Verifiable Functional Encryption using Intel SGX*

Tatsuya Suzuki!, Keita Emura?, Toshihiro Ohigashi® 2, and Kazumasa Omote! 2

University of Tsukuba, Japan.
2National Institute of Information and Communications Technology (NICT), Japan.
3Tokai University, Japan.

February 7, 2022

Abstract

Most functional encryption schemes implicitly assume that inputs to decryption algorithms,
i.e., secret keys and ciphertexts, are generated honestly. However, they may be tampered by
malicious adversaries. Thus, verifiable functional encryption (VFE) was proposed by Badri-
narayanan et al. in ASTACRYPT 2016 where anyone can publicly check the validity of secret
keys and ciphertexts. They employed indistinguishability-based (IND-based) security due to
an impossibility result of simulation-based (SIM-based) VFE even though SIM-based security is
more desirable. In this paper, we propose a SIM-based VFE scheme. To bypass the impossibility
result, we introduce a trusted setup assumption. Although it appears to be a strong assumption,
we demonstrate that it is reasonable in a hardware-based construction, e.g., Fisch et al. in ACM
CCS 2017. Our construction is based on a verifiable public-key encryption scheme (Nieto et al.
in SCN 2012), a signature scheme, and a secure hardware scheme, which we refer to as VFE-HW.
Finally, we discuss an implementation of VFE-HW using Intel Software Guard Extensions (Intel
SGX).

1 Introduction

Functional Encryption: Cloud computing has gained increasing attention since it supports sev-
eral functionalities, e.g., data analysis. However, sensitive user data must be secured, and protected.
Thus, since Public-Key Encryption (PKE) only provides all-or-nothing decryption capabilities, func-
tional encryption [20] has been proposed. Functional encryption allows clients to flexibly access
sensitive data toward usual “all or nothing” decryption procedure. Briefly, a Trusted Authority
(TA) first generates a master public key mpk and a master secret key msk. A client sends the
information of function P to the TA. Generally, P can enforce sophisticated functions, e.g., access
control etc. The TA generates a secret key skp using the msk, and gives it to the client. A plaintext
msg is encrypted by the mpk, where CT is the ciphertext. Finally, the client obtains P(msg) by
decrypting CT using skp.

The security of functional encryption is defined by indistinguishability-based (IND-based) or
simulation-based (SIM-based) notions. IND-based security guarantees that no adversary can distin-
guish which plaintext was encrypted. IND-based functional encryption schemes have been proposed

*The main part of this work was done when the first author, Tatsuya Suzuki, was a master student at the
Tokai University, Japan, and was a research assistant at the National Institute of Information and Communications
Technology (NICT), Japan. The first author is supported by a JSPS Fellowship for Young Scientists. An extended
abstract appeared at the 15th International Conference on Provable and Practical Security, ProvSec 2021 [43].

Table 1: Comparison of Verifiable Functional Encryption

Security Functionality | Verifiability Secure | Trusted
HwW Setup
Fisch et al. [29] SIM-based | Any Not Considered | Yes Yes !
(Functional Encryption)
Badrinarayanan et al. [15] | IND-based | Limited Normal No No
Soroush et al. [42] IND-based | Limited Normal No No
Our VFE scheme SIM-based | Any Weak Yes Yes

for the class of all (polynomial-sized) functionalities under inefficient assumptions, e.g., multi-linear
maps, or indistinguishability obfuscation [21,31,32,45]. Consequently, Abdalla et al. [4] proposed an
IND-based functional encryption scheme that supports inner products under simple assumptions,
and several works followed this direction [2,3,5,5-8,13,17,23-25,27, 28, 36, 37,41, 44]. However,
Boneh et al. [20] and O’Neil [40] demonstrated that IND-based functional encryption yields insuffi-
cient security. For example, an adversary is allowed to obtain secret keys for a function P selected
by the adversary with the restriction P(msgg) = P(msgj) where msgj and msgj are challenge plain-
texts with the condition msgg # msgi. Thus, the class of P remains restricted, e.g., we cannot
specify a cryptographic hash function as P due to collision resistance. Thus, SIM-based security
is more desirable. Several SIM-based functional encryption schemes [10-12, 20, 22, 40] have been
proposed recently. However, several works [10, 11,20, 22] have shown that achieving SIM-based
functional encryption that supports all (polynomial-sized) functionalities is impossible.

Functional Encryption using Intel SGX: To overcome this impossibility result, Fisch et al.
[29] proposed IRON, a SIM-based functional encryption scheme that uses Intel SGX [14, 35, 38].
Intel SGX is a hardware protection set that protects sensitive data (e.g. medical data) from
malicious adversaries by storing them in enclaves generated as isolated spaces in an application.
They employed a secure hardware scheme (HW) which modeled Intel SGX.

Briefly, IRON is described as follows. The TA generates a public key pk and a decryption key dk
for a PKE scheme, as well as a verification key vk and a signing key sk for a signature scheme (SIG).
Then, the TA generates a secret key skp, where P is a function for the client. The TA generates a
signature of P as a secret key skp using sk in a Key Manager Enclave (KME), and sends it to the
client. Let CT be the ciphertext of a plaintext msg under pk. In the decryption procedure, if skp
is a valid signature using vk, CT is decrypted inside an enclave, and P(msg) is output.

Verifiable Functional Encryption: Most functional encryption schemes implicitly assume that
inputs to decryption algorithm, i.e., skp and CT, are generated honestly according to the algorithmic
procedures. However, they may be tampered by malicious adversaries. Badrinarayanan et al. [15]
proposed Verifiable Functional Encryption (VFE). With VFE, anyone can publicly check the validity
of skp and CT. If verification of skp and CT passes, the decryption algorithm of VFE correctly
outputs P(msg). Badrinarayanan et al. insisted that VFE are useful for some applications, e.g.,
storing encrypted images [20] and audits [34]. As a drawback, they demonstrated that SIM-based
VFE implies the existence of one message zero-knowledge proof systems for NP in the plain model.
This implication contradicts the impossibility result shown by Goldreich et al. [33]. We emphasize
that TRON does not help us to bypass this impossibility result. As a result, they employed IND-
based security as shown in Table 1. A VFE proposed by Soroush et al. [42], which supports inner
products, employs the same IND-based security definition. Thus, no SIM-based VFE has been
proposed so far.

'The HW.Setup algorithm in the pre-processing phase is required to be honestly run by the TA.

Our Contribution: We propose a SIM-based VFE scheme that supports any (polynomial-sized)
functionality. To support such functionality, we employ the hardware-based construction given in
IRON [29], and, to achieve SIM-based security, we relax the verifiability of the definition given by
Badrinarayanan et al. without losing the practicability. Intuitively, we assume that mpk and msk are
generated honestly whereas those can be arbitrary values in the definition given by Badrinarayanan
et al. Due to this trusted setup assumption, mpk can be considered a common reference string (CRS)
in the one message zero-knowledge context [19]. One may think that this trusted setup assumption
is unreasonable and too strong in practice. However, this is not the case in the hardware-based
construction. We will explain it in detail in Section 4.

In addition to provide a security definition that bypasses the impossibility result, we also give
a SIM-based VFE construction. The original IRON has supported public verifiability of secret keys
(because these are signatures), thus we focus on how to support public verifiability for ciphertexts.
Therefore, we employ (publicly) Verifiable PKE (VPKE) [39] proposed by Nieto et al. in addition
to the ingredients of IRON (PKE, SIG, and HW). We employ HW as in IRON, thus we refer to
proposed system as VFE-HW. Note that publicly executable computations should be run outside
of memory-constrained enclaves as much as possible. Simultaneously, as in IRON, ciphertexts
input to enclaves require to be non-malleable, and thus the underlying (V)PKE scheme needs to be
CCA-secure. Consequently, we modify the definition of VPKE (Section 2).

Finally, we give our implementation of the proposed VFE-HW scheme for a cryptographic hash
function H as the function P, i.e., the decryption algorithm for a ciphertext of msg outputs H(msg).
Due to the nonlinearity of the hash function, the functionality seems hard to be supported by
functional encryption with linear computations, e.g., inner products. Moreover, the IND-based
VFE scheme does not support the function due to the key generation query restriction. In addition
to these theoretical perspectives, it seems meaningful to support this functionality in practice, e.g.,
a password PW is encrypted and H(PW) can be computed without revealing PW. Here, we employ
the Pairing-Based Cryptography (PBC) library [1] to implement the VPKE scheme proposed by
Nieto et al.

Finally, we give our implementation of the proposed VFE-HW scheme for a cryptographic hash
function H as the function P, i.e., the decryption algorithm for a ciphertext of msg outputs H(msg).
Due to the nonlinearity of the hash function, the functionality seems hard to be supported by
functional encryption with linear computations, e.g., inner products. Moreover, the IND-based
VFE scheme does not support the function due to the key generation query restriction. In addition
to these theoretical perspectives, it seems meaningful to support this functionality in practice, e.g.,
a password PW is encrypted and H(PW) can be computed without revealing PW. Here, we employ
the Pairing-Based Cryptography (PBC) library [1] to implement the VPKE scheme proposed by
Nieto et al. Briefly, the encryption algorithm runs in 0.11845 sec, the verification algorithm for
ciphertexts runs in 0.12329 sec, the verification algorithm for secret keys runs in 0.00057 sec, and
the decryption algorithm runs in 0.06164 sec. This is an extended abstract appeared at the 15th
International Conference on Provable and Practical Security, ProvSec 2021 [43].

2 Preliminaries

Here, we define PKE, VPKE, SIG, and HW. When z is selected uniformly from set S, we denote
this as z & S, and y < A(x) represents that y is the output of an algorithm A with an input x.
First, we introduce the definition of PKE as follows. Let My be a plaintext space of PKE.

Definition 1 (Syntax of PKE). A PKE scheme PKE consists of the following three algorithms,
PKE.KeyGen, PKE.Enc, and PKE.Dec:

PKE.KeyGen(1*): This key generation algorithm takes as input the security parameter X € N, and
return a public key pkpke and a secret key dkpye.

PKE.Enc(pkpke, msg): This encryption algorithm takes as input pkpke, @ plaintext msg € Mpye, and
returns a ciphertext CT.

PKE.Dec(dkpke, CT): This decryption algorithm takes as input dkpke, and CT, and returns a plain-
text msg or reject symbol L.

Correctness is defined as follows: For all (pkpke, dkpke) <= PKE.KeyGen(l)‘), all msg € M., and
PKE.Dec(dkpke, CT) = msg holds, where CT - PKE.Enc(pkpke, msg).

Next, we define indistinguishability against chosen plaintext attack (IND-CPA) as follows.

Definition 2 (IND-CPA). For any probabilistic polynomial-time (PPT) adversary A and the se-

curity parameter A € N, we define the experiment EXpIF}E%'gPA()\) as follows. Here, state is state

information that an adversary A can preserve any information, and state is used for transferring
state information to the other stage.

IND-CPA
Exppkea (A

(Pkpkes dkpke) — PKE.KeyGen(1*)
(msgy, msgy, state) < A(find, pkpke)
msgg, msg) € Mopke; |msgg| = [msgj|
1 & {0,1}; CT* <= PKE.Enc(pkpke; mng)
If u =y then output 1, and 0 otherwise
We say that PKE is IND-CPA secure if the advantage
Advpg M (A) = PriExppre g “(V) = 1] = 1/2 |

is negligible for any PPT adversary A.

Next, we introduce the definition of SIG as follows. Let Mgz be a message space.

Definition 3 (Syntax of SIG). A signature scheme SIG consists of the following three algorithms,
SIG.KeyGen, SIG.Sign and SIG.Verify:

SIG.KeyGen(11): This key generation algorithm takes as input the security parameter A € N, and
returns a signing/verification key pair (sksign, VKsign)-

SIG.Sign(sksign, msg): This signing algorithm takes as input sksign and a message msg € Msig, and
returns a signature o.

SIG.Verify(vksign, msg, o): This verification algorithm takes as input vksgn, msg and o, and returns
1 (valid) or 0 (invalid).

Correctness is defined as follows: For all (skeign, Vksign) SIG.KeyGen(l)‘) and all msg € Mg,

SIG.Verify(vksign, msg, o) = 1 holds, where o < SIG.Sign(sksign, msg).

Next, we define existential unforgeability against chosen message attack (EUF-CMA) of SIG as
follows.

Definition 4 (EUF-CMA). For any PPT adversary A and the security parameter A\ € N, we define

the experiment EXpE,%ﬁCMA()\) as follows.

ExpfloMA(1) -

(sksign, Vksign) < SIG.KeyGen(1}); QUERY := ()
(msg*,a*) (_ASIG.SlGN(VkSign)
If SIG.Verify(vksign, msg*, 0*) = 1 and msg* ¢ QUERY

then output 1, and 0 otherwise

e SIG.SIGN: This signing oracle takes as input a message msg, and returns o by running the
SIG.Sign(sksign, msg) algorithm. Finally, the challenger stores msg in QUERY.

We say that SIG is EUF-CMA secure if the advantage
AdvEMAN) = Pr[Expgic i MA (V) = 1]
is negligible for any PPT adversary A.

Next, we introduce VPKE as defined by Nieto et al. [39]. VPKE provides public verifiability,
where anyone can check the validity of ciphertexts without using any secret value. They defined
the decryption algorithm VPKE.Dec using two algorithms, i.e., the verification algorithm VPKE.Ver
and the decryption algorithm for converted ciphertext VPKE.Dec’. VPKE.Ver verifies ciphertext CT
and converts CT to CT’ if CT is valid. VPKE.Dec’ decrypts CT’, and outputs msg. In this paper,
we further decompose VPKE.Ver into two algorithms, i.e., VPKE.Ver and VPKE.Conv, which will
be explained later. The verification algorithm VPKE.Ver verifies CT and the conversion algorithm
VPKE.Conv converts CT into CT’.

Next, we define VPKE. Here, let M, be a plaintext space of VPKE.

Definition 5 (Syntax of VPKE).

VPKE.PGen(1*): This public parameter generation algorithm takes the security parameter X\ € N
as input, and returns a public parameter pars.

VPKE.KeyGen(pars): This key generation algorithm takes pars as input, and returns a public key
Pkypke and a secret key dkypke-

VPKE.Enc(pars, pkypke; msg): This encryption algorithm takes pars, pkypke and a plaintext msg €
M,pke as input, and returns a ciphertext CT.

VPKE.Dec(pars, pkypke, dkvpke; CT): This decryption algorithm takes pars, pkypke, dkypke and CT
as input, and returns a plaintext msg or reject symbol L. Internally the algorithm runs
VPKE.Ver, VPKE.Conv, and VPKE.Dec, which are defined as follows.

VPKE.Ver(pars, pkypke, CT): This verification algorithm takes pars, pkypke and CT as input, and
returns 1 or 0.

VPKE.Conv(pars, pkypke, CT): This conversion algorithm takes pars, pkypke and CT as input, and
returns a ciphertext CT'.

VPKE.Dec(pars, Pkypkes dKypke, CT'): This decryption algorithm takes pars, Pkypkes dKypke and CT' as
mput, and returns a plaintext msg.

Correctness is defined as follows: For all pars < VPKE.PGen(1%), all (Pkypke; dkypke) <= VPKE.KeyGen
(pars), all msg € M,pke, VPKE.Dec(pars, pkypke; dkypke and VPKE.Conv(pars, pkypke; CT)) = msg
holds, where CT <— VPKE.Enc(pars, pkypke, msg) and VPKE.Ver(pars, pkypke, CT) = 1.

Next, we define strictly non-trivial public verification. Condition 1 requires that the decryption
of a ciphertext CT succeeds if and only if its verification outputs 1, and Condition 2 excludes
CCA-secure schemes where the decryption algorithm does not output L.

Definition 6 (Strictly Non-Trivial Public Verification). For any PPT adversary A and the security
parameter A\ € N, let pars < VPKE.PGen(1%). We define the VPKE.Ver algorithm is strictly non-
trivial public verifiable if (1) (pkypke, dkypke) <= VPKE.KeyGen(pars), and VPKE.Ver(pars, pkypke, CT) =
0 <= VPKE.Dec(pars, pkypke, dkypke, CT) = L for all CT, and (2) there exists a ciphertext CT for
which VPKE.Dec(pars, pkypke, dkypke; CT) = L are provided.

Next, we define IND-CCA as follows.

Definition 7 (IND-CCA). For any PPT adversary A and the security parameter A € N, we define
the experiment Exp{,l\é,%E(ﬁA()\) as follows. Here, state is state information that an adversary A can
preserve any information, and state is used for transferring state information to the other stage.

IND-CCA
Expypke.a (A):

pars < VPKE.PGen(lA); (Pkypke; dkypke) <= VPKE.KeyGen(pars)
(msgg, msg], state) < AVPKE'DEC(ﬁnd, pars, pkypke)

msgo, Msg1 € Mupke; [Msgo| = |msg]|

1 & {0,1}; CT* <= VPKE.Enc(pars, pkypke, msg),)

' — AVPREDEC (565, CT*, state)

If =y then output 1, and O otherwise

e VPKE.DEC: This decryption oracle takes a ciphertext CT # CT* as input. If VPKE.Ver(pars,
pkypke; CT) = 0, output L. Otherwise, compute CT <« VPKE.Conv(pars, pkypke, CT), and
return msg by running the VPKE.Dec'(pars, pkypke, dkypke; CT') algorithm.

We say that VPKE is IND-CCA secure if the advantage Adv{/l\éDKE?SA(A) =
| Pr[Exp{%%EC’SA()\) = 1] — 1/2| is negligible for any PPT adversary A.

For the sake of clarity, we give the Nieto et al. VPKE scheme employed in our implementation in
the Appendix A.

Next, we define the secure hardware scheme (HW scheme) [29]. In this paper, the hardware
instance HW denotes an oracle that provides the functionalities given in Definition 8. Furthermore,
the hardware oracle HW(:) denotes an interaction with other local secure hardware in addition to
HW, and the Key Manager oracle KM(-) denotes an interaction with a remote secure hardware over
an untrusted channel.

Definition 8 (Syntax of HW Scheme). A HW scheme for a set of probabilistic programs Q com-
prises the following seven algorithms. HW has variables HW.skreport, HW.skquote, and a table T.
Here, HW .skyeport and HW .skquote are leveraged to store keys, and the table T is leveraged to manage
the internal state of loaded enclave programs.

e HW.Setup(1*): This hardware setup algorithm takes the security parameter X € N as input,
and returns a public parameters params. This algorithm also generates the secret keys skreport
and skquote, and stores these keys in the HW.skieport and HW.skquote valuables respectively.

e HW.Load(params, Q): This loading program algorithm takes params and a program Q € Q as
mput, and returns a handle hdl. Intuitively, this algorithm loads the stateful program into the
enclave to be launched. Here, hdl is leveraged to identify the enclave running Q.

e HW.Run(hdl,in): This running algorithm takes as inputs a handle hdl for an enclave running
a program Q and an input in for Q. The algorithm first executes Q on in to get the output
out, and updates T[hdl] accordingly.

° HW.Run&ReportskYepm(hdl, in): This algorithm, can be verified by an enclave program on the
same hardware platform for a local attestation, takes as inputs a handle hdl for an enclave
running a program Q and an input in for Q. The algorithm first executes Q on in to get a
report := (mdhq|, tagq, in, out, mac), where mdnq is a metadata relative to the enclave, tagq is
an MRENCLAVE of Q that identifies the program running inside the enclave, out is an output
of Q, and mac is a message authentication code produced using skreport for (mdpgi, tagq, in, out).
Finally, the algorithm updates T[hdl].

e HW.Run&Quoteg,,... (hdl, in): This algorithm, which can be publicly verified different hardware
platform for a remote attestation, takes as inputs a handle hdl for an enclave running a
program Q and an input in for Q. The algorithm first executes Q on in to get a quote :=
(mdpqi, tagq, in, out, mac), where mdng is a metadata relative to the enclave, tagq is an
MRENCLAVE of Q that identifies the program running inside the enclave, out is an output
of Q, and mac is a signature produced using skquote for (mdhgi,tagq,in,out). Finally, the
algorithm updates T[hdl].

° HW.ReportVerifyskrepm(hdl, report): This report verification algorithm takes hdl and report as
input, and uses skreport to verify mac. If mac is valid, then the algorithm outputs 1 and adds
a tuple (1,report) to T[hdl]. Otherwise, the algorithm outputs 0 and adds tuple (0, report) to
Tlhdl].

e HW.QuoteVerify(params, quote): This quote verification algorithm, takes params and quote as
input. This algorithm verifies o. If the verification of o succeeds, then the algorithm outputs
1. Otherwise, 0 is output.

Correctness is defined as follows: HW is correct if the following things hold. For all Q € Q, in
in the input domain of Q and all handles hdl

e Correctness of Run: out = Q(in) if Q is deterministic. More generally, 3 random coins r
(sampled in time and used by @) such that out = Q(in).

o Correctness of Report and ReportVerify: Pr[HW.ReportVerifyy (hdl, report) = 0] = negl(A)

e Correctness of Quote and QuoteVerify: Pr[HW.QuoteVerify(params, quote) = 0] = negl(\)

Next, we define local attestation unforgeability (LOC-ATT-UNF) of HW as follows. This secu-
rity guarantees that no adversary that does not have skreport can produce a valid report.

Definition 9 (LOC-ATT-UNF) For any PPT adversary A and the security parameter A € N, we

define the experiment EXpﬁ%?AATT'UNF()\) as follows.

EXpIﬁ(\?V?AATT—UNF(A) :
(params, skreport, SKquote, State) «— HW.Setup(l’\)
QUERY := 0 ; (hdl*, report*) « ATWHW) (params)
If HW.ReportVerifyg, . (hdl*, report”) = 1 where
report™ = (mdjy, tagg,in*, out®, mac*) and
(mdfg), tagg. in*,out™) ¢ QUERY

then output 1, and 0 otherwise

e HW: A can access the instance as follows.

- HW.LOAD: A queries the instance as input params and Q, and the instance returns the
handle hdl by running the HW.Load(params, Q) algorithm.

- HW.REPORTVERIFY: A queries the instance as input hdl and report, and the instance
returns the result by running the HW.ReportVerifySkreport(hdl, report) algorithm.

o HW(-): A can access the oracle as follows.

- HW.RUN&REPORT : A queries the oracle as input hdl and in, and the oracle returns
report := (mdhal, tagq, in, out,mac) by running the HW.Run&Reporty, _ (hdl,in) algo-
rithm. Finally, the oracle stores (mdpgi, tagq, in,out) in QUERY.

We say that HW is LOC-ATT-UNF secure if the advantage
AdVEGITTUNF () = Pr{ExpHGTT N () = 1
is negligible for any PPT adversary A.

Next, we define remote attestation unforgeability (REM-ATT-UNF) of HW as follows. This
security guarantees that no adversary that does not have skquote can produce a valid quote.

Definition 10 (REM-ATT-UNF) For any PPT adversary A and the security parameter X € N,
we define the experiment Expr{\I;jVIYIAATT'UNF()\) as follows.

REM-ATT-UNF
Exphw, 4 (A)

(params, skreport; SKquote, state) <= HW.Setu p(l/\)
QUERY := 0 ; quote* + AMWKM() (params)

If HW.QuoteVerify(params, quote) = 1 where
quote™ = (md}y, tagg, in*, out™, o) and

(md} g, tagg,in*,out”) ¢ QUERY

then output 1, and 0 otherwise

e HW: A can access the instance as follows.

- HW.LOAD: A queries the instance as input params and Q, and the instance returns the
handle hdl by running the HW.Load(params, Q) algorithm.

o KM(:): A can access the oracle as follows.

- HW.RUN"E: A queries the oracle as input hdl and in, and the oracle returns
quote := (mdpg|, tagq, in,out, o) by running the HW.Run&Quoteg,,,. (hdl, in) algorithm.
Finally, the oracle stores (mdpqy, tagq, in,out) in QUERY.

We say that HW is REM-ATT-UNF secure if the advantage
AdVERATTONE (3) o= Pr{Bxp T UNT () = 1)

is negligible for any PPT adversary A.

3 Impossibility Result of VFE and Our Solution

In this section, we recall the impossibility result of VFE shown by Badrinarayanan et al. [15]. We
remark that this impossibility is caused by the verifiability of VFE. Thus, they have mentioned that
even if the impossibility of SIM-based security given by Agrawal et al. [10] is bypassed, still the
impossibility of VFE remains.

Since their VFE syntax is differ from our VFE-HW, first we introduce their syntax as fol-
lows. The setup algorithm VFE.Setup(1?) generates (mpk, msk), the key-generation algorithm
VFE.KeyGen(mpk, msk, P) outputs skp, the encryption algorithm VFE.Enc(mpk, msg) outputs CT,
and the decryption algorithm VFE.Dec(mpk, P, skp, CT) outputs P(msg) or L. In addition to
these algorithms, VFE supports two verification algorithms. The ciphertext verification algorithm
VFE.VerifyCT (mpk, CT) outputs 0 or 1, and the secret key verification algorithm VFE.VerifyK(mpk,
P, skp) outputs 0 or 1.

Next, we introduce verifiability defined by them as follows. The verifiability guarantees that if
ciphertexts and secret keys are verified by the respective algorithms then each ciphertext should
be associated with a unique message msg, and the decryption result is P(msg). We remark that it
holds even under possibly maliciously generated mpk. Let Pyrpg and Mygg be a family of function
for VFE and a plaintext space of VFE respectively.

Definition 11 (Verifiability). For all security parameter A € N, mpk € {0,1}*, and all CT €
{0,1}*, there exists msg € Mygg such that for all P € Pygg and skp € {0,1}*, if VFE.VerifyCT (mpk,
CT) =1 andVFE.VerifyK(mpk, P,skp) = 1, then Pr[VFE.Dec(mpk, P, skp, CT) = P(msg)] = 1 holds.

We further remark that the probability that the VFE.Dec algorithm outputs P(msg) is exactly
1 if CT and skp are valid. Thus, Badrinarayanan et al. assumed that perfect correctness holds
(otherwise, a non-uniform malicious authority can sample ciphertexts/keys from the space where
it fails to be correct). We note that the probability is exactly 1 yields perfect soundness for all
adversaries when a proof system is constructed from VFE.

Next, we describe the impossibility result as follows.

Theorem 1 ([15], Theorem 3) There exists a family of functions, each of which can be repre-
sented as a polynomial sized circuit, for which there does not exist any simulation secure verifiable
functional encryption scheme.

To prove the theorem, Badrinarayanan et al. showed that SIM-based VFE implies the existence
of one message zero-knowledge proof system for NP in the plain model which is known to be
impossible. More concretely, let L be a NP complete language and R be the relation of L which
takes as input a string = and a polynomial sized (in the length of z) witness w. R(x, w) outputs
1 if and only if z € L and w is its witness. We denote R(z, -) for all z € {0,1}*. A one message
zero-knowledge proof system (P, V) for the language L with relation R is constructed from VFE as
follows. For (z, w), the prover P runs (mpk, msk) < VFE.Setup(1}) where A = |z|, computes CT ¢
VFE.Enc(mpk, w) and skr(z,) < VFE.KeyGen(mpk, msk, R(z, -)), and outputs a proof = = (mpk,
CT, skr(z,)). The verifier V accepts 7 if VFE.Dec(mpk, R(z, -), skr(z,-), CT) = 1. Obviously, the
proof system is perfectly complete if the underlying VFE scheme is perfectly correct. Moreover,
due to the verifiability property, the system is perfectly sound. Furthermore, since the verifiability
holds even for maliciously generated mpk, CT, and sk, no trusted setup is assumed. Due to the
SIM-based security, i.e., the existence of the simulator that can produce a ciphertext only from
R(x, w) without knowing w (here, 1 = R(x, w) in this case), the system provides computational
zero knowledge.

To bypass the impossibility result, we introduce the trusted setup where (mpk, msk) is generated
honestly, and mpk is considered as a CRS. 2 One may think that this trusted setup assumption
is unreasonable and too strong in practice. However, this is not the case in the hardware-based
construction. In our system, mpk and msk are generated by running a setup program, and it is
implicitly assumed that the setup program is executed correctly (Q in our scheme). That is, anyone
can verify the description of the function. Moreover, we assume that the program is hardcoded as
the static data, and is assumed to be not tampered. The remaining is to trust the computer that
correctly runs the program, and is widely assumed when cryptographic protocols are implemented.
Thus, we claim that the trusted assumption is reasonable, and leave how to remove the assumption
without losing the SIM-based security as a future work of this paper.

We remark that even if one message zero-knowledge proof system in the CRS model can be
constructed from SIM-based VFE, this does not bypass the impossibility result since the proof
system in the plain model implies a proof system in the CRS model. We emphasize that the
setup algorithm that generates (mpk, msk) must be run first since other algorithms take mpk or
msk as input. Due to this situation, we can bypass the impossibility result of Badrinarayanan et
al. since any VFE-based one message zero-knowledge proof system or argument need to run the
Setup algorithm first, and then mpk can be seen as a CRS. As mentioned by Barak and Pass [16],
one message zero-knowledge proofs and arguments can be constructed in the CRS model (without
certain relaxations).

Regarding the CRS model, Badrinarayanan et al. have mentioned that VFE seems to be con-
structed from a functional encryption scheme with Non-Interactive Zero-Knowledge (NIZK) proof
systems. However, the CRS may be maliciously generated and then soundness does not hold.
Thus, they gave up for employing NIZK proof systems and employed non-interactive witness in-
distinguishable proof (NIWI) systems as the ingredients. Since we introduce the trusted setup
assumption, we may be able to construct VFE from this direction without employing a HW scheme.
However, even then, another impossibility arises [10]. For bypassing the impossibility, we employ
a HW scheme.

Random oracles may be employed to avoid introducing the trusted setup assumption. However,
as mentioned by Agrawal, Koppula, and Waters [11], there is an impossibility result of SIM-based

2We note that we also relax the condition that the verifiability holds where the probability that the decryption
algorithm outputs P(msg) is not exactly 1 (concretely 1 — negl(A)) in our definition. Because the underlying local
or remote attestations require non-perfect correctness, this relaxation is reasonable. This relaxation provides the
converted proof system to be an argument, i.e., soundness holds only for computationally bounded adversaries.

10

security in the random oracle model. Thus, we do not further consider the random oracle model in
this paper.

4 Definitions of VFE-HW

In this section, we define VFE-HW. Here, let HW be a hardware instance that takes a handle hdl
that identifies an enclave. If an algorithm is allowed to access HW, then the algorithm can use the
secure hardware functionality given in Definition 8. Let HW(-) (resp. KM(-)) be a hardware (resp.
a key manager) oracle that takes hdl and an authentication information (Report (resp. Quote) in our
construction), interacts with other local enclave specified by hdl, and runs the function contained in
the authentication information. Let Pyrg.pw and Mype.pw be a family of functions for VFE-HW
and a plaintext space of VFE-HW respectively.

Definition 12 (Syntax of VFE-HW). A VFE-HW scheme comprises the following seven algorithms:

VFE—HW.SetupHW(l)‘): This setup algorithm takes the security parameter A\ € N as input, and
returns a master public key mpk and a master secret key msk.

VFE—HW.KeyGenHW(msk, P): This key generation algorithm takes msk and a function P € Pyrg_nw
as input, and returns a secret key skp for P.

VFE-HW.Enc(mpk, msg): This encryption algorithm takes mpk and a plaintext msg € Myrg.nw as
mput, and returns a ciphertext CT.

VFE—HW.DecSetupHW’KM(')(mpk): This decryption node setup algorithm takes mpk as input, and
returns a handle hdl.

VFE-HW.VerifyCT (mpk, CT): This ciphertext verification algorithm takes mpk and CT as input, and
returns 1 or 0.

VFE-HW.VerifyK(mpk, P,skp): This secret key verification algorithm takes mpk, P, and skp as input,
and returns 1 or 0.

VFE—HW.DecHW(')(mpk,hdI, P,skp, CT): This decryption algorithm takes mpk,hdl, skp, and CT as
input, and returns a value P(msg) or a reject symbol L.

Correctness is defined as follows: For all P € Pyre.pw, all (mpk, msk) « VFE—HW.SetupHW(lk),
all skp < VFE-HW.KeyGen"W (msk, P), all hdl < VFE-HW.DecSetup™XM() (mpk), and all msg €
Myrenw, let CT « VFE-HW.Enc(mpk, msg), then Pr[VFE-HW.Dec"W()(mpk, hdl, skp, CT) =
P(msg)] = 1 — negl(A) holds.

Next we define weak verifiability. As mentioned in Section 3, we somewhat relax the original
verifiability definition, i.e., we employ the trusted setup and the probability of verifiability is not
exactly 1 due to the correctness of HW scheme. Thus, we call our definition weak verifiability. Weak
verifiability guarantees that if ciphertexts and secret keys are verified by the respective algorithms,
then each ciphertext should be associated with a unique message msg, and the decryption result is
P(msg). Note that this holds only when mpk is generated honestly and hdl is non-_L.

Definition 13 (Weak Verifiability). For all security parameters X € N, (mpk, msk) < VFE-HW.
Setup™ (1%), and hdl < VFE-HW.DecSetup™™-KMO) (mpk) where hdl # L, and all CT € {0,1}*,
there exists msg € Mvyge.uw such that for all P € Pype.pw and skp € {0, 1}*, if VFE-HW.VerifyCT
(mpk,CT) =1 and VFE-HW.VerifyK(mpk, P,skp) = 1, then Pr[VFE—HW.DecHW(')(mpk,hdI, P, skp,
CT) = P(msg)] = 1 — negl(\) holds.

11

Next we define the simulation security of VFE-HW as follows. This security guarantees that no
adversary can distinguish REAL and IDEAL, where REAL represents the actual environment. Note
that msk and the challenge plaintext msg* are not explicitly used in IDEAL. In the IDEAL world,
an adversary A is allowed to access the VFE-HW.KeyGen oracle. That is, A can obtain skp for
any P, and can obtain P(msg*) by decrypting the challenge ciphertext. So, what we would like
to guarantee in our definition is no information of msg* is leaked from the challenge ciphertext
beyond its length and information leaked from P(msg*). Basically, our definition is an extension
of that of Fisch et al. [29]. They also mentioned that “The only information that the simulator
will get about msg* other than its length is the access to the Umsgs oracle which reveals P(msg*)
for the P’s queried by A to FE.Keygen.” Although semi-adaptive SIM-based functional encryption
schemes have been proposed [9,47] where an adversary declares the challenge after obtaining mpk
but before issuing secret key queries, our definition does not have such a restriction.

Definition 14 (Simulation security). For a stateful PPT adversary A, a stateful PPT simulator

S and the security parameter X € N, we define the real experiment EXp@Eé_LHW()\) and the ideal
experiment ExplDEAL () as follows. Here, let Umsg(-) denote a universal oracle where Umsg(P) =
P(msg).

Explreiw (A):

(mpk, msk) < VFE-HW.Setup"™W(1}); msg* AVFE-HW-KeyGen™(msk.) (1 o)
CT* < VFE-HW.Enc(mpk, msg*); a « AYVFEHW-KeyGen™(msk.) HW().KM() (i CT*)
Output (msg™,)

e HW: A can access the instance as follows.

- HW.LOAD: A queries the instance as input params and Q, and the instance returns hdl by
running the HW.Load(params, Q) algorithm.

- HW.RUN: A queries the instance as input hdl and in, and the instance returns out by
running the HW.Run(hdl,in) algorithm.

o VFE-HW.KeyGen'W: A queries this key generation oracle as input msk and P. The oracle
accesses HW.RUN as input hdl = msk and in = P, and the oracle returns skp as out by running
the HW.Run(hdl,in) algorithm.

e HW(:): A can access HW.RUN&REPORT in addition to HW as input hdl and in, and the
oracle returns report by running the HW.Run&Reportskrepm(hdl, in) algorithm.

o KM(:): A can access HW.RUN"E as input hdl and in, and the oracle returns quote by
running the HW.Run&Quotegy,.. (hdl, in) algorithm.

Expyretiw(A):

mpk < S(1%); msg* « AS(A)(mpk)
CT* ¢ SUmsO) (1} 1Imse™ly: o A4S0 (mpk, CT)
Output (msg*, a)

e S(): S simulates the HW, VFE-HW.KeyGen'W HW(.) and KM(-) oracles.

12

o SUms()(.): S simulates the HW, the VFE-HW.KeyGen'™W, the HW(-) and the KM(-) oracles.
Here, if A queries this oracle as input CT* and skp, S outputs P(msg) using the universal
oracle Umsg(+) that inputs P queried in the VFE-HW.KeyGen""™ oracle.

If there exists a stateful simulator S and EXp@Eé_LHW()\) and EXp'VDF'EA_‘hW()\) are computationally
indistinguishable, then we say that the VFE-HW scheme is simulation secure against a stateful PPT
adversary

5 Proposed Scheme

In this section, we show the construction of VFE-HW from VPKE, PKE, SIG and HW.

High-Level Description: Essentially, we follow the construction of IRON. IRON has supported
public verifiability of secret keys (since these are signatures), we focus on supporting the public
verifiability of ciphertexts. Therefore, we replace a PKE scheme in IRON with a VPKE scheme.

We slightly modify the form of a program tag of P. In IRON, the KME signs a tag, denoted as
tagp, to authorize a client to use P in the FE. Here, tagp is an MRENCLAVE value of P generated
on an enclave, and the secret key skp is set as a signature on tagp. In our VFE-HW scheme, we
need to guarantee that anyone can derive tagp from P for providing public verifiability. Thus,
we clarify how to generate a tag of P, and employ a cryptographic hash function to derive the tag
(concretely we employ SHA256). We remark that the authorization is checked whether the signature
is valid or not under vksig, which is contained in mpk. Thus, replacing tagp to Hp does not affect
the verifiability of the authorization. Since the original tagp is contained in report generated by
HW.Run&Reports,.,.. (hdlFgp), (“init”, P)) in the VFE-HW.Dec algorithm, we distinguish tagp and
the signed message of skp, and we denote it Hp = SHA256(P). For checking the validity of skp in
the “provision” procedure of the program Qpg, we add P as an input of the “init” procedure of the
program Qpg(p) although P is not explicitly used in the “init” procedure. We explain it in detail
in the definition of Qrgp)-

In our VFE-HW scheme, the (function) enclave securely executes computations that require se-
cret values, however, its computational power and memory are constrained. Thus, the verification
part should be run outside of the enclave, and we employ the public verifiability of VFE. However,
the ciphertext is converted if the original VPKE.Ver algorithm is employed. Thus, the converted
ciphertext CT’ is decrypted via VPKE.Dec’ in the enclave. Although at least IND-CPA security
is guaranteed if VPKE.Dec is replaced with VPKE.Dec’ [39], the underlying VPKE scheme is re-
quired to be CCA-secure. Thus, we decompose VPKE.Ver to VPKE.Ver and VPKE.Conv, and run
VPKE.Conv inside of the enclave.

We consider the following assumptions in the construction of the VFE-HW. The first two as-
sumptions are the same as those of IRON, and we introduce the last assumption in this paper.

e Pre-Processing: The TA and a client need to complete the pre-processing phase before using
VFE-HW scheme. In our construction, we consider that a manufacturer setups and initializes
the secure hardware. A public parameter is generated by this phase independent of the
VFE-HW algorithms, and this parameter is implicitly given to all algorithms.

e Non-Interaction: In VFE-HW, a plaintext is encrypted using a public key of a VPKE scheme,
and thus the decryption of the ciphertext requires the corresponding decryption key, which
differs from a secret key skp. To obtain the decryption key from the KME, we require a
one-time hardware setup operation. The VFE-HW.DecSetupHW-KM() algorithm interacts with
the KME via the KM(-), and the VFE-HW.DecH"W() algorithm is non-interactive.

13

e Trusted Setup: VFE-HW.SetupH™ and VFE—HW.DecSetupHW’KM(') are executed honestly. In
short, mpk, msk and hdl are generated honestly.

The proposed scheme is given as follows. First, we describe the programs Qgme (for the KME),
Qpe (for a Decryption Enclave DE) and Qg (for a Function Enclave FE). Qpg is parameterized
by a function P, and thus we denote Qrgp). Let T be an internal state valuable, tagqpe, which is
hardcoded in the static data of Qkme, be an MRENCLAVE of the program Qpg, and tagQee p) be
an MRENCLAVE of the program Qpg(p).

QKME :
e On input (“init”, 1*):
1. Run pars < VPKE.PGen(1%).
2. Run (pkypke; dkypke) <= VPKE.KeyGen(pars) and (sksign, Vksign) < SIG.KeyGen(1%).
3. Update T to (dkypke, Sksign, Vksign) and output (pars, pkypke, VKsign)-
e On input (“provision”, quote, params):
1. Parse quote = (Mdhdipe, tagqpe, in, out, o). If tagq,, is not matched to tag hardcoded as
static data, then output L.
2. Parse in = (“init setup”, vksign) and check if vkggn matches with one in T.
3. Parse out = (sid, pksa) and run b +— HW.QuoteVerify(params, quote). If b = 0 output L.
4. Retrieve dkypke from T and compute ctqx = PKE.Enc(pkra, dkypke) and oqx = SIG.Sign(sksign,
(sid, ctqk)), and output (sid, ctqx, odk)-

e On input (“sign”, msg): Compute sig <— SIG.Sign(sksign, msg) and output sig.
QpE :

e On input (“init setup”, vksign):
1. Run (pkya, dksa) < PKE.KeyGen(1%).
2. Generate a session ID, sid < {0,1}*.
3. Update T to (sid, dkra, Vksign) and output (sid, pkra).

e On input (“complete setup”, pkya, sid, Ctyk, odk):

1. Look up T to obtain the entry (sid, dkra, Vksign). If no entry exists for sid, output L.
2. If SIG.Verify(vksign, (sid, ctqk), 0dgk) = 0, output L. Otherwise, run dkypke <= PKE.Dec(dkya, ctyk).
3. Add the tuple (dkypke, Vksign) to T.

e On input (“provision”, report, sig):
1. Check to see that the setup has been completed, i.e. T contains the tuple (dkypke, VKsign)-

If not, output L.

2. Check to see that the report has been verified, i.e. T contains the tuple (1,report). If
not, output L.

3. Parse report = (mdhd|FE(P),tagQFE<P),in,out, mac), and then parse in = (“init”, P) and
out = (sid, pkj,).

4. Derive Hp from P using SHA256 such that Hp = SHA256(P).

14

5. If SIG.Verify(vksign, Hp, sig) = 0, then output L. Otherwise, output (sid, ctyey = PKE.Enc
(ka37 dkvpke))-

Qrg(p) : We remark that P, input in the “init” procedure, is not explicitly used in this program.
The reason is to run the signature verification algorithm in the “provision” procedure of Qpg.
Concretely, in the VFE-HW.Dec algorithm, run HW.Run&Report(hdlrgp), (“init”, P)), and then
Qrg(p) is internally run. Then, in = (“init”, P) is included in report and the “provision” procedure
of Qpg, that takes (report, sig) as input, can run SIG.Verify(vksign, Hp, sig) in Step 5.

e On input (“init”, P):

1. Run (pkja,dkj,) < PKE.KeyGen(1*).
2. Generate a session ID, sid < {0,1}*.
3. Update T to (sid,dk),) and output (sid, pkj,).

e On input (“run”, pars, params, mpk, pki,, reporty,, CT):

1. Parse mpk = (pkypke, VKsign)-

2. Check to see that the report has been verified, i.e. T contains the tuple (1, reportqy). If
not, output L.

Parse reporty, = (Mdhdiye; tagqpe, in, out, mac). Parse out = (sid, Ctyey)-

Look up T to obtain the entry (sid, dkj,, skp). If no entry exists for sid, output L.
Compute dkypke — PKE.Dec(dki,, Ctiey)-

Compute CT’ < VPKE.Conv(pars, pkypke, CT).

Compute msg + VPKE.Dec'(pars, pkypke, dkypke; CT”).

© NS ot~ W

Compute P on msg and record the output out := P(msg). Output out.

Next, we describe the proposed scheme as follows. Here, without loss of generality, prior to
running VFE-HW.Dec, we assume that a ciphertext CT is verified by VFE-HW .VerifyCT, and a
secret key skp is verified by VFE-HW.VerifyK. Then, CT and skp are input to VFE-HW.Dec only
when these are valid, and VFE-HW.Dec does not check their validity. This assumption is natural
because we consider public verifiability for both CT and skp.

Proposed scheme:

Pre-Processing phase : The trusted authority platform and decryption node run respectively.

1. Call params <~ HW.Setup(1*), and output params.

VFE-HW.Setup™W(14):

1. Call hdlkme - HW.Load(params, QxmE)-
2. Call (pars, pkypke, Vksign) <— HW.Run(hdlkme, (“init”, 1)).
3. Output mpk = (pars, pkypke, VKsign), msk = hdlkme.

VFE-HW.KeyGen"" (msk, P):

1. Parse msk = hdlkmeE.

15

2.
3.
4.

Derive Hp from P using SHA256 such that Hp = SHA256(P).
Call sig <~ HW.Run(hdlkme, (“sign”, Hp)).
Output skp = sig.

VFE-HW.Enc(mpk, msg):

1.
2.

Parse mpk = (pars, pkypke, VKsign)-

Compute CT < VPKE.Enc(pars, pkypke, msg), and output CT.

VFE-HW.DecSetup™™KM() (mpk):

o

1. Call hdlpg «+ HW.Load(params, Qpg).

2. Parse mpk = (pars, pkypke, VKsign)-

3.

4. Call KM(quote) which internally run (sid, ctyx, oqk) < HW.Run(hdlkme, (“provision”,

Call quote <— HW.Run&Quotegy,,. (hdlpg, (“init setup”, vkgign)).

quote, params)).
Call HW.Run(hdlpg, (“complete setup”, pkea, sid, Ctyk, odk))-
Output hdlpg.

VFE-HW.VerifyCT (mpk, CT):

1.
2.

Parse mpk = (pars, pkypke, VKsign)-
If VPKE.Ver(pars, pkypke, CT) = L, then output 0. Otherwise, output 1.

VFE-HW.VerifyK(mpk, P, skp):

1.
2.
3.

Parse mpk = (pars, pkypke, VKsign), and skp = sig.
Derive Hp from P using SHA256 such that Hp = SHA256(P).
If SIG.Verify(vksign, Hp, skp) = 0, then output 0. Otherwise, output 1.

VFE-HW.DecHW () (mpk, hdl, P, skp, CT):

1. Parse mpk = (pars, pkypke, Vksign), hdl = hdlpg, and skp = sig.

2. Call hdlgg(py +~ HW.Load(params, Qrg(p))-

3.

4. If HW.ReportVerifyskreport(hdIDE, report) = 0, then output L. Otherwise, call reporty, <

Call report <— HW.Run&Reporty (hdlrgp), (“init”, P)).

HW.Run&Reporty .. (hdlpg, (“provision”, report, sig)).

If HW.ReportVerifySkrepm(hleE(p), reporty,) = 0, then output L. Otherwise, call out +
HW.Run(hdlggp), (“run”, pars, params, mpk, pkj,, reportgx, CT)), and output P(msg) =
out.

16

2

Untrusted platform

mpk = (Pal‘Sy pkvpkev Vksign)

@r

(pk‘,l,ke dk,pke) < VPKE.KeyGen(pars) 1

1 I (VKsign, Skiign) < SIG. KeyGen(1%) !

msk = hdlgyg

(6) Derive Hp from P such that Hp = SHA256(P)

sig < SIG. Sign(sKs;ign, Hp)

skp = sig
Client
(9) CT := VPKE. Enc(pars, PKypke, MSg) DNP
(10) _I:VFE-HW. VerifyCT(mpk, CT)21 (3) dKypie
VFE-HW. VerifyK(mpk, P, skp)Z1 12)
FE
(CT P,skp) (11) FE P,skp 13) DE

(15) | CT’ < VPKE. Conv(pars, pKypke, CT)
| msg < VPKE. Dec’(pars, pKypke, AKypke, CT) |

Parse skp = sig
Derive Hp from P such that

Hp = SHA256(P)
SIG. Verify (VKgign, Hp, sig) =1

(14)
dkvpke

| Compute P(msg) from msg 1

(16) P(msg)

Figure 1: Protocol flow. Steps (1) and (2) specify VFE-HW.Setup, step (3) specifies VFE-
HW.DecSetup, steps (4), (5), (6), (7) and (8) specify VFE-HW .KeyGen, step (9) specifies VFE-
HW.Enc, steps (10) and (11) specify VFE-HW.VerifyK and VFE-HW.VerifyCT, and steps (12),
(13), (14), (15) and (16) specify VFE-HW.Dec.

Obviously, correctness holds if VPKE, PKE, SIG, and HW are correct.

For clarity, we describe the protocol flow of VFE-HW using Figure 1, where the gray areas
represent the untrusted space of each platform, orange areas represent the trusted space of each
platform, and the procedures inside dashed boxes are run within enclaves. For example, the TA
manages the TAP, and setups the KME in the TAP. A client manages a Decryption Node Platform
(DNP), and setups a DE in the DNP. The TA generates a public key pkypke and a secret key dkypke, as
well as a signing key sksjgn and a verification key vksign as step (1) within KME. Here, mpk generated
by the VFE-HW.Setup"" algorithm consists of pars, pkypke and vksign as step (2). Furthermore, msk
generated by the VFE-HW.Setup™™ algorithm is a handle hdlkme used to confirm the KME. Next,
the client preserves dkypke into the DE via a remote attestation as step (3). Next, the client gets
the secret key skp of the VFE-HW.KeyGen"" algorithm which KME issues as a signature on Hp
and its program tag Hp via a secure channel as steps (4) to (8). Here, let CT be a ciphertext of
a plaintext msg under pkypke using the VFE-HW.Enc algorithm as step (9). We assume that an
external encryptor generates CT, and sends it to the client. Note that we omit this procedure in
Figure 1. In the decryption procedure, the client setups a FE parameterized P in the DNP. Then,
the client checks the validity of skp and CT using the VFE-HW.VerifyK and VFE-HW VerifyCT
algorithms respectively as step (10). If skp and CT are valid, the client inputs skp, P and CT
into the FE via hardware invocation as step (11). If the DNP is managed remotely by the client,
then a remote attestation is employed in this case. Next, the FE transfers skp to the DE via a
local attestation as step (12). The validity of skp is confirmed by using the SIG.Verify algorithm as
step (13). If skp is valid, the DE transfers dkypke to FE via a local attestation as step (14). The
FE decrypts CT as step (15) using the VPKE.Conv and VPKE.Dec’ algorithms. Finally, the client
obtains P(msg) as step (16).

17

6 Security Analysis

We provide two proofs to demonstrate that the proposed scheme provides weak verifiability and
simulation security.

6.1 Weak Verifiability

In this section, we prove the weak verifiability of VFE-HW. Essencially, we employ the strictly
non-trivial public verifiability of VPKE. To do so, we need to guarantee that dkypke used in the
VPKE.Dec algorithm is generated correctly by the VPKE.KeyGen algorithm. We guarantee this
using the correctness of HW. Formally, the following theorem holds.

Theorem 2 VFE-HW is weak verifiable if VPKE 1is strictly non-trivial public verifiable, and HW 1is
correct.

Proof. According to our trusted setup assumption, VFE-HW.Setup""V and VFE-HW.DecSetu pHW’KM(')
algorithms were honestly run which means that dk,pke Was correctly generated, and sent from the
KME to a DE. Moreover, VFE-HW VerifyCT (mpk,CT) = 1 and VFE-HW VerifyK(mpk, P,skp) = 1
hold. Now, we need to guarantee that dkpke is correctly sent from the DE to a FE in the
VFE-HW.Dec"W() algorithm. This holds with probability 1 — negl(A) due to the correctness of HW.
Next, by using this dkypke, VPKE.Ver(pars, pkypke, CT) = 1 = VPKE.Dec(pars, pkypke; dkypke, CT) #
L holds due to the strictly non-trivial public verifiability of VPKE. Thus, decryption result of CT
is determined to be unique since the VPKE.Dec algorithm is deterministic algorithm. Let the de-
cryption result denote msg. Then, the VFE-HW.Dec algorithm outputs P(msg) from P and msg.

6.2 Simulation Security

Here, we prove the simulation security of the VFE-HW scheme. We replace the PKE scheme of
IRON with a VPKE scheme. In this case, we primarily consider whether the SIM-based security
is preserved after the replacement. In other words, an adversary A can check the validity of
ciphertexts and it may use for distinguishing REAL and IDEAL. For example, if the challenge
ciphertext is changed as a random number (typically employed to provide key privacy/anonymity
in the PKE/IBE context), then the public verifiability helps A to distinguish REAL and IDEAL, and
the proof fails. Fortunately, the security proof of IRON does not employ the step, and hence we
can replace the PKE scheme with the VPKE scheme.

Theorem 3 VFE-HW is simulation secure if VPKE is IND-CCA secure, PKE is IND-CPA secure,
SIG is EUF-CMA secure, and HW is a secure hardware scheme.

Proof. We construct a simulator §. First, S needs to simulate the Pre-Processing phase as REAL.
S runs HW.Setup(1*) and records (skreport; SKquote). S measures the designated program Qpg, and
stores the program tag tagqu.. Finally, S creates seven empty lists Lx, Lr, Lp, Lxym, LpE, LDE2,
and £ FE-

We use sequences of games Gamey, ... , Gamer to prove that adversary A cannot computation-
ally distinguish between REAL and IDEAL as follows.

S runs REAL.
S runs as Gamey with the following exceptions

e HW.LOAD(params, Qpg): If A queries this instance as input params and Qpg, S responds
hdlpg by running the HW.Load(params, Qpg) algorithm, and storing it in Lp.

18

e HW.LOAD(params, Qrg(p)): If A queries this instance as input params and Qrg(p), S responds
hdlggpy by running the HW.Load(params, Qrg(p)) algorithm, and storing it in L. If Hp
¢ Lk, then S stores (0,Hp, hdlgg(py) in Lk

e HW.RUN(hdl,in): If A queries this instance as input hdl and in, S responds out by running
the HW.Run(hdl, in) algorithm. If vkggn, which is queried by A as the HW.Run(hdIpg, in =
(“init setup”, vksign)) algorithm, is not the same as that of mpk, S removes hdlpg from Lp.

° VFE-HW.KeyGenHW(msk, P): If A queries to this oracle as input P, S responds skp by running
the HW.Run(hdl, in) algorithm as follows. Parse msk = hdlkme. S computes Hp = SHA256(P),
calls sig «— HW.Run(hdlkme, (“sign”, Hp)), and outputs skp := sig. If Hp already has an entry
in Lr, S makes the first entry 1 (we call “honest-bit” for the first entry in L); otherwise, S
adds the tuple (1,Hp,{}) to Lk.

e VFE-HW.Enc(mpk, msg): If A provides msg, S responds CT by running the VPKE.Enc(pars,
pkypke, Msg) algorithm. If msg is a challenge plaintext msg*, S responds CT* by running the
algorithm, and stores it in Lp.

S runs as Game; with the following exceptions.

HW.RUN&REPORT (hdl, in): If A queries this oracle as input hdl = hdlpg and in = (“provision”,
report, sig), then S responds reportgx by running the HW.Run&Reportsy,. (hdlpg, (“provi-
sion”, report, sig)) algorithm. If Hp, which is associated with P, is not contained in Lx that
has the honest bit, then § outputs L.

Here, we consider a case where the HW.RUN&REPORT (hdlpg, (“provision”, report, sig)) algorithm
outputs non L even if Hp is not contained as an honest-bit tuple in Lx. If A can make a query
while ensuring this case, we can break the existential unforgeability for SIG with non-negligible
probability. The following Lemma is the same as Lemma C.1 of IRON.

Lemma 1 If the signature scheme SIG is EUF-CMA secure, then Games is indistinguishable from
Game;.

Proof. Let A be an adversary who distinguishes between Game; and Game,, and let C be the
challenger of EUF-CMA security. We construct an algorithm B that breaks EUF-CMA as follows.
First, C runs (skggz,, vkGg,) < SIG.KeyGen(1%), and gives vKGgn to B. B sets this vkg,, as a part of
mpk, generates other values of mpk as usual, and sends mpk to A.

For key generation query P of VFE-HW.KeyGenHW oracle, B derives Hp from P and forwards
Hp to C. C runs sig < SIG.Sign(sk;gn, Hp), and sends sig to B. Then, B sends skp := sig to A, and
stores Hp in L.

Now, if A can distinguish between the two games, it is only because A makes a “provision”
query to the HW.RUN&REPORT (hdlpg, -) oracle with a hdlpg € Lp that has vk:ign in its state and
with a valid signature sig* on a Hy ¢ Lx. B outputs (Hp,sig*) as a forged signature to C.

O

S runs as Games with the following exceptions.

1. HW.RUN"E(hdI,in): If A queries this oracle as input hdl = hdlpg and in = (“init setup”,
Vksign), S responds quote by running the HW.Run&Quotegy,,.. (hdlpg, (“init setup”, vksign))
algorithm, and stores out = (sid, pky,) as a component of quote in Lpgo.

19

2. HW.RUN(hdI, in): If A queries this oracle as input hdl = hdlkme and in = (“provision”,
quote, params), S responds (sid, ctgk, ogk) by running the HW.Run(hdlkme, (“provision”, quote,
params)) algorithm. If (sid, pkra) ¢ Lpg2, then S outputs L.

Here, we consider a case where the HW.RUN(hdlkme, (“provision”, quote, params)) algorithm out-
puts non L even if (sid, pkra) ¢ Lpgro. Here, if A can make a query while ensuring this case, then
we can break the remote attestation unforgeability for HW with non-negligible probability. The
following Lemma is the same as Lemma C.4 of IRON.

Lemma 2 If the secure hardware scheme HW is REM-ATT-UNF secure, then Gamesq is indis-
tinguishable from Games.

Proof. Let A be an adversary who distinguishes between Games and Games o, and let C be the
challenger of REM-ATT-UNF security. We construct an algorithm B that breaks REM-ATT-UNF
as follows. First, C runs (params®, skie,ort, SKquote, State™) < HW.Setup(1*), and gives params* to B.
B sets this params* as part of the mpk, and sends mpk to A.

For quote generation query hdlpg and in = (“init setup”, vksign) of KM(-) oracle, B forwards
them to C. C runs quote +— HW.RUN"E(hdI,in) where quote = (mdhgiye, tagqye, in, out, o),
and sends quote to B. Then, B stores out = (sid, pkya) to Lpg2, and sends quote to A.

Now, if A can distinguish between the two games, it is only because A makes a “provision”
query to the HW.RUN(hdlkme,) instance with a valid quote quote* on a (sid*, pk},) ¢ Lpg2, and
params*. BB outputs quote® as a forged quote to C.

O

S runs as Games o with the following exceptions.

1. HW.RUN&REPORT (hdl,in): If A queries this oracle as input hdl = hdlggpy and in = (“init”,
P), then S responds report by running the HW.Run&Reportqy,,,,. (hdlpgpy, (“init”, P)) algo-
rithm, and storing out = (sid, pkj;) as a component of report in Lpp.

2. HW.RUN(hdI, in): If A queries this oracle as input hdl = hdlpg and in = (“provision”,
report, sig), S responds reportqx by running the HW.Run(hdlpg, (“provision”, report,sig)) al-
gorithm. If (sid, pkjy) ¢ Lrg, S outputs L.

Here, we consider a case where the HW.RUN&REPORT (hdIpg, (“provision”, report, sig)) algorithm
outputs non L even if (sid,pkj,) ¢ Lrg. If A can make a query while ensuring this case, we can
break the local attestation unforgeability for HW with non-negligible probability. The following
Lemma is the same as Lemma C.5 of IRON.

Lemma 3 If the secure hardware scheme HW is LOC-ATT-UNF secure, Games 1 is indistinguish-
able from Games .

Proof. Let A be an adversary who distinguishes between Games g and Games 1, and let C be the
challenger of LOC-ATT-UNF security. We construct an algorithm B that breaks LOC-ATT-UNF
as follows. First, C runs (params®, skieyort, SKquote, State™) < HW.Setup(1*), and gives params* to B.
B sets this params* as part of the mpk, and sends mpk to A.

For key generation query P of VFE-HW.KeyGen"™ oracle, B derives Hp from P and forwards it
to C. C runs sig < HW.Run(hdlkme, (“sign”, Hp)), and sends sig to B. Then, B sends skp := sig to

A, and stores Hp in L.

20

For report generation query hdlggpy and in = (“init”, P) of HW(:) oracle, B forwards them to
C. C calls report + HW.RUN&REPORT (hdl, in) where report = (mdhd|FE<P), tagQe p)» I, OUIL, o), and
sends report to B. Then, B stores out = (sid, pkjy) to Lrg, and sends report to A.

Now, if A can distinguish between the two games, it is only because A makes a “provision”
query to the HW.RUN(hdIpg, -) instance with a valid report report* on a (sid*, pkj,) ¢ LrEg, and
params*. B outputs report™ as a forged report to C.

O

S runs as Games ; with the following exceptions.
HW.RUN(hdI, in):

1. If A queries this oracle as input hdl = hdlkme and in = (“provision”, quote, params), S
responds (sid, ctgx) by running the HW.Run(hdlkme, (“provision”, quote, params)) algo-
rithm, and storing it in Lxpy.

2. If A queries this oracle as input hdl = hdlpg and in = (“complete setup”, sid, ctqx, odk),
S runs the HW.Run(hdIpg, (“complete setup”, sid, ctqx)) algorithm. If (sid, ctqx) ¢ Lr s,
then S outputs L.

Here, we consider a case that the HW.RUN(hdlpg, (“complete setup”, sid,ctyx,odx)) algorithm
outputs non L even if (sid,ctqx) ¢ Lxn. If A can make a query while ensuring this case, we can
break the existentially unforgeability for SIG with non-negligible probability. The following Lemma
is the same as Lemma C.2 of IRON.

Lemma 4 If the signature scheme SIG is EUF-CMA secure, Gamey is indistinguishable from
Games 1.

Proof. Let A be an adversary who distinguishes between Games ; and Gamey g, and let C be the
challenger of EUF-CMA security. We construct an algorithm B that breaks EUF-CMA as follows.

First, C runs (skjg,: vkig,) SIG.KeyGen(1%), and gives VKGgn t0 B. B sets this vk, as part of
the mpk, and sends mpk to A.
For run query hdl = hdlkme and in = (“provision”, quote, params) of HW instance, 5 runs

out + HW.RUN(hdI, in) where out = (sid, ctqk, oqk). B stores out to Lx s, and sends it to A.
Now, if A can distinguish between the two games, it is only because A makes a “complete
setup” query to the HW.RUN(hdIpg, -) oracle with a hdlpg € L£p that has vk, in its state and
with a valid signature o}, on a (sid*,ct},), & Lxn. B outputs (sid*, ct},, o},) as a forged signature
to C.
]

S runs as Gamey ¢ with the following exceptions.

1. HW.RUN&REPORT (hdl,in): If A queries this oracle as input hdl = hdlpg and in = (“provi-
sion”, report,sig), S responds reportqx by running the HW.Run&Reports,,. (hdlpg, (“provi-
sion”, report, sig)) algorithm, and storing out = (sid, ctyey) as a component of reportgx in
LpE.

2. HW.RUN(hdl, in): If A queries this oracle as input hdl =hdlrgpy and in = (“run”, params, mpk,
pkia, reportgy, CT), S responds P(msg) by running the HW.Run(hdlgg(py, (“run”, params, mpk,
pkia, reportgx, CT)) algorithm. If (sid, ctyey) ¢ Lpr, S outputs L.

21

Here, we consider a case where the HW.RUN(hdlp, (“run”, params, mpk, pki,, reportgx, CT)) algo-
rithm outputs non L even if (sid, ctyey) ¢ Lpg. If A can make a query while ensuring this case, we
can break the local attestation unforgeability for HW with non-negligible probability. The following
Lemma is the same as Lemma C.3 of IRON.

Lemma 5 If the secure hardware scheme HW is LOC-ATT-UNF secure, Gamey 1 is indistinguish-
able from Gameyg.

Proof. Let A be an adversary who distinguishes between Game,4 o and Gamey 1, and let C be the
challenger of LOC-ATT-UNF security. We construct an algorithm B that breaks LOC-ATT-UNF
as follows. First, C runs (params®, skie,orts SKquotes State™) < HW.Setup(1%), and gives params* and
skquote t0 B. B sets this params® as part of the mpk, and sends mpk to A.

For report generation query hdl = hdlpg and in = (“provision”, report, sig), of HW(-) oracle, B
forwards them to C. C runs reportgy <— HW.RUN&REPORT (hdl, in) where report = (mdhdiy , tagqpe
in,out, o), and sends reportqy to B. Then, B stores out = (sid, ctyey) to Lpg, and sends reportqy to
A.

Now, if A can distinguish between the two games, it is only because A makes a “run” query to
the HW.RUN(hdlgg(py, -) instance with a valid report report™ on a (sid*,ctjﬁey) ¢ Lpp, and params™.
B outputs report* as a forged report to C.

S runs as Gamey 1 with the following exceptions.

HW.RUN(hdl, in): If A queries this oracle as input hdl = hdlgg(py and in = (“run”, params, mpk, pki,
reportqk, CT), S evaluates CT as follows.

0

o If CT ¢ Lg, S retrieves dkypke from ctyey, and computes msg <— VPKE.Dec(pars, pkypke,
dkypke; CT). Finally, S evaluates P on msg, and outputs out := P(msg)

o If CT € LR, S uses the Unygg+(P) oracle, and responds with P(msg*). S has the restriction
of P queried by A in the VFE-KeyGen™ oracle, i.e., Hp € Lk.

In the case of the decryption of CT ¢ Lg, S decrypts CT using dkypke in HW.RUN(hdlrg(py,
(“run”, params, mpk, pki,, reportqy, CT). We guarantee that dkypke is correct for decrypting CT
since it will be sent from KME to DE (in Games o and Games) and DE to FE (in Games; and
Gamey 1) correctly. Therefore, S can decrypt any CT ¢ L, and the game is indistinguishable from
Gamey 1. In the case of the decryption of CT € Lg, there is a restriction that Hp is in Lx. Since
A cannot use an invalid P from Gamey, S outputs the decryption result using Unmsg+ if A sends
a “run” query to HW.Run(hdlggp)). Therefore, Games is indistinguishable from Gamey; for any
ciphertext.

S runs as Games with the following exceptions.
KM(quote): If A queries this oracle as input quote = (mdhdip, tagqpe, in = (“run”, vksign),
out = (sid, pkea), o), S runs the HW.Run(hdlkme, (“provision”, quote, params)) algorithm,
which internally runs ctqx < PKE.Enc(pka, O|dkvpke|), and outputs (sid, ctqk, odk)-

The following Lemma is the same as Lemma C.6 of IRON.

Lemma 6 If the public key encryption scheme PKE is IND-CPA secure, Gameg is indistinguishable
from Games.

22

Proof. We will run two IND-CPA games in parallel, one for cty and another for ctye,. It
can be easily shown that this variant is equivalent to the regular IND-CPA security game. Let
A be an adversary who distinguishes between Games and Gameg, and let C be the challenger of
IND-CPA security. We construct an algorithm B that breaks IND-CPA as follows. First, C runs
(Pkpke,1, dKpke 1) PKE.KeyGen(1*) and (Pkpke,2, dkpke 2) PKE.KeyGen(1*), and gives PKpke, 1
and pkpke2 to B. B sets pkjy = pkpke,1 and pkra = pkpke,2, TUns (Sksign, VKsign) < SIG.KeyGen(1%),
pars <~ VPKE.PGen(1%) and (pkypke; dkypke) <= VPKE.KeyGen(pars), and gives params and mpk =
(pars, pkypke; VKsign) to A.

For run query (hdlggp), (“run”, params, mpk, pki,, reportqk, CT)) where reporty is valid and
hdlrgp) € Lk with honest-bit, B forwards CT to C as a decryption query. C returns msg by running
the VPKE.Dec(pars, pkypke, dkypke; CT) algorithm to B. If msg = L, B outputs L; otherwise, B runs
P on msg, and sends P(msg) to A.

In the challenge phase, A sends dkj; and dk}, to B. B sets dk}; = M:,o and 0ldkal = le and
dk;, = M7, and oldkal = M;:l, and sends (Mo, M7, M7, M7;) to C. C computes two challenge
ciphertexts CT; = PKE.Enc(pars, kapke,MZM) and CT] = PKE.Enc(pars,pkvpke,M;N) where p €
{0,1}, and sends (CT§,CT3) to B. B sends (CT§,CT7) to A, and stores CTj to Lpg and CT7 to
L.

For run query (hdlggp), (“run”, params, mpk, pkj,, reportqx, CT)) where reportqy is valid and
hdlp € Lk with honest-bit:

e CT € Lr: B uses the universal oracle Umsg+(P), and sends P(msg*) to A.

o CT ¢ Lr: B forwards CT to C as a decryption query. C returns msg by running the
VPKE.Dec(pars, pkypke, dkypke, CT) algorithm to B. If msg = L, B outputs L; otherwise,
B runs P on msg, and sends P(msg) to A.

Finally, A outputs ' € {0,1}. B outputs p/, and breaks IND-CPA security.

S runs as Gameg with the following exceptions.

If A provides msg* as the challenge ciphertext, S outputs CT* generated from the VPKE.Enc(pars,
pkvpke,O‘msg*|) algorithm for the VFE-HW.Enc(mpk, 0/™s€) algorithm. Finally, S stores CT*
in ,CR.

Here, no step replaces a valid ciphertext with an invalid ciphertext, e.g., a random number;
therefore, the public verifiability does not affect the security proof.

Lemma 7 If the verifiable public key encryption scheme VPKE is IND-CCA secure, Gamey 1is
indistinguishable from Gameg.

Proof. Let A be an adversary who distinguishes between Gameg and Gamey;, and let C be the
challenger of IND-CCA security. We construct an algorithm B that breaks IND-CCA as follows.
First, C runs pars < VPKE.PGen(1), then (pkypke; dkvpke) <~ VPKE.KeyGen(pars), and gives pars
and pkypke to B. B runs (sksign, Vksign) < SIG.KeyGen(1%) and params «— HW.Setup(1%), and gives
params and mpk = (pars, pkypke, Vksign) to A.

For key generation query P, B derives Hp from P, and calls sig <+~ HW.Run(hdlkme, (“sign”,
Hp)). Then, B sends skp := sig to .4, and stores Hp in L.

For run query (hdlggp), (“run”, params, mpk, pki,, reportgk, CT)) where reporty, is valid and
hdlrg(py € Lk with honest-bit, B forwards CT to C as a decryption query. C returns msg by running

23

the VPKE.Dec(pars, pkypke; dkypke; CT) algorithm to B. If msg = L, B outputs L; otherwise, B runs
P on msg, and sends P(msg) to A.

In the challenge phase, A sends msg* to B. B sets msg* = M{ and olmsg"| — M7, and sends
(Mg, M7) to C. C computes challenge ciphertext CT* = VPKE.Enc(pars, pkypke, M7,) where p € {0,1},
and sends CT* to B. B sends CT* to A, and stores CT* in Lg.

For key generation query P, B derives Hp from P, and calls sig < HW.Run(hdlkme, (“sign”,
Hp)). B sends skp :=sig to A, and stores Hp in L.

For run query (hdlggp), (“run”, params, mpk, pki,, reportgk, CT)) where reportyy is valid and
hdlg(py € Lk with honest-bit:

e CT € Lgr: B uses the universal oracle Umsg+(P), and sends P(msg*) to A.

o CT ¢ Lr: B forwards CT to C as a decryption query. C returns msg by running the
VPKE.Dec(pars, pkypke, dkypke, CT) algorithm to B. If msg = L, B outputs L; otherwise,
B runs P on msg, and sends P(msg) to A.

Finally, A outputs p/ € {0,1}. B outputs y/, and breaks IND-CCA security.

This concludes the proof of Theorem 3 g

7 Implementation

In this section, we give an implementation result when we employ a cryptographic hash function H as
a function P, i.e., the decryption algorithm outputs H(msg). As mentioned before, theoretically the
function is not realized in the IND-based VFE scheme [15] due to the collision-resistance of H, and
practically the function seems attractive when we compute a hashed value for a sensitive data such
as a password. This system can be achieved by IRON, however no verifiability is guaranteed. On
the other hand, in our scheme the server can verify the ciphertext, and can delegate the verification
to another server as an option.

We measured the average times and standard deviations of the VFE-HW.Enc, VFE-HW VerifyCT,
VFE-HW VerifyK and VFE-HW.Dec algorithms because we estimate the runtime of the algorithms
related to msg for the proposed scheme. Here, except for the VFE-HW.Dec algorithm, all algo-
rithms were run outside enclaves. In the VFE-HW.Dec algorithm, the FE runs the VPKE.Conv and
VPKE.Dec’ algorithms, and evaluates H on msg. We employ the VPKE scheme [39], ECDSA as SIG,
and SHA-256 as H.

The VPKE.Ver algorithm checks whether (part of) the ciphertext is a DDH tuple, we employed
symmetric pairings even though asymmetric pairings are desirable for efficient implementation [30].
We used the PBC library [1], which supports the symmetric pairings. We generated parameters for
a Type-A curve with 128-bit security, defined over the field IF,, with a 256-bit prime p, where the
order is a 1536-bit prime, using a function called pbc_param_init_a_gen. The parameters is given
in Appendix B. For running the PBC library in enclaves, we employed the PBC for SGX given by
Contiu et al. [26]. In our implementation, we set the input-output of enclaves is as an array of
unsigned char values regarding a valuable of PBC. We transformed the binary data into an element
of elliptic curves using the element_from bytes function supported by PBC within enclaves.

Our implementation environment includes the CPU: Intel(R) Core(TM) i3-7100U (2.40GHz),
and the libraries openssl 1.0.2g, Intel SGX 1.5 Linux Driver, Intel SGX SDK, Intel SGX PSW,
GMP, PBC, and PBC for SGX [26].

We give our implementation result in Table 2. Compared to the running time of the VFE-
HW.Dec algorithm, which was run inside the enclave, those of the VFE-HW.Enc and VFE-HW VerifyCT

24

Table 2: Implementation results of VFE-HW scheme

Running Time (sec) | Average | Standard Deviation
VFE-HW.Enc 0.12436 0.00250
VFE-HW VerifyCT 0.12828 0.00259
VFE-HW VerifyK 0.00060 0.00015
VFE-HW.Dec 0.06499 0.00163

Table 3: Implementation results of VFE-HW scheme (Invalid ciphertext/secret key)

Running Time (sec) Average | Standard Deviation
VFE-HW.VerifyCT (DDH) 0.11828 0.00228
VFE-HW . VerifyCT (OTS) 0.12329 0.00252
VFE-HW.VerifyK (Signature) | 0.00061 0.00014

algorithms were relatively slow. The reason seems to employ symmetric bilinear groups in our im-
plementation, i.e., the size of the group G is much larger than that of the case of asymmetric
bilinear groups. Thus, proposing a VPKE scheme secure in asymmetric bilinear groups (or without
pairings) and re-implementing our VFE-HW scheme seems an interesting future work. Since we
focus on verifiability of ciphertexts and secret keys, we also evaluate when VFE-HW .VerifyCT and
VFE-HW VerifyK algorithms output 0 in Table 3. In our implementation, the VFE-HW.VerifyCT
algorithm outputs 0 either the DDH test or a verification of One-Time Signature (OTS) [46] fails.
The VFE-HW VerifyK algorithm outputs 0 when a verification of signature fails. Even if the verifi-
cation process fails when invalid ciphertexts or secret keys are used, the running times are similar
to those of valid ciphertexts or secret keys.

8 Conclusion

In this paper, we proposed a SIM-based VFE that supports any functionality. To support any
functionality, we employed a hardware-based construction. In addition, we gave a SIM-based
VFE construction that employs VPKE, PKE, SIG, and HW. Finally, we give our implementation of
proposed VFE-HW scheme for H. Recently, Bhatotia et al. [18] considered a composable security
when Trusted Execution Environments (TEEs) including Intel SGX are employed. Considering such
a composability in the VFE-HW context is left as a future work. Although we have claimed that
the trusted assumption is reasonable in the HW setting, we leave how to remove this assumption
without losing the SIM-based security as a future work. In addition, we leave how to construct
SIM-based secure VFE without using secure hardware as a future work.

Acknowledgement

This work was supported by the JSPS KAKENHI Grant Numbers JP20K11811, JP20J22324, and
JP21K11897. We thank Dr. Rafael Pires for helpful discussion.

References

[1] The pbc (pairing based cryptography) library. available at http://crypto.stanford.edu/pbc/.

25

2]

[11]

[12]

M. Abdalla, F. Benhamouda, and R. Gay. From single-input to multi-client inner-product
functional encryption. In Advances in Cryptology - ASIACRYPT 2019 - 25th International
Conference on the Theory and Application of Cryptology and Information Security, Kobe,
Japan, Proceedings, Part III, volume 11923, pages 552—-582, Dec. 2019.

M. Abdalla, F. Benhamouda, M. Kohlweiss, and H. Waldner. Decentralizing inner-product
functional encryption. In Public-Key Cryptography - PKC 2019 - 22nd IACR International
Conference on Practice and Theory of Public-Key Cryptography, Beijing, China, Proceedings,
Part 11, volume 11443, pages 128-157, Apr. 2019.

M. Abdalla, F. Bourse, A. D. Caro, and D. Pointcheval. Simple functional encryption schemes
for inner products. In Public-Key Cryptography - PKC 2015 - 18th IACR International Con-
ference on Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, Pro-
ceedings, volume 9020, pages 733-751, Mar. 2015.

M. Abdalla, F. Bourse, H. Marival, D. Pointcheval, A. Soleimanian, and H. Waldner. Multi-
client inner-product functional encryption in the random-oracle model. In Security and Cryp-
tography for Networks - 12th International Conference, SCN 2020, Amalfi, Italy, Proceedings,
volume 12238, pages 525-545, Sept. 2020.

M. Abdalla, D. Catalano, D. Fiore, R. Gay, and B. Ursu. Multi-input functional encryption for
inner products: Function-hiding realizations and constructions without pairings. In Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa
Barbara, CA, USA, Proceedings, Part I, volume 10991, pages 597-627, Aug. 2018.

M. Abdalla, D. Catalano, R. Gay, and B. Ursu. Inner-product functional encryption with fine-
grained access control. In Advances in Cryptology - ASIACRYPT 2020 - 26th International
Conference on the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, Proceedings, Part III, volume 12493, pages 467-497, Dec. 2020.

M. Abdalla, R. Gay, M. Raykova, and H. Wee. Multi-input inner-product functional encryption
from pairings. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Paris, France, Pro-
ceedings, Part I, volume 10210, pages 601-626, Apr. 2017.

M. Abdalla, J. Gong, and H. Wee. Functional encryption for attribute-weighted sums from
k-lin. In Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology
Conference, CRYPTO 2020, Santa Barbara, CA, USA, Proceedings, Part I, volume 12170,
pages 685-716, Aug. 2020.

S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee. Functional encryption: New
perspectives and lower bounds. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, Proceedings, Part II, volume 8043, pages
500-518, Aug. 2013.

S. Agrawal, V. Koppula, and B. Waters. Impossibility of simulation secure functional encryp-
tion even with random oracles. In Theory of Cryptography - 16th International Conference,
TCC 2018, Panaji, India, Proceedings, Part I, volume 11239, pages 659-688, Nov. 2018.

S. Agrawal, B. Libert, M. Maitra, and R. Titiu. Adaptive simulation security for inner product
functional encryption. In Public-Key Cryptography - PKC 2020 - 23rd IACR International

26

[16]

[17]

18]

[20]

[21]

22]

Conference on Practice and Theory of Public-Key Cryptography, Edinburgh, UK, Proceedings,
Part I, volume 12110, pages 34-64, May 2020.

S. Agrawal, B. Libert, and D. Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In Advances in Cryptology - CRYPTO 2016 - 36th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, Proceedings, Part III, volume
9816, pages 333-362, Aug. 2016.

I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for cpu based at-
testation and sealing. In Proceedings of the 2nd international workshop on hardware and
architectural support for security and privacy, pages 1-7, 2013.

S. Badrinarayanan, V. Goyal, A. Jain, and A. Sahai. Verifiable functional encryption. In
Advances in Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory
and Application of Cryptology and Information Security, Hanoi, Vietnam, Proceedings, Part
11, volume 10032, pages 557-587, Dec. 2016.

B. Barak and R. Pass. On the possibility of one-message weak zero-knowledge. In Theory of
Cryptography, First Theory of Cryptography Conference, TCC 2004, Cambridge, MA, USA,
Proceedings, volume 2951, pages 121-132, Feb. 2004.

F. Benhamouda, F. Bourse, and H. Lipmaa. Cca-secure inner-product functional encryption
from projective hash functions. In Public-Key Cryptography - PKC 2017 - 20th IACR Inter-
national Conference on Practice and Theory in Public-Key Cryptography, Amsterdam, The
Netherlands, Proceedings, Part II, volume 10175, pages 36—66, Mar. 2017.

P. Bhatotia, M. Kohlweiss, L. Martinico, and Y. Tselekounis. Steel: Composable hardware-
based stateful and randomised functional encryption. In Public-Key Cryptography - PKC 2021
- 24th IACR International Conference on Practice and Theory of Public Key Cryptography,
Virtual Event, Proceedings, Part II, volume 12711, pages 709-736, May 2021.

M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications. In
Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali, pages 329-349. 2019.

D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and challenges. In
Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011, Providence, RI,
USA, Proceedings, volume 6597, pages 253273, Mar. 2011.

E. Boyle, K. Chung, and R. Pass. On extractability obfuscation. In Theory of Cryptography
- 11th Theory of Cryptography Conference, TCC 2014, San Diego, CA, USA, Proceedings,
volume 8349, pages 52—-73, Feb. 2014.

A. D. Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth, and G. Persiano. On the achievability
of simulation-based security for functional encryption. In Advances in Cryptology - CRYPTO
2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, Proceedings, Part II,
volume 8043, pages 519-535, Aug. 2013.

G. Castagnos, F. Laguillaumie, and I. Tucker. Practical fully secure unrestricted inner product
functional encryption modulo p. In Advances in Cryptology - ASIACRYPT 2018 - 24th Inter-
national Conference on the Theory and Application of Cryptology and Information Security,
Brisbane, QLD, Australia, Proceedings, Part II, volume 11273, pages 733-764, Dec. 2018.

27

[24]

[25]

32]

33]

[34]

[35]

[36]

J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan, and D. Pointcheval. Dynamic decentralized
functional encryption. In Advances in Cryptology - CRYPTO 2020 - 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, Proceedings, Part I, volume
12170, pages 747-775, Aug. 2020.

J. Chotard, E. D. Sans, R. Gay, D. H. Phan, and D. Pointcheval. Decentralized multi-client
functional encryption for inner product. In Advances in Cryptology - ASIACRYPT 2018 -
24th International Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, Proceedings, Part II, volume 11273, pages 703-732, Dec.
2018.

S. Contiu, R. Pires, S. Vaucher, M. Pasin, P. Felber, and L. Réveillere. IBBE-SGX: crypto-
graphic group access control using trusted execution environments. In /8th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2018, Luxembourg City,
Luxembourg, pages 207-218, 2018.

P. Datta, R. Dutta, and S. Mukhopadhyay. Functional encryption for inner product with
full function privacy. In Public-Key Cryptography - PKC 2016 - 19th IACR International
Conference on Practice and Theory in Public-Key Cryptography, Taipei, Taiwan, Proceedings,
Part I, volume 9614, pages 164-195, Mar. 2016.

P. Datta, T. Okamoto, and J. Tomida. Full-hiding (unbounded) multi-input inner product
functional encryption from the k-linear assumption. In Public-Key Cryptography - PKC 2018
- 21st IACR International Conference on Practice and Theory of Public-Key Cryptography,
Rio de Janeiro, Brazil, Proceedings, Part II, volume 10770, pages 245277, Mar. 2018.

B. Fisch, D. Vinayagamurthy, D. Boneh, and S. Gorbunov. IRON: functional encryption
using intel SGX. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, pages 765782, Oct. 2017.

S. D. Galbraith, K. G. Paterson, and N. P. Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113-3121, 2008.

S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. SIAM J. Comput., 45(3):882-929,
2016.

S. Garg, C. Gentry, S. Halevi, and M. Zhandry. Fully secure attribute based encryption from
multilinear maps. TACR Cryptol. ePrint Arch., page 622, 2014.

O. Goldreich and Y. Oren. Definitions and properties of zero-knowledge proof systems. J.
Cryptol., 7(1):1-32, 1994.

V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Proceedings of the 13th ACM Conference on Computer
and Communications Security, CCS 2006, Alexandria, VA, USA, pages 89-98, Oct. 2006.

S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen. Intel software guard extensions:
Epid provisioning and attestation services. White Paper, (1):1-10, 2016.

S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu. Function-hiding inner
product encryption is practical. In Security and Cryptography for Networks - 11th International
Conference, SCN 2018, Amalfi, Italy, Proceedings, volume 11035, pages 544-562, Sept. 2018.

28

[37]

[38]

[39]

[42]

[43]

[44]

[45]

[46]

[47]

A

K. Lee and D. H. Lee. Two-input functional encryption for inner products from bilinear maps.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 101-A(6):915-928, 2018.

F. McKeen, 1. Alexandrovich, A. Berenzon, C. Rozas, H. Shafi, V. Shanbhogue, and U. Sav-
agaonkar. Innovative instructions and software model for isolated execution. Hasp 2013,
10(1):1-8, 2013.

J. M. G. Nieto, M. Manulis, B. Poettering, J. Rangasamy, and D. Stebila. Publicly verifiable
ciphertexts. In Security and Cryptography for Networks - 8th International Conference, SCN
2012, Amalfi, Italy, Proceedings, volume 7485, pages 393—410, Sept. 2012.

A. O’Neill. Definitional issues in functional encryption. TACR Cryptol. ePrint Arch., page
556, 2010.

E. D. Sans and D. Pointcheval. Unbounded inner-product functional encryption with succinct
keys. In Applied Cryptography and Network Security - 17th International Conference, ACNS
2019, Bogota, Colombia, Proceedings, volume 11464, pages 426—441, June 2019.

N. Soroush, V. Iovino, A. Rial, P. B. Rgnne, and P. Y. A. Ryan. Verifiable inner product
encryption scheme. In Public-Key Cryptography - PKC 2020 - 23rd IACR International Con-
ference on Practice and Theory of Public-Key Cryptography, Edinburgh, UK, Proceedings, Part
I, volume 12110, pages 6594, May 2020.

T. Suzuki, K. Emura, T. Ohigashi, and K. Omote. Verifiable functional encryption using
intel SGX. In Provable and Practical Security - 15th International Conference, ProvSec 2021,
Guangzhou, China, Proceedings, volume 13059, pages 215-240, Nov. 2021.

J. Tomida and K. Takashima. Unbounded inner product functional encryption from bilinear
maps. In Advances in Cryptology - ASIACRYPT 2018 - 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia,
Proceedings, Part II, volume 11273, pages 609-639, Dec. 2018.

B. Waters. A punctured programming approach to adaptively secure functional encryption. In
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, Proceedings, Part II, volume 9216, pages 678697, Aug. 2015.

H. Wee. Public key encryption against related key attacks. In Public Key Cryptography - PKC
2012 - 15th International Conference on Practice and Theory in Public Key Cryptography,
Darmstadt, Germany, Proceedings, volume 7293, pages 262279, May 2012.

H. Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In Theory of
Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA, Proceedings,
Part I, volume 10677, pages 206233, Nov. 2017.

The Nieto et al. VPKE scheme

In this appendix, we introduce the Nieto et al. VPKE scheme [39, FIGURE4] as follows. For
the underlying One-Time Signature (OTS) scheme, we employ the discrete-log-based Wee OTS
scheme [46], and for the DDH test, we employ symmetric pairings whether e(g, 7) is the same as
e(cy, u'v) or not.

29

VPKE.PGen(1*): Choose (p, e, g, G, Gr) where G and Gr are groups of A-bit prime order p,
g € G is a generator, and e : G x G — Gr is a bilinear map. Let H : G — {0, 1}P°'y()‘),
Hors : {0,1}* — {0,1}PYXN) and TCR : G x {0,1} — Z, be collision or target collision
resistant hash functions where poly()) is a polynomial in A. Output pars = (p, €, g, G, G,
H, Hors, TCR).

VPKE.KeyGen(pars): Parse pars = (p, e, g, G, Gp, H, Hors, TCR). Choose x; & Zy and v el
and compute u = ¢g*. Output pk = (u,v) and dk = z.

VPKE.Enc(pars, pk, msg): Parse pars = (p, e, g, G, Gp, H, Hors, TCR) and pk = (u,v).

Choose sg, S1,T2,7, 1 & Z, and compute ug = g%, u; = g%, d =g, ¢ = g", t
TCR(c1, (ug,u1,c)), K + H(u") and m <+ (u'v)". Set co < msg & K and ¢ = (c1,c,m).
Compute w < 22 + nsg + s1(Hors(c) +n). Output CT + (¢, (n, w), (ug, u1,))

VPKE.Ver(pars, pk, CT): Parse pars = (p, e, g, G, Gy, H, Hors, TCR), pk = (u,v), CT =
(¢, (nyw), (ug,u1,c)) and ¢ = (c1,ca,m). Compute t <+ TCR(cy, (ug, u1,¢’)) and m + (ulv)".

If e(g, m) # e(c1,ulv) or g% # duf} - u{IOTS(CHn, then output 0. Otherwise, output 1.

VPKE.Conv: Parse pars = (p, e, g, G, Gp, H, Hors, TCR), pk = (u,v), CT = (¢, (n, w), (ug, u1, "))
and ¢ = (c1, ca,). Output CT' = (c1, c2).

VPKE.Dec/(pars, pk, dk, CT"): Parse pars = (p, e, g, G, Gy, H, Hors, TCR), pk = (u,v), dk = 21
and CT' = (c1, c3). Compute K < H(c{') and set msg < c2 & K. Output msg.

B Type A Curve with 128-bit Security

Here, we indicate the parameters as shown in Table 4. h is defined as h := (p+ 1)/Order and is a
multiple of 12, and sign0, signl, expl, and exp2 are defined as Order = 28%P2 4 sign1 - 2®P! L sign0- 1.

30

Table 4: Type A curve with 128-bit security

137829182137841914660939203166562778481072472868799212883736033373776389423
275856600849965727557905145379787147011573918838400696256791520969790954647
234026134149836279179970069912941702077185846892228741645147037546137834958
016993449032368771117716800854231045245128514829131301048171717614739196745
940412209360282518205988243325127502858859823618043686336864956271850425997
773219601256420082271109126943413847132693452774733004856610405223161761104
4807535038087

Order

578960446186580977117854925043439539266349923328202820197287920061555880755
21

238063209750643048886022474472094216560766062709758760649150166949046752384
245829423385367442267660654963459018826556642656137089040285666790582182002
598333807307620189224986606097900823156136453183171049170543365773619829534
386565283791806164145599669023668121875720159425971381043029195875236768247
182750347222425692281034022570346337224333818783563819554407177204040132394
72452603528

expl

41

exp2

255

sign0

1

signl

1

31

