
MuSig2: Simple Two-Round Schnorr Multi-Signatures

Jonas Nick1, Tim Ruffing1, and Yannick Seurin2

1 Blockstream
2 ANSSI, Paris, France

jonas@n-ck.net
crypto@timruffing.de

yannick.seurin@m4x.org

Revision 2023-10-20*

Abstract. Multi-signatures enable a group of signers to produce a joint signature on a joint
message. Recently, Drijvers et al. (S&P’19) showed that all thus far proposed two-round multi-
signature schemes in the pure DL setting (without pairings) are insecure under concurrent
signing sessions. While Drijvers et al. proposed a secure two-round scheme, this efficiency
in terms of rounds comes with the price of having signatures that are more than twice as
large as Schnorr signatures, which are becoming popular in cryptographic systems due to
their practicality (e.g., they will likely be adopted in Bitcoin). If one needs a multi-signature
scheme that can be used as a drop-in replacement for Schnorr signatures, then one is forced
to resort either to a three-round scheme or to sequential signing sessions, both of which are
undesirable options in practice.
In this work, we propose MuSig2, a simple and highly practical two-round multi-signature
scheme. This is the first scheme that simultaneously i) is secure under concurrent signing
sessions, ii) supports key aggregation, iii) outputs ordinary Schnorr signatures, iv) needs
only two communication rounds, and v) has similar signer complexity as ordinary Schnorr
signatures. Furthermore, it is the first multi-signature scheme in the pure DL setting that
supports preprocessing of all but one rounds, effectively enabling a non-interactive signing
process without forgoing security under concurrent sessions. We prove the security of MuSig2
in the random oracle model, and the security of a more efficient variant in the combination of
the random oracle and the algebraic group model. Both our proofs rely on a weaker variant
of the OMDL assumption.

* This is the full version of a work appearing at CRYPTO 2021. See page 40 for a changelog.

1 Introduction

1.1 Background on Multi-Signatures

Multi-signature schemes [IN83] enable a group of signers (each possessing an own secret/public key
pair) to run an interactive protocol to produce a single signature σ on a message m. A recent spark
of interest in multi-signatures is motivated by the idea of using them as a drop-in replacement for
ordinary (single-signer) signatures in applications such as cryptocurrencies that support signatures
already. For example the Bitcoin community, awaiting the adoption of Schnorr signatures [Sch91]
as proposed in BIP 340 [WNR20], is seeking for practical multi-signature schemes which are fully
compatible with Schnorr signatures: multi-signatures produced by a group of signers should just be
ordinary Schnorr signatures and should be verifiable like Schnorr signatures, i.e., they can be verified
using the ordinary Schnorr verification algorithm given only a single aggregate public key that can
be computed from the set of public keys of the signers and serves as a compact representation of it.

This provides a number of benefits that reach beyond simple compatibility with an upcoming
system: Most importantly, multi-signatures enjoy the efficiency of Schnorr signatures, which are
very compact and cheap to store on the blockchain. Moreover, if multi-signatures can be verified
like ordinary Schnorr signatures, the additional complexity introduced by multi-signatures remains
on the side of the signers and is not exposed to verifiers who need not be concerned with multi-
signatures at all and can simply run Schnorr signature verification. Verifiers, who are just given
the signature and the aggregate public key, in fact do not even learn whether the signature was
created by a single signer or by a group of signers (or equivalently, whether the public key is an
aggregation of multiple keys), which is advantageous for the privacy of users.

Multi-signatures Based on Schnorr Signatures. A number of modern and practical
proposals [NKD+03; BN06; BCJ08; MWL+10; STV+16; MPS+19; DEF+19; NRS+20] for multi-
signature schemes are based on Schnorr signatures. The Schnorr signature scheme [Sch91] relies on
a cyclic group G of prime order p, a generator g of G, and a hash function H. A secret/public key
pair is a pair (x, X) ∈ {0, . . . , p− 1} ×G where X = gx. To sign a message m, the signer draws a
random integer r in Zp, computes a nonce R = gr, the challenge c = H(X, R, m), and s = r + cx.
The signature is the pair (R, s), and its validity can be checked by verifying whether gs = RXc.

The naive way to design a multi-signature scheme fully compatible with Schnorr signatures would
be as follows. Say a group of n signers want to sign a message m, and let L = {X1 = gx1 , . . . , Xn =
gxn} be the multiset3 of all their public keys. Each signer randomly generates and communicates
to others a nonce Ri = gri ; then, each of them computes R =

∏n
i=1 Ri, c = H(X̃, R, m) where

X̃ =
∏n

i=1 Xi is the product of individual public keys, and a partial signature si = ri + cxi; partial
signatures are then combined into a single signature (R, s) where s =

∑n
i=1 si mod p. The validity

of a signature (R, s) on message m for public keys {X1, . . . , Xn} is equivalent to gs = RX̃c where
X̃ =

∏n
i=1 Xi and c = H(X̃, R, m). Note that this is exactly the verification equation for an ordinary

key-prefixed Schnorr signature with respect to the aggregate public key X̃. However, as already
pointed out many times [HMP95; Lan96; MH96; MOR01], this simplistic protocol is vulnerable to
a rogue-key attack where a corrupted signer sets its public key to X1 = gx1(

∏n
i=2 Xi)−1, allowing

him to produce signatures for public keys {X1, . . . , Xn} by himself.
One way to generically prevent rogue-key attacks is to require that users prove possession of

the secret key, e.g., by attaching a zero-knowledge proof of knowledge to their public keys [RY07;
BDN18]. However, this makes key management cumbersome, complicates implementations, and is
not compatible with existing and widely used key serialization formats.

The MuSig Scheme. A more direct defense against rogue-key attacks proposed by Bellare and
Neven [BN06] is to work in the plain public-key model, where public keys can be aggregated without
the need to check their validity. To date, the only multi-signature scheme provably secure in this
model and fully compatible with Schnorr signatures is MuSig (and the variant MuSig-DN [NRS+20])
by Maxwell et al. [MPS+19], independently proven secure by Boneh, Drijvers, and Neven [BDN18].
3 Since we do not impose any constraint on the key setup, the adversary can choose corrupted public keys

arbitrarily and duplicate public keys can appear in L.

2

In order to overcome rogue-key attacks in the plain public-key model, MuSig computes partial
signatures si with respect to “signer-dependent” challenges ci = Hagg(L, Xi) · Hsig(X̃, R, m), where
X̃ is the aggregate public key corresponding to the multiset of public keys L = {X1, . . . , Xn}. It is
defined as X̃ =

∏n
i=1 X

ai
i where ai = Hagg(L, Xi) (note that the ai’s only depend on the public

keys of the signers). This way, the verification equation of a signature (R, s) on message m for
public keys L = {X1, . . . , Xn} becomes gs = R

∏n
i=1 X

aic
i = RX̃c, where c = Hsig(X̃, R, m). This

recovers the key aggregation property enjoyed by the naive scheme, albeit with respect to a more
complex aggregate key X̃ =

∏n
i=1 X

ai
i .

In order to be able to simulate an honest signer in a run of the signing protocol via the standard
way of programming the random oracle Hsig, MuSig has an initial commitment round (like the
scheme by Bellare and Neven [BN06]) where each signer commits to its nonce Ri before receiving
the nonces of other signers.

As a result, the signing protocol of MuSig requires three communication rounds, and only the
initial commitment round can be preprocessed without knowing the message to be signed.4

Two-Round Schemes. Following the scheme by Bellare and Neven [BN06], in which signing
requires three rounds of interaction, multiple attempts to reduce this number to two rounds [BN06;
BCJ08; STV+16; MPS+19] were foiled by Drijvers et al. [DEF+19]. In their pivotal work, they
show that all thus far proposed two-round schemes in the pure DL setting (without pairings) cannot
be proven secure and are vulnerable to attacks with subexponential complexity when the adversary
is allowed to engage in an arbitrary number of concurrent sessions (concurrent security), as required
by the standard definition of unforgeability.

If one prefers a scheme in the pure DL setting with fewer communication rounds, only two options
remain, and none of them is fully satisfactory. The first option is the mBCJ scheme by Drijvers
et al. [DEF+19], a repaired variant of the scheme by Bagherzandi, Cheon, and Jarecki [BCJ08].
While mBCJ needs only two rounds, it does not output ordinary Schnorr signatures and is thus not
suitable as a drop-in replacement for Schnorr signatures, e.g., in cryptocurrencies whose validation
rules support Schnorr signatures (such as proposed for Bitcoin). The second option is MuSig-DN
(MuSig with Deterministic Nonces) [NRS+20], which however relies on heavy zero-knowledge proofs
to prove a deterministic derivation of the nonce to all cosigners. This increases the complexity
of the implementation significantly and makes MuSig-DN, even though it needs only two rounds,
in fact less efficient than three-round MuSig in common settings. Moreover, in neither of these
two-round schemes is it possible to reduce the rounds further by preprocessing the first round
without knowledge of the message to be signed.

1.2 Our Contribution

We propose a novel and simple two-round variant of the MuSig scheme that we call MuSig2. In
particular, we remove the preliminary commitment phase, so that signers start right away by
sending nonces. However, to obtain a scheme secure under concurrent sessions, each signer i sends
a list of ν ≥ 2 nonces Ri,1, . . . , Ri,ν (instead of a single nonce Ri), and effectively uses a linear
combination R̂i =

∏ν
j=1 Rbj−1

i,j of these ν nonces, where b is derived via a hash function.
MuSig2 is the first multi-signature scheme that simultaneously i) is secure under concurrent

signing sessions, ii) supports key aggregation, iii) outputs ordinary Schnorr signatures, iv) needs
only two communication rounds, and v) has similar signer complexity as ordinary Schnorr signatures.
Furthermore, it is the first scheme in the pure DL setting that supports preprocessing of all but
one rounds, effectively enabling non-interactive signing without forgoing security under concurrent
sessions. MuSig-DN [NRS+20], which relies on rather complex and expensive zero-knowledge proofs
(proving time ≈ 1 s), only enjoys the first four properties and does not allow preprocessing of the
first round without knowledge of the message.

In comparison to other multi-signature schemes based on Schnorr signatures, the price we pay
for saving a round is a stronger cryptographic assumption: instead of the DL assumption, we rely
4 The second move of the protocol is independent of the message to be signed, which makes it tempting to

preprocess it without the message. But revealing the second move to the cosigners before the message is
fixed renders the scheme insecure [Nic19].

3

Table 1. Comparison of MuSig2 and MuSig2∗ with other DL-based multi-signatures schemes secure under
concurrent sessions instantiated in a group G of order p. Column “S” indicates whether the scheme is
fully compatible with Schnorr signature verification. The next two columns show the total number of
communication rounds (“tot.”) in the signing algorithm and the number of communication rounds that
cannot be preprocessed (“pp.”). The next four columns show the number of (multi-)exponentiations in G
for key generation (KeyGen), key aggregation (KeyAgg), signing (Sign) and verification (Ver), where Gm

denotes a multi-exponentiation of size m and n is the number of signers. The asterisk (*) for MuSig-DN
indicates that the signing complexity is not comparable because it requires NIZK proofs for arithmetic
circuit satisfiability. The next three columns show the domains of individual public keys pk, aggregate public
keys p̃k, and signatures σ. The last column indicates provable security results for existential unforgeability
under chosen-message attacks under concurrent sessions. In the case of MuSig-DN, DL is required in G and
DDH is required in an elliptic curve group G′ related to G.

Scheme S
Rounds Multi-Exponentiations Domain Security

(ROM+. . .)tot. pp. KeyGen KeyAgg Sign Ver pk p̃k σ

BN [BN06] 3 2 1G 1G 1Gn+1 G G× Zp DLG
MuSig [MPS+19; BDN18] ✓ 3 2 1G 1Gn 1G 1G2 G G G× Zp DLG
MSDL-pop [BDN18] ✓ 3 2 2G nG2 1G 1G2 G× Z2

p G G× Zp DLG
mBCJ [DEF+19] 2 2 2G nG2 1G2 + 1G3 3G2 G× Z2

p G G2 × Z3
p DLG

MuSig-DN [NRS+20] ✓ 2 2 1G 1Gn * 1G2 G G G× Zp DLG+DDHG′

MuSig2[ν = 4] (Sect. 4) ✓ 2 1 1G 1Gn 4G + 1G3 1G2 G G G× Zp AOMDLG
MuSig2[ν = 2] (Sect. 4) ✓ 2 1 1G 1Gn 3G 1G2 G G G× Zp AGMG+AOMDLG
MuSig2∗[ν = 4] (App. A) ✓ 2 1 1G 1Gn−1 4G + 1G3 1G2 G G G× Zp AOMDLG
MuSig2∗[ν = 2] (App. A) ✓ 2 1 1G 1Gn−1 3G 1G2 G G G× Zp AGMG+AOMDLG

on the algebraic one-more discrete logarithm (AOMDL) assumption, a weaker and falsifiable variant
of the one-more discrete logarithm (OMDL) assumption [BP02; BNP+03], which states that it
is hard to find the discrete logarithm of q + 1 group elements by making at most q queries to an
oracle solving the DL problem.

We give two independent security proofs which reduce the security of MuSig2 to the AOMDL
assumption. Our first proof relies on the random oracle model (ROM), and applies to MuSig2 with
ν = 4 nonces. Our second proof additionally assumes the algebraic group model (AGM) [FKL18],
and for this ROM+AGM proof, ν = 2 nonces are sufficient.

Assuming a group element is as large as a collision-resistant hash of a group element, the
overhead for every MuSig2 signer as compared to normal three-round MuSig is broadcasting ν − 2
group elements as well as ν − 1 exponentiations plus one multi-exponentiation of size ν − 1. As a
result, for the optimal choice of ν = 2, the computational overhead of a signing session of MuSig2 is
just two exponentiations as compared to the state-of-the-art scheme MuSig. This makes MuSig2
highly practical.

A further optimized variant of MuSig2, which we call MuSig2∗ and discuss in Appendix A,
reduces the size of the multi-exponentiation in the key aggregation algorithm from n to n− 1. See
Table 1 for a detailed comparison of MuSig2 and MuSig2∗ with other multi-signature schemes in
the DL setting.

1.3 Concurrent Work

Concurrently to our work, two other works rely on a similar idea of using a linear combination
of multiple nonces in order to remove a communication round while achieving security under
concurrent sessions.

FROST. Komlo and Goldberg [KG20] use this idea for their FROST scheme in the context of the
more general setting of threshold signatures: in a “t-of-n” threshold signature scheme, any subset of
size t of some set of n signers can create a signature. By setting t = n (as supported in FROST), it is
possible to obtain a multi-signature scheme as a special case. In comparison, the scope of our work
is restricted to only “n-of-n” multi-signatures, which enables us to optimize for this case and achieve
properties which, in the pure DL setting, are unique to multi-signatures, namely non-interactive key
generation as well as non-interactive public key aggregation, two features not offered by FROST.

4

A major difference between our work and their work is the cryptographic model. The FROST
security proof relies on a non-standard heuristic which models the hash function (a public primitive)
used for deriving the coefficients for the linear combination as a one-time VRF (a primitive with
a secret key) in the security proof. This treatment requires an additional communication round
in FROST preprocessing stage and to disallow concurrent sessions in this stage, resulting in a
modified scheme FROST-Interactive. As a consequence, the FROST-Interactive scheme that is proven
secure is in fact a three-round scheme and as such differs significantly from the two-round FROST
scheme that is recommended for deployment. Komlo and Goldberg [KG20] show that the security
of FROST-Interactive is implied by the DL assumption. In contrast, our MuSig2 proofs use the
well-established ROM (or alternatively, AGM+ROM) to model the hash function as a random
oracle and rely on a falsifiable and weaker variant of the OMDL assumption.

DWMS. Again concurrently, Alper and Burdges [AB21] use the idea of a linear combination of
multiple nonces to obtain a two-round multi-signature scheme DWMS, which resembles MuSig2
closely but lacks several optimizations present in MuSig2. Concretely, DWMS does not aggregate
the first-round messages of all signers, an optimization which saves bandwidth and ensures that
each signer needs to perform only a constant number of exponentiations. Moreover, DWMS does
not make use of the optimizations of setting the coefficient of one nonce to the constant 1, which
saves one more exponentiation per signer when aggregating nonces, as well as setting the coefficient
of one public key to the constant 1, which saves one exponentiation when aggregating keys (see the
variant MuSig2∗ of our scheme in Appendix A).

In terms of provable security, Alper and Burdges [AB21] provide a proof only in the combination
of ROM+AGM, whereas we additionally provide a proof that does not rely on the AGM.

2 Technical Overview

2.1 The Challenge of Constructing Two-Round Schemes

Already an obsolete preliminary version [MPS+18] of the MuSig paper [MPS+19] proposed a
two-round variant of MuSig in which the initial commitment round is omitted. We call this scheme
InsecureMuSig in the following. Maxwell et al. [MPS+18] claimed concurrent security under the
OMDL assumption but their proof turned out be flawed: it fails to cover a subtle problem in the
simulation of the signing oracle, which in fact had been described (and correctly sidestepped by
restricting concurrency) already 15 years earlier in a work on two-party Schnorr signatures by
Nicolosi et al. [NKD+03].

Drijvers et al. [DEF+19] rediscovered the flaw in the security proof of InsecureMuSig and show
that similar flaws appear also in the proofs of the other two-round DL-based multi-signature
schemes by Bagherzandi et al. [BCJ08] and Ma et al. [MWL+10].5 Moreover, they show through
a meta-reduction that the concurrent security of these schemes cannot be reduced to the DL
or OMDL problem using an algebraic black-box reduction (assuming the OMDL problem is
hard).6 In addition to the meta-reduction, Drijvers et al. [DEF+19] also gave a concrete attack
of subexponential complexity based on Wagner’s algorithm [Wag02] for solving the Generalized
Birthday Problem [Wag02], which has led to similar attacks on Schnorr blind signatures [Sch01].
Their attack breaks InsecureMuSig and the other aforementioned multi-signature schemes and
inherently exploits the ability to run multiple sessions concurrently. Recently, Benhamouda et
al. [BLL+21] gave a novel, simple, and very efficient attack of polynomial complexity, which confirms
and extends these negative results.

A Concrete Attack. We outline the attack by Drijvers et al. [DEF+19] in order to provide an
intuition for how we can overcome their negative results. The attack relies on Wagner’s algorithm
for solving the Generalized Birthday Problem [Wag02], which can be defined as follows for the
purpose of this paper: Given a constant value t ∈ Zp, an integer kmax, and access to random oracle
5 Remarkably, both Maxwell et al. [MPS+18] and Drijvers et al. [DEF+19] were apparently unaware of

the much earlier work by Nicolosi et al. [NKD+03].
6 We refer the interested reader to Appendix B for a high-level explanation of why the meta-reduction

cannot be adapted to work with our scheme.

5

H mapping onto Zp, find a set {q1, . . . , qkmax
} of kmax queries such that

∑kmax
k=1 H(qk) = t. While

for kmax ≤ 2, the complexity of this problem is the same as finding a preimage (kmax = 1) or a
collision (kmax = 2) in the random oracle, the problem becomes, maybe surprisingly, easy for large
kmax. In particular, Wagner [Wag02] gives a subexponential algorithm assuming that kmax is not
bounded.

The attack proceeds as follows. The adversary opens kmax concurrent signing sessions, in which
it plays the role of the signer with public key X2 = gx2 , and receives kmax nonces R

(1)
1 , . . . , R

(kmax)
1

from the honest signer with public key X1 = gx1 . Let X̃ = X
a1
1 X

a2
2 be the corresponding aggregate

public key. Given a forgery target message m∗, the adversary computes R∗ =
∏kmax

k=1 R
(k)
1 and uses

Wagner’s algorithm to find nonces R
(k)
2 to reply with such that

kmax∑
k=1

Hsig(X̃, R
(k)
1 R

(k)
2 , m(k))︸ ︷︷ ︸

=: c(k)

= Hsig(X̃, R∗, m∗)︸ ︷︷ ︸
=: c∗

. (1)

Having received R
(k)
2 , the honest signer will reply with partial signatures s

(k)
1 = r

(k)
1 + c(k) · a1x1.

Let r∗ =
∑kmax

k=1 r
(k)
1 = logg(R∗). The adversary is able to obtain

s∗1 =
kmax∑
k=1

s
(k)
1 =

kmax∑
k=1

r
(k)
1 +

(
kmax∑
k=1

c(k)

)
· a1x1 = r∗ + c∗ · a1x1,

where the last equality follows from Equation (1). The adversary can further complete s∗1 to the
full value

s∗ = s∗1 + c∗ · a2x2 = r∗ + c∗ · (a1x1 + a2x2).

In other words, (R∗, s∗) is a valid forgery on message m∗ with signature hash c∗ = Hsig(X̃, R∗, m∗).
In this example, the forgery is valid for the aggregate public key X̃, which is the result of aggregating
public keys X1 and X2. It is however straightforward to adapt the attack to produce a forgery
under a different aggregate public key as long as it is the result of aggregating the honest signer’s
public key X1 with any multiset of adversarial public keys.

The complexity of this attack is dominated by the complexity of Wagner’s algorithm, which is
O(kmax 2log2(p)/(1+⌊(log2(kmax)⌋)). While this is super-polynomial, the attack is practical for common
parameters and moderately large numbers kmax of sessions. For example, for a group size of p ≈ 2256

as common for elliptic curves, a value of kmax = 128 brings the complexity of the attack down to
approximately 239 operations, which is practical even on off-the-shelf hardware. If the attacker is
able to open more sessions concurrently, the improved polynomial-time attack by Benhamouda
et al. [BLL+21] assumes kmax > log2 p sessions, but then has complexity O(kmax log2 p) and a
negligible running time in practice.

2.2 Our Solution

The attack by Drijvers et al. (and similarly the attack by Benhamouda et al.) relies on the ability to
control the signature hash by controlling the aggregate nonce R

(k)
1 R

(k)
2 (on the LHS of Equation (1))

in the first round of each of the concurrent signing sessions. Since all signers must know the aggregate
nonce at the end of the first round, it seems hard to prevent the adversary from being able to
control the aggregate nonce on the LHS without adding a preliminary commitment round. Our
high-level idea to solve this problem and to foil the attacks is to accept that the adversary can
control the LHS of the equation but prevent it from controlling the RHS instead.

The main novelty in our work is to let every signer i send a list of ν ≥ 2 nonces Ri,1, . . . , Ri,ν

and let it effectively use a random linear combination R̂i =
∏ν

j=1 Rbj−1

i,j of those nonces in lieu of
the former single nonce Ri. The scalar b is derived via a hash function Hnon (modeled as a random
oracle) applied the nonces of all signers, i.e., b = Hnon(X̃, (

∏n
i=1 Ri,1, . . . ,

∏n
i=1 Ri,ν), m).7

7 Since the values Ri,j end up as input to a hash function, one may wonder why we propose to take
products

∏n

i=1 Ri,j instead of simply concatenating all Ri,j . While we believe that concatenation also

6

As a result, whenever the adversary tries different values for R2, the coefficient b changes, and
so does the honest signer’s effective nonce R̂1 =

∏ν
j=1 Rbj−1

1,j . This ensures that the sum of the
honest signer’s effective nonces taken over all open sessions, i.e., value R∗ =

∏kmax
k=1 R̂

(k)
1 in the RHS

of Equation (1), is no longer a constant value. Without a constant RHS, the adversary lacks an
essential prerequisite in the definition of the Generalized Birthday Problem and Wagner’s algorithm
is not applicable.

With this idea in mind, it is tempting to fall back to only a single nonce (ν = 1) but instead rely
just on the coefficient b such that R̂1 = Rb

1. However, then the adversary can effectively eliminate b

by redefining R∗ =
∏kmax

k=1 R
(k)
1 (which is independent of all b(k)) and considering the equation

kmax∑
k=1

Hsig(X̃, (R(k)
1 R

(k)
2)b(k)

, m(k))
b(k) = Hsig(X̃, R∗, m∗)

instead of Equation (1) in order to perform the attack.

2.3 Proving Security

Before we describe how to prove MuSig2 secure, we first take a step back to InsecureMuSig in order
to understand the flaw in its purported security proof. Then, we explain how the usage of more
than once nonce in MuSig2 enables us to fix that flaw.

The Difficulty of Simulating Signatures. Following the textbook security proof of Schnorr
signatures, a natural but necessarily flawed approach to reduce the security of InsecureMuSig8 to
the DL problem in the ROM will be to let the reduction announce the challenge group element X1
as the public key of the honest signer and fork the execution of the adversary in order to extract
the discrete logarithm of X1 from the two forgeries output by the adversary in its two executions
(using the Forking Lemma [BN06; PS00]).

The insurmountable difficulty for the reduction in this approach is to simulate the honest signer
in signing sessions without knowledge of the secret key of the honest signer. From the perspective
of the reduction, simply omitting the preliminary commitment phase enables the adversary to know
the combined nonce R before the reduction learns it, which prevents the reduction from simulating
the signing oracle using the standard technique of programming the random oracle on the signature
challenge Hsig(X̃, R, m). In more details, observe that in InsecureMuSig, an adversary (controlling
public key X2) can impose the value of R = R1R2 used in signing sessions since it can choose
R2 after having received R1 from the honest signer (with public key X1 = gx1). This forbids the
textbook way of simulating the honest signer in the ROM without knowing x1 by randomly drawing
s1 and c, computing R1 = gs1(X1)−a1c, and programming Hsig(X̃, R, m) = c, since the adversary
might have made the random oracle query Hsig(X̃, R, m) before making the corresponding signing
query.

The Flawed Security Proof of InsecureMuSig. The hope of Maxwell et al. [MPS+18] was to
rely on the stronger OMDL assumption instead of the DL assumption in order to solve this problem
without a commitment round. The DL oracle in the formulation of the OMDL problem enables
the reduction to answer a signing query by obtaining the partial signature s1 of the honest signer
via a DL oracle query for the discrete logarithm of R1(X1)a1c. The reduction does not generate
the nonce R1 of the honest signer randomly, but instead sets it to a DL challenge freshly drawn
from the OMDL problem at the start of each signing session. As in the standard security proof of
Schnorr signatures, the reduction forks the adversary and extracts the discrete logarithm x1 of the
first DL challenge X1 from the forgeries that the adversary outputs in its different executions. This
allows computing the discrete logarithm of each challenge R1 from s1 as r1 = s1 − a1cx1.

yields a secure scheme, we note the products
∏n

i=1 Ri,j anyway need to be computed when computing

R =
∏n

i=1 R̂i =
∏n

i=1

∏ν

j=1 Rbj−1
i,j =

∏ν

j=1

(∏n

i=1 Ri,j

)bj−1
with a minimal number of exponentiations.

8 Observe that InsecureMuSig is identical to an imaginary MuSig2 with a just a single nonce, i.e., ν = 1.

7

With the adversary opening qs signing sessions, if the reduction was not flawed, it would return
the DL of qs + 1 challenge elements (including the DL challenge X1 used as public key of the honest
signer) using only qs DL oracle calls, i.e., the reduction would solve the OMDL problem.

This simulation technique however fails in a subtle way when combined with the Forking Lemma,
since the adversary might be forked in the middle of a signing session, when it has received R1 but
has not returned R2 to the reduction yet. This can be seen as follows. Assume that the adversary
sends a different value R2 and R′2 in the two executions after the fork, resulting in different signature
hashes c and c′ respectively. This implies that in order to correctly simulate the signing oracle in
the forked execution, the reduction needs two queries to the DL oracle, both of which are related to
the same single challenge R1. Since the answer of the first DL oracle query will already be enough
to compute the discrete logarithm of R1 later on, the second query does not provide any additional
useful information to the reduction (neither about the discrete logarithm of R1 nor about the
discrete logarithm of another DL challenge) and is thus wasted. As a result, the reduction forgoes
any hope to solve the OMDL problem when making the second query.9

How Multiple Nonces in MuSig2 Help the Reduction. With MuSig2 however, the reduction
can handle this situation. Now assume ν = 2, i.e., the reduction will obtain two (instead of one)
group elements R1,1, R1,2 as DL challenges from the OMDL challenger during the first round of
each signing session. This will allow the reduction to make two DL queries per signing session, and
thus be able to simulate signatures even if the adversary forces different signature hashes c ̸= c′ in
the two executions.

The natural question is how the reduction ensures that it is able to answer both DL challenges
R1,1, R1,2 for each signing session. MuSig2 solves this by having signers effectively use the linear
combination R̂1 = R1,1Rb

1,2 as nonce where b = Hnon(X̃, (
∏n

i=1 Ri,1,
∏n

i=1 Ri,2), m). As a result, the
reduction is able to program the Hnon and Hsig such that whenever the adversary gives a different
response to a signing query in the second execution such that c ̸= c′, then also b and b′ differ between
the two executions. Consequently, the two DL queries made by the reduction will be answered with
some s1 and s′1 that give rise to two linear independent equations s1 = r1,1 + br1,2 + a1cx1 and
s′1 = r1,1 + b′r1,2 + a1c′x1. After the reduction has extracted x1 from the forgeries output by the
adversary in the two executions, it can solve those equations for the unknowns r1,1 and r1,2, the
discrete logarithms of the DL challenges R1,1 and R1,2.

Similarly, in the case that c = c′, the reduction ensures that b = b′ and therefore needs only one
DL query to simulate the honest signer in both executions. Thus, it can use the free DL query to
obtain a second linear independent equation.

Note that for this simulation technique, it is not important how the adversary controls the
signature hashes c and c′. So far we only considered the case that the adversary influences c and c′

by choosing its nonces depending on the honest signer’s nonce. The reduction works equally for
an adversary which controls the signature hash computed as Hsig(X̃, R, m) not by influencing R
but instead by being able to choose the message m or the set of signers L (and thus the aggregate
public key X̃) only in the second round of the signing protocol, i.e., after having seen the honest
signer’s nonce. This explains why our scheme enables preprocessing and broadcasting the nonces
(the first round) without having determined the message and the set of signers. This is in contrast
to existing schemes, which are vulnerable to essentially the same attack as explained above if the
adversary is given the ability to select the message or the set of signers after having seen the honest
signer’s nonce [Nic19].

So far we discussed only how the reduction is able to handle two different executions of the
adversary (due to a single fork). However, since our reduction needs to fork the adversary twice
to support key aggregation, it needs to handle four possible executions of the adversary. As a
consequence, it will need four DL queries as well as ν = 4 nonces.

2.4 A More Efficient Solution in the Algebraic Group Model

In the algebraic group model (AGM) [FKL18], the adversary is assumed to be algebraic, i.e.,
whenever it outputs a group element, it outputs a representation of this group element in the
9 This is exactly the issue which had been observed earlier by Nicolisi et al. [NKD+03], and which is

exploited in the meta-reduction by Drijvers et al. [DEF+19].

8

base formed by all group elements it has received so far. While the AGM is idealized, it is a
strictly weaker model than the generic group model (GGM) [Sho97], i.e, security proofs in the
AGM carry over to the GGM but the AGM imposes fewer restrictions on the adversary. Security
proofs in the AGM work via reductions to hard problems (similar to the standard model) because
computational problems such as DL and OMDL are not information-theoretically hard in the AGM
(as opposed to the GGM). In the AGM, Schnorr signatures (and related schemes such Schnorr
blind signatures [CP93]) can be proven secure using a straight-line reduction without forking the
execution of the adversary [FPS20].

The main technical reason why our ROM proof works only for MuSig2 with as many as ν = 4
nonces is that our reduction needs to handle four executions of the adversary due to two applications
of the Forking Lemma. Since this fundamental reason for requiring ν = 4 in the plain ROM simply
disappears in the AGM, we are able to prove MuSig2 with ν = 2 nonces secure in the combination
ROM+AGM.

2.5 Algebraic OMDL: A Falsifiable Variant of OMDL
A cryptographic assumption is algorithmically falsifiable if it can be decided in p.p.t. whether a
given algorithm breaks it.10 While this is true for most standard assumptions such as the RSA
assumption or the DL assumption, it is notably not true for the OMDL assumption, where the
OMDL challenger needs to provide the adversary with a DL oracle that cannot be implemented in
p.p.t. (unless the DL problem is easy, but then the OMDL assumption does not hold anyway).

While we believe that the OMDL has withstood the test of time, it is still desirable to avoid non-
falsifiable assumptions whenever possible. We observe that the DL oracle can be in fact implemented
in p.p.t. when the solving algorithm is required to be algebraic. In the context of OMDL, this
translates to the requirement that whenever the adversary queries the discrete logarithm of a
group element via the DL oracle, it outputs a representation of this group element in the basis
formed by the generator and all DL challenges it has received thus far (which together constitute
all group elements it has received thus far). As a result we obtain a falsifiable variant of the OMDL
assumption that we call the algebraic OMDL (AOMDL) assumption. Since every algebraic algorithm
is also a normal algorithm, the AOMDL assumption is immediately implied by the well-established
OMDL assumption.

Since our reductions in both the ROM and in the AGM+ROM are algebraic in this sense, we can
rely on the falsifiable AOMDL assumption. We would like to stress that being algebraic here refers
to a property of the reduction, which acts as the algorithm solving (A)OMDL, and our reductions
are algebraic independent of whether the unforgeability adversary, to which the reduction has access
internally, is algebraic. As such, the use of the AOMDL assumption is independent and orthogonal
of our use of the AGM as described in the previous subsection. In particular we can rely on the
AOMDL assumption even in our ROM-only proof.

We believe that the AOMDL problem is helpful beyond the scope of this paper, as it turns out
that essentially all security proofs in the literature use the OMDL problem in an algebraic and thus
falsifiable fashion [e.g., BP02; NKD+03; BS07; FPS20]. We do not claim that our observation about
algebraic algorithms is a deep insight—in fact implementing the DL oracle is straight-forward given
an algebraic solving algorithm—we simply believe it is useful for the evaluation of security results.

3 Preliminaries

3.1 Notation and Definitions
Notation. The security parameter is denoted λ. Given a sampleable set S, we denote s ←$ S
the operation of sampling an element of S uniformly at random and assigning it to s. If A is
a randomized algorithm, we let y ··= A(x1, . . . ; ρ) denote the operation of running A on inputs
x1, . . . and random coins ρ and assigning its output to y, and y ← A(x1, . . .) when coins ρ are
chosen uniformly at random. Given a game GameA parameterized by an adversary A, we define
the advantage of A in GameA as AdvGame

A (λ) ··= Pr[GameA(λ) = true].
10 Note that there are multiple different formal definitions of falsifiability in the literature. In this work we

work with the commonly used definition by Gentry and Wichs [GW11; GK15] which unlike the definition
by Naor [Nao03] allows for interactive assumptions.

9

Game AOMDLA
GrGen(λ)

(G, p, g)← GrGen(1λ)
c ··= 0 ; q ··= 0

y⃗ ← ACh,DLogg (G, p, g)
x⃗ ··= (x1, . . . , xc)
return (y⃗ = x⃗ ∧ q < c)

Oracle Ch()

c ··= c + 1
xc ←$ Zp ; X ··= gxc

return X

Oracle DLogg(X, (α, (βi)1≤i≤c))

// X = gα
∏c

i=1
X

βi
i

for Xi = gxi

q ··= q + 1
return α +

∑c

i=1 βixi

return logg(X)

Fig. 1. The algebraic OMDL problem. The changes from the OMDL problem to the algebraic OMDL
problem are in gray.

Group Description. A group description is a triple (G, p, g) where G is a cyclic group of order p
and g is a generator of G. A (prime-order) group generation algorithm is an algorithm GrGen which
on input 1λ returns a group description (G, p, g) where p is a λ-bit prime. The group G is denoted
multiplicatively, and we conflate group elements and their encoding when given as input to hash
functions. Given an element X ∈ G, we let logg(X) denote the discrete logarithm of X in base g,
i.e., the unique x ∈ Zp such that X = gx.

Algebraic OMDL Problem. We introduce the algebraic OMDL (AOMDL) problem, which is
at least as hard as the standard one-more discrete logarithm (OMDL) problem [BP02; BNP+03].
As in the standard OMDL problem, an algorithm A is given a group description (G, p, g) and
wins if it outputs the discrete logarithms x1, . . . , xq+1 to base g of q + 1 challenge group elements
X1, . . . , Xq+1 obtained via the Ch oracle by making at most q queries to the DLogg oracle which
returns the discrete logarithm to base g of a given group element. The difference of the AOMDL
problem as opposed to the OMDL problem is that whenever A queries a discrete logarithm of
a group element X via the DLogg oracle, it is required to include an algebraic representation
(α, (βi)1≤i≤c) of X such that X = gα

∏c
i=1 X

βi
i , where c is the number of challenge group elements

it has received thus far. (Since the DLogg oracle is the only place where A is supposed to output
group elements, this is in fact equivalent to assuming that A is an algebraic algorithm.) The
representation makes it possible to implement the DL oracle in p.p.t. in a straight-forward manner.

We stress that even though we are the first to formalize the AOMDL assumption, it is not
stronger than the well-established OMDL assumption (i.e., if the OMDL problem is hard, then the
AOMDL problem is hard). The benefit of the AOMDL assumption over the OMDL assumption is
that it is falsifiable, i.e., it can be checked in p.p.t. whether a candidate algorithm breaks AOMDL.

Definition 1 (AOMDL Problem). Let GrGen be a group generation algorithm, and let game
AOMDLAGrGen be as defined in Figure 1. The algebraic one-more discrete logarithm (AOMDL) problem
is hard for GrGen if for any p.p.t. algorithm A,

AdvAOMDL
A,GrGen(λ) ··= Pr

[
AOMDLAGrGen(λ) = true

]
= negl(λ).

We highlight the changes from the standard OMDL problem to the AOMDL problem in gray in
Figure 1. Since every algorithm solving AOMDL can be turned into an algorithm solving OMDL
by dropping the representation from the DLogg oracle queries, the AOMDL problem is hard for
some GrGen if the OMDL problem is hard for GrGen.

It is immediate that the entire AOMDLAGrGen game runs in p.p.t. whenever A runs in p.p.t., i.e.,
the assumption that the AOMDL problem is hard is falsifiable as defined for instance by Gentry
and Wichs [GW11].

3.2 Syntax and Security Definition of Multi-Signature Schemes

To keep the notation simple, we make a few simplifying assumptions in the remainder of the paper.
In particular, we restrict our syntax and security model to two-round signing algorithms, and in

10

order to model that the first round can be preprocessed without having determined a message to
be signed or the public keys of all signers, and without accessing the secret key, those inputs are
given only to the second round of the signing algorithm.

It is straightforward to extend our model to signing algorithms with a different number of rounds
or different input handling. Our syntax further assumes that each signer outputs a signature, but
most multi-signature schemes (in particular the one presented in this paper) can be easily modified
so that a single designated participant computes the final signature.

Syntax. A two-round multi-signature scheme Σ with key aggregation consists of algorithms
(Setup, KeyGen, KeyAgg, (Sign, SignAgg, Sign′, SignAgg′, Sign′′), Ver) as follows. System-wide param-
eters par are generated by the setup algorithm Setup taking as input the security parameter.
For notational simplicity, we assume that par is given as implicit input to all other algorithms.
The randomized key generation algorithm takes no input and returns a secret/public key pair
(sk, pk) ←$ KeyGen(). The deterministic key aggregation algorithm KeyAgg takes a multiset of
public keys L = {pk1, . . . , pkn} and returns an aggregate public key p̃k ··= KeyAgg({pk1, . . . , pkn}).

The interactive signature algorithm (Sign, SignAgg, Sign′, SignAgg′, Sign′′) is run by each signer
i and proceeds in a sequence of two communication rounds. Sign does not take explicit inputs and
returns a signer’s first-round output outi and some first-round secret state statei. SignAgg is a
deterministic algorithm that aggregates the first-round outputs (out1, . . . , outn) from all signers into
a single first-round output out to be broadcast to all signers. Similarly, Sign′ takes the first-round
secret state statei of signer i, the aggregate first-round output out, the secret key ski of signer i, a
message m to sign, a multiset {pk2, . . . , pkn} of public keys of all cosigners, and returns this signer’s
second-round output out′i and some second-round secret state state′i, and SignAgg′ is a deterministic
algorithm that aggregates the second-round outputs (out′1, . . . , out′n) from all signers into a single
second-round output out′ to be broadcast to all signers. Finally, Sign′′ takes the second-round secret
state state′i of signer i and the aggregate second-round output out′ and outputs a signature σ.

For instance, from the point of view of signer 1, a full signing run proceeds as follows:

(out1, state1)← Sign()
out ··= SignAgg(out1, . . . , outn)
(out′

1, state′
1)← Sign′(state1, out, sk1, m, {pk2, . . . , pkn})

out′ ··= SignAgg′(out′
1, . . . , out′

n)
σ ← Sign′′(state′

1, out′)

The purpose of the aggregation algorithms SignAgg and SignAgg′ is to enable savings in the
broadcast communication in both signing rounds: An aggregator node [SS01; KG20], which will be
untrusted in our security model and can for instance be one of the signers, can collect the outputs
of all signers in both rounds, aggregate the outputs using SignAgg and SignAgg′, respectively, and
broadcast only the aggregate output back to all signers. This optimization is entirely optional. If it
is not desired, each signer can simply broadcast its outputs directly to all signers, which then all
run SignAgg and SignAgg′ by themselves.

The deterministic verification algorithm Ver takes an aggregate public key p̃k, a message m,
and a signature σ, and returns true if the signature is valid for p̃k and m and false otherwise.

Consider game CORRECTΣ,m,n,j as defined in Figure 2. Correctness requires that for every λ,
every message m, every integer n, and every j ∈ {1, . . . , n},

Pr
[
CORRECTΣ,m,n,j(λ) = true

]
= 1.

Security. Our security model is the same as in previous works on multi-signatures for multi-
signatures with key aggregation [BDN18; DEF+19; MPS+19] and requires that it is infeasible to
forge multi-signatures involving at least one honest signer. As in previous work [MOR01; Bol03;
BN06], we assume without loss of generality that there is a single honest public key (representing a
honest signer) and that the adversary has corrupted all other public keys (representing possible
cosigners), choosing corrupted public keys arbitrarily and potentially as a function of the honest
signer’s public key.

The security game EUF-CMAAΣ is defined as follows (see also Figure 3). A key pair (sk1, pk1)
is generated for the honest signer and the adversary A is given pk1. The adversary can engage

11

Game CORRECTΣ,m,n,j(λ)

par ← Setup(1λ)
for i ··= 1 . . . n do

(ski, pki)← KeyGen()
(outi, statei)← Sign()

out ··= SignAgg(out1, . . . , outn)
for i ··= 1 . . . n do

(out′
i, state′

i)← Sign′(statei, out, ski, m, {pk1, . . . , pki−1, pki+1, . . . , pkn})
out′ ··= SignAgg′(out′

1, . . . , out′
n)

σ ← Sign′′(state′
j , out′)

p̃k ··= KeyAgg(pk1, . . . , pkn)

return Ver(p̃k, m, σ)

Fig. 2. The correctness game for a multi-signature scheme Σ.

in any number of (concurrent) signing sessions with the honest signer. Formally, A has access to
oracles Sign, Sign′, and Sign′′ implementing the three steps Sign, Sign′, and Sign′′ of the signing
algorithm with the honest signer’s secret key. This in particular means that the adversary can
pass the same L, containing pk1 multiple times, and the same m to multiple Sign′ calls, effectively
obtaining a signing session in which the honest signer participates multiple times.

Note that oracles Sign′ and Sign′′ expect as input aggregate values out and out′, purported
to be the aggregation of all signers’ outputs from the respective previous round. This leaves the
task performed by the algorithms SignAgg and SignAgg′ to the adversary and models that the
aggregator node (if present) is untrusted. We omit explicit oracles for SignAgg and SignAgg′. This
is without loss of generality because these algorithms do not take secret inputs and can be run by
the adversary locally.

Eventually, the adversary returns a multiset L = {pk1, . . . , pkn} of public keys, a message m,
and a signature σ. The game returns true (representing a win of A) if pk1 ∈ L, the forgery is valid,
i.e., Ver(KeyAgg(L), m, σ) = true, and the adversary never made a Sign′ query for multiset L and
message m. In addition, if we work in the random oracle model, the adversary can make arbitrary
random oracle queries at any stage of the game.

Definition 2 (EUF-CMA). Given a two-round multi-signature scheme with key aggregation
Σ = (Setup, KeyGen, KeyAgg, (Sign, SignAgg, Sign′, SignAgg′, Sign′′), Ver), let game EUF-CMAAΣ be
as defined in Figure 3. Then Σ is existentially unforgeable under chosen-message attacks (EUF-
CMA) if for any p.p.t. adversary A,

AdvEUF-CMA
A,Σ (λ) ··= Pr

[
EUF-CMAAΣ (λ) = true

]
= negl(λ).

Our security model is based on the model by Bellare and Neven [BN06] which was proposed in
the context of multi-signatures without key aggregation. Even though this security model has been
used previously for multi-signatures with key aggregation [BDN18; DEF+19; MPS+19], one may
wonder if it is at all suitable in this context. We argue in Appendix C that it is indeed suitable.

4 The Multi-Signature Scheme MuSig2

4.1 Description

Our new multi-signature scheme MuSig2 is parameterized by a group generation algorithm GrGen
and by an integer ν, which specifies the number of nonces sent by each signer. The scheme is defined
as follows (see also Figure 4).

12

Game EUF-CMAA
Σ (λ)

par ← Setup(1λ)
// honest signer has index 1

(sk∗, pk∗)← KeyGen() ; (sk1, pk1)← (sk∗, pk∗)
ctrs ··= 0 // session counter

S ··= ∅ ; S′ ··= ∅ // sets of open signing sessions after Sign and Sign′

Q ··= ∅ // set of Sign′() queries

(L, m, σ)← ASign,Sign′,Sign′′
(pk1)

return (pk1 ∈ L ∧ (L, m) /∈ Q ∧ Ver(KeyAgg(L), m, σ) = true)

Oracle Sign()

ctrs ··= ctrs + 1 // increment session counter

k ··= ctrs ; S ··= S ∪ {k} // open session k

(out1, state1,k)← Sign()
return out1

Oracle Sign′(k, out, m, {pk2 . . . , pkn})

if k /∈ S then return ⊥
(out′

1, state′
1,k)← Sign′(state1,k, out, sk1, m, {pk2, . . . , pkn})

L ··= {pk1, . . . , pkn}
Q ··= Q ∪ {(L, m)}
S ··= S \ {k} ; S′ ··= S′ ∪ {k}
return out′

1

Oracle Sign′′(k, out′)

if k /∈ S′ then return ⊥
σ ← Sign′′(state′

1,k, out′)
S′ ··= S′ \ {k}
return σ

Fig. 3. The EUF-CMA security game for a multi-signature scheme Σ.

13

Parameters setup (Setup). On input 1λ, the setup algorithm runs (G, p, g) ← GrGen(1λ), se-
lects three hash functions Hagg, Hnon, and Hsig from {0, 1}∗ to Zp,11 and returns par ··=
((G, p, g), Hagg, Hnon, Hsig).

Key generation (KeyGen). Each signer generates a random secret key x←$ Zp and returns the
corresponding public key X ··= gx.

Key aggregation (KeyAgg). Let L = {X1, . . . , Xn} be a multiset of public keys. The key aggrega-
tion coefficient for L = {X1, . . . , Xn} and a public key X ∈ L is defined as KeyAggCoef(L, X) ··=
Hagg(L, X). Then the aggregate key corresponding to L is X̃ ··=

∏n
i=1 X

ai
i , where ai ··=

KeyAggCoef(L, Xi).
First signing round (Sign and SignAgg). Each signer can perform the Sign step before the

cosigners and the message to sign have been determined.
Sign: For each j ∈ {1, . . . , ν}, each signer generates random r1,j ←$ Zp and computes R1,j ··=
gr1,j . It then outputs the ν nonces (R1,1, . . . , R1,ν).
SignAgg: Let n be the number of signers. The aggregator receives outputs (R1,1, . . . , R1,ν), . . . ,
(Rn,1, . . . , Rn,ν) from all signers and aggregates them by computing Rj ··=

∏n
i=1 Ri,j for each

j ∈ {1, . . . , ν} and outputting (R1, . . . , Rν).
Second signing round (Sign′, SignAgg′ and Sign′′). Let X1 and x1 be the public and secret key

of a specific signer. Let m be the message to sign. Given the multiset {X2, . . . , Xn} of public
keys of the cosigners, let L = {X1, . . . , Xn} be the multiset of all public keys involved in
signing.12

Sign′: The signer uses the key aggregation algorithm to compute X̃ and stores its own key
aggregation coefficient a1 ··= KeyAggCoef(L, X1). Upon reception of the aggregate first-round
output (R1, . . . , Rν), the signer computes b ··= Hnon(X̃, (R1, . . . , Rν), m). Then it computes

R ··=
ν∏

j=1
Rbj−1

j ,

c ··= Hsig(X̃, R, m),

s1 ··= ca1x1 +
ν∑

j=1
r1,jbj−1 mod p,

and outputs s1.
SignAgg′: The aggregator receives outputs (s1, . . . , sn) of all signers and aggregates them by
outputting the sum s ··=

∑n
i=1 si mod p.

Sign′′: The signer receives s and returns the signature σ ··= (R, s).
Verification (Ver). Given an aggregate public key X̃, a message m, and a signature σ = (R, s),

the verifier accepts the signature if gs = RX̃c.

Note that verification is exactly the same as for ordinary key-prefixed Schnorr signatures with
respect to the aggregate public key X̃.

Correctness is straightforward to verify.

4.2 Practical Considerations

The Choice of the Number ν of Nonces. When compared to MuSig2[ν = 4], the signing
algorithm of MuSig2[ν = 2] saves a multi-exponentiation of size three plus a single exponentiation
(see also Table 1 on p. 4) as well as three group elements of communication in the first round (all
per signer).
11 Hash function Hagg is used to compute the aggregate key, Hnon is used to aggregate nonces, and Hsig to

compute the signature. These hash functions can be constructed from a single one using proper domain
separation.

12 Indices 1, . . . , n are local references to signers, defined within the specific party (signer or aggregator) at
hand, and we use the notational convention that a signer always uses local index 1 to refer to itself. We
do not require that different parties agree on the assignment of indices to signers. We, however, assume a
canonical encoding (e.g., lexicographically sorted) of the multiset L (as we do for all other data).

14

Setup(1λ)

(G, p, g)← GrGen(1λ)
Select three hash functions

Hagg, Hnon, Hsig : {0, 1}∗ → Zp

par ··= ((G, p, g), Hagg, Hnon, Hsig)
return par

KeyGen()

x←$ Zp ; X ··= gx

sk ··= x ; pk ··= X

return (sk, pk)

KeyAggCoef(L, Xi)

return Hagg(L, Xi)

KeyAgg(L)

{X1, . . . , Xn} ··= L

for i ··= 1 . . . n do
ai ··= KeyAggCoef(L, Xi)

return X̃ ··=
∏n

i=1 X
ai
i

Ver(p̃k, m, σ)

X̃ ··= p̃k ; (R, s) ··= σ

c ··= Hsig(X̃, R, m)

return (gs = RX̃c)

Sign()

// Local signer has index 1.

for j ··= 1 . . . ν do
r1,j ←$ Zp ; R1,j ··= gr1,j

out1 ··= (R1,1, . . . , R1,ν)
state1 ··= (r1,1, . . . , r1,ν)
return (out1, state1)

SignAgg(out1, . . . , outn)

for i ··= 1 . . . n do
(Ri,1, . . . , Ri,ν) ··= outi

for j ··= 1 . . . ν do
Rj ··=

∏n

i=1 Ri,j

return out ··= (R1, . . . , Rν)

Sign′(state1, out, sk1, m, {pk2, . . . , pkn})

// Sign′ must be called at most once per state1.

(r1,1, . . . , r1,ν) ··= state1

x1 ··= sk1 ; X1 ··= gx1

{X2, . . . , Xn} ··= {pk2, . . . , pkn}
L ··= {X1, . . . , Xn}
a1 ··= KeyAggCoef(L, X1)
X̃ ··= KeyAgg(L)
(R1, . . . , Rν) ··= out
b ··= Hnon(X̃, (R1, . . . , Rν), m)

R ··=
∏ν

j=1 Rbj−1
j

c ··= Hsig(X̃, R, m)
s1 ··= ca1x1 +

∑ν

j=1 r1,jbj−1 mod p

state′
1 ··= R ; out′

1 ··= s1

return (state′
1, out′

1)

SignAgg′(out′
1, . . . , out′

n)

(s1, . . . , sn) ··= (out′
1, . . . , out′

n)
s ··=

∑n

i=1 si mod p

return out′ ··= s

Sign′′(state′
1, out′)

R ··= state′
1 ; s ··= out′

return σ ··= (R, s)

Fig. 4. The multi-signature scheme MuSig2[GrGen, ν]. Public parameters par returned by Setup are implicitly
given as input to all other algorithms. We use a helper algorithm KeyAggCoef as a wrapper for Hagg to
make the description of the scheme more modular, which will help us describe a variant MuSig2∗ of the
scheme with optimized key aggregation (see Appendix A).

15

Since we provide a security proof in the ROM (Section 5) for MuSig2[ν = 4] as well as a second
independent proof in the ROM+AGM (Section 6) for MuSig2[ν = 2], one may wonder about the
choice of ν in practice. As there is no evidence that MuSig2[ν = 2] is insecure, this is the obvious
and most efficient choice if one is willing to accept the combination of the ROM and the AGM
(remember that the AGM is strictly weaker than the GGM, i.e., it puts fewer restrictions on the
adversary as compared to the GGM). Moreover, our ROM+AGM proof offers a tighter reduction
to the AOMDL problem. If one prefers a ROM-only proof instead, then ν = 4 still provides a very
practical instantiation of MuSig2.

Deterministic Nonces are Insecure. To protect against failures in the randomness generation,
it is common in practice to derandomize the signing procedure of DL-based signature schemes by
deriving the random values used as exponents for the nonces (r1,j in our case) using a deterministic
pseudorandom function of the secret key and the message instead of drawing the nonces uniformly
at random. However, this technique is in general insecure when applied to multi-signatures, and
Maxwell et al. [MPS+19] describe an attack that applies to essentially all Schnorr multi-signature
schemes in the literature when derandomized naively, including MuSig2. Therefore our signing
protocol requires a secure random number generator for generating the values r1,j . The only
known way to sidestep this issue is to securely derandomize the signing protocol using expensive
zero-knowledge proofs as proposed in the MuSig-DN [NRS+20] scheme.

Statefulness. After executing Sign′ with some state the signer must make sure to never run Sign′
again with the same state. Otherwise, the signer will reuse the nonce, allowing trivial extraction
of the secret key. (Again, similar attacks apply to essentially all Schnorr multi-signature schemes,
except the fully deterministic MuSig-DN [NRS+20].) Guaranteeing correct state transitions may
be difficult in practice if the state is written to persistent storage. In particular, the state may be
reused by accident when restoring a backup or through a deliberate attack on the physical storage.

Optimized Key Aggregation. It is possible to save one exponentiation in the key aggregation
algorithm by setting the exponent KeyAggCoef(L, Xi) of one public key Xi in L to the constant
1 in certain circumstances, resulting in an optimized variant MuSig2∗ of the scheme. To keep the
presentation of our main results simple, we postpone a detailed treatment of MuSig2∗ to Appendix A,
where we reduce its unforgeability to the unforgeability of MuSig2.

Optimized Communication Complexity. In both communication rounds, every signer outputs
a network message to be delivered to other signers. If all signers broadcast their outputs directly to
all other signers, the total number of exchanged messages grows quadratically with the number of
signers. This can be improved upon by using an aggregator node (see Section 3.2), e.g., a central
server or one of the signers. With this optimization, each signer sends only to the aggregator node,
which will collect and aggregate all signers’ outputs (using algorithms SignAgg and SignAgg′), and
broadcast the aggregate output to all signers. Since the sizes of the aggregate outputs in both
rounds do not depend on the number of signers, the total amount of communication during a
signing session will grow only linearly with the number of signers. We stress that the aggregator
node is untrusted in our security model.

Partial Verification and Accountability. The nonces outi = (Ri,1, . . . , Ri,ν) and the partial
signature out′i = si output by each signer i during a signing session can be verified by checking the
equation

gsi = R̂iX
aic
i ,

where the effective nonce R̂i of signer i is R̂i =
∏ν

j=1 Ri,j
bj−1

, the key aggregation coefficient ai

is ai = KeyAggCoef(L, Xi), and c is computed as in Sign′. If this partial verification passes for all
signers, then Sign′′ will output a signature that passes verification.13

13 The only purpose of partial verification is to identify invalid inputs to Sign′′, and MuSig2 does not provide
unforgeability guarantees with respect to partial verification (except the trivial guarantee that coming
up with nonces and corresponding valid partial signatures for all signers in a signing session is at least
as hard as coming up with a valid full signature). In fact, it is possible to forge partial signatures of a
subset of honest signers in a signing session [Gib23].

16

Assuming authenticated channels, partial verification enables honest signers (or an honest
aggregator node if used) to identify disruptive signers who only pretend their willingness to sign
but fail to send correct values. This makes it possible to hold disruptive signers accountable when
some external mechanism demands that they sign, e.g., a protocol that uses the MuSig2 signing
protocol as a subprotocol.

5 Security of MuSig2 in the ROM

In this section, we establish the security of MuSig2 with ν = 4 nonces in the random oracle model.

Theorem 1. Let GrGen be a group generation algorithm for which the AOMDL problem is hard.
Then the multi-signature scheme MuSig2[GrGen, ν = 4] is EUF-CMA in the random oracle model
for Hagg, Hnon, Hsig : {0, 1}∗ → Zp.

Precisely, for any adversary A against MuSig2[GrGen, ν = 4] running in time at most t, making
at most qs Sign queries and at most qh queries to each random oracle, and such that the size of L
in any signing session and in the forgery is at most N , there exists an algorithm D taking as input
group parameters (G, p, g)← GrGen(1λ), running in time at most

t′ = 4(t + Nq + 6q)texp + O(qN),

where q = 4qh + 3qs + 2 and texp is the time of an exponentiation in G, making at most 4qs DLogg

queries, and solving the AOMDL problem with an advantage

AdvAOMDL
D,GrGen(λ) ≥

(AdvEUF-CMA
A,MuSig2[GrGen,ν=4](λ))4

2q3 − 32q2 + 12
2λ

.

Before proving the theorem, we start with an informal explanation of the key techniques used
in the proof. Let us recall the security game defined in Section 3.2, adapting the notation to our
setting. Group parameters (G, p, g) and a key pair (x∗, X∗) for the honest signer are generated.
The target public key X∗ is given as input to the adversary A. Then, the adversary can engage
in protocol executions with the honest signer by providing a message m to sign and a multiset L
of public keys involved in the signing process where X∗ occurs at least once, and simulating all
signers except one instance of X∗.

The Double-Forking Technique. This technique is already used by Maxwell et al. in the
security proof for MuSig [MPS+19].14 We recall the idea below with slightly modified notation.

The first difficulty is to extract the discrete logarithm x∗ of the challenge public key X∗. The
standard technique for this would be to “fork” two executions of the adversary in order to obtain
two valid forgeries (R, s) and (R′, s′) for the same multiset of public keys L = {X1, . . . , Xn} with
X∗ ∈ L and the same message m such that R = R′, Hsig(X̃, R, m) was programmed in both
executions to some common value hisig

, Hagg(L, Xi) was programmed in both executions to the
same value ai for each i such that Xi ̸= X∗, and Hagg(L, X∗) was programmed to two distinct
values hiagg

and h′iagg
in the two executions, implying that

gs = R(X∗)n∗hiagg
hisig

∏
i∈{1,...,n}

Xi ̸=X∗

X
aihisig
i ,

gs′
= R(X∗)n∗h′

iagg
hisig

∏
i∈{1,...,n}

Xi ̸=X∗

X
aihisig
i ,

where n∗ is the number of times X∗ appears in L. This would allow to compute the discrete
logarithm of X∗ by dividing the two equations above.
14 Double-forking as used in this work can also be seen as a special case of what Chatterjee and Kamath

refer to as “multiple forking with index (in)dependence” [CK16, Lemma 2].

17

However, simply forking the executions with respect to the answer to the query Hagg(L, X∗)
does not work: indeed, at this moment, the relevant query Hsig(X̃, R, m) might not have been made
yet by the adversary,15 and there is no guarantee that the adversary will ever make this same query
again in the second execution, let alone return a forgery corresponding to the same Hsig query. In
order to remedy this situation, we fork the execution of the adversary twice: once on the answer to
the query Hsig(X̃, R, m), which allows us to retrieve the discrete logarithm of the aggregate public
key X̃ with respect to which the adversary returns a forgery, and on the answer to Hagg(L, X∗),
which allows us to retrieve the discrete logarithm of X∗.

As in Bellare and Neven [BN06], our technical tool to handle forking of the adversary is the
“generalized Forking Lemma” which extends Pointcheval and Stern’s Forking Lemma [PS00] and
which does not mention signatures nor adversaries and only deals with the outputs of an algorithm
A run twice on related inputs.

Lemma 1 (Generalized Forking Lemma [BN06]). Let q ≥ 1 be an integer. Let A be a
randomized algorithm which takes as input a main input inp generated by some probabilistic
algorithm InpGen(), elements h1, . . . , hq from some sampleable set H, and random coins from some
sampleable set R, and returns either a distinguished failure symbol ⊥, or a tuple (i, out), where
i ∈ {1, . . . , q} and out is some side output. The accepting probability of A, denoted acc(A), is
defined as the probability, over inp ← InpGen(), h1, . . . , hq ←$ H, and the random coins of A, that A
returns a non-⊥ output. Consider algorithm ForkA, taking as input inp and h1, h′1, . . . , hq, h′q ∈ H,
described in Figure 5. Let frk be the probability (over inp ← InpGen(), h1, h′1, . . . , hq, h′q ←$ H, and
the random coins of ForkA) that ForkA returns a non-⊥ output. Then

frk ≥ acc(A)
(

acc(A)
q

− 1
|H|

)
.

ForkA(inp, h1, h′
1, . . . , hq, h′

q)

ρ←$ R // pick random coins for A

α ··= A(inp, h1, . . . , hq; ρ)
if α = ⊥ then return ⊥
(i, out) ··= α

α′ ··= A(inp, h1, . . . , hi−1, h′
i, . . . , h′

q; ρ)
if α′ = ⊥ then return ⊥
(i′, out′) ··= α′

if i ̸= i′ ∨ hi = h′
i then return ⊥

return (i, out, out′)

Fig. 5. The “forking” algorithm ForkA built from A.

The algorithms in our proof of Theorem 1 have explicit access to a DL oracle, whereas A in
Lemma 1 does not have explicit access to an oracle. The lemma is nevertheless applicable because
every algorithm Af which has explicit oracle access to a computable, stateless and deterministic
function f that can be queried up to qf times can be turned into an algorithm A′ without explicit
oracle access by inlining the computation of f . If one assumes a running time model in which each
of the first qf computations of f have the same cost as an oracle query, this change does not affect
the running time.
15 In fact, it is easy to see that the adversary can only guess the value of the aggregate public key X̃

corresponding to L before making the relevant queries Hagg(L, Xi) for Xi ∈ L, so that the query
Hsig(X̃, R, m) can only come after the relevant queries Hagg(L, Xi) except with negligible probability.

18

Simulating the Honest Signer. For now, consider the scheme with ν = 1. (We will illustrate
the problem of this choice further down in this section.) The adversary has access to an interactive
signing oracle, which enables it to open sessions with the honest signer. The signing oracle consists
of three sub-oracles Sign, Sign′, and Sign′′ but note that we can without loss of generality ignore
Sign′′, which computes the final signature s =

∑n
i=1 si mod p, because it does not depend on secret

state and thus the adversary can simply simulate it locally.
The reduction’s strategy for simulating the signing oracle is to use the DL oracle available

in the formulation of the AOMDL problem as follows. Whenever the adversary starts the k-th
signing session by querying Sign, the reduction uses a fresh DL challenge R1,1 from the AOMDL
challenge oracle and returns it as its nonce to the adversary. At any later time the adversary
queries Sign′ with session counter k, a nonce R (purported to be obtained as R =

∏n
i=1 Ri,1), a

message m to sign, and a multiset {X2, . . . , Xn} of n − 1 public keys. The reduction then sets
L = {X1 = X∗, X2, . . . , Xn}, computes X̃ and c = Hsig(X̃, R, m), and uses the DL oracle in the
formulation of the AOMDL problem to compute s1 as

s1 = DLogg(R1,1(X∗)ca1 , . . .),

where the required algebraic representation of R1,1(X∗)ca1 is omitted in this informal description
and can be computed naturally by the reduction. The reduction then returns s1 to the adversary.
Since a fresh DL challenge is used as R1,1 in each signing query, the reduction will be able to
compute its discrete logarithm r1,1 once x∗ has been retrieved via r1,1 = s1 − ca1x∗.

Leveraging Two or More Nonces. The main obstacle in the proof and the novelty in this
work is to handle adversaries whose behavior follows this pattern: The adversary initiates a signing
session by querying the oracle Sign to obtain R1,1, then makes a query Hsig(X̃, R, m), for which it
will output a forgery later, and only then continues the signing session with a query to Sign′ with
arguments m, R, {X2, . . . , Xn}. Our goal is to fork the execution of the adversary at the Hsig query.
But then, the adversary may make Sign′ queries with different arguments m, R, {X2, . . . , Xn}, and
m′, R′, {X ′2, . . . , X ′n′} in the two executions. In that case, this results in different signature hashes
c ̸= c′ and requires the reduction simulating the honest signer to make two DL oracle queries in
order to answer the Sign′ query. Consequently, the reduction will lose the AOMDL game because
it had only requested the single AOMDL challenge R1,1.

This is exactly where ν ≥ 2 nonces will come to the rescue. Now assume ν = 2, i.e., the reduction
will obtain two (instead of one) group elements R1,1, R1,2 as challenges from the AOMDL challenger.
This will allow the reduction to make two DL queries. In order to answer Sign′, the reduction
follows the MuSig2 scheme by computing X̃ from the public keys, and b by hashing X̃, m and
all R values of the signing session with Hnon. The reduction then aggregates the nonces of the
honest signer into its effective nonce R̂1 = R1,1Rb

1,2, queries the signature hash c and replies to the
adversary with s1 = DLogg(R̂1(X∗)a1c, . . .).

Now since the reduction has obtained two AOMDL challenges, it can make a second DLogg

query to compute s′1 = DLogg(R̂′1(X∗)a′
1c′

, . . .) and answer the Sign′ query in the second execution.
Moreover, to ensure that the AOMDL challenge responses r1,1 and r1,2 can be computed after
extracting x∗, the reduction programs Hnon to give different responses in each execution after a
fork. Let us assume for now that the signing session was started with a Sign query after the Hagg
fork. We can distinguish the following two cases depending on when Hnon is queried with the inputs
corresponding to the signing session:

Hnon is queried after the Hsig fork. Regardless of what values the adversary sends in Sign′, the
way Hnon is programmed ensures that with overwhelming probability the second execution will
use a value b′ that is different from b in the first execution. In order to answer the Sign′ queries,
the reduction uses DLogg to compute s1 and s′1 resulting in a system of linear equations

r1,1 + br1,2 = s1 − a1cx∗ mod p

r1,1 + b′r1,2 = s′1 − a′1c′x∗ mod p

with unknowns r1,1 and r1,2. As the system is linearly independent (as b ̸= b′) the reduction
can solve it and forward the solutions to the AOMDL challenger.

19

Hnon is queried before the Hsig fork. This implies that b in the first execution is equal to b′ in
the second execution and requires the reduction to ensure that a′1 and c′ are identical in both
executions. Then the input to the DLogg query is also identical and the reduction can simply
cache and reuse the result of the DLogg query from the first execution to save the DLogg

query in the second execution. (Without this caching, the reduction would waste a second
DLogg query to compute s′1 = s1, which it knows already, and then would not have a second,
linearly independent equation that allows solving for r1,1 and r1,2.)
The value a1 is equal to a′1 because the inputs of Hnon contain X̃ which implies that the
corresponding Hagg happened before Hnon and therefore before the fork. Similarly, Hsig requires
the aggregate nonce R of the signing session and therefore Hnon must be queried before the
corresponding Hsig. In order to argue that c = c′, observe that from the inputs (and output) of
a Hnon query it is possible to compute the inputs of the Hsig query. Therefore, the reduction
can make such an internal Hsig query for every Hnon query it receives. This Hsig query is before
the fork point implying c = c′ as desired. (The reduction does not need to handle the case that
this Hsig query is the fork point, because then the values L and m of forgery were queried in a
signing session and thus the forgery is invalid.) Now the reduction has a DLogg query left to
compute the discrete logarithm of R1,1, which enables to compute the discrete logarithm of
R1,2 after x∗ has been extracted.

More generally, if the signing session can be started before the Hagg fork, the reduction may have
to provide different signatures in all four executions. To answer the signature queries nonetheless,
the reduction requires four DL queries and therefore requires MuSig2 with ν = 4 nonces. Similar
to the above, whenever Hnon is queried after the Hsig fork, the reduction ends up with up to four
equations, which are constructed to be linearly independent with high probability. Whenever Hnon
is queried before the Hsig fork, the DLogg queries in the corresponding executions will be identical
and the result can be cached and reused. The DLogg queries saved due to caching can then be
used to complete the linear system to ν = 4 linearly independent equations, and the reduction can
solve for the unknowns r1,1, . . . , r1,4.

5.1 Security Proof
Proof Overview. We first construct a “wrapping” algorithm B which essentially runs the
adversary A and returns a forgery together with some information about the adversary execution,
unless some bad events happen.16 Algorithm B simulates the random oracles Hagg, Hnon, and
Hsig uniformly at random and the signing oracle by obtaining ν DL challenges from the AOMDL
challenge oracle for each Sign query and by making a single query to the DL oracle for each Sign′
query. Then, we use B to construct an algorithm C which runs the forking algorithm ForkB as defined
in Section 3 (where the fork is w.r.t. the answer to the Hsig query related to the forgery), allowing
it to return a multiset of public keys L together with the discrete logarithm of the corresponding
aggregate public key. Finally, we use C to construct an algorithm D computing the DL of the public
key of the honest signer by running ForkC (where the fork is now w.r.t. the answer to the Hagg query
related to the forgery). Throughout the proof, the reader might find helpful to refer to Figure 6
which illustrates the inner working of D.

Due to D and C carefully relaying DL challenges, it is ensured that the ν ≥ 4 DL challenges
that B obtains in each Sign query are identical across all executions of B. Since D (via C and B)
obtains 1 + νqs DL challenges (one for the public key of the honest signer and ν for each of the qs

signing sessions) and solves all of these challenges using at most νqs queries to the DL oracle (one
for each of the qs signing session in at most 4 ≤ ν executions due to double-forking), algorithm D
solves the AOMDL problem.

Normalizing Assumptions and Conventions. Let a (t, qs, qh, N)-adversary be an adversary
running in time at most t, making at most qs Sign queries, at most qh queries to each random
oracle, and such that |L| in any signing session and in the forgery is at most N .
16 In particular, we must exclude the case where the adversary is able to find two distinct multisets of public

keys L and L′ such that the corresponding aggregate public keys are equal, since when this happens
the adversary can make a signing query for (L, m) and return the resulting signature σ as a forgery for
(L′, m). Jumping ahead, this will correspond to bad event KeyColl defined in the proof of Lemma 2.

20

Tagg(L, X∗)

hiagg

Tsig(X̃, R, m)

hisig L, m, (R, s)

h′
isig

L, m, (R, s′)ĥiagg

Tsig(ˆ̃
X, R̂, m̂)

ĥi′
sig

L, m̂, (R̂, ŝ)

ĥ′
i′
sig

L, m̂, (R̂, ŝ′)

Fig. 6. A possible execution of algorithm D. Each path from the leftmost root to one of the four rightmost
leaves represents an execution of the adversary A. Each vertex symbolizes a call to random oracles Hagg and
Hsig, and the edge originating from this vertex symbolizes the response used for the query. Leaves symbolize
the forgery returned by the adversary. Only vertices and edges that are relevant to the forgery are labeled.

In all the following, we assume that the adversary only makes “well-formed” random oracles
queries, meaning that X∗ ∈ L and X ∈ L for any query Hagg(L, X). This is without loss of
generality, since “ill-formed” queries are irrelevant and could simply be answered uniformly at
random in the simulation.

We further assume without loss of generality that the adversary makes exactly qh queries to each
random oracle and exactly qs queries to the Sign oracle, and that the adversary closes every signing
session, i.e., for every Sign query it will also make a corresponding Sign′ query at some point.
This is without loss of generality because remaining queries can be emulated after the adversary
has terminated (in the case of Sign′ queries using a set of public keys and a message m which are
different from the adversary’s forgery to make sure not to invalidate a valid forgery).

We ignore the Sign′′ oracle in the simulation. This is without loss of generality because it does
not depend on secret state and thus the adversary can simply simulate it locally.

Lemma 2. Given some integer ν, let A be a (t, qs, qh, N)-adversary in the random oracle model
against the multi-signature scheme MuSig2[GrGen, ν], and let q = 4qh + 3qs + 2. Then there exists
an algorithm B that takes as input group parameters (G, p, g) ← GrGen(1λ), uniformly random
group elements X∗, U1, . . . , Uνqs

∈ G, and uniformly random scalars h1, . . . , hq ∈ Zp, makes at
most qs queries to a discrete logarithm oracle DLogg, and with accepting probability (as defined in
Lemma 1)

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ)− 4q2

2λ

outputs a tuple (isig, iagg, L, R, s, a⃗) where isig, iagg ∈ {1, . . . , q}, L = {X1, . . . , Xn} is a multiset of
public keys such that X∗ ∈ L, a⃗ = (a1, . . . , an) ∈ Zn

p is a tuple of scalars such that ai = hiagg
for

any i such that Xi = X∗, and

gs = R

n∏
i=1

X
aihisig
i . (2)

Proof. Algorithm B is described in Figure 7. It simulates the EUF-CMA game towards A. Note
that B uses a single list h1, . . . , hq of scalars to program the three random oracles Hagg, Hnon, and
Hsig. This ensures that after a fork in any random oracle, the answers of all three random oracles in
one execution will be independent of the answers in the other execution.17

17 For example, when forking on a Hsig query that was answered hi in the first execution, not only will the
answer h′

i to that query and all further Hsig queries in the second execution be drawn freshly, but also
all further Hagg and Hnon answers in the remainder of the second execution will be drawn freshly and
independently of those in the main execution. This ensures in particular that the Hnon answers in the
two executions are (with overwhelming probability) different after an Hsig or an Hagg fork, which will be
crucial for the reduction to work.

21

B((G, p, g), (X∗, U1, . . . , Uνqs
), (h1, . . . , hq))

// tables for storing random oracle answers

Tagg ··= ∅ ; Tnon ··= ∅ ; Tsig ··= ∅
// tables for storing assignment indexes

Tiagg ··= ∅ ; Tisig ··= ∅
ctrh ··= 0 // counter for random oracle queries

ctrs ··= 0 // counter for signing session

S ··= ∅ // open sessions

Q ··= ∅ // completed sessions

K ··= ∅ // aggregate public keys

BadOrder ··= false // flag for a bad event

KeyColl ··= false // flag for a bad event

ρA ←$ R // randomness for A

frg ··= AHagg,Hnon,Hsig,Sign,Sign′
((G, p, g), X∗; ρA)

(L, m, (R, s)) ··= frg
X̃ ··= KeyAgg(L)
if X∗ /∈ L ∨ ¬Ver(X̃, m, (R, s)) ∨ (L, m) ∈ Q then

return ⊥ // invalid forgery

X1 ··= X∗

{X2, . . . , Xn} ··= L \ {X∗}
if BadOrder ∨ KeyColl then

return ⊥ // bad event happened

// Tagg entries are defined due to Ver call

(a1, . . . , an) ··= (Tagg(L, X1), . . . , Tagg(L, Xn))
a⃗ = (a1, . . . , an)
isig ··= Tisig(X̃, R, m)
iagg ··= Tiagg(L, X∗)
return (isig, iagg, L, R, s, a⃗)

Hagg(L, X)

// by assumption, X
∗ ∈ L and X ∈ L

if Tagg(L, X) = ⊥ then
ctrh ··= ctrh + 1
for X ′ ∈ L \ {X∗} do

Tagg(L, X ′)←$ Zp

Tagg(L, X∗) ··= hctrh

Tiagg(L, X∗) ··= ctrh

X̃ ··= KeyAgg(L) // does not increment ctrh

if ∃R, m : Tsig(X̃, R, m) ̸= ⊥ then
BadOrder ··= true

if X̃ ∈ K then
KeyColl ··= true

K ··= K ∪ {X̃}
return Tagg(L, X)

Hnon(X̃, (R1, . . . , Rν), m)

if Tnon(X̃, (R1, . . . , Rν), m) = ⊥ then
ctrh ··= ctrh + 1
Tnon(X̃, (R1, . . . , Rν), m) ··= hctrh

b ··= Tnon(X̃, (R1, . . . , Rν), m)

R ··=
∏ν

j=1 Rbj−1
j

Hsig(X̃, R, m) // preemptive Hsig query

return Tnon(X̃, (R1, . . . , Rν), m)

Hsig(X̃, R, m)

if Tsig(X̃, R, m) = ⊥ then
ctrh ··= ctrh + 1

Tsig(X̃, R, m) ··= hctrh

Tisig(X̃, R, m) ··= ctrh

return Tsig(X̃, R, m)

Sign()

ctrs ··= ctrs + 1
S ··= S ∪ {ctrs}

k̂ ··= ν(ctrs − 1) + 1
(R1,1 . . . , R1,ν) ··= (Uk̂, . . . , Uk̂+ν−1)
return (R1,1 . . . , R1,ν)

Sign′(k, out, m, {X2, . . . , Xn})

if k /∈ S then return ⊥
S ··= S \ {k}
k′ ··= ν(k − 1) + 1
(R1,1, . . . , R1,ν) ··= (Uk′ , . . . , Uk′+ν−1)
X1 ··= X∗ ; L ··= {X1, . . . , Xn}

X̃ ··= KeyAgg(L) // increments ctrh only by 1

Q ··= Q ∪ {(L, m)}
(R1, . . . , Rν) ··= out
b ··= Hnon(X̃, (R1, . . . , Rν), m)
// R can be cached from Hnon in previous line

R ··=
∏ν

j=1 Rbj−1
j

c ··= Hsig(X̃, R, m)

R̂1 ··=
∏ν

j=1 Rbj−1
1,j

k̂ ··= ν(ctrs − 1) + 1
α ··= 0 ; (βi)1≤i≤k̂

··= (0, . . . , 0)
β1 ··= a1c

(βk′ , . . . , βk′+ν−1) ··= (b0, . . . , bν−1)
s1 ··= DLogg(R̂1(X∗)a1c

, (α, (βi)1≤i≤k̂)
return s1

Fig. 7. Algorithm B from the proof of Lemma 2.

22

Assume B returns (isig, iagg, L, R, s, a⃗), where a⃗ = (a1, . . . , an). By construction, ai = hiagg
for

each i such that Xi = X∗ and the validity of the forgery (as checked by B) implies Equation (2).
Let us count how many times ctrh is incremented. Hagg is called at most qh times by the

adversary and at most once when verifying the forgery. Additionally, Hagg is called multiple times
per Sign′ query (when evaluating the KeyAgg call within Sign′), but since all these calls are with
the same L argument, the counter ctrh is incremented only once per Sign′ query, and Hagg is called
indirectly by itself (when evaluating the KeyAgg call within Hagg), but since these recursive calls
occur only when the corresponding Tagg entry is already defined, they never increment ctrh. Hence
ctrh is incremented at most qh + qs + 1 times in total when handling Hagg calls. Similarly, Hnon is
called at most qh times by the adversary and at most once per Sign′ query, hence at most qh + qs

times in total. Finally, Hsig is called at most qh times by the adversary, at most once per Hnon query,
and at most once when verifying the forgery, hence at most 2qh + qs + 1 times in total. Hence, ctrh
is incremented at most q = 4qh + 3qs + 2 times in total.

We now lower bound the accepting probability of B. Since h1, . . . , hq are uniformly random,
B perfectly simulates the security experiment to the adversary. Moreover, when the adversary
eventually returns a forgery, B returns a non-⊥ output unless BadOrder or KeyColl is set to true.
Hence, by the union bound,

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ)− Pr [BadOrder]− Pr [KeyColl] .

It remains to upper bound Pr [BadOrder] and Pr [KeyColl]. Note that for any query Hagg(L′, X ′),
either Tagg(L′, X ′) is already defined, in which case Hagg returns immediately and neither BadOrder
nor KeyColl can be set to true, or Tagg(L′, X ′) is undefined, in which case Tagg(L′, X ′′) is undefined
for every X ′′ ∈ L′ since all these table values are set at the same time when the first query Hagg(L′, ∗)
happens. In the latter case, the corresponding aggregate key is

X̃ ′ = (X∗)n∗hi · Z

where n∗ ≥ 1 is the number of times X∗ appears in L′ and hi (where i is the value of ctrh when
Tagg(L′, X∗) is set) is uniformly random in Zp and independent of Z which accounts for public
keys different from X∗ in L′. Hence, X̃ ′ is uniformly random in G of size p ≥ 2λ−1. Since there
are always at most q defined entries in Tsig and at most q queries to Hagg, BadOrder is set to true
with probability at most q2/2λ−1. Similarly, the size of K is always at most q (since at most one
element is added per Hagg query), hence KeyColl is set to true with probability at most q2/2λ−1.
Combining all of the above, we obtain

acc(B) ≥ AdvEUF-CMA
A,MuSig2[GrGen,ν](λ)− 4q2

2λ
.

Using B, we now construct an algorithm C which returns a multiset of public keys L together
with the discrete logarithm of the corresponding aggregate key.

Lemma 3. Given some integer ν, let A be a (t, qs, qh, N)-adversary in the random oracle model
against the multi-signature scheme MuSig2[GrGen, ν] and let q = 4qh + 3qs + 2. Then there exists an
algorithm C that takes as input group parameters (G, p, g)← GrGen(1λ), uniformly random group
elements X∗, U1, . . . , Uνqs

∈ G, and uniformly random scalars h1, h′1, . . . , hq, h′q ∈ Zp, makes at
most 2qs queries to a discrete logarithm oracle DLogg, and with accepting probability (as defined
in Lemma 1)

acc(C) ≥
(AdvEUF-CMA

A,MuSig2[GrGen,ν](λ))2

q
− 2(4q + 1)

2λ

outputs a tuple (iagg, L, a⃗, x̃) where iagg ∈ {1, . . . , q}, L = {X1, . . . , Xn} is a multiset of public keys
such that X∗ ∈ L, a⃗ = (a1, . . . , an) ∈ Zn

p is a tuple of scalars such that ai = hiagg
for any i such

that Xi = X∗, and x̃ is the discrete logarithm of X̃ =
∏n

i=1 X
ai
i in base g.

Proof. Algorithm C runs ForkB with B as defined in Lemma 2 and takes additional steps as described
below. The mapping with notation of our Forking Lemma (Lemma 1) is as follows:

– inp in Lemma 1 is ((G, p, g), X∗, U1, . . . , Uνqs
),

23

– i in Lemma 1 is isig,
– out in Lemma 1 is (iagg, L, R, s, a⃗).

In more details, C picks random coins ρB and runs algorithm B on coins ρB, group description
(G, p, g), group elements X∗, U1, . . . , Uνqs

∈ G, and scalars h1, . . . , hq ∈ Zp. All DLogg oracle
queries made by B are relayed by C to its own DLogg oracle. If B returns ⊥, C returns ⊥ as well.
Otherwise, if B returns a tuple (isig, iagg, L, R, s, a⃗), where L = {X1, . . . , Xn} and a⃗ = (a1, . . . , an),
C runs B again with the same random coins ρB on input (G, p, g), X∗, U1, . . . , Uνqs

and scalars
h1, . . . , hisig−1, h′isig

, . . . , h′q. Again, all DLogg oracle queries made by B are relayed by C to its own
DLogg oracle. If B returns ⊥ in this second run, C returns ⊥ as well. If B returns a second tuple
(i′sig, i′agg, L′, R′, s′, a⃗′), where L′ = {X ′1, . . . , X ′n′} and a⃗′ = (a′1, . . . , a′n′), C proceeds as follows. Let
X̃ =

∏n
i=1 X

ai
i and X̃ ′ =

∏n′

i=1(X ′i)a′
i denote the aggregate public keys from the two forgeries. If

isig ̸= i′sig, or isig = i′sig and hisig
= h′isig

, then C returns ⊥. Otherwise, if isig = i′sig and hisig
̸= h′isig

,
we will prove shortly that

iagg = i′agg, L = L′, R = R′, and a⃗ = a⃗′, (3)

which implies in particular that X̃ = X̃ ′. By Lemma 2, the two outputs returned by B are such that

gs = RX̃
hisig and gs′

= R′(X̃ ′)h′
isig = RX̃

h′
isig ,

which allows C to compute the discrete logarithm of X̃ as

x̃ ··= (s− s′)(hisig
− h′isig

)−1 mod p.

Then C returns (iagg, L, a⃗, x̃).
C returns a non-⊥ output if ForkB does, so that by Lemma 1 (with H = Zp) and Lemma 2, and

letting ε = AdvEUF-CMA
A,MuSig2[GrGen,ν](λ), C’s accepting probability satisfies

acc(C) ≥ acc(B)
(

acc(B)
q

− 1
p

)
≥ (ε− 4q2/2λ)2

q
− ε− 4q2/2λ

2λ−1

= ε2

q
− 2ε(4q + 1)

2λ
+ 8q2(2q + 1)

22λ

≥ ε2

q
− 2(4q + 1)

2λ
.

It remains to prove the equalities of Equation (3). In B’s first execution, hisig
is assigned to

Tsig(X̃, R, m), while in B’s second execution, h′isig
is assigned to Tsig(X̃ ′, R′, m′). Note that these

two assignments can happen either because of a direct query to Hsig by the adversary, during a
query to Hnon, during a Sign′ query, or during the final verification of the validity of the forgery.
Up to these two assignments, the two executions are identical since B runs A on the same random
coins and input, uses the same values for Tagg(·, X ̸= X∗) assignments and DL oracle outputs
s1 in Sign′ queries, and uses the same scalars h1, . . . , hisig−1 for Tagg(·, X∗) assignments, Tnon
assignments, and Tsig assignments. Since both executions are identical up to the two assignments
Tsig(X̃, R, m) ··= hisig

and Tsig(X̃ ′, R′, m′) ··= h′isig
, the arguments of the two assignments must be

the same, which in particular implies that R = R′ and X̃ = X̃ ′. Assume that L ̸= L′. Then, since
X̃ = X̃ ′, this would mean that KeyColl is set to true in both executions, a contradiction since B
returns a non-⊥ output in both executions. Hence, L = L′. Since in both executions of B, BadOrder
is not set to true, assignments Tagg(L, X∗) ··= hiagg

and Tagg(L′, X∗) ··= hi′
agg necessarily happened

before the fork. This implies that iagg = i′agg and a⃗ = a⃗′.

We are now ready to prove Theorem 1, which we restate below for convenience, by constructing
from C an algorithm D solving the AOMDL problem.

Theorem 1. Let GrGen be a group generation algorithm for which the AOMDL problem is hard.
Then the multi-signature scheme MuSig2[GrGen, ν = 4] is EUF-CMA in the random oracle model
for Hagg, Hnon, Hsig : {0, 1}∗ → Zp.

24

Precisely, for any adversary A against MuSig2[GrGen, ν = 4] running in time at most t, making
at most qs Sign queries and at most qh queries to each random oracle, and such that the size of L
in any signing session and in the forgery is at most N , there exists an algorithm D taking as input
group parameters (G, p, g)← GrGen(1λ), running in time at most

t′ = 4(t + Nq + 6q)texp + O(qN),

where q = 4qh + 3qs + 2 and texp is the time of an exponentiation in G, making at most 4qs DLogg

queries, and solving the AOMDL problem with an advantage

AdvAOMDL
D,GrGen(λ) ≥

(AdvEUF-CMA
A,MuSig2[GrGen,ν=4](λ))4

2q3 − 32q2 + 12
2λ

.

Proof. Fix some integer ν ≥ 4.18 Algorithm D runs ForkC with C as defined in Lemma 3 and
takes additional steps as described below. The mapping with the notation in our Forking Lemma
(Lemma 1) is as follows:

– inp in Lemma 1 is ((G, p, g), X∗, U1, . . . , Uνqs
),

– h1, . . . , hq in Lemma 1 is h1, h′1, . . . , hq, h′q (in particular, there are 2q values),
– i in Lemma 1 is iagg,
– out in Lemma 1 is (L, a⃗, x̃).

In more details, algorithm D makes νqs + 1 queries to its challenge oracle X∗, U1, . . . , Uνqs
←

Ch(), picks random coins ρC and uniformly random scalars h1, ĥ1, h′1, ĥ′1, . . . , hq, ĥq, h′q, ĥ′q ∈ Zp,
and runs C on coins ρC , group description (G, p, g), group elements X∗, U1, . . . , Uνqs

, and scalars
h1, h′1, . . . , hq, h′q. It relays all DLogg oracle queries made by C to its own DLogg oracle, caching
pairs of group elements and responses to avoid making multiple queries for the same group
element. If C returns ⊥, D returns ⊥ as well. Otherwise, if C returns a tuple (iagg, L, a⃗, x̃), D
runs C again with the same random coins ρC on input (G, p, g), X∗, U1, . . . , Uνqs

and scalars
h1, h′1, . . . , hiagg−1, h′iagg−1, ĥiagg

, ĥ′iagg
, . . . , ĥq, ĥ′q. It relays all DLogg oracle queries made by C to its

own DLogg oracle after looking them up in its cache to avoid making duplicate queries. If C returns⊥
in this second run, D returns ⊥ as well. If C returns a second tuple (i′agg, L′, a⃗′, x̃′), D proceeds as
follows. Let L = {X1, . . . , Xn}, a⃗ = (a1, . . . , an), L′ = {X ′1, . . . , X ′n′}, and a⃗′ = (a′1, . . . , a′n). Let
n∗ be the number of times X∗ appears in L. If iagg ̸= i′agg, or iagg = i′agg and hiagg

= ĥiagg
, D

returns ⊥. Otherwise, if iagg = i′agg and hiagg
̸= ĥiagg

, then we will show below that

L = L′ and ai = a′i for each i such that Xi ̸= X∗. (4)

By Lemma 3, we have that

gx̃ =
n∏

i=1
X

ai
i = (X∗)n∗hiagg

∏
i∈{1,...,n}

Xi ̸=X∗

X
ai
i ,

gx̃′
=

n∏
i=1

X
a′

i
i = (X∗)n∗ĥiagg

∏
i∈{1,...,n}

Xi ̸=X∗

X
ai
i .

Thus, D can compute the discrete logarithm of X∗ as

x∗ ··= (x̃− x̃′)(n∗)−1(hiagg
− ĥiagg

)−1 mod p.

We will now prove the equalities in Equation (4). In the two executions of B run within the
first execution of C, hiagg

is assigned to Tagg(L, X∗), while in the two executions of B run within
the second execution of C, ĥiagg

is assigned to Tagg(L′, X∗). Note that these two assignments can

18 Theorem 1 states the security of MuSig2 only for ν = 4, because there is no reason to use more than four
nonces in practice. The proof works for any ν ≥ 4.

25

happen either because of a direct query Hagg(L, X) made by the adversary for some key X ∈ L
(not necessarily X∗), during a Sign′ query, or during the final verification of the validity of the
forgery. Up to these two assignments, the four executions of A are identical since B runs A on
the same random coins and the same input, uses the same values for Tagg(·, X ̸= X∗) assignments
and DL oracle outputs s1 in Sign′ queries, and uses the same scalars h1, . . . , hiagg−1 for Tagg(·, X∗)
assignments, for Tnon assignments, and for Tsig assignments (note that this relies on the fact that in
the four executions of B, BadOrder is not set to true). Since the four executions of B are identical
up to the assignments Tagg(L, X∗) ··= hiagg

and Tagg(L′, X∗) ··= ĥiagg
, the arguments of these

two assignments must be the same, which implies that L = L′. Besides, all values Tagg(L, X) for
X ∈ L \ {X∗} are chosen uniformly at random by B using the same coins in the four executions,
which implies that ai = a′i for each i such that Xi ̸= X∗. This shows the equalities in Equation (4).

Recall that D internally ran four executions of B (throughout forking in ForkB and in ForkC).
Consider a Sign query handled by B, and let i be the index such that the group elements
Ui, . . . , Ui+ν−1 queried by D to Ch were assigned to R1,1, . . . R1,ν by B when handling this query.
In the corresponding Sign′ query, algorithm B has computed a1, b and c and has queried the DL
oracle with

s1 ··= DLogg

((
ν∏

j=1
Rbj−1

1,j

)
(X∗)a1c

, . . .

)
(5)

(and the appropriate algebraic representation, which we do not repeat here). Note that all four
executions of B have been passed the same group elements Ui, . . . , Ui+ν−1 as input to be used in
Sign queries. However, when handling the corresponding Sign′ queries, B may have made different
queries to the DL oracle in the four executions.19

Algorithm D initializes a flag LinDep representing a bad event and attempts to deduce the
discrete logarithm of all challenges which were used in each Sign query in all four executions of B
as follows.

For each Sign′(k, . . .) query with session index k, algorithm D proceeds to build a system of
ν linear equations with unknowns r1, . . . , rν , the discrete logarithms of R1,1, . . . , R1,ν . Let Pk be
the partition of the four executions of B such that two executions are in the same component if
they were identical up to assignment of the Tnon entry accessed by the Sign′(k, . . .) query handler
when defining b ··= Tnon(X̃, (R1, . . . , Rν), m).20 Consider the variables b, a1, c, s1 in the Sign′(k, . . .)
query handler within all executions within some component ℓ ∈ Pk. We will show below that all
executions in component ℓ ∈ Pk assign identical values b

(ℓ)
, a

(ℓ)
1 , c

(ℓ)
, s

(ℓ)
1 to these variables. As a

consequence, all executions in component ℓ pass identical group elements as inputs to their DL
oracles in the Sign′(k, . . .) query handler (see Equation (5)). Thus, due to the caching of DL oracle
replies in D, algorithm D has used only |Pk| queries to its own DL oracle to answer the DL oracle
queries originating from all four executions of B. Then D has a system of |Pk| ≤ 4 ≤ ν linear
equations

ν∑
j=1

(b(ℓ))j−1 rj = s
(ℓ)
1 − a

(ℓ)
1 c

(ℓ)
x∗, ℓ ∈ {1, . . . , |Pk|} (6)

with unknowns r1, . . . , rν . If the values b(ℓ) for ℓ ∈ {1, . . . , |Pk|} are not pairwise distinct, then D
sets LinDep ··= true and returns ⊥.

Otherwise, D completes the linear system with ν − |Pk| remaining DL queries as follows. For
each ℓ ∈ {|Pk|+1, . . . , ν}, it picks a value b(ℓ) from Zp such that b(ℓ) ̸= b(ℓ′) for all ℓ′ < ℓ and obtains
the additional equations

ν∑
j=1

(b(ℓ))j−1 rj = DLogg

(
ν∏

j=1
(R1,j)(b(ℓ))j−1

,
(

α(ℓ), (β(ℓ)
i)1≤i≤νqs+1

))
, ℓ ∈ {|Pk|+1, . . . , ν}, (7)

19 For example, the adversary may have replied with different L, m or R values in different executions, or
algorithm B may have received different answers to the corresponding Hnon query.

20 For example, all four executions (as visualized in Figure 6) are in the same component if the corresponding
Tnon value was set before the Hagg fork point, and two executions in the same branch of the Hagg fork
are in the same component if the Tnon value was set before the Hsig fork point.

26

computing the algebraic representations of the queried group elements appropriately as α(ℓ) ··= 0
and (β(ℓ)

i)1≤i≤νqs+1 ··= (0, . . . , 0, βν(k−1) = (b(ℓ))0 = 1, . . . , βνk−1 = (b(ℓ))ν−1, 0, . . . , 0).
The coefficient matrix

B =

1 (b(1))1 · · · (b(1))ν−1

1 (b(2))1 · · · (b(2))ν−1

...
...

. . .
...

1 (b(ν))1 · · · (b(ν))ν−1

of the complete linear system (Equations (6) and (7)) is a square Vandermonde matrix with pairwise
distinct b(ℓ) values, and thus has full rank ν. At this stage, D has a system of ν linear independent
equations with ν unknowns. Because the system is consistent by construction, it has a unique
solution r1, . . . , rν , which is computed and output by D.

It remains to show that if for some given Sign′(k, . . .) query, two executions of B are in the
same component of Pk, then

b = b′, a1 = a′1, c = c′, and s1 = s′1, (8)

where here and in the following, non-primed and primed terms are the values used in the Sign′
query in the respective execution. By definition, the executions were identical up to the assign-
ments of Tnon(X̃, (R1, . . . , Rν), m) and Tnon(X̃ ′, (R′1, . . . , R′ν), m′), which implies that X̃ = X̃ ′,
(R1, . . . , Rν) = (R′1, . . . , R′ν), m = m′, and Tnon(X̃, (R1, . . . , Rν), m) = Tnon(X̃ ′, (R′1, . . . , R′ν), m′).
The equality b = b′ follows immediately.

To prove c = c′, note that previous equalities imply that
∏ν

j=1 Rbj−1

j =
∏ν

j=1(R′j)(b′)j−1 , i.e.
R = R′. Hence, c and c′ were defined using the same table entry Tsig(X̃, R, m) in both executions.
If entry Tsig(X̃, R, m) had already been set when Tnon(X̃, (R1, . . . , Rν), m) was set, then c = c′ due
to the executions being identical. Otherwise, if the value Tsig(X̃, R, m) had not already been set
when Tnon(X̃, (R1, . . . , Rν), m) was set, then the internal preemptive Hsig query in the Hnon query
handler set Tsig(X̃, R, m) exactly when the query Hnon(X̃, (R1, . . . , Rν), m) was handled. Since
B did not receive a forgery which is invalid due to the values m and L from the forgery having
been queried in a Sign′ query, the internal Hsig query was not the Hsig fork point. Therefore, both
executions are still identical when Tsig(X̃, R, m) is set, which implies that c = c′.

To prove a1 = a′1 we first note that in the first execution, Hagg(L, X∗) was set before Tsig(X̃, R, m)
(as otherwise B would have set BadOrder ··= true), hence before Tnon(X̃, (R1, . . . , Rν), m) since
as proved above Tsig(X̃, R, m) was set before or at the same time as Tnon(X̃, (R1, . . . , Rν), m).
Similarly, in the second execution, Hagg(L′, X∗) was set before Tnon(X̃, (R1, . . . , Rν), m). Because
both executions are identical up to the assignment of Tnon(X̃, (R1, . . . , Rν), m), Hagg(L, X∗) and
Hagg(L′, X∗) were set in both executions. Assume that L ̸= L′. Then KeyAgg(L) = X̃ = X̃ ′ =
KeyAgg(L′), a contradiction since B has not set KeyColl ··= true in either of the executions. This
implies that a1 and a′1 were defined using the same table entry Hagg(L, X∗) which was set when
executions were identical, hence a1 = a′1.

The equality s1 = s′1 follows from Equation (5) together with b = b′, a1 = a′1, and c = c′. This
shows the equalities in Equation (8).

Altogether, D makes |P | DL queries initiated by B (as in Equation (6)) and ν − |P | additional
DL queries (as in Equation (7)) per initiated signing session. Thus, the total number of DL queries
is exactly νqs.

Neglecting the time needed to compute discrete logarithms and solve linear equation systems,
the running time t′ of D is twice the running time of C, which itself is twice the running time
of B. The running time of B is the running time t of A plus the time needed to maintain tables
Tagg, Tnon, and Tsig (we assume each assignment takes unit time) and answer signing and hash
queries. The sizes of Tagg, Tnon, and Tsig are at most qN , q, and q respectively. Answering signing
queries is dominated by the time needed to compute the aggregate key as well as the honest signer’s
effective nonce, which is at most Ntexp and (ν − 1)texp respectively. Answering hash queries is
dominated by the time to compute the aggregate nonce which is at most (ν − 1)texp. Therefore,
t′ = 4(t + q(N + 2ν − 2))texp + O(qN).

27

Clearly, D is successful if ForkC returns a non-⊥ answer and LinDep is not set to true. LinDep is
set to true if, in the linear system corresponding to some Sign(k, . . .) query, there are two identical
values b(ℓ) = b(ℓ′) in two different execution components ℓ, ℓ′ ≤ |Pk|. By construction, b(ℓ) and b(ℓ′)

were assigned the value of two distinct scalars among h1, ĥ1, h′1, ĥ′1, . . . , hq, ĥq, h′q, ĥ′q. Since these
4q scalars are drawn from Zp with p > 2λ−1, we have

Pr [LinDep] ≤ (4q)2

2λ−1 = 32q2

2λ
.

Let ε = AdvEUF-CMA
A,MuSig2[GrGen,ν](λ). By Lemma 1 (with H = Zp and q replaced by 2q) and Lemma 3,

the success probability of ForkC is at least

acc(ForkC) ≥ acc(C)
(

acc(C)
2q

− 1
p

)
≥ (ε2/q − 2(4q + 1)/2λ)2

2q
− ε2/q − 2(4q + 1)/2λ

2λ−1

≥ ε4

2q3 −
(8 + 2/q)

q · 2λ
− 2

q · 2λ

≥ ε4

2q3 −
12
2λ

.

Altogether, the advantage of D is at least

AdvAOMDL
D,GrGen(λ) ≥ acc(ForkC)− Pr [LinDep] ≥ ε4

2q3 −
32q2 + 12

2λ
.

6 Security of MuSig2 in the ROM + AGM

In the algebraic group model (AGM) [FKL18], adversaries are assumed to be algebraic. An algorithm
A is algebraic w.r.t. some group description (G, p, g) if for all group elements Z that it outputs,
it also provides a representation of Z relative to all previously received group elements: If A has
so far received (Y1, . . . , Yn) ∈ Gn, then A must output Z together with (α1, . . . , αn) ∈ (Zp)n such
that Z =

∏n
i=1 Y

αi
i . We write [Z] for a group element Z augmented with its representation, e.g.,

[Z] = (Z, α1, . . . , αn).

When the adversary returns a multiset of group elements L, we write [L] for the multiset of augmented
group elements. Given augmented group elements [Z1], . . . , [Zm] and scalars a1, . . . , am ∈ Zp, we let

m∏
j=1

[Zj]aj

denote the augmented group element whose representation is computed “naturally” from the
representations of the Zj ’s; explicitly, if [Zj] = (Zj , αj,1, . . . , αj,n) for each j ∈ {1, . . . , m}, then

m∏
j=1

[Zj]aj = (
∏m

j=1 Zj , α1, . . . , αn)

where αi =
∑m

j=1 ajαj,i mod p for i ∈ {1, . . . , n}.
We work with random oracles Hagg, Hnon, Hsig taking group elements as input [FPS20]. Hence,

an algebraic adversary querying these oracles must provide a representation of the group elements
contained in the query. In the security game, which implements the random oracles by lazy sampling,
we define auxiliary oracles Hagg, Hnon, Hsig which are used by the game itself and thus do not expect
representations of the group elements contained in queries.

By assuming the ROM and AGM, we can show the security of MuSig2 with only ν = 2 nonces.

28

Theorem 2. Let GrGen be a group generation algorithm for which the AOMDL problem is hard.
Then the multi-signature scheme MuSig2[GrGen, ν = 2] is EUF-CMA in the algebraic group model
for GrGen and the random oracle model for Hagg, Hnon, Hsig : {0, 1}∗ → Zp.

Precisely, for any algebraic adversary A against MuSig2[GrGen, ν = 2] running in time at most t,
making at most qs Sign queries, at most qh queries to each random oracle, and such that the size
of L in any signing session and in the forgery is at most N , there exists an algorithm B running in
time at most

t′ = t + O(qN) · texp + O(q3)

where q = 2qh + (N + 2)(qs + 1) and texp is the time of an exponentiation in G and making at most
2qs DLogg queries such that

AdvAOMDL
B,GrGen(λ) ≥ AdvEUF-CMA

A,MuSig2[GrGen,ν=2](λ)− 26q3/2λ.

Proof. Let A be an algebraic adversary in the EUF-CMAAMuSig2[GrGen,ν=2] security game. With respect
to the queries made by A, we make without loss of generality the same normalizing assumptions as
in Section 5.1: We assume that A only makes “well-formed” queries, meaning that X∗ ∈ L and
X ∈ L for any query Hagg(L, X). We further assume without loss of generality that the adversary
makes exactly qh queries to each random oracle and exactly qs queries to the Sign oracle, and that
the adversary closes every signing session, i.e., for every Sign query it will also make a corresponding
Sign′ query at some point. We ignore the Sign′′ oracle in the simulation. This is without loss of
generality because it does not depend on secret state and thus the adversary can simply simulate it
locally.

Consider Figure 8 which specifies Game0 = EUF-CMAAMuSig2[GrGen,ν=2]. Since the adversary is
algebraic, it outputs for each group element Z (including those contained in queries to oracles) a
representation (α, β, (γ1,k, γ2,k)1≤k≤qs

) in basis (g, X∗, (R(k)
1,1 , R

(k)
1,2)1≤k≤qs

) such that

Z = gα(X∗)β

qs∏
k=1

(R(k)
1,1)γ1,k (R(k)

1,2)γ2,k ,

where (R(k)
1,1 , R

(k)
1,2) are the nonces returned by the k-th query to Sign() and with the convention

that γ1,k = γ2,k = 0 for k > ctr , where ctr is the counter keeping track of the number of Sign()
queries so far (see Figure 8). To prepare for the change to Game1, Game0 calls Hagg, Hnon, and
Hsig (rather than Hagg, Hnon, and Hsig) with representations derived from the ones provided by the
adversary. This does not modify the probability that the game returns true since in Game0, Hagg,
Hnon and Hsig behave exactly as Hagg, Hnon, and Hsig respectively. By definition,

AdvGame0
A (λ) = AdvEUF-CMA

A,MuSig2[GrGen,ν=2](λ). (9)

In order to bound the probability of certain bad events in Game0, we define in Figure 8 a
game Game1 which differs from Game0 by a number of additional steps and checks implemented by
procedures CheckTagg, CheckTnon, and CheckTsig as specified in Figures 9–11. Also, in order to
facilitate the analysis, Hagg([L], [X]) assigns random values to Tagg(L, X ′) for every X ′ ∈ L as soon
as the first query Hagg([L], ∗) is made and Hnon([X̃], ([R1], [R2]), m) calls Hsig([X̃], [R1][R2]b, m)
“preemptively”.

Let Bad(P, C, I) be the event that Game1 aborts in the I-th invocation of procedure P in
pseudocode line C and returns false. Combining all invocations and lines, let

Bad(P) =
⋃
C,I

Bad(P, C, I).

Let q = 2qh + (N + 2)(qs + 1). First, note that CheckTagg is invoked at most qh + N(qs + 1) ≤ q
times because Hagg is invoked at most qh times by the adversary, at most Nqs times in Sign′,
and at most N times when Game1 verifies the forgery. CheckTnon is invoked at most qh + qs ≤ q
times because Hnon is invoked at most qh times by the adversary and at most qs times in Sign′.
CheckTsig is invoked at most 2(qh + qs) + 1 ≤ q times because Hsig is invoked at most qh times by

29

Game EUF-CMAA
MuSig2(λ) Game1

(G, p, g)← GrGen(1λ) // (G, p, g) is B’s input

x∗ ←$ Zp ; X∗ ··= gx∗
// X

∗ ← Ch()

X1 ··= X∗

ctrs ··= 0 ; S ··= ∅ ; Q ··= ∅
Tagg ··= ∅ ; Tnon ··= ∅ ; Tsig ··= ∅ // tables for ROs

Takey ··= ∅ // stores info on agg. keys

Tsigrep ··= ∅ // rep. of R for (X̃, R, m) ∈ Tsig

([L], m, ([R], s))← ASign,Sign′,Hagg,Hnon,Hsig (X1)
if (L, m) ∈ Q then return false

if X1 /∈ L then return false

{[X1], . . . , [Xn]} ··= [L]
[X̃] ··=

∏n

i=1[Xi]Hagg([L],[Xi])

c ··= Hsig([X̃], [R], m)

return (gs = RX̃c)

Sign()

ctrs ··= ctrs + 1 ; k ··= ctrs ; S ··= S ∪ {k}

r
(k)
1,1 ←$ Zp ; R

(k)
1,1 ··= g

r
(k)
1,1 // R

(k)
1,1 ← Ch()

r
(k)
1,2 ←$ Zp ; R

(k)
1,2 ··= g

r
(k)
1,2 // R

(k)
1,2 ← Ch()

return (R(k)
1,1 , R

(k)
1,2)

Sign′(k, ([R(k)
1], [R(k)

2]), m(k), {[X(k)
2], . . . , [X(k)

n(k)]})

if k /∈ S then return ⊥
n ··= n(k)

[X(k)
1] ··= (X∗, 0, 1, (0, 0)1≤k≤qs

) // trivial rep.

[L(k)] ··= {[X(k)
1], [X(k)

2], . . . , [X(k)
n]}

for i ··= 1 . . . n do

a
(k)
i
··= Hagg([L(k)], [X(k)

i])

[X̃(k)] ··=
∏n

i=1[X(k)
i]a

(k)
i

b(k) ··= Hnon([X̃(k)], ([R(k)
1], [R(k)

2]), m(k))

[R(k)] ··= [R(k)
1][R(k)

2]b
(k)

c(k) ··= Hsig([X̃(k)], [R(k)], m(k))

s
(k)
1 ··= c(k)a

(k)
1 x∗ + r

(k)
1,1 + b(k)r

(k)
1,2 mod p

// s
(k)
1 ··= DLogg([R(k)

1,1][R(k)
1,2]b(k)

[X(k)
1]a

(k)
1 c(k)

)

Q ··= Q ∪ {(L(k), m(k))} ; S ··= S \ {k}

return s
(k)
1

Hagg([L], [X])

// X, X
∗ ∈ L by assumption

if Tagg(L, X) = ⊥ then
Tagg(L, X)←$ Zp

for X ′ ∈ L do
Tagg(L, X ′)←$ Zp

{[X1] = [X∗], [X2], . . . , [Xn]} ··= [L]
for i ··= 2 . . . n do

(Xi, α̃i, β̃i, (γ̃i,1,k, γ̃i,2,k)1≤k≤qs
) ··= [Xi]

// Xi = g
α̃i (X

∗)β̃i
∏qs

k=1
(R

(k)
1,1)γ̃i,1,k (R

(k)
1,2)γ̃i,2,k

for i ··= 1 . . . n do
ai ··= Tagg(L, Xi)

X̃ ··=
∏n

i=1 X
ai
i

CheckTagg(X̃, (a1, . . . , an),
(γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs

)

return Tagg(L, X)

Hnon([X̃], ([R1], [R2]), m)

if Tnon(X̃, (R1, R2), m) = ⊥ then

Tnon(X̃, (R1, R2), m)←$ Zp

b← Tnon(X̃, (R1, R2), m)

[R] ··= [R1][R2]b

c← Hsig([X̃], [R], m)

CheckTnon(X̃, (R1, R2), m)

return Tnon(X̃, (R1, R2), m)

Hsig([X̃], [R], m)

if Tsig(X̃, R, m) = ⊥ then

Tsig(X̃, R, m)←$ Zp

(R, α, β, (γ1,k, γ2,k)1≤k≤qs
) ··= [R]

Tsigrep(X̃, R, m) ··= (α, β, (γ1,k, γ2,k)1≤k≤qs
)

CheckTsig(X̃, R, m, (α, β, (γ1,k, γ2,k)1≤k≤qs
))

return Tsig(X̃, R, m)

Fig. 8. Games used in the proof of Theorem 2. Comments in gray show how reduction B simulates Game1.
Procedures CheckTagg, CheckTnon, and CheckTsig are defined in Figures 9–11.

30

CheckTagg(X̃, (a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs
)

1 : if Takey(X̃) ̸= ⊥ then
2 : abort game and return false // Property (P1)

3 : Takey(X̃) ··= ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs
)

4 : if ∃(R, m): Tsig(X̃, R, m) ̸= ⊥ then
5 : abort game and return false // Property (P2)

6 : if ∃(R1, R2, m): Tnon(X̃, (R1, R2), m) ̸= ⊥ then
7 : abort game and return false // Property (P3)

8 : for k ··= 1 . . . qs do
9 : if ∃i ∈ {2, . . . , n}: γ̃i,1,k ̸= 0 then // k ∈ K̃

10 : if γ̃1,k ··=
∑n

j=2 aj γ̃j,1,k = 0 then // ⇔ ai = −
(∑n

j=2;j ̸=i
aj γ̃j,1,k

)
/γ̃i,1,k

11 : abort game and return false // Property (P4)

12 : if ∀i ∈ {2, . . . , n}: γ̃i,1,k = 0 then // k /∈ K̃

13 : if ∃i ∈ {2, . . . , n}: γ̃i,2,k ̸= 0 then
14 : if θk ··=

∑n

j=2 aj γ̃j,2,k = 0 then // ⇔ ai = −
(∑n

j=2;j ̸=i
aj γ̃j,2,k

)
/γ̃i,2,k

15 : abort game and return false // Property (P8)

16 : for ((X̃ ′, R′
1, R′

2, m′), b′) ∈ Tnon do
17 : if ∃i ∈ {2, . . . , n}: ζi,k ··= γ̃i,2,k − b′γ̃i,1,k ̸= 0 then
18 : if θk ··=

∑n

j=2 ajζj,k = 0 then // ⇔ ai = −
(∑n

j=2;j ̸=i
ajζj,k

)
/ζi,k

19 : abort game and return false // Property (P7)

20 : K̃ ··= {k ∈ {1, . . . , qs}: ∃i ∈ {2, . . . , n}: γ̃i,1,k ̸= 0}

21 : for k ∈ K̃ do
22 : // check whether there exists a Tnon entry such that θk = 0 holds independently of (a1, . . . , an)

23 : if ∃((X̃ ′, R′
1, R′

2, m′), b′) ∈ Tnon:
24 : (Takey(X̃ ′) ̸= ⊥)
25 : ∧

(
∀i ∈ {2, . . . , n}: γ̃i,2,k − b′γ̃i,1,k = 0

)
then

26 : // such a Tnon entry is necessarily unique by (P9)

27 : â
(k)
1 ··= Takey(X̃ ′)[1] // first component of Takey(X̃

′)

28 : ĉ(k) ··= Tsig(X̃ ′, R′
1(R′

2)b′
, m′) // necessarily defined by (P11)

29 : else (â(k)
1 , ĉ(k)) ··= ⊥

30 : if ∀k ∈ K̃: (â(k)
1 , ĉ(k)) ̸= ⊥ then

31 : if θ0 ··= a1 +
∑n

i=2 aiβ̃i −
∑

k∈K̃
â

(k)
1 ĉ(k)∑n

i=2 aiγ̃i,1,k = 0 then

32 : // a1 is a different random sample than â
(k)
1 for all k ∈ K̃, because we did not abort in line 2.

33 : abort game and return false // Property (P12)

Fig. 9. Procedure used to check bad events for a Tagg assignment in Game1.

31

CheckTnon(X̃ ′, (R′
1, R′

2), m′)

1 : b′ ··= Tnon(X̃ ′, (R′
1, R′

2), m′)
2 : if ∃(X̃ ′′, (R′′

1 , R′′
2), m′′) ̸= (X̃ ′, (R′

1, R′
2), m′): b′ = Tnon(X̃ ′′, (R′′

1 , R′′
2), m′′) then

3 : abort game and return false // Properties (P9) and (P10)

4 : for X̃ ∈ Takey do

5 : ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs
) ··= Takey(X̃)

6 : for k ··= 1 . . . qs do
7 : if γ̃1,k ··=

∑n

i=2 aiγ̃i,1,k ̸= 0 then
8 : if θk ··=

∑n

i=2 aiγ̃i,2,k − b′γ̃1,k = 0 then // ⇔ b′ =
(∑n

i=2
aiγ̃i,2,k

)
/γ̃1,k

9 : abort game and return false // Property (P6)

10 : for (X̃, R, m) ∈ Tsig do

11 : if Takey(X̃) ̸= ⊥ then

12 : ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs
) ··= Takey(X̃)

13 : c ··= Tsig(X̃, R, m)

14 : (α, β, (γ1,k, γ2,k)1≤k≤qs
) ··= Tsigrep(X̃, R, m)

15 : for k ··= 1 . . . qs do
16 : if δ1,k ··= γ1,k + c

∑n

i=2 aiγ̃i,1,k ̸= 0 then
17 : if ηk ··= c

∑n

i=2 aiγ̃i,2,k + γ2,k − b′δ1,k = 0 then //⇔ b′ =
(

c
∑n

i=2
aiγ̃i,2,k + γ2,k

)
/δ1,k

18 : abort game and return false // Case 1

Fig. 10. Procedure used to check bad events for a Tnon assignment in Game1.

the adversary, at most once for every invocation of Sign′, at most once for every invocation of
Hnon, and once when Game1 verifies the forgery. Hence, at any point of the execution of Game1,
|Takey|≤ q, |Tnon|≤ q, and |Tsig|≤ q.

Since in CheckTagg, the freshly drawn value X̃ is random and independent of the other table
entries in Takey, Tnon, and Tsig, we have by code inspection for each invocation I of CheckTagg that

Pr [Bad(CheckTagg, 2, I)] ≤ |Takey|/p ≤ q/p,

Pr [Bad(CheckTagg, 5, I)] ≤ |Tsig|/p ≤ q/p,

Pr [Bad(CheckTagg, 7, I)] ≤ |Tnon|/p ≤ q/p.

Furthermore, since in CheckTagg, the freshly drawn value ai (where i ̸= 1 is defined in the specific
code location) is random and independent of the other table entries in Takey (including the values
aj for j ̸= i) as well as the table entries in Tnon, and Tsig, we have by code inspection for each
invocation I of CheckTagg that

Pr [Bad(CheckTagg, 11, I)] ≤ qs/p ≤ q/p,

Pr [Bad(CheckTagg, 15, I)] ≤ qs/p ≤ q/p,

Pr [Bad(CheckTagg, 19, I)] ≤ |Tnon| qs/p ≤ q2/p.

and similarly, since the freshly drawn value a1 is random and independent of the other table entries
in Takey, Tnon, and Tsig,

Pr [Bad(CheckTagg, 33, I)] ≤ 1/p.

Thus, by the union bound

Pr [Bad(CheckTagg)] ≤ q(5q + q2 + 1)/p ≤ 7q3/p. (10)

32

CheckTsig(X̃, R, m, (α, β, (γ1,k, γ2,k)1≤k≤qs
))

1 : c ··= Tsig(X̃, R, m)

2 : if Takey(X̃) = ⊥ then return

3 : ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs
) ··= Takey(X̃)

4 : for k ··= 1 . . . qs do
5 : if γ̃1,k ··=

∑n

i=2 aiγ̃i,1,k ̸= 0 then
6 : if δ1,k ··= γ1,k + cγ̃1,k = 0 then // ⇔ c = −γ1,k/γ̃1,k

7 : abort game and return false // Property (P5)

8 : for ((X̃ ′, R′
1, R′

2, m′), b′) ∈ Tnon do
9 : if θk ··=

∑n

i=2 ai

(
γ̃i,2,k − b′γ̃i,1,k

)
̸= 0 then

10 : if ηk ··= cθk + γ2,k − b′γ1,k = 0 then // ⇔ c =
(

b
′
γ1,k − γ2,k

)
/θk

11 : abort game and return false // Cases 2a, 2(b)i, and 2(b)iiA

12 : K̃ ··= {k ∈ {1, . . . , qs}: ∃i ∈ {2, . . . , n}: γ̃i,1,k ̸= 0}
13 : K ··= {k ∈ {1, . . . , qs}: γ1,k ̸= 0}

14 : for k ∈ K̃ ∪K do

15 : if ∃ ((X̃ ′, R′
1, R′

2, m′), b′) ∈ Tnon:
16 : (Takey(X̃ ′) ̸= ⊥)

17 : ∧ (X̃ ′, R′
1(R′

2)b′
, m′) ̸= (X̃, R, m)

18 : ∧
[(

k ∈ K̃ ∧ ∀i ∈ {2, . . . , n}: γ̃i,2,k − b′γ̃i,1,k = 0
)

19 : ∨ (k ∈ K \ K̃ ∧ γ2,k − b′γ1,k = 0)
]

then

20 : // such a Tnon entry is necessarily unique by (P9) and (P10)

21 : â
(k)
1 ··= Takey(X̃ ′)[1] // first component of Takey(X̃

′)

22 : ĉ(k) ··= Tsig(X̃ ′, R′
1(R′

2)b′
, m′) // necessarily defined by (P11)

23 : else (â(k)
1 , ĉ(k)) ··= ⊥

24 : if ∀k ∈ K̃ ∪K: (â(k)
1 , ĉ(k)) ̸= ⊥ then

25 : if θ0 ··= a1 +
∑n

i=2 aiβ̃i −
∑

k∈K̃
â

(k)
1 ĉ(k)∑n

i=2 aiγ̃i,1,k ̸= 0 then

26 : if η0 ··= cθ0 + β −
∑

k∈K
â

(k)
1 ĉ(k)γ1,k = 0 then // ⇔ c =

(∑
k∈K

â
(k)
1 ĉ(k)γ1,k − β

)
/θ0

27 : // c is a different random sample than ĉ
(k) due to line 17.

28 : abort game and return false // Case 2(b)iiB

Fig. 11. Procedure used to check bad events for a Tsig assignment in Game1.

33

Since in CheckTnon, the freshly drawn Tnon value b′ is random and independent of the other
table entries in Takey, Tnon, and Tsig, we have by code inspection for each invocation I of CheckTnon
that

Pr [Bad(CheckTnon, 3, I)] ≤ |Tnon|/p ≤ q/p,

Pr [Bad(CheckTnon, 9, I)] ≤ |Takey| qs/p ≤ q2/p,

Pr [Bad(CheckTnon, 18, I)] ≤ |Tsig| qs/p ≤ q2/p.

Thus, by the union bound

Pr [Bad(CheckTnon)] ≤ q(q + 2q2)/p ≤ 3q3/p. (11)

Since in CheckTsig, the freshly drawn Tsig value c is random and independent of the other table
entries in Takey, Tnon, and Tsig, we have by code inspection for each invocation I of CheckTsig that

Pr [Bad(CheckTsig, 7, I)] ≤ qs/p ≤ q/p,

Pr [Bad(CheckTsig, 11, I)] ≤ qs |Tnon|/p ≤ q2/p,

Pr [Bad(CheckTsig, 28, I)] ≤ 1/p.

Thus, by the union bound

Pr [Bad(CheckTsig)] ≤ q(q + q2 + 1)/p ≤ 3q3/p. (12)

Let
Bad = Bad(CheckTagg) ∪ Bad(CheckTnon) ∪ Bad(CheckTsig).

Combining Equations (10), (11), and (12), we have by the union bound

Pr [Bad] ≤ 13q3/p ≤ 26q3/2λ

and thus

AdvGame1
A (λ) ≥ AdvGame0

A (λ)− Pr [Bad]

≥ AdvGame0
A (λ)− 26q3/2λ.

(13)

Now we define an algorithm B which solves the AOMDL problem whenever Game1 returns true.
On input (G, p, g), it makes a first query X∗ ← Ch() and runs A on input X∗.

Algorithm B simulates Game1 without knowledge of the discrete logarithm x∗ of X∗ as follows
(see comments in Figure 8): each time A makes a Sign query, B queries its Ch oracle twice to
obtain R1,1 and R1,2; it then simulates Sign′ without knowledge of x∗ by querying its DLogg

oracle available from the AOMDL problem.21

Algorithm B proceeds as follows. Let ([L], m, ([R], s)) denote the forgery returned by A with
L = {X1 = X∗, X2, . . . , Xn}. Algorithm B sets

ai ··= Tagg(L, Xi) for i ∈ {1, . . . , n}

X̃ ··=
∏n

i=1 X
ai
i

c ··= Tsig(X̃, R, m).

(Note that all table values are necessarily defined whenever Game1 returns.) First, B considers the first
call Hagg([L], ∗)22 and for every key Xi ∈ L it retrieves the representation (α̃i, β̃i, (γ̃i,1,k, γ̃i,2,k)1≤k≤qs

)
from this call, which gives

Xi = gα̃i(X∗)β̃i

qs∏
k=1

(R(k)
1,1)γ̃i,1,k (R(k)

1,2)γ̃i,2,k .

21 The simulation of signing queries is entirely analogous to algorithm B from Section 5.
22 Note that this can either be a direct query by the adversary, or an indirect call during an invocation of

Sign′ or during the verification of the forgery.

34

Note that the adversary could provide different representations for the keys Xi ∈ L, e.g., when
making a query Hagg([L], ∗) and in the forgery. Considering the representations provided in the very
first call Hagg([L], ∗) ensures that CheckTagg(X̃, (a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs

) was called.
Using the representations of Xi, B computes a representation of X̃ = (X∗)a1 ·

∏n
i=2 X

ai
i , viz.

X̃ = gα̃(X∗)β̃
qs∏

k=1
(R(k)

1,1)γ̃1,k (R(k)
1,2)γ̃2,k (14)

where

α̃ ··=
n∑

i=2
aiα̃i mod p, (15)

β̃ ··= a1 +
n∑

i=2
aiβ̃i mod p, (16)

γ̃1,k ··=
n∑

i=2
aiγ̃i,1,k mod p for all k ∈ {1, . . . , qs}, (17)

γ̃2,k ··=
n∑

i=2
aiγ̃i,2,k mod p for all k ∈ {1, . . . , qs}. (18)

Similarly, B retrieves the representation (α, β, (γ1,k, γ2,k)1≤k≤qs
) of R provided in the very

first call Hsig([X̃], [R], m) (therefore ensuring that CheckTsig(X̃, R, m, (α, β, (γ1,k, γ2,k)1≤k≤qs
)) was

called), which gives

R = gα(X∗)β
qs∏

k=1
(R(k)

1,1)γ1,k (R(k)
1,2)γ2,k . (19)

Validity of the forgery implies that gs = RX̃c, which together with (14) and (19) yields

gs = gα+cα̃(X∗)β+cβ̃

qs∏
k=1

(R(k)
1,1)γ1,k+cγ̃1,k (R(k)

1,2)γ2,k+cγ̃2,k . (20)

Similarly, validity of the partial signature s
(k)
1 returned in the k-th signing session yields

gs
(k)
1 = R

(k)
1,1(R(k)

1,2)b(k)
(X∗)a

(k)
1 c(k)

for all k ∈ {1, . . . , qs} (21)

where a
(k)
1 , b(k), and c(k) are defined as in the call to Sign′(k, . . .) in Figure 8.

Combining (20) and (21), B obtains a linear system with qs + 1 equations and 2qs + 1 unknowns
x∗, r

(1)
1,1, r

(1)
1,2, . . . , r

(qs)
1,1 , r

(qs)
1,2 which are the discrete logarithms of X∗, R

(1)
1,1, R

(1)
1,2, . . . , R

(qs)
1,1 , R

(qs)
1,2 re-

spectively:

s
(1)
1 = a

(1)
1 c(1)x∗ + r

(1)
1,1 + b(1)r

(1)
1,2

...

s
(qs)
1 = a

(qs)
1 c(qs)x∗ + r

(qs)
1,1 + b(qs)r

(qs)
1,2

s− α− cα̃ = (β + cβ̃)x∗ +
qs∑

k=1
(γ1,k + cγ̃1,k)r(k)

1,1 + (γ2,k + cγ̃2,k)r(k)
1,2 .

With the unknowns rearranged as r
(1)
1,1, . . . , r

(qs)
1,1 , r

(1)
1,2, . . . , , r

(qs)
1,2 , x∗, the coefficient matrix M of

this linear system is

M =

1 · · · 0 b(1) · · · 0 a

(1)
1 c(1)

...
. . .

...
...

. . .
...

...
0 · · · 1 0 · · · b(qs) a

(qs)
1 c(qs)

δ1,1 · · · δ1,qs
δ2,1 · · · δ2,qs

β + cβ̃

 (22)

35

where for k ∈ {1, . . . , qs}, we let

δ1,k = γ1,k + cγ̃1,k (23)
δ2,k = γ2,k + cγ̃2,k. (24)

We will prove in Lemma 4 below that when Game1 returns true, then necessarily this matrix has
rank qs + 1. Hence, B is able to compute x∗, r

(1)
1,1, r

(1)
1,2, . . . , r

(qs)
1,1 , r

(qs)
1,2 by solving the linear system

after querying the DL oracle qs times to add qs equations to the system such that the system has a
unique solution. This is possible because the system is consistent by construction and the existing
coefficient vectors are linearly independent. More specifically, for every j ∈ {1, . . . , qs}, B chooses
a coefficient vector v⃗j = (vj,0, v

(1)
j,1 , v

(1)
j,2 , . . . , v

(qs)
j,1 , v

(qs)
j,2) ∈ Z2qs+1

p such that the vector is linearly
independent of the rows of coefficient matrix and adds the following equations to the linear system:

DLogg

(
(X∗)vj,0

qs∏
k=1

(R(k)
1,1)v

(k)
j,1 (R(k)

1,2)v
(k)
j,2 ,
(

α(k), (β(j)
i)1≤i≤2qs+1

))
= v⃗j ·

x∗

r
(1)
1,1
...

r
(qs)
1,2

 , j ∈ {1, . . . , qs},

computing the algebraic representations of the queried group elements appropriately as α(j) ··= 0
and (β(j)

i)1≤i≤2qs+1 ··= (vj,0, v
(1)
j,1 , v

(1)
j,2 , . . . , v

(qs)
j,1 , v

(qs)
j,2).

This allows B to solve the linear system and output the solution x∗, r
(1)
1,1, r

(1)
1,2, . . . , r

(qs)
1,1 , r

(qs)
1,2 to

the AOMDL problem. In total, B queried the DL oracle qs times to answer signing queries and qs

times to complete the linear system, which totals 2qs DL oracle queries.
Algorithm B succeeds whenever Game1 returns true and the matrix M defined by Equation (22)

has rank qs + 1. By Lemma 4, these two conditions are necessarily fulfilled whenever Game1 returns
true. By Equations (9) and (13), the advantage of B is

AdvAOMDL
B,GrGen(λ) ≥ AdvGame1

A (λ)

≥ AdvGame0
A (λ)− 26q3/2λ = AdvEUF-CMA

A,MuSig2[GrGen,ν=2](λ)− 26q3/2λ.

In order to analyze the running time of B, we first observe that the purpose of the procedures
CheckTagg, CheckTnon, and CheckTsig is only to determine the event Bad and abort accordingly,
but those procedures do not modify state used in Game1 outside of the procedures. As a consequence,
B can skip these procedures when simulating Game1.23 Using this optimization, the running time t′

of B is the running time t of A plus the time needed to maintain tables Tagg, Tnon, and Tsig (we
assume each assignment takes unit time), answer signing and hash queries, and solve the linear
equation system. All tables have size in O(qN), and B needs O(qsN)texp = O(qN)texp time to
compute the aggregate key and the effective nonces when simulating signatures and answering Hagg
queries, where texp is the time to compute an exponentiation in G. Solving the linear equation
system takes time in O(q3

s). Thus

t′ = t + O(qN) · texp + O(q3).

This concludes the proof.

Lemma 4. Consider an execution of Game1 which returns true. Then matrix M defined by
Equation (22) has rank qs + 1.

Proof. Subtracting δ1,k times the k-th row from the last row, k = 1, . . . , qs, yields
1 · · · 0 b(1) · · · 0 a

(1)
1 c(1)

...
. . .

...
...

. . .
...

...
0 · · · 1 0 · · · b(qs) a

(qs)
1 c(qs)

0 · · · 0 η1 · · · ηqs
η0

23 Then B does not abort when Game1 would abort and return false, i.e., B does not know upfront whether

it will be successful in solving the AOMDL problem. But it still holds that B is successful whenever
Game1 returns true, which suffices for our analysis.

36

where we let

ηk = δ2,k − b(k)δ1,k for k ∈ {1, . . . , qs} (25)

η0 = β + cβ̃ −
qs∑

k=1
a

(k)
1 c(k)δ1,k. (26)

Being in row echelon form, we see that the system has rank < qs + 1 if and only if all coefficients of
the last row are zero, i.e., ηk = 0 for all k ∈ {0, . . . , qs}.

By (16), (17), (18), (23) and (24), Equation (25) can be written

ηk = −b(k)
(

γ1,k + c

n∑
i=2

aiγ̃i,1,k︸ ︷︷ ︸
δ1,k

)
+ γ2,k + c

n∑
i=2

aiγ̃i,2,k (27)

= c

(n∑
i=2

ai

(
γ̃i,2,k − b(k)γ̃i,1,k

)
︸ ︷︷ ︸

··=θk

)
+ γ2,k − b(k)γ1,k (28)

while Equation (26) becomes

η0 = c

(
a1 +

n∑
i=2

aiβ̃i −
qs∑

k=1
a

(k)
1 c(k)

n∑
i=2

aiγ̃i,1,k︸ ︷︷ ︸
··=θ0

)
+ β −

qs∑
k=1

a
(k)
1 c(k)γ1,k. (29)

Consider all Tagg, Tnon, and Tsig table entries that appear in (27)/(28) and (29). These are:

– ai = Tagg(L, Xi), i ∈ {1, . . . , n}
– c = Tsig(X̃, R, m)
– a

(k)
1 = Tagg(L(k), X1), k ∈ {1, . . . , qs}

– b(k) = Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)), k ∈ {1, . . . , qs}

– c(k) = Tsig(X̃(k), R(k), m(k)), k ∈ {1, . . . , qs}.

We will show that if at the end of the execution it holds that ηk = 0 for all k ∈ {0, . . . , qs}, then
necessarily, one of the bad events leading to Game1 returning false must have happened during
the random assignment of one of these table values, a contradiction.

In our analysis, we rely on the order in which assignments occur. Given two table entries T (α)
and T ′(α′) which are not undefined at the end of the execution of Game1, we denote T (α)⇝ T ′(α′)
to mean that assignment of T (α) happened before assignment of T ′(α′).

In all the following, we let

K̃ = {k ∈ {1, . . . , qs}:∃i ∈ {2, . . . , n}: γ̃i,1,k ̸= 0}
K = {k ∈ {1, . . . , qs}: γ1,k ̸= 0}.

Note that (29) is equivalent to

η0 = c

(
a1 +

n∑
i=2

aiβ̃i −
∑
k∈K̃

a
(k)
1 c(k)

n∑
i=2

aiγ̃i,1,k︸ ︷︷ ︸
θ0

)
+ β −

∑
k∈K

a
(k)
1 c(k)γ1,k. (30)

First, we prove a number of properties that will be useful for the main reasoning.

Claim. For an execution of Game1 which returns true, the following properties holds:

(P1) For every k ∈ {1, . . . , qs}, one has (X̃(k), R
(k)
1 (R(k)

2)b(k)
, m(k)) ̸= (X̃, R, m).

(P2) Takey(X̃)⇝ Tsig(X̃, R, m).

37

(P3) For every k ∈ {1, . . . , qs}, Takey(X̃(k))⇝ Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)).

(P4) (k ∈ K̃)⇒ (γ̃1,k ̸= 0).
(P5) (k ∈ K̃ ∪K)⇒ (δ1,k ̸= 0).
(P6) (k ∈ K̃) ∧ (Takey(X̃)⇝ Tnon(X̃(k), (R(k)

1 , R
(k)
2), m(k)))⇒ (θk ̸= 0).

(P7) (∃i ∈ {2, . . . , n}: γ̃i,2,k−b(k)γ̃i,1,k ̸= 0)∧(Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k))⇝ Takey(X̃))⇒ (θk ̸= 0).

(P8) (k /∈ K̃) ∧ (∃i ∈ {2, . . . , n}: γ̃i,2,k ̸= 0)⇒ (θk ̸= 0).
(P9) When CheckTagg(X̃, (a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs

) or CheckTsig(X̃, R, m, . . .) with
⊥ ̸= Takey(X̃) = ((a1, . . . , an), (γ̃i,1,k, γ̃i,2,k)2≤i≤n,1≤k≤qs

) is called, for any k ∈ K̃, there is at
most one entry ((X̃ ′, (R′1, R′2), m′), b′) ∈ Tnon such that ∀i ∈ {2, . . . , n}: γ̃i,2,k − b′γ̃i,1,k = 0.

(P10) When CheckTsig(X̃, R, m, (α, β, (γ1,k, γ2,k)1≤k≤qs
)) is called, for any k ∈ K, there is at most

one entry ((X̃ ′, (R′1, R′2), m′), b′) ∈ Tnon such that γ2,k − b′γ1,k = 0.
(P11) During an invocation of CheckTagg or CheckTsig, for any ((X̃ ′, (R′1, R′2), m′), b′) ∈ Tnon, one

has Tsig(X̃ ′, R′1(R′2)b′
, m′) ̸= ⊥.

(P12) (∀k ∈ K̃: Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k))⇝ Takey(X̃) ∧ ∀i ∈ {2, . . . , n}: γ̃i,2,k − b(k)γ̃i,1,k = 0)⇒

θ0 ̸= 0.

Proof. We prove each item in turn.

(P1) Assume that ∃k ∈ {1, . . . , qs}: (X̃(k), R
(k)
1 (R(k)

2)b(k)
, m(k)) = (X̃, R, m). Since the forgery is

valid, we have (L, m) /∈ Q, where Q = {(L(k), m(k)) : k ∈ {1, . . . , qs}}). Since m(k) = m, we
have L(k) ̸= L. Since additionally X̃(k) = X̃, Game1 would have necessarily have returned
false at line 2 of the later of the two invocations CheckTagg(X̃, . . .) and CheckTagg(X̃(k), . . .).

(P2) Assume that Takey(X̃) = ⊥ when the assignment of Tsig(X̃, R, m) occurs. Since for the forgery,
Takey(X̃) ̸= ⊥ at the end of the execution, Game1 would necessarily have returned false at
line 5 of CheckTagg(X̃, . . .), which would necessarily have been called after the assignment of
Tsig(X̃, R, m).

(P3) Assume that Takey(X̃(k)) = ⊥ when the assignment of Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)) occurs.

Since for the k-th signing session, Takey(X̃(k)) ̸= ⊥ at the end of the execution, Game1 would
necessarily have returned false at line 7 of CheckTagg(X̃(k), . . .), which would necessarily have
been called after the assignment of Tnon(X̃(k), (R(k)

1 , R
(k)
2), m(k)).

(P4) Assume that k ∈ K̃ and γ̃1,k ··=
∑n

i=2 aiγ̃i,1,k = 0. Then Game1 would necessarily have returned
false at line 11 of CheckTagg(X̃, . . .).

(P5) Assume that k ∈ K̃∪K and δ1,k ··= γ1,k +cγ̃1,k = 0. We distinguish two cases. If k ∈ K̃, then by
(P4), we have that γ̃1,k ̸= 0. Hence, Game1 would necessarily have returned false at line 7 of
CheckTsig(X̃, R, m). If k ∈ K \ K̃, then k /∈ K̃ implies that γ̃1,k = 0 and hence δ1,k = γ1,k ̸= 0
since k ∈ K.

(P6) Assume that k ∈ K̃, Takey(X̃) ⇝ Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)), and θk = 0. Then by (P4),

γ̃1,k ̸= 0 so that Game1 would have returned false at line 9 of CheckTnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)).

(P7) Assume that ∃i ∈ {2, . . . , n}: γ̃i,2,k − b(k)γ̃i,1,k ̸= 0, Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)) ⇝ Takey(X̃),

and θk ̸= 0. Then Game1 would necessarily have returned false at line 19 of CheckTagg(X̃, . . .).
(P8) Assume that k /∈ K̃, ∃i ∈ {2, . . . , n}: γ̃i,2,k ̸= 0, and θk = 0. Since k /∈ K̃, θk =

∑n
i=2 aiγ̃i,2,k, so

that Game1 would have returned false at line 15 of CheckTagg(X̃, . . .).
(P9) Fix k ∈ K̃ and assume that there exists ((X̃ ′, (R′1, R′2), m′), b′) ̸= ((X̃ ′′, (R′′1 , R′′2), m′′), b′′) ∈

Tnon such that for all i ∈ {2, . . . , n}, γ̃i,2,k − b′γ̃i,1,k = γ̃i,2,k − b′′γ̃i,1,k = 0. Since k ∈
K̃, there exists i ∈ {2, . . . , n} such that γ̃i,1,k ̸= 0, which implies b′ = b′′ = γ̃i,2,k/γ̃i,1,k.
But then ((X̃ ′, (R′1, R′2), m′), b′) ̸= ((X̃ ′′, (R′′1 , R′′2), m′′), b′′) implies that (X̃ ′, (R′1, R′2), m′) ̸=
(X̃ ′′, (R′′1 , R′′2), m′′) which means that Game1 would have returned false at line 3 of the later
of the two invocations CheckTnon(X̃ ′, (R′1, R′2), m′) and CheckTnon(X̃ ′′, (R′′1 , R′′2), m′′).

(P10) Fix k ∈ K and assume that there exists ((X̃ ′, (R′1, R′2), m′), b′) ̸= ((X̃ ′′, (R′′1 , R′′2), m′′), b′′) ∈
Tnon such that γ2,k − b′γ1,k = γ2,k − b′′γ1,k = 0. Since k ∈ K, γ1,k ̸= 0, which implies
b′ = b′′ = γ2,k/γ1,k. As above, this means that Game1 would have returned false at line 3 of
the later of the two invocations CheckTnon(X̃ ′, (R′1, R′2), m′) and CheckTnon(X̃ ′′, (R′′1 , R′′2), m′′).

38

(P11) This is a consequence of the observation that in Game1, Hnon([X̃ ′], ([R′1], [R′2]), m′) calls
Hsig([X̃ ′], [R′1][R′2]b′

, m′) before returning.
(P12) Assume that for all k ∈ K̃, Tnon(X̃(k), (R(k)

1 , R
(k)
2), m(k))⇝ Takey(X̃) and for all i ∈ {2, . . . , n},

γ̃i,2,k− b(k)γ̃i,1,k = 0. Consider the invocation of CheckTagg(X̃, . . .), lines 21 and after. Then for
each k ∈ K̃, there exists an entry ((X̃ ′, (R′1, R′2), m′), b′) ∈ Tnon such that for all i ∈ {2, . . . , n},
γ̃i,2,k − b′γ̃i,1,k = 0, namely ((X̃(k), (R(k)

1 , R
(k)
2), m(k)), b(k)). Moreover, this entry is unique

by (P9), Takey(X̃ ′) = Takey(X̃(k)) ̸= ⊥ by (P3), and Tsig(X̃ ′, R′1(R′2)b′
, m′) ̸= ⊥ by (P11).

Hence, after the for loop, (â(k)
1 , ĉ(k)) ̸= ⊥ for all k ∈ K̃, so that if θ0 = 0, then Game1 would

have returned false at line 33 of CheckTagg(X̃, . . .).

This proves the claim. ■

We are now ready to prove the lemma. Towards a contradiction, consider an execution of Game1
which returns true and such that ηk = 0 for all k ∈ {0, . . . , qs} holds at the end of the execution.
We distinguish the following cases:

1. There exists k ∈ K̃ ∪K such that Tsig(X̃, R, m)⇝ Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)): Then by (P2),

Takey(X̃) ̸= ⊥ when Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)) is assigned and by (P5), δ1,k ̸= 0, so that

Game1 would have returned false at line 18 of CheckTnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)).

2. For all k ∈ K̃ ∪ K, Tnon(X̃(k), (R(k)
1 , R

(k)
2), m(k)) ⇝ Tsig(X̃, R, m): Then we distinguish the

following sub-cases:
(a) There exists k ∈ K̃ such that Takey(X̃) ⇝ Tnon(X̃(k), (R(k)

1 , R
(k)
2), m(k)): Then by (P6),

θk ̸= 0 so that Game1 would have returned false at line 11 of CheckTsig(X̃, R, m, . . .).
(b) For all k ∈ K̃, Tnon(X̃(k), (R(k)

1 , R
(k)
2), m(k))⇝ Takey(X̃): Then we distinguish:

i. There exists k ∈ K̃ and i ∈ {2, . . . , n} such that γ̃i,2,k − b(k)γ̃i,1,k ̸= 0: Then by (P7),
θk ̸= 0 so that Game1 would have returned false at line 11 of CheckTsig(X̃, R, m, . . .).

ii. For all k ∈ K̃ and all i ∈ {2, . . . , n}, γ̃i,2,k − b(k)γ̃i,1,k = 0: Again, we distinguish:
A. There exists k ∈ K \K̃ and i ∈ {2, . . . , n} such that γ̃i,2,k ̸= 0: Then by (P8), θk ̸= 0

so that Game1 would have returned false at line 11 of CheckTsig(X̃, R, m, . . .).
B. For all k ∈ K \ K̃ and all i ∈ {2, . . . , n}, γ̃i,2,k = 0: Consider the invocation

of CheckTsig(X̃, R, m, . . .), line 12 and after. By the assumption of sub-case (ii),
for each k ∈ K̃, there exists an entry ((X̃ ′, (R′1, R′2), m′), b′) ∈ Tnon such that
for all i ∈ {2, . . . , n}, γ̃i,2,k − b′γ̃i,1,k = 0, namely ((X̃(k), (R(k)

1 , R
(k)
2), m(k)), b(k)).

Moreover, this entry is unique by (P9). Similarly, for each k ∈ K \ K̃, there
exists an entry ((X̃ ′, (R′1, R′2), m′), b′) ∈ Tnon such that γ2,k − b′γ1,k = 0, namely
((X̃(k), (R(k)

1 , R
(k)
2), m(k)), b(k)). Indeed, for all i ∈ {2, . . . , n}, γ̃i,1,k = 0 since k /∈ K̃

and γ̃i,2,k = 0 by assumption of sub-case (B), so that

ηk = c

(
n∑

i=2
ai

(
γ̃i,2,k − b(k)γ̃i,1,k

))
+ γ2,k − b(k)γ1,k

= γ2,k − b(k)γ1,k

= 0

where the last equality comes from the assumption that ηk = 0. Moreover, this
entry is unique by (P10).
In every case, (X̃ ′, R′1(R′2)b′

, m′) ̸= (X̃, R, m) by (P1), Takey(X̃ ′) = Takey(X̃(k)) ̸= ⊥
by (P3), and Tsig(X̃ ′, R′1(R′2)b′

, m′) ̸= ⊥ by (P11). Hence, after the for loop,
(â(k)

1 , ĉ(k)) ̸= ⊥ for all k ∈ K̃ ∪K, and by (P12), θ0 ̸= 0, so that if η0 = 0, then
Game1 would have returned false at line 28.

Hence, in all cases we obtain a contradiction, which concludes the proof.

39

Acknowledgments

We thank Yevgeniy Dodis, Paul Gerhart, Adam Gibson, Elliott Jin, Russell W. F. Lai, Julian Loss,
Greg Maxwell, Akira Takahashi, Sri Aravinda Krishnan Thyagarajan, and Pieter Wuille for their
helpful comments and suggestions. We also thank Chelsea Komlo and Ian Goldberg [KG20] as well
as Handan Kilinc Alper and Jeffrey Burdges [AB21] for insightful discussions helping us understand
the relation of our work to theirs.

Changelog

2023-10-20
– Switched to the vanilla generalized Forking Lemma [BN06] (Lemma 1). We withdraw the

variant of the generalized Forking Lemma that appeared in previous revisions of this work,
and we thank Elliott Jin and Paul Gerhart for pointing out the same gap in the proof
independently. As a result of this change, we also had to adapt the bound on q in Theorem 1
(as well as in Lemma 2 and Lemma 3) from q = 2qh + 1qs + 1 to q = 4qh + 3qs + 2.

– Replaced the textual description of algorithm B in the proof of Lemma 2 by pseudocode.
– Clarified that the Sign′ algorithm takes a multiset of cosigners (and not a list).
– Minor fixes and improvements throughout the paper.

2021-07-06
– Changed the coefficient of the j-th nonce Ri,j of every signer i to bj−1 for a single random

value b. This ensures that the coefficient matrix of the equation system in the ROM-only
reduction (Section 5) is a Vandermonde matrix that has full rank by construction. This
is a breaking change in the signing protocol (Section 4). We thank Russell W. F. Lai for
suggesting this modification.

– Improved the security proof in the AGM+ROM significantly (Section 6).
– Added scheme variant MuSig2∗ which saves an exponentiation in key aggregation (Section A).
– Replaced OMDL assumption by weaker AOMDL assumption (mostly Section 3.1).
– Added possibility to use an aggregator node.
– Minor fixes and improvements throughout the paper.

2020-10-11
– First public draft.

References

[AB21] H. K. Alper, J. Burdges. “Two-Round Trip Schnorr Multi-signatures via Delinearized
Witnesses”. In: CRYPTO 2021, Part I. doi: 10.1007/978-3-030-84242-0_7.

[BCJ08] A. Bagherzandi, J. H. Cheon, S. Jarecki. “Multisignatures secure under the discrete
logarithm assumption and a generalized forking lemma”. In: ACM CCS 2008. doi:
10.1145/1455770.1455827.

[BDN18] D. Boneh, M. Drijvers, G. Neven. “Compact Multi-signatures for Smaller Blockchains”.
In: ASIACRYPT 2018, Part II. doi: 10.1007/978-3-030-03329-3_15.

[BLL+21] F. Benhamouda, T. Lepoint, J. Loss, M. Orrù, M. Raykova. “On the (in)security of
ROS”. In: EUROCRYPT 2021.

[BN06] M. Bellare, G. Neven. “Multi-signatures in the plain public-Key model and a general
forking lemma”. In: ACM CCS 2006. doi: 10.1145/1180405.1180453.

[BNP+03] M. Bellare, C. Namprempre, D. Pointcheval, M. Semanko. “The One-More-RSA-
Inversion Problems and the Security of Chaum’s Blind Signature Scheme”. In: Journal
of Cryptology 16.3 (2003). doi: 10.1007/s00145-002-0120-1.

[Bol03] A. Boldyreva. “Threshold Signatures, Multisignatures and Blind Signatures Based on
the Gap-Diffie-Hellman-Group Signature Scheme”. In: PKC 2003. doi: 10.1007/3-
540-36288-6_3.

[BP02] M. Bellare, A. Palacio. “GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks”. In: CRYPTO 2002.
doi: 10.1007/3-540-45708-9_11.

40

https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1145/1455770.1455827
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/s00145-002-0120-1
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/3-540-45708-9_11

[BS07] M. Bellare, S. Shoup. “Two-Tier Signatures, Strongly Unforgeable Signatures, and
Fiat-Shamir Without Random Oracles”. In: PKC 2007. doi: 10.1007/978-3-540-
71677-8_14.

[CK16] S. Chatterjee, C. Kamath. “A Closer Look at Multiple Forking: Leveraging (In)Dependence
for a Tighter Bound”. In: Algorithmica 74.4 (2016). doi: 10.1007/s00453-015-9997-6.

[CP93] D. Chaum, T. P. Pedersen. “Wallet Databases with Observers”. In: CRYPTO’92. doi:
10.1007/3-540-48071-4_7.

[DEF+19] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, I. Stepanovs. “On
the Security of Two-Round Multi-Signatures”. In: 2019 IEEE Symposium on Security
and Privacy. doi: 10.1109/SP.2019.00050.

[FKL18] G. Fuchsbauer, E. Kiltz, J. Loss. “The Algebraic Group Model and its Applications”.
In: CRYPTO 2018, Part II. doi: 10.1007/978-3-319-96881-0_2.

[FPS20] G. Fuchsbauer, A. Plouviez, Y. Seurin. “Blind Schnorr Signatures and Signed ElGamal
Encryption in the Algebraic Group Model”. In: EUROCRYPT 2020, Part II. doi:
10.1007/978-3-030-45724-2_3.

[Gib23] A. Gibson. Forgery with a fake key in MuSig2. https://gist.github.com/AdamISZ/
ca974ed67889cedc738c4a1f65ff620b. 2023.

[GK15] S. Goldwasser, Y. T. Kalai. Cryptographic Assumptions: A Position Paper. Cryptology
ePrint Archive, Report 2015/907. https://eprint.iacr.org/2015/907. 2015.

[GW11] C. Gentry, D. Wichs. “Separating succinct non-interactive arguments from all falsifiable
assumptions”. In: 43rd ACM STOC. doi: 10.1145/1993636.1993651.

[HMP95] P. Horster, M. Michels, H. Petersen. “Meta-multisignature schemes based on the
discrete logarithm problem”. In: IFIP/Sec ’95.

[IN83] K. Itakura, K. Nakamura. “A public-key cryptosystem suitable for digital multisigna-
tures”. In: NEC Research and Development 71 (1983).

[KG20] C. Komlo, I. Goldberg. “FROST: Flexible Round-Optimized Schnorr Threshold
Signatures”. In: SAC 2020. doi: 10.1007/978-3-030-81652-0_2.

[Lan96] S. K. Langford. “Weakness in Some Threshold Cryptosystems”. In: CRYPTO’96. doi:
10.1007/3-540-68697-5_6.

[MH96] M. Michels, P. Horster. “On the Risk of Disruption in Several Multiparty Signature
Schemes”. In: ASIACRYPT’96. doi: 10.1007/BFb0034859.

[MOR01] S. Micali, K. Ohta, L. Reyzin. “Accountable-Subgroup Multisignatures: Extended
Abstract”. In: ACM CCS 2001. doi: 10.1145/501983.502017.

[MPS+18] G. Maxwell, A. Poelstra, Y. Seurin, P. Wuille. Simple Schnorr multi-signatures
with applications to Bitcoin. IACR Cryptology ePrint Archive, 2018/068, Version
20180118:124757. Preliminary obsolete version of [MPS+19] claiming the security of
an insecure two-round scheme. https://eprint.iacr.org/2018/068/20180118:124757.
2018.

[MPS+19] G. Maxwell, A. Poelstra, Y. Seurin, P. Wuille. “Simple Schnorr multi-signatures with
applications to Bitcoin”. In: Des. Codes Cryptogr. 87.9 (2019). https://eprint.iacr.
org/2018/068.

[MWL+10] C. Ma, J. Weng, Y. Li, R. H. Deng. “Efficient discrete logarithm based multi-signature
scheme in the plain public key model”. In: Des. Codes Cryptogr. 54.2 (2010). doi:
10.1007/s10623-009-9313-z.

[Nao03] M. Naor. “On Cryptographic Assumptions and Challenges”. In: CRYPTO 2003. doi:
10.1007/978-3-540-45146-4_6.

[Nic19] J. Nick. Insecure Shortcuts in MuSig. https://medium.com/blockstream/insecure-
shortcuts-in-musig-2ad0d38a97da. 2019.

[NKD+03] A. Nicolosi, M. N. Krohn, Y. Dodis, D. Mazières. “Proactive Two-Party Signatures for
User Authentication”. In: NDSS 2003. https://www.ndss-symposium.org/ndss2003/
proactive-two-party-signatures-user-authentication/.

[NRS+20] J. Nick, T. Ruffing, Y. Seurin, P. Wuille. “MuSig-DN: Schnorr Multi-Signatures with
Verifiably Deterministic Nonces”. In: ACM CCS 2020. doi: 10.1145/3372297.3417236.

[PS00] D. Pointcheval, J. Stern. “Security Arguments for Digital Signatures and Blind
Signatures”. In: Journal of Cryptology 13.3 (2000). doi: 10.1007/s001450010003.

41

https://doi.org/10.1007/978-3-540-71677-8_14
https://doi.org/10.1007/978-3-540-71677-8_14
https://doi.org/10.1007/s00453-015-9997-6
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://gist.github.com/AdamISZ/ca974ed67889cedc738c4a1f65ff620b
https://gist.github.com/AdamISZ/ca974ed67889cedc738c4a1f65ff620b
https://eprint.iacr.org/2015/907
https://doi.org/10.1145/1993636.1993651
https://doi.org/10.1007/978-3-030-81652-0_2
https://doi.org/10.1007/3-540-68697-5_6
https://doi.org/10.1007/BFb0034859
https://doi.org/10.1145/501983.502017
https://eprint.iacr.org/2018/068/20180118:124757
https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068
https://doi.org/10.1007/s10623-009-9313-z
https://doi.org/10.1007/978-3-540-45146-4_6
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://www.ndss-symposium.org/ndss2003/proactive-two-party-signatures-user-authentication/
https://www.ndss-symposium.org/ndss2003/proactive-two-party-signatures-user-authentication/
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1007/s001450010003

[RY07] T. Ristenpart, S. Yilek. “The Power of Proofs-of-Possession: Securing Multiparty
Signatures against Rogue-Key Attacks”. In: EUROCRYPT 2007. doi: 10.1007/978-3-
540-72540-4_13.

[Sch01] C.-P. Schnorr. “Security of Blind Discrete Log Signatures against Interactive Attacks”.
In: ICICS 2001. doi: 10.1007/3-540-45600-7_1.

[Sch91] C.-P. Schnorr. “Efficient Signature Generation by Smart Cards”. In: Journal of
Cryptology 4.3 (1991). doi: 10.1007/BF00196725.

[Sho97] V. Shoup. “Lower Bounds for Discrete Logarithms and Related Problems”. In: EU-
ROCRYPT’97. doi: 10.1007/3-540-69053-0_18.

[SS01] D. R. Stinson, R. Strobl. “Provably Secure Distributed Schnorr Signatures and a (t, n)
Threshold Scheme for Implicit Certificates”. In: ACISP 01. doi: 10.1007/3-540-47719-
5_33.

[STV+16] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,
I. Khoffi, B. Ford. “Keeping Authorities “Honest or Bust” with Decentralized Witness
Cosigning”. In: 2016 IEEE Symposium on Security and Privacy. doi: 10.1109/SP.
2016.38.

[Wag02] D. Wagner. “A Generalized Birthday Problem”. In: CRYPTO 2002. doi: 10.1007/3-
540-45708-9_19.

[WNR20] P. Wuille, J. Nick, T. Ruffing. Schnorr Signatures for secp256k1. Bitcoin Improvement
Proposal 340. https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki.
2020.

A MuSig2∗: Optimizing the Key Aggregation Algorithm

In this section we describe a practical optimization to MuSig2 that saves one exponentiation in key
aggregation by setting the key aggregation coefficient of one public key to the constant 1. Remember
that the key aggregation algorithm for multiset L = {X1, . . . , Xn} computes X̃ =

∏n
i=1 X

ai
i , where

ai = KeyAggCoef(L, Xi).
The optimized MuSig2∗ scheme is identical to MuSig2 except that the second public key in L is

a special case in the KeyAggCoef∗ algorithm, which replaces KeyAggCoef in MuSig2∗. In order to
determine the second key, let ≤ be a total order on public keys (e.g., the lexicographic order on
their serializations) and let min(L) be the smallest element in a multiset L according to ≤. We
define the predicate IsSecond(L, X) to be true if and only if X is the smallest element in L such
that X ̸= min(L). Thus we can define the KeyAggCoef∗ algorithm for MuSig2∗ such that

KeyAggCoef∗(L, X) =
{

1 if IsSecond(L, X)
Hagg(L, X) otherwise.

It is natural to question why it is the second key that is special cased and not the first. Let
InsecureKeyAgg denote a key aggregation function where it is indeed the first key for which the key
aggregation coefficient is the constant 1. Then InsecureKeyAgg for a multiset L that only consists
of (multiple copies of) a single key does not involve randomization using Hagg. This allows creating
InsecureKeyAgg collisions as follows:

L ··= {X, X2}

InsecureKeyAgg(L) = X(1+2Hagg(L,X2)) = InsecureKeyAgg({ X, . . . , X︸ ︷︷ ︸
1+2Hagg(L,X2) times

}).

One potential way to fix this problem would be to enforce a polynomial upper limit D on the
multiplicity of the key, i.e., the call to InsecureKeyAgg on the RHS would simply error out if
2Hagg(L, X2) > D, which happens with overwhelming probability. This would however complicate
the security proof and be error-prone in practice because this check is easy to miss in an implemen-
tation.24 Therefore, MuSig2∗ key aggregation raises the key to the power of a Hagg output even
when L only consists of (multiple copies of) a single key.
24 Depending on how multisets are serialized, the serialization of the multiset on the RHS may in fact not

be computable in p.p.t., and implementations would not require to implement the check explicitly. But

42

https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/978-3-540-72540-4_13
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1109/SP.2016.38
https://doi.org/10.1007/3-540-45708-9_19
https://doi.org/10.1007/3-540-45708-9_19
https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki

The following theorem reduces the security of MuSig2∗ tightly to the security of MuSig2.

Theorem 3. Let GrGen be a group generation algorithm and ν be an integer such that the multi-
signature scheme MuSig2[GrGen, ν] is EUF-CMA. Then the multi-signature scheme MuSig2∗[GrGen, ν]
is EUF-CMA in the random oracle model for Hagg, Hnon, Hsig : {0, 1}∗ → Zp.

Precisely, for any adversary A against MuSig2∗[GrGen] running in time at most t, making at
most qs Sign queries, at most qh queries to each random oracle, and such that the size of L in any
signing session and in the forgery is at most N , there exists an adversary B running in time at most

t′ = t + O(qN)texp

where q = qh + qs + 1 and texp is the time of an exponentiation in G such that

AdvEUF-CMA
B,MuSig2[GrGen,ν](λ) ≥ AdvEUF-CMA

A,MuSig2∗[GrGen,ν](λ)− 3q2 + q

2λ−1 .

Moreover, if A is algebraic, then B is algebraic.

Since B is algebraic whenever A is algebraic, this theorem is compatible both with Theorem 1,
with which it implies the security of MuSig2∗[GrGen, ν = 4] in the ROM, and with Theorem 2, with
which it implies the security of MuSig2∗[GrGen, ν = 2] in the combination ROM+AGM.

Proof. Let A be an adversary in the EUF-CMAAMuSig2∗ security game. We make similar normalizing
assumptions as in Section 5.1: We assume that A only makes “well-formed” queries, meaning that
X∗ ∈ L, X ∈ L and IsSecond(L, X) = false for any query Hagg(L, X), and we ignore the Sign′′
oracle in the simulation because it does not depend on secret state and thus the adversary can
simply simulate it locally.

Consider Figure 12 which specifies Game0 = EUF-CMAAMuSig2∗(λ). By definition, we have

AdvEUF-CMA
MuSig2∗[GrGen],A(λ) = AdvGame0

A (λ).

Figure 12 also specifies Game1 that, if it does not abort, is indistinguishable from Game0 and is
easy to simulate by an algorithm with access to EUF-CMAMuSig2.

The main idea behind Game1 is to implement Hagg, Hnon, Hsig queries via internal helper proce-
dures H′agg, H′non, H′sig whose purpose is to simulate the random oracles exposed by EUF-CMAMuSig2.
This simulation strategy will ensure that MuSig2∗ with oracles Hagg, Hnon, Hsig is indistinguishable
from MuSig2 with oracles H′agg, H′non, H′sig, which will later on make it possible to translate a forgery
against the former into a forgery against the latter.

The oracle Hagg is modified to relay queries to H′agg but translates the responses by dividing by
transl(L), which returns H′agg(L, X) if there is a key X in L such that IsSecond(L, X) and returns 1
otherwise. (Note that transl(L) defined in Figure 12 never returns 0 but will abort if it is about to
return 0.) The oracle Hagg also stores the multiset L that results in aggregate key KeyAgg(L) in
table Tagginv. Let us refer to KeyAgg′(L) as key aggregation using oracle H′agg instead of Hagg and
corresponding to MuSig2, i.e., all keys in L get a non-constant key aggregation coefficient:

KeyAgg′(L)
{X1, . . . , Xn} ··= L

X̃ ··=
∏n

i=1 X
H′

agg(L,Xi)
i

return X̃

Then for all multisets L of public keys we have

KeyAgg(L)transl(L) = KeyAgg′(L) (31)

if KeyAgg(L) does not abort.

then the security of the scheme would depend on the details of the serialization method, which again is
fragile in practice.

43

Game0 = EUF-CMAA
MuSig2∗ (λ) Game1

(G, p, g)← GrGen(1λ)

x∗ ←$ Zp ; X∗ ··= gx∗
// X

∗ ··= (X
∗)†

x1 ··= x∗ ; X1 ··= X∗

ctrs ··= 0 ; S ··= ∅ ; Q ··= ∅
Tagg, Tnon, Tsig ··= ∅

T ′
agg, T ′

non, T ′
sig ··= ∅

Tagginv, T ′
agginv, Tqueried ··= ∅

(L, m, (R, s))← ASign,Sign′,Hagg,Hnon,Hsig (X1)
if (L, m) ∈ Q then return false

if X1 /∈ L then return false

X̃ ··= KeyAgg(L)

c ··= Hsig(X̃, R, m)

return (gs = RX̃c)

Sign()

// return Sign†()

ctrs ··= ctrs + 1 ; k ··= ctrs ; S ··= S ∪ {k}
for j ··= 1 . . . ν do

r
(k)
1,j ←$ Zp ; R

(k)
1,j
··= g

r
(k)
1,j

return (R(k)
1,1 , . . . , R

(k)
1,ν)

Sign′(k, (R(k)
1 , . . . , R

(k)
ν), m(k), {X(k)

2 , . . . , X
(k)
n(k)})

// return (Sign′)†(k, (R
(k)
1 , . . . , R

(k)
ν), m

(k)
, {X(k)

2 , . . . , X
(k)
n(k)})

if k /∈ S then return ⊥

n ··= n(k) ; L(k) ··= {X(k)
1 = X∗, X

(k)
2 . . . , X(k)

n }

a
(k)
1 ··= KeyAggCoef∗(L(k), X

(k)
1)

X̃(k) ··= KeyAgg(L(k))
b(k) ··= Hnon(X̃(k), (R(k)

1 , . . . , R(k)
ν), m(k))

R(k) ··=
∏ν

j=1(R(k)
j)(b(k))j−1

c(k) ··= Hsig(X̃(k), R(k), m(k))

s
(k)
1 ··= c(k)a

(k)
1 x1 +

∑ν

j=1(r(k)
1,j)(b(k))j−1

mod p

Q ··= Q ∪ {(L(k), m(k))} ; S ··= S \ {k}

return s
(k)
1

KeyAggCoef∗(L, X)

if IsSecond(L, X) then return 1
return Hagg(L, X)

Hagg(L, X)

// X ∈ L ∧ IsSecond(L, X) = false by assumption

if Tagg(L, X) = ⊥ then
Tagg(L, X)←$ Zp

{X1 = X∗, X2, . . . , Xn} ··= L

for i ··= 1 . . . n do
Tagg(L, Xi) ··= H′

agg(L, Xi)/transl(L)

X̃ ··= KeyAgg(L)

if Tagginv(X̃) ̸= ⊥

∨ T ′
agginv(X̃ transl(L)) ̸= ⊥

∨ Tqueried(X̃) ̸= ⊥ then
abort game and return 0

Tagginv(X̃) ··= L

T ′
agginv(X̃ transl(L)) ··= true

return Tagg(L, X)

Hnon(X̃, (R1, . . . , Rν), m)

if Tnon(X̃, (R1, . . . , Rν), m) = ⊥ then

Tnon(X̃, (R1, . . . , Rν), m)←$ Zp

if L ··= Tagginv(X̃) ̸= ⊥ then

Tnon(X̃, (R1, . . . , Rν), m)
··= H′

non(X̃ transl(L), (R1, . . . , Rν), m)

Tqueried(X̃) ··= true

return Tnon(X̃, (R1, . . . , Rν), m)

Hsig(X̃, R, m)

if Tsig(X̃, R, m) = ⊥ then

Tsig(X̃, R, m)←$ Zp

if L ··= Tagginv(X̃) ̸= ⊥ then

Tsig(X̃, R, m) ··=

transl(L) · H′
sig(X̃ transl(L), R, m)

Tqueried(X̃) ··= true

return Tsig(X̃, R, m)

KeyAgg(L)

{X1, . . . , Xn} ··= L

X̃ ··=
∏n

i=1 X
KeyAggCoef∗(L,Xi)
i

return X̃

Fig. 12. Games used in the proof of Theorem 3. transl, H′
agg, H′

non and H′
sig are specified in Figure 13.

Comments in gray show how reduction B simulates Game1. Sign†, (Sign′)† refer to oracles of EUF-CMAB
MuSig2

and (X∗)† to its challenge public key.

44

transl(L)

if ∃X ∈ L : IsSecond(L, X) then
a ··= H′

agg(L, X)
if a = 0 then

abort game and return false

else a ··= 1
return a

H′
agg(L, X)

// return H†
agg(L, X)

if T ′
agg(L, X) = ⊥ then

T ′
agg(L, X)←$ Zp

return T ′
agg(L, X)

H′
non(X̃, (R1, . . . , Rν), m)

// return H†
non(X̃, (R1, . . . , Rν), m)

if T ′
non(X̃, (R1, . . . , Rν), m) = ⊥ then

T ′
non(X̃, (R1, . . . , Rν), m)←$ Zp

return T ′
non(X̃, (R1, . . . , Rν), m)

H′
sig(X̃, R, m)

// return H†
sig(X̃, R, m)

if T ′
sig(X̃, R, m) = ⊥ then

T ′
sig(X̃, R, m)←$ Zp

return T ′
sig(X̃, R, m)

Fig. 13. Additional algorithms of Game1 (Figure 12). Comments in gray show how reduction B simulates
Game1. H†

agg, H†
non, H†

sig refer to oracles of EUF-CMAB
MuSig2.

Table Tagginv allows Hnon and Hsig to retrieve L for a given aggregate key and compute transl(L).
For all X̃ that are output of a KeyAgg query at any point of the game, if we let L = Tagginv(X̃), it
holds that

H′non(KeyAgg′(L), (R1, . . . , Rν), m) = Hnon(X̃, (R1, . . . , Rν), m) (32)

H′sig(KeyAgg′(L), R, m) = transl(L)−1 · Hsig(X̃, R, m) (33)

for all R, R1, . . . , Rν ∈ G and m ∈ {0, 1}∗. This follows from the fact that Tagginv(X̃) is always
defined when Hnon or Hsig are queried on X̃. If that was not the case, key aggregation would have
aborted in the Hagg query when finding that Tqueried(X̃) is already set.

We now show that unless Game1 aborts before receiving A’s forgery, it is indistinguishable from
Game0. First, the input X1 to A is distributed as in Game0 and algorithm Sign and Sign′ are the
same in both games.

The oracle Hagg is indistinguishable from a true random oracle because all queries are relayed
to random oracle H′agg and divided by transl. The output of transl is independent of H′agg because
it is either 1 or H′agg(L, X) for L, X which never occur as an argument to the original Hagg query
(because IsSecond(L, X) is required to be false).

The oracle Hnon is indistinguishable from a true random oracle because when queried with fresh
inputs, it either responds with a random element or relays the query to H′non after raising X̃ to the
power of transl(L). The response in the second case is indistinguishable from a random response
because H′non is never queried more than once on the same input. That follows from the observation
that (X̃ ′)

transl(L′)
̸= X̃transl(L) for all (X̃, L), (X̃ ′, L′) ∈ Tagginv with X̃ ′ ̸= X̃ because otherwise the

game would have aborted when setting T ′agginv for X̃transl(L) or (X̃ ′)
transl(L′)

.
The same argument applies to Hsig except that the H′sig response is multiplied by transl(L) which

is either 1 or the output of a H′agg random oracle query.
We conclude that Game1 is indistinguishable from Game0 unless it aborts. Before bounding that

probability, we observe that Hsig is invoked at most q = qh + qs + 1 times: qh times directly by A,
qs times through Sign′ and once when verifying the forgery. Furthermore, Hagg is invoked at most
q times with a fresh argument L with which it has never been queried before. This is because in
each Sign′ query and in the verification of the forgery it is invoked with the same L. Similarly,
Hnon is invoked most qh + qs ≤ q times with a fresh argument X̃.

45

The game aborts in transl(L) if the H′agg query returns 0, which happens with probability 1/p.
The function transl(L) is used in Hagg and in Hsig. Since transl(L) will be invoked with the same L
in queries from Sign′ to Hagg and Hsig, and when verifying the forgery, transl(L) is invoked at most
q times with a fresh L. Therefore, the probability that Game1 aborts in transl(L) is at most q/p.

The other location where Game1 may abort is in Hagg. The values X̃ = KeyAgg(L) and X̃transl(L)

are random and independent of other table entries in Tagginv, T ′agginv and Tqueried. Moreover, the
tables Tagginv and T ′agginv have at most q entries, since Hagg is called at most q times with a fresh
argument L. The oracles Hnon and Hsig are called at most q times with a fresh argument X̃ which
implies that Tqueried has also at most q entries. Thus, the probability that Hagg aborts is at most
3q/p and since it is invoked with a fresh L at most q times, the probability that Game1 aborts in
Hagg is at most 3q2/p and

AdvGame0
A (λ) ≤ AdvGame1

A (λ) + 3q2 + q

2λ−1 .

Now we define an algorithm B which wins EUF-CMABMuSig2 whenever Game1 returns 1. Let
H†agg, H†non, H†sig be the random oracles and Sign†, (Sign′)† the signing oracles exposed to B by
EUF-CMABMuSig2. Algorithm B simulates Game1 without knowledge of the discrete logarithm x∗

of X∗ provided by EUF-CMABMuSig2 as follows: All queries to H′agg, H′non, H′sig, Sign are relayed to
H†agg, H†non, H†sig, Sign† respectively. As a result, a forgery (L, m, (R, s)) against EUF-CMABMuSig2
must satisfy

gs = R · KeyAgg′(L)H′
sig(KeyAgg′(L),R,m).

When adversary A returns a valid forgery (L, m, (R, s)) against EUF-CMAAMuSig2∗ , it has never
queried Sign′ with L, m, and therefore B has never queried (Sign′)† with L, m. This, together with
the fact that

X̃ = KeyAgg(L)

gs = RX̃Hsig(X̃,R,m)

= RX̃transl(L)·H′
sig(KeyAgg′(L),R,m)

= R · KeyAgg′(L)H′
sig(KeyAgg′(L),R,m),

which makes use of Equations (31) and (33), implies that the forgery returned by A is also a valid
EUF-CMABMuSig2 forgery.

It remains to show that queries to signing oracle Sign′ are answered correctly. The oracle
(Sign′)† to which Sign′ queries are forwarded produces a response s1, such that

a1 = H′agg(L, X1) = Hagg(L, X1) · transl(L)
b = H′non(KeyAgg′(L), (R1, . . . , Rν), m)

s1 = H′sig(KeyAgg′(L), R, m)a1x1 +
∑ν

j=1 bj−1r1,j .

We apply Equations (32) and (33) to obtain

s1 = transl(L)−1 · Hsig(X̃, R, m) · Hagg(L, X1) · transl(L) · x1 +
∑ν

j=1 bj−1r1,j

= Hsig(X̃, R, m) · Hagg(L, X1)x1 +
∑ν

j=1(Hnon(X̃, (R1, . . . , Rν), m))j−1r1,j

which is a valid Sign′ response for A.
Therefore, B wins EUF-CMABMuSig2 if Game1 returns true and it holds that

AdvEUF-CMA
MuSig2∗[GrGen],A(λ) = AdvGame0

A (λ)

≤ AdvGame1
A (λ) + 3q2 + q

2λ−1

= AdvEUF-CMA
MuSig2[GrGen],B(λ) + 3q2 + q

2λ−1 .

46

Note that if A is an algebraic algorithm and therefore provides representations of group elements
in any query and the forgery, B is an algebraic algorithm as well. This is easy to see for Sign and
Sign′ queries and the forgery which are relayed to EUF-CMABMuSig2 without modification. For the
remaining oracles Hagg, Hnon and Hsig, algorithm B either directly relays the group elements to
EUF-CMABMuSig2 or the representations are raised to the power of transl(L) before being passed over.

The running time t′ of B is the running time t of A plus the time needed to maintain tables
Tagg, Tnon, Tsig and Tagginv (we assume each assignment takes unit time) and answer signing and
hash queries. All tables have size in O(qN). Let texp denote the time to compute an exponentiation
in G. Algorithm B needs time Ntexp to compute KeyAgg(L) which happens once when verifying
the forgery and once in Hagg which is itself called at most q times with a fresh L. Additionally,
there is one exponentiation to compute X̃transl(L) in Hagg, Hnon and Hsig each, where Hnon is called
at most 4qh + 3qs + 2h ≤ q and Hsig at most qh + 1 ≤ q times. Thus, we have

t′ = t + (1 + q)Ntexp + 3qtexp + O(qN)
= t + O(qN)texp.

B Inapplicability of the Meta-reduction by Drijvers et al.

Drijvers et al. [DEF+19] show that there is no algebraic reduction from the OMDL problem to
InsecureMuSig if the OMDL problem is hard. They describe a meta-reduction that solves the OMDL
problem by executing a given reduction and simulating the OMDL challenger and the forger. To
illustrate the idea, let us consider a reduction similar to the one in the flawed security proof of
InsecureMuSig. It runs the forger twice with identical inputs up to the Hsig query from the forgery
and responds to it with a different value in the second execution.

The main idea of the meta-reduction is that it opens a signing session before the reduction forks
the simulated forger and then continues the session with a different nonce (or different message)
in each fork, allowing extraction of the secret key. So, after opening the session by requesting the
reduction’s R1 value, the meta-reduction obtains an OMDL challenge R that will be the nonce
of the forgery and queries Hsig with R. Now the forger sends some nonce to continue the signing
session and receives s1 from the reduction. Then the forger queries the DL oracle to produce a
forged signature (R, s).

The reduction runs the simulated forger again with exactly the same responses up to the Hsig
query relevant to the forgery. In this execution the forger continues the signing session by sending
a different nonce and receives s′1 from the reduction. Let c and c′ with c ̸= c′ be the signature
hashes of the sessions and a1 be the key aggregation coefficient of the reduction’s public key. Then
the meta-reduction computes the secret key x1 of the reduction as (s1 − s′1)/((c− c′)a1). In order
to prevent the reduction from guessing the Hsig query and programming it such that c = c′, the
simulated forger actually opens multiple concurrent signing sessions to make sure that the reduction
guessed wrong for at least one of the sessions with high probability. Note how in the concrete attack
with Wagner’s algorithm the attacker similarly opens multiple signing sessions and controls their R
values.

With the secret key x1 the meta-reduction uses the s-value from the DL oracle query to compute
r such that gr = R, creates a signature with x1 and r and returns it as the forgery in the second
execution. The meta-reduction used one DL query and obtained two OMDL challenges that are
solved with x1 and r. Therefore, if the reduction is successful, the meta-reduction solves the OMDL
problem without access to an actual forger for InsecureMuSig which implies that the OMDL problem
was not hard if such a reduction existed.

However, the idea behind this meta-reduction does not apply to MuSig2. Assume that the
reduction now provides ν = 2 nonces R1,1 and R1,2 at the start of a signing session. If the forger
replies with values such that c ̸= c′ we have that b ̸= b′. As a result, the meta-reduction can not
extract the secret key because it obtains two linearly independent signature equations with three
unknowns x1, r1,1, r1,2. That means that in order to create a forgery in the second execution the
meta-reduction needs to use another DL query which prevents it from winning the OMDL game.
More generally, this explains why the meta-reduction can only be applied to reductions that execute
the forger more than ν times. In Section 5 we provide a reduction for MuSig2 with ν = 4 that
requires exactly four executions of the forger.

47

C Suitability of the Security Model for Schemes with Key Aggregation

Our security model (formalized using game EUF-CMAAΣ in Section 3.2) is based on the model
by Bellare and Neven [BN06] which was proposed in the context of multi-signatures without key
aggregation. Even though this security model has been used previously for multi-signatures with key
aggregation [BDN18; DEF+19; MPS+19], one may wonder if it is at all suitable in this context.
In more detail, a multi-signature scheme with key aggregation offers two different usage modes of
verification, only one of which is explicit in our security model.

First, it is possible that the verifier has access to the full multiset L of keys, in which case
it checks whether Ver(KeyAgg(L), m, σ) = true. This mode, which is captured explicitly in our
security model, is a direct generalization of multi-signatures without key aggregation where the
verification algorithm simply takes L directly instead of going through KeyAgg. Here, the verifier
will be assured that all individual signers (identified by the public keys) have signed the message.

Second, it is possible that the verifier has access only to p̃k and checks Ver(p̃k, m, σ) = 1 directly.
This is the mode in which we envision multi-signatures used in, e.g., Bitcoin. Here, a node verifying
signatures as part of blockchain verification may in fact not even know or care that p̃k is an
aggregate of multiple keys. All that node cares about is that the owners of some coins (compactly
represented by p̃k) are eligible to spend these coins.

Since we model only the first mode explicitly in our security model, one may wonder whether
demanding that the adversary returns an explicit multiset L of public keys for its forgery is not
too restrictive, and thus whether the security model captures adversaries that simply obtain an
aggregate public key p̃k from somewhere and create a forgery under p̃k without caring what L is.

We argue that the security model is indeed sufficient. First, note that the set L specified in the
forgery (L, m, σ) is required to check if the forgery is not trivial, i.e., whether the adversary has
ever engaged in a signing session with L, m. If the aggregate key p̃k was used instead of L here,
our model would not capture legitimate attacks in which the adversary finds a collision L ̸= L′ in
the KeyAgg algorithm (s.t. KeyAgg(L) = KeyAgg(L′) and pk∗ ∈ L ∩ L′): if the adversary asks for a
signing session for L, m, obtaining a signature σ, then (KeyAgg(L′), m, σ) passes verification and
should be a considered a valid forgery because the honest signer did not intend to sign with signer
set L′.25

Second, note that one cannot simply allow the adversary to return an arbitrary aggregate public
key for its forgery as it would lead to trivial wins: the adversary can simply pick an aggregate
public key for which it knows the corresponding secret key. So the generation of the aggregate
public key p̃k must necessarily involve the honest public key pk∗. In our Bitcoin example, it will
not help the adversary to generate signatures under an aggregate key p̃k which does not involve the
honest public key pk∗ at all: the adversary cannot steal coins using such a signature, because coins
(co-)owed by the honest user would have been stored under a different aggregate key involving pk∗.
With this observation in mind, the ability of the adversary to specify any L with pk∗ ∈ L is not a
restriction but in fact gives the adversary the maximum control over how p̃k is generated.

For a formal explanation, consider the following modified game EUF-CMA′A
′

Σ : The adversary
is granted access to a KeyAgg(L) oracle that it can query on any multiset L such that pk∗ ∈ L.
Eventually, it returns (p̃k, m, σ) and wins if Ver(p̃k, m, σ) = true and there has been a query
KeyAgg(L) such that KeyAgg(L) = p̃k and (L, m) /∈ Q. Then it is easy to see that these two security
models are equivalent. Any EUF-CMAAΣ adversary A can be turned into a EUF-CMA′A

′

Σ adversary
A′ with similar resources and advantage: A′ runs A, relaying its oracle queries; when A returns
(L, m, σ), A′ queries p̃k ··= KeyAgg(L) and returns (p̃k, m, σ); the winning conditions for A′ are
then satisfied. Similarly, any EUF-CMA′A

′

Σ adversary A′ can be turned into a EUF-CMAAΣ adversary
A: Adversary A runs A′, relaying its signature oracle queries and answering its KeyAgg queries by
simply computing KeyAgg locally; when A′ returns (p̃k, m, σ), A looks up for a KeyAgg(L) query
such that KeyAgg(L) = p̃k and (L, m) /∈ Q (which must necessarily exist when A′ is successful) and
returns (L, m, σ).

25 Thus, our security model requires us to handle such collisions. They show up for example in our ROM-only
proof as the event KeyColl, which we show occurs with only negligible probability (see the proof of
Lemma 2).

48

	Introduction
	Background on Multi-Signatures
	Our Contribution
	Concurrent Work

	Technical Overview
	The Challenge of Constructing Two-Round Schemes
	Our Solution
	Proving Security
	A More Efficient Solution in the Algebraic Group Model
	Algebraic OMDL: A Falsifiable Variant of OMDL

	Preliminaries
	Notation and Definitions
	Syntax and Security Definition of Multi-Signature Schemes

	The Multi-Signature Scheme MuSig2
	Description
	Practical Considerations

	Security of MuSig2 in the ROM
	Security Proof

	Security of MuSig2 in the ROM + AGM
	Changelog
	References
	MuSig2*: Optimizing the Key Aggregation Algorithm
	Inapplicability of the Meta-reduction by Drijvers et al.
	Suitability of the Security Model for Schemes with Key Aggregation

