in parallel
and because it is the most computationally heavy part of the round function.
In the portable C implementations, the S-box layer accounts for 60-80% of the
execution time of round function and tweakey schedule combined.

For ForkSkinny instances with blocksize n = 128, the internal state fits per-
fectly in a NEON 128-bit quadword register. This effectively allows four times as
much data to be processed in parallel. The S-box can be fully calculated for all
cells of the internal state with a set of ±60 NEON instructions. This reduces the
execution time for the S-box from 169 to 83 clock cycles, a reduction of ±50%.

The n = 64 ForkSkinny instance requires just one 64-bit NEON halfword
register for its internal state. It also features a simpler S-box than the 128-
bit instances, requiring roughly half the amount of instructions. We reduce its
execution time from 117 clock cycles to 72 clock cycles, a reduction of ±60%.

5.2 The Parallelism of the Fork

During encryption, forking after rinit rounds introduces data-level parallelism
because the same round function is calculated in two independent branches.
This parallelism has already been shown to increase performance in hardware
implementations [13]. We now demonstrate that, if the processor features SIMD
instructions, such primitive-level parallelism can also be exploited in software.

Although the state and round functions of both branches are independent,
the tweakey schedule is serial. We overcome this apparent problem by calculating
the round-tweakeys in advance and storing them (cf. decryption in Section 3.1).
While this increases memory usage, round-tweakeys are now instantly available
and the calculations for both branches are again completely independent.

The combined size of the internal state in both branches of ForkSkinny-64-
192 is 2 × 64 = 128 bits. As this fits in a single NEON quadword register, the
S-box can be calculated for both states in parallel, with only one set of NEON
instructions. We already reduced S-box execution time from 117 to 72 clock
cycles, and doing this for both branches would require 144 cycles. By leveraging
the parallel branches with NEON, we manage to reduce this further to 85 cycles.

For instances with block size n = 128, the parallel hardware is already maxi-
mally exploited for the S-box calculation. As a consequence, executing two round
functions in parallel will not speed up that part of the round function. For other
parts of the round function a parallel execution does not improve performance
because of the overhead introduced by using the NEON hardware. In processors
with 256-bit (or higher) SIMD hardware (e.g., AVX on x86), both states can
again be processed in parallel, similarly as for the 64-bit instance.

6 Performance Analysis

We analyze the performance of the ForkAE implementations on two different
platforms. The first platform is the ZYBO development platform, containing
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the Xilinx Z-7010 system-on-chip (SoC). The Xilinx Z-7010 contains a 650 MHz
dual-core ARM Cortex-A9, 240 kB RAM and 512 MB ROM. We use a single core
for the evaluation. The second platform is the STM32F0 microcontroller, which
incorporates a 32-bit 48 MHz ARM Cortex-M0, 8 kB RAM and 64 kB ROM.

We always compile the C code with gcc and compiler option -Os (i.e., op-
timizing for implementation size). We report the three most important perfor-
mance metrics: speed, implementation size (ROM) and memory usage (RAM).
Speed is evaluated by measuring the execution time for different input sizes, and
expressed in the common metric of cycles/byte. The number that is reported is
the average amount of cycles/byte needed for encryption or decryption of mes-
sages with sizes ranging from 1 block (64 or 128 bit depending to the instance)
to 8 blocks. The size of the implementation, or ROM size, is expressed in bytes
and corresponds to the memory necessary to store all compiled code needed
for encryption or decryption. It also includes the storage of constant data such
as the round constant. The memory usage, or RAM size, is also expressed in
bytes and corresponds to the total amount of RAM memory that is used during
encryption/decryption. This consists mainly of variables and data structures.

Constant-time execution: We followed the best practices for constant-
time software implementation. Our implementation does not have any secret-
dependent control flow. Furthermore, we used the dudect tool [14] to verify the
constant-time execution of the optimized portable and parallel implementations.

6.1 Portable Implementations

The performance of the portable 32-bit C implementations is analysed on the
Cortex-M0 and Cortex-A9 processors, and summarized in Table 1. It is clear that
the duplicate tweakey calculations in the original approach (cf. Section 3) have a
significant impact on the execution time. On the Cortex-A9, decryption with the
fast-forwarding approach takes 30-55% more cycles per byte than encryption. On
the Cortex-M0, the difference is even 45-70%. Another downside of this approach
is the increased code size and higher memory usage compared to encryption.

Our implementation with preprocessed tweakey schedule (cf. Section 3.1) re-
duces this decryption time. For 128-bit instances with two tweakey matrices, the
cycles per byte on the A9 are reduced with 17% compared to the decryption im-
plementation from [15]. For three tweakey matrices, the speed-up is even greater:
25% for PAEF-ForkSkinny-128-288 and 35% for PAEF-ForkSkinny-64-192.
Similar observations hold for the M0. While decryption is still slower than en-
cryption, the difference between the two is now much smaller. Our approach
achieves a speed-up and code size reduction in exchange for a higher memory
usage. The ROM size is reduced because the code to iterate through the entire
tweakey schedule takes less space than when the tweakey schedule is calculated
both in the ForkSkinny decryption and in the inverse round function. The conse-
quence is that the round-tweakey material is stored in a buffer, which introduces
a bigger RAM size. This buffer needs to be (rinit +2×r0)× n

16 bytes big to store
all round-tweakeys. The buffer is largest for PAEF-ForkSkinny-128-288, where
696 bytes of memory are needed to store the preprocessed tweakey.
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Table 1: Implementation figures for ForkAE encryption/decryption with portable
32-bit C implementations. Implementations from [15].

Cortex-A9 Cortex-M0

Encryption c/B ROM RAM c/B ROM RAM

PAEF-FS-64-192 1669 3067 107 4002 2067 107
PAEF-FS-128-192 1072 3187 161 2457 2251 161
PAEF-FS-128-256 1074 3219 169 2458 2247 169
PAEF-FS-128-288 1408 3483 189 3408 2541 189
SAEF-FS-128-19 1075 3015 161 2475 2187 161
SAEF-FS-128-256 1076 3043 169 2476 2173 169

Decryption

PAEF-FS-64-192 2596 3999 140 6767 2819 140
PAEF-FS-128-192 1397 3735 210 3562 2715 210
PAEF-FS-128-256 1393 3767 218 3563 2707 218
PAEF-FS-128-288 2001 4399 254 5305 3243 254
SAEF-FS-128-192 1398 3599 210 3580 2771 210
SAEF-FS-128-256 1397 3603 218 3579 2757 218

Decryption (preprocessed tweakey schedule)

PAEF-FS-64-192 1684 2927 392 4167 1955 392
PAEF-FS-128-192 1165 3131 810 2970 2303 810
PAEF-FS-128-256 1162 3163 818 2971 2295 818
PAEF-FS-128-288 1491 3363 950 4010 2571 950
SAEF-FS-128-192 1166 2995 810 2988 2359 810
SAEF-FS-128-256 1164 2999 818 2987 2345 818

In Figure 5a and Figure 5b, we compare the performance of ForkAE with
other SKINNY-based AEAD schemes Romulus and SKINNY-AEAD. We com-
pare the primary instances of the NIST LWC submission for small messages with
different number of message (M) and associated data (A) blocks. These figures
highlight the advantage of a forkcipher over a blockcipher for encryption of small
messages.

6.2 Table-based Implementations

The lookup table round function described in Section 4 is implemented on
the STM32F0 platform with the ARM Cortex-M0 processor as an example
lightweight platform with no cache. We explore the different trade-offs between
speed, code size and memory usage. Table 2 lists the results for an implementa-
tion with 4 different lookup tables. Compared to the portable implementations
of Section 3, it needs up to 16% fewer clock cycles when the tables are stored in
ROM. When the tables are stored in RAM, this gain is almost 20%.

We gain in speed in exchange for a higher memory cost. Particularly, when
four lookup tables are used in combination with two tables containing the mixed
and shifted round constants, a total of 4.7 kB of memory is needed. We show
that the impact of the lookup table implementation on the memory usage can
be greatly reduced when only one T -table is used instead four. The performance
results for this method are listed in Table 2. This approach introduces some
extra calculations in the round function, but as can be seen from the results, the
impact on the computation time is only a few cycles per byte. The reduction in
memory cost of 3 kB is significant and can be very important for the resource-
constrained devices in embedded applications.
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Fig. 5: Performance comparison of SKINNY based ciphers on Cortex-A9. En-
cryption with implementations from [15]. Decryption with SKINNY, Romu-
lus and PAEF-ForkSkinny-128-288(1) implementations from [15] and PAEF-
ForkSkinny-128-288(2) implementation with preprocessed tweakey schedule.

Table 2: Implementation figures for the table-based ForkAE encryption imple-
mentation on the ARM Cortex-M0.

Encryption Tables in ROM Tables in RAM

4 lookup tables c/B ROM RAM c/B ROM RAM

PAEF-FS-128-192 2110 6752 192 2016 1960 4984
PAEF-FS-128-256 2111 6748 200 2017 1956 4992
PAEF-FS-128-288 2859 7034 220 2739 2242 5012
SAEF-FS-128-192 2128 6688 192 2035 1896 4984
SAEF-FS-128-256 2129 6674 200 2035 1882 4992

1 lookup table

PAEF-FS-128-192 2138 3692 192 2030 1972 1912
PAEF-FS-128-256 2139 3688 200 2031 1968 1920
PAEF-FS-128-288 2919 3980 220 2805 2260 1940
SAEF-FS-128-192 2157 3628 192 2049 1908 1912
SAEF-FS-128-256 2157 3614 200 2049 1894 1920

To study the gain of tabulating the inverse round function, the performance
of one specific implementation for table-based decryption is analysed. The im-
plementation uses one lookup-table that is stored in ROM and a preprocessed
tweakey schedule that is stored in RAM. The performance metrics are listed in
Table 3. When this is compared with the portable decryption implementation,
it can be seen that using lookup tables can significantly speed-up decryption, as
the amount of cycles that are needed is reduced with up to 25%. This speed-up is
higher than for encryption because of the simpler inverse round function where
the addition of the round tweakey and constants can be done at the end.
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Table 3: Implementation figures for the table-based ForkAE decryption imple-
mentation on the ARM Cortex-M0.

Decryption c/B ROM RAM

PAEF-FS-128-192 2241 3261 818
PAEF-FS-128-256 2241 3253 826
PAEF-FS-128-288 3156 3529 958
SAEF-FS-128-192 2259 3317 818
SAEF-FS-128-256 2257 3303 826

6.3 Parallel Implementations

In Table 4 we list the performance of ForkAE encryption and decryption on the
ZYBO platform when the NEON SIMD implementations are used. For Fork-
Skinny instances with a block-size n = 128, the S-box and its inverse are re-
placed with the 128-bit NEON implementation. For PAEF-ForkSkinny-64-192,
the ForkSkinny implementation with parallel round function is used for encryp-
tion. Its decryption only features the parallel S-box layer, as it cannot benefit
from parallelism in the round function.

For the 128-bit instances with the NEON S-box implementation, we observe
a reduction in the amount of cycles for encryption and decryption of approxi-
mately 30% when compared to the portable implementations of Section 3. For the
PAEF-ForkSkinny-128-288 instance with three tweakey matrices, this speed-up
is a bit lower (27%). This can be explained by the larger relative importance of
the tweakey calculations in this instance. The ROM size is reduced by approxi-
mately 500 bytes in all 128-bit instances. This follows from the smaller code size
of the round function, which now uses the parallel NEON S-box implementation.
The amount of RAM needed for encryption or decryption remains the same.

Table 4: Implementation figures for the NEON SIMD implementations of
ForkAE on the ZYBO platform.

Encryption Decryption

c/B ROM RAM c/B ROM RAM

PAEF-FS-64-192 1184 3235 331 1390 2653 392
PAEF-FS-128-192 736 2619 161 807 2551 810
PAEF-FS-128-256 737 2651 169 806 2583 818
PAEF-FS-128-288 1026 2863 189 1078 2783 950
SAEF-FS-128-192 743 2491 161 812 2415 810
SAEF-FS-128-256 743 2519 169 810 2419 818

The execution time of PAEF-ForkSkinny-64-192 encryption improves with
almost 500 cycles per byte, i.e., 29%, when compared to the portable imple-
mentation from [15]. For decryption, the speed-up is smaller as the degree of
parallelism is lower. With the NEON inverse S-box implementation, we still
accelerate decryption with 17%.

A single round of the 64-bit SKINNY round function with a NEON S-box
implementation executes in 95 clock cycles on the ARM Cortex-A9. With 17
rounds before the forking point and 23 rounds after the forking point, a sin-
gle branch of the ForkSkinny primitive, which is equal to the execution of the
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SKINNY primitive, needs 40 of these rounds. Producing twice as much output
by calculating both branches requires 17+2×23 = 63 such rounds, or 63

40 = 1.58
times the amount of computations. When the S-box is calculated in parallel for
the branches after the forking point, two rounds are calculated in 112 clock cy-
cles instead of 2× 95. This way producing the double output requires only 1.10
times the amount of execution time of a single branch.

Other SKINNY-based candidates need M +1 calls to the SKINNY primitive
for M message blocks, while ForkAE, which has no fixed cost, needs M calls
to the ForkSkinny primitive (with 1.10 times the computational cost). As a
result, for implementations where no mode parallelism is exploited (e.g., for serial
modes, like Romulus), ForkAE encryption will be faster for messages of up to
10 blocks. This is illustrated in Figure 6. We note that the SKINNY-AEAD and
Romulus submissions to the NIST LWC competition do not include an instance
with 64-bit blocks. However, when 256-bit SIMD hardware is available, this result
could also be extended to the 128-bit instances.
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Fig. 6: Comparison of encryption time of 64-bit ForkAE implementations with
SKINNY-AEAD, expressed in number of equivalent calls to SKINNY primitive.

7 Conclusion

This paper studied the design of software implementations for the lightweight au-
thenticated encryption scheme ForkAE. First, portable 32-bit implementations
were described and analyzed on different platforms. We presented a method to
significantly speed-up the decryption of ForkAE in these implementations.

In order to increase performance, two specialized implementations for two
different target platforms were designed. The first implementation is designed
for platforms where cache-timing attacks are not possible. It was shown that on
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these platforms the SKINNY round function and inverse round function can be
transformed into a combination of table-lookups. This allowed for a significant
increase in performance. The impact on the amount of memory needed for this
implementation can be minimised by reducing the number of tables.

A second platform-specific implementation targets platforms with a NEON
SIMD hardware extension. This paper described how in these platforms, the
data-level parallelism in the ForkSkinny primitive can be exploited in efficient
implementations with reduced latency. We exploited the first level of parallelism
found in the SKINNY round function, and a second level of parallelism intro-
duced by the forking step in ForkSkinny.
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