Certificateless Public-key Authenticate Encryption with Keyword Search Revised: MCI and MTP

Leixiao Cheng

1School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Abstract. Boneh et al proposed the cryptographic primitive public key encryption with keyword search (PEKS) to search on encrypted data without exposing the privacy of the keyword. Most standard PEKS schemes are vulnerable to inside keyword guessing attacks (KGA), i.e., a malicious server may generate a ciphertext by its own and then to guess the keyword of the trapdoor by testing. Huang et al. solved this problem by proposing the public-key authenticated encryption with keyword search (PAEKS) achieving single trapdoor privacy (TP). Qin et al. defined notion of multi-ciphertext indistinguishability (MCI) security and multi-trapdoor privacy (MTP) security, and proposed the first PAEKS scheme with MCI and TP. Certificateless public-key authenticated encryption with keyword search (CLPAEKS) is first formally proposed by He et al. as combination of the PAEKS and the certificateless public key cryptography (CLPKC). Lin et al. revised He’s work and re-formalize the security requirements for CLPAEKS in terms of trapdoor privacy and ciphertext indistinguishability. However, how to achieve both MCI and MTP security in a CLPAEKS scheme is still unknown.

In this paper, we initially propose a CLPAEKS scheme with both MCI security and MTP security simultaneously. We provide formal proof of our schemes in the random oracle model.

Keywords: Certificateless Public key encryption · Keyword search · Keyword guessing attacks · Multi-ciphertext indistinguishability · Multi-trapdoor privacy

1 Introduction

With the widespread application of cloud storage and computing, searching for encrypted data in the cloud server has become a hot research topic. In 2004, Boneh et al. [4] proposed the first public key encryption with keyword search (PEKS). In a PEKS scheme, data sender generates and submits a ciphertext embedded with a ciphertext keyword to the cloud. Searching for a ciphertext with specific keyword, the receiver generates the trapdoor with a target keyword. Obtaining a trapdoor, the cloud tests whether the target keyword of the trapdoor is identical to the ciphertext keyword of each ciphertext. If so, the cloud returns
the successfully matched ciphertexts to the receiver. During this procedure, the keywords information of both the ciphertext and the trapdoor cannot be exposed to any third party, i.e., ciphertext indistinguishability (CI) and trapdoor privacy (TP). Ciphertext indistinguishability (CI) is a basic requirement for a PEKS scheme, and trapdoor privacy (TP) is also important but cannot be captured by a lot of PEKS schemes. Since, the keywords are often chosen from a low-entropy keyword space in the real applications, it’s feasible for the adversary to guess each keyword containing in a given trapdoor by the keyword guessing attacks (KGA) [6].

Recently, Huang and Li [13] introduced the notion of Public-key Authenticated Encryption with Keyword Search (PAEKS) to resist inside KGA (attacks from a malicious cloud tester), in which the sender encrypts a keyword under his public key and the sender’s secret key and then authenticates it, such that the cloud server cannot launch KGA successfully by encrypting a keyword itself. Qin et al., [19] defined new security model for PAEKS, i.e., the multi-ciphertext indistinguishability (MCI) and multi-trapdoor privacy (MTP), to capture semantic security against both chosen multi-keyword attacks and multi-keyword guessing attacks. The MCI captures a practical attack on finding relations between two encrypted files containing several same keywords. They analysed that the scheme of [13] is secure against outside chosen single-keyword attacks but is vulnerable to chosen multi-keyword attacks. Thus they made slight but non-trivial modification to [1] to prevent both inside keyword guessing attack and outside chosen multi-keyword attack. The MTP captures a practical attack on finding relations between two trapdoors containing some same keywords. However, they didn’t achieve MTP security. Since the MTP requires the adversary to distinguish two tuples of trapdoors generated by two sets of keywords, to achieve MTP security, the trapdoor generation algorithm must be probabilistic. Otherwise, the adversary can easily distinguish the tuples by the difference of frequency of a keyword in the two keyword sets. This’s the key point that [1,13,15,17,19] cannot achieve MTP security, since their trapdoor generation algorithms are all deterministic.

In the real application scenarios of cloud storage, a fully trusted third party is difficult to constructed. Since any entities involved in the cloud storage system may be dishonest or malicious, schemes based on either public key infrastructure or identity cryptography deeply relying on a completely honest key generation center (KGC) will be broken down by a dishonest KGC. In order to get rid of fully trusted in KGC, by combining the certificateless public key cryptography (CLPKC) [2] and PAEKS [13], He et al. [12] proposed the certificateless public key encryption with keyword search (CLPAEKS) to avoid the certificate management and the key escrow problem, and to achieve trapdoor privacy in PEKS scenario. However, [12] didn’t capture the security requirements for trapdoor privacy. Liu et al. [16] pointed out that [12] is vulnerable to KGA by a malicious receiver, which is not considered in their security model, re-formalized the security model to meet for trapdoor privacy.
1.1 Motivation and contributions

The trapdoor generation algorithm of the above searchable schemes is deterministic, which means that they cannot achieve MTP security. How to construct a certificateless searchable scheme with both MCI and MTP is still unknown.

In this paper, we initially propose certificateless public-key authenticate encryption with keyword search (CLPAEKS) achieving both multi-ciphertext indistinguishability (MCI) and multi-trapdoor privacy (MTP) simultaneously. Specifically, we provide a concrete CLPAEKS scheme with probabilistic trapdoor generation algorithm to prevent both inside multi-keyword guessing attack and outside chosen multi-keyword attack. The security of our scheme is proved under static assumptions (i.e., DDH assumption) in the random oracle model.

In Table 1, we compare our schemes with some other PEKS schemes.

<table>
<thead>
<tr>
<th>CI</th>
<th>MCI</th>
<th>TP</th>
<th>MTP</th>
<th>Probabilistic TrapGen</th>
<th>Certificateless</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4]</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[13]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[17]</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[19]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[15]</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>[12]</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>[16]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

CI: ciphertext indistinguishability against outside chosen single-ciphertext attacks.
MCI: multi-ciphertext indistinguishability against outside chosen multi-ciphertext attacks.
TP: trapdoor privacy against inside single-keyword guessing attacks.
MTP: multi-trapdoor privacy against inside multi-keyword guessing attacks.
Probabilistic TrapGen: the trapdoor generation algorithm in the scheme is probabilistic.
Certificateless: the certificate management and the key escrow problem are avoided.

1.2 Related works

In 2000 [1], Song et al. [24] introduced the first searchable symmetric encryption (SSE), which allows keyword search over encrypted data in the outsourcing scenarios. In 2004, Boneh et al. [1] initialized proposed the first public key encryption with keyword search scheme (PEKS). In 2005, Abdalla et al. [1] revised Boneh’s work and provided a transform from an anonymous identity-based encryption scheme to a secure PEKS scheme. In addition, they also extended the basic notions of anonymous hierarchical identity-based encryption, public-key encryption with temporary keyword search, and identity-based encryption with
keyword search. Since then, various PEKS schemes have been proposed. Golle et al. [10] defined the security model for conjunctive keyword search over encrypted data and presented the first schemes for conducting such searches securely. Park et al. [18] proposed the public key encryption with conjunctive field keyword search enabling an email gateway to search keywords conjunctively. Boneh et al. [5] provided several public key system that support comparison queries, subset queries and arbitrary conjunctive queries on encrypted data. Shi et al. [23] designed an encryption scheme called multi-dimensional range query over encrypted data to deal with the privacy issues related to the sharing of network audit logs. Moreover, proxy re-encryption with keyword search [22], decryptable searchable encryption [9], keyword updatable PEKS [20] and attribute-based encryption with keyword search [8, 25] enjoyed some other interesting features compared with standard PEKS.

However, in actual practice, keywords are chosen from much smaller space than the space of passwords, thus all the above schemes are susceptible to the keyword guessing attacks (KGA). Byun et al. [6] analysed the security vulnerabilities on [1, 10] by performing off-line keyword guessing attacks. Rhee et al. [21] introduced the concept of trapdoor indistinguishability and show that trapdoor indistinguishability is sufficient for thwarting keyword-guessing attacks and proposed a provably secure PEKS scheme in the designated tester model (d-PEKS). Unfortunately, dPEKS suffers from an inherent insecurity called inside keyword guessing attack (IKGA) launched by the malicious tester (i.e., cloud server). Chen et al. [7] proposed a new PEKS framework named dual-server PEKS scheme (DS-PEKS) using two uncolluded semi-trusted servers. Huang et al. [13] proposed a public-key authenticated encryption with keyword search scheme (PAEKS), which is secure against IKGA. It was then extended to certificateless PAEKS [12], identity-based setting with designed tester [15]. Recently, Noroozi et al. [17] found that Huang’s work is insecure in the multi-receiver model and Qin et al. [19] extended the security model of PAEKS and proposed a PAEKS scheme secure against both inside keyword attacks and chosen multi-keyword attacks.

The concept of certificateless public key cryptography (CLPKC) was initially introduced by Al-Riyami and Paterson [10], keeping users private key unrevealed to (KGC) by allowing users to set a secret value themselves. Then, Certificateless Public Key Encryption (CLPKE) [3] and Certificateless Signature (CLS) [14] schemes are proposed. He et al. [12] proposed the certificateless public key encryption with keyword search (CLPAEKS) to avoid the certificate management and the key escrow problem with trapdoor privacy. The security models of [12] which only consider the searchable ciphertext indistinguishability without accessing the ciphertext oracle cannot accurately capture the security requirements for CLPAEKS. Liu et al. re-formalized the security model to meet for trapdoor privacy. However, all above schemes cannot achieve MTP security, since their trapdoor generation algorithms are deterministic.
1.3 Organization

This paper is organized as follows. Section 2 introduces the necessary preliminaries. Section 3 presents the system and security model of CLPAEKS. We give a concrete construction and formal security analysis of CLPAEKS in section 4 and section 5 respectively. In the end, section 6 summarizes the paper and prospects for the future research.

2 Preliminaries

In this section, we introduce some background knowledge bilinear maps and Diffie-Hellman assumption.

2.1 Bilinear map

We briefly recall the definitions of the bilinear map. Let G_0 and G_T be two multiplicative cyclic groups of prime order q. Let P be a generator of G_0 and e be an efficient computable bilinear map, $e: G_0 \times G_0 \rightarrow G_T$. The bilinear map e has a few properties: (1) Bilinearity: for all $M, N \in G_0$ and $a, b \in \mathbb{Z}_p$, we have $e(aM, bN) = e(M, N)^{ab}$. (2) Non-degeneracy: for any generator $P \in G_0$, $e(P, P) \in G_T$ is the generator of G_T. (3) Computability: For any $M, N \in G_0$, there is an efficient algorithm to compute $e(M, N)$.

2.2 DDH assumption

The Diffie-Hellman (DDH) assumption is defined as: given group parameter (G_0, q, P) and three random elements $x, y \in \mathbb{Z}_p^*$. We say that the DDH assumption holds, if there is no probabilistic polynomial time (PPT) adversary B can distinguish between the tuple (P, xP, yP, xyP) and the tuple (P, xP, yP, ϑ), where ϑ is randomly selected from G_0. More specifically, the advantage ϵ of B in solving the DDH problem is defined as

$$\left| \Pr[A(P, xP, yP, xyP) = 1] - \Pr[A(P, xP, yP, \vartheta) = 1] \right|. \quad (1)$$

Definition 1 (DDH). We say that the DDH assumption holds if no PPT algorithm has a non-negligible advantage ϵ in solving DDH problem.

3 Definition and Security Model of CLPAEKS

3.1 System Model

Our proposed CLPAEKS scheme is composed of four entities: key generation center (KGC), cloud server (CS), data sender (ID_S), data receiver (ID_R). Specifically,
• **KGC**: It is responsible for generating public parameters, master secret key, and partial private/public keys of both sender and receiver.

• **ID_S**: Data sender generates its own user private/public keys and encrypts the ciphertext with the public keys of ID_S and ID_R and its own secret key, then it submits the encrypted data to the CS.

• **ID_R**: Receiver generates its own user private/public keys and the trapdoor with the public keys of ID_S and ID_R and its own secret key, then it submits the trapdoor to the CS to search for an encrypted data.

• **CS**: It is responsible for data processing, storage and retrieval.

3.2 Algorithms of CLPAEKS

The CLPAEKS consists of the following algorithms:

• **Setup**: Given security parameter λ, KGC runs this algorithm to generate the public parameter PP and master secret key MSK.

• **Partial public key**: Given a user’s identity ID_i, KGC runs this algorithm to generate the partial public key R_ID_i for the user.

• **Partial private key**: Given a user’s identity ID_i, KGC runs this algorithm to generate the partial private key d_ID_i for the user.

• **User private key**: Given a user’s identity ID_i, the user U_ID_i runs this algorithm to generate its private key x_ID_i.

• **User public key**: Given a user’s identity ID_i, the user U_ID_i runs this algorithm to generate its public key P_ID_i.

• **CLPAEKS**: Given sender’s identity ID_S, receiver’s identity ID_R, sender’s secret key SK_ID_S = (d_ID_S, x_ID_S), public keys \(\{PK_{ID_S} = (R_{ID_S}, P_{ID_S}), PK_{ID_R} = (R_{ID_R}, P_{ID_R})\} \), and a ciphertext keyword KW, the sender runs this algorithm to generate the ciphertext Ct.

• **TrapGen**: On input public parameter PP, public key of receiver PK_S, the key pair of receiver \((PK_R, SK_R) \) and a target keyword KW', this algorithm is run by receiver to generate a Tr.

• **Test**: On input public parameter PP, ciphertext CT and trapdoor Tr, this algorithm checks whether the ciphertext keyword KW is identical to the target keyword KW'. If so, it outputs 1; otherwise it outputs 0.

Correctness: For any honestly generated key pairs \((PK_R, SK_R) \) and \((PK_S, SK_S) \), any two keywords KW, KW', Ct is generated by algorithm CLPAEKS and Tr generated by algorithm TrapGen. If KW = KW', then the text algorithm outputs 1 with probability 1 i.e., \(\Pr[\text{Test}(PP, Ct, Tr) = 1] = 1 \); otherwise \(\Pr[\text{Test}(PP, Ct, Tr) = 0] = 1 - \text{negl}(\lambda) \).

3.3 Security Model

In certificateless cryptography, there are two types of adversaries, i.e., Type1 adversary and Type2 adversary [18]. Type1 adversary cannot access the systems master key, but it can replace any users public key. Type2 adversary cannot replace users public key, but it can access the systems master key.
We describe two security model introduced by Qin et al. [19]: multi-ciphertext indistinguishability (MCI) security to capture outside chosen multi-ciphertext attacks and multi-trapdoor privacy (MTP) security to capture inside multi-keyword guessing attacks. The notion of MTP security of CLPAEKS in multi-challenge setting is defined as follows:

Game 1 (type 1 adversary): In this game, the adversary is allowed to lunch replace public key query.

- **Setup:** Given a security parameter λ, the challenge sender ID S and receiver identity ID_R, new public key PK'_{ID_R}, the challenger C generates the public parameter PP, master secret key s and public key PK_{ID_R} of ID_S, then responds the adversary A with PP.

- **Phase 1:** The adversary A is allowed to issue polynomial queries the following oracles:
 - **Hash query:** A is allowed to issue queries all hash oracles.
 - **Extract partial private key query:** Given an identity ID_i, the challenger C generates the partial private key d_{ID_i} and returns it to A. A cannot enquire the partial private key of ID_S or ID_R.
 - **Extract user private key query:** Given an identity ID_i, the challenger C generates the user private key x_{ID_i} and returns it to A.
 - **Public key query:** Given an identity ID_i, the challenger C responds A with the public key of PK_{ID_i}.
 - **Replace public key query:** Given an identity ID_i, A is allowed to ask the challenger C to replace the public key PK_{ID_i} with a new one PK'_{ID_i}. Note that it’s prohibited from replacing the public key of the challenge senders identity ID_S before the challenge phase.

- **Ciphertext query** O_C: Given a ciphertext query (ID_S, ID_R, KW), C responds A with the ciphertext CT of keyword KW.

- **Trapdoor query** O_T: Given a trapdoor query (ID_S, ID_R, KW'), C responds A with the trapdoor Tr of keyword KW'.

- **Challenge:** A chooses two keyword sets $\{KW_{0}^{i}\}_{i \in \{1, \ldots, l\}}$ and $\{KW_{1}^{i}\}_{i \in \{1, \ldots, l\}}$ with the restriction that no element of $\{ID_S, ID_R, KW_{j}^{i}\}_{j \in \{0, 1\}, i \in \{1, \ldots, l\}}$ has been queried on O_C or O_T. C randomly chooses a bit $\theta \in \{0, 1\}$ and responds A with a set of challenge trapdoors $\{Tr_{j}^{i}\}_{i \in \{1, \ldots, l\}}$.

- **Phase 2:** This phase is the same as Phase 1 with the restriction that no element of $\{ID_S, ID_R, KW_{j}^{i}\}_{j \in \{0, 1\}, i \in \{1, \ldots, l\}}$ can be queried on O_C or O_T.

- **Guess:** A outputs a guess bit θ' of θ and it wins the game if $\theta' = \theta$. The advantage of A to win the MTP security game is defined as $Adv_{A}^{MTP}(\lambda) = \left| Pr[\theta' = \theta] - \frac{1}{2} \right|$.

Game 2 (type 2 adversary): In this game, the adversary is allowed to request for the master secret key.

- **Setup:** Given a security parameter λ, the challenger C generates the public parameter PP, master secret key s and public keys PK_{ID_S}, PK_{ID_S} of challenge sender ID_S, receiver ID_R, respectively. Finally, it responds A with $PP, s, PK_{ID_S}, PK_{ID_S}$.
• **Phase 1**: The adversary A is allowed to issue polynomial queries the following oracles:

 Hash query: A is allowed to issue queries all hash oracles.

 Extract partial private key query: Given an identity ID_i, the challenger C generates the partial private key d_{ID_i} and returns it to A.

 Extract user private key query: Given an identity ID_i, the challenger C generates the user private key x_{ID_i} and returns it to A. A cannot enquire the user private key of ID_S or ID_R.

 Public key query: Given an identity ID_i, the challenger C responds A with the public key of PK_{ID_i}.

 Ciphertext query O_C: Given a ciphertext query (ID_S, ID_R, KW), C responds A with the ciphertext CT of keyword KW.

 Trapdoor query O_T: Given a trapdoor query (ID_S, ID_R, KW'), C responds A with the trapdoor Tr' of keyword KW'.

• **Challenge**: A chooses two keyword sets $\{KW_0^{i*}\}_{i \in [1, l]}$ and $\{KW_1^{i*}\}_{i \in [1, l]}$ with the restriction that no element of $\{ID_S, ID_R, KW_j^{i*}\}_{j \in \{0, 1\}, i \in [1, l]}$ has been queried on O_C or O_T. C randomly chooses a bit $\theta \in \{0, 1\}$ and responds A with a set of challenge trapdoors $\{Tr_{\theta}^i\}_{i \in [1, l]}$.

• **Phase 2**: This phase is the same as Phase 1 with the restriction that no element of $\{ID_S, ID_R, KW_j^{i*}\}_{j \in \{0, 1\}, i \in [1, l]}$ can be queried on O_C or O_T.

• **Guess**: A outputs a guess bit θ' of θ and it wins the game if $\theta' = \theta$. The advantage of A to win the MTP security game is defined as $Adv^MTP_A(\lambda) = \left| \Pr[\theta' = \theta] - \frac{1}{2} \right|$.

Definition 2. The CLPAEKS achieves MTP security against inside multi-keyword guessing attacks, if there exist no PPT adversary winning the above games with a non-negligible advantage ϵ.

New, we introduce the notion of MCI security in multi-challenge setting as follows:

Game 3 (type 1 adversary): In this game, the adversary is allowed to lunch replace public key query.

Setup: Given a security parameter λ, the challenge sender identity ID_S and receiver identity ID_R, new public key PK'_{ID_S}, the challenger C generates the public parameter PP, master secret key s and public key PK_{ID_S} of ID_S, then responds the adversary A with PP.

• **Phase 1**: The adversary A is allowed to issue the same queries as in Game 1.

• **Challenge**: A chooses two keyword sets $\{KW_0^{i*}\}_{i \in [1, l]}$ and $\{KW_1^{i*}\}_{i \in [1, l]}$ with the restriction that no element of $\{ID_S, ID_R, KW_j^{i*}\}_{j \in \{0, 1\}, i \in [1, l]}$ has been queried on O_C or O_T. C randomly chooses a bit $\theta \in \{0, 1\}$ and responds A with a set of challenge trapdoors $\{CT_{\theta}^i\}_{i \in [1, l]}$.

• **Phase 2**: This phase is the same as Phase 1 with the restriction that no element of $\{ID_S, ID_R, KW_j^{i*}\}_{j \in \{0, 1\}, i \in [1, l]}$ can be queried on O_C or O_T.

• **Guess**: A outputs a guess bit θ' of θ and it wins the game if $\theta' = \theta$. The advantage of A to win the MCI security game is defined as $Adv^MCI_A(\lambda) = \left| \Pr[\theta' = \theta] - \frac{1}{2} \right|$.
Game 4 (type 2 adversary): In this game, the adversary is allowed to request for the master secret key.

- **Setup**: Given a security parameter λ, the challenger C generates the public parameter PP, master secret key s and public keys PK_{IDS}, PK_{IRD} of challenge sender IDS, receiver IRD, respectively. Finally, it responds A with $PP, s, PK_{IDS}, PK_{IRD}$.

- **Phase 1**: The adversary A is allowed to issue the same queries as in Game 2.

- **Challenge**: A chooses two keyword sets $\{KW_{0i}^*\}_{i \in [1, l]}$ and $\{KW_{1i}^*\}_{i \in [1, l]}$ with the restriction that no element of $\{IDS, ID_{R}, KW_{ji}^*\}_{j \in \{0, 1\}, i \in [1, l]}$ has been queried on O_C or O_T. C randomly chooses a bit $\theta \in \{0, 1\}$ and responds A with a set of challenge trapdoors $\{CT_{0i}^*\}_{i \in [1, l]}$.

- **Phase 2**: This phase is the same as Phase 1 with the restriction that no element of $\{IDS, ID_{R}, KW_{ji}^*\}_{j \in \{0, 1\}, i \in [1, l]}$ can be queried on O_C or O_T.

- **Guess**: A outputs a guess bit θ' of θ and it wins the game if $\theta' = \theta$. The advantage of A to win the MCI security game is defined as $Adv^MCI_A(\lambda) = Pr[\theta' = \theta] - \frac{1}{2}$.

Definition 3. The PAEKS achieves MCI security against outside chosen multi-ciphertext attacks, if there exist no PPT adversary winning the above security game with a non-negligible advantage ϵ.

4 CLPAEKS with both MTP and MCI

The construction detail of our CLPAEKS is shown as follows.

- **Setup**: Given a security parameter λ, the algorithm chooses a bilinear map $e: G_0 \times G_0 \rightarrow G_T$, where G_0 and G_T are groups with prime order q and P is the generator of G_0, a random $s \in R Z_q^*$ such that $P_pub = sP$ and hash functions $H: \{0, 1\}^* \rightarrow G_0; h_1: \{0, 1\}^* \times G_0 \rightarrow Z_q^*$, $h_2: \{0, 1\}^* \times G_0 \times G_0 \times G_0 \rightarrow Z_q^*$. It outputs the public parameter $PP = (e, G_0, G_T, q, P, P_pub, H, h_1, h_2)$, and keeps $MSK = s$ secret.

- **Extract partial private key**: Given a user’s identity $ID_i \in \{0, 1\}^*$ and MSK, the algorithm picks a random $r_{IDS} \in R Z_q^*$ and computes $R_{IDS} = r_{IDS}P$, $\alpha_{IDS} = h_1(ID_i), R_{IDS}$, then sets $d_{IDS} = r_{IDS} + s\alpha_{IDS} (\text{ mod } q)$. It publishes R_{IDS} and sends the partial private key d_{IDS} to user ID_i secretly.

- **Set secret value**: Given a user’s identity $ID_i \in \{0, 1\}^*$, the algorithm picks a random $x_{IDS} \in R Z_q^*$ as a secret value.

- **Set private key**: Given a user’s identity $ID_i \in \{0, 1\}^*$, its secret value x_{IDS}, and partial private key d_{IDS}, the algorithm sets the user’s private key as $SK_{IDS} = \{x_{IDS}, d_{IDS}\}$.

- **Set public key**: Given a user’s identity $ID_i \in \{0, 1\}^*$, its secret value x_{IDS}, and partial public information R_{IDS}, the algorithm computes $P_{IDS} = x_{IDS}P$, sets the user’s public key as $PK_{IDS} = \{P_{IDS}, R_{IDS}\}$.

- **CLPAEKS**: Given sender’s identity IDS, receiver’s identity IRD, sender’s secret key SK_{IDS}, public keys (PK_{IDS}, PK_{IRD}), and a ciphertext keyword KW, the algorithm randomly chooses $r_1, r_2 \in R Z_q^*$, then computes $\beta_{IDS} =$
\(h_2(ID_S, P_{pub}, P_{ID_S}, R_{ID_S}), \beta_{ID_R} = h_2(ID_R, P_{pub}, P_{ID_R}, R_{ID_R}) \) and generates the ciphertext as

\[
C_1 = r_1(d_{ID_S} + \beta_{ID_S}x_{ID_S})H(ID_S, ID_R, KW) + r_2P,
\]
\[
C_2 = r_2(R_{ID_R} + \alpha_{ID_R}P_{pub} + \beta_{ID_R}P_{ID_R}),
\]
\[
C_3 = r_1(d_{ID_S} + \beta_{ID_S}x_{ID_S})P.
\]

Finally, it outputs \(CT = (C_1, C_2, C_3) \).

- **Trapdoor**: Given sender’s identity \(ID_S \), receiver’s identity \(ID_R \), receiver’s secret key \(SK_{ID_R} \), public keys \((PK_{ID_S}, PK_{ID_R}) \), and a target keyword \(KW' \), the algorithm randomly chooses \(r' \in R Z_p^* \), then computes

\[
T_1 = r'(d_{ID_R} + \beta_{ID_R}x_{ID_R})H(ID_S, ID_R, KW'),
\]
\[
T_2 = r'(R_{ID_R} + \alpha_{ID_R}P_{pub} + \beta_{ID_R}P_{ID_R}),
\]
\[
T_3 = r'P.
\]

Finally, it outputs \(Tr = (T_1, T_2, T_3) \).

- **Test \((PP, Ct, Tr)\)**: The algorithm checks whether the following equation holds or not:

\[
e(C_1, T_2) = e(T_1, C_3) \cdot e(T_3, C_2).
\]

If so, it outputs 1; otherwise it outputs 0.

4.1 Correctness

If the ciphertext keyword \(KW \) is identical to the target keyword \(KW' \), we have the following equation:

\[
e(C_1, T_2) = e(r_1(d_{ID_S} + \beta_{ID_S}x_{ID_S})H(ID_S, ID_R, KW) + r_2P, r'(R_{ID_R} + \alpha_{ID_R}P_{pub} + \beta_{ID_R}P_{ID_R}))
\]
\[
= e(r'(d_{ID_R} + \beta_{ID_R}x_{ID_R})H(ID_S, ID_R, KW), r_1(d_{ID_S} + \beta_{ID_S}x_{ID_S})P).
\]
\[
e(r'P, r_2(R_{ID_R} + \alpha_{ID_R}P_{pub} + \beta_{ID_R}P_{ID_R}))
\]
\[
= e(T_1, C_3) \cdot e(T_3, C_2).
\]

The above equation holds with probability 1, if \(KW = KW' \); it doesn’t hold with overwhelming probability when \(KW \neq KW' \).

5 Security Analysis

In this section, we provide a formal security analysis of our scheme on both MTP and MCI securities.

Theorem 1. Our scheme is semantically MTP secure against inside keyword guessing attacks in the random oracle model under the DDH assumption.
Proof. Suppose that a PPT adversary A can break the MTP security of our scheme with a non-negligible advantage $\epsilon > 0$, then there exists a PPT simulator B that can distinguish a DDH tuple from a random one with a non-negligible probability. The DDH challenger C selects $x, y \in \mathbb{Z}_p^*$, $\theta \in \{0, 1\}$, $R \in \mathbb{G}_0$ at random. Let $Z = xyP$, if $\theta = 0$, R else. Next, C sends B the DDH tuple (P, xP, yP, Z). Then, B plays the role of simulator in the following security game.

Game 1 (type 1 adversary):

- **Setup**: A chooses the challenge sender’s identity ID_S and challenge receiver’s identity ID_R. The new public key to replace P_{ID_R} is P'_{ID_R}. B randomly chooses $\alpha_{ID_S}, \beta_{ID_S}, \alpha_{ID_R}, \beta_{ID_R} \in \mathbb{Z}_p^*$, $R_{ID_S}, R_{ID_R} \in \mathbb{G}_0$, computes $P_{pub} = \frac{1}{\alpha_{ID_R}}(x \cdot P - \beta_{ID_R} P'_{ID_R} - R_{ID_R})$, and adds $(ID_S, R_{ID_S}, \alpha_{ID_S})$ and $(ID_R, R_{ID_R}, \alpha_{ID_R})$ to the list L_h, adds $(ID_S, R_{ID_S}, \perp, \beta_{ID_S})$ and $(ID_R, R_{ID_R}, \perp, \beta_{ID_R})$ to list L_E. Then, it sends $PP = (e, \mathbb{G}_0, q, P, P_{pub}, H, h_1, h_2)$ to A.

- **Phase 1**: The adversary A may issue the following queries:

 h_1 query: B maintains a list L_{h_1} of tuple $(ID_i, R_{ID_i}, \alpha_{ID_i})$. This list is initially empty. Given a query tuple (ID_i, R_{ID_i}), B responds as follows:
 1. If $(ID_i, R_{ID_i}, \alpha_{ID_i})$ has already existed in the L_{h_1}, B responds A with $h_1(ID_i, R_{ID_i}) = \alpha_{ID_i}$.
 2. Otherwise, B picks a random $\alpha_{ID_i} \in \mathbb{Z}_p^*$ and adds the tuple $(ID_i, R_{ID_i}, \alpha_{ID_i})$ into L_{h_1} and responds A with α_{ID_i}.

 H query: B maintains a list L_H of tuple $(KW_i, ID'_S, ID'_R, u_i, c_i, H_i)$. This list is initially empty. Given a query tuple (KW_i, ID'_S, ID'_R), B responds as follows:
 1. If $(KW_i, ID'_S, ID'_R, u_i, c_i, H_i)$ is in the L_H, B responds A with $H(ID'_S, ID'_R, KW_i) = H_i$.
 2. Otherwise, B flips a random coin $c_i \in \{0, 1\}$ with the probability $Pr[c_i = 0] = \delta$.
 3. B picks a random $u_i \in \mathbb{Z}_p^*$ and sets $H(ID'_S, ID'_R, KW_i) = H_i = (1 - c_i)yP + u_iP$.
 4. B adds the tuple $(KW_i, ID'_S, ID'_R, u_i, c_i, H_i)$ into L_H and responds A with H_i.

 h_2 query: B maintains a list L_{h_2} of tuple $(ID_i, P_{ID_i}, R_{ID_i}, \beta_{ID_i})$. This list is initially empty. Given a query tuple $(ID_i, P_{ID_i}, R_{ID_i})$, B responds as follows:
 1. If $(ID_i, P_{ID_i}, R_{ID_i}, \beta_{ID_i})$ has already existed in the L_{h_2}, B responds A with $h_2(ID_i, P_{ID_i}, R_{ID_i}) = \beta_{ID_i}$.
 2. Otherwise, B picks a random $\beta_{ID_i} \in \mathbb{Z}_p$ and adds the tuple $(ID_i, P_{ID_i}, R_{ID_i}, \beta_{ID_i})$ into L_{h_2} and responds A with β_{ID_i}.

 Extract partial private key query: B maintains a list L_{E_i} of tuple $(ID_i, R_{ID_i}, d_{ID_i})$. This list is initially empty. Given a query on ID_i, B responds as follows:
 1. If $(ID_i, R_{ID_i}, d_{ID_i})$ is existed in the L_{E_i}, B responds A with d_{ID_i}.
 2. Otherwise, if $ID_i \neq ID_S$ and $ID_i \neq ID_S$, B randomly picks $d_{ID_i}, \alpha_{ID_i} \in \mathbb{Z}_p$ and computes $R_{ID_i} = d_{ID_i}P - \alpha_{ID_i}P_{pub}$, then adds the tuple $(ID_i, R_{ID_i}, \alpha_{ID_i})$ into L_{h_1} and $(ID_i, R_{ID_i}, d_{ID_i})$ into L_{E_i} and responds A with d_{ID_i}.
 3. If $ID_i = ID_S$ or $ID_i = ID_R$, B aborts.
Secret value query: \(\mathcal{B} \) maintains a list \(L_{E_2} \) of tuple \((ID_i, x_{ID_i}, P_{ID_i})\). This list is initially empty. Given a query on \(ID_i \), \(\mathcal{B} \) responds as follows:
1. If \((ID_i, x_{ID_i}, P_{ID_i})\) is already in \(L_{E_2} \), \(\mathcal{B} \) responds \(\mathcal{A} \) with \(x_{ID_i} \).
2. Otherwise, \(\mathcal{B} \) picks a random \(x_{ID_i} \in_R \mathbb{Z}_p^* \) as a secret value and computes \(P_{ID_i} = x_{ID_i}P \), then adds the tuple \((ID_i, x_{ID_i}, P_{ID_i})\) into \(L_{E_2} \) and responds \(\mathcal{A} \) with \(x_{ID_i} \).

Public key query: Given a query on \(ID_i \), \(\mathcal{B} \) retrieves \(R_{ID_i} \) and \(P_{ID_i} \) from \(L_{E_1} \) and \(L_{E_2} \), then returns the public key \(PK_{ID_i} = (R_{ID_i}, P_{ID_i}) \) to \(\mathcal{A} \).

Replace public key query: Given a query tuple \((ID_i, R_{ID_i}, P'_{ID_i})\), \(\mathcal{B} \) sets \(P_{ID_i} = P'_{ID_i}, d_{ID_i} = \perp, x_{ID_i} = \perp \). Note that \(\mathcal{A} \) is prohibited from replacing the public key of \(ID_S \) before the challenge phase.

Ciphertext Oracle \(\mathcal{O}_C \): Given a ciphertext query \((KW_i, ID'_S, ID'_R)\), \(\mathcal{B} \) retrieves the tuple \((KW_i, ID'_S, ID'_R, u_i, c_i, H_i)\) from \(L_H \). If \(c_i = 0 \), it aborts the game and outputs a random bit \(\theta' \) as the guess of \(\theta \). Otherwise, it picks \(r_1, r_2 \in_R \mathbb{Z}_p^* \), and responds \(\mathcal{A} \) with the ciphertext \(Ct = (C_1, C_2, C_3) \), where
\[
C_1 = r_1(d_{ID'_S} + \beta_{ID'_S} x_{ID'_S}) u_i P + r_2 P,
\]
\[
C_2 = r_2(R_{ID'_R} + \alpha_{ID'_R} P_{pub} + \beta_{ID'_R} P_{ID'_R}),
\]
\[
C_3 = r_1(d_{ID'_S} + \beta_{ID'_S} x_{ID'_S}) P.
\]

Trapdoor Oracle \(\mathcal{O}_T \): Given a trapdoor query \((KW_i, ID'_S, ID'_R)\), \(\mathcal{B} \) retrieves the tuple \((KW_i, ID'_S, ID'_R, u_i, c_i, H_i)\) from \(L_H \). If \(c_i = 0 \), it aborts the game and outputs a random bit \(\theta' \) as the guess of \(\theta \). Otherwise, it picks \(r' \in_R \mathbb{Z}_p^* \), and responds \(\mathcal{A} \) with the trapdoor \(Tr = (T_1, T_2, T_3) \), where
\[
T_1 = r'(d_{ID'_R} + \beta_{ID'_R} x_{ID'_R}) u_i P,
\]
\[
T_2 = r'(R_{ID'_R} + \alpha_{ID'_R} P_{pub} + \beta_{ID'_R} P_{ID'_R}),
\]
\[
T_3 = r' P.
\]

Challenge: \(\mathcal{A} \) chooses two keyword sets \(\{KW_{0i}^\ast\}_{i \in [1, l]} \) and \(\{KW_{1i}^\ast\}_{i \in [1, l]} \) with the restriction that no element of \((KW^\ast_{ji}, ID_S, ID_R)_{j \in [0, 1], i \in [1, l]} \) has been queried on \(\mathcal{O}_C \) or \(\mathcal{O}_T \). There are \(r_t \) duplicated keywords in the set \(\{KW^\ast_{ji}\}_{j \in [0, 1], i \in [1, l]} \). \(\mathcal{B} \) retrieves \((KW^\ast_{ji}, ID'_S, ID'_R, u'_i, c^\ast_{ji}, H^\ast_{ji})_{j \in [0, 1], i \in [1, l]} \) from \(L_H \) and generates the challenge trapdoors as follows:
1. If, for each \(i \in [1, l] \), \(c^\ast_{0i} = c^\ast_{1i} = 1 \), \(\mathcal{B} \) aborts the game and outputs a random bit \(\theta' \) as the guess of \(\theta \).
2. Otherwise, there exist a \(t \in [1, l] \) such that \(c^\ast_{0t} = 0 \) or \(c^\ast_{1t} = 0 \). For \(i \neq t \), \(\mathcal{B} \) generates the challenge trapdoor \(Tr^\ast_t \) as Phase 1; for \(i = t \), \(\mathcal{B} \) picks a bit \(\hat{\theta} \in \{0, 1\} \) such that \(c^\ast_{\hat{\theta}t} = 0 \). Then, it picks \(r' \in_R \mathbb{Z}_p^* \) and generates the challenge trapdoor \(Tr^\ast_\hat{\theta} = (T^\ast_1, T^\ast_2, T^\ast_3) \) for \(\mathcal{A} \) as:
\[
T_1 = r'(d_{ID_R} + \beta_{ID_R} x_{ID_R}) y P = r'(R_{ID_R} + \alpha_{ID_R} P_{pub} + \beta_{ID_R} P_{ID_R}) y P = r' Z P,
\]
\[
T_2 = r'(R_{ID_R} + \alpha_{ID_R} P_{pub} + \beta_{ID_R} P_{ID_R}) = r' x P,
\]
\[
T_3 = r' P.
\]
For $i \neq t$, Tr_i^* is random in the view of A. For $i = t$, Tr_t^* is a valid trapdoor, if $Z = xyP$; otherwise, $Z = R \in_R \mathbb{G}_0$ so that T_i^* is a random element in \mathbb{G}_0 and Tr_t^* is random in the view of A.

Phase 2: This phase is the same as Phase 1.

Guess: A outputs a guess bit θ'' of θ. If $\theta'' = \hat{\theta}$, B guesses $\theta = 0$ which indicates that $Z = xyP$ in the above game. Otherwise, B guesses $\theta = 1$ i.e., $Z = R$.

If $Z = R$, then Tr_t^* is random from the view of A. Hence, B’s probability to guess θ correctly is

$$
\Pr[B(P, xP, yP, Z = R) = 1] = \frac{1}{2}.
$$

(9)

Else $Z = xyP$, then Tr_t^* is an available trapdoor and A’s advantage of guessing θ' is ϵ. Therefore, B’s probability to guess θ correctly is

$$
\Pr[B(P, xP, yP, Z = xyP) = 0] = \frac{1}{2} + \epsilon.
$$

(10)

The adversary A may issue at most q_H, q_C, q_T queries to the hash oracle O_H, the ciphertext oracle O_C and the trapdoor oracle O_T. We make some necessary restriction: q_H, q_C, q_T are polynomial; A isn’t allowed to repeat a query to the hash oracle O_H and may repeat r_C queries to O_C and r_T queries to O_T; A couldn’t issue a ciphertext query (ID_S, ID_R, KW) to O_C or a trapdoor query to O_T before issuing the hash query (ID_S, ID_R, KW) to O_H. Now, we donate the event B aborts in the above game by E_0 and compute the probability of E_0.

Then, B aborts the game in the following two cases:

1. $c_i = 0$ in the simulation of O_C or O_T in phase 1 and phase 2.

 We denote this event by E_1 and the probability E_1 doesn’t occur is that

$$
\Pr[E_1] = (1 - \delta)^{q_C + q_T - r_C - r_T}.
$$

2. For each $i \in [1, I]$, $c_i^* = c_i^t = 1$ challenge phase.

 We denote this event by E_2 and the probability E_2 doesn’t occur is that

$$
\Pr[E_2] = 1 - (1 - \delta)^{2I - r_i}.
$$

We sets $\delta = 1 - \frac{q_C + q_T - r_C - r_T}{q_C + q_T - r_C - r_T + 1}$, then B doesn’t abort in the above game is that

$$
\Pr[E_0] = \Pr[E_1] \cdot \Pr[E_2]
$$

$$
= \left(\frac{q_C + q_T - r_C - r_T}{q_C + q_T - r_C - r_T + 1} \right)^{q_C + q_T - r_C - r_T} \cdot \frac{1}{q_C + q_T - r_C - r_T + 1} \cdot \left(\frac{1}{q_C + q_T - r_C - r_T + 1} \right).
$$

(11)

Hence, B doesn’t abort with a non-negligible probability.
In conclusion, B's probability to win the above security game is

$$
\Pr[\theta' = \theta] = \Pr[\theta' = \theta \And E_0] + \Pr[\theta' = \theta \And \overline{E_0}]
= \Pr[\theta' = \theta|E_0] \cdot \Pr[E_0] + \Pr[\theta' = \theta|\overline{E_0}] \cdot \Pr[\overline{E_0}]
= \frac{1}{2} \cdot \Pr[E_0] + \left(\frac{1}{2} + \epsilon\right) \cdot \Pr[\overline{E_0}]
= \frac{1}{2} + \epsilon \cdot \Pr[\overline{E_0}].
$$

(12)

Game 2 (type 2 adversary):

- **Setup**: A chooses the challenge sender's identity ID_S and challenge receiver's identity ID_R. B randomly chooses $s \in_R Z_q^*$, sets $P_{pub} = sp, P_{ID_S} = yP, P_{ID_R} = xP$, and adds (ID_S, \perp, P_{ID_S}) and (ID_R, \perp, P_{ID_R}) to L_{E_2}. Then, it sends $PP = (e, e_0, g_7, q, P, P_{pub}, h_1, h_2, s, P_{ID_S}, P_{ID_R})$ to A.

- **Phase 1**: Most queries issued by the adversary A are defined as same as those in Game 1, except the following queries:

 - **Extract partial private key query**: B maintains a list L_{E_1} of tuple $(ID_i, R_{ID_i}, d_{ID_i})$. This list is initially empty. Given a query on ID_i, B responds as follows:
 1. If $(ID_i, R_{ID_i}, d_{ID_i})$ is existed in the L_{E_1}, B responds A with d_{ID_i}.
 2. Otherwise, if $(ID_i, R_{ID_i}, \alpha_{ID_i})$ is already in L_{h_1}, B retrieves α_{ID_i} from L_{h_1}; otherwise B randomly chooses $r_{ID_i}, \alpha_{ID_i} \in_R Z_q^*$, sets $R_{ID_i} = r_{ID_i}P$, and adds the tuple $(ID_i, R_{ID_i}, r_{ID_i}, \alpha_{ID_i})$ into L_{h_1}. Then, B computes $d_{ID_i} = r_{ID_i} + s\alpha_{ID_i} \mod q$, adds the tuple $(ID_i, R_{ID_i}, d_{ID_i})$ into L_{E_1}, and responds A with d_{ID_i}.

 - **Secret value query**: B maintains a list L_{E_2} of tuple $(ID_i, x_{ID_i}, P_{ID_i})$. This list is initially empty. Given a query on ID_i, B responds as follows:
 1. If $ID_i = ID_S$ and $ID_i = ID_R$, B aborts.
 2. If $ID_i = ID_S$ or $ID_i = ID_R$, B picks a random $x_{ID_i} \in_R Z_q^*$ as a secret value and computes $P_{ID_i} = x_{ID_i}P$, then adds the tuple $(ID_i, x_{ID_i}, P_{ID_i})$ into L_{E_2} and responds A with x_{ID_i}.
 3. If $ID_i \neq ID_S$ and $ID_i \neq ID_R$, B picks a random $x_{ID_i} \in_R Z_q^*$, and adds the tuple $(ID_i, x_{ID_i}, P_{ID_i})$ into L_{E_2} and responds A with x_{ID_i}.

- **Challenge**: A chooses two keyword sets $\{KW_i^{0*}\}_{i \in [1, I]}$ and $\{KW_i^{1*}\}_{i \in [1, I]}$ with the restriction that no element of $(KW_i^{1*}, ID_S, ID_R)_{j \in [0,1], i \in [1, I]}$ has been queried on O_C or O_T. There are r_I duplicated keywords in the set $\{KW_i^{0*}\}_{j \in [0,1], i \in [1, I]}$. B retrieves $(KW_i^{\ast}, ID_S', ID_R', u_i^\ast, c_i^\ast, H^\ast_i)_{j \in [0,1], i \in [1, I]}$ from L_H and generates the challenge trapdoors as follows:
 1. If, for each $i \in [1, I]$, $c_i^0 = c_i^1 = 1$, B aborts the game and outputs a random bit θ' as the guess of θ.
 2. Otherwise, there exist a $t \in [1, I]$ such that $c_t^0 = 0$ or $c_t^1 = 0$. For $i \neq t$, B generates the challenge trapdoor Tr_i^t as Phase 1; for $i = t$, B picks a bit $\theta \in \{0, 1\}$ such that $c_{\theta}^i = 0$. Then, it picks $r' \in_R Z_p^*$, and generates the
challenge trapdoor $T_{r^*_t} = (T_1^*, T_2^*, T_3^*)$ for A as:

$$
T_1 = r'(d_{ID_R} + \beta_{ID_R}x_{ID_R})yP = r'(d_{ID_R} + \beta_{ID_R}x)yP = r'\beta_{ID_R}ZP + r'd_{ID_R}\beta_{ID_R}xP,
$$

$$
T_2 = r'(R_{ID_R} + \alpha_{ID_R}P_{pub} + \beta_{ID_R}P_{ID_R}) = r'd_{ID_R}P + r'\beta_{ID_R}xP,
$$

$$
T_3 = r'P.
$$

(13)

For $i \neq t$, $T_{r^*_t}$ is random in the view of A. For $i = t$, $T_{r^*_t}$ is a valid trapdoor, if $Z = xyP$; otherwise, $Z \in_R G_0$ so that C_{r}^* is a random element in G_0 and $T_{r^*_t}$ is random in the view of A.

- **Phase2:** This phase is the same as Phase 1.
- **Guess:** A outputs a guess bit θ'' of $\hat{\theta}$. If $\theta'' = \hat{\theta}$, B guesses $\theta = 0$ which indicates that $Z = xyP$ in the above game. Otherwise, B guesses $\theta = 1$ i.e., $Z = R$.

If $Z = R$, then $T_{r^*_t}$ is random from the view of A. Hence, B’s probability to guess θ correctly is

$$
\Pr[B(P,xP,yP,Z = R) = 1] = \frac{1}{2}.
$$

(14)

Else $Z = xyP$, then $T_{r^*_t}$ is an available trapdoor and A’s advantage of guessing θ'' is ϵ. Therefore, B’s probability to guess θ correctly is

$$
\Pr[B(P,xP,yP,Z = xyP) = 0] = \frac{1}{2} + \epsilon.
$$

(15)

The adversary A may issue at most q_H, q_C, q_T queries to the hash oracle O_H, the ciphertext oracle O_C and the trapdoor oracle O_T. We make some necessary restriction: q_H, q_C, q_T are polynomial; A isn’t allowed to repeat a query to the hash oracle O_H and may repeat r_C queries to O_C and r_T queries to O_T; A couldn’t issue a ciphertext query (ID_S, ID_R, KW) to O_C or a trapdoor query to O_T before issuing the hash query (ID_S, ID_R, KW) to O_H. Now, we donate the event B aborts in the above game by E_0 and compute the probability of E_0.

Then, B aborts the game in the following two cases:

1. $c_i = 0$ in the simulation of O_C or O_T in phase 1 and phase 2. We denote this event by E_1 and the probability E_1 doesn’t occur is that

$$
\Pr[E_1] = (1 - \delta)^{q_C + q_T - r_C - r_T}.
$$

2. For each $i \in [1, l]$, $c_i^* = c_i^+ = 1$ challenge phase. We denote this event by E_2 and the probability E_2 doesn’t occur is that

$$
\Pr[E_2] = 1 - (1 - \delta)^{2I - r_T}.
$$
We sets $\delta = 1 - \frac{q_C + q_T - r_C - r_T}{q_C + q_T - r_C - r_T + 1}$, then B doesn’t abort in the above game is that

$$
\Pr [E_0] = \Pr [E_1] \cdot \Pr [E_2]
\approx \frac{q_C + q_T - r_C - r_T}{q_C + q_T - r_C - r_T + 1} \cdot \frac{1}{\sqrt{r_C + q_T - r_C - r_T + 1}}.
$$

Hence, B doesn’t abort with a non-negligible probability.

In conclusion, B’s probability to win the above security game is

$$
\Pr [\theta' = \theta] = \Pr [\theta' = \theta \wedge E_0] + \Pr [\theta' = \theta \wedge E_0] = \frac{1}{2} \cdot \Pr [E_0] + \left(\frac{1}{2} + \epsilon\right) \cdot \Pr [E_0] = \frac{1}{2} + \epsilon \cdot \Pr [E_0].
$$

Theorem 2. Our scheme is semantically MCI secure against inside keyword guessing attacks in the random oracle model under the DDH assumption.

Proof. Supposed that a PPT adversary A can break the MCI security of our scheme with a non-negligible advantage $\epsilon > 0$, then there exists a PPT simulator B that can distinguish a DDH tuple from a random one with a non-negligible probability. The DDH challenger C selects $x, y \in_R \mathbb{Z}_p^*$, $\theta \in \{0, 1\}$, $R \in_R \mathbb{G}_0$ at random. Let $Z = xyP$, if $\theta = 0$, \mathcal{R} else. Next, C sends B the DDH tuple (P, xP, yP, Z). Then, B plays the role of simulator in the following security game.

Game 3 (type1 adversary):

- **Setup:** A chooses the challenge sender’s identity ID_S and challenge receiver’s identity ID_R. The new public key to replace P_{ID_R} is P'_{ID_R}. B randomly chooses $\alpha_{ID_S}, \beta_{ID_S}, \alpha_{ID_R}, \beta_{ID_R} \in \mathbb{Z}_p^*$, $R_{ID_S}, R_{ID_R} \in_R \mathbb{G}_0$, computes $P_{pub} = \frac{1}{\alpha_{ID_S}}(x \cdot P - \beta_{ID_S} P_{ID_S} - R_{ID_S})$, and adds $(ID_S, R_{ID_S}, \alpha_{ID_S})$ and $(ID_R, R_{ID_R}, \alpha_{ID_R})$ to the list L_{h_1}, adds $(ID_S, R_{ID_S}, 1, \beta_{ID_S})$ and $(ID_R, R_{ID_R}, 1, \beta_{ID_R})$ to list L_{E_1}. Then, it sends $PP = \epsilon, G_0, G_T, q, P, P_{pub}, H, h_1, h_2$ to A.

- **Phase1:** Most queries issued by the adversary A are the same as those of Game 1, except the H query:

 H query O_H: B maintains a list L_H of tuple $(KW_i, ID'_S, ID'_R, u_i, c_i, H_i)$. This list is initially empty. Given a query tuple (KW_i, ID'_S, ID'_R), B responds as follows:

 1. If $(KW_i, ID'_S, ID'_R, u_i, c_i, H_i)$ is in the L_H, B responds A with $H(ID'_S, ID'_R, KW_i) = H_i$.

 2. Otherwise, B flips a random coin $c_i \in \{0, 1\}$ with the probability $\Pr[c_i = 0] = \delta$.

 3. B picks a random $u_i \in_R \mathbb{Z}_p^*$ and sets $H(ID'_S, ID'_R, KW_i) = H_i = (1 - c_i)u_i yP + c_i u_i P$.

4. \(\mathcal{B} \) adds the tuple \((\text{KW}_i, ID'_S, ID'_R, u_i, c_i, H_i)\) into \(L_H \) and responds \(\mathcal{A} \) with \(H_i \).

- **Challenge:** \(\mathcal{A} \) chooses two keyword sets \(\{\text{KW}_{0i}^*\}_{i \in [1, l]} \) and \(\{\text{KW}_{1i}^*\}_{i \in [1, l]} \) with the restriction that no element of \((\text{KW}_{ji}^*^*, ID'_S, ID'_R)_{j \in [0, 1], j \in [1, l]}\) has been queried on \(O_C \) or \(O_T \). There are \(r_f \) duplicated keywords in the set \(\{\text{KW}_{ji}^*\}_{j \in [0, 1], i \in [1, l]} \). \(\mathcal{B} \) retrieves \((\text{KW}_{ji}^*^*, ID'_S, ID'_R, u'_i, c_i^*, H_i^*)_{j \in [0, 1], i \in [1, l]}\) from \(L_H \) and generates the challenge ciphertexts as follows:

1. If, for each \(i \in [1, l] \), \(c_i^* = c_i^* = 1 \), \(\mathcal{B} \) aborts the game and outputs a random bit \(\theta' \) as the guess of \(\theta \).

2. Otherwise, there exist a \(t \in [1, l] \) such that \(c_0^* = 0 \) or \(c_1^* = 0 \). For \(i \neq t \), \(\mathcal{B} \) generates the challenge ciphertext \(C_t^* \) as Phase 1: for \(i = t \), \(\mathcal{B} \) picks a bit \(\hat{\theta} \in \{0, 1\} \) such that \(c_0^* = 0 \). Then, it picks \(r_1, r_2 \in_R \mathbb{Z}_n^* \), and generates the challenge ciphertext \(C_t^* = (C_1^*, C_2^*, C_3^*) \) for \(\mathcal{A} \) as:

 \[
 \begin{align*}
 C_1^* &= r_1(d_{ID'_S} + \beta_{ID'_S} x_{ID'_S})u_1yP + r_2P = r_1 u_1Z + r_2P, \\
 C_2^* &= r_2(R_{ID'_R} + \alpha_{ID'_R} P_{pub} + \beta_{ID'_R} P_{ID'_R}), \\
 C_3^* &= r_1(d_{ID'_S} + \beta_{ID'_S} x_{ID'_S})P = r_1P.
 \end{align*}
 \]

 For \(i \neq t \), \(C_t^* \) is random in the view of \(\mathcal{A} \). For \(i = t \), \(C_t^* \) is a valid trapdoor, if \(Z = xyP \); otherwise, \(Z = \mathcal{R} \in_R \mathbb{G}_0 \) so that \(C_t^* \) is a random element in \(\mathbb{G}_0 \) and \(C_t^* \) is random in the view of \(\mathcal{A} \).

- **Phase 2:** This phase is the same as Phase 1.

- **Guess:** \(\mathcal{A} \) outputs a guess bit \(\theta'' \) of \(\hat{\theta} \). If \(\theta'' = \hat{\theta} \), \(\mathcal{B} \) guesses \(\theta = 0 \) which indicates that \(Z = xyP \) in the above game. Otherwise, \(\mathcal{B} \) guesses \(\theta = 1 \) i.e., \(Z = \mathcal{R} \).

 If \(Z = \mathcal{R} \), then \(C_t^* \) is random from the view of \(\mathcal{A} \). Hence, \(\mathcal{B} \)'s probability to guess \(\theta \) correctly is

 \[
 \Pr[\mathcal{B}(P, xP, yP, Z = \mathcal{R}) = 1] = \frac{1}{2}. \tag{19}
 \]

 Else \(Z = xyP \), then \(C_t^* \) is an available trapdoor and \(\mathcal{A} \)'s advantage of guessing \(\theta' \) is \(\epsilon \). Therefore, \(\mathcal{B} \)'s probability to guess \(\theta \) correctly is

 \[
 \Pr[\mathcal{B}(P, xP, yP, Z = xyP) = 0] = \frac{1}{2} + \epsilon. \tag{20}
 \]

The adversary \(\mathcal{A} \) may issue at most \(q_H, q_C, q_T \) queries to the hash oracle \(O_H \), the ciphertext oracle \(O_C \) and the trapdoor oracle \(O_T \). We make some necessary restriction: \(q_H, q_C, q_T \) are polynomial; \(\mathcal{A} \) isn’t allowed to repeat a query to the hash oracle \(O_H \) and may repeat \(r_C \) queries to \(O_C \) and \(r_T \) queries to \(O_T \); \(\mathcal{A} \) couldn’t issue a ciphertext query \((ID'_S, ID'_R, \text{KW})\) to \(O_C \) or a trapdoor query to \(O_T \) before issuing the hash query \((ID'_S, ID'_R, \text{KW})\) to \(O_H \). Now, we donate the event \(\mathcal{B} \) aborts in the above game by \(\mathcal{E}_0 \) and compute the probability of \(\mathcal{E}_0 \). Then, \(\mathcal{B} \) aborts the game in the following two cases:

1. \(c_i = 0 \) in the simulation of \(O_C \) or \(O_T \) in phase 1 and phase 2. We denote this event by \(\mathcal{E}_1 \) and the probability \(\mathcal{E}_1 \) doesn’t occur is that

 \[
 \Pr[\mathcal{E}_1] = (1 - \delta)^{q_C + q_T - r_C - r_T}.
 \]
2. For each $i \in [I]$, $c^*_0 = c^*_1 = 1$ challenge phase. We denote this event by E_2 and the probability E_2 doesn’t occur is that

$$\Pr [E_2] = 1 - (1 - \delta)^{2I - r_I}.$$

We sets $\delta = 1 - \frac{2I - r_I}{\sqrt{q_C + q_T - r_C - r_T}}$, then B doesn’t abort in the above game is that

$$\Pr [E_0] = \Pr [E_1] \cdot \Pr [E_2] = (q_C + q_T - r_C - r_T) \cdot \frac{q_C + q_T - r_C - r_T + 1}{(q_C + q_T - r_C - r_T + 1)^{2I - r_I}} \cdot \frac{1}{q_C + q_T - r_C - r_T + 1}$$

(21)

Hence, B doesn’t abort with a non-negligible probability.

In conclusion, B’s probability to win the above security game is

$$\Pr [\theta' = \theta] = \Pr [\theta' = \theta \land E_0] + \Pr [\theta' = \theta \land E_0]
= \Pr [\theta' = \theta | E_0] \cdot \Pr [E_0] + \Pr [\theta' = \theta | E_0] \cdot \Pr [E_0]
= \frac{1}{2} \cdot \Pr [E_0] + \left(\frac{1}{2} + \epsilon\right) \cdot \Pr [E_0]$$

(22)

Game 4 (type2 adversary):

- **Setup:** A chooses the challenge sender’s identity ID_S and challenge receiver’s identity ID_R. B randomly chooses $s \in_R Z_*, sP_{pub} = sP, P_{ID_S} = yP, P_{ID_R} = xP$, and adds (ID_S, \bot, P_{ID_S}) and (ID_R, \bot, P_{ID_R}) to L_{E_2}. Then, it sends $PP = (e, v_0, \mathcal{G}, r, q, P_{pub}, H, h_1, h_2)$, s, P_{ID_S}, P_{ID_R} to A.

- **Phase1:** Most queries issued by the adversary A are the same as those of Game 2, except the H query. B simulates the H query by the same way as in Game 3.

- **Challenge:** A chooses two keyword sets $\{KW^i_1\}_{i \in [1, I]}$ and $\{KW^i_0\}_{i \in [1, I]}$ with the restriction that no element of $(KW^i_1, ID_S, ID_R)_{j \in [0, I], i \in [1, I]}$ has been queried on OC or OT. There are r_I duplicated keywords in the set $\{KW^i_1\}_{j \in [0, I], i \in [1, I]}$. B retrieves $(KW^i_1, \hat{ID}_S, \hat{ID}_R, \hat{w}^i_j, \hat{c}^i_j, \hat{H}^i_j)_{j \in [0, I], i \in [1, I]}$ from L_H and generates the challenge ciphertexts as follows:

1. If, for each $i \in [I]$, $c^*_0 = c^*_1 = 1$, B aborts the game and outputs a random bit θ' as the guess of θ.

2. Otherwise, there exist a $t \in [1, I]$ such that $c^*_0 = 0$ or $c^*_1 = 0$. For $i \neq t$, B generates the challenge ciphertext Ct^*_i as Phase 1; for $i = t$, B picks a bit $\theta \in \{0, 1\}$ such that $c^*_\theta = 0$. Then, it picks $r_1, r_2 \in_R Z_*$, and generates the
challenge ciphertext $C^*_t = (C^*_1, C^*_2, C^*_3)$ for A as:

$$
C^*_1 = r_1(d_{ID_S} + \beta_{ID_S} x_{ID_S})u_i yP + r_2 P = r_1 d_{ID_S} u_i yP + r_1 \beta_{ID_S} u_i Z + r_2 P,
$$

$$
C^*_2 = r_2(R_{ID_R} + \alpha_{ID_R} P_{pub} + \beta_{ID_R} P_{ID_R}) = r_2 d_{ID_S} P + r_2 \beta_{ID_S} xP,
$$

$$
C^*_3 = r_1(d_{ID_S} + \beta_{ID_S} x_{ID_S})P = r_1 d_{ID_S} P + r_3 \beta_{ID_S} yP.
$$

(23)

For $i \neq t$, C^*_t is random in the view of A. For $i = t$, C^*_t is a valid trapdoor, if $Z = xyP$; otherwise, $Z = R \in \mathbb{G}_0$ so that C^*_t is a random element in \mathbb{G}_0 and C^*_t is random in the view of A.

- **Phase 2**: This phase is the same as Phase 1.
- **Guess**: A outputs a guess bit θ'' of θ. If $\theta'' = \hat{\theta}$, B guesses $\theta = 0$ which indicates that $Z = xyP$ in the above game. Otherwise, B guesses $\theta = 1$ i.e., $Z = R$.

If $Z = R$, then C^*_t is random from the view of A. Hence, B’s probability to guess θ correctly is

$$
\Pr[B(P, xP, yP, Z = R) = 1] = \frac{1}{2}.
$$

(24)

Else $Z = xyP$, then C^*_t is an available trapdoor and A’s advantage of guessing θ' is ϵ. Therefore, B’s probability to guess θ correctly is

$$
\Pr[B(P, xP, yP, Z = xyP) = 0] = \frac{1}{2} + \epsilon.
$$

(25)

The adversary A may issue at most q_H, q_C, q_T queries to the hash oracle O_H, the ciphertext oracle O_C and the trapdoor oracle O_T. We make some necessary restriction: q_H, q_C, q_T are polynomial; A isn’t allowed to repeat a query to the hash oracle O_H and may repeat r_C queries to O_C and r_T queries to O_T; A couldn’t issue a ciphertext query (ID_S, ID_R, KW) to O_C or a trapdoor query to O_T before issuing the hash query (ID_S, ID_R, KW) to O_H. Now, we denote the event B aborts in the above game by E_0 and compute the probability of E_0. Then, B aborts the game in the following two cases:

1. $c_i = 0$ in the simulation of O_C or O_T in phase 1 and phase 2. We denote this event by E_1 and the probability E_1 doesn’t occur is that

$$
\Pr[E_1] = (1 - \delta)^{qc + q_T - r_C - r_T}.
$$

2. For each $i \in [1, I]$, $c^*_0 = c^*_1 = 1$ challenge phase. We denote this event by E_2 and the probability E_2 doesn’t occur is that

$$
\Pr[E_2] = 1 - (1 - \delta)^{2I - r_T}.
$$
We sets $\delta = 1 - \left(\frac{qC + qT - rC - rT}{qC + qT - rC - rT + 1}\right)^{2I-rI}$, then B doesn’t abort in the above game is that
\[
\Pr \left[E_0 \right] = \Pr \left[E_1 \right] \cdot \Pr \left[E_2 \right] \\
= \left(\frac{qC + qT - rC - rT}{qC + qT - rC - rT + 1}\right)^{2I-rI} \cdot \frac{1}{qC + qT - rC - rT + 1} (26)
\]
\[
\approx \frac{1}{(qC + qT - rC - rT + 1) \cdot e^{2I-rI}}.
\]
Hence, B doesn’t abort with a non-negligible probability.

In conclusion, B’s probability to win the above security game is
\[
\Pr \left[\theta' = \theta \right] = \Pr \left[\theta' = \theta \land E_0 \right] + \Pr \left[\theta' = \theta \land E_0 \right] \cdot \Pr \left[E_0 \right] \\
= \frac{1}{2} \cdot \Pr \left[E_0 \right] + \left(\frac{1}{2} + \epsilon\right) \cdot \Pr \left[E_0 \right] (27)
\]
\[
= \frac{1}{2} + \epsilon \cdot \Pr \left[E_0 \right].
\]

6 Conclusion

In this paper, we initially propose a CLPAEKS scheme with both MCI security and MTP security simultaneously. We provide formal proof of our scheme in the random oracle model. The trapdoor generation algorithms of our CLPAEKS scheme is all probabilistic. By combining our scheme and [15], it would be able to design a secure designated CLPAEKS scheme with both MCI security and MTP security. For the compact of this paper, we leave it as a further work.

References