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Abstract—High-assurance cryptography leverages methods
from program verification and cryptography engineering to
deliver efficient cryptographic software with machine-checked
proofs of memory safety, functional correctness, cryptographic
security, and side-channel protection. Traditionally, these guar-
antees are established under a sequential execution semantics.
However, this semantics is not aligned with the behavior of
modern processors that make use of speculative execution to
improve performance. This mismatch, combined with the high-
profile Spectre-style attacks that exploit speculative execution,
may naturally cast doubts on the robustness of high-assurance
cryptography guarantees. In this paper, we dispel these doubts by
showing that the benefits of high-assurance cryptography extend
to speculative execution, at the cost of a modest performance
overhead. We build atop the Jasmin verification framework an
end-to-end approach for proving properties of cryptographic
software under speculative execution, and validate our approach
experimentally with efficient, functionally correct, side-channel
protected assembly implementations of ChaCha20 and Poly1305.

I. INTRODUCTION

Cryptography is hard to get right: Implementations must
achieve the Big Four guarantees: Be (i) memory safe to
prevent leaking secrets held in memory, (ii) functionally correct
with respect to a standard specification, (iii) provably secure
to rule out important classes of attacks, and (iv) protected
against side-channels to avoid leaking secrets through timing
side-channels. To achieve these goals, cryptographic libraries
increasingly use high-assurance cryptography techniques to de-
liver practical implementations with formal, machine-checkable
guarantees [1]. Unfortunately, the guarantees provided by Big
Four are undermined by microarchitectural side-channel attacks,
such as Spectre [2], which exploit speculative execution in
modern CPUs.

In particular, Spectre-style attacks evidence a gap between
formal guarantees of side-channel protection, which hold for a
sequential model of execution, and practice, where execution
can be speculative and out-of-order. Many recent works aim to
close this gap by extending formal guarantees of side-channel
protection to a model that accounts for speculative execution [3],
[4], [5], [6], [7]. However, none of these works have been
used to deploy high-assurance cryptography with guarantees
fit for the post-Spectre world. More generally, the impact of
speculative execution on high-assurance cryptography has not
yet been well-studied from a formal vantage point.

In this paper, we propose, implement, and evaluate the
first holistic approach that delivers the promises of Big Four
under speculative execution. We explore the implications
of speculative execution on provable security, functional

correctness, and side-channel protection through several key
technical contributions detailed next. Moreover, we implement
our approach in the Jasmin verification framework [8], [9], and
use it to deliver high-speed, high-assurance, Spectre-protected
assembly implementations of ChaCha20 and Poly1305, two
key cryptographic algorithms used in TLS 1.3.

Contributions. Our starting point is the notion of speculative
constant-time programs. Similar to the classic notion of
constant-time, informally, a program is speculative constant-
time if secrets cannot be leaked through side-channels by
speculative execution. Formally, our notion is similar to that
of Cauligi et al. [3], which defines speculative constant-
time using an adversarial semantics for speculative execution.
Importantly, this approach delivers microarchitecture-agnostic
guarantees under a strong threat model in which the decisions
of microarchitectural structures responsible for speculative
execution are adversarially controlled.

Bringing this idea to the setting of high-assurance cryptog-
raphy, we make the following contributions:

• We formalize an adversarial semantics of speculative exe-
cution and a notion of speculative constant-time for a core
language with support for software-level countermeasures
against speculative execution attacks. We also define a
weaker, “forward” semantics in which executions are forced
into early termination when mispeculation is detected. We
prove a key property called secure forward consistency,
which shows that a program is speculative constant-time
iff forward executions (rather than arbitrary speculative
executions) do not leak secrets via side-channels. This greatly
simplifies verification of speculative constant-time, drastically
reducing the number of execution paths to be considered.

• We develop a verification method for speculative constant-
time. To the best of our knowledge, our method is the first
to offer formal guarantees with respect to a strong threat
model (prior works that study speculative leakage [3], [4],
[5], [6], [7], [10] either considers weaker threat models or
are not proven sound). Following an established approach,
our method is decomposed into two steps: (i) Check that the
program does not perform illegal memory accesses under
speculative semantics (speculative safety), and (ii) Check
that leakage does not depend on secrets. Both checks are
performed by (relatively minor) adaptations of standard
algorithms for safety and constant-time.

• We implement our methods in the Jasmin verification
framework [8], [9]. By a careful analysis, we show that
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our methods can be used to lift to speculative semantics
the guarantees provided by Jasmin, i.e., safety, functional
correctness, provable security, and side-channel protection,
for source and assembly programs.

• We use Jasmin and our extensions to develop efficient,
speculatively safe, functionally correct, and speculatively
constant-time (scalar and vectorized) implementations of
ChaCha20 and Poly1305 (§VIII). We evaluate the efficiency
of the generated code, and the effort of carrying the Big
Four guarantees to a speculative semantics.

Key findings. We make the following key findings:
• Algorithms for proving speculative constant-time are not

significantly harder than algorithms for proving constant-
time (although writing speculative constant-time programs
are certainly harder than writing constant-time programs).

• Existing approaches for Big Four can be lifted seamlessly
to deliver stronger guarantees (w.r.t. provable security, func-
tional correctness and side-channel protection) in presence
of speculative execution.

• The performance overhead of making code speculatively
constant-time is relatively modest. Interestingly, it turns
out that platform-specific, vectorized implementations are
easier to protect due to the availability of additional general-
purpose registers leading to fewer (potentially dangerous)
memory accesses. As a consequence, speculatively constant-
time vectorized implementations incur a smaller performance
penalty than their platform-agnostic, scalar counterparts.

Online materials. Jasmin is being actively developed as an
open-source project at https://github.com/jasmin-lang/jasmin.
We plan to open-source all artifacts produced as part of this
work, including all tools built on top of Jasmin, and all Jasmin
code, specifications, proofs, and benchmarks developed for our
case studies. Supplementary material for this submission can
be found at the following anonymous URL: https://github.com/
anon39482/oakland21-28.

II. BACKGROUND

In this section, we walk through speculative execution and
relevant Spectre-style attacks and defenses using examples
written in Jasmin [8], a high-level, verification-friendly pro-
gramming language that exposes low-level features for fine-
grained resource management.

Speculative execution. Speculative execution is a technique
used in modern CPUs to increase performance by prematurely
fetching and executing new instructions along some predicted
execution path before earlier (perhaps stalled) instructions have
completed. If the predicted path is correct, the CPU com-
mits speculatively computed results to the architectural state,
increasing overall performance. Otherwise, if the predicted
path is incorrect, the CPU backtracks to the last correct state
by discarding all speculatively computed results, resulting in
performance comparable to idling.

While it is true that the results of mispeculation are never
committed to the CPU’s architectural state (to maintain func-
tional correctness), speculative instructions can still leave traces

1 fn PHT(stack u64[8] a b, reg u64 x) → reg u64 {
2 reg u64 i r;
3 if (x < 8) { // Speculatively bypass check
4 i = a[(int) x]; // Speculatively read secrets
5 r = b[(int) i]; // Secret-dependent access
6 }
7 return r;
8 }

Fig. 1. Encoding of a Spectre-PHT attack in Jasmin.

1 fn STL(stack u64[8] a, reg u64 p s) → reg u64 {
2 stack u64[1] c;
3 reg u64 i r;
4 c[0] = s; // Store secret value
5 c[0] = p; // Store public value
6 i = c[0]; // Speculatively load s
7 r = a[(int) i]; // Secret-dependent access
8 return r;
9 }

Fig. 2. Encoding of a Spectre-STL attack in Jasmin.

in the CPU’s microarchitectural state. Indeed, the slew of recent,
high-profile speculative execution attacks (e.g., [2], [11], [12],
[13], [14], [15], [16]) has shown that these microarchitectural
traces can be exploited to recover secret information.

At a high-level, these attacks follow a standard rhythm: First,
the attacker mistrains specific microarchitectural predictors to
mispeculate along some desired execution path. Then, the
attacker abuses the speculative instructions along this path to
leave microarchitectural traces (e.g., loading a secret-dependent
memory location into the cache) that can later be observed (e.g.,
by timing memory accesses to deduce secret-dependent loads),
even after the microarchitectural state has been backtracked.

Spectre-PHT (Input Validation Bypass). Spectre-PHT [2]
exploits the Pattern History Table (PHT), which predicts the
outcomes of conditional branches. Figure 1 presents a classic
Spectre-PHT vulnerability, encoded in Jasmin. The function
PHT takes as arguments arrays a and b of unsigned 64-bit
integers allocated on the stack and an unsigned 64-bit integer
x allocated to a register, all coming from an untrusted source.

Line 3 performs a bounds check on x, which prevents reading
sensitive memory outside of a. Unfortunately, the attacker can
supply an out-of-bounds value for x, such that a[(int) x]

resolves to some secret value, and mistrain the PHT to predict
the true branch so that (line 4) the secret value is stored
in i. Line 5 is then speculatively executed, loading the secret-
dependent memory location b[(int) i] into the cache.

Spectre-STL (Speculative Store Bypass). Spectre-STL [17]
exploits the memory disambiguator, which predicts Store To
Load (STL) data dependencies. An STL dependency requires
that a memory load cannot be executed until all prior stores
writing to the same location have completed. However, the
memory disambiguator may speculatively execute a memory
load, even before the addresses of all prior stores are known.

Figure 2 presents a simplified encoding of a Spectre-STL
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vulnerability in Jasmin. For simpler illustration, we assume
the Jasmin compiler will not optimize away dead code and
we elide certain temporal details needed for this example to
be exploitable in practice [17]. The function STL takes as
arguments a stack array a, a public value p, and a secret
value s. Line 4 stores the secret value s in the stack variable
(a 1-element stack array) c. Line 5 follows similarly, but for
the public value p. Line 6 loads c into i, which is then used
to access the array a in line 7.

At line 6, architecturally, i equals p. Microarchitecturally,
however, i can equal s if the memory disambiguator incorrectly
predicts that the store to c at line 5 is unrelated to the load into
i at line 6. In turn, line 7 loads the secret-dependent memory
location a[(int) i] into the cache.

Memory fences as a Spectre mitigation. Memory fence
instructions act as speculation barriers, preventing further
speculative execution until prior instructions have completed.
For example, placing a fence after the conditional branch in
Figure 1 between lines 3 and 4 prevents the processor from
speculatively reading from a until the branch condition has
resolved, at which point any mispeculation will have been
caught. Similarly, placing a fence in Figure 2 before loading
a[(int) i] on line 7 forces the processor to commit all prior
stores to memory before continuing, leaving nothing for the
disambiguator to mispredict.

Unfortunately, inserting fences after every conditional and
before each load instruction severely hurts the performance
of programs. An experiment inserting LFENCE instructions
around the conditional jumps in the main loop of a SHA-256
implementation showed a nearly 60% decrease in performance
metrics [18]. We can employ heuristic approaches for inserting
fences to mitigate the performance risks, but this leads to
shaky security guarantees (e.g., Microsoft’s C/C++ compiler-
level countermeasures against conditional-branch variants of
Spectre-PHT [18]). Thus, it is important to automatically verify
that implementations use fences correctly and efficiently to
protect against speculative execution attacks.

III. OVERVIEW

This section outlines our approach. We first introduce
our threat model and give a high-level walkthrough of our
adversarial semantics and speculative constant-time. Then,
we briefly explain our verification approach and discuss its
integration in the Jasmin toolchain.

Threat model. The standard (sequential) side-channel threat
model assumes that a passive attacker observes all branch
decisions and the addresses of all memory accesses throughout
the course of a program’s execution [19]. A natural extension
to this threat model assumes an attacker that can make the same
observations also about speculatively executed code. However,
a passive attack model cannot capture attackers that deliberately
influence predictors. Thus, it is necessary to model how code
is speculatively executed and what values are speculatively
retrieved by load instructions.

We take a conservative approach by assuming an active
attacker that controls branch and load decisions—the only
way for the programmer to limit the attacker is by using
fences. This active observer model allows us to capture attackers
that not only mount traditional timing attacks [20], but also
mount Spectre-PHT/-STL attacks and exfiltrate data through,
for example, FLUSH+RELOAD [21] and PRIME+PROBE [22]
cache side-channel attacks.

Our threat model implicitly assumes that the execution
platform enforces control-flow and memory isolation, and that
fences act effectively as a speculation barrier. More specifically,
attackers cannot read the values of arbitrary memory addresses,
cannot force execution to jump to arbitrary program points, and
cannot bypass or influence the execution of fence instructions.

Speculative constant-time. The traditional notion of constant-
time aims to protect cryptographic code against the standard
side-channel threat model [23]. To facilitate formal reason-
ing, it is typically defined under a sequential semantics by
enriching program executions with explicit observations. These
observations represent what values are leaked to an attacker
during the execution of an instruction. For example, a branching
operation emits an observation branch b, where b is the result
of the branch condition. Similarly, a read (resp. write) memory
access emits an observation read a, v (resp. write a, v) of the
address accessed (array a with offset v). A program is constant-
time if the observations accumulated over the course of the
program’s execution do not depend on the values of secret
inputs. Unfortunately, we have seen in §II how this notion falls
short in the presence of speculative execution.

Extending constant-time to protect cryptographic code
against our complete threat model leads to the notion of
speculative constant-time [3]. Its formalization is based on the
same idea of observations as for constant-time, but is defined
under an adversarial semantics of speculation. To reflect active
adversarial choices, each step of execution is parameterized
with an adversarially-issued directive indicating the next course
of action. For example, to model the attacker’s control over
the branch predictor upon reaching a conditional, we allow the
attacker to issue either a step directive to follow the due course
of execution or a force b directive to speculatively execute a
target branch b. To model the attacker’s control over the memory
disambiguator upon reaching a load instruction, we allow the
attacker to issue a load i directive to load any previously stored
value for the same address, which are collected in a write buffer
indexed by i. Finally, to model the attacker’s control over the
speculation window, we allow the attacker to issue a backtrack
directive to rollback the execution of mispeculated instructions.

Under the adversarial semantics, a program is speculative
constant-time if for every choice of directives, the observations
accumulated over the course of the program’s execution do
not depend on the values of secret inputs. Importantly, this
notion is microarchitecture-agnostic (e.g., independent of cache
and predictor models), which delivers stronger, more general
guarantees that are also easier to verify.

We prove that programs are speculative constant-time using
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a relatively standard dependency analysis. The soundness proof
of the analysis is nontrivial and relies on a key property of the
semantics, which we call secure forward consistency.

Speculative safety. Our semantics conservatively assumes that
unsafe memory accesses, whether speculative or not, leak
the entire memory µ via an observation unsafe µ. Therefore,
programs that perform unsafe memory accesses cannot be
speculatively constant-time (in general, it is unnecessarily
difficult to prove properties about unsafe programs). We prove
that programs are speculatively safe, i.e., do not perform illegal
memory accesses for any choice of directives, using a value
analysis. Our analysis relies on standard abstract interpretation
techniques [24], but with some modifications to reflect our
speculative semantics.

Jasmin integration. We integrate our verification methods
into the Jasmin [8] framework. Jasmin already provides a rich
set of features that simplify low-level assembly programming
and formal verification of functional correctness (including
memory safety) and constant-time under a traditional, sequen-
tial semantics, making it a well-suited target for hosting our
new analyses.

The original Jasmin compiler translates Jasmin code into
assembly code through over a dozen compilation passes, all of
which are verified to be correct in Coq [25]. This ensures that
provable security, memory safety, functional correctness, and
constant-time guarantees established at Jasmin source-level
carry over to the generated assembly. We stay true to this
philosophy when integrating our speculative constant-time and
speculative safety analyses. Thus, Jasmin-generated assembly
code enjoys the usual properties that are unaffected by our
adversarial semantics, i.e., provable security and functional
correctness, but also extended memory safety and side-channel
protection guarantees in the face of Spectre-style attacks.

IV. ADVERSARIAL SEMANTICS

In this section, we present our adversarial semantics and
define speculative safety and speculative constant-time.

A. Commands

We consider a core fragment of the Jasmin language with
fences. The set Com of commands is defined by the syntax of
Figure 3, where a ∈ A ranges over arrays and x ∈ X ranges
over registers. We let |a| denote the size of a.

B. Semantics

Buffered memory. Under a sequential semantics, we would
have a main memory m : A×V → V that maps addresses (pairs
of array names and indices) to values. For out-of-order memory
operations, we use instead a buffered memory: We attach to the
main memory a write buffer, or a sequence of delayed writes.
Each delayed write is of the form [(a,w) := v], representing a
pending write of value v to array a at index w. Thus, a buffered
memory has the form [(a1, w1) := v1] . . . [(an, wn) := vn]m,
where the sequence of updates represents pending writes not
yet committed to main memory.

e ∈ Expr ::= x register
| op(e, . . . , e) operator

i ∈ Instr ::= x := e assignment
| x := a[e] load from array a offset e
| a[e] := x store to array a offset e
| if e then c else c conditional
| while e do c while loop
| fence fence

c ∈ Com ::= [] empty, do nothing
| i; c sequencing

Fig. 3. Syntax of programs.

Memory reads and writes operate under a relaxed semantics:
memory writes are always applied as delayed writes to the
write buffer, and memory reads may look up values in the write
buffer instead of the main memory. Furthermore, memory reads
may not always use the value from the most recent write to
the same address: The adversary can force load instructions to
read any compatible value from the write buffer, or even skip
the buffer entirely and load from the main memory. We denote
such a buffered memory access with µL(a,w)Mi where array a
is being read at offset w, and i is an integer specifying which
entry in the buffered memory to use (0 being the most recent
write to that address in the buffer). The access returns the
corresponding value as well as a flag that represents whether
the fetched value is correct with respect to non-speculative
semantics: If i is 0 (we are fetching the most recent value),
then the flag is ⊥ to signify that the value is correct; otherwise,
the flag is >.

Finally, we allow the write buffer to be flushed to the main
memory upon reaching a fence instruction. Each delayed write
is committed to the main memory in order and the write buffer
is cleared. We write this operation as µ.

We present the formal definitions of buffered memories,
accessing a location, and flushing the write buffer in Figure 4.
We use the notations m[(a,w)] and m{(a,w) := v} for lookup
and update in the main memory m.

States. States are (non-empty) stacks of configurations. Con-
figurations are tuples of the form 〈c, ρ, µ, b〉, where c is a
command, ρ is a register map, µ is a buffered memory, and b
is a boolean. The register map ρ : X → V is a mapping from
registers to a set of values V , which includes booleans and
integers. The boolean b is a mispeculation flag, which is set to
> if mispeculation has occurred previously during execution,
and set to ⊥ otherwise.

Directives. Our semantics is adversarial in the sense that
program execution depends on directives issued by an adversary.
Formally, the set of directives is defined as follows:

d ∈ Dir ::= step | force b | load i | backtrack | ustep,

where i is a natural number and b is a boolean.
At control-flow points, the step directive allows execution to

proceed normally while the force b directive forces execution
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Buffered memory

Main memory m : A× V → V
Buffered memory µ ::= m | [(a,w) := v]µ

Location access

mL(a,w)Mi =m[(a,w)],⊥ if w ∈ [0, |a|)
[(a,w) := v]µL(a,w)M0 = v,⊥ if w ∈ [0, |a|)
[(a,w) := v]µL(a,w)Mi+1 = v′,> if µL(a,w)Mi = v′, _
[(a′, w′) := v]µL(a,w)Mi =µL(a,w)Mi if (a′, w′) 6= (a,w)

Flushing memory

m = m

[(a,w) := v]µ = µ{(a,w) := v}

Fig. 4. Formal definitions of buffered memory, location access, and flushing.

to follow the branch b. At load instructions, the directive load i
determines which previously stored value from the buffered
memory should be read (note that load 0 loads the correct
value). At any program point, the directive backtrack checks
if mispeculation has occurred and backtracks if so. Finally, the
directive ustep is used to perform unsafe executions.

Observations. Our semantics is instrumented with observa-
tions to model side-channel leakage. Formally, the set of
observations is defined as follows:

o ∈ Obs ::= • | read a, v, b | write a, v
| branch b | bt b | unsafe µ,

where a is an array name, v is a value, b is a boolean, and µ
is a buffered memory.

We use • for steps that do not leak observations. We assume
that the adversary can observe the targets of memory accesses
via read and write observations (including whether a value
is loaded mispeculatively, in the case of a load instruction),
control-flow via branch observations, whether mispeculation
has occurred via bt observations, and if an access is unsafe
via unsafe observations. In the latter case, we conservatively
assume that the buffered memory is leaked.

One-step execution. One-step execution of programs is mod-
eled by a relation S o−−→

d
S′, meaning that under directive d the

state S executes in one step to state S′ and yields leakage o. The
rules are shown in Figure 5. Notice that all rules, except those
executing a fence instruction or a backtrack directive, either
modify the top configuration on the stack (assignments and
stores), or push a new configuration onto the stack (instructions
that can trigger mispeculation, i.e., conditionals, loops, and
loads). We describe the rules below.

Rule [ASSIGN] simply computes an expression and stores its
value in a register. It does not produce any leakage observations.

Rule [STORE] transfers a store instruction into the write
buffer, leaking the target address via a write observation. The
rule assumes that the memory access is in bounds.

Rule [LOAD] creates a new configuration in which the
buffered memory remains unchanged and the register map
is updated with a value read from memory. The directive
load i is used to select whether a loaded value will be taken
from a pending write or from the main memory. The loaded
address and the flag bv, which indicates whether the load
was mispeculated, are leaked via a read observation. The rule
assumes that the memory access is in bounds.

Rule [UNSAFE] executes an unsafe memory read or write.
Since the address being accessed is not valid, the rule
conservatively leaks the entirety of the buffered memory with
the unsafe µ observation. This rule is nondeterministic in that,
due to the unsafe access, the resulting register map ρ′ (for
reads) or the buffered memory µ′ (for writes) can be arbitrary.

Rule [COND] creates a new configuration with the same
register map and buffered memory as the top configuration
of the current state, but updates both the command and
configuration flag according to the directive. If the adversary
uses the directive force b with b ∈ {>,⊥}, then the execution
is forced into the desired branch (command cb). Otherwise,
if the adversary uses the directive step, then the condition is
evaluated and execution enters the correct branch. In either
case, the mispeculation flag is updated accordingly. The rule
[WHILE] follows the same pattern.

Rule [FENCE] executes a fence instruction. Execution can
only proceed with the step directive if the mispeculation flag is
⊥ (no prior mispeculation). After executing a fence instruction,
all pending writes in µ are flushed to memory, resulting in the
new buffer µ.

Rules [BT>] and [BT⊥] define the semantics of backtrack
directives. These directives can occur at any point during
execution. If execution encounters the backtrack directive
and mispeculation flag is >, then rule [BT>] pops the top
configuration and restarts execution from the next configuration.
Since backtracking in a processor causes an observable delay,
this rule leaks the observation bt >. If the adversary wants to
backtrack further, they may issue multiple backtrack directives.
Conversely, if execution encounters the backtrack directive and
the mispeculation flag is ⊥, then rule [BT⊥] clears the stack
so that only the top configuration remains. The observation
bt ⊥ is leaked.

Multi-step execution. Rules [0-STEP] and [S-STEP] in Fig-
ure 5 define labeled multi-step execution. The relation S o−→

d
→ S′

is analagous to the one-step execution relation, but for multi-
step execution.

C. Speculative safety

Speculative safety states that executing a command, even
speculatively, must not lead to an illegal memory access.

Definition 1 (Speculative safety).
• An execution S

O−→
D
→ S′ is safe if S′ is not of the form

〈i; c, ρ, µ, b〉 :: S0, with i = x := a[e] or i = a[e] := x, and
JeKρ 6∈ [0, |a|).

• A state S is safe iff every execution S O−→
D
→ S′ is safe.
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C = 〈x := e; c, ρ, µ, b〉
C :: S

•−−→
step
〈c, ρ{x := JeKρ}, µ, b〉 :: S

[ASSIGN]
C = 〈x := a[e]; c, ρ, µ, b〉 µL(a, JeKρ)Mi = (v, bv)

C :: S
read a,JeKρ,bv−−−−−−−−−→

load i
〈c, ρ{x := v}, µ, b ∨ bv〉 :: C :: S

[LOAD]

C = 〈a[e] := e′; c, ρ, µ, b〉 JeKρ ∈ [0, |a|)

C :: S
write a,JeKρ−−−−−−−→

step
〈c, ρ, [(a, JeKρ) := Je′Kρ]µ, b〉 :: S

[STORE]

C = 〈i; c, ρ, µ, b〉 JeKρ /∈ [0, |a|)
i = a[e] := e′ ∨ i = x := a[e]

C :: S
unsafe µ−−−−−→
ustep

〈c, ρ′, µ′, b〉 :: S
[UNSAFE]

C = 〈if t then c> else c⊥; c, ρ, µ, b〉 b′ = if (d = force b) then b else JtKρ

C :: S
branch JtKρ−−−−−−−→

d
〈cb′ ; c, ρ, µ, b ∨ b′ 6= JtKρ〉 :: C :: S

[COND]

C = 〈while t do c0; c, ρ, µ, b〉 c> = c0;while t do c0; c c⊥ = c b′ = if (d = force b) then b else JtKρ

C :: S
branch JtKρ−−−−−−−→

d
〈cb′ , ρ, µ, b ∨ b′ 6= JtKρ〉 :: C :: S

[WHILE]

〈c, ρ, µ,>〉 :: C :: S
bt >−−−−−→

backtrack
C :: S

[BT>]
〈c, ρ, µ,⊥〉 :: S bt ⊥−−−−−→

backtrack
〈c, ρ, µ,⊥〉 :: ε

[BT⊥]

〈fence; c, ρ, µ,⊥〉 :: S •−−→
step
〈c, ρ, µ,⊥〉 :: S

[FENCE]
S

ε−→
ε
→ S

[0-STEP]

S
o−−→
d
S′ S′

O−→
D
→ S′′

S
o:O−−→
d:D
→ S′′

[S-STEP]

Fig. 5. Adversarial semantics.

• A command c is safe, written c ∈ safe iff every initial state
〈c, ρ,m,⊥〉 :: ε is safe.

Revisiting the example in Figure 1, we walk through why the
code is speculatively unsafe under our adversarial semantics.
Take any initial state S where the value of x is out-of-bounds
for indexing the array a. The adversary is free to choose a
directive schedule D containing force > to bypass the array-
bounds check in line 3, which speculatively executes the load
s = a[(int) x] in line 4. Since we started with an x where
x 6∈ [0, |a|), this load violates speculative safety.

Notice that bypassing the array-bounds check with force >
changes the mispeculation flag to >. If we place a fence
instruction directly after the check, the adversary would have
no choice but to backtrack, as the mispeculation flag must
be ⊥ for execution to continue ([FENCE]). Thus even if x is
out-of-bounds we prevent a speculatively unsafe load in line 4.

D. Speculative constant-time

Speculative constant-time states that if we execute a com-
mand twice, changing only secret inputs between executions,
we must not be able to distinguish between the sequence of
leakage observations. Put another way, the leakage trace of
a command should not reveal any information about secret
inputs even when run speculatively. As usual, we model secret
inputs by a relation φ on initial states, i.e., pairs of register
maps and memories.

Definition 2 (Speculative constant-time). Let φ be a binary
relation on register maps and memories. A command c is
speculatively constant-time w.r.t. φ, written c ∈ φ-SCT, iff

for every two executions 〈c, ρ1,m1,⊥〉 :: ε
O1−−→
D
→ S1 and

〈c, ρ2,m2,⊥〉 :: ε
O2−−→
D
→ S2 such that (ρ1,m1) φ (ρ2,m2) we

have O1 = O2.

Revisiting the example in Figure 1 again, suppose (ρ1,m1)
and (ρ2,m2) coincide on the public inputs a, b, and x, but differ
by secrets held elsewhere in the memories. Because PHT is not
speculatively safe, the adversary can issue ustep directives in
both executions. Since unsafe accesses conservatively leak the
entire memory via unsafe observations, different memories (and
hence observations) are leaked in each execution, thus violating
speculative constant-time. Again, adding a fence instruction
directly after the array-bounds check forces the adversary to
backtrack. This prevents both unsafe accesses to a and secret-
dependent accesses to b, which lead to diverging observations.

For the example in Figure 2, suppose (ρ1,m1) and (ρ2,m2)
coincide on the public inputs a and p, but differ by the
secret input s. In both executions, when the adversary issues
the directive to load s into i, the secret-dependent accesses
a[(int) i] will leak different observations by virtue of
each s being different, thus violating speculative constant-
time. Adding a fence instruction before loading c[0] forces
flushing the write buffer, preventing the stale (secret) value s

from making its way into c[0].

V. CONSISTENCY THEOREMS

In this section, we prove that our adversarial semantics
is sequentially consistent, i.e., coincides with the standard
semantics of programs. Moreover, we introduce different
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fragments of the semantics, and write S O−→
D
→X S′, where X is

a subset of directives, if all directives in D belong to X . We
specifically consider the subsets:
• S = {load 0, step} of sequential directives;
• F = {load i, step, force b} of forward directives;
• L = {load i, step, force b, backtrack} of legal directives.
By adapting the definitions of speculative safety and speculative
constant-time to these fragments, one obtains notions of safeX
and φ-SCTX . We also prove secure forward consistency, and
show equivalence between our adversarial semantics and our
forward semantics for safety and constant-time. These results
provide the theoretical justification for our verification methods
(§VI).

A. Sequential consistency

First, we show that our adversarial semantics is equivalent
to the sequential semantics of commands. This correctness
result ensures that functional correctness and provable security
guarantees extend immediately from the sequential to the
adversarial setting.

Sequential executions have several important properties:
They only use the top configuration, always load the correct
values from memories, and never modify the mispeculation flag.
Accordingly, we use 〈c, ρ,m〉 O−→→S 〈c

′, ρ′,m′〉 as a shorthand

for 〈c, ρ, µ,⊥〉 :: S O−→
D
→S 〈c

′, ρ′, µ′,⊥〉 :: S′, with µ = m and

µ′ = m′.

Proposition 1 (Sequential consistency). If
〈c, ρ0,m0,⊥〉, ε

O1−−→
D
→ 〈[], ρ, µ,⊥〉 :: S then there exists

O2 such that 〈c, ρ0,m0〉
O2−−→→S 〈[], ρ, µ〉.

Proof sketch. Without loss of generality (see Proposition 2) it
suffices to consider executions that do not use the backtrack
directive. By assumption, we know that the execution does not
contain any mispeculation, so the execution must be sequential.

It follows from this proposition that any command that is
functionally correct under the sequential semantics is also
functionally correct under our adversarial semantics.

B. Secure forward consistency

Verifying speculative safety and speculative constant-time is
complex, since executions may backtrack at any point. However,
we show that it suffices to prove speculative safety and specu-
lative constant-time w.r.t. safe executions that do not backtrack.
Since F -executions only use their top configuration, we write
C
O−→
D
→F C

′ if there exists S, S′ such that C :: S
O−→
D
→ C ′ :: S′

and backtrack /∈ D.

Proposition 2 (Safe forward consistency). A command c is
safe iff it is safeF .

Proof sketch. We prove that c ∈ safe ⇔ c ∈ safeL ⇔ c ∈
safeF . For the first equivalence, the key step is to remark that
if a derivation starting from c uses the rule [UNSAFE] then c is

unsafe. For the second equivalence (proved in Appendix C), the
key step is to show that for every execution C :: ε

O−→
D
→L C

′ :: S′

there exist a sequence D′ of directives and a sequence O′ of
observations such that C O

′

−−→
D′
→F C

′.

Proposition 3 (Secure forward consistency). For any specula-
tive safe command c, c is φ-SCT iff c is φ-SCTF .

Proof sketch. We start by proving c ∈ φ-SCT⇔ c ∈ φ-SCTL.
Since c ∈ safe, any derivation using the rules −→→ is also a
derivation for −→→L and the result follow trivially.

We then prove c ∈ φ-SCTL ⇔ c ∈ φ-SCTF (proved in
Appendix B). The key step is to show that for every pair of
executions C1 :: ε

O−→
D
→L C

′
1 :: S1 and C2 :: ε

O−→
D
→L C

′
2 :: S2

there exist a sequence D′ of directives and a sequence O′ of
observations such that C1

O′

−−→
D′
→F C

′
1 and C2

O′

−−→
D′
→F C

′
2.

VI. VERIFICATION OF SPECULATIVE SAFETY AND
SPECULATIVE CONSTANT-TIME

This section presents verification methods for speculative
safety and speculative constant-time. The speculative constant-
time analysis is presented in a declarative style, by means
of a proof system. A standard worklist algorithm is used to
transform this proof system into a fully automated analysis.

A. Speculative safety

Our speculative safety checker is based on abstract inter-
pretation techniques [24]. The checker executes programs by
soundly over-approximating the semantics of every instruction.
Sound transformations of the abstract state must be designed for
every instruction of the language. The program is then simply
abstractly executed using these sound abstract transformations.1

Our abstract analyzer differs from the Jasmin safety analyzer
on two points, to reflect our speculative semantics. First, we
modify the abstract semantics of conditionals (e.g., appearing
in if or while statements) to be the identity. For example,
when entering the then branch of an if statement, we do
not assume that the conditional of the if holds. This matches
the idea that branches are adversarially controlled, soundly
accounting for mispeculation. Second, we perform only weak
updates on values stored in memory. For example, a memory
store a[i] := e will update the possible values of a[i] to be
any possible value of (the abstract evaluation of) e, plus any
possible old value of a[i]. This soundly reflects the adversary’s
ability to pick stale values from the write buffer.

To precisely model fences, we compute simultaneously a
pair of abstract values (A#

std,A
#
spec), where A#

std follows a
standard non-speculative semantics, while A#

spec follows our
speculative semantics. Then, whenever we execute a fence,
we can replace our speculative abstract value by the standard
abstract value.

Throughout the analysis, we check that there are no safety
violations in our abstract values. As our abstraction is sound,

1Termination of while loops in the abstract evaluation is done in finite time
using (sound) stabilization operators called widening.
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safety of a program under our abstract semantics entails safety
under the concrete (speculative) semantics.

B. Speculative constant-time

Our speculative constant-time analysis, which we present in
declarative form, manipulates judgments of the form {I} c {O},
where I and O are sets of variables (registers and arrays) and c
is a command. Informally, it ensures that if two executions of
c start on states that are equivalent w.r.t. I , then the resulting
states are equivalent w.r.t. O and the generated leakages are
equal. The main difference with a standard dependency analysis
for (sequential) constant-time lies in the notion of equivalence
w.r.t. O, noted ≈O. Informally, the definition of equivalence
ensures that accessing a location (a, v) with an adversarially
chosen index i on two equivalent buffered memories yields the
same value.

The proof rules are given in Figure 6. The rule
[SCT-CONSEQ] is the usual rule of consequence. The rule
[SCT-FENCE] states that equivalence w.r.t. O is preserved by
executing a fence instruction. This is a direct consequence of
equivalence being preserved by flushing buffered memories.

The rule [SCT-ASSIGN] requires that O \ {x} ⊆ I . This
guarantees that equivalence on all arrays in O and on all
registers in O except x already holds prior execution. Moreover
it requires that if x ∈ O then fv(e) ⊆ I where fv(e) are the free
variables of e. This inclusion ensures that both evaluations of
e give equal values for x. The rule [SCT-LOAD] also requires
that requires that O \ {x} ⊆ I . Additionally, it requires that
fv(i) ⊆ I to ensure that the memory access does not leak.
Finally, it requires that if x ∈ O then a ∈ I . The latter enforces
that the buffered memories coincide on a, and thus that the
same values are stored in x.

The rule [SCT-STORE] requires that O ⊆ I and fv(i) ⊆ I
The first inclusion guarantees that equivalence on all arrays
in O and on all registers in O already holds prior executing
the store. The second inclusion guarantees that both execution
of the index i will be equal, i.e. that the access does not leak.
Moreover it requires that if a ∈ O then fv(e) ⊆ I . This ensures
that both evaluations of e give equal values, so that (together
with fv(i) ⊆ I) equivalence of buffered memories is preserved.

The rule [SCT-COND] requires that fv(e) ⊆ I (so that
the conditions in the two executions are equal) and that
the judgments {I} ci {O} hold for i = 1, 2. The rule
[SCT-WHILE] requires that fv(e) ⊆ O and O is an invariant,
i.e. the loop body preserves O-equivalence.

The proof system is correct in the following sense.

Proposition 4 (Soundness). If c is speculative safe and
{I} c {∅} is derivable then c ∈ ≈I -SCT.

Proof sketch. We first define equivalence formally:

• Two register maps ρ1 and ρ2 are equivalent w.r.t. O, written
ρ1 ≈O ρ2, iff ρ1[x] = ρ2[x] for all x ∈ X ∩O.

• Two buffered memories µ1 and µ2 are equivalent w.r.t. O,

written µ1 ≈O µ2 iff µ1 ≈O µ2 is derivable from the rules

∀a ∈ A ∩O, ∀v ∈ [0, |a|),m1[a, v] = m2[a, v]

m1 ≈O m2

µ1 ≈O µ2 a ∈ O ⇒ v1 = v2

[(a,w) := v1]µ1 ≈O [(a,w) := v2]µ2 .

• The relation ≈O is defined by the clause ρ1, µ1 ≈O ρ2, µ2

iff ρ1 ≈O ρ2 and µ1 ≈O µ2.
Then, we prove (Proposition 12 in the appendix) that if a
judgment {I} c {O} derivable then for every executions

〈c, ρ1, µ1, b〉
D−−→
O1

→F 〈c1, ρ
′
1, µ
′
1, b1〉,

〈c, ρ2, µ2, b〉
D−−→
O2

→F 〈c2, ρ
′
2, µ
′
2, b2〉,

such that ρ1, µ1 ≈I ρ2, µ2, we have c1 = c2, b1 = b2, O1 =
O2. This property entails ≈I -SCTF since O1 = O2.

VII. INTEGRATION INTO THE JASMIN FRAMEWORK

We have integrated our analyses into the Jasmin framework.
This section outlines key steps of the integration.

Integration into the Jasmin compiler. The Jasmin compiler
performs over a dozen optimization passes. All these passes are
proven correct in Coq [25], i.e., they preserve the semantics and
safety of programs. Moreover, they also preserve the constant-
time nature of programs [9]. As a consequence, the traditional
safety and constant-time analyses of Jasmin programs can be
performed during the initial compilation passes.

The same cannot be said, however, for the speculative
extensions of safety and constant-time. The problem lies with
the stack sharing compiler pass, which attempts to reduce the
size of the stack by merging different stack variables—this
transformation can create Spectre-STL vulnerabilities and break
speculative constant-time. For example, consider the programs
before and after stack sharing in Figure 7. There, s is secret
and p is public. In the original code (top), the memory access
to c[x] leaks no information by virtue of x being the public
value p. If the array a is dead after line 2, then the stack
sharing transformation preserves the semantics of programs,
leading to the transformed code (bottom). However, because
the arrays a and b from the original code now share the array
a in the transformed code, line 11 may speculatively load the
secret s into x, leading to the secret-dependent memory access
of c[x].

One potential solution is to modify this pass to restrict
merging of stack variables, e.g., by requiring that only stack
variables isolated by a fence instruction are merged. Unfortu-
nately, this solution incurs a significant performance cost and is
not aligned with Jasmin’s philosophy of keeping the compiler
predictable. We instead modify Jasmin to check speculative
safety and speculative constant-time after stack sharing. Then,
the developer can prevent any insecure variable merging. As
we report in the evaluation (§VIII), this strategy works well
for cryptographic algorithms.

After the stack sharing pass, each stack variable corresponds
to exactly one stack position. As a result, the remaining
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{I} c {O} I ⊆ I ′ O′ ⊆ O
{I ′} c {O′}

[SCT-CONSEQ]
{O} fence {O}

[SCT-FENCE]

O \ {x} ⊆ I x ∈ O =⇒ fv(e) ⊆ I
{I} x := e {O}

[SCT-ASSIGN]
(O \ {x}) ∪ fv(i) ⊆ I x ∈ O =⇒ a ∈ I

{I} x := a[i] {O}
[SCT-LOAD]

O ∪ fv(i) ⊆ I a ∈ O =⇒ fv(e) ⊆ I
{I} a[i] := e {O}

[SCT-STORE]
{I} c1 {O} {I} c2 {O} fv(e) ⊆ I

{I} if e then c1 else c2 {O}
[SCT-COND]

{O} c {O} fv(e) ⊆ O
{O} while e do c {O}

[SCT-WHILE]
{O} [] {O}

[SCT-EMPTY]
{X} c {O} {I} i {X}

{I} i; c {O}
[SCT-SEQ]

Fig. 6. Proof system for speculative constant-time.

1 /*** Before stack sharing transformation ***/
2 a[0] = s; // Store secret value
3 ...
4 b[0] = p; // Store public value at diff location
5 x = b[0]; // Can only load public p
6 y = c[x]; // Secret-independent memory access

7 /*** After stack sharing transformation ***/
8 a[0] = s; // Store secret value
9 ...

10 a[0] = p; // Store public value at same location
11 x = a[0]; // Can speculatively load secret s
12 y = c[x]; // Secret-dependent memory access

Fig. 7. Example of stack sharing transformation creating Spectre-STL
vulnerability.

compiler passes in Jasmin all preserve speculative constant-
time and safety. We briefly explain why each of the remaining
passes preserves SCT, in the order they are performed (a
similar reasoning can be used for preservation of speculative
safety). Lowering replaces high-level Jasmin instructions by
low-level semantically equivalent instructions. The only new
variables that may be introduced are register variables, e.g.
boolean flags, so there is no issue. Then, register allocation
renames register variables to actual register names. This pass
leaves stack variables and the leakage untouched. At that point,
the compiler runs a deadcode elimination pass. Deadcode
elimination does not exploit branch condition (e.g. while loop
conditions), and therefore leaves the speculative semantics
of the program unchanged. Afterward, the stack allocation
pass maps stack variables to stack positions. Since each
stack variable corresponds to exactly one stack position after
stack sharing, there is no further issue. Furthermore, stack
allocation does not transform leakage. Then, linearization
removes structured control-flow instructions and replaces them
with jumps—which preserves leakage in a direct way. The final
pass is assembly generation, which also preserves leakage.

Integration into the Jasmin workflow. The typical workflow
for Jasmin verification is to establish functional correctness,
safety, provable security, and side-channel protection of Jasmin

implementations, then derive the same guarantees for the
generated assembly programs. Our approach seamlessly extends
this workflow.

A key point of the integration is that functional correctness
and provable security guarantees only need to be established for
the existing sequential semantics of source Jasmin programs. By
Proposition 1, the guarantees carry to the speculative semantics
of source Jasmin programs. Arguing that the guarantees extend
to the speculative semantics of assembly programs requires a
bit more work. First, we must define the adversarial semantics
of assembly programs and prove the assembly-level counterpart
of Proposition 1. Together with Proposition 1, and the fact that
the Jasmin compiler is correct w.r.t. the sequential semantics, it
entails that the Jasmin compiler is correct w.r.t. the speculative
semantics. This, in turn, suffices to obtain the guarantees for
the speculative semantics of assembly programs.

This observation has two important consequences. First,
proofs of functional correctness and provable security can
simply use the existing proof infrastructure, based on the
interpretation of Jasmin programs to EasyCrypt [26], [27].
Second, proving functional correctness and provable security of
new (speculatively secure) implementations can be significantly
simplified when there already exist verified implementations
with proofs of functional correctness and provable security
for the sequential semantics. Specifically, it suffices to show
functional equivalence between the two implementations. Our
evaluation suggests that in practice, such equivalences can be
proved with moderate efforts.

VIII. EVALUATION

To evaluate our methodology, we pose the following two
questions for implementing high-assurance cryptographpic code
in our modified Jasmin framework:
• How much development and verification effort is required to

harden implementations to be speculatively constant-time?
• What is the runtime performance overhead of code that is

speculatively constant-time?
We answer these questions by adapting and benchmarking
the Jasmin implementations of ChaCha20 and Poly1305, two
modern real-world cryptographic primitives.
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Fig. 8. ChaCha20 benchmarks, scalar and AVX2. Lower numbers are better.

A. Methodology

Benchmarks. The baselines for our benchmarks are Jasmin-
generated/verified assembly implementations of ChaCha20
and Poly1305 developed by Almeida et al. [9]. Each prim-
itive has a scalar implementation and an AVX2-vectorized
implementation. The scalar implementations are platform-
agnostic but slower. Conversely, the AVX2 implementations
are platform-specific but faster, taking advantage of Intel’s
AVX2 vector instructions that operate on multiple values at a
time. All of these implementations have mechanized proofs of
functional correctness, memory safety, and constant-time, and
have performance competitive with the fast, widely deployed
(but unverified) implementations from OpenSSL [28]—we
include the scalar and AVX2-vectorized implementations of
ChaCha20 and Poly1305 from OpenSSL in our benchmarks
to serve as reference points.

The Big Four guarantees Jasmin provides are in terms
of Jasmin’s sequential semantics, rendering them moot in
the presence of speculative execution. We thus adapt these
implementations to be secure under speculation using two
different methods, described in §VIII-B, each with different
development/performance trade-offs.

Experimental setup. We conduct our experiments on one
core of an Intel Core i7-8565U CPU clocked at 1.8 GHz with
hyperthreading and TurboBoost disabled. The CPU is running
microcode version 0x9a, i.e., without the transient-execution-
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Fig. 9. Poly1305 benchmarks, scalar and AVX2. Lower numbers are better.

attack mitigations introduced with update 0xd6. The machine
has 16 GB of RAM and runs Arch Linux with kernel version
5.7.12. We collect measurements using the benchmarking
infrastructure offered by SUPERCOP [29].

Our benchmarks are collected on an otherwise idle system.
As the cost for LFENCE instructions typically increases on
busy systems with a large cache-miss rate, the relative cost for
the countermeasures we report should be considered a lower
bound.

B. Developer and verification effort

We put two different methods for making Jasmin code
speculatively constant-time into practice. First, we use a fence-
only based approach, where we add a fence after every
conditional in the program. In particular, this requires a fence at
the beginning of the body of every while loop. This approach
has the advantage of being simple, and trivially leaves the non-
speculative semantics of the program unchanged, leading to
simpler functional correctness proofs. In some cases, however,
using the fence method leads to a large performance penalty. We
also examined another, more subtle approach using conditional
moves (movcc) instructions: In certain cases it is possible
to replace a fence by a few conditional move instructions,
which has the effect of resetting the state of the program
to safe values whenever mispeculation occurs. This recovers
the lost performance, but requires marginally more functional
correctness proof effort.
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1 while(inlen >= 16){
2 h = load_add(h, in);
3 h = mulmod(h, r);
4 in += 16;
5 inlen -= 16;
6 }

1 while(inlen >= 16){
2 #LFENCE;
3 h = load_add(h, in);
4 h = mulmod(h, r);
5 in += 16;
6 inlen -= 16;
7 }

1 stack u64 s_in;
2 s_in = in;
3 if (inlen >= 16) {
4 #LFENCE;
5 while{
6 in = s_in
7 if inlen < 16;
8 inlen = 16
9 if inlen < 16;

10
11 h = load_add(h, in);
12 h = mulmod(h, r);
13 in += 16;
14 inlen -= 16;
15 }(inlen >= 16)
16 }

Fig. 10. Speculative safety violation in Poly1305 (top-left) and countermeasures
(bottom-left and right). By convention, inlen is a 64-bit register variable.

Speculative safety. Most of the development effort for pro-
tecting implementations is in fixing speculative safety issues.
To illustrate the kinds of changes needed for speculative
safety, we present in Figure 10 (top-left) the main loop of
the Poly1305 scalar implementation as an example. Initially,
the pointer in points to the beginning of the input (which is to
be authenticated), and inlen is the message length. Essentially,
at each iteration of the loop, a block of 16 bytes of the input
is read using load_add(h, in), the message authentication
code h is updated by mulmod(h, r), and finally the input
pointer in is increased so that it points to the next block of 16
bytes, and inlen is decreased by 16. At the end of the loop,
we read 16 · binlen0

16 c bytes from the input (where inlen0
is the value of inlen before entering the loop), and there
remains at most 15 bytes to read and authenticate from in

(this is done by another part of the implementation).
While this code is safe under a sequential semantics, it is not

safe under our adversarial semantics. Indeed, if we mispeculate,
the while loop may be entered even though the loop condition
is false, which causes a buffer overflow on the input. More
precisely, if we mispeculate k times, then we overflow by
16 · (k−1)+1 to 16 ·k bytes. We implemented and tested two
different countermeasures to protect against this speculative
overflow, which we present in Figure 10.

Our fence-based countermeasure (bottom-left) simply adds
a fence instruction at the beginning of each loop iteration, to
ensure that the loop condition has been correctly evaluated.
The movcc countermeasure (right) is more interesting. First, we
store the initial value of the input pointer in the stack variable
s_in (the fence at the beginning of the if statement ensures
that this store is correctly performed when entering the loop).
Then, we replace the costly fence at each loop iteration by
two conditional moves,2 which resets the pointer and length to
safe values if we mispeculated—we replace in by s_in, and
inlen by 16. The latter is safe only if inlen is at least 16,
even for mispeculating executions. To guarantee that this is

2We assume that Intel processors do not speculate on the condition in cmov
instructions [30]. If this is not the case, we can easily replace cmov instructions
with arithmetic masking sequences.

indeed the case, we replace the first test of the original while
loop by an if statement, followed by a single fence.

Note that, for this countermeasure to work, it is crucial that
inlen is stored in a register. Indeed, if it was stored in a
stack variable, then the reset of inlen to 16 could be buffered,
which would let inlen under-flow at the next loop iteration,
leading to a buffer overflow on in.

Speculative constant-time. We found that, after addressing
speculative safety, there was relatively little additional work
needed to achieve speculative constant-time, aside from occa-
sional fixes necessary to address stack sharing issues (see §VII).
This is perhaps not surprising, since the speculative constant-
time checker differs little from the classic constant-time checker.
Stack sharing issues showed up just once throughout our case
studies in the scalar implementation of ChaCha20, and only
required a simple code fix to prevent the offending stack share.

Functional correctness and provable security. Functional
correctness of our implementations is proved by equivalence
checking with the implementations of [9], for which functional
correctness is already established. The equivalence proofs are
mostly automatic, except for the proof of the movcc version of
Poly1305, for which equivalence requires providing a simple
invariant.

In principle, these equivalences could be used to obtain
provable security guarantees for our implementations. However,
there is no machine-checked proof of provable security for
the sequential implementations. We leave it as future work to
mechanize the security analysis of [31] in EasyCrypt (and do
not foresee any difficulty).

C. Performance overhead

Figures 8 and 9 show the benchmarking results for ChaCha20
and Poly1305, respectively. They report the median cycles per
byte for processing messages ranging in length from 32 to
16384 bytes.

For both the scalar and AVX2 implementations of ChaCha20,
the movcc method resulted in nearly identical performance
as the fence method, so we only report on the latter. For
the ChaCha20 scalar implementations, the baseline Jasmin
implementation enjoys performance competitive with OpenSSL,
even slightly beating it. As expected, the SCT implementation
is slightly slower across all message lengths, with the gaps
being more prominent at the smaller message lengths. For
the ChaCha20 AVX2 implementations, all implementations,
whether SCT or not, enjoy similar performance at the mid
to larger message lengths. For small messages, however, the
baseline Jasmin implementation is the fastest, while the other
implementations trade positions in the range of small message
lengths.

For the Poly1305 scalar implementations, the baseline Jasmin
implementation outperforms OpenSSL across all message
lengths, with the gaps being more prominent at the smaller
message lengths. The Jasmin-SCT-movcc implementation en-
joys performance competitive with OpenSSL. The Jasmin-SCT-
fence implementation, however, is considerably slower than the
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rest. For Poly1305 AVX2 implementations, the baseline Jasmin
implementation outperforms OpenSSL and Jasmin-SCT-movcc,
which are comparable, at the smaller message lengths, but
enjoy similar performance at the mid to larger message lengths.
Again, the Jasmin-SCT-fence implementation is considerably
slower, but the gap is less apparent than in the scalar case.

Overall, the performance overhead of making code specula-
tively constant-time is relatively modest. Interestingly, it turns
out that platform-specific, vectorized implementations are easier
to protect due to the availability of additional general-purpose
registers, leading to fewer (potentially dangerous) memory
accesses. As a consequence, speculatively constant-time vector-
ized implementations incur a smaller performance penalty than
their platform-agnostic, scalar counterparts. Moreover, the best
method for protecting code while preserving efficiency seems
to vary by implementation. For ChaCha20, the movcc and
fence methods fared similarly. For Poly1305, the movcc method
performed significantly better. A comprehensive investigation of
what works best for other cryptographic primitives is interesting
future work.

IX. DISCUSSION

In this section, we discuss limitations, generalizations, and
complementary problems to our approach.

A. Machine-checked guarantees

In contrast to the sequential semantics, which is fully
formalized in the Coq proof assistant, our adversarial semantics
is not mechanized. This weakens the machine-checked guaran-
tees provided by the Jasmin platform. This can be remedied
by mechanizing our adversial semantics and the consistency
theorems. This should not pose any difficulty and would bring
the guarantees of assembly-level functional correctness and
provable security on the same footing as for the sequential
semantics.

In contrast, the claim of preservation of constant-time of
the Jasmin compiler is currently not machine-checked, so
the sequential and speculative semantics are on the same
footing with respect to this claim. However, mechanizing
a proof of preservation of speculative constant-time seems
significantly simpler, because the analysis is carried at a lower
level. This endeavour would require developing methods for
proving preservation of speculative constant-time; however we
do not anticipate any difficulty in adapting the techniques from
existing work on constant-time preserving compilation [19],
[32] to the speculative setting.

B. Other speculative execution attacks

Our adversarial semantics primarily covers Spectre-PHT and
Spectre-STL attacks. Here we discuss selected microarchitec-
tural attacks, and give in each case a brief description of the
attack and a short evaluation of the motivation and challenges
of adapting our approach to cover these attacks.

Spectre-BTB [2] is a variant of Spectre in which the
attacker mistrains the Branch Target Buffer (BTB), which
predicts the destinations of indirect jumps. Spectre-BTB attacks

can speculatively redirect control flow, e.g., to ROP-style
gadgets [33]. Although analyzing programs with indirect jumps
can be challenging, there is little motivation to consider
them in our work. First, indirect jumps are not supported
in Jasmin, and we do not expect them to be supported, since
cryptographic code tends to have simple structured control
flow. Second, for software that must include indirect jumps,
hardware manufacturers have developed CPU-level mitigations
to prevent an attacker from influencing the BTB [34], [35].

Spectre-RSB [36], [37] attacks abuse the Return Stack Buffer
(RSB) to speculatively redirect control flow similar to a Spectre-
BTB attack. The RSB may mispredict the destinations of return
addresses when the call and return instructions are unbalanced
or when there are too many nested calls and the RSB over-
or underflows. Analyzing programs with nested functions is
feasible, but there is little motivation to consider them in
our work: Jasmin code has a well-bracketed structure, so it
cannot have unbalanced calls and returns. If the RSB is full
when the Jasmin code is invoked or if the Jasmin code itself
contains enough deeply nested functions to surpass the RSB
limit, then it is possible for the RSB to over- or underflow.
However, the current Jasmin compiler inlines all code into
a single function, so our generated assembly consists of a
single flat function with no call instructions—no Spectre-RSB
attacks are possible. Finally, we note that there exist efficient
hardware-based mitigations such as Intel’s shadow stack [38]
for protecting code that may be susceptible to Spectre-RSB.

Microarchitectural Data Sampling (MDS) attacks are a
family of attacks which speculatively leak in-flight data from
intermediate buffers, see e.g. [12], [13], [14]. Some of these
attacks can be modeled by relaxing our semantics (technically,
the definition of accessing into memory) to let an adversary
access any value stored in the write buffer, without requiring
addresses to match. We can adjust the proof system to detect
these attacks and ensure absence of leakage under this stronger
adversary model, but the benefits of this approach are limited:
Our envisioned adversarial semantics is highly conservative, and
would lead to implementations with a significant performance
overhead. Moreover, these vulnerabilities have been (or will
be) addressed by new processors or firmware patches [16] that
are more efficient than the software-based countermeasures our
approach can verify.

C. Beyond high-assurance cryptography

Speculative constant-time is a necessary step to protect
cryptographic keys and other sensitive material. However, it
does not suffice because non-cryptographic (and unprotected)
code living in the same memory space may leak. Carruth [39]
proposes to address this conundrum by putting high-value
(long-term) cryptographic keys into a separate crypto-provider
process and using inter-process communication to request
cryptographic operations, rather than just linking against
cryptographic libraries. This modification should preserve
functional correctness and ideally speculative constant-time,
assuming that inter-process communication can be implemented
in a way which respects speculative constant-time. We leave
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the integration of this approach into Jasmin and its performance
evaluation for future work.

X. RELATED WORK

Modeling, analyzing, and eliminating speculative leakage.
Due to space limitations, we focus on works that are supported
by a formal semantics. These works differ in their language
coverage (e.g., not all works consider out-of-order execution),
their target property (e.g., some works only require that
speculative execution leaks no more than sequential execution),
and in their verification method.

Our adversarial semantics is closest to the work of Cauligi et
al. [3], who present an assembly-level semantics which models
all known variants of Spectre. Furthermore, they propose a
definition of speculative constant-time based on explicit secrecy
labels and develop a verification tool called Pitchfork. Pitchfork
is built on top of the angr [40] framework, and is (therefore)
unsound. In contrast, our approach is sound.

Vassena et al. [41] combine a variant of the semantics of
Cauligi et al. [3] with a source-level semantics. Furthermore,
they develop a type system for tracking transient executions and
for synthesizing a minimal number of fences. Their approach is
implemented in a tool, called BLADE, which is used to analyze
WebAssembly implementations. Their approach considers a
weaker threat model and is not integrated into the workflow
of high-assurance cryptography.

Guarnieri et al. [4] develop a formal semantics that accounts
for speculative (but not out-of-order) execution. They define a
notion of speculative non-interference, which requires that a
program does not leak more under speculative execution than
under sequential execution. Furthermore, they implement a tool
called SPECTECTOR, which detects speculative leakage on
x86 binaries using symbolic execution. Their work is limited
to Spectre-PHT.

Guanciale et al. [42] propose a unique semantics which
models all known Spectre variants as well as three additional
hypothesized variants. Their security model is similar to the
speculative non-interference model proposed by [4].

Disselkoen et al. [43] develop an elegant semantics inspired
from relaxed memory models. Their semantics accounts for
speculative and out-of-order execution, and captures both
Spectre-PHT and Spectre-STL attacks. They do not define
a notion of security.

Cheang et al. [6] formalize security against transient execu-
tion attacks as an information flow hyperproperty requiring four
traces (whereas ours only requires two)—this hyperproperty
is similar to speculative non-interference from [4]. They
automatically verify their hyperproperty using bounded model
checking, and use this to inform a tool that inserts fence
instructions to mitigate violations. They only cover Spectre-
PHT violations.

Bloem et al. [7] also, formalize speculative leakage as an
information flow property, transforming conditional statements
to model branch (mis)prediction (and thus only detect Spectre-
PHT). They use a combination of taint analysis and model

checking on the transformed programs to identify locations
where secrets can leak.

Mcilroy et al. [10] propose a semantics to capture Spectre-
PHT by modeling branch predictor state and cache state
explicitly, which ties their semantics to specific architecture
implementations. They also use a step-timer model to approx-
imate timing-based leakage instead of other more rigorous
security properties from the constant-time literature.

Finally, Wu and Wang [5] develop a sound abstract inter-
pretation under speculative execution. They use this abstract
interpretation along with a must-hit cache model analysis to
detect Spectre-PHT leakages.

None of these works are used for lifting Big Four to specula-
tive execution, or to produce new and efficient implementations.

Secure speculative compilation. Guarnieri et al. [44] present
a formal framework for specifying hardware-software contracts
for secure speculation and develop methods for automating
checks for secure co-design. On the hardware side, they
formalize the security guarantees provided by a number of
mechanisms for secure speculation. On the software side,
they characterize secure programming for constant-time and
sandboxing, and use these insights to automate checks for
secure co-design. It would be appealing to implement their
approach in Jasmin.

Patrignani and Guarnieri [45] develop a framework for
(dis)proving the security of compiler-level countermeasures
against Spectre attacks, including speculative load hardening
and barrier insertion. Their focus is to (dis)prove whether
individual countermeasures eliminate leakage. In contrast,
we are concerned with guaranteeing that the compiler turns
speculative constant-time Jasmin programs into speculative
constant-time assembly.

High-assurance cryptography. We refer readers to the survey
by Barbosa et al. [1] for a systematization of high-assurance
cryptography tools and applications.

XI. CONCLUSION

We have proposed, implemented, and evaluated an approach
that carries the promises of Big Four to the post-Spectre era.
There are several important directions for future work. We
plan to develop a cryptographic library (say, including all TLS
1.3 primitives) that meets the four desiderata of functional
correctness, provable security, protection against speculative
side-channels, and efficiency. Moreover, we plan to seamlessly
connect all four desiderata in the spirit of recent work on
SHA-3 [46], imbuing our library with the gold standard of
high-assurance cryptography.
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APPENDIX

A. Background on Jasmin

Jasmin [8], [9] is a programmer and verification-friendly
framework for producing efficient cryptographic software with
machine-checked guarantees. The framework is built around the
Jasmin programming language, which simultaneously provides
high-level abstractions that ease programming and exposes
low-level features for fine-grained optimization of resource
management. Programs written in the Jasmin language are
proved safe using abstract interpretation techniques. Functional
correctness, provable security, and side-channel protection
(specifically constant-time) are proved via an embedding into
the EasyCrypt proof assistant [26], [27]. The embedding
supports elaborate correctness proofs that combine equivalence
checking between reference and optimized implementations
with standard proofs of functional correctness for reference
implementations. Jasmin programs are then compiled into
assembly using the Jasmin compiler. The Jasmin compiler
empowers programmers to write efficient code, by generating
assembly code predictably. For instance, the Jasmin compiler
relies on the programmer for register allocation (concretely,
the compiler will reject programs that require spilling), and for
instruction scheduling (concretely, the compiler will not try to
reorder code for efficiency). These principles are compatible
with current practices in cryptographic engineering, where
programmers keep tight control over their code for efficiency
reasons.

The Jasmin compiler is formally verified for correctness in
the Coq proof assistant. In addition, the compiler preserves
constant-time; however, this claim has not yet been mechanized.
Currently, the Jasmin compiler only generates x86 assembly,
although there are plans to generate ARM and Risc V assembly.

B. Proofs for Proposition 3

Proving φ-SCTL ⇒ φ-SCTF is trivial, since any forward
execution is present in execution using directives in L. So we
focus on the other direction φ-SCTF ⇒ φ-SCTL.

We first define equivalence of configurations.

Definition 3 (Configuration equivalence (C1 ≡ C2)). Let C1 =
〈c1, ρ1, µ1, b1〉 and C2 = 〈c2, ρ2, µ2, b2〉 be two configurations.
We say that C1 and C2 are equivalent, noted C1 ≡ C2, if their
commands and their mispeculation flags are equal, i.e. c1 = c2
and b1 = b2

Proposition 5. If C1
o−−→
d F

C ′1 and C2
o−−→
d F

C ′2 and C1 ≡ C2

then C ′1 ≡ C ′2.

Proof. Assume C1 = 〈c, ρ1, µ1, b〉 and C2 = 〈c, ρ2, µ2, b〉.
The proof follows by case analysis on the first instruction in c.
• For x := e or a[e] := e′ or fence : both derivations use

the same rule (i.e. [ASSIGN] or [STORE] or [FENCE]) and
the result is trivial.

• For x := a[e]: both derivations use the [LOAD] rule. Since
both of them generate the same leakage o, bv will be equal
in them and hence concluded.

• For conditional and loop: The derivations use rule [COND]
and [WHILE]. Since both leakages are equals, we have
JtKρ1 = JtKρ2 . This implies that the values of b′ in both
the derivations will be equal and hence concluded.

Proposition 6. If C1
O−→
D
→F C

′
1 and C2

O−→
D
→F C

′
2 and C1 ≡ C2

then C ′1 ≡ C ′2.

Proof. By induction on D, using Proposition 5

Proposition 7. If 〈c, ρ1,m1,⊥〉 :: ε
O−→
D
→L C1 :: S1 and

〈c, ρ2,m2,⊥〉 :: ε
O−→
D
→L C2 :: S2 then there exists D′ and O′

such that 〈c, ρ1,m1,⊥〉
O′

−−→
D′
→F C1 and 〈c, ρ2,m2,⊥〉

O′

−−→
D′
→F C2

Proof. By induction on D. The case D = ε is trivial. If D =
D1 :: d, then there exists O1 and o such that

〈c, ρ1,m1,⊥〉 :: ε
O1−−→
D1

→L C
′
1 :: S′1

o−−→
d L

C1 :: S1

〈c, ρ2,m2,⊥〉 :: ε
O1−−→
D1

→L C
′
2 :: S′2

o−−→
d L

C2 :: S2

By induction hypothesis on D1, there exists D′1, O′1 such

that 〈c, ρ1,m1,⊥〉
O′

1−−→
D′

1

→F C
′
1 and 〈c, ρ2,m2,⊥〉

O′
1−−→

D′
1

→F C
′
2. We

proceed by doing case analysis on d. If d 6= backtrack then
it is trivial. If d = backtrack then by Proposition 6 the
mispeculation flag of C ′1 and C ′2 are equal, which means
C ′1 :: S′1

o−−→
d L

C1 :: S1 and C ′2 :: S′2
o−−→
d L

C2 :: S2 both

use the [BT⊥] rule or [BT>] rule. If the rule is [BT⊥] then
C ′1 = C1 and C ′2 = C2, hence concluded. If the rule is [BT>]
we proceed by doing induction on D′1 (remark that D′1 does not
contain backtrack directive). The case D′1 = ε is impossible
because in that case S′1 = ε and [BT>] does not apply. For the
case: D′1 = D′2 :: d′, if the last rule (using d′) is [ASSIGN] or
[STORE]3 then the mispeculation flag was set to false before this
execution point and the result follows by induction hypothesis.
For rules [LOAD], [COND] and [WHILE] the configurations
were pushed into the stack and then popped by the backtrack
directive, hence concluded. The rule cannot be a [FENCE]
because the mispeculation flags are >.

We are now in a position to prove our main result.

3Remark that Proposition 6 implies that the first instruction of C′1 and C′2
are same so the rules are also same.
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Proof of Proposition 3. By contraposition, we will prove that
if c 6∈ φ-SCTL then c 6∈ φ-SCTF .
c 6∈ φ-SCTL implies that there exists two derivations such

that:
• (ρ1,m1) φ (ρ2,m2)

• 〈c, ρ1,m1,⊥〉 :: ε
O−→
D
→L C1 :: S1

o1−−→
d L

C ′1 :: S′1

• 〈c, ρ2,m2,⊥〉 :: ε
O−→
D
→L C2 :: S2

o2−−→
d L

C ′2 :: S′2

• o1 6= o2

By Proposition 7, there exists D′ and O′ such that:

• 〈c, ρ1,m1,⊥〉
O′

−−→
D′
→F C1

• 〈c, ρ2,m2,⊥〉
O′

−−→
D′
→F C2

Now we can proceed by doing case analysis on d. If
d 6= backtrack then we get 〈c, ρ1,m1,⊥〉

O′::o1−−−−→
D′::d
→F C

′
1 and

〈c, ρ2,m2,⊥〉
O′::o2−−−−→
D′::d
→F C

′
2. Since o1 6= o2 we conclude c 6∈

φ-SCTF . If d = backtrack then we must get o1 = o2 instead
of o1 6= o2 (which is absurd) because the mispeculation flags
of C1 and C2 are equal (by Proposition 6).

C. Proof for Proposition 2

Proposition 8. A command c is safeL iff c is safeF .

Proof. For c ∈ safeL ⇒ c ∈ safeF , we need to show that for all
ρ, m, C, if 〈c, ρ,m,⊥〉 O−→

D
→F C then C is a safe configuration.

By definition of O−→
D
→F we know that there exists S such that

〈c, ρ,m,⊥〉 :: ε O−→
D
→L C :: S. Since c ∈ safeL, the state C :: S

is safe and so is C.
For c ∈ safeF ⇒ c ∈ safeL, we need to show that for all ρ,

m, C, S, if 〈c, ρ,m,⊥〉 :: ε O−→
D
→L C :: S then C :: S is a safe

state (i.e. C is a safe configuration). By Proposition 7 (using
twice the derivation 〈c, ρ,m,⊥〉 :: ε O−→

D
→L C :: S), there exists

D′, O′ such that 〈c, ρ,m,⊥〉 O
′

−−→
D′
→F C. Since c ∈ safeF , C is

a safe configuration.

D. Proof of Proposition 4

The goal of this section is to prove auxiliaries lemmas used
in the proof of Proposition 4.

We extend the relation ≈X to configurations. We say that
〈c1, ρ1, µ1, b1〉 ≈X 〈c2, ρ2, µ2, b2〉 if c1 = c2 and b1 = b2 and
ρ1, µ1 ≈X ρ2, µ2.

We start by proving two auxiliary lemmas:

Proposition 9. If µ1 ≈X µ2 then µ1 ≈X µ2.

Proposition 10. If ρ1 ≈X ρ2 and fv(e) ⊆ X then JeKρ1 =
JeKρ2 .

Then we do the main proof:

Proposition 11. (Subject reduction) Let C1 = 〈i; c, ρ1, µ1, b1〉.
If the following conditions are statisfied
• {I} i {X} and {X} c {O}

• C1 ≈I C2

• C1
o1−−→
d F

C ′1 and C2
o2−−→
d F

C ′2

where C ′1 = 〈c′, ρ′1, µ′1, b′1〉, then there exists I ′ such that
{I ′} c′ {O} and C ′1 ≈I′ C ′2 and o1 = o2.

Proof. We process by induction on {I} i {X}.
• [SCT-CONSEQ]: there exists I1 and X1 such that
{I1} i {X1}, I1 ⊆ I ′ and X ⊆ X1. We can trivially
conclude using the induction hypothesis on {I1} i {X1},
notice that we have {X1} c {O}.

• [SCT-FENCE]: we have I = X and C1
o1−−→
d F

C ′1 and

C2
o2−−→
d F

C ′2 necessarly correspond to an application of

the rule [FENCE] (so o1 = o2 = •). We conclude using
I ′ = X and by applying Proposition 9.

• [SCT-ASSIGN]: we have i = x := e, X \ {x} ⊆ I and
x ∈ X =⇒ fv(e) ⊆ I . C1

o1−−→
d F

C ′1 and C2
o2−−→
d F

C ′2

correspond to the rule [ASSIGN], so

C ′j = 〈c, ρj{x := JeKρj}, µj , bj〉

and o1 = o2 = •. ρ1 ≈I ρ2 and conditions X \ {x} ⊆ I
and x ∈ X =⇒ fv(e) ⊆ I implies ρ1{x := JeKρ1} ≈X
ρ2{x := JeKρ2}. This allows to conclude using I ′ = X .

• [SCT-LOAD]: we have i = x := a[e] and (X \ {x}) ∪
fv(e) ⊆ I and x ∈ X =⇒ a ∈ I . C1

o1−−→
d F

C ′1 and

C2
o2−−→
d F

C ′2 correspond to the rule [LOAD], so

d = load i
µjL(a, JeKρj )Mi = (vj , b

j
v)

C ′j = 〈c, ρj{x := vj}, µj , bj ∨ bjv〉
oj = read a, JeKρj , bjv

ρ1 ≈I ρ2 and fv(e) ⊆ I implies JeKρ1 = JeKρ2 . µ1 ≈I µ2

implies b1v = b2v and so o1 = o2. Furthermore if x ∈ X
we have a ∈ I and so v1 = v2 and ρ1{x := v1} ≈X
ρ2{x := v2}. We conclude using I ′ = X .

• [SCT-STORE]: we have i = a[e] := e′ and X ∪ fv(e) ⊆ I
and a ∈ X =⇒ fv(e′) ⊆ I . Both evaluations use the
[STORE] rule, so

C ′j = 〈c, ρj , [(a, JeKρj ) := Je′Kρj ]µj , bj〉
oj = write a, JeKρj

fv(e) ⊆ I implies JeKρ1 = JeKρ2 , so o1 = o2. Furthermore,
we prove that

[(a, JeKρ1) := Je′Kρ1 ]µ1 ≈X [(a, JeKρ2) := Je′Kρ2 ]µ2

and we can conclude using I ′ = X .
• [SCT-COND]: we have i = if e then c> else c⊥ and
{I} c> {X} {I} c⊥ {X} fv(e) ⊆ I . Both evaluations
use the [COND] rule with d, so we have

C ′j = 〈cb′ ; c, ρj , µj , bj ∨ b′j 6= JeKρj 〉
oj = branch JeKρj

fv(e) ⊆ I implies JeKρ1 = JeKρ2 which concludes
b′1 = b′2 and o1 = o2. Remark that {I} c>; c {O} and
{I} c⊥; c {O} are derivable. So we conclude using I ′ = I
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• [SCT-WHILE]: We have I = X . This case is similar
to the previous one, the key point is to show that
{I} c0;while e do c0; c {O}.

Proposition 12. Let C1 = 〈c, ρ1, µ1, b1〉. If the following
conditions are statisfied
• {I} c {O}
• C1 ≈I C2

• C1
O1−−→
D
→F C

′
1 and C2

O2−−→
D
→F C

′
2

where C ′1 = 〈c′, ρ′1, µ′1, b′1〉, then their exists I ′ such that
{I ′} c′ {O} and C ′1 ≈I′ C ′2 and O1 = O2.

Proof. By induction on D, using Proposition 11. The base
case D = ∅ is trivially proved by taking I ′ = I .
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