
New Representations of the AES Key Schedule∗

Gaëtan Leurent and Clara Pernot

Inria, Paris, France
{gaetan.leurent,clara.pernot}@inria.fr

Abstract. In this paper we present a new representation of the AES key schedule,
with some implications to the security of AES-based schemes. In particular, we
show that the AES-128 key schedule can be split into four independent parallel
computations operating on 32-bit chunks, up to linear transformation. Surprisingly,
this property has not been described in the literature after more than 20 years of
analysis of AES. We show two consequences of our new representation, improving
previous cryptanalysis results of AES-based schemes.
First, we observe that iterating an odd number of key schedule rounds results in a
permutation with short cycles. This explains an observation of Khairallah on mixFeed,
a second-round candidate in the NIST lightweight competition. Our analysis actually
shows that his forgery attack on mixFeed succeeds with probability 0.44 (with data
complexity 220GB), breaking the scheme in practice. The same observation also
leads to a novel attack on ALE, another AES-based AEAD scheme.
Our new representation also gives efficient ways to combine information from the
first subkeys and information from the last subkeys, in order to reconstruct the
corresponding master key. This results in small improvements to previous attacks: we
improve impossible differential attacks against several variants of AES (and Rijndael),
and a square attack against AES-192.
Keywords: AES · Key schedule · mixFeed · ALE · Impossible differential attack
· Square attack

1 Introduction
The AES [AES01] is the most widely used block cipher today, designed by Daemen and
Rijmen in 1998 as Rijndael [DR98, DR02] and selected for standardization by NIST as
AES. Like all symmetric cryptography primitives, the security of the AES can only be
evaluated with cryptanalysis, and there is a constant effort to study its resistance again
old and new attacks, and to evaluate its security margin. Rijndael has nine variants, with
a state size of 128, 192, or 256 bits, and a key length of 128, 192, or 256 bits. The three
variants with a 128-bit state have been standardized as AES, with a number of round
that varies with the key length: AES-128 with 10 rounds, AES-192 with 12 rounds, and
AES-256 with 14 rounds. After twenty years of cryptanalysis, many different attacks have
been applied to AES, and we have a strong confidence in its security: the best attacks
against AES-128 in the single-key setting reach only 7 rounds out of 10. The best attacks
known so far are either impossible differential attacks (following a line of work starting
with [BA08]), meet-in-the-middle attacks (with a line of work starting from [DS08]), or
zero-difference attacks [BR22] as listed in Table 2.

∗This article is an extended version of the paper with the same title which appeared in the proceedings
of Eurocrypt 2021 [LP21].

1

mailto:{gaetan.leurent,clara.pernot}@inria.fr


Table 1: Comparison of attacks against ALE.

Attack Enc. Verif. Time Ref.
Existential Forgery Known Plaintext 2110.4 2102 2110.4 [WWH+13]
Existential Forgery Known Plaintext 2103 2103 2104 [KR14]
Existential Forgery Known Plaintext 1 2120 2120 [KR14]
State Recovery, Almost Univ. Forgery Known Plaintext 1 2121 2121 [KR14]
State Recovery, Almost Univ. Forgery Chosen Plaintext 257.3 0 2104.4 New

Table 2: Best single-key attacks against 7-round AES-128.

Attack Data Time Mem. Ref. Note
Meet-in-the-middle 297 299 298 [DFJ13]

2105 2105 290 [DFJ13]
2105 2105 281 [BNS19]
2113 2113 274 [BNS19]

Impossible differential 2113 2113 274 [BLNS18] Using 4 out. diff. and state-test
2105.1 2113 274.1 [BLNS18]a Using 4 out. diff
2106.1 2112.1 273.1 Variant of [BLNS18] using 1 out. diff.
2104.9 2110.9 271.9 New Using 1 out. diff.

Zero-difference 2110.2 2110.2 2110.2 [BR22]

aThe time complexity is incorrectly given as 2106.88 in [BLNS18].

Table 3: Comparison of attacks against AES-192 and Rijndael-256/256.
RK: Related Keys; ID: Impossible Differential.

Cipher Rounds Attack Data Time Reference
AES-192 9/12 MitM 2121 2188 [LJW15]

8/12 MitM 2113 2172 [DKS10]
2105 2140 [DF14]

8/12 Square 2128 − 2119 2188 [FKL+01]
2128 − 2119 2187.3 Variant of [FKL+01]
2128 − 2119 2185.6 Variant of [DKS15]
2128 − 2119 2185.1 New

AES-192 12/12 RK Boomerang 2123 2176 [BK09]
8/12 RK ID 264.5 2177 [ZWZF07]

263.3 2174.7 New
Rijndael-256/256 10/14 ID 2244.2 2253.9 [WGR+13]

2244.3 2240 [LSG+18]
2242.6 2238.4 New

2



1.1 Our results

The key schedule is arguably the weakest part of the AES, and it is well known to cause
issues in the related-key setting [BDK+10, BK09, BKN09]. In this paper, we focus on the
key schedule of AES, and we show a surprising alternative representation, where the key
schedule is split into several independent chunks, and the actual subkeys are just linear
combinations of the chunks.

Application to mixFeed and ALE. This representation is motivated by an observation
made by Khairallah [Kha19] on the AEAD scheme mixFeed: when the 11-round AES-128
key schedule is iterated there are apparently many short cycles of length roughly 234. Our
representation explains this observation, and proves that the forgery attack of Khairallah
against mixFeed actually succeeds with a very high probability. It only requires the
encryption of one known message of length at least 233.7 blocks, and generates a forgery
with probability 0.44, making it a practical break of the scheme.

We also apply the same observation to ALE, another AES-based scheme that iterates
the AES key schedule. We obtain a novel attack against ALE, with a much lower data
complexity than previous attacks, but we need chosen plaintexts rather than known
plaintexts (see Table 1).

Key recovery attack against AES and Rijndael. We also improve key recovery attacks
against AES-128 based on impossible differential cryptanalysis. This type of attacks targets
bytes of the first subkey and of the last subkey, and excludes some values that are shown
impossible. Then, the attacker must iterate over the remaining candidates, and reconstruct
the corresponding master keys. Using our new representation of the key schedule, we make
the reconstruction of the master key more efficient. Therefore we can start from a smaller
data set: we identify fewer impossible keys, but we process the larger number of remaining
key candidates without making this step the bottleneck.

While the improvement is quite modest (see Table 2), it is notable that we improve
this attack in a non-negligible way, because cryptanalysis of AES has achieved a high level
of technicality, and attacks are already thoroughly optimized. In particular, we obtain the
best attack so far when the amount of memory is limited (eg. below 275).

Finally, we use our representation to improve the final phase of several other attacks
against AES and Rijndael. In Table 3 we list minor improvements to the square attack
on AES-192, and to impossible differential attacks on AES-192 (in the related key model)
and Rijndael-256/256 (in the single key model); this demonstrates that our techniques
are applicable to a larger range of targets. As far as we know, the resulting attacks on
Rijndael-256/256 are the best attack known so far, but the attacks on AES-192 that we
improve are not the best attacks known.

1.2 Organization of the paper

We start with a description of the AES-128 key schedule and describe our alternative
representation in Section 2, before applying the same techniques to AES-192 and AES-256
in Section 3. Then, we present applications to mixFeed (Section 4), to ALE (Section 5), to
impossible differential attacks against AES and Rijndael (Section 6), and to the square
attack against AES-192 (Section 7). Finally, we describe some properties of the AES key
schedules that might be useful in future works in Section 8.

3



2 A New Representation of the AES-128 Key Schedule
In AES-128, the key schedule is an iterative process to derive 11 subkeys from one master
key. To start with, the 128 bits of the master key are divided into 4 words of 32 bits each:
wi for 0 ≤ i ≤ 3. The following notations are used within the algorithm:

RotWord performs a cyclic permutation of one byte to the left.

SubWord applies the AES Sbox to each of the 4 bytes of a word.

RCon(i) is a round constant defined as [xi−1, 0, 0, 0] in the field F28 described in [AES01].
For simplicity, we denote xi−1 as ci.

In order to construct wi for i ≥ 4, one applies the following steps:

• if i ≡ 0 mod 4, wi = SubWord(RotWord(wi−1))⊕ RCon(i/4)⊕ wi−4.

• else, wi = wi−1 ⊕ wi−4.

The subkey at round r is the concatenation of the words w4r to w4r+3. We can also express
the key schedule at the byte level, using kr

i with 0 ≤ i < 16 to denote byte i of the round-r
subkey (we use kr

⟨i,j,...⟩ as a shorthand for kr
i , kr

j , . . .). A subkey is typically represented as a
4× 4 matrix with the AES byte ordering, with wi = k

i/4
4(i mod 4)∥k

i/4
4(i mod 4)+1∥k

i/4
4(i mod 4)+2∥

k
i/4
4(i mod 4)+3: 

kr
0 kr

4 kr
8 kr

12
kr

1 kr
5 kr

9 kr
13

kr
2 kr

6 kr
10 kr

14
kr

3 kr
7 kr

11 kr
15

 =

w4r w4r+1 w4r+2 w4r+3


The key schedule can be written as follows, with k the key schedule state, k′

i the state
after one round of key schedule, and S the AES Sbox (see Figure 1 and 5):

k′
0 = k0 ⊕ S(k13)⊕ ci k′

8 = k8 ⊕ k4 ⊕ k0 ⊕ S(k13)⊕ ci

k′
1 = k1 ⊕ S(k14) k′

9 = k9 ⊕ k5 ⊕ k1 ⊕ S(k14)
k′

2 = k2 ⊕ S(k15) k′
10 = k10 ⊕ k6 ⊕ k2 ⊕ S(k15)

k′
3 = k3 ⊕ S(k12) k′

11 = k11 ⊕ k7 ⊕ k3 ⊕ S(k12)
k′

4 = k4 ⊕ k0 ⊕ S(k13)⊕ ci k′
12 = k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k13)⊕ ci

k′
5 = k5 ⊕ k1 ⊕ S(k14) k′

13 = k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k14)
k′

6 = k6 ⊕ k2 ⊕ S(k15) k′
14 = k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k15)

k′
7 = k7 ⊕ k3 ⊕ S(k12) k′

15 = k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k12)

2.1 Invariant subspaces
Recently, several lightweight block ciphers have been analyzed using invariant subspace
attacks. This type of attack was first proposed on PRINTcipher by Leander et al. [LAAZ11];
the basic idea is to identify a linear subspace V and an offset u such that the round function
F of a cipher satisfies F (u + V ) = F (u) + V . At Eurocrypt 2015, Leander, Minaud and
Rønjom [LMR15] introduced an algorithm in order to detect such invariant subspaces. By
applying this algorithm to four rounds of the AES-128 key schedule, we find invariant
subspaces of dimension four over F28 , and this implies a decomposition of the key schedule.

First, let’s recall the generic algorithm for a permutation F : Fn
2 → Fn

2 :

1. Guess an offset u ∈ Fn
2 and a one-dimensional subspace V0.

4



2. Compute Vi+1 = span{(F (u + Vi)− F (u)) ∪ Vi}.

3. If the dimension of Vi+1 equals the dimension of Vi, we found an invariant subspace:
F (u + V ) = F (u) + V .

4. Else, we go on step 2.

In the case of the AES-128 key schedule, we use subspaces of F16
28 over the field F28

rather than over F2. If we apply this algorithm with the permutation F corresponding to
4 rounds of key schedule, with any key state u, and with V0 the vector space generated by
one of the first four bytes, we obtain 4 invariant affine subspaces whose linear parts are:

E0 = {(a, b, c, d, 0, b, 0, d, a, 0, 0, d, 0, 0, 0, d) for a, b, c, d ∈ F28}
E1 = {(a, b, c, d, a, 0, c, 0, 0, 0, c, d, 0, 0, c, 0) for a, b, c, d ∈ F28}
E2 = {(a, b, c, d, 0, b, 0, d, 0, b, c, 0, 0, b, 0, 0) for a, b, c, d ∈ F28}
E3 = {(a, b, c, d, a, 0, c, 0, a, b, 0, 0, a, 0, 0, 0) for a, b, c, d ∈ F28}

When we consider a single round R of the key schedule, the subspaces are not invariant,
but are images of each other. We have the following relations, with u0 an arbitrary element
in (F28)16 and ui = Ri(u0), for (1 ≤ i < 5):

R(E0 + u0) = E1 + u1, R(E1 + u1) = E2 + u2,

R(E2 + u2) = E3 + u3, R(E3 + u3) = E0 + u4

In other words, if the difference pattern between two states is in Ei, then after r rounds of
key schedule, the difference pattern will be in E(i+r)%4. This is illustrated by Figure 3.

This can be verified by tracking the differences in the key schedule, starting from
a difference (a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), as shown in Figure 2. After four
rounds we reach a difference (a, b, c, d, 0, b, 0, d, 0, b, c, 0, 0, b, 0, 0), with differential tran-
sitions a → d, d → c, and c → b through the Sbox. Next, we obtain a difference
(a′, b, c, d, a′, 0, c, 0, a′, b, 0, 0, a′, 0, 0, 0), after an Sbox transition b→ a⊕ a′. Surprisingly,
the dimension of the difference state does not increase, because there is a single active
Sbox in each round, and it affects a difference that is already independent of the rest of
the state. Therefore we have the four transitions given above, and the spaces are indeed
invariant.

2.2 New representation from invariant subspaces
We actually have a much stronger property than just invariant spaces: the full space is the
direct sum of those four vector spaces, with parallel invariant subspaces for any offset u:

(F28)16 = E0 ⊕ E1 ⊕ E2 ⊕ E3

∀u, ∀i, F (u⊕ Ei) = F (u)⊕ Ei.

This implies that we can split the internal state according to those vector spaces. Indeed,
there exists unique linear projections πi : (F28)16 → Ei for 0 ≤ i < 4 such that ∀x ∈
Ei, πi(x) = x, and πi(Ej) = 0 for i ̸= j. In particular, we have ∀x, x = π0(x)⊕ π1(x)⊕
π2(x)⊕ π3(x). This implies:

F (x) = F
(
π0(x)⊕ π1(x)⊕ π2(x)⊕ π3(x)

)
∈ F

(
π0(x)⊕ π1(x)⊕ π2(x)

)
⊕ E3

∈ F
(
π0(x)⊕ π1(x)

)
⊕ E3 ⊕ E2

∈ F
(
π0(x)

)
⊕ E3 ⊕ E2 ⊕ E1

5



«S

Figure 1: AES key sched-
ule. (figure adapted
from [Jea16])

a a a a a a

d d

a

d d

a

c
d

a

c c
d

c

a
b
c
d

b

d

b
c

b
a′

b
c
d

a′

c

a′

b
a′ a′

b
c
d′

b

d′

a′

d′ d′

a′

b
c′

d′

a′

c′ c′

d′
c′

a′

b′

c′

d′

b′

d′

b′

c′
b′

a′′

b′

c′

d′

a′′

c′

a′′

b′
a′′ a′′

b′

c′

d′′

b′

d′′

a′′

d′′d′′

a′′

b′

c′′

d′′

a′′

c′′c′′

d′′
c′′ · · ·

Figure 2: Evolution of a difference located on the first byte
after several rounds of key schedule.

a

b
c

d

b

d

b
c

b

a

b
c

d

a

c c

d

c

a

b
c

d

a

c

a

b

a

a

b
c

d

b

d

a

d d

E2

E3

E0

E1

R

RR

R

Figure 3: Evolution of the pattern of differences for invariant subspace of dimension four.

6



Therefore π0(F (x)) = π0
(
F (π0(x))

)
. Similarly, πi(F (x)) = πi

(
F (πi(x))

)
, and finally we

can split the permutation in four independent 32-bit computations:

F (x) = π0
(
F (π0(x))

)
⊕ π1

(
F (π1(x))

)
⊕ π2

(
F (π2(x))

)
⊕ π3

(
F (π3(x))

)
.

To obtain a representation that makes the 4 subspaces appear clearly, we perform a change
of basis. Let {e0, e1, . . . , e15} be our new basis of (F28)16 defined as follows:

Base of E0


e0 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1)
e1 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e2 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e3 = (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

Base of E1


e4 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0)
e5 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e6 = (1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e7 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)

Base of E2


e8 = (0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0)
e9 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e10 = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
e11 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0)

Base of E3


e12 = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
e13 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e14 = (0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
e15 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)

Let s0, s1, . . . , s15 be the coordinates in the new basis. They can be obtained by multiplying
the original coordinates (k0, . . . , k15) with the matrix A = C−1

0 , where the columns of the
transition matrix C0 are the coordinates of the vectors e0, e1, . . . , e15 expressed in the old
basis (canonical basis):

C0 =



0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0



Therefore, we use:

s0 = k15 s1 = k14 ⊕ k10 ⊕ k6 ⊕ k2 s2 = k13 ⊕ k5 s3 = k12 ⊕ k8

s4 = k14 s5 = k13 ⊕ k9 ⊕ k5 ⊕ k1 s6 = k12 ⊕ k4 s7 = k15 ⊕ k11

s8 = k13 s9 = k12 ⊕ k8 ⊕ k4 ⊕ k0 s10 = k15 ⊕ k7 s11 = k14 ⊕ k10

s12 = k12 s13 = k15 ⊕ k11 ⊕ k7 ⊕ k3 s14 = k14 ⊕ k6 s15 = k13 ⊕ k9

(1)

7



After defining s′ with the same transformation from k′, we can verify that:

s′
0 = k′

15 = k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k12) = s13 ⊕ S(s12)
s′

1 = k′
14 ⊕ k′

10 ⊕ k′
6 ⊕ k′

2 = k14 ⊕ k6 = s14

s′
2 = k′

13 ⊕ k′
5 = k13 ⊕ k9 = s15

s′
3 = k′

12 ⊕ k′
8 = k12 = s12

s′
4 = k′

14 = k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k15) = s1 ⊕ S(s0)
s′

5 = k′
13 ⊕ k′

9 ⊕ k′
5 ⊕ k′

1 = k13 ⊕ k5 = s2

s′
6 = k′

12 ⊕ k′
4 = k12 ⊕ k8 = s3

s′
7 = k′

15 ⊕ k′
11 = k15 = s0 (2)

s′
8 = k′

13 = k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k14) = s5 ⊕ S(s4)
s′

9 = k′
12 ⊕ k′

8 ⊕ k′
4 ⊕ k′

0 = k12 ⊕ k4 = s6

s′
10 = k′

15 ⊕ k′
7 = k15 ⊕ k11 = s7

s′
11 = k′

14 ⊕ k′
10 = k14 = s4

s′
12 = k′

12 = k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k13)⊕ ci = s9 ⊕ S(s8)⊕ ci

s′
13 = k′

15 ⊕ k′
11 ⊕ k′

7 ⊕ k′
3 = k15 ⊕ k7 = s10

s′
14 = k′

14 ⊕ k′
6 = k14 ⊕ k10 = s11

s′
15 = k′

13 ⊕ k′
9 = k13 = s8

This is represented by Figure 6 (see also Figure 20 in Appendix for a more visual
representation). In the rest of this paper we use the notation kr

i to denote byte i of the
round-r subkey, and sr

i to denote bytes of the alternative representation at round r, where
the relations between kr

i and sr
i follow (1).

To further simplify the description, we write the output as

(s′
4, s′

5, s′
6, s′

7, s′
8, s′

9, s′
10, s′

11, s′
12, s′

13, s′
14, s′

15, s′
0, s′

1, s′
2, s′

3).

This corresponds to “untwisting” the rotation of the 4-byte blocks, so that each block
of 4 output bytes depends on the same 4 input bytes. This results in our alternate
representation of the AES-128 key schedule:

1. We first apply the linear transformation A to the state, corresponding to the change
of variable above.

2. Then the rounds of the key schedule are seen as the concatenation of 4 permutations
each acting on 32-bit words (4 bytes), as seen in Figure 4.

3. In order to extract the subkey of round r, another linear transformation Cr mod 4
is applied to the state, depending of the round number modulo 4. Ci is defined as
Ci = A−1 × SRi, with SR the matrix corresponding to rotation of 4 bytes to the
right (see below). In particular C0 = A−1.

A =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0


SR =



0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


8



Master key

Subkey

...
...

...
...

A

B B B1 B

B B2 B B

B3 B B B

B B B B4

Cr mod 4

⊕

Detail of B:

S

Figure 4: r rounds of the key schedule in the new representation. Bi is similar to B but
the round constant ci is XORed to the output of the Sbox.

In this new representation, there are clearly 4 independent chunks each acting on 4 bytes,
and the subkeys are reconstructed with linear combinations of the alternative key schedule
state. This representation also preserves the symmetry of the key schedule: the original
key schedule is invariant by rotation of the columns (up to constants), and this corresponds
to a rotation of four bytes in the new representation.

3 New Representations of the AES-192 and AES-256 Key
Schedules

The same techniques can also be applied to other variants of AES: we apply the algorithm of
Leander, Minaud and Rønjom [LMR15] to extract invariant subspaces of the key schedule,
and we use a change of variables corresponding to the subspaces to obtain a simplified
representation.

3.1 AES-192
The AES-192 key schedule derives 13 subkeys from a 192-bit master key. The operations
used are the same as in the AES-128, but the key schedule is different:

• In the initialization, six 32-bit words wi (0 ≤ i < 6) are filled with the bytes of the
master key;

• The iteration defines wi (i ≥ 6) as:

– if i ≡ 0 mod 6, wi = SubWord(RotWord(wi−1))⊕ RCon(i/6)⊕ wi−6;

9



k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10k11 k12k13k14k15

k′
0 k′

1 k′
2 k′

3 k′
4 k′

5 k′
6 k′

7 k′
8 k′

9 k′
10k

′
11 k′

12k
′
13k

′
14k

′
15

⊕
⊕
⊕
⊕

S
S
S
S

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕

ci

Figure 5: One round of the AES-128 key schedule.

k
15

k
14
⊕

k
10
⊕

k
6
⊕

k
2

k
13
⊕

k
5

k
12
⊕

k
8

k
14

k
13
⊕

k
9
⊕

k
5
⊕

k
1

k
12
⊕

k
4

k
15
⊕

k
11

k
13

k
12
⊕

k
8
⊕

k
4
⊕

k
0

k
15
⊕

k
7

k
14
⊕

k
10

k
12

k
15
⊕

k
11
⊕

k
7
⊕

k
3

k
14
⊕

k
6

k
13
⊕

k
9

k
′ 15

k
′ 14
⊕

k
′ 10
⊕

k
′ 6
⊕

k
′ 2

k
′ 13
⊕

k
′ 5

k
′ 12
⊕

k
′ 8

k
′ 14

k
′ 13
⊕

k
′ 9
⊕

k
′ 5
⊕

k
′ 1

k
′ 12
⊕

k
′ 4

k
′ 15
⊕

k
′ 11

k
′ 13

k
′ 12
⊕

k
′ 8
⊕

k
′ 4
⊕

k
′ 0

k
′ 15
⊕

k
′ 7

k
′ 14
⊕

k
′ 10

k
′ 12

k
′ 15
⊕

k
′ 11
⊕

k
′ 7
⊕

k
′ 3

k
′ 14
⊕

k
′ 6

k
′ 13
⊕

k
′ 9

⊕S ⊕S ⊕S ⊕S
ci

⊕

Figure 6: One round of the AES-128 key schedule (alternative representation).

10



– else, wi = wi−1 ⊕ wi−6.

As for the AES-128, the subkey at round i is the concatenation of the words w4i to w3+4i.
Nevertheless, in AES-192, a key schedule state corresponds to one and a half consecutive
subkeys. We can also express the key schedule at byte level using ki (0 ≤ i < 24) to denote
the key schedule state, and k′

i for the state after one round of key schedule.
This is represented in Figure 7 and corresponds to the following equations:

k′
0 = k0 ⊕ S(k21)⊕ ci

k′
1 = k1 ⊕ S(k22)

k′
2 = k2 ⊕ S(k23)

k′
3 = k3 ⊕ S(k20)

k′
4 = k4 ⊕ k0 ⊕ S(k21)⊕ ci

k′
5 = k5 ⊕ k1 ⊕ S(k22)

k′
6 = k6 ⊕ k2 ⊕ S(k23)

k′
7 = k7 ⊕ k3 ⊕ S(k20)

k′
8 = k8 ⊕ k4 ⊕ k0 ⊕ S(k21)⊕ ci

k′
9 = k9 ⊕ k5 ⊕ k1 ⊕ S(k22)

k′
10 = k10 ⊕ k6 ⊕ k2 ⊕ S(k23)

k′
11 = k11 ⊕ k7 ⊕ k3 ⊕ S(k20)

k′
12 = k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k21)⊕ ci

k′
13 = k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k22)

k′
14 = k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k23)

k′
15 = k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k20)

k′
16 = k16 ⊕ k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k21)⊕ ci

k′
17 = k17 ⊕ k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k22)

k′
18 = k18 ⊕ k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k23)

k′
19 = k19 ⊕ k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k20)

k′
20 = k20 ⊕ k16 ⊕ k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k21)⊕ ci

k′
21 = k21 ⊕ k17 ⊕ k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k22)

k′
22 = k22 ⊕ k18 ⊕ k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k23)

k′
23 = k23 ⊕ k19 ⊕ k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k20)

By making this base change:

s0 = k20 s1 = k12 s2 = k4

s3 = k17 ⊕ k21 s4 = k9 ⊕ k13 s5 = k1 ⊕ k5

s6 = k22 s7 = k14 s8 = k6

s9 = k19 ⊕ k23 s10 = k11 ⊕ k15 s11 = k3 ⊕ k7

s12 = k16 ⊕ k20 s13 = k8 ⊕ k12 s14 = k0 ⊕ k4

s15 = k21 s16 = k13 s17 = k5

s18 = k18 ⊕ k22 s19 = k10 ⊕ k14 s20 = k2 ⊕ k6

s21 = k23 s22 = k15 s23 = k7

we find two invariant subspaces of dimension 12, and obtain a simplified representation
with 2 independent chunks each acting on 12 bytes, as shown in Figure 8.

11



k0 k1 k2 k3 k4 k5 k6 k7 k8 k9k10k11 k12k13k14k15 k16k17k18k19 k20k21k22k23

k′
0 k′

1 k′
2 k′

3 k′
4 k′

5 k′
6 k′

7 k′
8 k′

9k′
10k

′
11 k′

12k
′
13k

′
14k

′
15 k′

16k
′
17k

′
18k

′
19 k′

20k
′
21k

′
22k

′
23

⊕
⊕
⊕
⊕

S
S
S
S

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕
⊕
⊕
⊕

⊕

ci

Figure 7: One round of the AES-192 key schedule.

k
20

k
12

k
4

k
17
⊕

k
21

k
9
⊕

k
13

k
1
⊕

k
5

k
22

k
14

k
6

k
19
⊕

k
23

k
11
⊕

k
15

k
3
⊕

k
7

k
16
⊕

k
20

k
8
⊕

k
12

k
0
⊕

k
4

k
21

k
13

k
5

k
18
⊕

k
22

k
10
⊕

k
14

k
2
⊕

k
6

k
23

k
15

k
7

k
′ 20

k
′ 12 k

′ 4

k
′ 17
⊕

k
′ 21

k
′ 9
⊕

k
′ 13

k
′ 1
⊕

k
′ 5

k
′ 22

k
′ 14 k

′ 6

k
′ 19
⊕

k
′ 23

k
′ 11
⊕

k
′ 15

k
′ 3
⊕

k
′ 7

k
′ 16
⊕

k
′ 20

k
′ 8
⊕

k
′ 12

k
′ 0
⊕

k
′ 4

k
′ 21

k
′ 13 k

′ 5

k
′ 18
⊕

k
′ 22

k
′ 10
⊕

k
′ 14

k
′ 2
⊕

k
′ 6

k
′ 23

k
′ 15 k

′ 7

⊕
⊕

⊕
⊕

⊕
⊕

⊕
⊕

⊕ S
⊕S

⊕ S

ci

⊕ ⊕ S
B B̃i

Figure 8: One round of the AES-192 key schedule (alternative representation).

12



k
15

k
31

k
14
⊕

k
10
⊕

k
6
⊕

k
2

k
30
⊕

k
26
⊕

k
22
⊕

k
18

k
13
⊕

k
5

k
29
⊕

k
21

k
12
⊕

k
8

k
28
⊕

k
24

k
14

k
30

k
13
⊕

k
9
⊕

k
5
⊕

k
1

k
29
⊕

k
25
⊕

k
21
⊕

k
17

k
12
⊕

k
4

k
28
⊕

k
20

k
15
⊕

k
11

k
31
⊕

k
27

k
13

k
29

k
12
⊕

k
8
⊕

k
4
⊕

k
0

k
28
⊕

k
24
⊕

k
20
⊕

k
16

k
15
⊕

k
7

k
31
⊕

k
23

k
14
⊕

k
10

k
30
⊕

k
26

k
12

k
28

k
15
⊕

k
11
⊕

k
7
⊕

k
3

k
31
⊕

k
27
⊕

k
23
⊕

k
19

k
14
⊕

k
6

k
30
⊕

k
22

k
13
⊕

k
9

k
29
⊕

k
25

k
′ 15

k
′ 31

k
′ 14
⊕

k
′ 10
⊕

k
′ 6
⊕

k
′ 2

k
′ 30
⊕

k
′ 26
⊕

k
′ 22
⊕

k
′ 18

k
′ 13
⊕

k
′ 5

k
′ 29
⊕

k
′ 21

k
′ 12
⊕

k
′ 8

k
′ 28
⊕

k
′ 24

k
′ 14

k
′ 30

k
′ 13
⊕

k
′ 9
⊕

k
′ 5
⊕

k
′ 1

k
′ 29
⊕

k
′ 25
⊕

k
′ 21
⊕

k
′ 17

k
′ 12
⊕

k
′ 4

k
′ 28
⊕

k
′ 20

k
′ 15
⊕

k
′ 11

k
′ 31
⊕

k
′ 27

k
′ 13

k
′ 29

k
′ 12
⊕

k
′ 8
⊕

k
′ 4
⊕

k
′ 0

k
′ 28
⊕

k
′ 24
⊕

k
′ 20
⊕

k
′ 16

k
′ 15
⊕

k
′ 7

k
′ 31
⊕

k
′ 23

k
′ 14
⊕

k
′ 10

k
′ 30
⊕

k
′ 26

k
′ 12

k
′ 28

k
′ 15
⊕

k
′ 11
⊕

k
′ 7
⊕

k
′ 3

k
′ 31
⊕

k
′ 27
⊕

k
′ 23
⊕

k
′ 19

k
′ 14
⊕

k
′ 6

k
′ 30
⊕

k
′ 22

k
′ 13
⊕

k
′ 9

k
′ 29
⊕

k
′ 25

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

⊕S

ci
⊕

Figure 9: One round of the AES-256 key schedule (alternative representation).

3.2 AES-256
The AES-256 key schedule derives 15 subkeys from a 256-bit master key. Again, the
operations used are the same as in the AES-128, but the key schedule is different:

• In the initialization, eight 32-bit words wi (0 ≤ i < 8) are filled with the bytes of the
master key;

• The iteration defines wi (i ≥ 8) as:

– if i ≡ 0 mod 8, wi = SubWord(RotWord(wi−1))⊕ RCon(i/8)⊕ wi−8;
– else if i ≡ 0 mod 4, wi = SubWord(wi−1)⊕ wi−8.
– else, wi = wi−1 ⊕ wi−8.

The subkey at round i is the concatenation of the words w4i to w3+4i. So in AES-256,
each key schedule state corresponds to two consecutive subkeys. As for the AES-128, we
can also express the key schedule at byte level using ki (0 ≤ i < 32) to denote the key
schedule state, and k′

i for the state after one round of key schedule. This corresponds to
the following equations:

k′
0 = k0 ⊕ S(k29)⊕ ci

k′
1 = k1 ⊕ S(k30)

k′
2 = k2 ⊕ S(k31)

k′
3 = k3 ⊕ S(k28)

13



k′
4 = k4 ⊕ k0 ⊕ S(k29)⊕ ci

k′
5 = k5 ⊕ k1 ⊕ S(k30)

k′
6 = k6 ⊕ k2 ⊕ S(k31)

k′
7 = k7 ⊕ k3 ⊕ S(k28)

k′
8 = k8 ⊕ k4 ⊕ k0 ⊕ S(k29)⊕ ci

k′
9 = k9 ⊕ k5 ⊕ k1 ⊕ S(k30)

k′
10 = k10 ⊕ k6 ⊕ k2 ⊕ S(k31)

k′
11 = k11 ⊕ k7 ⊕ k3 ⊕ S(k28)

k′
12 = k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k29)⊕ ci

k′
13 = k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k30)

k′
14 = k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k31)

k′
15 = k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k28)

k′
16 = k16 ⊕ S(k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k29)⊕ ci)

k′
17 = k17 ⊕ S(k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k30))

k′
18 = k18 ⊕ S(k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k31))

k′
19 = k19 ⊕ S(k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k28))

k′
20 = k20 ⊕ k16 ⊕ S(k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k29)⊕ ci)

k′
21 = k21 ⊕ k17 ⊕ S(k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k30))

k′
22 = k22 ⊕ k18 ⊕ S(k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k31))

k′
23 = k23 ⊕ k19 ⊕ S(k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k28))

k′
24 = k24 ⊕ k20 ⊕ k16 ⊕ S(k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k29)⊕ ci)

k′
25 = k25 ⊕ k21 ⊕ k17 ⊕ S(k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k30))

k′
26 = k26 ⊕ k22 ⊕ k18 ⊕ S(k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k31))

k′
27 = k27 ⊕ k23 ⊕ k19 ⊕ S(k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k28))

k′
28 = k28 ⊕ k24 ⊕ k20 ⊕ k16 ⊕ S(k12 ⊕ k8 ⊕ k4 ⊕ k0 ⊕ S(k29)⊕ ci)

k′
29 = k29 ⊕ k25 ⊕ k21 ⊕ k17 ⊕ S(k13 ⊕ k9 ⊕ k5 ⊕ k1 ⊕ S(k30))

k′
30 = k30 ⊕ k26 ⊕ k22 ⊕ k18 ⊕ S(k14 ⊕ k10 ⊕ k6 ⊕ k2 ⊕ S(k31))

k′
31 = k31 ⊕ k27 ⊕ k23 ⊕ k19 ⊕ S(k15 ⊕ k11 ⊕ k7 ⊕ k3 ⊕ S(k28))

By making this change of variable:

s0 = k15 s1 = k31 s2 = k14 ⊕ k10 ⊕ k6 ⊕ k2 s3 = k30 ⊕ k26 ⊕ k22 ⊕ k18

s4 = k13 ⊕ k5 s5 = k29 ⊕ k21 s6 = k12 ⊕ k8 s7 = k28 ⊕ k24

s8 = k14 s9 = k30 s10 = k13 ⊕ k9 ⊕ k5 ⊕ k1 s11 = k29 ⊕ k25 ⊕ k21 ⊕ k17

s12 = k12 ⊕ k4 s13 = k28 ⊕ k20 s14 = k15 ⊕ k11 s15 = k31 ⊕ k27

s16 = k13 s17 = k29 s18 = k12 ⊕ k8 ⊕ k4 ⊕ k0 s19 = k28 ⊕ k24 ⊕ k20 ⊕ k16

s20 = k15 ⊕ k7 s21 = k31 ⊕ k23 s22 = k14 ⊕ k10 s23 = k30 ⊕ k26

s24 = k12 s25 = k28 s26 = k15 ⊕ k11 ⊕ k7 ⊕ k3 s27 = k31 ⊕ k27 ⊕ k23 ⊕ k19

s28 = k14 ⊕ k6 s29 = k30 ⊕ k22 s30 = k13 ⊕ k9 s31 = k29 ⊕ k25

we find four invariant subspaces of dimension 8, and obtain a simplified representation
with 4 independent chunks each acting on 8 bytes, as shown in Figure 9.

14



IV Feed

M1

C1

E

Z

Feed

M2

C2

E

P (Z)

. . . Feed

Mm

Cm

F

P m−1(Z)

T

Figure 10: Simplified scheme of mixFeed encryption.

Y

M

M ⊕ Y

Feed ⌈M⌉ ∥ ⌊M ⊕ Y ⌋

Figure 11: Function Feed with a full message block.

4 Application to mixFeed
The AEAD scheme mixFeed [CN19a] was a second-round candidate in the NIST Lightweight
Standardization Process, submitted by Chakraborty and Nandi, and based on the AES
block cipher. It is a rate-1 feedback-based mode inspired by COFB. For each message
block, a Feed function is used to compute the ciphertext and the block cipher input from
the previous internal state, and the internal state is replaced by the block cipher output.
In COFB, there is a need for an extra state variable, to make each Feed function different.
In order to reduce the state size, mixFeed instead makes each block cipher call different,
applying a permutation P to the key between each block. For optimal efficiency, the
permutation P just corresponds to eleven round of the AES key schedule, so that the
subkeys for all the AES calls essentially correspond to running the AES key schedule
indefinitely (up to the round constants).

In [Kha19], Khairallah observed that some keys generate short cycles when iterating
the P permutation, and he built a forgery attack for keys in short cycles. In this work,
we show that the new representation of the key schedule explains the existence of these
short cycles, and we characterize the keys belonging to such cycles. This shows that the
permutation P cannot be considered as a random permutation.

4.1 Description of mixFeed

For simplicity, we only describe a simplified mixFeed without associated data; the full
description of mixFeed can be found in [CN19a].

Notations: We use M and C to denote the plaintext and ciphertext. For the sake of
simplicity, we assume that M is made of m 128-bit blocks.

The following functions are used in mixFeed:

• E: a modified version of AES-128 including MixColumns in the last round;

• P : the permutation corresponding to eleven rounds of AES-128 key schedule;

15



• Feed: the feedback function defined as (see Figure 11):

Feed(Y, M) = (X, C)
= (⌈M⌉∥⌊M ⊕ Y ⌋, M ⊕ Y ),

where ⌈D⌉ represent the 64 most significant bits of D, and ⌊D⌋ the 64 least significant
bits.

The computations are as follow (see Figure 10):

Initialization of the state. An initial value IV = Y0 and a internal key Z are computed
from the nonce N and the key K.

Encryption and authentication. For i from 1 to m, the Feed function is applied to the
current state Yi−1 and message block Mi. Feed returns the ciphertext block Ci, and a new
state Xi which is then encrypted under the key P i−1(Z) using E to obtain Yi. At the end
of this step, a finalization function computes the tag from the final state and the internal
key P m−1(Z), we denote as F the composition of the cipher call of last round and the
finalization function.

4.2 Short Cycles of P

In [Kha19], Khairallah found 20 keys belonging to small cycles of P , and observed that all
of them have the same cycle length1: 14018661024. He deduced a forgery attack, assuming
that the subkey falls in one of those cycles, but did not further analyse the probability
of having such a subkey. Later the designers of mixFeed published a security proof for
the scheme [CN19b], under the assumption that the number of keys in a short cycle is
sufficiently small. More precisely, they wrote:

Assumption 1 ([CN19b]). For any K ∈ {0, 1}n chosen uniformly at random, probability
that K has a period at most ℓ is at most ℓ/2n/2.

The 20 keys identified by Khairallah do not contradict this assumption, but if there are
many such keys the assumption does not hold, and mixFeed can be broken by a forgery
attack. We now provide a theoretical explanation of the observation of Khairallah, and a
full characterization of the cycles of P . We find that a random key is in a cycle of length
smaller than 234 with probability 0.44; this contradicts the assumption made in [CN19b],
and allows a practical forgery attack.

Analysis of the structure of P . Using our new representation, the 11-round key schedule
P consists of:

• The linear transformation A

• 4 parallel 32-bit permutations that we denote f1∥f2∥f3∥f4, with

f1 = B11 ◦B ◦B ◦B ◦B7 ◦B ◦B ◦B ◦B3 ◦B ◦B

f2 = B ◦B10 ◦B ◦B ◦B ◦B6 ◦B ◦B ◦B ◦B2 ◦B

f3 = B ◦B ◦B9 ◦B ◦B ◦B ◦B5 ◦B ◦B ◦B ◦B1

f4 = B ◦B ◦B ◦B8 ◦B ◦B ◦B ◦B4 ◦B ◦B ◦B

(the permutations differ only by the round constants)
1Khairallah actually reported the length as 1133759136, probably because of a 32-bit overflow.

16



• The linear transformation C3 = A−1 × SR−1

To simplify the analysis, we consider the cycle structure of P̃ = A ◦ P ◦A−1, which is the
same as the cycle structure of P :

P̃ : (a, b, c, d) 7→ (f2(b), f3(c), f4(d), f1(a))

To further simplify the analysis, we consider the cycle structure of P̃ 4, which is closely
related to the cycle structure of P̃ . A cycle of P̃ 4 of length ℓ corresponds to a cycle of
P̃ , of length ℓ, 2ℓ or 4ℓ. Conversely a cycle of P̃ of length ℓ corresponds to one or several
cycles of P̃ 4, of length ℓ, ℓ/2 or ℓ/4 (depending on the divisibility of ℓ). Analyzing P̃ 4

is easier because it can be decomposed into 4 parallel permutations, cancelling the left
rotation induced by SR−1(see Figure 13):

P̃ 4 : (a, b, c, d) 7→ (ϕ1(a), ϕ2(b), ϕ3(c), ϕ4(d))
ϕ1(a) = f2 ◦ f3 ◦ f4 ◦ f1(a)
ϕ2(b) = f3 ◦ f4 ◦ f1 ◦ f2(b)
ϕ3(c) = f4 ◦ f1 ◦ f2 ◦ f3(c)
ϕ4(d) = f1 ◦ f2 ◦ f3 ◦ f4(d)

If (a, b, c, d) is in a cycle of length ℓ of P̃ 4, we have P̃ 4ℓ(a, b, c, d) = (a, b, c, d), that is to
say:

ϕℓ
1(a) = a ϕℓ

2(b) = b ϕℓ
3(c) = c ϕℓ

4(d) = d

In particular, a, b, c and d must be in cycles of ϕ1, ϕ2, ϕ3, ϕ4 (respectively) of length
dividing ℓ. Conversely, if a, b, c, d are in small cycles of the corresponding ϕi, then
(a, b, c, d) is in a cycle of P̃ 4 of length the lowest common multiple of the small cycle
lengths.

Moreover, due to the structure of the ϕi permutations, all of them have the same cycle
structure (the same number of cycles with the same cycle length). This implies that P̃
has a large number of small cycles. Indeed, if we consider a cycle of ϕi of length ℓ, and
elements a, b, c, d in the corresponding cycles, (a, b, c, d) is in a cycle of P 4 of length ℓ.
There are ℓ4 choices of a, b, c, d, which correspond to ℓ3 different cycles of P . If we assume
that ϕi behaves like a random 32-bit permutation, we expect that the largest cycle has
length about 231, which gives around 293 cycles of P̃ 4 of length ≈ 231, and around 293

cycles of P̃ of length ≈ 233.

Cycle analysis of 11-round AES-128 key schedule. In order to identify the small cycles
of the permutation P , we start by analyzing the cycle structure of the 32-bit permutation
ϕ1 = f2 ◦ f3 ◦ f4 ◦ f1: it can be decomposed into cycles of lengths 3504665256, 255703222,
219107352, 174977807, 99678312, 13792740, 8820469, 7619847, 5442633, 4214934, 459548,
444656, 14977, 14559, 5165, 4347, 1091, 317, 27, 6, 5 (3 cycles), 4 (2 cycles), 2 (3 cycles),
and 1 (2 fixed points), as shown in Table 4. In particular, the largest cycle has length
ℓ = 3504665256. Consequently, with probability (3504665256 × 2−32)4 ≈ 0.44, we have
a, b, c and d each in a cycle of length ℓ, resulting in a cycle of length ℓ for P̃ 4, and a
cycle of length at most 4ℓ = 14018661024 for P̃ and P . This explains the observation of
Khairallah [Kha19], and clearly contradicts the assumption of [CN19b].

More generally, when a, b, c, d belong to a cycle of length ℓi, the corresponding cycle
for P̃ 4 is of length ℓ = lcm(ℓ1, ℓ2, ℓ3, ℓ4), and we can compute the associated probability
from Table 4. In most cases, a cycle of length ℓ of P̃ 4 corresponds to a cycle of P̃ of length
4ℓ. However, the cycle of P̃ is of length ℓ when P̃ ℓ(a, b, c, d) = (a, b, c, d), and of length 2ℓ

when P̃ 2ℓ(a, b, c, d) = (a, b, c, d) (this can only be the case with odd ℓ, by definition of ℓ).

17



...
...

...
...

A

B B B1 B

B B2 B B

B11 B B B

C3

A

B B B1 B

B B2 B B

...
...

...
...

⇔

...
...

...
...

A

B B B1 B

B B2 B B

B11 B B B

B B B1 B

B B2 B B

...
...

...
...

Figure 12: Two iterations of 11 rounds of the key schedule in the new representation.

A

f1 f2 f3 f4

f4 f1 f2 f3

f3 f4 f1 f2

f2 f3 f4 f1

A−1

Figure 13: 4 iterations of P in the new model.

18



This is unlikely for short cycles, but as an example we can construct a fixed-point for P̃
and P from a fixed-point of ϕ1:

• a = 7e be d1 92

• b = de d4 b7 cc = f3 ◦ f4 ◦ f1(a)

• c = 9f 95 88 26 = f4 ◦ f1(a)

• d = d4 b9 79 91 = f1(a)

Since f2 ◦ f3 ◦ f4 ◦ f1(a) = a, we have P̃ (a, b, c, d) = (f2(b), f3(c), f4(d), f1(a)) = (a, b, c, d).
Since P̃ = A ◦ P ◦A−1, the corresponding key in the original representation is:

A−1 ×


a
b
c
d

 =



0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



×



7e
be
d1
92
de
d4
b7
cc
9f
95
88
26
d4
b9
79
91



=



64
0b
3f
83
63
4e
a7
f6
46
0e
f8
b2
d4
9f
de
7e


This results in a fixed point of P .

We can generalize this construction for all odd cycle lengths ℓ. We choose w an element
of a cycle of length ℓ, and then we can build an element which belongs to a cycle of length
ℓ for the permutation P :

• if ℓ = 1 mod 4:

a = w

b = f3 ◦ f4 ◦ f1 ◦ ... ◦ f1(w), with 3ℓ terms fi

c = f4 ◦ f1 ◦ f2 ◦ ... ◦ f1(w), with 2ℓ terms fi

d = f1 ◦ f2 ◦ f3 ◦ ... ◦ f1(w), with ℓ terms fi

• if ℓ = 3 mod 4:

a = w

b = f3 ◦ f4 ◦ f1 ◦ ... ◦ f1(w), with ℓ terms fi

c = f4 ◦ f1 ◦ f2 ◦ ... ◦ f1(w), with 2ℓ terms fi

d = f1 ◦ f2 ◦ f3 ◦ ... ◦ f1(w), with 3ℓ terms fi

19



Table 4: Cycle structure of ϕ1 for 11-round AES-128 key schedule

Length # cycles Proba Smallest element
3504665256 1 0.82 00 00 00 01
255703222 1 0.05 00 00 00 0b
219107352 1 0.05 00 00 00 1d
174977807 1 0.04 00 00 00 00
99678312 1 0.02 00 00 00 21
13792740 1 0.003 00 00 00 75
8820469 1 2−8,93 00 00 00 24
7619847 1 2−9,14 00 00 00 c1
5442633 1 2−9,63 00 00 02 78
4214934 1 2−10 00 00 05 77
459548 1 2−13,2 00 00 38 fe
444656 1 2−13,24 00 00 0b 68
14977 1 2−18,13 00 06 82 5c
14559 1 2−18,18 00 04 fa b1
5165 1 2−19,67 00 0a d4 4e
4347 1 2−19,92 00 04 94 3a
1091 1 2−21.91 00 21 4b 3b
317 1 2−23,7 00 28 41 36
27 1 2−27,25 01 3a 0d 0c
6 1 2−29,42 06 23 25 51
5 3 3 · 2−29,68 06 1a ea 18
4 2 2 · 2−30 23 c6 6f 2b
2 3 3 · 2−31 69 ea 63 75
1 2 2 · 2−32 7e be d1 92

4.3 Forgery attack against mixFeed
Khairallah [Kha19] proposed a forgery attack assuming that Z belongs to a cycle of length
ℓ, considering a message M made of m blocks, with m > ℓ:

1. Encrypt the message M to obtain the ciphertext C and tag T .

2. Compute Y0 using M1 and C1 and Xℓ+1 using Mℓ+1 and Cℓ+1.

3. Compute M̄ and C̄ such that (Xℓ+1, C̄) = Feed(Y0, M̄).

4. The T tag will also authenticate the new ciphertext C ′ = C̄∥Cℓ+2∥ · · · ∥Cm.

The computations required for the forge are negligible with only a few XORs to invert
the Feed function. Therefore the complexity of the attack is just the encryption of a
message with at least (ℓ + 1) blocks, with ℓ the length of the cycle. As explained above,
the probability of success is approximately 0.44, using ℓ = 14018661024. When the forgery
fails, we can repeat the attack with a different nonce, because the internal key Z depends
on the nonce; for each master key K, the attack works on 44% of the nonces.

We have verified this attack using the reference implementation provided by the
designers. We take a message of ℓ + 1 = 14018661025 blocks of 16 bytes (220 Gbytes2),
choose a random key and nonce, and encrypt the message with mixFeed. We modify
the ciphertext according to the previous explanation, and we check if the new ciphertext

2Note that there is no need to store the plaintext or ciphertext in memory if we have access to an
online implementation of mixFeed.

20



IV
Y0

Feed

M1

C1

E

Z

Feed

M2

C2

E

P(Z)

Feed

M3

C3

X3
F

Z

T IV
Y0

M̄

C̄

Feed
X3

F

Z

T

Figure 14: Forgery attack when Z belongs to a cycle of length 2.

N

K

Z̃AES

0128

K

AES AES

⊕
A1

AES4

Z = P10(Z̃) ⊕
A2

AES4

P (Z)

. . .
⊕

Aa−1

AES4

P a−2(Z)

⊕
Aa

AES4

LEX
leak⊕

M1

P a−1(Z)

⊕

C1

AES4

LEX
leak⊕

M2

P a(Z)

⊕

C2

. . . AES4

LEX
leak⊕

Mt

P a+t−2(Z)

⊕

Ct

AES

K

T

Figure 15: Authenticated encryption with ALE.

is accepted. We obtained 41% of success over 100 attempts. This result is close to the
expected 44% success rate, and confirms our analysis.

5 Application to ALE

ALE [BMR+14] is an earlier authenticated encryption scheme based on the AES round func-
tion, strongly inspired by LEX [Bir07] (for the encryption part) and Pelican-MAC [DR05]
(for the authentication part). Attacks have already been presented against ALE [KR14,
WWH+13] but the new representation of the key schedule gives new types of attacks,
based on previous attacks against LEX [BDF11, DK08a].

21



5.1 Description of ALE
For the sake of simplicity, we will consider ALE without associated data, and we only
consider blocks of 16 bytes for the plaintext (to ignore the padding). ALE maintains a state
composed of an internal state and an internal key, and operates with 3 steps (cf Figure 15).
As for mixFeed, the internal key is updated with iterative applications of a permutation
P corresponding to AES key schedule rounds. In the case of ALE, P corresponds to 5
rounds of key schedule rather than 11, but we have again many short cycles because 5 is
also an odd number.

Initialization. The state is initialized from the key K and a nonce N , using a session key
Z̃ = EK(N). The internal state is initialized to IV = E

Z̃
(EK(0)), and the internal key is

initialized to P10(Z), where P10 correspond to 11 rounds of AES key schedule.

Message processing phase. For each block of message, the internal state is encrypted
with 4-round AES, and the internal key is updated by five rounds of AES key schedule.
During the encryption, four bytes are leaked in each AES round according to the LEX
specification (bytes 0, 2, 8, 10 for odd rounds, and bytes 4, 6, 12 and 14 for even rounds),
and used as keystream to encrypt the message. Then the message block is xored to the
current internal state, following the Pelican-MAC construction.

Finalization. Finally, the internal state is encrypted with the full AES using the master
key K to generate the tag T .

Rekeying. The designers of ALE require that the master key is changed after processing
248 bits (i.e. 241 blocks).

Previous results. ALE was designed to thwart attacks against LEX [BDF11, DK08a]
that use a pair of partially-colliding internal states to recover the key. Indeed, each AES
call uses a different key, which prevents those attacks. Other attacks have been proposed
against LEX, based on differential trails between two message injections [KR14, WWH+13].
We compare the previous attacks in Table 1. To make the results comparable, we assume
that attacks with a low success rate are repeated until they succeed. For attacks using
more than 241 blocks of data, the master key will be rotated.

5.2 Internal Key Recovery
We describe a new attack against ALE, based on previous analysis of LEX. The key update
of ALE was supposed to avoid these attacks, but since the update function has small
cycles, there is a large probability that the key state is repeated, which makes the attack
possible.

We analyze cycles of P in the same way as for mixFeed: four iterations of the 5-round
key schedule are equivalent to the application in parallel of four 32-bit permutations.
The study of one of these permutations gives us information about the cycle structure
of the permutation P . As seen in Table 5, the 32-bit permutation has a cycle of length
ℓ = 4010800805 ≈ 231.9; therefore the permutation P admits many cycles of length
4× ℓ ≈ 233.9 which are reached with probability (ℓ× 2−32)4 ≈ 0.76.

Previous attacks against LEX [BDF11, BDF12, DK08a] are based on the search for a
pair of internal states that partially collides, with two identical columns. This pattern can
occur in odd or even round: we use columns 0 and 2 for odd rounds, and columns 1 and
3 for even rounds. The partial collision occurs with probability 2−64, and 32 bits of the
colliding state can be directly observed, due to the leak extractions. A candidate pair can

22



Table 5: Cycle structure of ϕ1 for 5-round AES-128 key schedule

Length # cycles Proba Smallest element
4010800805 1 0.93 00 00 00 00
131787964 1 0.03 00 00 00 5d
49935997 1 0.01 00 00 00 0e
34379325 1 0.008 00 00 00 1d
33741892 1 0.008 00 00 00 1e
14932111 1 0.003 00 00 01 94
9654619 1 0.002 00 00 01 3d
6188177 1 2−9.44 00 00 07 28
3087025 1 2−10.44 00 00 02 8a
117032 1 2−15.16 00 00 63 a3
110859 1 2−15.25 00 01 21 ca
74232 1 2−15.82 00 00 a6 8e
57337 1 2−16.2 00 01 1e 11
33273 1 2−16.98 00 03 9f 7b
23808 1 2−17.46 00 02 2d 14
17227 1 2−17.93 00 01 ab 12
8853 1 2−18.89 00 08 41 42
6025 1 2−19.44 00 05 d7 2c
5042 1 2−19.70 00 05 21 3a
2516 1 2−20.70 00 1d d2 74
1920 1 2−21.10 00 3f 0e 58
906 1 2−22.18 00 22 52 0d
179 1 2−24.52 01 59 63 a1
168 1 2−24.61 00 66 2a fd
3 1 2−30.42 3f 37 c5 3c
1 1 2−32 7f 22 aa a7

be tested with complexity 264 [BDF12, Section 7.1], using the leak extraction of rounds
before and after the collision; if it actually corresponds to a partial collision this reveals
the internal state and key.

In the case of ALE, we perform a chosen plaintext attack: we choose a message M of
241 blocks (the maximum length allowed by the ALE specification) which admits cycles
of length 4× ℓ. With probability 0.76, the key cycles after 4× ℓ ≈ 233.9 iterations of the
permutation P . When this happens, we can split the message into 233.9 sets of 27.1 blocks
encrypted under the same key. In each set we can construct 213.2 pairs. In total, from one
message M of 241 blocks, we get on average 0.76× 213.2 × 233.9 ≈ 246.7 pairs encrypted
with the same key.

Unfortunately, the attack against LEX uses five consecutive AES rounds, but in ALE,
the subkeys used in five consecutive rounds do not follow the exact AES key schedule. It is
not possible to apply exactly the same attack on ALE, but we can use the tool developed
by Bouillaguet, Derbez, and Fouque [BD11, BDF12] in order to find an attack in this
setting. This tool found an attack that can test a candidate pair with time complexity 272,
and a memory requirement of 272, for two different positions of the partial collision:

• when the collision occurs in round 4, the attack uses the leak of rounds 1, 2, 3, 4
and of round 1 of the next 4-round AES.

• when the collision occurs in round 1, the attack uses the leak of rounds 1 and 2, and
of rounds 2, 3, 4 of the previous 4-round AES.

23



Starting with 216.3 messages of length 241 (encrypted under different master keys)
we obtain 216.3 × 213.2 × 233.9 ≈ 263.4 pairs, such that each pair uses the same key with
probability 0.76. Each pair can be used twice, assuming a collision at round 1 or at
round 4, so we have in total 264.4 pairs to consider, and we expect one of them to actually
collide (0.76 × 264.4 ≈ 264). After filtering on 32 bits, we have 232.4 candidate pairs to
analyse, so that the time complexity is 232.4 × 272 = 2104.4, and the data complexity is
216.3 × 241 = 257.3.

This attack recovers the internal state, and we can compute backwards the initial
state EK(0) and the session key Z̃ = EK(N). We can also generate almost universal
forgeries: when EK(0) and Z̃ are known we can compute the internal state and ciphertext
corresponding to an arbitrary message, and we can match the value of the final internal
state (and hence the tag) by choosing one block of message or associated data appropriately.

6 Application to Impossible Differential Attacks
The new representation of the key schedule also gives some insight to improve several
existing attacks on the AES.

In 1999, Biham, Biryukov and Shamir introduced impossible differential attacks: a
new cryptanalysis technique that they applied to Skipjack ([BBS99]). This attack is based
on the existence of an impossible differential, i.e. a differential occurring with probability
0. If a key guess leads to this differential, then it can be deduced that this guess was
wrong. This allows to eliminate key candidates and thus to obtain an attack faster than
exhaustive search. Impossible differentials have been applied to various cryptosystems,
including reduced versions of AES [BA08, BLNS18, MDRMH10].

The framework described in [BLNS18] is composed of two parts: firstly, combinations
of bytes from the first and last subkeys are shown impossible, and secondly, the master keys
associated to the remaining candidates are reconstructed and tested. When reconstructing
the master key, previous attacks only exploit the subkeys bytes in the first rounds, guess
the missing bytes, and evaluate the key schedule to check the bytes in the last subkeys.
Our results significantly improve this part, by combining information from the first and
the last subkeys. Indeed, the new representation shows that some bytes of a given subkey
depend on fewer than 128 bits of information of another subkey, even if the subkeys are
separated by many rounds. The complexity of the attack is a trade-off between the first
and second parts. After improving the second part we obtain slightly better trade-offs. The
improvement is limited because a small increase of the data complexity (corresponding to
the cost of the first part) leads to a large reduction in the number of remaining candidates
(corresponding to the complexity of the second part).

6.1 The AES round function
The AES state is represented as a 4× 4-byte array, and the round function iterates the
following operations:

• SubBytes applies an Sbox on each byte of the state;

• ShiftRows shifts to the left the second row of the state by 1 cell, the third row by 2
cells, and the last row by 3 cells;

• MixColumns multiplies each column of the state by an MDS matrix;

• AddRoundKey xors the state with the round key.

24



Sbox property. During this attack, we will use a well-known property for a n-bit to m-bit
Sbox: given an input and an output difference, there is on average 2n−m possible values
matching the specified differences. For the AES Sbox, n = m = 8, so in average one value
is expected. We pre-compute those values, and refer to that table as the DDT.

6.2 Previous results
The best impossible differential attacks against AES-128 are variants of an attack from
Mala, Dakhilalian, Rijmen and Modarres-Hashemi [MDRMH10]. Several trade-off are
proposed in [BLNS18] with four output differentials and using a technique to reduce the
memory by iterating over the possible key bytes values, rather that iterating over the data
pairs. In this work, we start from a variant with a single output differential explained in
detail below; it is easier to describe than variants considered in [BLNS18] and provides an
interesting trade-off.

Impossible differential. This attack uses a collection of impossible differentials over
4 rounds, and extends them with two rounds at the beginning and one round at the
end (omitting the final MixColumns), as shown in Figure 16. We use a set of impossible
differentials over 4 rounds (without the last MixColumns):

DX ̸→ DY

DX =


(0, ?, ?, ?, 0, 0, 0, 0, ?, ?, 0, ?, 0, 0, 0, 0)
(?, 0, ?, ?, 0, 0, 0, 0, ?, ?, ?, 0, 0, 0, 0, 0)
(?, ?, 0, ?, 0, 0, 0, 0, 0, ?, ?, ?, 0, 0, 0, 0)
(?, ?, ?, 0, 0, 0, 0, 0, ?, 0, ?, ?, 0, 0, 0, 0)


DY =


(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x)

: x ̸= 0


We assume to be given a pair of plaintexts and the corresponding ciphertexts such that
the plaintext difference is in a set Din corresponding to two active diagonals, and the
ciphertext difference is in a set Dout corresponding to one active anti-diagonal:

Din = {(?, 0, ?, 0, 0, ?, 0, ?, ?, 0, ?, 0, 0, ?, 0, ?)}
Dout = {(0, 0, 0, ?, 0, 0, ?, 0, 0, ?, 0, 0, ?, 0, 0, 0)}

After guessing the values of the key bytes k0
⟨0,2,5,7,8,10,13,15⟩, k1

⟨8,10⟩, k7
⟨3,6,9,12⟩, we can deduce

that some values result in differences in DX and DY . Since this transition holds with
probability 0, we can discard those key candidates. Eventually with a large number N
of pairs of plaintexts, we eliminate most of the key candidates, and we can verify the
remaining candidates exhaustively. We now detail how to perform this attack efficiently,
following Algorithm 1.

Pre-computation. After the MixColumns of the first round, in column 1 and 3, we
want non-zero differences only in the first and the third bytes. There are 216 possible
differences; by inverting the linear operations MixColumns and ShiftRows, we obtain 216

possible differences for the diagonal (bytes ⟨0, 5, 10, 15⟩ and ⟨2, 7, 8, 13⟩ respectively) after
the SubBytes of the first round. We store these 216 differences in the table T1. Similarly,
we build a table T2 with the 210 possible differences before the SubBytes of the last round
by propagating the 210 differences in DY .

25



Din

Structure of 264 chosen plaintexts

⊕

k0
GG

G
G G

G G
G

ARK

SB SR MC

⊕

k1

G
G

D
D ARK

SB SR MC

DX

4-round I.D.
MC

DY

⊕

k6

ARK

SB SR

⊕
G

G
G

G

k7

ARK

Dout

Ciphertexts

Figure 16: 7-round impossible differential attack of [MDRMH10] (figure adapted
from [Jea16]).
Key bytes marked G and D are respectively guessed, and deduced from guessed bytes.

Construction of pairs. We start with 237+ϵ structures of 264 plaintexts such that all the
plaintexts in a structure are identical in bytes 1, 3, 4, 6, 9, 11, 12, and 14. For each set,
we construct

(264

2
)
≈ 2127 pairs. We identify the pairs with a ciphertext difference in Dout

and store them in a list L1; we expect to have N = 2127 × 2−96 × 237+ϵ = 268+ϵ pairs.

Step 1. First, we identify plaintext/ciphertext pairs and values of k0
⟨0,5,10,15⟩ that result

in a zero difference in bytes 1 and 3 after the first MixColumns. To this end, we sort the
list L1 according to the plaintext difference and value in bytes 0, 5, 10 and 15. We obtain
264 sublists of approximatively 24+ϵ pairs. From now on, all the steps are repeated for
all guesses of the key bytes k0

⟨0,5,10,15⟩. For each possible difference δ in bytes 0, 5, 10
and 15 before SubBytes, we confront the difference with each of the possible differences
after SubBytes (θ ∈ T1). Then, using the DDT of the AES Sbox, we extract the input
values of the SubBytes operation of the first round, corresponding to this input and output
difference. Since the key k0

⟨0,5,10,15⟩ has been guessed, we can deduce the value of the
plaintext in bytes 0, 5, 10 and 15, and locate the right sublist of L1 with 24+ϵ pairs that
follow this part of the trail for this key guess. We store those pairs in a list L2; after
iterating over δ and θ we have on average 232+16+4+ϵ = 252+ϵ pairs in L2.

Step 2. During this step, we filter data pairs and values of k0
⟨2,7,8,13⟩ leading to a zero

difference in bytes 13 and 15 after the first MixColumns. To do this, we consider each pair
of L2, and iterate over the possible differences after SubBytes in bytes 2, 7, 8, 13, stored
in T1. Since we have the input and output differences of those Sboxes, we retrieve the
corresponding values from the DDT. By xoring these values with the plaintext, we obtain
the associated key bytes k0

⟨2,7,8,13⟩ and we add this pair to a list indexed by the key bytes,
L3[k0

⟨2,7,8,13⟩].

26



The following steps are repeated for each value of k0
⟨2,7,8,13⟩; we have a list L3[k0

⟨2,7,8,13⟩]
of 252+ϵ+16−32 = 236+ϵ plaintext pairs that satisfy the required difference after the first
round.

Step 3. During this step, we associate each pair of L3[k0
⟨2,7,8,13⟩] to the key bytes k1

8 and
k1

10 such that difference after the MixColumns of round 2 is in DX . We recall that at this
point, the bytes k0

⟨0,2,5,7,8,10,13,15⟩ have already been guessed. Following the AES-128 key
schedule, we can easily deduce bytes k1

0 and k1
2. For each pair of L3[k0

⟨2,7,8,13⟩], we compute
the values of the first and the third column of both plaintexts after the MixColumns of the
first round. Using k1

⟨0,2⟩ We can also compute the values of both states on bytes 0 and 2
after AddRoundKey and SubBytes in the second round, corresponding to bytes 0 and 10
after ShiftRows. Looking at the MixColumns operations in columns 1 and 3 in the second
round, we know the difference in 3 input bytes (2 zeros given by the differential trail, and
the value just recovered) and one output byte (a zero given by the differences in DX).
Therefore we can recover the full input and output difference in those columns by solving
a linear system (the solution is unique because of the MDS property). By inverting the
ShiftRows operation, we recover the difference after the SubBytes operation of the second
round in bytes 8 and 10. The difference before this operation is also known, therefore
we recover the values of bytes 8 and 10 before SubBytes, and deduce the value of k1

⟨8,10⟩
by xoring the value at the end of the first round. We have to repeat this deduction four
time, because we have four different positions of the zero differences in DX . Each pair of
L3[k0

⟨2,7,8,13⟩] suggests on average four candidates for k1
⟨8,10⟩, and we store the pairs in a

list indexed by the key bytes, L4[k1
⟨8,10⟩].

The next steps are repeated for each value of k1
⟨8,10⟩, using the list L4[k1

⟨8,10⟩] with on
average 236+ϵ+2−16 = 222+ϵ pairs leading to a difference in DX .

Step 4. This step determines the key candidates k7
⟨3,6,9,12⟩ that are ruled out with the

available data, for each k0
⟨0,2,5,7,8,10,13,15⟩, k1

⟨8,10⟩. For this purpose, we use a list L5 of 232

bits to mark impossible key candidates k7
⟨3,6,9,12⟩. For each pair of L4[k1

⟨8,10⟩], we consider
all the differences at the end of the sixth round that correspond to a difference in DY ,
stored in T2. From the differences before and after the last SubBytes, we compute the value
of the output of SBox in bytes 3, 6, 9 and 12 using the DDT. Then, using the ciphertext
values, we recover the bytes k7

⟨3,6,9,12⟩ and mark this value in the list L5.
On average we mark 222+ϵ+10 = 232+ϵ keys as impossible, so that each key remains

possible with probability P = (1− 2−32)232+ϵ ≈ e−2ϵ .

Step 5. Finally, we reconstruct the master keys corresponding to the candidates not
marked as impossible (k0

⟨0,2,5,7,8,10,13,15⟩, k1
⟨8,10⟩, k7

⟨3,6,9,12⟩). Following [MDRMH10, BLNS18],
knowing k0

⟨0,2,5,7,8,10,13,15⟩ and k1
⟨8,10⟩ is equivalent to knowing k0

⟨0,2,4,5,6,7,8,10,13,15⟩, but
it is hard to combine this with information about the last round. Therefore, for each
of the 2112 × P candidates, we just consider the 10 known bytes of k0, do an exhaus-
tive search for the 6 missing bytes and recompute k7 to see if it matches the candidate.
This requires 2112 × P × 248 = 2160 × P evaluations of the key schedule. We verify the
2160 × P × 2−32 = 2128 × P remaining candidates with a know plaintext/ciphertext pair,
for a cost of 2128 × P encryptions.

Complexity. There are three dominant terms in the complexity of the attack. First we
need to make 2101+ϵ calls to the encryption oracle. Then, the generation of key candidates
(steps 1 to 4) is dominated by step 4. This step is done 280 times (for each guess of
k0

⟨0,2,5,7,8,10,13,15⟩ and k1
⟨8,10⟩) and during this step we go through the whole list L4[k1

⟨8,10⟩],

27



containing 222+ϵ pairs. For each pair and for each of the 210 differences in T2, we use 4
times the DDT. In order to express this complexity using one encryption as the unit, we
follow the common practice of counting the number of table look-up. A 7-round AES
encryption, requires 20 × 7 table lookups (including the Sboxes in the key schedule),
therefore the cost of 4 DDT lookups is similar to 4/140 = 1/35 encryptions. In total, the
complexity of Step 4 is 280 × 222+ϵ × 210/35. Finally step 5 requires the equivalent of
e−2ϵ · 2160/5 + e−2ϵ · 2128 encryptions, because the cost of the key schedule compared to
an encryption3 is 4/20 = 1/5. In total, the time complexity is:

T = 2101+ϵ + 2112+ϵ/35 + e−2ϵ

· (2160/5 + 2128)

The best time complexity is obtained by taking ϵ = 5.1, leading to a time complexity of
2112.1, a data complexity of 2106.1 chosen plaintexts, and a memory complexity of N = 273.1

words.

6.2.1 Variant with multiple differentials.

Boura, Lallemand, Naya-Plasencia and Suder describe [BLNS18] in a variant of this attack
using multiple output differentials. More precisely, instead of using a fixed column for DY

and a fixed anti-diagonal for Dout, they consider the four possible columns for DY and the
four corresponding anti-diagonal for Dout. The attacks is essentially the same, but there
are two important differences.

To construct the pairs, they start from only 235+ϵ structures of 264 plaintexts, but they
obtain 268+ϵ pairs matching Din and Dout when considering the four anti-diagonal in Dout.
Steps 1 to 3 of the attack are the same a given above, but in step 4 each pair can give
information about different bytes of k7, depending on which anti-diagonal is active in the
ciphertext. For each choice of k0

⟨0,2,5,7,8,10,13,15⟩, k1
⟨8,10⟩, they build a list of possible values

for each anti-diagonal of k7, and each key value remains possible with probability e−2ϵ−2

because one fourth of the data correspond to each diagonal. Finally, in step 5, they merge
the 4 lists, for a cost of 280 × (e−2ϵ−2 · 232)4 = e−2ϵ · 2208.

The total time complexity of this variant is:

T = 299+ϵ + 2112+ϵ/35 + e−2ϵ

· (2208/5 + 2128)

The best time complexity is obtained by taking ϵ = 6.1, leading to a time complexity of
2113, a data complexity of 2105.1 chosen plaintexts, and a memory complexity of N = 274.1

words.
This attack is listed with a time complexity of 2106.88 with ϵ = 6 in [BLNS18], but this

seems to be a mistake. There are not enough details of this attack in [BLNS18] to verify
where their attack would differ from our understanding, but we don’t see how to avoid
having 2112+ϵ iterations at step 4, when we are eliminating 112-bit keys. Applying the
generic formula (7) from the same paper also gives a term 2112+ϵ/35 in the complexity
(written as 2kA+kB N

2cin+cout · C ′
E in [BLNS18]).

6.2.2 Variant with state-test technique.

In [BLNS18], the authors describe in detail a variant using four output differentials and the
state-test technique. This allows them to reduce by one byte the number of key bytes to
be guessed, but they must use smaller structures, and this increases the data complexity.

The attack requires N = 268+ϵ chosen plaintexts, with a time complexity of:

T = 2107+ϵ + 2104+ϵ/35 + e−2ϵ

· (2200/5 + 2128)
3This ratio is given as 2−3.6 ≈ 1/12 in [BLNS18], but we don’t see how to achieve this result. In any

case the impact on the total complexity is negligible because it is compensated by a very small change of ϵ.

28



Algorithm 1 Construction of possible key candidates (Steps 1 to 4)
Require: Tables T1, T2 and a list L1 of 268+ϵ pairs satisfying Din and Dout.

Sort L1 according to the plaintext difference and value in bytes 0, 5, 10 and 15.
Let L1[δ][x] be the sub-list with difference δ and value x in those bytes.
for all k0

⟨0,5,10,15⟩ do
L2 ← ∅
for all 32-bits difference δ do

for all difference θ in T1 do ▷ bytes ⟨0, 5, 10, 15⟩
Compute value(s) x⟨0,5,10,15⟩ before first SubBytes from DDT.
Add all pairs of L1[δ][x⟨0,5,10,15⟩ ⊕ k0

⟨0,5,10,15⟩] to L2.
L3 ←

[
∅, for all k0

⟨2,7,8,13⟩

]
for all pairs ((p, p′), (c, c′)) in L2 do

for all difference θ in T1 do ▷ bytes ⟨2, 7, 8, 13⟩
Compute value(s) x⟨2,7,8,13⟩ before first SubBytes from DDT.
Add pair to L3[x⟨2,7,8,13⟩ ⊕ p⟨2,7,8,13⟩].

for all k0
⟨2,7,8,13⟩ do

L4 ←
[
∅, for all k1

⟨8,10⟩

]
Compute k1

⟨0,2⟩ using the AES key schedule.
for i in {0, 1, 2, 3} do

for all pairs in L3[k0
⟨2,7,8,13⟩] do

Deduce k1
⟨8,10⟩, assuming that diagonal i is inactive at end of round 2.

Add pair to L4[k1
⟨8,10⟩].

for all k1
⟨8,10⟩ do

L5 ←
[
True, for all k7

⟨3,6,9,12⟩

]
for all pairs ((p, p′), (c, c′)) in L4[k1

⟨8,10⟩] do
for all difference θ in T2 do ▷ bytes ⟨12, 13, 14, 15⟩

Compute value(s) x⟨15,14,13,12⟩ after last SubBytes from DDT.
L5[x⟨15,14,13,12⟩ ⊕ c⟨3,6,9,12⟩]← False.

for all k7
⟨3,6,9,12⟩ do

if L5[k7
⟨3,6,9,12⟩] then

Check key candidate k0
⟨0,2,5,7,8,10,13,15⟩, k1

⟨8,10⟩, k7
⟨3,6,9,12⟩.

The optimal time complexity4 is 2113 with ϵ = 6.

6.3 Our improvement
We now explain how to improve the first attack using properties of the key schedule.
We keep steps 1 to 4 as given in Algorithm 1, but we improve the reconstruction of the
master key from bytes of the first and last round keys (Step 5). With this improvement,
generating the key candidates is actually cheaper than verifying them with a known
plaintext/ciphertext pair. We use the following property of the key schedule, in order to
guess the missing key bytes of k0 iteratively, and to efficiently verify whether they match
the known bytes of k7.

Proposition 1. Let kr
i a byte of an AES-128 subkey. If the byte is in the last column

(12 ≤ i < 16), then it depends on only 32 bits of information of the master key. If the
4In [BLNS18] they report the complexity as 2113.1 with ϵ = 6.1.

29



byte is in the second or third column (4 ≤ i < 12), then it depends on only 64 bits of
information of the master key.

Proof. Bytes in the last column correspond to basis vectors in the new representation,
following Equation (1) (for instance kr

12 = sr
12). Therefore they depend only on one 32-bit

chunk at any given round (e.g. k7
12 can be computed from s0

⟨0,1,2,3⟩).
Bytes in the second column correspond to the sum of two basis vector in the new

representation (for instance kr
6 = sr

14 ⊕ sr
4). Since the two elements do not belong to the

same chunk, the byte depends on two 32-bit chunks at any given round (e.g. k7
6 can be

computed from s0
⟨0,1,2,3,8,9,10,11⟩).

Similarly, bytes in the third column correspond to the sum of two basis vector in the
new representation (for instance kr

9 = sr
15 ⊕ sr

8). Therefore they depend only on two 32-bit
chunks at any given round (e.g. k7

9 can be computed from s0
⟨0,1,2,3,12,13,14,15⟩).

Bytes in the first column correspond to the sum of four basis vector from four different
chunks, therefore they depend on the full state in general (for instance kr

3 = sr
13 ⊕ sr

10 ⊕
sr

7 ⊕ sr
0).

Initially we are given the values of k0
⟨0,2,4,5,6,7,8,10,13,15⟩ and k7

⟨3,6,9,12⟩. According to
the property above, k7

12 can be computed from k0
15, k0

14 ⊕ k0
10 ⊕ k0

6 ⊕ k0
2, k0

13 ⊕ k0
5, k0

12 ⊕ k0
8,

k0
14, and k7

6 can be computed from k0
15, k0

14 ⊕ k0
10 ⊕ k0

6 ⊕ k0
2 , k0

13 ⊕ k0
5, k0

12 ⊕ k0
8, k0

13,
k0

12 ⊕ k0
8 ⊕ k0

4 ⊕ k0
0, k0

15 ⊕ k0
7, k0

14 ⊕ k0
10. Therefore we can verify their value after guessing

k0
⟨12,14⟩.

At this point two chunks are completely known: s0
⟨0,1,2,3⟩ and s0

⟨8,9,10,11⟩ or equivalently
s7

⟨12,13,14,15⟩ and s7
⟨4,5,6,7⟩. In particular, we can deduce the value of k7

13 = s7
8 = s7

15 ⊕ k7
9,

which can also be computed from s0
⟨12,13,14,15⟩, i.e. from k0

12, k0
15 ⊕ k0

11 ⊕ k0
7 ⊕ k0

3, k0
14 ⊕ k0

6,
k0

13 ⊕ k0
9. Therefore, we only need to guess k0

11 ⊕ k0
3 and k0

9 to verify k7
13.

Finally, we focus of the remaining 32-bit chunk, corresponding to s0
⟨4,5,6,7⟩ and s7

⟨0,1,2,3⟩.
We already have the value of s0

4 = k0
14 and s0

6 = k0
12 ⊕ k0

4, and we can compute s7
0 =

s7
10 ⊕ s7

13 ⊕ s7
7 ⊕ k7

3. Using a pre-computed table, we recover the 28 values of the chunk
corresponding to those constraints.

Algorithm 2 describes the full process. The cost of this step is e−2ϵ × 2128/5, where
1/5 is the cost of computing the key schedule compared to a full encryption. Finally the
total time complexity of our attack is:

T = 2101+ϵ + 2112+ϵ/35 + e−2ϵ

· (2128/5 + 2128)

The best time complexity is obtained by taking ϵ = 3.9 leading to a time complexity of
2110.9, a data complexity of 2104.9 chosen plaintext, and a memory complexity of 271.9

words.
We remark that the improvement is only applicable when the last MixColumns is

omitted. In general, it does not affect the complexity of attacks, because removing the
last MixColumns defines an equivalent cipher up to a modification of the key schedule.
However, when attacks exploit relations between the subkeys, the relations are simpler if
the last MixColumns is omitted [DK10].

6.4 Application to Related-Key Impossible Differential Attacks against
AES-192

In [ZWZF07], Zhang et al. describe several related-key impossible differential attacks
against 7 and 8 rounds of AES-192. These attacks are not the best know related-key
attacks against AES-192 (an attack on the full 12 rounds is given in [BK09]), but the
same methods explained in the previous section can be applied to slightly improve them.

30



Algorithm 2 Improved version of the key candidate checking (Step 5)
Require: A key candidate k0

⟨0,2,5,7,8,10,13,15⟩, k1
⟨8,10⟩, k7

⟨3,6,9,12⟩.
for all k0

⟨12,14⟩ do
Compute s7

⟨12,13,14,15⟩ from s0
⟨0,1,2,3⟩

if k7
12 = s7

12 then
Compute s7

⟨4,5,6,7⟩ from s0
⟨8,9,10,11⟩

if k7
6 = s7

4 ⊕ s7
14 then

T ←
[
∅, for all k7

15
]

for all k0
11, k0

1 ⊕ k0
9 do

Compute s7
⟨0,1,2,3⟩ from s0

⟨4,5,6,7⟩
Add (k0

11, k0
1 ⊕ k0

9) to T [s7
0]

for all k0
9, k0

3 ⊕ k0
11 do

Compute s7
⟨8,9,10,11⟩ from s0

⟨12,13,14,15⟩
if k7

9 = s7
8 ⊕ s7

15 then
for all (k0

11, k0
1 ⊕ k0

9) in T [s7
13 ⊕ s7

10 ⊕ s7
7 ⊕ k7

3] do
Check the master key k0 with a pair (p, c).

Zhang et al. introduce three attacks on 8-round AES-192 with different time/data trade-
offs. The first one works as follow: 264.5 chosen plaintext are taken. They are split in
two pools of 263.5, and a portion 2−56 of the pairs remains after several filtering. In
this attack, 263.5×2−56 = 271 pairs can be used for each guess of 112 subkey bits (14
bytes) of the last two subkeys: bytes k8

⟨0,1,2,4,5,7,8,10,11,12,13,14,15⟩ and w7
3, where wi =

MixColumns−1(ki). Then, each pair discards on average one possible value of an eight
bytes guess of k0 (bytes k0

⟨1,2,6,7,8,11,12,13⟩). So, the probability that a wrong candidate
remains is 264 × (1 − 1/264)271 ≈ 264 × e−27 ≈ 2−120 for each 112 bits guess. The total
expected number of suggestions is 2112 × 2−120 = 2−8, and in average only the right
candidate remains. To obtain the corresponding master key, an exhaustive search of the
missing bits is needed: starting from the 14 bytes of k7 and k8, 10 bytes are missing, and
then a filtering can be done using k0, so in average 216 master keys will be given, and the
good one is found using a plaintext/ciphertext pair. The time complexity is dominated by
the first part of the attack (the generation of key candidates) which costs approximately
271 × 2112/26 = 2177 encryptions5. The data and the memory complexity are respectively
264.5 plaintexts and 269 bytes.

This attack can be improved in several ways, using previously known techniques,
and our new representation of the key schedule. The first improvement we propose is
to keep more than one candidate, in order to reduce the time and data complexities
(following [BNS14]). This can be done until the cost of the reconstruction part is lower or
equal than the cost of the generation of key candidate part. Starting from 264+ϵ pairs (after
filtering), in average 264 × e−2ϵ candidates remains for each 112-bit guess, so in total they
are 2112+64×e−2ϵ = 2176×e−2ϵ subkey candidates. This step cost 2112+64−6+ϵ encryptions.
Knowing that those subkey candidates are composed of 14 bytes from k7 and k8, and 8
bytes from k0, in order to go back to the corresponding master keys, an exhaustive search
of 10 bytes is needed, so the cost of this part is 2176 × e−2ϵ × 280/7 because the cost of
the key schedule compared to an encryption is 1/7. Finally, 2176 × e−2ϵ × 216 master
keys are checked using a plaintext/ciphertext pair to find the right master key. The total

5As it is done in [ZWZF07], we consider here that an encryption corresponds to 26 memory accesses.
However, this is debatable, because accessing in a table of size 264 is an expensive operation.

31



complexity is:

T = 2176+ϵ/26 + e−2ϵ

× (2256/7 + 2192) D = 261+ϵ/2

The best time complexity is 2175.9 and it is obtained for ϵ = 5.9. The corresponding data
complexity is 264.

The second improvement comes from the key bridging technique ([DKS10, DKS15]).
This technique deduces the byte in position i (0 ≤ i < 4) of the fourth column of k0 from
four bytes of k8: the bytes i in the first column, i and i + 1 in the second column, and i + 1
in the fourth column. With the parameters described above, we can exploit a single key
bridging relation (for i = 0), but we propose a variant of the attack in order to exploit 2
of them. Indeed, guessing k8

⟨0,1,3,4,5,6,7,9,10,11,12,13,14⟩ permits to partially decrypt the last
round in column 0, 1 and 3, and then by reversing the role of columns 2 and 3 compared to
the original attack, we obtain a similar result. The key bridging can be applied twice, for
i = 0 and i = 1, corresponding to bytes k0

⟨12,13⟩ that are guessed in the attack. A simple
way to compute the complexity of this variant is to proceed as for the normal attack, and
to remove the inconsistent candidates before the reconstruction phase. This is a 16-bit
filtering, and 2160 × e−2ϵ candidates remain. Then, the cost of the reconstruction phase is
reduced to 2160 × e−2ϵ × 280/7. The total time complexity is now:

2176+ϵ/26 + e−2ϵ

× (2240/7 + 2192)

The best tradeoff is obtained with ϵ = 5.6, with time complexity 2175.6 and data complexity
263.8.

The third improvement is to use our new representation in order to recombine infor-
mation from subkeys in the first and last rounds. Rather than guessing 10 bytes in the
reconstruction of master key phase, we guess the 5 bytes k7

⟨9⊕13,11⊕15,12,14⟩ and k8
15 in order

to have a complete chunk in our new representation (for conciseness, we use the notation
kr

⟨i,j1⊕j2,...⟩ to denote kr
i , kr

j1
⊕kr

j2
, . . .). We obtain half of the information bits of k0, and we

filter the remaining candidates according to the value of three bytes: k0
⟨2⊕6,8⊕12,7⟩, leaving

2160 × e−2ϵ × 28·5−8·3 candidates. Then the value of the byte k8
8 is computed from w7

3 and
k8

⟨4,5,6,7,9,10,11⟩, and the 5 missing bytes of the last key schedule state are guessed. The sec-
ond chunk is therefore complete, and the remaining candidates are filtered using the three
others bytes conditions from k0 with a complexity of 2176× e−2ϵ × 28×5/7 = 2216× e−2ϵ

/7.
We can further reduce the complexity to 2208× e−2ϵ

/7 using pre-computed tables as in the
attack of section 6.3: after guessing k8

15, and before guessing k7
⟨9⊕13,11⊕15,12,14⟩, 232 values

of k7
⟨8⊕12,10⊕14,13,15⟩ and k8

2 can be precomputed. Finbally, we obtain the complexity:

T = 2176+ϵ/26 + e−2ϵ

× (2208/7 + 2192) D = 261+ϵ/2

The value ϵ = 4.6 minimize the time complexity which is reduced to 2174.7 (with data
complexity 263.3).

The two other attacks are improved in the same way. In the second attack, we obtain
a complexity of

T = 2152+ϵ/26 + e−2ϵ

× (2208/7 + 2192) D = 281+ϵ

It is minimal for ϵ = 5.4; the corresponding time and data complexities are 2151.4 and
286.4 which is slightly lower than the complexities initially proposed in [ZWZF07] (2153

and 288).
In the third attack, we obtain a complexity of

T = 2135+ϵ/26 + e−2ϵ

× (2208/7 + 2192) D = 2105+ϵ

It is minimal for ϵ = 5.7; the corresponding time and data complexities are 2134.8 and
2110.7 improving from 2136 and 2112.

32



6.5 Application to Impossible Differential against Rijndael-256-256
The members of the Rijndael family [DR98, DR02] selected by the NIST to be standardized
as the AES have a block size of 128 bits, but the Rijndael family allows variable block and
key lengths, ranging from 128 to 256 bits in steps of 32 bits. In this subsection, we slightly
improve the impossible differential attack against a non-AES Rijndael variant, denoted
Rijndael-256-256, with a block size and key size of 256 bits. In Rijndael-256-256, the
internal state is represented as a 4× 8 matrix of bytes, and the key schedule is the same
as for the AES-256, except that a 256-bit subkey is XORed in each encryption round, so
that more subkeys need to be computed. The SubBytes, MixColumns, and AddRoundKey
operations work as for the AES, but the ShiftRows has different rotations: the rows are
cyclically shifted by 0, 1, 3 and 4 bytes to the left in Rijndael-256-256.

The best attack known against Rijndael-256-256 is the 10-round impossible differential
attack proposed in [LSG+18]. Using our new representation of the 256-bit AES key
schedule, we reduce the complexity of the reconstruction part, and thus the time and
data complexity of this attack. We start by briefly summarizing the attack proposed
in [LSG+18], focusing on the key recovery. This attack has 3 steps:

Step 1. Starting from 2n structures (each of 2128 plaintexts), 2n+255 pairs are consid-
ered. The plaintexts are encrypted, and the pairs are filtered with a 192-bit condition
on the ciphertexts, so that 2n+63 pairs remain. For each pair, 267 impossible values
of k0

⟨0,3,4,5,9,12,14,16,17,18,19,21,23,26,30,31⟩, k1
⟨0,5,14,19⟩, w9

⟨0,29⟩ and k10
⟨0,15,18,19,22,25,28,29⟩ (30

bytes) are found. Given one pair, the probability that a wrong key is not discarded is
1− 267−240 = 1− 2−173. Starting from 2n+63 pairs, 2240 × (1− 2−173)2n+63 ≈ 2240 × e−2ϵ

key candidates remain, with ϵ = n− 110. This step costs 2n+63+67/(8× 10) = 2ϵ+237/10
encryptions according to [LSG+18].

Step 2. For each remaining 30-byte key candidate, we need to find the corresponding
master keys. To do that, the authors of [LSG+18] start from 18 information bytes of k0

(16 bytes of k0 and 2 bytes of k1 — 2 bytes of k1 are not used), perform an exhaustive
search of the 14 missing bytes, and filter according to the 12 other bytes. This costs
2112× 2240× e−2ϵ

/5 = 2352× e−2ϵ

/5 (assuming that the cost of the key schedule compared
to an encryption is 1/5), and results in 2112 × 2240 × e−2ϵ × 2−96 = 2256 × e−2ϵ possible
master keys.

Step 3. Each of those possible master keys is checked using a plaintext/ciphertext pair.
The time complexity of this step is 2256 × e−2ϵ encryptions.

In total, the time complexity is:

2ϵ+237/10 + e−2ϵ

(2352/5 + 2256)

The best time complexity is 2240 and it is obtained for ϵ = 6.3.

Our improvement. To improve this attack, we revisit the reconstruction part (Step 2):
instead of guessing 14 bytes of the first subkey, and then filtering using k10, w9 and k1,
we proceed chunk by chunk. We start with shifted versions of the impossible differential
proposed in [LSG+18] in order to improve the filtering, with 6 of the 10 bytes that can be
used after guessing only 3 chunks in our new representation. More precisely, the upper
part and the lower part are shifted by one byte to the left. The bytes guessed in step
1 are therefore also shifted and become k0

⟨0,1,5,8,10,12,13,14,15,17,19,22,26,27,28,31⟩, k1
⟨1,10,15,28⟩,

w9
⟨25,28⟩ and k10

⟨11,14,15,18,21,24,25,28⟩. By proceeding chunk by chunk, we reduce the com-
plexity of the reconstruction part from e−2ϵ × 2352/5 to e−2ϵ × 2288/5, with the operations
detailed in Table 6.

33



Table 6: Reconstruction phase for the 10-round Rijndael-256-256 attack using our new
representation of the key schedule. The time complexity is given in key schedule operations
for one candidate, so to obtain the total time complexity of this phase in encryptions, the
complexity given in the last column must be multiplied by e−2ϵ × 2240/5.

Bytes Chunks
To guess To deduce To filter of k0 of k10 Candidates (w/ tables)

k0
⟨30,2⊕6,3⊕7⊕11⟩

k0
⟨4,7,23,29⟩ 232

k0
16⊕20⊕24 232

k10
⟨15,24⊕28⟩ 232−16 = 216

k0
⟨6,9,25⟩ 216+24 = 240 (224)

k10
⟨14,11⊕15⟩ 240−16 = 224

k0
⟨11,20,21⟩ 224+24 = 248 (232)

k10
⟨21⊕25,28⟩ 248−16 = 232

k0
⟨18,24⟩ 232+16 = 248 (232)

k10
⟨18,21⟩, w9

⟨25,28⟩ 248−32 = 216

We further reduce the complexity to e−2ϵ × 2272/5 using pre-computed tables as in the
attack of section 6.3. We build a table of size 264 with the full computation of the third
chunk. The table is sorted so that for each 30-byte candidate, after guessing k0

⟨4,7,23,29⟩, we
directly recover the 28 values of k0

⟨6,9,25⟩ compatible with k10
15,24⊕28 from the table, instead

of trying 224 choices of k0
⟨6,9,25⟩ and then filtering using k10

⟨14,11⊕15⟩. We also build similar
tables for the other two chunks.

The rest of the attack is identical to what has been described above. The resulting
complexity is

2ϵ+237/10 + e−2ϵ

(2272/5 + 2256)

The best time complexity is 2238.4 and it is obtained for ϵ = 4.6. The corresponding data
complexity is 2128+n = 2242.6.

7 Application to Square Attack
In the section, we show how our new representation can slightly improve the Square
attack with partial sums on 8-round AES-192 proposed in [FKL+01]. This attack is an
extension of the original Square attack ([DKR97]) which relies on the study of the evolution
of structural properties after several rounds. We first describe the attacks presented in
[DKR97, DR98] and improved in [FKL+01], and then we explain how our representation
of the key schedule can further improve these attacks. For consistency, all the reduced
versions of AES considered in this section include the final MixColumns. In particular,
this is necessary for the 8-round attack, in order to exploit key schedule relations on the
equivalent subkeys wi = MixColumns−1(ki).

The 3-round distinguisher [DKR97]. We start with the definition of a δ-set and the
main results concerning its evolution through AES operations (more details are available
in [DR02]). A δ-set is a set of 28 AES states such that some bytes are active, i.e. each of
the 256 values are present exactly once in the set, and the others are passive, i.e. their
value is constant in all states. AddRoundKey and SubBytes preserve active and passive
bytes, and ShiftRows only shifts them. Concerning MixColumns, the output structure

34



0⃝
⃝
⃝

⃝
AK ⃝

⃝
⃝

⃝

1
SB⃝

⃝
⃝

⃝
SR

⃝
⃝
⃝
⃝

MC
⃝
⃝
⃝

AK

2
SB SR MC

δ
AK

δ

3
SB

δ
SR

δ
MC

δ
δ
δ
δ

AK
δ
δ
δ
δ

4
SB

δ
δ
δ
δ

SR
δ

δ
δ

δ MC
δ
δ
δ
δ

δ
δ
δ
δ

δ
δ
δ
δ

δ
δ
δ
δ

AK
δ
δ
δ
δ

δ
δ
δ
δ

δ
δ
δ
δ

δ
δ
δ
δ

5
SB

δ
δ
δ
δ

δ
δ
δ
δ

δ
δ
δ
δ

δ
δ
δ
δ

SR
δ
δ
δ
δ

δ
δ
δ
δ

δ
δ
δ
δ

δ
δ
δ
δ

MC
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

AK
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

6
SB

□
SR

□
AK

*

□
MC

■
■
■
■

7
SB

■
■
■
■

SR

■
■

■
■

AK
*

■
■

■
■

MC
♥
♥
♥
♥

♣
♣
♣
♣

♦
♦
♦
♦

♠
♠
♠
♠

8
SB

♥
♥
♥
♥

♣
♣
♣
♣

♦
♦
♦
♦

♠
♠
♠
♠

SR
♥
♣
♦
♠

♣
♦
♠
♥

♦
♠
♥
♣

♠
♥
♣
♦

AK
*

♥
♣
♦
♠

♣
♦
♠
♥

♦
♠
♥
♣

♠
♥
♣
♦

MC

Figure 17: Square attack on 8 rounds. The bytes with a ⃝ are the ones used to build the
herds. Blue bytes (marked with a δ) represent active bytes. The green bytes (marked with
a 0) are those such as the sum of all the occurrences of this byte in the herd is equal to 0.
Pink bytes represent the bytes required to compute the value of the byte in position 12 at
the end of round 5, in order to check the 0-sum.

35



⃝
⃝
⃝

⃝

0 1...

□

■
■

6 7

■
■ ♥
♣
♦
♠

♣
♦
♠
♥

♦
♠
♥
♣

♠
♥
♣
♦

7 8

Figure 18: Representation of the position of the bytes to guess in the 192-bit key schedule
states. The bytes of subkeys 6, 7 and 8 are from equivalent subkeys wi, while the bytes of
the first subkey are not.

depends on the number of passive and active bytes among the 4 input bytes. When the
four bytes of a column are passive, then they remain passive. When a single byte is active
and the others are passive, the δ-set structure is preserved and the four bytes become
active. In the others cases (more than one active byte), the δ-set structure is lost. However,
a property is preserved: if the input is a δ-set, then the XOR of the 256 outputs is zero
because the XOR of the elements of a δ-set is zero, and MixColumns is a linear operation.

The starting point of the Square attack is a 3-round distinguisher starting from δ-set
with a single active byte. This is represented by rounds 3 to 5 of Figure 17: the active
bytes are in blue, and the bytes whose XOR is zero are in green. At the end of the first
round, we have a δ-set with a column of active bytes; at the end of the second round a
δ-set with all bytes active; and at the end of the third round, the sum of the 256 states is
zero. This property allows to distinguish 3-round AES from a random permutation.

Key recovery attacks by adding some rounds on the ciphertext side [DKR97]. To do
a 4-round key recovery, we ask for the encryption of a δ-set, and compute the sum of a
state byte at the end of round 3 after a partial guess of k4. If the sum is not zero, we know
that the key guess is wrong. On the other hand, there is a probability 2−8 that a wrong
guess leads to a zero sum, so we need to repeat the previous steps with several δ-sets in
order to eliminate false positives. Instead of guessing a full column of k4, we swap the
MixColumns and the AddRoundKey operations in round 4, replacing k4 by the equivalent
key w4. We can compute the value of one byte of state at the end of round 3 from 4 bytes
of ciphertext, and one byte of w4.

The same strategy gives a 5-round key recovery: one byte of state at the end of round
3 can be computed from 16 bytes of ciphertext, one byte of w4 and one column (4 bytes)
of w5. On AES-192 and AES-256, we can extend it to a 6-round key recovery: one byte of
state at the end of round 3 can be computed using 1 + 4 + 16 = 21 bytes of equivalent key.
Moreover, those 21 bytes are not independent if we take into account the key schedule
relations, so we can lower the number of bytes to guess to 18 for AES-192 and to 20 for
AES-256, by wisely selecting the byte position of the zero sum we want to check [FKL+01].

36



Adding one round on the plaintext side [DKR97, FKL+01]. We can also add one round
before the distinguisher, in order to obtain a δ-set at the end of round 1. We consider a
set of 232 plaintexts, by fixing all the bytes of plaintexts except four bytes of a diagonal.
Then, for each guess of four bytes of the first subkey (corresponding to the same diagonal),
we can select a subset of 28 messages that form a δ-set at the end of the first round, and
apply the same attack as in the previous paragraph. In [FKL+01], another variant that
does not require a key guess is presented: if all the 232 texts are taken, we know that for
any key guess, the 232 texts split into 224 δ-sets. Therefore, the XOR of the 232 texts at
the end of round 4 must be zero, independently of the first round key. This technique
reduces the number of key guesses to 28·5, but each key guess becomes more expensive to
verify because they must be performed for 232 texts instead of 28. The 6-round attack
requires 232 data and 232 · 28·5 = 272 time.

The partial sums technique [FKL+01]. The partial sum technique reduces the complexity
the 6-round attack. The goal is to compute the XOR of a byte at the end of round 4,
over 232 ciphertexts of a 6-round AES. Let c

(i)
j be the j-th byte of the i-th ciphertext

(0 ≤ j < 16, 0 ≤ i < 232). For example, to compute the byte 12 at the end of round 4 for
the ciphertext i, we need to guess 5 equivalent subkey bytes (w5

12 and w6
⟨3,6,9,12⟩) and to

use the 4 ciphertext bytes c
(i)
⟨3,6,9,12⟩. In a generic way, let us denote the required bytes as

k0̃, . . . , k4̃ and c
(i)
0̃ , . . . , c

(i)
3̃ . The sum to be computed is:⊕

i

S−1
[
S0[c(i)

0̃ ⊕ k0̃]⊕ S1[c(i)
1̃ ⊕ k1̃]⊕ S2[c(i)

2̃ ⊕ k2̃]⊕ S3[c(i)
3̃ ⊕ k3̃]⊕ k4̃

]
where Sj corresponds to an inverse Sbox followed by a multiplication by an element from
the inverse MixColumns matrix in the AES field.

First we observe that the sum only depends on the parity of occurence of each value of the
the bytes c0̃, . . . , c3̃. Thereforefore, we build a list L0 of 232 counters, so that L0[(c0̃, . . . , c3̃)]
is the number of occurrence of this quadruplet of values in the 232 ciphertexts c(i), computed
modulo 2.

The partial sum technique associates a series of partial sums xℓ to each ciphertext
value (c0̃, . . . , cℓ̃), and each key guess (k0̃, . . . , kℓ̃):

xℓ =
ℓ⊕

j=0
Sj [cj̃ ⊕ kj̃ ], 1 ≤ ℓ < 4.

The partial sums are computed iteratively, reducing the number of counters after each key
guesses. We detail in Algorithm 3 the partial sum technique, which allows to reduce the
time complexity from 272 operations to 4 · 248.

Using herds to add two rounds on the plaintext side [FKL+01]. With two rounds
before the distinguisher, we could follow the same process as the one round extension,
starting with the full codebook (2128 texts). At the end of round 2, the data splits into
2120 δ-sets, therefore the XOR of all the 2128 bytes in a fixed position at the end of round
5 is zero, as previously. However, this can’t be used as a distinguisher because the sum is
zero for any permutation (in particular, during the key recovery it would be zero even for
a wrong key guess).

Instead, [FKL+01] defines a herd as a set of 2120 plaintexts that share a fixed value
for one byte at the end of the first round. After the first rounds, a herd can be split into
288 sets of 232 texts, with 12 fixed bytes and an active diagonal; after two rounds it splits
into 2112 δ-sets. Therefore summing a byte at the end of round 5 over a herd results in a
zero sum; this only happens with probability 2−8 for a random permutation. The set of

37



Algorithm 3 Partial Sum technique
Require: A list L0 which contains the number of occurrence (mod 2) of each quadruplet

(c0̃, c1̃, c2̃, c3̃).
for all k0̃, k1̃ do

L1 ← [0, for all (x1, c2̃, c3̃)]
for all (c0̃, c1̃, c2̃, c3̃) such that L0[(c0̃, c1̃, c2̃, c3̃)] = 1 do

Compute x1 and increment L1[(x1, c2̃, c3̃)]
for all k2̃ do

L2 ← [0, for all (x2, c3̃)]
for all (x1, c2̃, c3̃) such that L0[(x1, c2̃, c3̃)] = 1 do

Compute x2 and increment L2[(x2, c3̃)]
for all k3̃ do

L3 ← [0, for all (x3)]
for all (x2, c3̃) such that L0[(x2, c3̃)] = 1 do

Compute x3 and increment L3[(x3)]
for all k4̃ do

s← 0
for all (x3) such that L3[(x3)] = 1 do

Add S−1[x3 ⊕ k4̃] to s

The sum for the subkey guess (k0̃, k1̃, k2̃, k3̃, k4̃) is s

plaintext corresponding to a herd can be identified after guessing four bytes (a diagonal)
of k0. [FKL+01] also describe smaller herds, as sets of 2104 plaintexts that share a fixed
value for three byte in the same column at the end of the first round. These smaller herds
also split into δ-sets at the end of the second rounds. Given the full codebook, 226 such
herds can be constructed after guessing a diagonal of k0, by varying the position of the
active byte at the end of the first round. Since we do not need all 226 herds, [FKL+01]
propose to take only 2128 − 2119 texts. This reduces slightly the data complexity while
having on average half of the herds undamaged, and thus usable, for each key guess.

The 8-round attack [FKL+01]. By combining all these techniques, [FKL+01] obtains
an 8-round attack against AES-192 and AES-256. We focus on the attack against AES-192
with a data complexity of 2128 − 2119 and a time complexity of 2188. We consider 8 full
rounds, i.e. a XOR with a whitening subkey followed by 8 rounds including the final
MixColumns. In the rounds 6 to 8, the MixColumns and the AddRoundKey are swapped
using the equivalent subkeys wi. A representation of this attack is given in Figure 17.

Herds are built as previously described by guessing a diagonal of k0 and then grouping
the texts which have the same value on three bytes of the same column (corresponding
to the shifted diagonal) after the MixColumns of round 1. The condition to be checked is
whether the XOR of all the partially decrypted texts of a herd of size 2104 is zero or not, in
a fixed position at the end of round round 5. To compute this XOR, the whole equivalent
subkey w8 need to be guessed, as well as 4 bytes of w7 and one byte of w6. To minimize
the time complexity, we apply five times the partial sum technique: first, we apply this
technique four times on each anti-diagonal (respectively symbolized by ♥,♣,♦,♠) of the
ciphertext in order to get the value of one of the four bytes of an anti-diagonal (represented
by ■) of round 7 before the MixColumns, and then we apply one more time the partial
sum technique at a “second level” in order to compute the desired sum, using the four
bytes of the anti-diagonal.

In this attack, we exploit key schedule relations to deduce some subkey bytes from
others. In particular, using trivial key schedule relations, we know that the knowledge of

38



the subkey k8 lead to the knowledge of two columns of k7 and one column of k6. However,
when using the partial sum technique, we guess (equivalent) subkey bytes one by one, so
we can’t use those relations (we need a full column of the equivalent key to recover bytes
of the actual key). Nevertheless, there are also relations on equivalent subkeys such as
equation (1) in [DK10]. Indeed, if C0, C1 and C2 are columns such that C0 = C1 ⊕ C2 (a
trivial key schedule relation), then MixColumns(C0) = MixColumns(C1)⊕MixColumns(C2)
by linearity of MixColumns. For this reason, we focus on an attack against a reduced AES
including the final MixColumns6. By wisely choosing the byte position we target in round 5,
we can determine the two required bytes of w7 and the byte of w6 from two anti-diagonals
of w8 (with symbolsby ♥ and ♣). The positions of the bytes that we use are shown in
Figure 18.

The order of operations is also very important as it can significantly influence the
complexity. We describe an attack slightly different from the one in [FKL+01] which
has some inconsistencies7. We target the byte in position 12 at the end of round 5,
because this byte position allows to exploit 3 key schedule relations, and will also be
convenient for the improvements proposed in the next paragraphs. In this attack, we start
by guessing four bytes of k0 to build our herds. Then, we select a herd and initialize 2128

counters (c0, · · · , c15). The partial sum technique is applied a first time on an anti-diagonal
(bytes marked ♥ on Figure 17): 4 key bytes are guessed (w8

⟨0,7,10,13⟩) and 2104 counters
remains because the counters associated to the bytes c⟨0,7,10,13⟩ have been replaced by
counters associated to the byte in position 3 before MixColumns of round 7. Then we
proceed similarly for the anti-diagonal w8

⟨1,4,11,14⟩ (bytes marked with ♣) and we obtain
280 counters for a total of 96 guessed bits. At this point, using key schedule relations
on equivalent subkeys, bytes w7

3 and w7
6 can be deduced because w7

3 = w8
7 ⊕ w8

11 and
w7

6 = w8
10 ⊕ w8

14. Using those keys, the first step of the partial sum on the “second level”
can be computed from the counters associated to bytes 3 and 6 before MixColumns in
round 7, reducing the number of counters to 272. Then, going back to partial sum on
the “first level”, bytes w8

⟨2,5,8,15⟩ (represented by ♦) are guessed progressively as the total
number of counters decrease. Then, it is possible to do one more step of the partial sum
on the “second level” by guessing w7

9. Finally, the last anti-diagonal is guessed (bytes
marked with ♠) gradually, and then w7

12 is guessed and w6
12 is deduced in order to finish

the partial sum on the “second level”. This allows to check if the desired sum is zero or
not. We detail all the steps of this attack and the subkey bytes involved in each state in
Table 7.

We observe that there are 4 steps requiring 2192 operations, so taking the convention
that an encryption is equivalent to 28 operations (following [FKL+01]), we obtain that the
complexity for one herd is 4× 2192× 2−8 = 2186 encryptions. The authors of [FKL+01] say
that about 24 herds are needed but the complexity is dominated by the first 4 herds, so the
time complexity is approximately 4× 2186 = 2188. Before explaining how to improve this
attacks with our representation of the key schedule, we present some known techniques to
reduce the complexity.

More precise cost evaluation. Looking at the detail of the complexity more precisely,
we notice that during the processing of the first herd, there are 4 steps of complexity 2184,
but only three during the processing of the second herd, because for the guess of the last
key byte (w7

12) we have on average only one candidate that is coherent with the first herd.
For the third herd there are two steps with complexity 2184, and only one for the fourth
herd. Therefore, the complexity is reduced to (4 + 3 + 2 + 1) · 2184 = 2187.3.

6The description in [FKL+01] does not explicitly specify whether the MixColumn is present in the last
round or not, nor whether it exploits direct relations of the key schedule or relations on equivalent subkeys.

7For example, they guess columns of k8 whereas the presence of the ShiftRows on round 8 requires
bytes located on an anti-diagonal for the partial sums.

39



Table 7: Summary of the Square attack on 8-round AES-192 for one herd. The complexity
is given in number of operation, and we consider one encryption is equivalent to 28

operations. The complexity of the four last steps (marked with ∗) can be reduced using
the Key Bridging technique ([DKS10, DKS15]).

Nb of Key bytes Nb of guesses
ctr Guess Deduce Symbol New Total Complexity Relations
2128 k0

⟨1,6,11,12⟩ ⃝⃝⃝⃝ 32 32 2160

2128 w8
⟨0,7⟩ ♥♥ 16 48 2176

2120 w8
10 ♥ 8 56 2176

2112 w8
13 ♥ 8 64 2176

2104 w8
⟨1,4⟩ ♣♣ 16 80 2184

296 w8
11 ♣ 8 88 2184

288 w8
14 ♣ 8 96 2184

280 w7
⟨3,6⟩ ■■ 96 2176 w7

3 = w8
7 ⊕ w8

11; w7
6 = w8

10 ⊕ w8
14

272 w8
⟨2,5⟩ ♦♦ 16 112 2184

264 w8
8 ♦ 8 120 2184

256 w8
15 ♦ 8 128 2184

248 w7
9 ■ 8 136 2184

240 w8
⟨3,6⟩ ♠♠ 16 152 2192

232 w8
12 ♠ 8 160 2192∗

224 w8
9 ♠ 8 168 2192∗

216 w7
12 ■ 8 176 2192∗

28 w6
12 □ 176 2184∗ w6

12 = w8
0 ⊕ w8

4

Key bridging. Dunkleman, Keller and Shamir have proposed to apply the key bridging
technique [DKS10] to improve this attack: it allows to compute the last column of k0 from
three columns of k8. This relation is at a word level, but there also exists a relation at
the byte level: the byte j of the fourth column of k0 can be computed from the bytes
j of the first and the second column, and (j + 1) mod 4 of the second and the fourth
columns of k8. As explained in [DKS15], using this technique can reduce slightly the
complexity: even if the complexity peak remains unchanged (2184), the difference come
from the number of time this peak is achieved. In this attack, we need to pay attention to
the fact that we don’t guess bytes of k8 but bytes of w8. For this reason, it’s only after
guessing 14 bytes that one byte of w8 can be deduced. More precisely, if the bytes k0

12, and
w8

⟨0,1,2,3,4,5,6,7,8,10,11,13,14,15⟩ (corresponding to three anti-diagonals and a half) are known,
then the byte k8

12 can be deduced. So, the complexity of the last four steps is divided by
28 because the byte w8

12 is deduced rather than guessed. Using the key bridging technique,
only one peak of complexity 2184 encryptions remains for the first three herds, then the
complexity is considered negligible. In total, the complexity is reduced to 3 · 2184 = 2185.6.

Using fewer herds. The previous attacks use a large number of herds (24) in order to
identify a unique candidate for the recovered subkey, and reconstructs the corresponding
master by exhaustive search of the missing bytes (with a negligible cost). However, as
for the impossible differential attacks, we don’t need a unique candidate before doing the
exhaustive search of the missing bytes. We can devise attacks processing fewer herds,
making a trade-off between the complexity of processing the herds, and the complexity
of reconstructing the master key. The complexity of the attack is composed of three
components:

40



• the cost of processing the herds, denoted C (N subkey candidate remain);

• the cost of reconstructing the master key from candidates;

• the cost of checking the master key candidates using a plaintext/ciphertext pair.

Concretely, the attack of [DKS15] using key-bridging recovers 4 bytes of k0 and 17 bytes
of k7,8 (one additional byte of k8 is deduced). Processing the first three herds requires
2184 operation each, so that the cost of processing i herds is C = min(i, 3) · 2184. After
this step, N = 2168−8i candidates for a 168-bit subkey remain.

In order to reconstruct a master key candidate, the attacker guesses 6 bytes missing from
k7,8 to obtain 192 bits of consecutive subkeys, and computes the key schedule backwards
to check whether this matches the known information on k0. The cost of this step is
N · 248 · 2−2.8, assuming that the cost of the key schedule compared to an encryption is
2−2.8. After this step N · 224 master keys remain. Therefore, the cost of the attack with i
herds is

min(i, 3) · 2184 + 2168−8i · 245.2 + 2168−8i · 224

Using five herds, we obtain a complexity of 3 · 2184 + 2128 · 245.2 ≈ 2185.6, but using a small
value of i results in a higher overall complexity. This type of trade-off is not sufficient to
reduce the total complexity.

New representation of the key schedule. The new representation of the key schedule
allows to reconstruct the master keys more efficiently, and to reduce the second term of
the complexity. Instead of guessing the 6 missing bytes of the last subkeys, and then
computing the first subkey to check whether it matches, we can do the same thing but
chunk by chunk. More precisely, starting from a candidate composed of 16 bytes of w8

(or equivalently k8), and w7
⟨9,12⟩, we guess four bytes (k7

13, k7
15, k7

8 ⊕ k7
12, k7

10 ⊕ k7
14) and the

right chunk of our new representation is complete. We deduce the left chunk of the first
state of the key schedule, and the bytes k0

⟨6,11⟩ can be checked (the knowledge of k0
12 has

already be used implicitly). We actually recover k0
11⊕ k0

15 rather than directly k0
11, but k0

15
belongs to the last column so it can be deduced from k8 using key bridging. We obtain a
two-byte filtering. Then guessing k7

⟨8,10⟩ allows to deduce the fourth column of k7 from
the guessed key material, and by applying the inverse of the MixColumns matrix, we can
check the byte w7

12. This is a one-byte filtering. Finally, guessing k7
11 allows to compute

k7
9 using w7

9 and k7
⟨8,10,11⟩. The second chunk is complete and gives a one-byte filtering

using k0
1. In total, reconstruction the master key by using the new representation of the

key schedule has a cost of 232−2.8 encryptions rather than 245.2.
Finally, the total complexity of the attack using i herds becomes:

min(i, 3) · 2184 + 2168−8i · 229.2 + 2168−8i · 224

Using two herds, we obtain a complexity of 2 · 2184 + 2152 · 229.2 + 2152 · 224 ≈ 2185.1. This
reduces the complexity of the best previous attack [DKS15] by a factor roughly 2/3.

8 Properties on the AES Key Schedule
To conclude, we mention some properties of the AES key schedule that follow from our
new representation, in addition to the short length cycles already mentionned.

8.1 Relations between subkey bytes
Proposition 2. Let Pr and P ′

r defined in one of the following ways:

41



round r

round r + 1

AES-128 (1) AES-128 (2) AES-192 (1) AES-192 (2) AES-256 (1) AES-256 (2)

Figure 19: Representation of the position of the bytes of the proposition. In variants (2),
only the XOR of the two bytes of the same color must be known.

• AES-128 (1): Pr = kr
⟨5,7,13,15⟩, and P ′

r = kr
⟨4,6,12,14⟩

• AES-128 (2): Pr = kr
⟨0⊕4,2⊕6,8⊕12,10⊕14⟩, and P ′

r = kr
⟨1⊕5,3⊕7,9⊕13,11⊕15⟩

• AES-192 (1): Pr = kr
⟨5,7,13,15,21,23⟩, and P ′

r = kr
⟨4,6,12,14,20,22⟩

• AES-192 (2): Pr = kr
⟨0⊕4,2⊕6,8⊕12,10⊕14,16⊕20,18⊕22⟩,

and P ′
r = kr

⟨1⊕5,3⊕7,9⊕13,11⊕15,17⊕21,19⊕23⟩

• AES-256 (1): Pr = kr
⟨5,7,13,15,21,23,29,31⟩, and P ′

r = kr
⟨4,6,12,14,20,22,28,30⟩

• AES-256 (2): Pr = kr
⟨0⊕4,2⊕6,8⊕12,10⊕14,16⊕20,18⊕22,24⊕28,26⊕30⟩,

and P ′
r = kr

⟨1⊕5,3⊕7,9⊕13,11⊕15,17⊕21,19⊕23,25⊕29,27⊕31⟩

If there exists an r0 such as Pr0 and P ′
r0±1 are known, then for all i ∈ Z, the bytes Pr0+2i

and P ′
r0+2i+1 are known (and they are easily computable).

Proof. The AES-128 (1) case is considered here, the other cases are demonstrated in the
same way. Knowing kr

⟨5,7,13,15⟩ and kr+1
⟨4,6,12,14⟩ is equivalent to knowing two chunks of the

state: sr
⟨0,1,2,3⟩ and sr

⟨8,9,10,11⟩. This can be verified using Equation (2.2). The knowledge
of these 2 chunks is suffiscient to extract the value of the bytes in position k⟨5,7,13,15⟩ or
k⟨4,6,12,14⟩ at any round.

The byte positions of this proposition are represented in figure 19. This proposition is
a generalization of the observations made for AES-128 by Dunkelman and Keller (where
kr(i, j) is the byte at position (i, j) of the round-r subkey):

Observation 3 ([DK08b]). For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the relations:

kr+2(i, 0)⊕ kr+2(i, 2) = kr(i, 2).

kr+2(i, 1)⊕ kr+2(i, 3) = kr(i, 3).

Observation 4 ([DK08b]). For each 0 ≤ i ≤ 3, the subkeys of AES satisfy the relation:

kr+2(i, 1)⊕ SB(kr+1((i + 1) mod 4, 3))⊕RCONr+2(i) = kr(i, 1).

Another property can also be demonstrated on the AES-128 key schedule, using the
value of one byte of the last column per round over 4 consecutive rounds:

Proposition 3. If there exists r ∈ N and i ∈ {0, 1, 2, 3} such that the bytes kr
15−i,

kr+1
15−(i+1)%4, kr+2

15−(i+2)%4, kr+3
15−(i+3)%4 are known, then for all j ∈ Z, the value of the byte

kr+j
15−(i+j%4) is known.

42



Proof. Knowing the bytes kr
15−i, kr+1

15−(i+1)%4, kr+2
15−(i+2)%4, kr+3

15−(i+3)%4 is equivalent to know-
ing one chunk of the state in the new representation: sr

⟨4i,4i+1,4i+2,4i+3⟩. Given that ∀r ∈ N,
sr

4i = kr
15−i, we can calculate a byte of the last column at any round because we have the

knowledge of a chunk in our new representation.

The property can also be generalized when bytes at the correct position are known in
non-consecutive rounds.

8.2 Independence of AES-256 subkeys
Concerning the AES-256, each key schedule state corresponds to the concatenation of two
consecutive 128 bits subkeys. We consider that two subkeys are independent if there is
no key schedule relation linking their bytes. In other words, two subkeys are independent
if and only if there always exist a unique corresponding 256 bits master key. We are
interested here in the independence of distant subkeys (two consecutive subkeys are clearly
independent) and our new representation of the key schedule implies this non-trivial
property:

Proposition 4. The subkeys k0 and k9 are independent.

Proof. To demonstrate this property, we prove that k0 and k9 define a unique master key.
In our new representation, the knowledge of k0 and k9 is equivalent to the knowledge of
the bytes s0

2i and s4
2i+1 for 0 ≤ i < 32. We reason chunk by chunk, and we consider the

first chunk here, but the situation is identical for the other chunks. The bytes s0
⟨1,3,5,7⟩ (or

equivalently s4
⟨0,2,4,6⟩) can be computed from s0

⟨0,2,4,6⟩ and s4
⟨1,3,5,7⟩:

s4
0 = s0

0 ⊕ S(s4
7) s4

4 = s0
4 ⊕ S(s4

3)
s0

1 = s4
1 ⊕ S(s4

0) s0
5 = s4

5 ⊕ S(s4
4)

s4
2 = s0

2 ⊕ S(s0
1) s4

6 = s0
6 ⊕ S(s4

5)
s0

3 = s4
3 ⊕ S(s4

2) s0
7 = s4

7 ⊕ S(s4
6)

Other properties of the same type that can be proved using either our new representation
or the classical one: k0 is independent from k1, k3, k5, k7, and k8, and k1 is independent
from k2, k4, k6, k8, and k9.

9 Conclusion
Alternative representations of the AES data operations have been used in several previous
works; in particular, the super-box property [GP10] of Gilbert and Peyrin is an alternative
representation of two AES rounds that led to several improved cryptanalysis results on
AES-based schemes. Gilbert has later shown a more general untwisted representation of
the AES data path, resulting in the first known-key attack against the full AES-128 [Gil14].

In this work we use techniques from invariant subspace attacks to discover an equivalent
representation of the AES key schedule, and we derive new cryptanalysis results, based on
two main observations. First, iterating an odd number of key schedule rounds defines a
permutation with short cycles. This undermine the security of AES-based schemes using
iterations of the key schedule as a type of tweak to make each encryption call different.
More generally, the AES key schedule cannot and should not be considered as a random
permutation, even after a large number of rounds. Second, the alternative representation
makes it easier to combine information from the first subkeys and from the last subkeys,
improving previous key recovery attacks. This topic has been studied before and many
attacks use key schedule relations to reduce the complexity (in particular, we can mention

43



the key bridging notion of Dunkelman, Keller and Shamir [DKS10, DKS15]). However our
alternative representation shows non-linear relations that have not been exploited before.
In particular, we show that bytes in the last column of an AES-128 subkey depend on only
32 bits of information from the master key.

We expect that this alternative representation can open the way to further results
exploiting properties of the AES key schedule. For instance, the new representation can be
used to characterize keys that stay symmetric for two rounds, as used in [GLR+20], but
this is easily be done with the standard representation due to the small number of rounds.

Acknowledgement. The second author is funded by a grant from Région Ile-de-France.
This work was also supported by the French Agence Nationale de la Recherche (ANR),
under grant ANR-20-CE48-0017 (project SELECT).

References
[AES01] Advanced Encryption Standard (AES). National Institute of Standards and

Technology, NIST FIPS PUB 197, U.S. Department of Commerce, November
2001.

[BA08] Behnam Bahrak and Mohammad Reza Aref. Impossible differential attack
on seven-round AES-128. IET Inf. Secur., 2(2):28–32, 2008.

[BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack
reduced to 31 rounds using impossible differentials. In Jacques Stern, editor,
EUROCRYPT’99, volume 1592 of LNCS, pages 12–23. Springer, Heidelberg,
May 1999.

[BD11] Charles Bouillaguet and Patrick Derbez. AES attacks finder. https://
github.com/cbouilla/AES-attacks-finder, 2011.

[BDF11] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic
search of attacks on round-reduced AES and applications. In Phillip Rogaway,
editor, CRYPTO 2011, volume 6841 of LNCS, pages 169–187. Springer,
Heidelberg, August 2011.

[BDF12] Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic
search of attacks on round-reduced AES and applications. Cryptology ePrint
Archive, Report 2012/069, 2012. https://eprint.iacr.org/2012/069.

[BDK+10] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and
Adi Shamir. Key recovery attacks of practical complexity on AES-256
variants with up to 10 rounds. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 299–319. Springer, Heidelberg, May / June
2010.

[Bir07] Alex Biryukov. The design of a stream cipher LEX. In Eli Biham and
Amr M. Youssef, editors, SAC 2006, volume 4356 of LNCS, pages 67–75.
Springer, Heidelberg, August 2007.

[BK09] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanalysis of the
full AES-192 and AES-256. In Mitsuru Matsui, editor, ASIACRYPT 2009,
volume 5912 of LNCS, pages 1–18. Springer, Heidelberg, December 2009.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distinguisher and
related-key attack on the full AES-256. In Shai Halevi, editor, CRYPTO 2009,
volume 5677 of LNCS, pages 231–249. Springer, Heidelberg, August 2009.

44

https://github.com/cbouilla/AES-attacks-finder
https://github.com/cbouilla/AES-attacks-finder
https://eprint.iacr.org/2012/069


[BLNS18] Christina Boura, Virginie Lallemand, María Naya-Plasencia, and Valentin
Suder. Making the impossible possible. Journal of Cryptology, 31(1):101–133,
January 2018.

[BMR+14] Andrey Bogdanov, Florian Mendel, Francesco Regazzoni, Vincent Rijmen,
and Elmar Tischhauser. ALE: AES-based lightweight authenticated en-
cryption. In Shiho Moriai, editor, FSE 2013, volume 8424 of LNCS, pages
447–466. Springer, Heidelberg, March 2014.

[BNS14] Christina Boura, María Naya-Plasencia, and Valentin Suder. Scrutinizing
and improving impossible differential attacks: Applications to CLEFIA,
Camellia, LBlock and Simon. In Palash Sarkar and Tetsu Iwata, editors,
ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 179–199. Springer,
Heidelberg, December 2014.

[BNS19] Xavier Bonnetain, María Naya-Plasencia, and André Schrottenloher. Quan-
tum security analysis of AES. IACR Trans. Symm. Cryptol., 2019(2):55–93,
2019.

[BR22] Navid Ghaedi Bardeh and Vincent Rijmen. New key-recovery attack on
reduced-round AES. IACR Trans. Symm. Cryptol., 2022(2):43–62, 2022.

[CN19a] Bishwajit Chakraborty and Mridul Nandi. mixFeed. Submission to the
NIST Lightweight Cryptography standardization process, 2019. https:
//csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/round-2/spec-doc-rnd2/mixFeed-spec-round2.pdf.

[CN19b] Bishwajit Chakraborty and Mridul Nandi. Security proof of
mixFeed, 2019. https://csrc.nist.gov/CSRC/media/Events/
lightweight-cryptography-workshop-2019/documents/papers/
security-proof-of-mixfeed-lwc2019.pdf.

[DF14] Patrick Derbez and Pierre-Alain Fouque. Exhausting Demirci-Selçuk meet-
in-the-middle attacks against reduced-round AES. In Shiho Moriai, editor,
FSE 2013, volume 8424 of LNCS, pages 541–560. Springer, Heidelberg,
March 2014.

[DFJ13] Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key
recovery attacks on reduced-round AES in the single-key setting. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881
of LNCS, pages 371–387. Springer, Heidelberg, May 2013.

[DK08a] Orr Dunkelman and Nathan Keller. A new attack on the LEX stream cipher.
In Josef Pieprzyk, editor, ASIACRYPT 2008, volume 5350 of LNCS, pages
539–556. Springer, Heidelberg, December 2008.

[DK08b] Orr Dunkelman and Nathan Keller. Treatment of the initial value in time-
memory-data tradeoff attacks on stream ciphers. Inf. Process. Lett., 107:133–
137, 08 2008.

[DK10] Orr Dunkelman and Nathan Keller. The effects of the omission of last
round’s mixcolumns on AES. Inf. Process. Lett., 110(8-9):304–308, 2010.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The block cipher
Square. In Eli Biham, editor, FSE’97, volume 1267 of LNCS, pages 149–165.
Springer, Heidelberg, January 1997.

45

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/mixFeed-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/mixFeed-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/mixFeed-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/security-proof-of-mixfeed-lwc2019.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/security-proof-of-mixfeed-lwc2019.pdf
https://csrc.nist.gov/CSRC/media/Events/lightweight-cryptography-workshop-2019/documents/papers/security-proof-of-mixfeed-lwc2019.pdf


[DKS10] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key
attacks on 8-round AES-192 and AES-256. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 158–176. Springer, Heidelberg,
December 2010.

[DKS15] Orr Dunkelman, Nathan Keller, and Adi Shamir. Improved single-key attacks
on 8-round AES-192 and AES-256. Journal of Cryptology, 28(3):397–422,
July 2015.

[DR98] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael, 1998. Submis-
sion to the NIST AES competition.

[DR02] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES – the
advanced encryption standard, 2002.

[DR05] Joan Daemen and Vincent Rijmen. The Pelican MAC function 2.0. Cryptol-
ogy ePrint Archive, Report 2005/088, 2005. https://eprint.iacr.org/
2005/088.

[DS08] Hüseyin Demirci and Ali Aydin Selçuk. A meet-in-the-middle attack on
8-round AES. In Kaisa Nyberg, editor, FSE 2008, volume 5086 of LNCS,
pages 116–126. Springer, Heidelberg, February 2008.

[FKL+01] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David Wagner, and Doug Whiting. Improved cryptanalysis of Rijndael. In
Bruce Schneier, editor, FSE 2000, volume 1978 of LNCS, pages 213–230.
Springer, Heidelberg, April 2001.

[Gil14] Henri Gilbert. A simplified representation of AES. In Palash Sarkar and
Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873 of LNCS,
pages 200–222. Springer, Heidelberg, December 2014.

[GLR+20] Lorenzo Grassi, Gregor Leander, Christian Rechberger, Cihangir Tezcan,
and Friedrich Wiemer. Weak-key distinguishers for AES. In Orr Dunkelman,
Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020, volume
12804 of LNCS, pages 141–170. Springer, Heidelberg, October 2020.

[GP10] Henri Gilbert and Thomas Peyrin. Super-sbox cryptanalysis: Improved
attacks for AES-like permutations. In Seokhie Hong and Tetsu Iwata, editors,
FSE 2010, volume 6147 of LNCS, pages 365–383. Springer, Heidelberg,
February 2010.

[Jea16] Jérémy Jean. TikZ for Cryptographers. https://www.iacr.org/authors/
tikz/, 2016.

[Kha19] Mustafa Khairallah. Weak keys in the rekeying paradigm: Application to
COMET and mixFeed. IACR Trans. Symm. Cryptol., 2019(4):272–289,
2019.

[KR14] Dmitry Khovratovich and Christian Rechberger. The LOCAL attack: Crypt-
analysis of the authenticated encryption scheme ALE. In Tanja Lange,
Kristin Lauter, and Petr Lisonek, editors, SAC 2013, volume 8282 of LNCS,
pages 174–184. Springer, Heidelberg, August 2014.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. A cryptanalysis of PRINTcipher: The invariant subspace attack.
In Phillip Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages
206–221. Springer, Heidelberg, August 2011.

46

https://eprint.iacr.org/2005/088
https://eprint.iacr.org/2005/088
https://www.iacr.org/authors/tikz/
https://www.iacr.org/authors/tikz/


[LJW15] Leibo Li, Keting Jia, and Xiaoyun Wang. Improved single-key attacks on
9-round AES-192/256. In Carlos Cid and Christian Rechberger, editors,
FSE 2014, volume 8540 of LNCS, pages 127–146. Springer, Heidelberg,
March 2015.

[LMR15] Gregor Leander, Brice Minaud, and Sondre Rønjom. A generic approach to
invariant subspace attacks: Cryptanalysis of robin, iSCREAM and Zorro. In
Elisabeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 254–283. Springer, Heidelberg, April 2015.

[LP21] Gaëtan Leurent and Clara Pernot. New representations of the AES key
schedule. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part I, volume 12696 of LNCS, pages 54–84. Springer,
Heidelberg, October 2021.

[LSG+18] Ya Liu, Yifan Shi, Dawu Gu, Bo Dai, Fengyu Zhao, Wei Li, Zhiqiang Liu, and
Zhiqiang Zeng. Improved impossible differential cryptanalysis of large-block
rijndael. Science China Information Sciences, 07 2018.

[MDRMH10] Hamid Mala, Mohammad Dakhilalian, Vincent Rijmen, and Mahmoud
Modarres-Hashemi. Improved impossible differential cryptanalysis of 7-
round AES-128. In Guang Gong and Kishan Chand Gupta, editors, IN-
DOCRYPT 2010, volume 6498 of LNCS, pages 282–291. Springer, Heidelberg,
December 2010.

[WGR+13] Qingju Wang, Dawu Gu, Vincent Rijmen, Ya Liu, Jiazhe Chen, and Andrey
Bogdanov. Improved impossible differential attacks on large-block Rijndael.
In Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon, editors, ICISC 12,
volume 7839 of LNCS, pages 126–140. Springer, Heidelberg, November 2013.

[WWH+13] Shengbao Wu, Hongjun Wu, Tao Huang, Mingsheng Wang, and Wenling Wu.
Leaked-state-forgery attack against the authenticated encryption algorithm
ALE. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I,
volume 8269 of LNCS, pages 377–404. Springer, Heidelberg, December 2013.

[ZWZF07] Wentao Zhang, Wenling Wu, Lei Zhang, and Dengguo Feng. Improved
related-key impossible differential attacks on reduced-round AES-192. In
Eli Biham and Amr M. Youssef, editors, SAC 2006, volume 4356 of LNCS,
pages 15–27. Springer, Heidelberg, August 2007.

47



10 Appendix

⊕S ⊕S ⊕S ⊕S
ci

⊕

Figure 20: One round of the AES key schedule with graphic representations of bytes
positions (alternative representation).

48


	Introduction
	Our results
	Organization of the paper

	A New Representation of the AES-128 Key Schedule
	Invariant subspaces
	New representation from invariant subspaces

	New Representations of the AES-192 and AES-256 Key Schedules
	AES-192
	AES-256

	Application to mixFeed
	Description of mixFeed
	Short Cycles of P
	Forgery attack against mixFeed

	Application to ALE
	Description of ALE
	Internal Key Recovery

	Application to Impossible Differential Attacks
	The AES round function
	Previous results
	Our improvement
	Application to Related-Key Impossible Differential Attacks against AES-192
	Application to Impossible Differential against Rijndael-256-256

	Application to Square Attack
	Properties on the AES Key Schedule
	Relations between subkey bytes
	Independence of AES-256 subkeys

	Conclusion
	Appendix

