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Abstract. In this paper, we propose a formal security model and a con-
struction methodology of interactive aggregate message authentication
with detecting functionality (IAMD). The IAMD is an interactive ag-
gregate MAC protocol which can identify invalid messages with a small
amount of tag-size. Several aggregate MAC schemes that can specify in-
valid messages has been proposed so far by using non-adaptive group
testing in the prior work. In this paper, we utilize adaptive group test-
ing to construct IAMD scheme, and we show that the resulting IAMD
scheme can identify invalid messages with a small amount of tag-size
compared to the previous schemes.
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1 Introduction

1.1 Background

The number of IoT (Internet of Things) devices is increasing, and there would be
an enormous number of devices connected to the Internet in near future. Hence,
we would need efficient data-transmissions with lots of communicating devices
in an authenticated manner in networks including wireless networks in 5G and
beyond.

Usually, we consider the message authentication code (MAC) as a lightweight
cryptographic primitive for message authentication, however, the one-to-one au-
thenticated communication by MACs would lead to heavy traffic in the network:
This is because the number of MAC-tags is proportional to that of messages sent
from IoT devices, and hence an enormous number of MAC-tags will be trans-
mitted if there will be a huge number of communicating IoT devices (see Fig.
⋆ The preliminary version of this paper appeared in [13]. This paper is revised and

extended, and a full version of it.
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1). One may think of the aggregate message authentication code (AMAC for
short) to reduce MAC-tags: AMAC is a cryptographic primitive proposed by
Katz and Lindell [6] that can compress MAC-tags on multiple messages into a
short aggregate tag. However, it is not enough to use it, since we cannot identify
an IoT device that has sent an invalid message from the aggregate tag in general,
namely AMAC has functionality of compressing MAC-tags but does not have
functionality of identifying an invalid message among lots of messages.

Recently, Hirose and Shikata [4] proposed AMAC that has the functionality of
both compressing multiple MAC-tags into a short aggregate tag and identifying
an invalid message from the aggregate tag, and we call it AMAC with detecting
functionality (AMAD for short). The model of AMAD in [4] considers keyless
aggregation like AMAC in [6], and AMAD is constructed in [4] from non-adaptive
group testing in addition to the underlying MAC scheme in a generic way. The
resulting AMAD can reduce the total tag-size compared to that of the one-to-one
authenticated communication by MAC, and it can be applied without changing
structures of the underlying MACs, though we need to assume the number of
invalid messages is much smaller than the number of all messages sent from IoT
devices (see [4] in details) due to the restriction on designing non-adaptive group
testing (or disjunct matrices) [14]. Related work by applying non-adaptive group
testing in cryptography includes [8, 9, 12, 10], however, there is no work reported
for applications of adaptive group testing in cryptography.

In this paper, we consider an interactive AMAD (IAMD for short) that is an
interactive version of AMAD (see Fig. 2 for overview of IAMD). For construct-
ing IAMD in general, we propose to use adaptive group testing in addition to
the underlying MAC scheme, by which we expect IAMD achieves much better
compression compared to AMAD, since adaptive group testing is more powerful
than non-adaptive group testing in terms of the number of required tests.

Fig. 1. One-to-one authenticated communication by MACs.
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Fig. 2. Overview of Interactive Aggregate MAC with Detecting Functionality (IAMD):
An aggregator and a verifier communicate each other by using the above two channels.
A main channel is an insecure one, and a feedback channel is an authenticated one
with low bandwidth.

1.2 Our Contribution

The contribution of this paper is as follows.

– In Section 3, we introduce a formal model of adaptive group testing (AGT),
since we want to deal with AGT in a comprehensive way to construct IAMD
in a generic way. Although several instantiations of AGT have been proposed
so far, as far as we know, there is no formal model that comprehensively
captures those instantiations. In addition, we show that several interesting
instantiations are captured in our model, which implies that our model for
AGT is reasonable.

– In Section 4, we propose a formal model of IAMD and formalize security no-
tions of IAMD along with the model. Specifically, we formalize the notions
of unforgeability and identifiability in the context of IAMD, where identifi-
ability consists of completeness and soundness. We also define a notion of
weak-soundness which is a relaxed version of soundness.

– In Section 5, we propose construction of IAMD. Specifically, we propose
a generic construction of IAMD starting from any AGT and AMAC with
formal security proofs. By applying AGT to aggregation and verification al-
gorithms, which will be called GTAgg and GTVrfy respectively, it is possible
to realize the detecting functionality. The advantage of this generic construc-
tion lies in applying any AGT and AMAC. We also provide several concrete
constructions of IAMD by applying several AGT and AMAC to the generic
construction. In addition, we compare those resulting IAMD constructions
in terms of the following evaluation items: total amount of tag-size, number
of stages, preknowledge on the number of invalid messages assumed, and
security-levels. In particular, we show that the IAMD construction from the
digging algorithm and hash-based AMAC would be best, if we put impor-
tance on all the evaluation items except for the number of stages.
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2 Preliminaries

In this paper, we use the following notation: For a positive integer n, let [n] =
{1, . . . , n}. For any values x1, . . . , xn and a subset I ⊆ [n] of indexes, let {xi}i∈I

be the set of values indexes of which are in I and let (xi)i∈I be the sequence of
values indexes of which are in I. Let ∅ be the empty set, and null denotes the
empty-string that means no data. A function ϵ : N → [0, 1] is negligible in n,
if we have ϵ(n) < 1/g(n) for any polynomial g and sufficiently large n ∈ N. A
negligible function in n is denoted by negl(n). A polynomial of n is denoted by
poly(n). Probabilistic polynomial-time is abbreviated as PPT.

2.1 Message Authentication Code (MAC)

A MAC function is defined as a keyed function F : K ×M → T , where for a
security parameter λ, K = K(λ) is a key space, M =M(λ) is a message space,
and T = T (λ) is a tag space. We write Fk(·) = F (k, ·) for any k ∈ K. Security
of MAC functions is defined as follows.

Definition 1 (Unforgeability). A MAC function F meets unforgeability if for
any PPT adversary A against F , the advantage Advuf

F,A(λ) := Pr[Expt(A) → 1]
is negligible in λ, where the experiment Expt(A) is defined as follows:

Setup: k
U← K, LTag ← ∅, win← 0.

Oracle Access: A is allowed to access the following oracles:
– OTag(m): Given a message m ∈M, the tagging oracle OTag returns Fk(m)

and sets LTag ← LTag ∪ {m}.
– OVrfy(m, τ): Given a pair (m, τ) ∈ M× T of a message and a tag, the

verification oracle OVrfy returns 1 if Fk(m) = τ , and returns 0 otherwise.
It sets win← 1 if Fk(m) = τ and m /∈ LTag.

Output: When A halts, output 1 if win = 1, and output 0 otherwise.

2.2 Aggregate MAC (AMAC)

An aggregate MAC (AMAC) scheme consists of a four-tuple of polynomial-
time algorithms (KGen, Tag, Agg, Vrfy) as follows: For a security parameter λ,
n = poly(λ) is the number of senders, ID = {id1, . . . , idn} (where idi ∈ {0, 1}λ
for i ∈ [n]) is an ID space, K = K(λ) is a key space, M = M(λ) is a message
space, T = T (λ) is a tag space, and TAgg = TAgg(λ) is an aggregate-tag space:

Key Generation: A randomized algorithm KGen takes as input a security pa-
rameter 1λ and an ID id ∈ ID, and it outputs a secret key kid ∈ K corre-
sponding to the ID id.

Tagging: A deterministic or randomized algorithm Tag takes as input a secret
key k and a message m ∈M, and it outputs a tag τ ∈ T .
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Aggregation: A deterministic or randomized algorithm Agg takes as input a set
{(id(1), τ1), . . . , (id(na), τna)} of distinct pairs of an ID and a tag (2 ≤ na ≤ n),
where id(i) ∈ ID and τi ∈ T for all i ∈ [na]. It outputs an aggregate tag
T ∈ TAgg. Notice that (id(i), mi) ̸= (id(j), mj) for any i, j ∈ [na] such that
i ̸= j.

Verification: A deterministic algorithm Vrfy takes as input a set {kidi}i∈[n]

of secret keys, a set M = {(id(1), m1), . . . , (id(na), mna)} of pairs of an ID
and a message, and an aggregate tag T , and it outputs 1 (acceptance) or 0
(rejection).

It is required that AMAC schemes meet correctness: An AMAC scheme
AMAC = (KGen,Tag, Agg, Vrfy) meets correctness if for all i ∈ [n], all kidi ←
KGen(1λ, idi), and all mi ∈ M, we have Vrfy({kidi

}i∈[n],M, T ) = 1, where
M = {(id(1), m1), . . . , (id(na), mna)}, T ← Agg({(id(1), τ1), . . . , (id(na), τna)}) and
for all i ∈ [na], id(i) ∈ ID and τi ← Tag(kid(i) , mi).

Security of AMAC schemes is defined as follows.

Definition 2 (Unforgeability). An AMAC scheme AMAC = (KGen, Tag,
Agg, Vrfy) meets unforgeability if for any PPT adversary A against AMAC, the
advantage Advuf

AMAC,A(λ) := Pr[Expt(A)→ 1] is negligible in λ, where the exper-
iment Expt(A) is defined as follows:

Setup: ∀i ∈ [n], kidi ← KGen(1λ, idi), LTag ← ∅, LCorr ← ∅, win← 0.
Oracle Access: A is allowed to access the following oracles:

– OTag(id,m): Given a pair (id, m) ∈ ID ×M of an ID and a message,
the tagging oracle OTag returns τ ← Tag(kid, m) and sets LTag ← LTag ∪
{(id, m)}.

– OCorr(id): Given an ID id, the corruption oracle OCorr returns the corre-
sponding kid and sets LCorr ← LCorr ∪ {id}.

– OVrfy(M, T ): Given a set M = {(id(1), m1), . . . , (id(na),mna)} of pairs of
an ID and a message, and an aggregate tag T ∈ TAgg, the verification
oracle OVrfy returns b← Vrfy({kidi}i∈[n],M, T ) ∈ {0, 1}. It sets win← 1
if b = 1 and there exists (id(i), mi) ∈M (i ∈ [na]) such that id(i) /∈ LCorr

and (id(i), mi) /∈ LTag.
Output: When A halts, output 1 if win = 1, and output 0 otherwise.

3 Adaptive Group Testing (AGT)

3.1 Background and Contribution

Group Testing. Group testing (e.g., [2]) is a method to specify some special
items called defectives among many whole items with a small number of tests
than the trivial individual testing for each item. The applications of group testing
include screening blood samples for detecting a disease, and detecting clones
which have a particular DNA sequence.
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The first paper about group testing is published by Dorfman [1]. The group
testing techniques are classified into two types: the first type means the testing
techniques by non-adaptive strategies, called non-adaptive group testing [15,
11, 3], and the second type means the techniques by adaptive strategies, called
adaptive group testing (or called sequential group testing) [1, 7, 5, 3]. Suppose
that there are totally n items of which there are (at most) d defectives. In non-
adaptive group testing, we need to know d beforehand and to select all the
subsets of n items to be tested without knowing the results of other tests. This
type of testing is typically designed by providing a d-disjunct matrix or a d-
separable matrix (e.g., see [2]). On the other hand, in adaptive group testing,
we can do tests several times such that we can select a subset of items to be
tested after observing the result of the previous test. In particular, a competitive
group testing is an adaptive group testing which does not need to know d (i.e.,
the number of defectives) beforehand, and this type of testing is useful in a real
application when it is not easy to estimate d beforehand.

Our Contribution. In this paper, we introduce a formal model of adaptive
group testing (AGT) protocols, since we want to deal with AGT in a compre-
hensive way to construct IAMD in a generic way. Although several instantiations
of AGT have been proposed so far, as far as we know, there is no formal model
that comprehensively captures those instantiations. In Section 3.4, we propose
a formal model of AGT as an interactive protocol. In Section 3.5, we show that
several interesting instantiations (i.e., concrete constructions) are captured in
our model, which implies that our model of AGT is reasonable.

3.2 Informal Description of AGT

In an AGT protocol, two entities Group-selector and Inspector denoted by GS
and IS, respectively, interactively communicate to detect all the defectives among
items. In each interaction process, GS selects a group (i.e., a subset of items) and
generates a compressed item-data from multiple item-data of the group. Then,
GS sends the compressed data to IS. Given compressed item-data from GS, IS
checks whether the corresponding items of the group contains any defectives by
using a testing mechanism, where it is supposed to be able to check whether
an arbitrarily selected subset of items includes a defective by testing only once.
IS updates a list of defective-candidates based on the tested result, and sends
the tested result to GS. This process is repeated between GS and IS, until IS
finally outputs a list of defectives. This leads to the informal definition of AGT
as follows.

Definition 3 (Informal). GS and IS interactively performs the following pro-
cedures:

GS: The set of item-data I including some defectives is given as input. First, GS
selects a group (i.e., a subset of items) to be tested by using a group-selection
algorithm Gsel. Then, GS compresses multiple item-data in the selected group
into a compressed item-data by using a compression algorithm Coms, and it
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sends the compressed item-data to IS. Next, GS repeats the following proce-
dures:
1. Receive the tested result on compressed item-data from IS.
2. Select a subset of items to be tested next by using Group-selection algo-

rithm Gsel.
3. For each selected set, compress item-data included in the set into a com-

pressed item-data by using Coms.
4. Send all the compressed item-data of the selected sets with their IDs to

IS.
IS: The set V of verification-data is given as input. First, IS receives ID and

a compressed item-data of the selected group (i.e., a subset of items) from
GS. IS uses a testing algorithm Test with inputting a compressed item-data
to check whether there is a defective in the selected group. If Test outputs
1 (negative), it means there is no defective in the group; If Test outputs 0
(positive), it means there is a defective in the group. Then, IS updates a list
J of IDs of defective candidates by eliminating IDs in the group if testing
result is negative, and send all the tested results to GS. Next, IS repeats the
following procedures:
1. Receive compressed item-data for the selected sets from IS.
2. Select a subset of items to be tested next by using Group-selection algo-

rithm Gsel, as GS does.
3. For each selected set, use Test with inputting a compressed item-data of

the selected set to check whether there is a defective in it. If Test outputs
1 (negative), update a list J of IDs of defective candidates by eliminating
IDs in the selected set. Then, send all the results of testing to GS.

Finally, IS outputs a list J of all defectives’ IDs.

3.3 Formal Definition of Items and Defectives

Let ID = {id1, id2, . . . , idn} be a set of IDs used for distinguishing objects to
be tested. An item denotes a pair (id, data) consisting of an ID and an item-
data in spaces ID and X , respectively. A defective means a particular item,
and a good item means an item which is not a defective. A verification-item
is a pair (id, vrf) ∈ ID × Y of an ID and a verification-item which will be
used to decide whether a target item is a defective. Let I = {(id(i), datai)}i∈[n]

be the set of all items including some defectives. Notice that for any distinct
i, j ∈ [n], (id(i), datai) ̸= (id(j), dataj) holds. Let V = {(id(i), vrfi)}i∈[n] be a set
of all verification-items. For each item (id(i), datai), we can check whether or
not (id(i), datai) is a defective by testing with the corresponding verification-
item (id(i), vrfi). However, if we individually test it for i = 1, 2, . . . , n, we need
testing n times to specify all the defectives. In a scenario of group testing, it is
supposed to check whether or not an arbitrarily selected subset of items includes
a defective by testing only once, and the purpose is to specify all the defectives
with smaller number of testing.



8 Shingo Sato and Junji Shikata

In this paper, we introduce a definition of good items and defectives more
strictly by using a (binary) relation as follows. We define a relation3 R : X×Y →
{⊤,⊥} that takes data ∈ X and vrf ∈ Y, and then it evaluates ⊤ or ⊥. An
item (id, data) ∈ I is defined as a defective (resp., a good item), if we have
R(data, vrf) = ⊥ (resp., R(data, vrf) = ⊤) for the corresponding verification-
item (id, vrf) ∈ V.

3.4 Formal Model of AGT

An AGT protocol is defined as follows.

Definition 4 (Formal). An adaptive group testing (AGT) protocol is an inter-
active protocol between GS and IS with three polynomial-time algorithms4 (Coms,
Gsel, Test). ID = {id1, . . . , idn} is a set of IDs, I = {(id(1), data1), . . . , (id(n), datan)}
is a set of items, V = {(id(1), vrf1), . . . , (id(n), vrfn)} is a set of verification-items.

For a subset G ⊆ I, we define V(G) = {(id(i), vrfi) | i ∈ [n]∧(id(i), datai) ∈ G}.

– ({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)):
A group-selection algorithm Gsel is a deterministic algorithm by which a
group of IDs (i.e., a subset of ID) to be tested next is determined. At the s-
th stage, it takes as input a set J (s−1) ⊆ I which means defective candidates’
IDs, subsets G(s−1)

i ⊆ I (i = 1, 2, . . . , u(s−1)) which means the current group-
selection, and the current internal state ST (s−1). Then, it outputs subsets
G(s)

i ⊆ I (i = 1, 2, . . . , u(s)) and ST (s) which means next group-selection and
next internal state, respectively.

– com← Coms(G): A compression algorithm Coms is a deterministic algorithm
which takes as input a subset G ⊆ I, and it outputs a compressed item-data
com generated from the items G. Specifically, for G = {(id(i1), datai1), . . . , (id

(ij), dataij )},
a compressed item-data com of G is generated from datai1 , . . . , dataij .

– 1/0← Test(V(G), com): A testing algorithm Test is a deterministic algorithm
that takes as input a subset V(G) ⊆ V, and a compressed item-data com ∈
Z. It outputs 1 (negative) if there is no defective in items from which the
compressed item-data com is generated; and it outputs 0 (positive) if there is
a defective in items from which the compressed item-data com is generated.

An N -stage protocol AGT(I,V) = ⟨GS(I), IS(V)⟩ is expressed as follows: Set
s ← 1, u(0) = 1 and G(0)

1 ← ID, J (0) ← ID, ST (0) ← null. At the s-th stage
(s = 1, 2, . . . , N), GS(I) and IS(V) do the following:

GS(I): If s = 1, start from Step 2.
– Step 1: Receive (b(s−1)

1 , . . . , b
(s−1)

u(s−1)) ∈ {0, 1}u(s−1)
from IS, and set J (s−1) ←

J (s−2)\{(id, data) | i ∈ [u(s−1)] ∧ b
(s−1)
i = 1 ∧ (id, data) ∈ G(s−1)

i }.
3 A relation is given as a subset R ⊆ X × Y, but this is equivalent to the mapping

R : X ×Y → {⊤,⊥} by considering R(x, y) = ⊤ iff (x, y) ∈ R for all (x, y) ∈ X ×Y.
4 In a broader class of group testing, Coms and Test are not always given as algorithms,

and they might be given as medical, chemical, or physical experiments.
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GS IS

({G
(s)
i
}i∈[u(s)], ST

(s))

← Gsel(J (s−1), {G
(s−1)
i

}i∈[u(s−1)], ST
(s−1))

For each i ∈ [u(s)]:

com
(s)
i
← Coms(G

(s)
i

)

({G
(s)
i
}i∈[u(s)], ST

(s))

← Gsel(J (s−1), {G
(s−1)
i

}i∈[u(s−1)], ST
(s−1))

J (s) ← J (s−1) and for each i ∈ [u(s)]:

b
(s)
i
← Test(V(G

(s)
i

), com
(s)
i

)

J (s) ← J (s)\{id | id ∈ G
(s)
i
∧ b

(s)
i

= 1}

({G
(s+1)
i

}i∈[u(s+1)], ST
(s+1))

← Gsel(J (s), {G
(s)
i
}i∈[u(s)], ST

(s))

(com
(s)
i

)i∈[u(s)]

(b
(s)
i

)i∈[u(s)]

Fig. 3. Process of AGT protocols in the j-th stage

• If s > N or J (s−1) = ∅, then halt.
• Otherwise, move to Step 2.

– Step 2: ({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)).

– Step 3: ∀i ∈ [u(s)] : com
(s)
i ← Coms(G(s)

i ).
– Step 4: Send (com

(s)
1 , . . . , com

(s)

u(s)) to IS.
IS(V):
– Step 1: Receive (com

(s)
1 , . . . , com

(s)

u(s)) from GS.

– Step 2: ({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)).
– Step 3: Set J (s) ← J (s−1), and do the following for each i ∈ [u(s)]:

(3-1) b
(s)
i ← Test(V(G(s)

i ), com
(s)
i ).

(3-2) J (s) ← J (s)\{(id, data) | b(s)
i = 1 ∧ (id, data) ∈ G(s)

i }.
– Step 4: Send (b(s)

1 , . . . , b
(s)

u(s)) to GS. If s = N or J (s) = ∅, then output
J ← J (s).

The above process in the s-th stage is shown in Fig. 3.
For an AGT protocol, we define two notions, correctness and detection-completeness

as follows.

Definition 5 (Correctness). An AGT protocol AGT with (Coms, Test, Gsel)
meets correctness, if it meets the following conditions:

– For any subset G ⊆ I such that R(data, vrf) = ⊤ for every (id, data, vrf)
with (id, data) ∈ G and (id, vrf) ∈ V(G), we have Test(V(G), com) = 1, where
com← Coms(G).

– Suppose R(data, vrf) = ⊤ for every (id, data, vrf) with (id, data) ∈ I and
(id, vrf) ∈ V. Then, we have AGT(I,V) = ∅ if GS and IS correctly follow the
protocol AGT.
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In Definition 5, the first notion requires correctness of Test and Coms in AGT;
and the second notion refers to the case where all items are good. However, we
need to define a reasonable condition on the output by AGT even for the case
where there is a defective. Therefore, we formalize two notions, GT-completeness
and GT-soundness that guarantee the correctness of the output of AGT. Let
D = {(id(i), datai) | i ∈ [n] ∧ R(datai, vrfi) = ⊥} be the set consisting of all
defectives. Then, we define:

Definition 6 (GT-completeness). Suppose that GS and IS correctly follow the
protocol AGT. Then, AGT with (Coms,Test, Gsel) meets GT-completeness if, for
J ← AGT(I,V), we have D̄ ⊆ J̄ with overwhelming probability, where D̄ = I \D
and J̄ = I \ J .

Definition 7 (GT-soundness). Suppose that GS and IS correctly follow the
protocol AGT. Then, AGT with (Coms,Test, Gsel) meets GT-soundness if, for
J ← AGT(I,V), we have D ⊆ J with overwhelming probability.

Intuitively, GT-completeness means that (truly) good items are regarded as
good items by the group testing, and GT-soundness means that (true) defectives
are regarded as defectives by the group testing. In the context of testing, the
terms of false positive and false negative are often used. In terms of the notions
of GT-completeness and GT-soundness, GT-completeness implies that there is
no false negative items except for negligible errors, and GT-soundness implies
that there is no false positive items except for negligible errors.

3.5 Instantiations of AGT

We can describe several interesting AGT protocols along with our model such
as the binary search [2], rake-and-winnow algorithm [3], Li’s s-stage algorithm
[7], and digging algorithm [2]. This implies reasonability of our modeling of
AGT protocols. Specifically, we represent these AGT protocols by describing
the corresponding algorithm Gsel in the following, where for simplicity we write
only IDs to specify items.
Binary search. The AGT protocol based on binary search (see also the bisecting
algorithm in [2]), which is a (log n + 1)-stage AGT protocol, is expressed by
applying the following Gsel algorithm at the s-th stage.

({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)):

– Step 1: If s = 1, output G(1)
1 ← G(0)

1 and ST (1) ← ST (0). Otherwise, move
to Step 2.

– Step 2: Do the following:
2-1: Set X ← ∅ and ST (s) ← ST (s−1).
2-2: For all G(s−1)

i = {id(s−1)
1 , . . . , id

(s−1)
k } such that G(s−1)

i ⊆ J (s−1),
X ← X ∪ {{id(s−1)

1 , . . . , id
(s−1)
⌊k/2⌋}, {id

(s−1)
⌊k/2⌋+1, . . ., id

(s−1)
k }}.

– Step 3: Output {G(s)
1 , . . . ,G(s)

u(s)} ← X and ST (s).



IAMD from Adaptive Group Testing 11

Rake-and-winnow algorithm. We describe the 2-stage algorithm of [3], which
is called the rake-and-winnow algorithm. Suppose that there are at most d de-
fectives in n items. Then, this algorithm uses a (d, λ)-resolvable matrix M ∈
{0, 1}2t×n (see [3]), where t is a parameter related to the number of tests. Let
C be the set consisting of columns of M , and M satisfies the condition that, for
any subset D(⊆ C) having cardinality d, there are fewer than λ columns in C\D
that are not distinguishable from D.

We can represent the rake-and-winnow algorithm having 2 stages in our
model of AGT, and Gsel algorithm at the s-th stage (s = 1, 2) is given as follows,
where u(1) = 2t and u(2) = d + λ.

({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)):

– Step 1: Do the following. ST (s) ← ST (s−1).
• If s = 1, G(1)

i ← {id(ℓ) | ℓ ∈ [n] ∧Mi,ℓ = 1} for all i ∈ [2t].
• If s = 2, G(2)

i ← {id}(id,·)∈J(1) .
– Step 2: Output {G(s)

1 , . . . ,G(s)

u(s)} and ST (s).

Li’s algorithm. We describe Li’s N -stage algorithm [7] as follows. At the first
stage, n items are divided into u(1) groups consisting k(1) items. Each group
is tested, and groups consisting of good items are removed. Items in groups
including defectives are pooled together and arbitrarily divided into u(2) groups
of k(2) items at the second stage. At the s-th stage (2 ≤ s ≤ N), items from the
contaminated groups at the (s − 1)-th stage are pooled and arbitrarily divided
into u(s) groups of k(s) items, and a test is performed on each group. k(N) is set
to be 1.

In Li’s algorithm, the following parameters need to be set: the number N
of stages to detect all defectives so that the number of tests would be smallest,
the number u(s) of groups at the s-th stage (1 ≤ s ≤ N), and the number k(s)

of items in a group at the s-th stage. In particular, in the case of N = log n
d ,

u(s) ≤ d(n/d)1/N and k(s) = (n/d)(N−s)/N , the number of tests is smallest. With
the parameters above, Gsel algorithm at the s-th stage is given as follows.

({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)):

– Step 1: Suppose J (s−1) = {id1, . . . , idℓ}. Then, G(s)
1 ← {id1, . . . , idk(s)},

G(s)
2 ← {idk(s)+1, . . ., id2k(s)}, . . ., G(s)

u(s) ← {idℓ−k(s)+1, . . . , idℓ}
– Step 2: ST (s) ← ST (s−1).
– Step 3: Output {G(s)

1 , . . . ,G(s)

u(s)} and ST (s).

Digging algorithm. We can view the digging algorithm as a variant of binary
search (see Section 4.6 of [2]). Informally, the process in the algorithm is per-
formed as follows. Let Q(= ST (s)) be a queue of sets of defective candidates. It
pops a set X from Q and replies the following: If X is a set consisting of good
items or a defective in X was detected, pop a frontier set X from Q again. If X is
a set including a defective, divide X into two disjoint sets to specify a defective
in X in the same way as the binary search algorithm.
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Fig. 4. An example of tested items

In the digging algorithm, Gsel algorithm using the subroutine DIG is con-
structed as follows, where we set J (0) ← ID, G(0)

1 ← ID, G(0)
2 ← ∅, and

ST (0) ← ∅.

({G(s)
1 ,G(s)

2 }, ST (s))← Gsel(J (s−1), {G(s−1)
1 ,G(s−1)

2 }, ST (s−1)):

– Step 1: Generate two sets X1, X2 and update ST (s−1) as follows.

1. If G(s−1)
2 ⊆ J (s−1) and |G(s−1)

2 | > 1, set ST (s−1) ← ST (s−1) ∪ {G(s−1)
2 }.

2. If G(s−1)
1 ̸⊆ J (s−1) or (|G(s−1)

1 | = 1 ∧ |G(s−1)
2 | = 1), do the following.

• If ST (s−1) ̸= ∅, pop a set X from ST (s−1). If ST (s−1) = ∅, set
X1 ← ∅ and X2 ← ∅, and move to Step 2.
• (X1, X2)← DIG(X).

3. If G(s−1)
1 ⊆ J (s−1), (X1, X2)← DIG(G(s−1)

1 ).

– Step 2: Set G(s)
1 ← X1, G(s)

2 ← X2, and ST (s) ← ST (s−1). Output ({G(s)
1 ,G(s)

2 }, ST (s)).

(X1, X2)← DIG(X):

1. For X = {id1, . . . , idk}, set X1 ← {id1, . . . , id⌊k/2⌋} and X2 ← {id⌊k/2⌋+1, . . . , idk}.
2. Output (X1, X2).

For example, we consider the case n = 8 and assume that IDs of defectives
are 3 and 6. Then, the process of the digging algorithm is shown as follows (see
also Fig. 4).

- G(1)
1 = {1, . . . , 8}, G(1)

2 = ST (1) = ∅, J(1) = {1, . . . , 8}.
- G(2)

1 = {1, 2, 3, 4}, G(2)
2 = {5, 6, 7, 8}, ST (2) = ∅, J (2) = {1, . . . , 8}.

- G(3)
1 = {1, 2}, G(3)

2 = {3, 4}, ST (3) = {{5, 6, 7, 8}}, J(3) = {3, 4, . . . , 8}.
- G(4)

1 = {3}, G(4)
2 = {4}, ST (4) = {{5, 6, 7, 8}}, J(4) = {3, 5, 6, 7, 8}.

- G(5)
1 = {5, 6}, G(5)

2 = {7, 8}, ST (5) = ∅, J(5) = {3, 5, 6}.
- G(6)

1 = {5}, G(6)
2 = {6}, ST (6) = ∅, J (6) = {3, 6}.
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4 Interactive AMAC with Detecting Functionality:
Model and Security

We introduce a formal model and security definition of interactive aggregate
MACs with detecting functionality (IAMD for short).

The overview of IAMD is shown in Fig. 2 and explained as follows: Suppose
that a MAC scheme is given. Each sender with an ID idi (i ∈ [n]) generates a
tag τi on his local message mi by using Tag, and sends the pair (mi, τi) to Aggre-
gator. In order to specify all the invalid pairs of IDs and messages, Aggregator
and Verifier repeat the following process in a similar way as AGT protocols: Ag-
gregator selects a subset of pairs of IDs and messages, and generates a tuple of
aggregate tags from the multiple tags of the selected pairs of IDs and messages;
On receiving a set of pairs of IDs and messages and the tuple of aggregate tags,
Verifier checks whether there is an invalid pair of an ID and a message by using
aggregate tags; Through a feedback channel which is an authenticated channel
with low bandwidth, Verifier transmits the verification result to Aggregator.
Finally, Verifier outputs a list that specifies invalid pairs of IDs and messages.

Formally, an IAMD is an interactive protocol between GTAgg and GTVrfy
with three polynomial algorithms (KGen, Tag, Vrfy) and two more algorithms
(Agg, Gsel) as follows. For a security parameter λ, n = poly(λ) is the number of
Senders, ID = {id1, . . . , idn} is a set of IDs, K = K(λ) is a key space,M =M(λ)
is a message space, T = T (λ) is a tag space, and TAgg = TAgg(λ) is an aggregate-
tag space:

Key Generation A randomized algorithm KGen takes as input a security pa-
rameter 1λ and an ID id, and it outputs a secret key kid ∈ K corresponding
to the ID id.

Tagging A deterministic or randomized algorithm Tag takes as input a secret
key kid ∈ K and a message m ∈M, and it outputs a tag τ ∈ T .

Aggregation A deterministic or randomized algorithm Agg takes as input a set
{(id(1), τ1), . . . , (id(na), τna)} of distinct pairs of IDs and tags, where na ≤ n,
and it outputs an aggregate tag T ∈ TAgg.

Verification A deterministic algorithm Vrfy takes as input a set {kidi}i∈[n] of
secret keys, a set M = {(id(1), m1), . . . , (id(na), mna)} of pairs of IDs and
messages, (where (id(i), mi) ̸= (id(j),mj) for all distinct i, j ∈ [na]), and an
aggregate tag T , and it outputs 1 (accept) or 0 (reject).

Group Selection A deterministic algorithm Gsel takes as input a set J (s−1) ⊆
IM = {(id(1), m1), . . . , (id(na), mna

)} which is a list of candidates of invalid
pairs of IDs and messages, subsets G(s−1)

i ⊆ IM for i = 1, 2, . . . , u(s−1)

that are the current group-selection, and the current internal state ST (s−1).
Then, it outputs subsets G(s)

i ⊆ IM for i = 1, 2, . . . , u(s) and ST (s) that are
next group-selection and next internal state, respectively.

We require that the above algorithms (KGen, Tag, Vrfy) is to be the same as the
traditional message authentication code (MAC). Let IMT = {(id(1), m1, τ1), . . .,
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(id(n),mn, τn)}, IMK = {(id(1), m1, kid(1)), . . . , (id(n), mn, kid(n))}, and IM =
{(id(1), m1), . . . , (id(n), mn)}.

An N -stage IAMD scheme IAMD = ⟨GTAgg(·), GTVrfy(·)⟩ with input IMT
and IMK respectively is expressed as follows: Set s ← 1, J (0) ← IM, and
G(0)

1 ← IM. At the s-th stage, GTAgg and GTVrfy do the following:

– GTAgg(IMT ) : If s = 1, go to Step 2.
• Step 1: Receive (b(s−1)

1 , . . . , b
(s−1)

u(s−1)) ∈ {0, 1}u(s−1)
from GTVrfy, and set

J (s−1) ← J (s−2)\{(id, data) | i ∈ [u(s−1)] ∧ b
(s)
i = 1 ∧ (id, data) ∈ G(s)

i }.
∗ If s > N or J (s−1) = ∅, then halt.
∗ Otherwise, go to Step 2.

• Step 2:({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)).
• Step 3: ∀i ∈ [u(s)], T

(s)
i ← Agg({(id(j), τj)}(id(j),mj)∈G(s)

i

).

• Step 4: Send (T (s)
1 , . . . , T

(s)

u(s)) to GTVrfy.
– GTVrfy(IMK) :
• Step 1: Receive (T (s)

1 , . . . , T
(s)

u(s)) from GTAgg.
• Step 2: ({G(s)

1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)).
• Step 3: Set J (s) ← J (s−1), and do the following for each i ∈ [u(s)]:

(3-1) b
(s)
i ← Vrfy({kidi}i∈[n],G

(s)
i , T

(s)
i ).

(3-2) J (s) ← J (s)\{(id, m) | (id,m) ∈ G(s)
i ∧ b

(s)
i = 1}.

• Step 4: Send (b(s)
1 , . . . , b

(s)

u(s)) to GTAgg. If s = N or J (s) = ∅, then output
J ← J (s).

We require that IAMD schemes satisfy correctness.

Definition 8 (Correctness). An IAMD scheme IAMD = ⟨GTAgg(·), GTVrfy(·)⟩
with (KGen, Tag, Vrfy, Gsel, Agg), meets correctness if the following holds:

– For all k ← KGen(1λ), and all m ∈ M, we have Vrfy(k, m, τ) = 1, where
τ ← Tag(k, m).

– It holds that ⟨GTAgg(IMT ), GTVrfy(IMK)⟩ = ∅ if Aggregator and Verifier
follow the protocol.

As security of IAMD, we define unforgeability and identifiability in the follow-
ing way.

Definition 9 (Unforgeability). An IAMD scheme IAMD = ⟨GTAgg(·), GTVrfy(·)⟩
with (KGen, Tag, Vrfy, Gsel, Agg), meets unforgeability if for any PPT adversary
A against IAMD, the advantage Advuf

IAMD,A(λ) := Pr[Exptuf(A) → 1] is negligible
in λ, where the experiment Exptuf(A) is defined as follows:

Setup: ∀i ∈ [n], kidi ← KGen(1λ, idi), LTag ← ∅, LCorr ← ∅, win← 0.
Oracle Access: A is allowed to access the following oracles:

– OTag(id,m): Given a pair (id, m) ∈ ID ×M of an ID and a message,
the tagging oracle OTag returns τ ← Tag(kid, m) and sets LTag ← LTag ∪
{(id, m)}.
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– OCorr(id): Given an ID id ∈ ID, the corruption oracle OCorr returns the
corresponding kid and sets LCorr ← LCorr ∪ {id}.

– OGTD({(id(1), m1, τ1), . . . , (id(n), mn, τn)}): Given a set {(id(1),m1, τ1), . . .,
(id(n), mn, τn)} of triplets of an ID, a message, and a tag, the group test-
ing detection oracle OGTD returns J ← ⟨GTAgg(IMT ), GTVrfy(IMK)⟩.
It sets win← 1 if there exists z ∈ [n] such that (id(z), mz) /∈ J , (id(z), mz) /∈
LTag and id(z) /∈ LCorr.

Output: Output 1 if win = 1, and output 0 otherwise.

We next define identifiability consisting of two notions, completeness and
soundness. Informally, completeness is security against an adversary who tries to
make Verifier regard a valid pair of a message and a tag as invalid, while sound-
ness is security against an adversary who tries to make Verifier regard an invalid
pair as valid. We formalize the notion of identifiability for IAMD as follows.

Definition 10 (Identifiability). An IAMD scheme IAMD = ⟨GTAgg(·), GTVrfy(·)⟩
with (KGen, Tag, Vrfy, Gsel, Agg), meets ident-completeness (resp. ident-soundness)
if for any PPT adversary A against IAMD, the advantage Advident-c

IAMD,A(λ) :=
Pr[Exptident-c(A) → 1] (resp. Advident-s

IAMD,A(λ) := Pr[Exptident-s(A) → 1]) is neg-
ligible in λ, where the experiments Exptident-c(A) and Exptident-s(A) are defined
as follows:

Setup: ∀i ∈ [n], kidi ← KGen(1λ, idi). LTag ← ∅, LCorr ← ∅.
Oracle Access: A is allowed to access the following oracles:

– OTag(id,m): Given a pair (id, m) ∈ ID ×M of an ID and a message,
the tagging oracle OTag returns τ ← Tag(kid, m) and sets LTag ← LTag ∪
{(id, m)}.

– OCorr(id): Given an ID id ∈ ID, the corruption oracle OCorr returns the
corresponding kid and sets LCorr ← LCorr ∪ {id}.

– OGTD({(id(1), m1, τ1), . . . , (id(n), mn, τn)}): Given a set {(id(1),m1, τ1), . . .,
(id(n), mn, τn)} of triplets of an ID, a message, and a tag, the group test-
ing detection oracle OGTD returns J ← ⟨GTAgg(IMT ), GTVrfy(IMK)⟩.

Output: The experiment Exptident-c(A) of ident-completeness or the experiment
Exptident-s(A) of ident-soundness outputs b ∈ {0, 1} in the following way:

– Completeness. Exptident-c(A) outputs 1 if a query {(id(1), m1, τ1), . . . , (id(n), mn, τn)}
issued to OGTD meets J ∩ {(id(i), mi) | i ∈ [n] ∧ Vrfy(kid(i) , mi, τi) = 1} ̸= ∅.
It outputs 0 otherwise.

– Soundness. Exptident-s(A) outputs 1 if a query {(id(1), m1, τ1), . . . , (id(n), mn, τn)}
issued to OGTD meets {(id(i), mi) | i ∈ [n] ∧ Vrfy(kid(i) , mi, τi) = 0}\J ̸= ∅. It
outputs 0 otherwise.

We claim that even if an IAMD scheme does not meet ident-soundness,
it may be useful in terms of the unforgeability of messages. From this view-
point, we define ident-weak-soundness which is a slightly weaker security no-
tion than soundness. This definition is the same as ident-soundness except that
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the ident-weak-soundness experiment Exptident-ws(A) outputs 1 if A submits a
query {(id(i), mi, τi)}i∈[n] such that {(id(i),mi) | i ∈ [n] ∧ Vrfy(kid(i) ,mi, τi) =
0 ∧ (id(i), mi) /∈ LTag ∧ id(i) /∈ LCorr}\J ̸= ∅.

As the relation between unforgeability and ident-weak-soundness, we show the
following:

Proposition 1. If IAMD meets unforgeability, it also meets ident-weak-soundness.

Proof. Let A be a PPT adversary which breaks ident-weak-soundness of IAMD.
By using A, we construct a PPT algorithm F breaking the unforgeability of IAMD
as follows: It is given the oracles O ′

Tag, O ′
Corr, and O ′

GTD in the unforgeability
game. F sets lists LTag ← ∅ and LCorr ← ∅. It simulates the oracles in the ident-
weak-soundness game in the following way:

– OTag(id, m): Return a tag τ ← O ′
Tag(id, m) and set LTag ← LTag ∪ {(id,m)}.

– OCorr(id): Return the corresponding key kid ← O ′
Corr(id) and set LCorr ←

LCorr ∪ {id}.
– OGTD({(id(1), m1, τ1), . . . , (id(n), mn, τn)}): Return J ← O ′

GTD({(id(1), m1, τ1),
. . . , (id(n), mn, τn)}). If {(id(i), mi) | i ∈ [n] ∧ Vrfy(kid(i) , mi, τi) = 0 ∧ id(i) /∈
LCorr ∧ (id(i), mi) /∈ LTag}\J ̸= ∅ holds, then output 1 and halt.

Finally, when A halts, F outputs 0 and halts.
If A issues a query {(id(1), m1, τ1), . . . , (id(n), mn, τn)} to OGTD, such that

{(id(i), mi) | i ∈ [n]∧Vrfy(kid(i) , mi, τi) = 0∧(id(i), mi) /∈ LTag∧ id(i) /∈ LCorr}\J ̸=
∅, then, there exists z ∈ [n] such that (id(z), mz) /∈ J , (id(z), mz) /∈ LTag, and
id(z) /∈ LCorr, clearly. Thus, such a query is a valid forgery in the unforgeability
game, and we have Advident-ws

IAMD,A (λ) ≤ Advuf
IAMD,F(λ). ⊓⊔

5 Interactive AMAC with Detecting Functionality:
Constructions

In this section, we propose a generic construction of IAMD starting from any
aggregate MAC and any AGT protocol, and show several concrete constructions
of IAMD by applying instantiations of AGT protocols. Furthermore, we compare
constructions of IAMD in terms of total amount of tag-size, number of stages,
and security levels.

5.1 GIAMD: Generic Construction of IAMD

We propose a generic construction of IAMD starting from any aggregate MAC
and any AGT protocol. That is, we use an aggregate MAC AMAC = (AMAC.KGen,
AMAC.Tag, AMAC.Agg, AMAC.Vrfy) and an AGT protocol AGT = ⟨GS(·), IS(·)⟩
with (AGT.Coms, AGT.Test, AGT.Gsel). Our generic construction GIAMD =
⟨GTAgg(·), GTVrfy(·)⟩ with (KGen, Tag, Agg, Vrfy, Gsel) is given as follows:

– kid ← KGen(1λ, id): Output kid ← AMAC.KGen(1λ, id).
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– τ ← Tag(kid,m): Output τ ← AMAC.Tag(kid, m).
– T ← Agg({(id(1), τ1), . . . , (id(na), τna)}): Output T ← AMAC.Agg({(id(1), τ1), . . .,

(id(na), τna)}).
– 1/0← Vrfy({kidi

}i∈[n], M, T ): Output 1/0← AMAC.Vrfy({kidi}i∈[n],M, T ).
– ({G(s)

1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)):

Output ({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← AGT.Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)).
– J ← ⟨GTAgg(IMT ), GTVrfy(IMK)⟩, where IMT = {(id(1), m1, τ1), . . .,

(id(n), mn, τn)} and IMK = {(id(1), m1, kid(1)), . . . , (id(n),mn, kid(n))}:
1. GTAgg(IMT ) and GTVrfy(IMK) run GS(IMT ) and IS(IMK), respec-

tively 5.
2. Output J ← ⟨GS(IMT ), IS(IMK)⟩.

We next show the security of GIAMD as follows.

Theorem 1. If AMAC meets unforgeability, and AGT meets GT-soundness, then
GIAMD also satisfies unforgeability.

Proof. Let A be a PPT adversary against GIAMD. We classify adversaries which
break unforgeability as follows: an adversary which breaks the unforgeability of
GIAMD without generating any forgery of AMAC, and an adversary which breaks
the unforgeability of AMAC.

First, we consider the case where A is an adversary which does not generate
any forgery of AMAC. Let D = {(id(i),mi) | i ∈ [n]∧Fk

id(i) (mi) ̸= τi}. If A submits

a query {(id(1), m1, τ1), . . . , (id(n),mn, τn)} to OGTD, such that there exists z ∈ [n]
such that (id(z),mz) /∈ J , (id(z), mz) /∈ LTag and id(z) /∈ LCorr, then (id(z), mz) ∈ D
holds since Fk

id(z) (mz) ̸= τz holds under the assumption that the adversary
does not generate any forgery of AMAC. Thus, we have D ̸⊆ J . However, the
probability that this case occurs is negligible due to GT-soundness.

Next, we consider the case in which A is an adversary breaking the unforgeability
of AMAC. We construct the following PPT algorithm F against AMAC: F is
given oracles O ′

Tag, O ′
Corr, and O ′

Vrfy in the security game of AMAC. By using
these oracles, it simulates OTag, OCorr, and OGTD in the game of GIAMD in the
straightforward way.

If A issues a query {(id(1), m1, τ1), . . . , (id(n), mn, τn)} to OGTD, such that
there exists z ∈ [n] meeting (id(z), mz) /∈ J , (id(z), mz) /∈ LTag, and id(z) /∈ LCorr,
then there exists a pair (s, i) ∈ [N ]× [u(s)] of indexes, such that (id(z),mz) ∈ G(s)

i

and O′
Vrfy(G

(s)
i , T

(s)
i ) returns 1 due to (id(z), mz) /∈ J . Thus, the issued query

(G(s)
i , T

(s)
i ) meets the winning condition of the security game of AMAC. Then, F

wins in the unforgeability game of AMAC.
From the above discussion, we obtain Advuf

IAMD,A(λ) ≤ Advuf
AMAC,F(λ)+negl(λ).

⊓⊔

Theorem 2. For identifiability of GIAMD, we have the following.
5 Instead of AGT.Coms(·), GTAgg runs AMAC.Agg(·), and instead of AGT.Test(·, ·),

GTVrfy runs Vrfy({kidi}i∈[n], ·, ·).
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(i) If AGT meets GT-completeness, GIAMD satisfies ident-completeness.
(ii) If AMAC meets unforgeability, GIAMD satisfies ident-weak-soundness.

Proof. Let A be a PPT adversary against GIAMD.
(i): We show that GIAMD satisfies the ident-completeness of GIAMD. We as-
sume that A submits a query {(id(1), m1, τ1), . . . , (id(n), mn, τn)} breaking ident-
completeness, to OGTD oracle. Let D = {(id(i),mi) | i ∈ [n] ∧ Vrfy(kid(i) , mi, τi) =
0}, D̄ = IM\D, and J̄ = IM\J . There exits a query {(id(i), mi, τi)}i∈[n] to
OGTD oracle such that J ∩ {(id(i), mi) | i ∈ [n] ∧ Vrfy(kid(i) , mi, τi) = 1} ≠ ∅ (i.e.,
J ∩ D̄ ̸= ∅), where J ← ⟨GTAgg(IMT ), GTVrfy(IMK)⟩. Then, we have D̄ ̸⊆ J̄

since there exists a pair (id(v), mv) ∈ J ∩ D̄ (where v ∈ [n]), and this pair is in
D̄ but not in J̄ . However, this event does not occur due to the GT-completeness
of AGT. Hence, we have Advcomplete

GIAMD,A(λ) ≤ negl(λ).
(ii): By combining Proposition 1 and Theorem 1, it is shown that GIAMD satisfies
ident-weak-soundness, and we have Advident-ws

GIAMD,A(λ) ≤ Advuf
AMAC,F(λ) + negl(λ).

From the above discussion, the proof is completed. ⊓⊔

5.2 Constructions of IAMD

We provide several concrete constructions of IAMD by specifying AMAC and
AGT. As instantiation of AMAC for constructing IAMD, we consider XOR-
based and hash-based constructions in this section.

XOR-based Construction We construct an IAMD scheme by using a MAC
function F : K ×M → T and an N -stage AGT protocol AGT = ⟨GS(·), IS(·)⟩
with (AGT.Gsel, AGT.Coms, AGT.Test). The aggregation is computing bit-wise
XOR for MAC tags, in the same way as [6].

Our construction XIAMD = ⟨GTAgg(·), GTVrfy(·)⟩ with (KGen, Tag, Agg,
Vrfy, Gsel), is given as follows:

– kid ← KGen(1λ, id): For each id, select a secret key k
U← K uniformly at

random and output kid = (id, k).
– τ ← Tag(kid,m): For a secret key kid = (id, k) and a message m sent from id,

output a tag τ = Fk(m).
– T ← Agg({(id(1), τ1), . . . , (id(na), τna)}): Output an aggregate tag T ← τ1 ⊕
· · · ⊕ τna .

– 1/0 ← Vrfy({kidi}i∈[n],M, T ): For M = {(id(1), m1), . . . , (id(n), mna)}, com-
pute T̃ ← Fk

id(1)
(m1)⊕ · · · ⊕ Fk

id(na) (mna). Output 1 if T = T̃ , and output 0
otherwise.

– ({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)):

Output ({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← AGT.Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)).
– J ← ⟨GTAgg(IMT ), GTVrfy(IMK)⟩, where IMT = {(id(1), m1, τ1), . . .,

(id(n), mn, τn)} and IMK = {(id(1), m1, kid(1)), . . . , (id(n),mn, kid(n))}:
1. GTAgg(IMT ) and GTVrfy(IMK) run GS(IMT ) and IS(IMK), respec-

tively.
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2. Output the list J generated by ⟨GS(IMT ), IS(IMK)⟩, in the same way
as GIAMD in Section 5.1.

We next show security of XIAMD as follows.

Theorem 3. If a MAC function F meets unforgeability, and AGT meets GT-
soundness, then XIAMD satisfies unforgeability. For identifiability, we have the
following results:

– If AGT meets GT-completeness, XIAMD satisfies ident-completeness.
– If AGT meets GT-soundness, and F meets unforgeability, then XIAMD sat-

isfies ident-weak-soundness, however, does not satisfy ident-soundness.

Proof. By combining Theorem 1 in [6] and Theorem 1 in this paper, XIAMD
meets unforgeability. Namely, for any PPT adversary against XIAMD, there ex-
ists a PPT algorithm F against the underlying MAC function F such that
Advuf

XIAMD,A(λ) ≤ n · Advuf
F,F(λ) + negl(λ).

XIAMD also satisfies ident-completeness and ident-weak-soundness by Theorem
2. However, it does not meet the soundness, since we can construct an adversary
B breaking the security as follows: It submits queries (id1, m1), . . . , (idn, mn)
to OTag and receives the corresponding responses τ1, . . . , τn. It computes τ∗

1 ←
τ1⊕1 and τ∗

2 ← τ2⊕1, and it outputs {(id1, m1, τ
∗
1 ), (id2, m2, τ

∗
2 ), (id3, m3, τ3), . . .,

(idn, mn, τn)}. The output of B breaks ident-soundness since τ1 ⊕ τ2 = τ∗
1 ⊕ τ∗

2

and (τ1, τ2) ̸= (τ∗
1 , τ∗

2 ) hold. Therefore, the proof is completed. ⊓⊔

Hash-based Construction We construct an IAMD scheme in the random
oracle model. The aggregation of this scheme uses a random oracle, and this is
based on the aggregate MAC scheme using hashing in [4].

We use a MAC function F : K × M → T , an N -stage AGT protocol
AGT = ⟨GS(·), IS(·)⟩ with (AGT.Gsel, AGT.Coms, AGT.Test), and a hash func-
tion that is modeled as a random oracle H : T n → TAgg, where T n is a domain
and TAgg is a range. The construction HIAMD = ⟨GTAgg(·),GTVrfy(·)⟩ with
(KGen, Tag, Agg, Vrfy,Gsel) is given as follows:

– kid ← KGen(1λ, id): For each id, select a secret key k
U← K uniformly at

random and output kid = (id, k).
– τ ← Tag(kid,m): For a secret key kid = (id, k) and a message m sent from id,

output a tag τ = Fk(m).
– T ← Agg({(id(1), τ1), . . . , (id(na), τna)}): Output an aggregate tag T ← H(τ1 ∥
· · · ∥ τna).

– 1/0← Vrfy({kidi}i∈[n],M, T ): For M = {(id(1), m1), . . . , (id(na), mna)}, com-
pute T̃ ← H(Fk

id(1)
(m1) ∥ . . . ∥ Fk

id(na) (mna)). Output 1 if T = T̃ , and
output 0 otherwise.

– ({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)):

Output ({G(s)
1 , . . . ,G(s)

u(s)}, ST (s))← AGT.Gsel(J (s−1), {G(s−1)
1 , . . . ,G(s−1)

u(s−1)}, ST (s−1)).



20 Shingo Sato and Junji Shikata

– J ← ⟨GTAgg(IMT ), GTVrfy(IMK)⟩, where
IMT = {(id(i), mi, τi)}i∈[n] and IMK = {(id(i), kidi , mi)}i∈[n]:
1. GTAgg(IMT ) and GTVrfy(IMK) run GS(IMT ) and IS(IMK), respec-

tively.
2. Output the list J generated by ⟨GS(IMT ), IS(IMK)⟩, in the same way

as GIAMD in Section 5.1.

We have the following results for security of HIAMD.

Theorem 4. If a MAC function F meets unforgeability, and AGT meets GT-
soundness, then HIAMD satisfies unforgeability. In addition, HIAMD fulfills the
following identifiablity:

– If AGT meets GT-completeness, HIAMD satisfies ident-completeness in the
random oracle model.

– If AGT meets GT-soundness, HIAMD satisfies ident-soundness in the random
oracle model.

Proof. Let |τ | be the bit-length of aggregate-tags, qh be the number of queries
submitted to the random oracle H, and qg be the number of queries submitted
to OGTD.

First, we show that HIAMD satisfies unforgeability. By Theorem 1, it is suffi-
cient to prove that the tuple AMACH = (KGen, Tag, Agg, Vrfy) of algorithms is
an aggregate MAC with unforgeability. Let A be a PPT adversary breaking the
unforgeability of this aggregate MAC AMACH .

Let Coll be the event that A finds a collision of the random oracle H, and
Forge be the event that A issues a query to OGTD, such that win = 1 in the
unforgeability game. Then, we have

Advuf
AMACH ,A(λ) ≤ Pr[Coll] + Pr[Forge ∧ ¬Coll].

Pr[Coll] ≤ (qh + N · qg)2/2|τ |+1 holds since the number of accessing H is
at most (qh + N · qg). We consider the event [Forge ∧ ¬Coll]. Then, it is shown
that there exists a PPT algorithm F against F , in the same way as the proof of
Theorem 4 in [4]. Besides, the probability that A issues a valid verification query
without issuing queries to H is at most N · qg/2|τ |. Hence, we have Pr[Forge ∧
¬Coll] ≤ n ·Advuf

F,F(λ) + N · qg/2|τ |. Then, we obtain the following advantage for
HIAMD:

Advuf
HIAMD,A(λ) ≤ n · Advuf

F,F(λ) +
N · qg

2|τ |
+

(qh + N · qg)2

2|τ |+1
+ negl(λ),

and HIAMD satisfies unforgeability by Theorem 1 in this paper.
Regarding the identifiability of HIAMD, ident-completeness of AGT is shown by

Theorem 2. We show that it fulfills ident-soundness in the random oracle model.
We classify adversaries that break ident-soundness as follows: an adversary that
breaks ident-soundness without finding any collision of the random oracle H,
and an adversary that finds a collision of H. First, we consider the case in
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which an adversary breaks ident-soundness without finding any collision of H.
Let D = {(id(i), mi) | i ∈ [n] ∧ Fk

id(i) (mi) ̸= τi}. If A wins in the ident-soundness

game, there exists a query {(id(1),m1, τ1), . . . , (id(n),mn, τn)} issued to OGTD,
such that D\J ̸= ∅. Then, there exists a pair (id(z), mz) (where z ∈ [n]) which
is in D but not in J . Thus, D ̸⊆ J holds under the assumption that A does not
find any collision of H. However, the probability that A submits such a query is
negligible, due to the GT-soundness of AGT. Next, we consider the case in which
A finds a collision of H. If A submits a query {(id(1),m1, τ1), . . . , (id(n), mn, τn)}
to OGTD, such that D\J ̸= ∅, then there exists a pair (id(z),mz) ∈ D\J (where
z ∈ [n]). In this case, there exists a pair (s, i) ∈ [N ]× [u(s)] of indexes, such that
(id(z), mz) ∈ G(s)

i and Vrfy({kidi}i∈[n],G
(s)
i , T

(s)
i ) = 1 (i.e., H(τσ1∥ · · · ∥τσk

) =
H(Fk

id(σ1) (mσ1)∥ · · · ∥Fk
id(σk) (mσk

)) holds for G(s)
i = {(id(σ1), mσ1), . . . , (id

(σk),mσk
)}

and σ1, . . . , σk ∈ [n]), due to (id(z), mz) /∈ J . The pair of (τσ1∥ · · · ∥τσk
) and

(Fk
id(σ1) (mσ1)∥ · · · ∥Fk

id(σk) (mσk
)) is a collision of H since τz ̸= Fk

id(z) (mz) holds

owing to (id(z), mz) ∈ D. Besides, the number of accessing H is (qh + N · qg).
Hence, the probability that A finds a collision is at most (qh + N · qg)2/2|τ |+1,
and we have the following advantage

Advident-s
HIAMD,A(λ) ≤ (qh + N · qg)2

2|τ |+1
+ negl(λ).

From the above discussion, the proof is completed. ⊓⊔

5.3 Comparison of IAMD Constructions

We consider several concrete constructions of IAMD obtained by applying the
following AMACs and AGT protocols: we apply XOR-based AMAC and hash-
based AMAC; and we apply the binary search algorithm [2], rake-and-winnow
algorithm [3], Li’s s-stage algorithm [7], and digging algorithm [2].

Table 1. Concrete Constructions of IAMD

Construction Underlying AMAC Underlying AGT

XIAMDBIN XOR-based AMAC Binary search

XIAMDRAW XOR-based AMAC Rake-and-winnow algorithm

XIAMDLi XOR-based AMAC Li’s s-stage algorithm

XIAMDDIG XOR-based AMAC Digging algorithm

HIAMDBIN Hash-based AMAC Binary search

HIAMDRAW Hash-based AMAC Rake-and-winnow algorithm

HIAMDLi Hash-based AMAC Li’s s-stage algorithm

HIAMDDIG Hash-based AMAC Digging algorithm

As a result, we obtain eight IAMD constructions and these constructions are
summarized in Table 1. We have selected the above AGT protocols, since the
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Table 2. Comparison of IAMD: d is the upper bound on the number of invalid pairs of
IDs and messages among n pairs. |τ | is the bit-length of aggregate-tags. |h| is the bit-
length of output of hash functions. The number of stages s in XIAMDLi and HIAMDLi

is determined by the optimal parameter setting. e is Napier’s constant. “Unknown d”
allows us to detect all invalid pairs of IDs and messages without preknowledge of d.
Comp. means ident-completeness and Sound. (resp., wSound.) means ident-soundness
(resp., ident-weak-soundness).

Construction Total Tag Size (in the worst-case) #Stage Unknown d Identifiability

XIAMDBIN

(
2d log n

d
+ 2d − 1

)
(|τ | + 1) log n + 1 X Comp. and wSound.

XIAMDRAW

(
4d log en

d
+ 2 log n

)
(|τ | + 1) 2 Comp. and wSound.

XIAMDLi

(
e

log e
d log(n

d
)
)

(|τ | + 1) log n
d

Comp. and wSound.

XIAMDDIG

(
d log n

d
+ 4d

)
(|τ | + 1) d(log n + 1) X Comp. and wSound.

HIAMDBIN

(
2d log n

d
+ 2d − 1

)
(|h| + 1) log n + 1 X Comp. and Sound.

HIAMDRAW

(
4d log en

d
+ 2 log n

)
(|h| + 1) 2 Comp. and Sound.

HIAMDLi

(
e

log e
d log n

d

)
(|h| + 1) log n

d
Comp. and Sound.

HIAMDDIG

(
d log n

d
+ 4d

)
(|h| + 1) d(log n + 1) X Comp. and Sound.

number of tests required in them is O(d log n
d ) that is asymptotically optimal

from the following result:

Proposition 2 (Lemma 4.5.2 of [2]). For integers n, d with 0 ≤ d ≤ n, let
M(d, n) be the minimum number of tests to detect d defectives from n items.
Then, we have d log n

d ≤M(d, n) ≤ d log n
d + (1 + log e)d.

Note that the number of tests required in non-adaptive group testing using d-
disjunct matrices is O(d2 log n) (see [2]), and the number of tests in adaptive
group testing is much smaller.

We compare IAMD constructions in Tables 2 in terms of the following eval-
uation items.

1. Total amount of tag-size. In terms of a total amount of tag-size, XIAMDDIG

is the best among XIAMD constructions, if n > d·2ε, where ε = 4/ (e/ log e− 1) ≈
4.5: This is because the difference between tag-sizes of XIAMDLi and XIAMDDIG

is ((e/ log e− 1)d log (n/d)− 4d) |τ |, and we can see that XIAMDDIG is the
best if (e/ log e− 1)d log (n/d)− 4d > 0, namely, n > d · 2ε.
The same analysis can be applied in HIAMD constructions, and we see that
HIAMDDIG is best. However, we cannot conclude which is better, XIAMD
construction or HIAMD construction, since MAC-tag size |τ | and hash-value
size |h| are depending on the choice of underlying MACs or hash functions.

2. Number of stages. In terms of the number of stages, XIAMDRAW and
HIAMDRAW are the best. They are the most effective if we focus on time
complexity because the number of communications between Aggregator and
Verifier is small, and it is possible to verify ID/message pairs in a parallel
process.

3. Preknowledge of d. Since we need not know the number d of invalid
ID/messages pairs beforehand, XIAMDBIN, XIAMDDIG, HIAMDBIN and HIAMDDIG
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are very useful. This is because the underlying AGT protocols are competi-
tive group testing.

4. Security. In terms of security-level of ident-soundness, HIAMD has the ad-
vantage. However, as we discussed in Section 4, we stress that XIAMD schemes
are also useful in some applications since they meet ident-weak-soundness.

6 Conclusion

The main purpose of this paper was to propose IAMD which could compress
multiple MAC tags and detect invalid messages among lots of messages by in-
teractive communications between Aggregator and Verifier. The contribution of
this paper is summarized as follows:

(i) We introduced a formal model of adaptive group testing (AGT) protocols
that comprehensively captured well-known instantiations of AGT. This mod-
eling was necessary to treat AGT protocols to construct IAMD in a generic
way.

(ii) We proposed a formal model of IAMD and formalized security notions of
IAMD along with the model.

(iii) We proposed constructions of IAMD: a generic construction of IAMD start-
ing from any AGT and AMAC; and concrete constructions by applying in-
stantiations of AGT to our generic construction. We compared the resulting
constructions in terms of total tag-size, number of stages, and security lev-
els. Consequently, we achieved almost minimum number of total tag-size by
applying the digging algorithm, though there was a trade-off between total
tag-size and the number of stages in general.

Acknowledgements. This research was in part conducted under a contract
of Research and Development for Expansion of Radio Wave Resources funded
by the Ministry of Internal Affairs and Communications, Japan, and in part
supported by JSPS KAKENHI under Grant number 18H03238.

References

1. Dorfman, R.: The detection of defective members of large populations. The Annals
of Mathematical Statistics Vol. 14, No. 4, 436–440 (1943)

2. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and Its Applications (2nd
Edition), Series on Applied Mathematics, vol. 12. World Scientific (2000)

3. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group
testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–
1375 (2007)

4. Hirose, S., Shikata, J.: Non-adaptive group-testing aggregate mac scheme. In:
The 14th International Conference on Information Security Practice and Expe-
rience (ISPEC 2018). Lecture Notes in Computer Science, vol. 11125, pp. 357–372.
Springer (2018)



24 Shingo Sato and Junji Shikata

5. Hwang, F.K.: A method for detecting all defective members in a population by
group testing. Journal of the American Statistical Association Vol. 67, No. 339,
605–608 (1972)

6. Katz, J., Lindell, A.Y.: Aggregate message authentication codes. In: CT-RSA.
Lecture Notes in Computer Science, vol. 4964, pp. 155–169. Springer (2008)

7. Li, C.H.: A sequential method for screening experimental variables. Journal of the
American Statistical Association Vol. 57, No. 298, 455–477 (1962)

8. Minematsu, K.: Efficient message authentication codes with combinatorial group
testing. In: ESORICS (1). Lecture Notes in Computer Science, vol. 9326, pp. 185–
202. Springer (2015)

9. Minematsu, K., Kamiya, N.: Symmetric-key corruption detection: When xor-macs
meet combinatorial group testing. In: ESORICS 2019, Part I. Lecture Notes in
Computer Science, vol. 11735, pp. 595–615. Springer (2019)

10. Ogawa, Y., Sato, S., Shikata, J., Imai, H.: Aggregate message authentication codes
with detecting functionality from biorthogonal codes. In: 2020 IEEE International
Symposium on Information Theory (ISIT 2020). IEEE (2020)

11. Porat, E., Rothschild, A.: Explicit non-adaptive combinatorial group testing
schemes. In: ICALP (1). Lecture Notes in Computer Science, vol. 5125, pp. 748–
759. Springer (2008)

12. Sato, S., Hirose, S., Shikata, J.: Sequential aggregate macs with detecting func-
tionality revisited. In: Network and System Security (NSS 2019). Lecture Notes in
Computer Science, vol. 11928, pp. 387–407. Springer (2019)

13. Sato, S., Shikata, J.: Interactive aggregate message authentication scheme with
detecting functionality. In: AINA. Advances in Intelligent Systems and Computing,
vol. 926, pp. 1316–1328. Springer (2019)

14. Shangguan, C., Ge, G.: New bounds on the number of tests for disjunct matrices.
In: IEEE Trans. Information Theory. 62, vol. 12, pp. 7518–7521. IEEE (2016)

15. Thierry-Mieg, N.: A new pooling strategy for high-throughput screening: the
shifted transversal design. BMC Bioinformatics 7, 28 (2006)


