
Packed Multiplication:
How to Amortize the Cost of Side-channel Masking ?

Extended version

Weijia Wang1,2,3, Chun Guo1,2,3, François-Xavier Standaert4,
Yu Yu5,6 and Gaëtan Cassiers4
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Abstract. Higher-order masking countermeasures provide strong provable security against side-
channel attacks at the cost of incurring significant overheads, which largely hinders its applicability.
Previous works towards remedying cost mostly concentrated on “local” calculations, i.e., optimiz-
ing the cost of computation units such as a single AND gate or a field multiplication. This paper
explores a complementary “global” approach, i.e., considering multiple operations in the masked
domain as a batch and reducing randomness and computational cost via amortization. In partic-
ular, we focus on the amortization of ` parallel field multiplications for appropriate integer ` > 1,
and design a kit named packed multiplication for implementing such a batch. For ` + d ≤ 2m,
when ` parallel multiplications over F2m with d-th order probing security are implemented, packed
multiplication consumes d2 + 2`d + ` bilinear multiplications and 2d2 + d(d + 1)/2 random field
variables, outperforming the state-of-the-art results with O(`d2) multiplications and `

⌊
d2/4

⌋
+ `d

randomness. To prove d-probing security for packed multiplications, we introduce some weaker se-
curity notions for multiple-inputs-multiple-outputs gadgets and use them as intermediate steps,
which may be of independent interest. As parallel field multiplications exist almost everywhere in
symmetric cryptography, lifting optimizations from “local” to “global” substantially enlarges the
space of improvements. To demonstrate, we showcase the method on the AES Subbytes step, GCM
and TET (a popular disk encryption). Notably, when d = 8, our implementation of AES Subbytes
in ARM Cortex M architecture achieves a gain of up to 33% in total speeds and saves up to 68%
random bits than the state-of-the-art bitsliced implementation reported at ASIACRYPT 2018.

1 Introduction

Side-channel attacks that exploit leakage emitting from devices pose an important threat for cryptographic
implementations. Masking [14, 26] is one of the most investigated protection techniques. The core idea is
to randomly split each secret-dependent variable into a vector of d + 1 shares called sharing, and then
implements the cryptographic algorithm over sharings instead of the raw secrets. This ensures that the
initial secret cannot be rebuilt from any less than d intermediate variables in the implementation, which
is called d-private security (a.k.a. d-probing security).7

To have secure functionalities over sharings, a masking scheme, or a private circuit, firstly constructs
gadgets for various elementary calculations over sharings, and then compose the gadgets to reach the
desired functionality. Obviously, to improve efficiency, it is crucial to have better gadgets (particularly
for multiplications). This has motivated plenty of works concentrating on e.g., reducing the randomness
complexity [5, 6, 28, 12], and securing processing dependent inputs [20, 12].

7 While the leakages of all the d+ 1 shares enable reconstruction of information theoretically, the intrinsic noise
in the leakages renders secret recovery infeasible in practice [14, 17, 21, 33].



Recently proposed masking schemes are typically accomplished by formal proofs of the aforementioned
d-private security notion. To establish this notion, the naive method is to show that the possible tuples
of intermediate variables are all independent of the secret by enumeration. Though, such an enumeration
becomes intricate as the size of function grows, and it is only feasible for small circuits such as a single
multiplication gadget. This naturally motivates the composition approach, i.e., proving that under certain
conditions, a large circuit built upon d-private gadgets is d-private. In this respect, several composable
security notions have been introduced, such as the notions of d-Non-Inference (NI) and d-Strong Non-
Inference (SNI) [2]. Thanks to those security notions, a composition of gadgets with some refreshing
added in-between, can be proved to be globally d-private secure.

Besides the above foundational advances, the past two decades have also witnessed the rapid efficiency
improvement of masking schemes. Despite these, higher-order masking with many shares remains of
limited use due to the overhead, especially in the resource-constraint environment [27, 19]. It is still
compelling and challenging to decrease the complexity of masking schemes.

Local versus Global efficiency optimization. As discussed before, the community has devoted to
designing better gadgets [5, 6, 28, 12] due to their fundamental influences on the high-level circuits. In
fact, to our knowledge, modulo a few exceptions that will be discussed later, most of the prior works
only concentrated on “local” optimizations, i.e., on reducing the complexity of individual elementary
calculation such as an S-box or even a single AND gate. This “local” approach considerably simplifies the
situation and enables pushing the limits of gadgets. At the same time, by the aforementioned composition
framework, this naturally results in high-level circuits with better performance and provable security.

On the other hand, note that cryptographic algorithms typically consist of executing a basic function
for many times in parallel. For example, the AES (more generally, virtually all the block ciphers except
for the so-called ARX designs) evaluates an S-box for 16 times within each round. And, at a higher level,
many modes of operations are explicitly designed to support running several primitives in parallel. For
instance, the Counter (CTR) mode encrypts several blocks in parallel, and the Galois/Counter Mode
(GCM) combines the CTR mode with a structure consisting of several field multiplications in parallel.

Facing this situation, this paper takes a complementary “global” view, considers multiple such parallel
functions as a batch, and seeks for optimizations within such batches. This switch enables many pos-
sibilities of improvements that used to be excluded in the classical “local” optimizations. In particular,
the presence of multiple calculations naturally motivates using the amortization technique, which aims
at reducing the averaged complexity for the masking of several operations.

While the idea of “global” optimization via amortizing appears natural, the technique of security
proof is quite non-trivial. Particularly, due to amortization, various operations in the same batch now
share randomness or intermediate variables, and thus cannot be analyzed independently. To cope with
this difficulty, in our security analysis, we will treat parallel operations in the same batch as a whole, and
consider the corresponding gadgets with multiple input and output sharings (shorted as MIMO gadgets
in the rest of the paper). This shift of viewpoint clearly excludes NI/SNI as the security goal. Informally
speaking, any composition of d-NI and d-SNI gadgets is still d-SNI if each sharing is used at most once
as input of any d-NI gadget and the input sharings of a gadget come from different gadgets. Designing
secure circuits under this condition may requires many refresh gadgets, which are expensive. Therefore,
new security notions for MIMO gadgets are required.

1.1 Our Contributions

We investigate global optimizations within batches of several field multiplications.8 The concrete tech-
nique is to amortize the randomness and computational costs of several parallel masked multiplications.
As a result, we propose a new construction named packed multiplication, which computes ` masked mul-
tiplications in parallel for any integer ` ≥ 1. Then, in order to prove security for our scheme, we introduce
a new set of security notions for MIMO gadgets. We finally demonstrate potential applications and show-
case the packed multiplication method on AES, Galois/Counter Mode (GCM) [30], and a popular disk
encryption scheme TET (which is short for linear-Transformation; ECB; linear-Transformation) [23]. We
details these contributions below.

Packed Multiplication. To maximize the efficiency of linear gadgets, this paper concentrates on Boolean
sharings (a.k.a. additive sharings) over the finite field Fq of characteristic 2, meaning that the XOR of

8 Note that the AND gate can be viewed as the field multiplication in F2.
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the shares equals the initial secret. In this setting, a packed multiplication scheme takes two vectors
of ` Boolean sharings as inputs, which encode the 2` inputs of the ` field multiplications, and gives `
Boolean sharings as outputs encoding the ` multiplication results, as depicted in Figure 1 (right). Packed
multiplication proceeds in two steps. First, each input vector is (re)encoded as a “packed” sharing using a
randomized linear code. When the field size q ≥ `+d, each resulted “packed” sharing consists of only `+d
shares in total, meaning that the size of data is compressed from `(d+1) to `+d. Second, a multiplication
over the packed sharings is calculated, resulting in Boolean sharings (the number of result shares is
`(d+1)). This step can be seen as a batch of ` masked local multiplications sharing some randomness
and intermediate results. Besides, our scheme is compatible even when the field size q ≤ `+d, at the cost
of raising the number of shares, say n, to n > d+ 1 with security order d, as long as the linear codes of
length `+n−1 with dual distance d+ 1 exist.

In contrast, following the classical “local” approach, the two input vectors are viewed as ` pairs of
sharings, and each of the ` pairs is processed independently, as shown in Figure 1 (left). As mentioned
before, such independence simplifies security analysis at the expense of limiting optimizations to local.
For a more complete comparison, we consider the setting of masking ` parallel multiplications, and list the
complexities of packed multiplication and some other popular schemes in Table 1, where the complexity
of our scheme is typical estimated when the field size q ≥ `+d. In the comparison, we regard the number
of bilinear multiplications (i.e., of general multiplications of two non-constant variables in the finite field)
and the number of random elements as the metrics for computational [6] and randomness complexities
respectively.

Towards Provable Security. Packed multiplication schemes produce MIMO gadgets. For their prov-
able security, Cassiers el al. introduced a stronger variant of SNI named Multiple-Inputs / Multiple-
Outputs Strong Non-Inference (MIMO-SNI) [13]. They also introduced Probe Isolating Non-Interference
(PINI) [13] notion that enables the building of more efficient gadgets. Unfortunately, both MIMO-SNI
and PINI are too strong and could not be achieved by ours. To rescue, we identify a set of intermediate
composable security notions for MIMO gadgets that interpolates between the stronger MIMO-SNI and
the weaker (S)NI. In addition, ours are orthogonal to PINI. We refer to Figure 2 for an illustration.
With the new notions, our gadgets can be securely composed with each other, either by satisfying our
specialized composition theorem, or through direct proof in the probe propagation framework introduced
in [5, 11].

·

·

·

·

······

sharing

sharing

sharing

sharing

······

sharing

sharing

sharing

sharing

······

······

······

�
······

sharing

sharing

sharing

sharing

` sharings

` sharings

` sharings

Security requirement: NI/SNI, . . .

Security requirement: security notions for MIMO gadgets

(a) ` masked multiplications with isolating approach (b) ` masked multiplications with our packed approach

sharings of

sharings of

packed sharing

packed sharing

Packing

Packing

multiplying
sharings` secret inputs

` secret inputs

of ` secret outputs

Fig. 1. Packed multiplication in general (right) and the comparison with classical isolating approach (left).
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Fig. 2. Relations among different security notions.

Table 1. Complexities of ` parallel multiplications with security order d

Computational
complexity 1

Randomness
complexity 2

Our Scheme

Packing 0 d2

Multiplying d2 + 2`d+ ` d(d+ 1)/2

Total d2 + 2`d+ ` 2d2 + d(d+ 1)/2

Tight private circuits [26] `d2 + 2`d+ ` `d(d+ 1)/2

Masking with reduced randomness [5] `d2 + 2`d+ ` `
(
d+

⌊
d2/4

⌋ )
Multiplication

over finite fields *

[6, Algorithm 4] 2`d+ ` `
(
2d2 + d(d+ 1)/2

)
[6, Algorithm 5] `d2 + 2`d+ ` `d

Code-based masking [38] d2 + 2`d+ `2 2d(d+ `)
* Despite the small instantiations for d ≤ 4 [28], it requires large enough

finite fields, e.g., the field size q > d(d+ 1)(12d)d [6, Theorem 5.4].
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Applications. As parall multiplications exist almost everywhere in symmetric cryptography, our packed
multiplication has potentially broad applicability and deep impact. To demonstrate, we showcase the
method on the AES Subbytes step and the polynomial-evaluation hash.

The AES Subbytes step consists of parallel S-boxes evaluations. Based on the ARM Cortex M archi-
tecture, we implement 16 AES S-boxes by applying the packed multiplication and report the performance
results. Notably, when the security order is of d = 8, our implementation achieves a gain of up to 33% in
speeds and saves up to 68% random bits compared with the state-of-the-art bitsliced implementation [9].

The polynomial-evaluation hash involves a structure of several multiplications in parallel, and thus
our packed multiplication is well suited. This benefits the SCA resilience for two scenarios: GCM and
TET.

1.2 Related works

Previous amortization. As mentioned before, global view and amortization were only considered in
very few early works. Roughly, they fall into three concrete approaches, i.e., randomness re-use, masking
with robust Pseudorandom Generator (PRG) and the code-based masking. The former two approaches
aim at amortization of randomness rather than reducing computational cost, while the last addresses
both.

Randomness re-use. This approach aims at re-using random bits in different gadgets. Faust et al. [18]
introduce a security model allowing multiple gadgets to securely re-use randomness, and proposed thresh-
old implementation-based gadgets in their model. This method provides a quite efficient scheme for small
values of security order.

Masking with robust PRGs. Ishai et al. proposed to expand the randomness using the so-called robust
PRG [25] in the private circuits, where the number of True Random Number Generator (TRNG) calls
for seeds is independent of the circuit size. A recent work of Coron et al. describes a quite practical
construction in this direction [15], where the number of random bits is only Õ(t2) for security against t
probes. This strategy can be regarded as a certain form of amortization (of TRNG calls), but it is a bit
of orthogonal to ours. In contrast, we consider the amortization of both randomness and computational
costs.

Code-based masking. It was recently shown by Wang et al. [38] that the general type of masking called
code-based masking is able to encode multiple secrets together into one codeword and calculate parallel
operations over these secrets together in the masked domain. Admittedly, the packed multiplication
proposed in this paper shares some ideas with the code-based masking. But we give a practical and much
more efficient scheme. Notably, our scheme generally works with Boolean sharings, which enables more
efficient masked linear operations. In contrast, the code-based masking proposed in [38] was a generic
scheme, whose further specification and optimization were left as an open problem. We give a complexity
comparison in Table 1 to highlight the improvement of our scheme.

Polynomial masking with packed secret sharing technique [22] can be regarded as a variant of the
code-based masking, and its multiplications are performed based on the MPC protocol of Damg̊ard et
al. [16]. This scheme however requires a heavy random generation process that becomes an efficiency
bottleneck.

Security notions for MIMO gadgets. Cassiers el al. introduced a stronger variant of SNI named
Multiple-Inputs / Multiple-Outputs Strong Non-Inference (MIMO-SNI) [13].9 Though, MIMO-SNI gadget
comes at a higher complexity compared to the SNI ones. They also introduced the Probe Isolating Non-
Interference (PINI) [13] notion that enables the building of more efficient gadgets. Informally speaking, a
composition of multiple gadgets is d-PINI (resp., d-MIMO-SNI) if every gadget is d-PINI (resp., d-MIMO-
SNI). In addition, d-PINI (resp., d-MIMO-SNI) alone implies the d-private security. Unfortunately, these
two notions are both too strong for our new multiplication gadget. For this reason, we will propose in
Section 3 a set of new security notions that bridge our new gadgets to the probing security.

9 The notion of MIMO gadgets shall be distinguished from MIMO-SNI: the former are gadgets with multiple
input and output sharings, while the latter is a security model for MIMO gadgets.
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1.3 Organization

In the remainder of this paper, we present notations and necessary notions in Section 2. We then introduce
our new security notions in Section 3. We propose the packed multiplication in Section 4, and in Section 5
propose a construction of the linear operations that complies with the new security notions. Section 7
illustrates the applications.

2 Preliminary

2.1 Notations

In the following, we denote by Fq a characteristic 2 finite field, where q = 2m for any m ≥ 1, and denote
field elements by lower-case letters. We use ⊕ to denote plus over the finite field. For simplicity, we use∑

for the summation over any fields or rings. For a natural number n we denote by [n] the set of integers
from 1 to n both included. Let calligraphies (e.g., I) be sets, and |I| denote the length of the set I. Let

bold lower cases (e.g., x) be the vectors over F|x|q , where |x| denotes the length of the vector, x[i] denotes
the ith element of vector x, and x[i : j] denotes the vector made up of ith to jth elements of vector x.
Unless otherwise noted, we assume the vectors are row vectors in this paper, and the column vectors are
denoted as xT.

Let bold capital letters (e.g., A) be the matrices in Fr×cq (or r× c matrix), for row and column counts

being r and c respectively. A[i, j] denotes the element of A at ith row and jth column, A[i, ] (resp., A[, i])
denotes the ith row (resp., column) of matrix A, and A[i :j, ] denotes the matrix made up of ith to jth rows
of A. Let AT denote the transpose of the matrix A. For a r×c matrix A and a set I ⊆ [r] (resp., J ⊆ [c]),
A[I, ] (resp., A[,J ]) denotes the submatrix of A made up of the rows (resp., columns) indexed by I
(resp., J ). For matrices A and B, we denote their product as A×B, or in short AB in non-ambiguous
cases. Specifically, we use Or×c to denote the zero matrix in Fr×cq and In the identity matrix in Fn×nq ; to
ease understanding, when there is no ambiguity, their superscripts will be omitted. For two matrices A
and B, [A,B] is the concatenation of A and B by columns, and [A; B] is the concatenation of A and B

by rows. A set of n variables can be represented as {xi}ni=1
def
= {x1, . . . , xn}, and this representation can

be adopted for a set of vectors or matrices.

2.2 Private Circuits

We view a circuit C as a directed acyclic graph with gates and wires being vertices and edges respectively.
We assume that the wires carry variables in Fq and the gates are elementary calculations over Fq. A
randomized circuit is a circuit augmented with random gates. A random gate is a gate that puts a
random variable in its output wire. Variables carried in the wires of a circuit C are called intermediate
variables of C. A probe to a circuit is an intermediate variable whose value is assumed to be revealed
to the adversary. For a circuit C with input x ∈ F`q, C(x) produces the output y ∈ F`′q that we denote

C(x)
def
= y. And for a set P of probes, CP(x) returns the values of the probes by feeding x as the input

of C. We call a set (or vector) of variables (say, x) over Fq independent of the other vector of variables
y if Pr(x = α | y = β) = Pr(x = α) for any value α of x and any value β of y, where the probability is
taken over the random coins used to generate these vectors.

We begin by recalling the notion of sharings, the basis of masking. We also provide our new notion
of packed sharing. It should be noted that, for the notion of sharing, we let the number of shares be n
(rather than d + 1) for compatibility (of any field sizes) reason. As mentioned in the introduction, our
scheme is also compatible with a small field size (i.e., q < ` + d with ` parallel multiplications), at the
cost of raising the number of shares in a sharing to n > d+ 1 with security order d.

Definition 1 (Sharing and packed sharing) For a variable x ∈ Fq, we say x̂ ∈ Fnq is a sharing of
x if there exists an encoder Enc : (Fq,Fn−1q ) → Fnq , a decoder Dec : Fnq → Fq and r ∈ Fn−1q such that
x̂ = Enc(x, r) and x = Dec(x̂). Particularly, a sharing x̂ of x is called a Boolean sharing, if x = Dec(x̂) =∑n
i=1 x̂[i].
For ` > 1 and a vector of variables x ∈ F`q, we say (x̃, û) ∈ (F`q,Fn−1q ) is a packed sharing of x if there

exists an encoder Enc : (F`q,Fn−1q )→ (F`q,Fn−1q ), a decoder Dec : (F`q,Fn−1q )→ F`q and r ∈ Fn−1q such that
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(x̃, û) = Enc(x, r) and x = Dec(x̃, û). Moreover, an element of a packed sharing (x̃, û) is an element of
either x̃ or û.

Elements of a sharing or packed sharing are called shares.

In the rest of the paper, unless explicitly stated, all sharings are Boolean sharings. We next recall the
notion of private circuit compiler [26] as follows.

Definition 2 (Private circuit compiler [26]) A private circuit compiler for a circuit C with input in
F`q and output in F`′q is defined by a triple (I,T,O) where

– I : Fq → Fnq , is an encoder that randomly maps each input x ∈ Fq to a sharing.
– T is a circuit transformation whose input is circuit C, and output is a randomized circuit C′ with `

sharings as the input, and `′ sharings as the output.
– O : Fnq → Fq is a decoder that maps each output sharing ẑ ∈ Fnq to the corresponding output z ∈ Fq.

We say that (I,T,O) is a private circuit compiler and C′ is a d-private circuit (or d-probing secure) if the
following requirements hold:

– Correctness: for any input x ∈ F`q, Pr
(
O◦
(
C′(I◦(x))

)
= C

(
x
))

= 1, where I◦ (resp., O◦) is a canonical

encoder (resp., decoder) that encodes (resp., decodes) each element of input secrets x (resp., each
sharing of output sharings) by repeatedly calling I (resp., O).

– Privacy: for any input x ∈ F`q and any set of probes P such that |P| ≤ d, C′P
(
I(x)

)
are independent

of the input x, where d is called the security order.

We consider the circuit transformation T realized by the composition of gadgets. An gadget is a
randomized circuit whose inputs (resp., outputs) are either sharings or packed sharings. We say that

a gadget G implements a function f : F`q → F`′q , if and only if O◦
(
G
(
I◦(x)

))
= f(x) for any x ∈ F`q,

where I◦ (resp., O◦) encodes (resp., decodes) each input (resp., output). Gadget composition builds bigger
circuits from a number of gadgets, by connecting the output wires of some gadgets to the input wires
of the others. To cleanly pinpoint the “pattern” of a composition, we appeal to an acyclic graph C. I.e.,
the resulted bigger circuit is obtained by replacing the vertices of C with the gadgets. In such a graph,
the involved gadgets are called sub-gadgets, and the edges carry sharings or packed sharings. An MIMO
gadget is a gadget with multiple input sharings or output sharings. Note that the composed gadget C′ is
a gadget, and thus a recursive composition of gadgets is also a gadget.

2.3 Composable security notions

While the notion of d-private security nicely protects against side-channel attacks, it is not trivial to
prove that large circuits such the AES fulfill it. The difficulty stems from enumerating the probes within
the circuit, the complexity of which increases exponentially with the circuit size. The natural solution
is to use the composition method, so that one can focus on each individual gadget, while the global d-
private security is ensured by composition. Barthe et al. introduced first composable security notions [2]
for (small) gadgets that are sufficient to result in provable probing security.

Simulatability. We first recall the definition of simulatability introduced in [5]:

Definition 3 (Simulatability [5]) Let P = {p1, ..., pd} be a set of d probes of a gadget G with input

shares X . Let S ⊆ X be a subset of input shares. A simulator is a randomized function S: F|X |q → Fdq . A

distinguisher is a randomized function D:
(
Fdq ,F

|X |
q

)
→ {0, 1}. The set of probes P can be simulated with

shares in S if and only if there exists a simulator S such that for any distinguisher D and any inputs
shares X , we have:

Pr
[
D
(
GP(X ),X

)
= 1
]

= Pr
[
D
(
S(S),X

)
= 1
]
,

where the probability is over the random coins in G, S and D.
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(Strong) Non-Inference. We then recall the first set of composable security notions introduced in [2].
The probes of a gadget are separated as follows:

– Output probes: output variables.
– Internal probes: variables except for the output probes.

Definition 4 (d-(Strong) Non-Inference
(
(S)NI

)
[2]) Let G be a gadget with sharings as inputs and

outputs. G is d-NI (resp., d-SNI), if any probes consisting of tint internal probes and tout outputs probes
with tint + tout ≤ d can be simulated with tint + tout (resp., tint) shares of each input sharing.

As shown in Lemma 1, both d-NI and d-SNI imply the d-private security.

Lemma 1 (NI/SNI implies probing security [2]) If a gadget G is d-SNI or d-NI, then G is a d-
private circuit if any d shares in each input sharing are independent of the secrets and all input sharings
are independently encoded.

More importantly, in the proof of probing security, NI and SNI can reduce the elaboration from
trying all tuples of probes of a full circuit to only verifying each small gadget. Informally speaking, any
composition of d-NI and d-SNI gadgets is still d-NI if each sharing is used at most once as input of any
d-NI gadget and the input sharings of a gadget come from different gadgets.

2.4 Different types of gadgets

As gadgets can be used as building blocks of private circuits, it is necessary to specify types of gadgets
that are required for protecting cryptographic algorithms.

The first type of gadgets is linear gadgets that implement linear functions. As the encoder is usually
homomorphic (for example, the encoder of the Boolean sharing) over linear functions, linear gadgets
can be correctly constructed by applying linear functions on the shares of the same index, which we will
denote as the trivial implementation of a linear function. It becomes more difficult for (nonlinear) gadgets
implementing nonlinear functions such as multiplication, since the encoder is usually not homomorphic
over nonlinear functions. The last type of gadgets is the refresh gadget (a.k.a, the refreshing) that re-
randomizes a sharing, which is usually needed for the composition of gadgets. Existing works (e.g., [4,
3, 1]) have provided different refresh gadgets that are asymptotically more efficient than multiplication
gadgets. In the rest of the paper, we mainly focus on a typical nonlinear gadget: multiplication gadget
that implements the multiplication over Fq in the masked domain.

3 New security notions for MIMO gadgets

To motivate, this section begins by recalling the limitation of NI/SNI with MIMO gadgets. Then, to ease
understanding, we serve intuition for our new security notions in sub-section 3.2. The core concept will
be the notion of t-chunk that describes a set of shares from the input or output sharings of a gadget. The
formal definitions are finally given in sub-section 3.3.

3.1 Limitation of NI/SNI with MIMO gadgets

The notions of NI and SNI are not perfectly suitable for MIMO gadgets. To see this, let’s consider, for
example, the compositions of two gadgets, as illustrated in Figure 3. In Figure 3-(a), the composition of G1

and G2 subjects to the rule in Lemma 1, and thus is 3-SNI. Figure 3-(b) shows an improper composition,
where two probes (one internal and one output) of G2 requires 4 input variables to simulate, which cannot
be further simulate with the input of G1 since G1 is 3-SNI. Figure 3-(c) fixes the issue of Figure 3-(b)
by adding SNI refreshings, which however comes at huge overheads. Note that a similar illustration can
be found in [13, Figure 5], where the authors considered a linear operation between two outputs of a
nonlinear gadget.

In the rest of this section, we investigate more suitable security notions for gadgets with multiple
input and output. In Appendix A, we recall two other such candidates named MIMO-SNI and PINI [13].
However, for example, the packed multiplication that we will introduce in Section 4 is neither d-MIMO-SNI
nor d-PINI, but is d-SNI. It indicates that there should exist some security notions between MIMO-SNI
and SNI (stronger than SNI and weaker than MIMO-SNI) and more suitable to the packed multiplication.
In this respect, we put forward a set of new security notions.

8



3-SNI3-SNI

1 probe

3-SNI

1 probe

3-SNI

1 probe

3-SNI 3-SNI

1 probe

3-SNI

3-SNI

3-SNI

(a) 3-SNI (b) improper compostion (c) a fix of (b)

G1

G2
G1 G2 G1 G2

Fig. 3. Limitation of (S)NI.

3.2 Intuition behind the new security notions

The notion of simulatability captures that a set of output shares and tint internal shares can be simulated
with some input shares called propagated shares. In this respect, how to define the output shares and the
propagated shares is critical in different security notions. Let x̂1, . . . , x̂` be ` sharings that can be either
input sharings or output sharings of a gadget. For an integer t, we define the types of set X consisting of
some shares in x̂1, . . . , x̂` as follows:

i. |X | = t, i.e., X consists of t shares in x̂1, . . . , x̂`.
ii. |X | = `t, and X consists of t shares in each sharing of x̂1, . . . , x̂`.

It can be seen that, in (S)NI, output and propagated shares relate to types i and ii respectively. The
only difference between SNI and NI is the values of the parameters t for output and propagated shares.
And in MIMO-SNI, output and propagated shares relate to types ii and i respectively, which makes it
a stronger property than (S)NI. It is because, compared with (S)NI, MIMO-SNI allows that a larger set
of output shares can be simulated with a smaller set of propagated shares. Examples can be found in
Figures 5-(a) (b) and (c).

For our new security notions, we introduce a new type of set X as follows:

iii. X consists of a t-chunk of x̂1, . . . , x̂`, where the t-chunk is defined below, and we also depict an
example in Figure 4.

Definition 5 A t-chunk of sharings x̂1, . . . , x̂` ∈ Fnq , . . . ,Fnq is a subset of a set made up of the following
two parts:

1. (α part) {x̂k[i] | k ∈ K, i ∈ I} for K ⊆ [`], I ⊆ [n] and |K|+ |I| = tα.
2. (β part) tβ shares from x̂1, . . . , x̂`.

such that t ≥ tα + tβ.

It should be noted that the t-chunk is only defined with sharings, rather than the packed sharings.

The rationale of the t-chunk definition. The t-chunk is defined in accordance with the formalism
of packed multiplication given latter in Section 4. We will mostly consider an abstract computation that

takes sharings x̂1, . . . , x̂` ∈ Fnq , . . . ,Fnq as inputs and sums (XOR) the rows of X
def
= X̂ ⊕ Q̂, resulting in

x̃ ∈ F`q, where X̂[, k]
def
= x̂k for k ∈ [`] and Q̂ ∈ Fn×`q is a random matrix. During the process, there also

exist variables f(Q̂[i, ]) for any function f : F`q → Fq and any i ∈ [n]. A specification of such abstract
algorithm is the packing in Gadget 1-P, and an example will be depicted in Figure 6. In this case, a
certain amount of probes to f(Q̂[i, ]), X̂, X and x̃ can be simulated with a t-chunk of x̂1, . . . , x̂` for some
t ≥ 0. More concretely (but informally),

– Let I ⊆ [n] and K ⊆ [`], the probes to f(Q̂[i, ]) for i ∈ I can be simulated by sampling the
corresponding random distribution, and probes to x̃[k] for k ∈ K can be simulated with the α part
of x̂1, . . . , x̂` corresponding to I and K. In the example of Figure 4, the probes of this type relate to
I = {2, 3, 4} and K = {5, 6}.
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x̂1[1], x̂2[1], x̂3[1], x̂4[1], x̂5[1], x̂6[1], x̂7[1], x̂8[1], x̂9[1]

x̂1[2], x̂2[2], x̂3[2], x̂4[2], x̂5[2], x̂6[2], x̂7[2], x̂8[2], x̂9[2]

x̂1[3], x̂2[3], x̂3[3], x̂4[3], x̂5[3], x̂6[3], x̂7[3], x̂8[3], x̂9[3]

x̂1[4], x̂2[4], x̂3[4], x̂4[4], x̂5[4], x̂6[4], x̂7[4], x̂8[4], x̂9[4]

x̂1[5], x̂2[5], x̂3[5], x̂4[5], x̂5[5], x̂6[5], x̂7[5], x̂8[5], x̂9[5]

x̂1[6], x̂2[6], x̂3[6], x̂4[6], x̂5[6], x̂6[6], x̂7[6], x̂8[6], x̂9[6]

x̂1[7], x̂2[7], x̂3[7], x̂4[7], x̂5[7], x̂6[7], x̂7[7], x̂8[7], x̂9[7]

α part, tα = 5
β part, tβ = 3

Fig. 4. An examples of an 8-chunk of sharings x̂1, . . . , x̂7, where tα = 5 and tβ = 3. Each column of the matrix
corresponds to a distinct sharing.

– The probes to X̂ can be simulated with the β part of sharings x̂1, . . . , x̂`. In the example of Figure 4,
the probes of this type are X̂[3,2], X̂[2,4] and X̂[3,6].

Below in Lemma 2, we show that the union of two t-chunks is a 2t-chunk. Its proof is in Appendix B.1.
This property enables merging several t-chunk probes.

Lemma 2 (Closure of t-chunk under union) If S1 and S2 are t1-chunk and t2-chunk of sharings
x̂1, . . . , x̂` respectively, then S1 ∪ S2 is a (t1 + t2)-chunk of x̂1, . . . , x̂`.

Cautionary note. By definition, a subset of a t-chunk is also a t-chunk. Thus, a t-chunk should also be
a t′-chunk for any t′ > t. Moreover, the partition of S (into α and β parts) is not unique. For example,
the set of share highlighted in Figure 4 can also be 9-chunk, if it is partitioned in a way that β part
contains all the highlighted shares and α part is empty. Also note that, there always exists a minimum
value of t for any set of shares. For example, the set of share highlighted in Figure 4 can not be t-chunk
for any t < 8.

3.3 New security notion for MIMO gadgets

In this sub-section, we formally introduce the new security notions. We begin with the first one:

1. d-Chunk Strong Non-Inference and d-Chunk Non-Inference, abbreviated as d-CNI and d-CSNI re-
spectively.

They share a similar structure with NI/SNI, but output and propagated shares are replaced with a t-
chunk of the output and input sharings respectively, making them to be positioned in-between d-(S)NI
and d-MIMO-SNI. The formal definition of d-C(S)NI is as follows.

Definition 6 (d-C(S)NI) Let G be a gadget with sharings as inputs and outputs. G is d-CNI (resp., d-
CSNI), if any probes consisting of tint internal probes and a tout-chunk of output sharings with tint+tout ≤
d can be simulated with a (tint + tout)-chunk (resp., tint-chunk) of input sharings.

In Figure 5-(a)(b)(c)(d), we give examples to illustrate the differences of the d-C(S)NI, (S)NI and MIMO-
SNI. Also note that type iii shares cover type i shares with the same value of t, and thus, as shown in
Lemma 3, d-C(S)NI implies the (S)NI security. The full proof is given in Appendix B.2.

Lemma 3 d-CNI ⇒ d-NI, d-CSNI ⇒ d-SNI and d-CSNI ⇒ d-CNI.
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3.4 New security notion for gadgets with packed sharings

While the d-C(S)NI meets the minimal requirement for protecting any cryptographic algorithm, it is
(by definition) only for gadgets with sharings as inputs and outputs, and thus incompatible with packed
sharings. Such compatibility has the (obvious) advantage of enabling extension to any gadgets that are
composed of packing, multiplying and linear gadgets. For example the masked AES S-box that we will
present latter in Figure 9, Section 6. The security proof of such composition can be much simplified if
there exist secure notions particularly for packing and multiplying gadgets, more generally, for gadgets
with packed sharings as inputs or outputs.

Therefore, to facilitate the compositions for gadgets with packed sharings, two other new notions are
necessary:

2. For the gadgets with input sharings and output packed sharings, we propose d-Input-Chunk Non-
Inference and d-Input-Chunk Strong Non-Inference, abbreviated as d-ICNI and d-ICSNI respectively.

3. For the gadgets with input packed sharings and output sharings, we propose d-Output-Chunk Non-
Inference and d-Output-Chunk Strong Non-Inference, abbreviated as d-OCNI and d-OCSNI respec-
tively

The formal definitions are in Definitions 7 and 8. Also see Figure 5-(e)(f) for the corresponding illustra-
tions.

Definition 7 (d-IC(S)NI) Let G be a gadget with sharings as inputs and packed sharings as outputs.
G is d-ICNI (resp., d-ICSNI), if any probes consisting of tint internal probes and tout shares from output
packed sharings with tint+ tout ≤ d can be simulated with a (tint+ tout)-chunk (resp., tint-chunk) of input
sharings.

Definition 8 (d-OC(S)NI) Let G be a gadget with packed sharings as inputs and sharings as outputs.
G is d-OCNI (resp., d-OCSNI), if any probes consisting of dint internal probes and a dout-chunk of output
sharings with tint + tout ≤ d can be simulated with tint + tout (resp., tint) shares of each input packed
sharing.

In Sections 4 and 5, we will propose constructions for d-CSNI and d-CNI packed gadgets that we will
use in tailored analyzes of some relevant circuits in Sections 6 and 7.1. We leave the proposition and proof
of more generic composition rules as an important goal for further research and present in Appendix E
first steps in this direction.

Composability of all the new notions
(
i.e., d-C(S)NI, d-IC(S)NI and d-OC(S)NI

)
can be proved by

using the probe propagation framework introduced in [11, 3] (see a description in Appendix C). Based
on the new security notions, in Appendix D we give three examples to illustrate the composition of the
gadgets in the probe propagation framework.

4 Packed multiplication gadget

4.1 Construction

We consider the element-wise product (a.k.a., the entrywise product or the Hadamard product) of two

secret vectors. That is, for x
def
=
(
x[1], . . . ,x[`]

)
and y

def
=
(
y[1], . . . ,y[`]

)
, we consider computing z =

x� y
def
=
(
x[1]y[1], . . . ,x[`]y[`]

)
in the masked domain, where � denotes the element-wise multiplication

over F`q. The inputs of the packed multiplication gadget are `× 2 Boolean sharings:

{x̂i}`i=1
def
=
{(

x̂i[1], . . . , x̂i[n]
)}`
i=1

and {ŷi}`i=1
def
=
{(

ŷi[1], . . . , ŷi[n]
)}`
i=1

And the outputs should also be ` Boolean sharings {ẑi}`i=1 such that:

n∑
i=1

ẑk[i] =
( n∑
i=1

x̂k[i]
)( n∑

i=1

ŷk[i]
)
, for any k ∈ [`].
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d-MIMO-SNI

tint probes

d-CSNI

(b)

(c) (d)

d-SNI

d-ICSNI

(e)

d-OCSNI

(f)

(a)

d-NI
tint+tout shares tout shares of

tint probes tint probes

of each sharing all sharings

tint shares of

each sharing

tout shares of

all sharings

tint shares of

all sharings
tout shares of

each sharing

tint probes tint probes

tint probes

tout-chunk of

all sharings

input outputinput output

outputinput outputinput

tint-chunk of

all sharings

input

tint-chunk of

all sharings

tout shares of

all sharings

output

tint shares of

each sharings

tout-chunk of

all sharings

outputinput

Fig. 5. Difference between the security notions.
(a) d-NI: tout output probes and tint internal probes can be simulated with propagated shares that consist of
tint + tout shares of each input sharing.
(b) d-SNI: output probes are the same as d-NI case, and the propagated shares consist of tint shares of each
input sharing.
(c) d-MIMO-SNI: the output probes consist of tout shares of each output sharing, and the propagated share is
only tint input share of all input sharings.
(d) d-CSNI: output probes consists of a tout-chunk of output sharings, and the propagated shares consist of a
tint-chunk of output sharings.
(e) d-ICSNI: output probes are shares from packed sharings, and the propagated shares are the same as d-CSNI
case.
(f) d-OCSNI: output probes are the same as d-CSNI case, and the propagated shares are shares from packed
sharings.

The gadget requires an (n−1)× ` matrix A such that any d < n columns of [I,A] are independent.
In other words, [I,A] is the generating matrix

(
with the size (n−1)× (`+n−1)

)
of a liner code with dual

distance d+ 1. A typical example of A is an (n−1)× ` MDS matrix, and in this case, d = n− 1.

The packed multiplication can be divided into two sub-gadgets: Packing and Multiplying. Generally
speaking, the first gadget manipulates {x̂i}`i=1 and {ŷi}`i=1 separately to compute the packed sharings
(x̃, û) ∈ (F`q,Fn−1q ) and (ỹ, v̂) ∈ (F`q,Fn−1q ), and the second gadget computes the result from the packed
sharings. More details are elaborated as follows:

– Packing: This sub-gadget packs the sharings {x̂i}`i=1 into a packed sharing that is a tuple (x̃, û) ∈
(F`q,Fn−1q ), such that for any k ∈ [`], xk can be reconstructed from x̃[k] and û via xk = x̃[k]⊕ ûA[, k].
The packed sharings should also meet the requirement of security, that is, any d elements of (x̃, û)
are independent of the secret variables x.

Similarly, {ŷi}`i=1 are also packed into a packed sharings (ỹ, v̂) in the same vein.

– Multiplying: This sub-gadget computes the sharings of x � y from the packed sharings (x̃, û) and
(ỹ, v̂). At a high level, for each k ∈ [`], this sub-gadget perform a calculation with two-stages that first
calculates outer product of the input shares (x̃[k], v̂)T × (ỹ[k], û), and then compresses the results
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with some randomness. More importantly, the random matrix R and the calculation of S are shared
(amortized) for different values of k.

We give the packed multiplication gadget in Gadget 1, which is made up of Gadget 1-P and Gadget 1-
M for packing and multiplying respectively. We also present examples of Gadget 1-P and Gadget 1-M in
Figures 6 and 7 respectively.

Gadget 1 Packed Multiplication

Input: Boolean sharings {x̂i}`i=1 ∈ (Fnq , . . . ,Fnq ) and {ŷi}`i=1 ∈ (Fnq , . . . ,Fnq ).

Output: Boolean sharings {ẑi}`i=1 ∈ (Fnq , . . . ,Fnq ).
1: The gadget ensures that:

ẑk[1]⊕ . . .⊕ ẑk[n] =
( n∑
i=1

x̂k[i]
)( n∑

i=1

ŷk[i]
)
, for any k ∈ [`].

2: A is an (n−1)× ` matrix over Fq such that any d columns of [I,A] are independent.

Gadget 1-P: Packing

Input: Boolean sharings {x̂i}`i=1

Output: Packed sharings (x̃, û) ∈ (F`q,Fn−1
q )

The gadget ensures that: xk = x̃[k]⊕ ûA[, k], for any k ∈ [`].

1: Randomly generate a matrix Q ∈ F(n−1)×(n−1)
q

. Amortization: The size of Q is independent of `

2: Q̂ := QA
3: X := [x̂T

1 , . . . , x̂
T
` ]⊕ [Q̂;0`] . 0` denotes an `-length zero vector.

4: û :=
∑n−1
i=1 Q[i, ] and x̃ :=

∑n
i=1 X[i, ]

For the packing from {ŷi}`i=1 to (v̂, ỹ): Repeat Gadget 1-P with input {ŷi}`i=1. It ensures that: yk = ỹ[k]⊕
v̂A[, k], for any k ∈ [`].

Gadget 1-M: Multiplying

Input: Packed sharings (x̃, û) and (ỹ, v̂).
Output: Boolean sharings {ẑk}`k=1.

The gadget ensures that
∑n
i=1 ẑk[i] =

(
x̃[k]⊕ ûA[, k]

)(
x̃[k]⊕ v̂A[, k]

)
, for any k ∈ [`].

1: Randomly generate a symmetric matrix R ∈ F(n−1)×(n−1)
q

2: Let Rdiag be the diagonal matrix such that Rdiag[i,i] = R[i,i] for i ∈ [n−1]
3: for k = 1; k ≤ `; k++ do
4: Let aT

k = A[, k]
5: ek := x̃[k]ỹ[k],kk := x̃[k]v̂,wT

k := ûTỹ[k],S := ûTv̂

. Compute the outer product:

[
ek, kk
wT
k , S

]
=
[
x̃[k], û

]T × [ỹ[k], v̂
]

. Amortization: S only need to be computed once for different values of k

6: t̂T
k :=

[
ek, 0
wT
k , (S⊕R)

] [
1
aT
k

]
⊕
[
akRdiaga

T
k

kT
k

]
. Amortization: R and Rdiag are re-used for different values of k

7: ẑk := t̂k � [1,ak]
8: end for

4.2 Correctness of Gadget 1

In the following, we claim the correctness of Gadget 1, and the full proof is given in Appendix F.

Theorem 1 The correctness of Gadget 1-P and Gadget 1-M are ensured, i.e., for any k ∈ [`], xk =
x̃[k]⊕ ûA[, k], yk = ỹ[k]⊕ v̂A[, k], and

∑n
i=1 ẑk[i] =

(
x̃[k]⊕ ûA[, k]

)(
x̃[k]⊕ v̂A[, k]

)
.

4.3 Security of Gadget 1

We first describe some intuitions behind the construction with respect to the security. Then, we give the
security claim of Gadget 1 in Theorem 2, where the full proof will be given in Appendix G.
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[
Q[1,1],Q[1,2]
Q[2,1],Q[2,2]

]
A

⊕

∑∑

x̃[1] x̃[2]∑∑
û[1] û[2]

Q̂

x̂1[1], x̂2[1], x̂3[1]
x̂1[2], x̂2[2], x̂3[2]
x̂1[3], x̂2[3], x̂3[3]

 X[1,1],X[1,2],X[1,3]
X[2,1],X[2,2],X[2,3]
X[3,1],X[3,2],X[3,3]
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∑
x̃[3]

Q̂[1,1], Q̂[1,2], Q̂[1,3]

Q̂[2,1], Q̂[2,2], Q̂[2,3]
0 0 0
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$

input

output

Fig. 6. Illustration of Gadget 1-P for n = 3 and ` = 3

[
ek = x̃[k]ỹ[k], kT

k = x̃[k]v̂
wT
k = ỹ[k]v̂T, S = ûTv̂

]

[
x̃[k], û

]T [
ỹ[k], v̂

]
×

[
ek, 0
wT
k , (S⊕R)

] [
1
aT
k

]
=

[
ek

wT
k ⊕ (S⊕R)aT

k

]

t̂k[1]

t̂k[2]

t̂k[3]

ẑk[1]

ẑk[2]

ẑk[3]

Output

⊕
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T
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k
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]
×
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x̃[1], û
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]
×

... ... ... ...
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[
e1 = x̃[1]ỹ[1], kT

1 = x̃[1]v̂
wT

1 = ỹ[1]v̂T, S = ûTv̂

]

[
e1, 0
wT

1 , (S⊕R)

] [
1
aT

1

]
=

[
e1

wT
1 ⊕ (S⊕R)aT

1

]

t̂1[1]

t̂1[2]

t̂1[3]

ẑ1[1]

ẑ1[2]

ẑ1[3]

⊕
[
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]

·a1[1]

·a1[2]

[
e` = x̃[`]ỹ[`], kT

l = x̃[`]v̂
wT
` = ỹ[`]v̂T, S = ûTv̂

]

[
e`, 0
wT
` , (S⊕R)

] [
1
aT
`

]
=

[
e`

wT
` ⊕ (S⊕R)aT

`

]
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ẑ`[2]

ẑ`[3]

⊕
[
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T
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... ... ... ...

·1 ·1 ·1

aTk = A[, k] for k ∈ [`]

R is a 2× 2 symmatric random matrix

Rdiag is the diagonal matrix of R

... ... ... ...

Fig. 7. Illustration of Gadget 1-M for n = 3
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Gadget 1-P first generates a uniformly distributed matrix Q, which is then multiplied by A. And, the
result is used to mask the input sharings, resulting in X. As any d columns of [I,A] are independent, any
d columns of [Q,QA] are uniformly distributed. We can see that all probes (at most d) to Gadget 1-P
should relate to no more than d columns of [Q,QA]. To ease the analysis, we can consider a simple
case that the entries of Q are unknown (and there is no probe to the calculation of QA), the process of
summing the rows of [Q,X] should be randomized by uniform random elements, preventing the leaks of
inputs. Then, regarding the case that Q leaks, one can refer to the rationale of the t-chunk definition in
Section 3.2.

The intuition behind the construction of Gadget 1-M is similar, but analysis will be more scrupulous,
since the random matrix R is symmetric.

Theorem 2 Gadget 1-P is d-ICSNI, Gadget 1-M is d-OCNI, and Gadget 1 is d-CSNI.

5 Linear gadgets

In this section, we discuss how to implement a linear transformation L : F`q → F`′q with sharings. First,
sub-section 5.1 shows that the trivial implementation of a linear function is d-NI. Though, such a trivial
implementation suffers from limitations in the composition with d-CSNI gadgets (e.g., the packed mul-
tiplication), which is shown in sub-section 5.2. This motivates the construction of a more secure d-CNI
linear gadget in sub-section 5.3.

5.1 Trivial implementation

Gadget 2 shows the trivial implementation of a linear operation with Boolean sharings {x̂i}`i=1. The
gadget manipulates shares with different indices separately. Each internal probe relates to at most one
index of {x̂i}`i=1, and any tout shares of {ẑi}`i=1 relates to at most tout indices of {x̂i}`i=1, and in total

any tint internal probes and tout shares of {ẑi}`i=1 can be simulated with at most (tint + tout) shares of

{x̂i}`i=1. Thus, Gadget 2 is d-NI for any d ≤ n.

Gadget 2 Trivial linear operation

Input: Boolean sharings{x̂i}`i=1 ∈ (Fnq , . . . ,Fnq )

Output: Boolean sharings {ẑ}`
′

i=1 ∈ (Fnq , . . . ,Fnq )
1: for i = 1; i ≤ n; i++ do
2: ẑ1[i], . . . , ẑ`′ [i] = L(x̂1[i], . . . , x̂`[i])
3: end for

However, Gadget 2 is not d-CNI. For example, if L({x̂k[i]}`k=1) =
∑`
k=1 x̂k[i] for i ∈ [n], then for t ≤ d,

any t shares of ẑ depend on t shares of each of x̂k[i] for i ∈ [n], rather than a t-chunk of input sharings.
An exception is when shares of input sharings are operated separately, which is shown in Lemma 4, and
the full proof is given in Appendix I.1.

Lemma 4 Any gadget that manipulates the shares of input sharings separately (i.e., there is no single
variable related to more than one input shares), is d-CNI for any d ≥ 0.

5.2 Why a d-CNI linear gadget is necessary?

While trivially implemented linear gadgets are quite efficient, its composition with the d-CSNI packed
multiplication gadget (described in Section 4) is not. Below we elaborate with an example.

Figure 8-(a) shows an improper composition: G1 and G2 are 3-CSNI and 3-NI respectively, and one
probe of G2 can be simulated with one share of each G2’s input sharing, which however cannot be simulated
with the input of G2. To fix this issue, one can rely on the strategy of adding refreshings between the two
gadgets in the same way as Figure 3-(c) in Section 2.3. Note that a d-SNI refresh gadget for one sharing
of size n asymptotically requires up to O(n log n) random elements [4, 1], and with all the sharings, it
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leads to an inefficient composition. Figure 3-(b) shows a more efficient solution, where G2 is changed with
a 3-CNI gadget to make the composition work. The latter solution (of Figure 3-(b)) raises the following
question:

Can a d-CNI linear gadget be more efficient than the strategy of combining a trivial linear gadget
with d-SNI refreshings?

3-CNI 3-NI

1 probe

3-CNI

(a) improper compostion of

d-CNI and d-NI gadgets

propagated shares: 4-chunk

3-CNI

1 probe
propagated shares: 2-chunk

(b) proper compostion of

two d-CNI gadgets

G1G2 G2G1

Fig. 8. An example to show the necessity of d-CNI linear gadget

5.3 New construction of linear operation

We answer the question affirmatively. In Gadget 3, we give a new construction of linear operation for
Boolean sharings. It first refreshes each input sharing by using the so-called locality refreshing [25, 15],
which requires n− 1 random elements. Then, it performs the linear operation on the refreshed sharings.
In total, Gadget 3 uses `(n−1) random elements for ` input sharings. In Theorem 3, we claim the security
of Gadget 3, and the full proof is given in Appendix I.2.

Gadget 3 d-CNI Linear operation

Input: Boolean sharings {x̂i}`i=1 ∈ (Fnq , . . . ,Fnq )

Output: Boolean sharings {ẑi}`
′

i=1 ∈ (Fnq , . . . ,Fnq )
1: for k = 1; k ≤ `; k++ do
2: Generate a uniformly distributed vector rk ∈ Fn−1

q

3: ŷk[1 :n−1] = x̂k[1 :n−1]⊕ rk
4: ŷk[n] = x̂k[n]⊕

∑n−1
i=1 rk[i]

5: end for
6: Call Gadget 2 with input sharings {ŷi}`i=1 and output sharings {ẑi}`

′

i=1

Theorem 3 Gadget 3 is d-CNI for any d such that d ≤ n.

5.4 Linear gadgets for packed sharings

The linear gadget investigated above only considers (Boolean) sharings, which is already sufficient to
protect the cryptographic algorithms. For the packed sharings, the linear gadget are more complicated and
may come at high overhead. The main reason is that, the trivial implementation of linear transformation
gadget is based on the premise that Boolean sharings encode each secret independently, which however is
not standing for the packed sharings. Besides, the code-based masking also face this issue, and a similar
reasoning can be found in [38, Sction 5.2].
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An exception is that the addition over packed sharings can be trivially implemented by manipulating
shares with different indices separately. That is, for input packed sharings (x̃, û) and (ỹ, v̂), the trivial
addition is (x̃⊕ ỹ, û⊕ v̂). In Lemma 5, we give the security of this trivial addition, which can be regarded
as a variant of d-NI for the packed sharings (note that the d-NI is defined only for gadgets with input
and output sharings). The proof will be given in Appendix I.3.

Lemma 5 For a trivial addition gadget with two input packed sharings, any tout shares of output packed
sharings and tint internal probes can be simulated with tint + tout shares of each of input packed sharings.

6 Application to AES SubBytes

6.1 Implementation approach using the tower field method

AES-128, the internal states, including the round keys, are viewed as a set of 16 variables (say, {x1, . . . , x16})
in F28 . In its SubBytes step, an S-box is computed over each of the 16 states. The S-box is a nonlinear
function F28 → F28 that consists of the inverse in F28 and an affine transformation. In the field inversion
can be decomposed into several multiplications in F24 (that can be fully tabulated) and linear operations
using the tower field method [29]:

1. (ah, al) := δ(x) ∈
(
F24 ,F24

)
2. a := λa2h ⊕ al(ah ⊕ al) ∈ F24

3. a′ := (a2a)4a2 ∈ F24 4. a′h := a′ah ∈ F24

5. a′l := a′(ah + al) ∈ F24 6. S(x) := Aff
(
δ−1
(
(a′h, a

′
l)
))
∈ F28

In detail, the input x ∈ F28 is mapped to ah, al ∈ F24 using a linear isomorphism mapping δ : F28 →
(F24 ,F24), and λ is a constant in F24 . After computations over F24 in steps 2 to 5, the inverse isomorphism
mapping δ−1 : (F24 ,F24) → F28 maps (a′h, a

′
l) back to an element in field F28 , and finally, an affine

transformation Aff : F28 → F28 yields the S-box output.
We use MDS matrices from the Reed-Solomon code [34], and thus n = d+ 1. By the MDS conjecture

[36], d × ` MDS matrix over F24 shall satisfy ` + d ≤ |F24 | = 16. Thus, we set ` = 8 and implement
8 S-boxes together by using the packed multiplication (16 S-boxes can be achieved by invoking this
implementation twice). The input and output of masked S-boxes are 8 sharings. The implementation is
optimized by separating the packing and multiplying gadgets to reduce the number of calls to packing,
as well as to re-use the packed sharings to the largest extent. The process is shown in Figure 9, in which
P and M denote the packing and multiplying of Gadget 1-P and Gadget 1-M with ` = 8 respectively.
The ()2, ()4, δ, λa2 and ⊕ are trivial implementations of the corresponding linear operations, and the
last gadget that is a combination of inverse isomorphism and affine is implemented by Gadget 3.

In the security analysis, to be strictly consistent with the definition of circuits, where all variables
are in the same finite field, we map each variables (say a) in F24 to a variable (say b) in F28 , such that
the most significant 4 bits of b are identical to the 4 bits of a, and the least significant 4 bits of b are
zeros. Then, each function over F24 is isomorphically mapped to a gate over F28 by which the function is
performed only over the most significant 4 bits of the variables. The function δ : F28 → (F24 ,F24)

(
resp.,

δ−1 : (F24 ,F24
)
→ F28) is isomorphically mapped to a gate F28 → (F28 ,F28)

(
resp., F28 → (F28 ,F28)

)
by

which each output (resp., input) is mapped to a variable in F28 by the same vein as before. Note that
these mappings are only for the security analysis and do not impact the efficiency of the implementation.

Proposition 1 (The SubBytes implementation is d-CSNI) The composed gadget in Figure 9 is d-
CSNI.

The full proof is given in Appendix K.
Though we adopt the tower field method [29] and separate the packing and multiplying gadgets for

the sake of reducing the cost to the utmost. We believe a simpler implementation using the multiplication
chain [35] in a larger field F28 will be interesting as well. In this respect, we describe such a masked AES
implementation in Appendix J.

6.2 Implementation results

It can be seen that, the implementation of 8 S-boxes contains 6 instances of Gadget 1-P and 5 instances
of Gadget 1-M. The random requirements of Gadget 1-P and Gadget 1-M are d2 and d(d + 1)/2 4-bit
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Fig. 9. Masked AES S-box with packed multiplication.

variables respectively. The δ−1 and affine operation are implemented together by Gadget 3, which requires
8d` bytes of randomness. At last, the total random bits for 16 AES S-boxes is((

d2 × 6 + (d(d+ 1)/2)× 5
)
× 4 + d`× 8

)
× 2 = 68d2 + 20d+ 16d`.

For ` = 8, the above result is 68d2 + 148d.
The S-boxes are implemented with security orders d = 4, 8 based on the ARM Cortex M architecture.

The multiplication by matrix A at line 2 of Gadget 1-P and line 6 of Gadget 1-M are tabulated, which in
total requires 16d` bytes of memory. For the consistency with the state-of-the-art results, the randomness
in our implementations can be obtained from a constrained TRNG that outputs 32-bit of fresh randomness
every 80 clock cycles, which is also used in [9] and recommended in [27]. For the comparison with the
state-of-the-art implementations, we consider the implementations of bitslice AES S-boxes reported in
[19, 9] as the benchmarks.

The performance results are summarized in Table 2. Compared with the work of [9], our implementa-
tion saves 55% and 68% cycles for the generation of randomness for d = 4 and 8 respectively. The code
sizes of our implementations are larger, which is due to the loop unrolling of our implementation. Indeed,
our implementations are slightly slower than the bitsliced methods in computation, which is because that
bitsliced methods perfectly fit the bitwise AND and XOR instructions. By contrast, our implementa-
tions are based on the multiplication in GF(24), which is not directly supported in microprocessors and
can only rely on pre-computed tables. Nevertheless, we emphasize that this computational loss could be
mitigated or eliminated via the following two approaches:

1. One can optimize the matrix A to make the corresponding multiplication more efficient. Sometimes
an MDS matrix is not needed: even though d < n − 1, the ratio of cost to security order may be
better (than using the MDS matrix).

2. One can implement the masked AES on hardware, where the field multiplication and linear transfor-
mation can be optimized in bit-level.

We refer to them as future works. Finally, despite the computational loss, our implementation still achieves
a gain of up to 33% in total speed when d = 8.

Regarding computational cost, the issue of field multiplication in software indicates that bitsliced
implementations may be more efficient. However, the bitsliced consumes more randomness. With same
value of security order d and the number of parallel multiplications (say, `), larger field (say, F24 or F28)
may give a smaller number of shares n for a packed sharing. Generally, if ` + d ≤ |Fq|, we can choose
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A in Gadget 1 an MDS matrix, and then we have n = ` + d. But for bitsliced case, |Fq| = 2, and thus
n > `+ d. Therefore, the situation of combining bitsliced implementation with the packed multiplication
is more complicated: operation can be more efficient (with the bitwise AND instruction) at the cost of
more randomness bits. We refer to this investigation as a future work.

Last but not least, we make the source codes of our AES-Sboxes implementation available on
https://github.com/wjwangcrypto/Packed mul.

Table 2. Summary of performances for 16 AES S-boxes

Cycles for
Computation

Cycles for
Generating

Randomness

Total
Cycles

Code
size

RAM
size

[19, R.-P. method], d = 4 19 232 34 944 54 176 4KB unreported

[19, Bitsliced method], d = 4 11 502 17 472 28 974 3.1KB unreported

[9, Bitsliced method], d = 4 9 222 9 282 18 504 unreported unreported

Our work, d = 4 15 998 4 200 20198 9.8KB 10.9KB

[19, R.-P. method], d = 8 70 840 163, 072 233 912 4KB unreported

[19, Bitsliced method], d = 8 34 798 81 536 116 334 3.1KB unreported

[9, Bitsliced method], d = 8 27 028 43 316 70 344 unreported unreported

Our work, d = 8 33 142 13 840 46982 17KB 11.8KB

7 Application to GHASH, AES-GCM, and more

7.1 A brief description of GHASH and AES-GCM

Authenticated encryption aims at ensuring both confidentiality and integrity simultaneously [10], and
has became the de facto standard for secure data transferring. The authenticated encryption algorithm
AES-GCM was proposed by McGrew and Viega in [30] and standardized by NIST since 2007. It combines
an encryption based on the widely used AES algorithm in counter mode and an authenticator based on
the GHASH function involving multiplications in F2128 . The authenticator mixes ciphertexts, potential
associated data and a secret parameter derived from the encryption key to produce a tag. See Appendix L
for a graphic description.

It is compulsory to seek for side-channel secure implementations for such a standard. A crucial step is
to secure the GHASH function, which is essentially a polynomial-evaluation hash. Its takes ι+ 1 variables
s0, . . . , sι in F2128 as well as an authentication key h ∈ F2128 as inputs, and evaluates Equation 2 below.

tag = hιs0 ⊕ hι−1s1 ⊕ . . .⊕ hsι . (1)

A sequential calculation of the polynomial-evaluation hash can be built by the Horner’s rule [24]:

xi =

{
0 for i = 0

(xi−1 ⊕ si)h for i = 1, . . . , ι
, (2)

where the output tag = xι.

For the underlying block cipher AES, the implementation approach has been discussed in Section 6.
Here we concentrate on the other main indigent GHASH. Note that various SCAs against GHASH
have been reported in e.g., [8, 7], which enable recovering the key h and creating forgeries. It is thus
unsurprising that masking GHASH has received quite a lot attention, see e.g., [32, 37]. However, existing
masked implementations of GHASH only considered protecting against known SCAs, leaving out provable
security. Here we will fill in the gap. In detail, we study the case that h and s0, . . . , sι are encoded into
sharings: ĥ and ŝ0, . . . , ŝι, and the masked GHASH outputs the sharing of the tag. The crux is to masking
the polynomial-evaluation hash (Equation 2), on which we will elaborate in the next sub-section.
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7.2 Provably secure masked implementation of polynomial-evaluation hash

To mask the polynomial-evaluation hash, the most straightforward approach is to apply ISW multipli-
cation (more concretely, the generalized version for finite field in [35]) in the sequential calculation of
Equation 2. This approach consumes ι+ 1 ISW multiplications, each of which consists of (d+ 1)2 bilinear
multiplications and requires 64(d + 1)d random bits. Based on the above, the cost of this approach is
estimated and summarized in Table 3.

Note that the computation of polynomial-evaluation hash can be parallelized. In detail, assuming ` | ι,
the parallelized version computes {x(i)1 , . . . , x

(i)
` } from i = 0 to i = ι

` as follows:

x
(i)
k =

{
skh

k for i = 0

(x
(i−1)
k ⊕ sk+ik)hk for i = 1, . . . , ι`

, for k ∈ [`] (3)

Finally, the summation
∑`
k=1 x

( ι` )

k is taken as the tag. The computation of {x(i)1 , . . . , x
(i)
` } for i ∈ [ ι` ] can

be parallelized and thus fits our packed multiplication of Gadget 1. In Figure 10, we present our new
approach based on packed multiplication.

M: Gadget 1-M

P: Gadget 1-P

: ` sharings

: 1 packed sharing

P

M

P

⊕P

P

M ... ...

... ...

... ...

P

⊕P M
∑

: 1 sharing

ĥ, ĥ2, . . . , ĥ`

ŝ1, . . . , ŝ` ŝ`+1, . . . , ŝ2` ŝι−`+1, . . . , ŝι

the sharing of tag

∑
: Gadget 3: summing of ` sharings

... ...

Fig. 10. Masked polynomial-evaluation hash with packed multiplication.

Based on the probing propagation framework, it is easy to see that the composed gadget in Figure
10 is d-CSNI. To estimate the cost, we use the MDS matrix from the Reed-Solomon code for the matrix
A of our packed multiplication gadgets, and thus n = d + 1. By the MDS conjecture [36], ` and d can
be arbitrarily large as long as `+ d ≤ |F2128 | = 2128. The estimated cost of this approach is also given in
Table 3. It can be seen that, asymptotically, the new scheme with packed multiplication achieves a gain
of cost up to ` times from the straightforward approach.

Table 3. Estimated costs of the masked polynomial-evaluation hash over F2128

Sequential Implementation
with ISW multiplication

Figure 10 with
Packed multiplication

Randomness complexity (in bits) 64(ι+ 1)d(d+ 1) 64(ι+1)d(d+1)+128(ι+1)d2

`

Computational complexity ∗ (ι+ 1)(d+ 1)2 (ι+1)(d+1)2

`

* Metric: the number of bilinear multiplications.

7.3 More applications of the masked polynomial-evaluation hash

Besides the GCM, polynomial-evaluation hashes have wide applications, see [39, 31]. We thus believe our
approach have a great impact. To demonstrate, we take disk encryption as another example. For this pur-
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pose, Halevi proposed a mode named TET (short for linear-Transformation; ECB; linear-Transformation) [23].
The mode can be seen as the ECB encryption sandwiched between two layers of “blockwise-universal
hash”. An instance of such hashes proposed in [23] was named Blockwise Polynomial-Evaluation (BPE).
With inputs x1, . . . , xτ ∈ Fι2p and key (β, τ) ∈ (F2p ,F2p), BPE firstly computes

s = x1τ ⊕ x2τ2 ⊕ . . .⊕ xιτ ι. (4)

Then, the result is obtained by
yi = xi ⊕ s⊕ αi−1β, for i ∈ [ι],

where α ∈ F2p is a constant. It is clear that BPE is essentially a polynomial-evaluation hash following
Equation 1, and thus it can also be parallelized and implemented in the same vein as that of Figure 10.
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A Probing-Isolating Non-Inference (PINI) and Multiple-Input-Multiple-
Output Strong Non-Inference (MIMO-SNI)

Definition 9 (d-PINI [13]) Let G be a gadget with sharings as inputs and outputs. G is d-PINI if any
tint internal probes and output shares indexed by O with tint+ |O| ≤ d can be simulated with inputs shares
indexed by I for |I| ≤ tint + |O| and O ⊆ I.

Definition 10 (d-MIMO-SNI [13]) Let G be a gadget with ` sharings as inputs and `′ sharings as out-
puts. G is d-MIMO-SNI, if any tint internal probes and output shares indexed by O1, . . . ,O`′ respectively
with |O1|+ tint ≤ d, . . . , |O`′ |+ tint ≤ d can be simulated with tint inputs shares.

B Proofs regarding composable security notions

B.1 Proof of Lemma 2

Let S1 (resp., S2) consist of

1. {x̂k[i] | k ∈ K1, i ∈ I1} (resp., {x̂k[i] | k ∈ K2, i ∈ I2}) with |K1|+|I1| = tα,1 (resp., |K2|+|I2| = tα,2).
2. tβ,1 (resp., tβ,2) shares from x̂1, . . . , x̂`.

such that tα,1 + tβ,1 = t1 (resp., tα,2 + tβ,2 = t2).
Then, S = S1 ∪ S2 consists of

1. {x̂k[i] | k ∈ K1, i ∈ I1}∪{x̂k[i] | k ∈ K2, i ∈ I2} ⊆ {x̂k[i] | k ∈ K, i ∈ I} with tα = |K|+|I| = tα,1+tα,2.
2. tβ = tβ,1 + tβ,2 shares from x̂1, . . . , x̂`.

We can see that tα + tβ = t1 + t2, giving that S is a (t1 + t2)-chunk of x̂1, . . . , x̂`.

B.2 Proof of Lemma 3

By definition, d-NI (resp., d-SNI) ensures that any tout output probes and tint internal probes such that
tout + tint ≤ d can be simulated with tout + tint (resp., tint) shares of each input sharing. The differences
between d-C(S)NI and d-(S)NI are the output probes (needed to be simulated) and propagated probes.
More precisely, d-(S)NI considers tout output shares (denoted as PO) as output shares and a set consisting
of t shares of each input sharing as propagation shares. In contrast, the d-C(S)NI replaces them with a
t-chunk of input and output sharings respectively.

Clearly, PO is a specific tO-chunk of output sharings by setting tα = 0. At the same time, by the
definition of t-chunk, any t-chunk of input sharings relates to at most t shares of each input sharing.
Thus, d-CNI implies d-NI and d-CSNI implies d-SNI.

Beside, by definition, we can directly see that is a gadget is d-CSNI, then it is d-CNI.
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C Probe propagation framework

In this section, we describe the probe propagation framework introduced in [11, 3] that is an intuitive
interpretation of the simulatability definition, based on which the composability of the new security
notions can be realized.

Let a composed gadget be G. For a set of probes P, the goal of probe propagation framework is to
analyze how P are simulated with a set of input shares S. A composition of gadgets can be seen as a
directed acyclic graph whose vertices are gadgets and edges transfer sharings or packed sharings. Let the
number of gadgets be p and the composed gadget be G, as every directed acyclic graph has a topological
ordering, we can order the gadgets as G1, . . . ,Gp, such that Gi is positioned before Gj for any i < j.
We then show that P can be divided into different subsets P1, . . . ,Pp and PO such that the internal
probes of Gi are in Pi for i = [p] and the output probes of the G are in PO. Each probe that transfers
between gadgets (say, the former gadget Gi and the latter ones {Gj}j∈J for J ⊆ {i+1, . . . , p}) can be
regarded as either the internal probe of each of {Gj}j∈J or the output probe of Gi. Without loss of
generality, we regard each of such probes as the internal probes of the latter gadgets, which ensures that⋃p
i=1 Pi ∪ PO = P. The probe propagation framework analyzes the gadgets one by one from Gp to G1:

– Initiate a set S to be empty. After the iteration, S should be a subset of the shares in the input
sharings of the composed gadget, and expected to be the propagated shares of all the probes.

– Let POp ⊆ PO be the set of probes both in PO and in output of Gp, i.e., POp
def
= PO ∩ OGp , where

OGp consists of the output variables of Gp. The framework checks if Pp ∪ POp can be simulated with
the input shares Sp of Gp:
• If so, then we call the shares Sp as the propagated shares of Gp. To this point, if Sp can be further

simulated with input shares of G, then Pp ∪POp can be as well. Thus, in the rest of the analysis,
we replace the probes related to Pp ∪ POp with Sp and continue to check the probes in Gp−1.
Additionally, we put G’s input shares that appeared in Sp into S.
• If Pp ∪ POp cannot be simulated with the input shares of Gi, then the analysis stops.

– Then, the framework iteratively checks Gi and constructs Si from i = p− 1 until i = 1. In each step,
it puts the G’s input shares appeared in Si into S. Note that for any i < p, the probes of Gi is made
up of two parts: Pi and the propagated shares that are connected to outputs of Gi.

At last, If the analysis process does not stop until i = 1, we can figure out the security notion of the
composed gadget by the shares in S.

In the next section, we exemplify the framework by proving three examples.

D Examples For the compatibility of the new gadget in the probe
propagation framework

The first example is shown in Figure 11-(a): G1 and G2 are d-CSNI gadgets with ` input and output
sharings, and they connect to a d-CNI gadget G3. The second example is shown in Figure 11-(b): a d-
OCNI gadget G3 connects to the outputs of two d-ICSNI gadgets (G1 and G2), and packed sharings are
transferred between them. The third example is more complicated and shown in Figure 11-(c). As shown
in Proposition 2, those three composed gadgets are all d-CSNI.

Proposition 2 The three composed gadgets in Figure 11 are all d-CSNI.

We next give proofs for the three examples.

D.1 Proof of the first example

Let the composed gadget be G. Without loss of generality, assume that the probes of G consist of tint
internal probes and a tout-chunk of output sharings such that tint + tout ≤ d. We divide the probes of G
into different subsets P1,P2,P3 and PO such that all the internal probes of Gi are in Pi for i ∈ {1, 2, 3}
and all the output probes are in PO. The probe propagation framework then analyzes the gadgets one by
one from G3 to G1. A set S is initiated to empty. For i ∈ {1, 2, 3}, let Si be propagated share corresponding
to Gi. The details of the checking process are shown below:

24



d-ICSNI

d-ICSNI

d-OCNI

d-CSNI

G3

1 packed sharing

` sharings

d-ICSNI

d-CNI d-ICSNI

d-OCSNI d-CNI d-ICSNI d-OCNI

d-CSNI

(b) second example(a) first example

(c) third example

G1

G2

G1

G2

G3

G4 G5 G6 G7

d-CSNI

d-CSNI

d-CNI

d-CSNI

G3

G1

G2

Fig. 11. Examples to illustrate the composition of gadgets with packed sharings transferred between them.

1. The probes in G3 are P3 ∪ PO. As G3 is d-CNI, P3 ∪ PO can be simulated with G3’s propagated
shares S3 that is a t3-chunk of G3’s input sharings with t3 = tout + |P3|. Let S3,1 and S3,2 be the sets
of sharings that from outputs of G1 and G2, and they are t3-chunk of output sharings of G2 and G3

respectively, since a subset of a t-chunk is also a t-chunk.
2. The probes in G2 are a subset of P2∪S3. As G2 is d-CSNI and t3 + |P2| ≤ d, any subset of P2∪S3 can

be simulated with G2’s propagated shares S2 that is a t2-chunk of G2’s input sharings with t2 = |P2|.
As G2’s input sharings are a subset of G’s input sharings, probes in S2 are put into S.

3. The probes in G1 are a subset of P1∪S3. As G1 is d-CSNI and t3+ |P1| ≤ d, any subset of P1∪PO can
be simulated with G2’s propagated shares S1 that is a t1-chunk of G1’s input sharings with t1 = |P1|.
As G1’s input sharings are a subset of G’s input sharings, probes in S1 are put into S.

Moreover, the above two steps can be summarized in a short form in Table 4.

Table 4. Proof of the first example based on the probe propagation framework

Gadgets Security notion Probes Propagated shares Si S

G2 d-CNI P2 ∪ PO
t3-chunk of

G3’s input sharings, for t3 = |P3|+ tout
∅

G2 d-CSNI P2 ∪ PO
t2-chunk of

G2’s input sharings, for t2 = |P2|
S1

G1 d-CSNI P1 ∪ S1
t1-chunk of

G1’s input sharings, for t1 = |P1|
S1 ∪ S2

At last, the set of propagated shares S = S1 ∪ S2, which is a t-chunk of G’s input sharings with
t ≤ |S1|+ |S1| ≤ tint. Therefore, all the probes in G can be simulated with a t-chunk of input sharings of
G, where t ≤ tint, which by definition, gives that G is d-CSNI. ut

D.2 Proof of the second example

Proof. Let the composed gadget be G. Without loss of generality, assume that the probes of G consist of
tint internal probes and tout-chunk of output sharings such that tint+ tout ≤ t. We divide the probes of G
into different subsets P1, P2, P3 and PO such that all the internal probes of Gi are in Pi for i = {1, 2, 3}
and all the output probes are in PO. The probe propagation framework then analyzes the gadgets one
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by one from G3 to G1. A set S is initiated to be empty. For i ∈ {1, 2, 3}, let Si be propagated shares
corresponding to Gi. We summarize the analysis in Table 5.

Table 5. Proof of the security of the second example

Gadgets Security notion Probes Si S
G3 d-OCNI P3 ∪ PO x̂[I] ∪ ŷ[J ] ∅

G2 d-ICSNI P2 ∪ ŷ[J ]
t2-chunk of G2’s input sharings,

for t2 = |P2|
S2

G1 d-ICSNI P1 ∪ x̂[I]
t1-chunk of G1’s input sharings,

for t1 = |P1|
S1 ∪ S2

At last, the set of propagated shares S = S1 ∪ S2, which is a (t1 + t2)-chunk of G’s input sharings,
where t1 + t2 ≤ tint. Therefore, all the probes in G can be simulated with a t-chunk of input sharings of
G with t ≤ tint, which by definition, gives that G is d-CSNI. ut

Remark. Due to the similarity of the proofs using the framework, in the rest of the appendix, we
will short such proofs in a form of only providing the tables shown above and necessary explanations.

D.3 Proof of the third example

Let the composed gadget be G. Without loss of generality, assume that the probes of G consist of tint
internal probes and tout-chunk of output sharings such that tint + tout ≤ d. We divide the probes of G
into different subsets P1, . . . ,P7 and PO such that all the internal probes of Gi are in Pi for i ∈ [7] and all
the internal probes are in PO. Let ti = |Pi| for i ∈ [7]. The probe propagation framework then analyzes
the gadgets one by one from G7 to G1. A set S is initiated to empty. For i ∈ [7], let Si be propagated
shares of Gi. We summarize the analysis in Table 6.

Table 6. Proof of the third example based on the probe propagation framework

Gadgets Security notion Probes Propagated shares Si S

G7 d-OCNI P7 ∪ PO
x̂[I] ∪ ŷ[J ], |I| = |P7|+ |PO| and

|J | = |P7|+ |PO|
∅

G6 d-ICSNI P6 ∪ ŷ[J ]
t6-chunk of

G6’s input sharings, for t6 = |P6|
∅

G5 d-CNI P5 ∪ S6
t5-chunk of G5’s input sharings,
for t5 = |P5|+ t6 = |P5|+ |P6|

∅

G4 d-OCNI P4 ∪ S5

x̂′[I′] ∪ ŷ′[J ′],
|I′| = |P4|+ t5 = |P4|+ |P5|+ |P6| and
|J ′| = |P4|+ t5 = |P4|+ |P5|+ |P6|

∅

G3 d-ICSNI P3 ∪ x̂[I] ∪ x̂′[I′] t3-chunk of
G6’s input sharings, for t3 = |P3|

∅

G2 d-ICSNI P2 ∪ ŷ′[J ′] t2-chunk of
G2’s input sharings, for t2 = |P2|

S2

G1 d-CNI P1 ∪ S3
t1-chunk of G1’s input sharings,
for t1 = |P1|+ t3 = |P1|+ |P3|

S1 ∪ S2
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At last, the set of propagated shares S = S1 ∪ S2, which is a (t1 + t2)-chunk of G’s input sharings,
where t1 + t2 = |P2|+ |P1|+ t3 ≤ tint. Therefore, all the probes in G can be simulated with a tint-chunk
of input sharings of G, which by definition, gives that G is t-CSNI. ut

E First steps to the generic composition rules of new security notions

The d-C(S)NI supports the following composition Lemmas 6 and 7.

Lemma 6 A composite gadget G made of a d-CNI gadget G1 and a d-CNI gadget G2 is d-CNI if the
inputs (and resp. the outputs) of G are the inputs of G1 (resp. outputs of G2).

If additionally either G1 or G2 is d-CSNI, then G is d-CSNI.

Proof. Let us first observe that all the inputs of G2 are outputs of G1, and reciprocally.
Next, the set of probes P in G can be partitioned into P1 the probes on G1, P2 the probes on G2 and

PO2 the output probes of G2, such that |P1 ∪ P2| = t ≤ d. By definition of d-CNI, P2 can be simulated
with a t2-chunk of G2’s input for t2 = |P2|, which is also t2-chunk of G1’s output. Then, a t2-chunk of
G1’s output and P1 can be further simulated with a t-chunk of G1’s input, since t ≤ |P1|+ t2. This shows
that G is d-C-NI.

If G1 is d-C-SNI, then a t2-chunk of G1’s output and P1 can be simulated with a t1-chunk of G1’s
input, where t1 = |P1|. Let Pint be the internal probes in G and tint = |Pint|, we have P1 ⊂ Pint, which
implies t1 ≤ tint. G is therefore d-C-SNI.

If G2 is d-C-SNI, then let P2,int, PO be a partition of P2 such that P0 is the set of output probes on G2

(which are also the output probes of G). The probes P2 can be simulated with a t2,int-chunk of its input,
where t2,int = |P2,int|. Using the same argument as previously, we conclude that P can be simulated with
a tint-chunk of its inputs, where tint = |P1 ∪ P2,int| is the number of internal probes. ut

In Appendix E.1, we exemplify the general composition of d-C(S)NI gadgets with Lemma 6. In the
following, we present the most natural composition rule in Lemma 7 with only d-CSNI gadget.

Lemma 7 Any composition of d-CSNI gadgets is d-CSNI.

Proof. The proof is based on the probe propagation framework introduced in Appendix C. Let G be a
gadget composed of d-C-SNI gadgets G1, . . . ,Gp. Let P be a set of at most d probes in G, partitionned in
sets P1, . . . ,Pp and PO such that each Pi contains the probes in Gi and PO contains the probes on the
outputs of G. Since the gadget composition graph is a directed acyclic graph, we assume wlog that the
gadgets Gi are sorted according to the reverse topological ordering (i.e., G1 is the “last” gadget in the
composition).

By induction, we prove that there exists a set of propagated shares Si that is |Pi|-chunk and that
enables to simulate the outputs of Gi that are in any Sj with j < i or in PO. All those sets are resp.
|Pj |-chunk or |PO|-chunk, hence their union is (

∑
j<i |Pj |+ |PO|)-chunk. Since

∑
j≤i |Pj |+ |PO| ≤ d, the

d-C-SNI gadget Gi can be simulated with the |Pi|-chunk Si.
Finally, we obeserve that the inputs of G required for the simulation are a subset of the union of the

Si’s. This union is tint-chunk, where tint =
∑
i |Pi|. ut

One of the most direct applications of the above rules is that the composition of Figure 3-(b) in
Section 3.1 works without any refreshing, if G1 and G2 are both d-C-SNI.

The above rules do not cover every case of secure composition. Further works may want to generalize
furthermore the composition results (similarly to the results for (S)NI in [11]), or use directly the probe
propagation framework.

E.1 Examples for the compatibility of the new gadget with the general composition rule

In Figure 12, we exemplify the general composition of d-C(S)NI gadgets with Lemma 6. Assuming we
aim at composing three gadgets G1, G2 and G3. Figure 12-(a) shows an improper composition where the
input sharings of d-CNI G2 connect to outputs of G1 whose outputs are also used as the input of G3 (G1

is not exclusively connected to G2). Figure 12-(b) fixes the issue by moving the direct connection between
G1 and G3 to between G2 and G3, resulting a d-CSNI composed gadget (by Lemma 6, the composition of
G2 and G3 is d-CSNI, and then the composition of G1, G2 and G3 is d-CSNI).
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F Proof of Theorem 1

For any k ∈ [`], we have

x̃[k]⊕ ûA[, k] = x̃[k]⊕
( n−1∑
i=1

Q[i, ]
)
A[, k]

=
∑̀
i=1

X[i,k]⊕
( n−1∑
i=1

Q[i, ]
)
A[, k]

=
∑̀
i=1

(x̂k[i]⊕Q[i, ]A[, k])⊕ (

n−1∑
i=1

Q[i, ]A[, k])

= xk .

Thus, we have
x = x̃⊕ ûA . (5)

Similarly, for the packed sharing (ỹ, v̂), we also have

y = ỹ ⊕ v̂A . (6)

Equations 5 and 6 gives that for any k ∈ [`]. We then prove the rest part of Theorem 1. xk =
x̃[k]⊕ ûA[, k] and yk = ỹ[k]⊕ v̂A[, k].

In Gadget 1-M, let RL and RR be the left and right triangular matrix of R excluding the diagonal.
Obviously, RL = RT

R, since R is a symmetric matrix. For the rest of proof, let k be any integer in [`]. We
have

akR
TaT

k = ak
(
RL ⊕RR ⊕Rdiag

)T
aT
k

= akRLaT
k ⊕ akRRaT

k ⊕ akRdiaga
T
k .

As akRLaT
k is a 1× 1 matrix, (

akRLaT
k

)T
= akRRaT

k = akRLaT
k ,

then
akR

TaT
k = akRdiaga

T
k . (7)

By the instructions of Gadget 1-M, we have

ẑk[1]⊕ . . .⊕ ẑk[n] =
([x̃[k]ỹ[k], 0

wT
k , S⊕R

] [
1

aT
k

]
⊕
[
akRdiaga

T
k

kT
k

])T [ 1
aT
k

]
By expanding the matrix addition and multiplication, we have

ẑk[1]⊕ . . .⊕ ẑk[n]

=x̃[k]ỹ[k]⊕ akRdiaga
T
k⊕

wka
T
k ⊕ akS

TaT
k ⊕ akR

TaT
k ⊕ kka

T
k .
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By Equation 7, akRdiaga
T
k ⊕ akRaT

k = 0, and by the instruction of Gadget 1-M, wk = x̃[k]v̂ and
kk = ỹ[k]û, we then have

ẑk[1]⊕ . . .⊕ ẑk[n] =x̃[k]ỹ[k]⊕wkA[, k]⊕ kkA[, k]⊕ akS
TaT

k

=x̃[k]ỹ[k]⊕ x̃[k]v̂A[, k]⊕ ỹ[k]ûA[, k]⊕ akS
TaT

k .

ST can be rewritten as ST = ŷTx̂, then

akS
TaT

k = (ûaT
k )(v̂aT

k ).

Thus, we have
ẑk[1]⊕ . . .⊕ ẑk[n]

=x̃[k]ỹ[k]⊕ x̃[k]v̂aT
k ⊕ ỹ[k]ûaT

k ⊕ (ûaT
k )(v̂aT

k )

=
(
x̃[k]⊕ ûaT

k

)(
ỹ[k]⊕ v̂aT

k

)
.

By Equations 5 and 6, x̃[k] ⊕ ûaT
k and ỹ[k] ⊕ v̂aT

k can be replaced with x[k] and y[k] respectively, we
finally have

ẑk[1]⊕ . . .⊕ ẑk[n] = xkyk ,

which completes the proof. ut

G Proof of Theorem 2

We focus on the the first two parts, which we give in Lemmas 8 and 9 respectively, whose proofs are given
latter in Appendix H.

Lemma 8 Gadget 1-P is d-ICSNI.

Lemma 9 Gadget 1-M is d-OCNI.

Note that Gadget 1 has the same composition structure as the example show in Figure 11-(b). Then,
by Propostion 2, Gadget 1 is d-CSNI. ut

H Proofs of Lemmas 8 and 9

We begin this section with some Lemmas showing properties related to the matrix A used in Gadget 1
and the t-chunk. Based on those properties, we then give the proofs of Lemmas 8 and 9.

H.1 Necessary lemmas

Lemma 10 Let A be an (n−1) × ` matrix such that any d < n columns of [I,A] are independent, and
let B be a r × (n−1) random matrix over Fq. Then any d columns of [B,BA] are uniformly distributed.

Proof. Let B̃ = [B,BA], and let Ã = [I,A]. For a set J ⊆ [` + n−1] such that |J | = d, B̃[,J ] can be
represented as BÃ[,J ]. As any d < n columns of Ã are independent, Ã[,J ] has full column rank, then
B̃[,J ] = BÃ[,J ] is uniformly distributed, completing the proof. ut

Lemma 11 Let A be an (n−1)× ` matrix such that any d < n columns of [In−1,A] are independent. For
any I ⊆ [n−1] such that n−1−d ≤ |I| ≤ n−1, any d−(n−1−|I|) columns of

[
I|I|,A[I, ]

]
are independent.

Proof. Let C be a linear code corresponding to the generating matrix [In−1,A], and the generating matrix
of its dual code C⊥ is [AT, I`]. As any d columns of [In−1,A] are independent, the distance of C⊥ is then
d + 1. And by the definition of the distance of a linear code, the distance of a code C⊥I with generating
matrix

[
A[I, ]T, I`

]
such that I ⊆ [n−1] and n−1−d ≤ |I| ≤ n−1, is d+1− (n−1−|I|). It is because,

deleting n−1− |I| rows of A associates to deleting n−1− |I| columns of [AT, I`], which gives that the
distance of C⊥I is decreased from that of C⊥ by n−1−|I|. Therefore, as the generating matrix of the dual
code of C⊥I is

[
In−1−|I|,A[I, ]

]
, any d−(n−1−|I|) columns of

[
I|I|,A[I, ]

]
are independent. ut
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We give the definition of t-chunk of a matrix in below.

Definition 11 Let X be an `× n matrix. A t-chunk of X is a subset of a set consisting of the following
two parts

1. (α part) {X[k,i] | k ∈ K, i ∈ I} for K ⊂ [`], I ⊂ [n] and |K|+ |I| = tα,
2. (β part) tβ entries of X,

such that t ≥ tα + tβ.

Based on this definition, we have the following properties.

Lemma 12 (Properties of t-chunk) Let S be a t-chunk of an `×n matrix X, the following properties
are fulfilled.

(1) (equivalence between a t-chunk of a matrix and a t-chunk of sharings) S is also a t-chunk of x̂1, . . . , x̂`,

where x̂k
def
= X[k, ] for k ∈ [`].

(2) S is also a t-chunk of XT.
(3) Given that S associates to trow rows and at most tmaxel entries of each row of X, we have trow +

tmaxel ≤ t.

Proof. Lemma 12-(1)(2) can be achieved directly from the Definitions 5 and 11. In the following, we focus
on the third property. We aim at proving that S relates to at most tmaxel entries of each of trow rows of
X, such that trow + tmaxel ≤ t. We partition S into Sα and Sβ such that Sα is the α part of S and Sβ is
the β part of S.

– Sα relates to at most tmaxel,α entries of each of trow,α rows of X, such that trow,α + tmaxel,α ≤ tα.
– Sβ relates to at most tmaxel,β entries of each of trow,β rows of X, such that trow,β + tmaxel,β ≤ tβ .

Therefore, S = Sα∪Sβ relates to at most tmaxel entries of each of trow rows of X, such that trow+tmaxel ≤
tα + tβ = t. ut

Remark. The above lemmas are sufficient to prove the security of Gadget 1-P. While below we give
another lemma on the symmetric random matrix R that particularly will facilitate the security proof of
the Gadget 1-M.

Lemma 13 Let A be an (n−1) × ` matrix such that any d < n columns of [I,A] are independent.
Let R be an (n−1) × (n−1) symmetric random matrix, and let Rdiag be the diagonal matrix such that

Rdiag[i,i] = R[i,i] for i ∈ [n−1]. Then for any I ⊆ [n−1] and Ī def
= [n−1]/I

1. Any (d−|I|−1)-chunk of R[Ī, ]A is uniformly distributed and independent of both Rdiag and R[I, ];
2. Any (d−|I|)-chunk of R[Ī, ]A is uniformly distributed and independent of R[I, ].

Proof (proof of item (1)). For any S a (d−|I|−1)-chunk of R[Ī, ]A, there exists a set I ′ ⊆ Ī, such that
S is a (d−|I|−1)-chunk of R[I ′, ]A. We first aim at proving that, for any i ∈ I ′, any d−|I|−|I ′| elements
of R[i, ]A are uniformly distributed and independent of Rdiag, R[I, ] and R[I ′/{i},J ′].

Let a set J ′ = [n−1]/
(
I ′∪I

)
, then we have |J ′| = n−1−|I ′|−|I|. By Lemma 11, any d−(n−1−|J ′|) =

d− (|I| + |I ′|) columns of A[J ′, ] are independent. As R is a symmetric random matrix, R[I ′,J ′] is
uniformly distributed and independent of both Rdiag and R[I, ]. Clearly, |J ′| ≥ d−(n−1−|J ′|), then any
d−(n−1−|J ′|) = d−(|I|+ |I ′|) elements of R[i,J ′]A[J ′, ] are uniformly distributed and independent of
Rdiag, R[I, ] and other rows of R[I ′,J ′]A[J ′, ]. For any i ∈ I ′, R[i, ]A can be represented as

R[i, ]A = R[i,J ′]A[J ′, ]⊕R[i,I ′ ∪ I]A[I ′ ∪ I, ].

Then, any d−(|I|+ |I ′|) elements of R[i, ]A are uniformly distributed and independent of Rdiag, R[I, ]
and R[I ′/{i},J ′].

We then consider the set S. For i ∈ I ′, let Si = S ∩R[i, ]A. By Lemma 12, S relates to at most t1
entries of each row of R[I ′, ]A, for t1 + |I ′| ≤ d−|I|, and thus

|Si| ≤ t1 ≤ d−|I| − |I ′|.

Thus, Si is masked by d−|I|−|I ′| elements of R[i, ]A, which are uniformly distributed and independent
of Rdiag, R[I, ] and R[I ′/{i},J ′], and the random coins comes from R[i,J ′]. We can see that all the
corresponding random coins of Si for all i ∈ I ′ are uniform distributed and independent of Rdiag and
R[I, ], giving that S is uniformly distributed and independent of Rdiag and R[I, ]. ut
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Proof (proof of item (2)). The proof is similar to that of item (1). For any S a (d−|I|)-chunk of R[Ī, ]A,
there exists a set I ′ ⊆ Ī, such that S is a (d−|I|)-chunk of R[I ′, ]A. We first aim at proving that, for
any i ∈ I ′, any d − |I|−|I ′|+1 elements of R[i, ]A are uniformly distributed and independent of R[I, ]
and

[
R[I ′/{1},J ′],Rdiag[I ′/{1}, ]

]
.

Let a set J ′ = [n−1]/
(
I ′ ∪ I

)
, then we have |J ′| = n− 1− |I ′| − |I|. By Lemma 11, for i ∈ I ′, any

d−(n−1−|J ′|)+1 = d−(|I|+|I ′|)+1 columns of
[
A[J ′, ]; A[i, ]

]
are independent. As R is a symmetric

random matrix, for i ∈ I ′,
[
R[I ′,J ′],Rdiag[i,i]

]
is uniformly distributed and independent of R[I, ].

Clearly, |J ′|+1 ≥ d−(n−1−|J ′|)+1, then any d−(n−1−|J ′|)+1 = d−|I|−|I ′|+1 elements of R[i,J ′]A[J ′, ]
are uniformly distributed and independent of R[I, ] and other rows of

[
R[I ′,J ′],Rdiag[I ′, ]

]
. For i ∈ I ′,

R[i, ]A can be represented as

R[i, ]A = R[i,J ′]A[J ′, ]⊕R[i,i]A[i, ]⊕R[i,I ′ ∪ I]A[I ′ ∪ I, ].

Then, any d−|I|−|I ′|+1 elements of R[i, ]A are uniformly distributed and independent of R[I, ] and[
R[I ′/{1},J ′],Rdiag[I ′/{1}, ]

]
.

We then consider the set S. For i ∈ I, let Si = S ∩R[i, ]. By Lemma 12, S relates to at most t1 entries
of each row of R[I ′, ]A, for t1 + |I ′| ≤ d−|I|+ 1, and thus

|Si| ≤ t1 ≤ d−|I| − |I ′|+ 1.

Thus, Si is masked by d−|I|−|I ′| + 1 elements of R[i, ]A, which are uniformly distributed and inde-
pendent of R[I, ] and R[I ′/{i},J ′], and the random coins comes from R[i,J ′]. We can see that all the
corresponding random coins of Si for all i ∈ I ′ are uniform distributed and independent of R[I, ], giving
that S is uniformly distributed and independent of Rdiag and R[I, ]. ut

H.2 Proofs of Lemmas 8 and 9

Proof of Lemma 8 The probes are divided into different subsets based on the types of variables:

– The probes in the input shares: Pinput.
– The probes in the random variables: Prand, which consist of the following variables: entries in Q̂

and Q, and variables in the computation of Q̂ = QA. In the computation of QA, each row of Q
is linearly transformed to a distinct column of Q̂. Thus, for each probe p in Prand, there exists a
function f : Fn−1q → Fq and an index i ∈ [n−1], such that p = f(Q̂[i, 1], . . . , Q̂[i, n−1]).

– The probes in the computation of the function from the concatenated matrix [X,Q] to (x̃, û) (also
including the output probes): Psum, in which X[, j] and Q[, j] are separately summed up to x̃[j] and
û[j]. Thus, each probe p in Psum can be represented as p =

∑
i∈I′ X[I ′,j] for j ∈ [`] and I ′ ⊆ [n], or

p =
∑
i∈I′ Q[I ′,j] for j ∈ [n−1] and I ′ ⊆ [n−1].

We build the sets I1, . . . , I` and a temporary set Irand and run a simulator as following steps

1. Initiate set Ik to be empty for any k ∈ [`], and initiate a set Irand to be empty.
2. For each probe in Pinput, say x̂k[i] for k ∈ [`] and i ∈ [n], put the corresponding index i into Ik.

Then, p is a function of x̂1[I1], . . . , x̂`[I`], and thus can be simulated. This step puts at most |Pinput|
indices into

⋃
k∈[`] Ik, which corresponds to a |Pinput|-chunk of input sharings.

3. The probes in Prand can be simulated by sampling uniform distribution. Moreover, for each probe
in Prand, say p = f(Q̂[i, 1], . . . , Q̂[i, n−1]), we put the corresponding index i to the set Irand, which
is useful in the latter process of simulation. In this step, there are at most |Prand| indices put into
Irand.

4. For each probe in Psum, there exists a set I ′ ⊆ [n−1], and the probe can be represented as p =∑
i∈I′ X[I ′,j] or p =

∑
i∈I′ X[I ′,j] ⊕ X[n,j] for j ∈ [`], or p =

∑
i∈I′ Q[I ′,j] for j ∈ [n−1], then

I ′ can be divided into two parts: I ′1 ⊆ Irand and I ′2 ⊆ [n−1]/Irand. We separate the analysis into
following cases
– If the term X[n,j] is in p, then put n into Ij , and thus this term can be simulated.
– Put I ′1 into Ij , and thus the terms in X[I ′1, j] or Q[I ′1, j] can be simulated.
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– Finally, we consider the terms in X[I ′2, j] or Q[I ′2, j]. From the instruction of Gadget 1-P, [X,Q] =[
[x̂1; . . . ; x̂`]

T,O(n−1)×(n−1)] ⊕ [Q̂,Q], and thus we first analysis the matrix
[
Q̂,Q

]
[I ′2, ], which

can be represented as Q[I ′2, ]
[
A, In−1

]
. By Lemma 10, any d columns of Q[I ′2, ]

[
A, In−1

]
are

uniformly distributed, and the random coins comes from the random variables in Q[I ′2, ], which
are independent of other rows of Q. Since all the probes only relate to at most d columns of [X,Q],
then the terms in X[I ′2, j] or Q[I ′2, j] can be simulated by sampling from uniform distribution.

In this step, a subset of Irand is put into Ik for k ∈ K and |K| ≤ |Psum|, which corresponds to a
(|Psum|+|Prand|)-chunk of input sharings.

Now, all the probes are simulated, and {x̂k[Ik]}k∈[`] corresponds to a (|Psum|+ |Prand|+ |Pinput|)-chunk
of {x̂k}k∈[`]. Therefore, for any tout output probes and internal probes Pint such that |Pint| + tout ≤ d,
there exists a |Pint|-chunk of input sharings S, and a simulator S such that

Pr
[
D
(
GP
(
{x̂i}`i=1

)
, {x̂i}`i=1

)
= 1
]

= Pr
[
D
(
S (S) , {x̂i}`i=1

)
= 1
]
,

where P is the set of all probes. ut

Proof of Lemma 9 For the convenience, we short some intermediate variables as

W
def
= [wT

1 , . . . ,w
T
` ] = ûT × ỹ,

K
def
= [kT

1 , . . . ,k
T
` ] = v̂T × x̃,

Ŝ
def
= S⊕R = ûT × v̂ ⊕R, and

e = [e1, . . . , e`] =
[
x̃[1]ỹ[1], . . . , x̃[`]ỹ[`]

]
.

The output of Gadget 1-M can be regarded as a matrix [zT1 , . . . , z
T
` ]. Then, by the instruction of Gadget 1-

M, the process of computation can be rewritten as[
ẑT1 , . . . , ẑ

T
`

]
=
[
t̂T1 � [1; aT

1 ], . . . , zT` � [1; t̂T1 ]
]

=
[
t̂T1 , . . . , z

T
`

]
� [1; A] ,

and [
t̂T1 , . . . , t̂

T
`

]
=

[[
e1 ⊕ a1Rdiaga

T
1

(ŜaT
1 ⊕wT

1 )⊕ kT
1

]
, . . . ,

[
e` ⊕ a`Rdiaga

T
`

(ŜaT
` ⊕wT

` )⊕ kT
`

]]
=

[
e⊕ATRdiagA

(ŜA⊕W)⊕K

]
,

where the order of the operation is consistent with the operators’ priorities.
The probes are divided into different subsets based on the types of variables

– The probes in the input shares: Pinput.
– The probes in the outer product of the input shares: P×, which include the variables in S, W and K.
– The probes in the random variables: Prand.
– The probes to the calculation from Rdiag to ATRdiagA: Pdiag. Note that there may exist overlaps

between Prand and Pdiag, which are entries on the diagonal of R, and we count them as in Prand.
– The probes in the calculation from Ŝ to ŜA: Pmul. For each probe p in Pmul, there exists a function f :

Fnq → Fq and indices i ∈ [n−1] and k ∈ [`], such that p can be represented as p = f(Ŝ[i, 1], . . . , Ŝ[i, n−
1]).

– The probes in ŜA⊕W : P⊕
– The probes in the output ẑ1, . . . , ẑ` or t̂1, . . . , t̂`: PO. Note that shares of t̂1, . . . , t̂` are manipulated

separately to calculate the output sharings, and thus we don’t distinguish the probes t̂k[i] and ẑk[i]
for k ∈ [`] and i ∈ [n], and regard both of them as the probes to ẑk[i]. Also note that PO is a tO-chunk
of output sharings.

We build the sets Iû, Ix̃, Iv̂, Iỹ and a temporary set Imr and run a simulator as following steps

1. Initiate Iû, Ix̃, Iv̂,Iỹ and Imr to be empty.
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2. For each probe in Pinput or P×, put corresponding indices into Iû, Ix̃, Iv̂ and Iỹ, then the probe
can be simulated with û[Iû], v̂[Iv̂], x̃[Ix̃] and ỹ[Iỹ]. This step puts at most |Pinput|+ |P×| indices
into both (Ix̃, Iû) and (Iỹ, Iv̂).

3. For each probe in Prand, say R[i,j], put i into Imr, Iû and Iv̂, and this probe can be simulated by
randomly sampling from uniform distribution. This step pus at most |Prand| indexes into Imr, Iû
and Iv̂. Note that, although the simulation of probes in Prand can be done without the sets Imr, Iû
or Iv̂, the set Imr is quite important in the simulation of latter steps, and putting the indexes into
Iû and Iv̂ is to ensure Imr ⊆ Iû and Imr ⊆ Iv̂.

4. For each probe p = f(Ŝ[i, 1], . . . , Ŝ[i, n−1]) in Pmul, if i /∈ Imr, put i into all of Imr, Iû and Iv̂.
Then, this probe can be represented as p = f(S[i,1] ⊕R[i,1], . . . ,S[i,d] ⊕R[i,d]). For each term in

p (say, Ŝ[i, j]), consider the following conditions (where if needed, S[i, j] can be simulated with û[i]
and v̂[j]).

– If Ŝ[j, i] is also included as a term in at least one probe in Pmul, then S[i, j] need to be simulated.

As j should be included into Iû and Iv̂ when considering the probe p = f(Ŝ[j, 1], . . . , Ŝ[j, n−1]),
so S[i, j] can be simulated after putting all the i-indexes.

– If R[i, j] ∈ Prand. We need to put j into Iû and Iv̂ to simulate S[j, i]. Note that, as i ∈ Imr, we
don’t need to add it twice.

– If R[j, i] ∈ Prand, then j is in Iû and Iv̂, and thus we can simulate S[j, i].

– If none of the above conditions are fulfilled, Ŝ[j, i] can be simulated by sampling from uniform
distributions, as R[i, j] is uniformly distributed and independent of probes analyzed in former
steps.

Then, p can be simulated with û[Iû] and v̂[Iv̂]. This step puts at most |Pmul| indices into Iû, Iv̂ and
indices into Imr. To this step, the building of temporary set Imr is complete, which will be used in
the next steps. Now we can see that Imr ⊆ Pmul ∪ Prand, |Pmul| + |Prand| ≥ |Imr|, Imr ⊆ Iû and
Imr ⊆ Iv̂. Note that in this step, the simulation works for any function f : Fn−1q → Fq.

5. The probes in Pdiag can be simulated by randomly sampling all the entries in Rdiag from uniform
distribution.

6. We finally consider the probes in P⊕ and PO, each of which can be represented as one of the following
forms

– (ŜA⊕W)[i, k] ∈ P⊕ for i ∈ [n−1] and k ∈ [`];

– (ŜA⊕W ⊕K)[i, k] ∈ PO;
– ek ⊕ akRdiaga

T
k ∈ PO for i ∈ [n−1] and k ∈ [`].

We further partition the probes in P⊕ and PO into several parts as follows and build a set M.

– P1: ek ⊕ akRdiaga
T
k ∈ PO.

– P2: (ŜA⊕W ⊕K)[i, k] ∈ PO for i ∈ Imr and k ∈ [`].

– P3: (ŜA⊕W)[i, k] ∈ P⊕ for i ∈ Imr and k ∈ [`].

– P4: (ŜA ⊕W ⊕K)[i, k] ∈ PO for i ∈ Īmr and k ∈ [`]. Moreover, we put all the tuples of (i, k)
appeared in P4 into a set M.

– P5: (ŜA⊕W)[i, k] ∈ P⊕ for i ∈ Īmr and (i, k) /∈M.

– P6: (ŜA⊕W)[i, k] ∈ P⊕ for i ∈ Īmr and (i, k) ∈M.

We put the all the values of k appeared in above sets (i.e., from P1 to P6) into Ix̃ and Iỹ. By
Lemma 12-(3), the number of k values appeared in P1, P2 and P4 is at most tout. As the corresponding
tuples of (i, k) of P6 and P4 are overlapped, the k values appeared in P6 are also appeared in P4,
and they should not be added in twice.

:::::
Thus,

:::
the

:::::::
number

:::
of

:
k
::::::
values

:::::::::
appeared

::
in

:::
all

:::::
above

::::
sets

::
is
:::
at

::::
most

::::::::::::::::
tout + |P3|+ |P5|,::::::

which
:::
are

::::::
added

::::
into

:::
Ix̃::::

and
:::
Iỹ. Then, we simulate above parts one by one:

(a) Each probe in P1 (say, ek ⊕ akRdiaga
T
k ) can be simulated, since ek = x̃[k]ỹ[k] and k is in Ix̃ and

Iỹ.
(b) We then consider the probes in P2 and P3. As i ∈ Imr ⊆ Iû and i ∈ Imr ⊆ Iv̂, i is already in Iû

and Iv̂. Each of those probes is a sum of the following two variables

– (ŜA)[i, k]: this variable can be simulated in step 4, where the simulation works with any
function f : Fn−1q → Fq.

– W[i, k] or (W ⊕K)[i, k]: this variable can be simulated since k is in Ix̃ and Iỹ, and i is in
Iû and Iv̂.

Then, the probes in P2 ∪ P3 can be simulated.
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(c) For probes in P4 and P5, each of them is masked by an entry in RA, and can be represented as

(ŜA⊕W ⊕ bK)[i, k] = (RA⊕ SA⊕W ⊕ bK)[i, k]

for i ∈ Īmr, k ∈ [`] and b ∈ {0, 1}. The probes in P4 corresponds to at most |P4| elements
in R[Īmr, ]A, and the probes in P5 correspond to a tout-chunk of elements in R[Īmr, ]A. Let

P ′ def= P1 ∪ Pdiag, we separate the analysis into two cases:

i. If P ′ 6= ∅, then Lemma 13-(1) can be applied: any (d − |Imr| − 1)-chunk of R[Īmr, ]A are
uniformly distributed and independent of other probes, and |P4|+tout ≤ d−|Pmul|−|Prand|−
|P1| ≤ d− |Imr| − 1.

ii. If P ′ = ∅, then Lemma 13-(2) can be applied: any (d−|Imr|)-chunk of R[Īmr, ]A are uniformly
distributed and independent of other probes, and |P4|+tP5

≤ d−|Pmul|−|Prand| ≤ d−|Imr|.
Thus, the entries in R[Īmr, ]A corresponding to probes in P4 and P5 are uniformly distributed
and independent of other probes. Then, probes in P4 and P5 can be simulated by randomly
sampling from uniform distribution.

(d) To simulate each probe (ŜA⊕W⊕K)[i, k] in P6, we can simulate K[i, k], since (ŜA⊕W⊕K)[i, k]

in P6 and have been simulated. Thus, for each probe (ŜA⊕W⊕K)[i, k] in P6, k and i need to be
in Ix̃ and Iv̂ respectively (to simulate the K[i, k]), making

::
at

:::::
most

::::
|P6|::::::

indices
:::
to

::
be

::::::
added

::
in
:::
Iv̂

(and k is already in Ix̃). Then, each probe in P6 can be simulated with knowing (ŜA⊕W)[i, k]
and K[i, k].

In summary, this step puts at most |P3|+ |P5|+ tout indices into Ix̃, at most |P3|+ |P5|+ tout indices
into Iỹ, and at most |P6| indices into Iv̂.

Now, all of probes are simulated and the analysis is completed. In total, there are at most

|Pinput|+ |P×|+ |Prand|+ |Pmul|+ |P3|+ |P5|+ tout ≤ d

indices in (Ix̃, Iû), and at most

|Pinput|+ |P×|+ |Prand|+ |Pmul|+ |P3|+ |P5|+ |P6|+ tout ≤ d

indices in (Iỹ, Iv̂). Therefore, for any internal probes Pint and tO-chunk of output sharings such that
tO + |Pint| ≤ d, we can build the sets Iû, Ix̃, Iv̂ and Iỹ such that |Iû| + |Ix̃| ≤ d and |Iv̂| + |Iỹ| ≤ d,
and a simulator S such that

Pr [D (GP (û, x̃, v̂, ỹ) , û, x̃, v̂, ỹ) = 1]

= Pr [D (S (û[Iû], x̃[Ix̃], v̂[Iv̂], ỹ[Iỹ]) , û, x̃, v̂, ỹ) = 1] ,

where P is the set of all probes. ut

I Proofs in Section 5

I.1 Proof of Lemma 4

Let the input sharings be x̂1, . . . , x̂`. As the gadget operates the shares of input sharings separately, then
every probe depends on at most one input share. We build the sets I1, . . . , I` and run a simulator as
following steps

1. Initiate set Ik to be empty for any k ∈ [`].

2. For each probe, if it depends on one input share, say x̂k[i], put i into Ik. Then, this probe can be
simulated with x̂1[I1], . . . , x̂`[I`].

Now, all the probes are simulated, and we can see that {x̂k[Ik]}k∈[`] corresponds to a (tout+tint)-chunk
of {x̂k}k∈[`]. ut
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I.2 Proof of Theorem 3

The probes are divided into different subsets based on the types of variables

– The probes to the input shares: Pinput.
– The probes to the random variables: Prand.
– The probes to L(ŷ1[i], . . . , ŷ`[i]) for any i ∈ [n]: PL.

– The probes to the output shares: PO.

We build the sets I1, . . . , I` and a temporary set Irand and run a simulator as following steps

1. Initiate set Ik to be an empty set for any k ∈ [`].

2. For each probe in Pinput, then put the corresponding index into I1, . . . , I`. Then, p is a function of
x̂1[I1], . . . , x̂`[I`], and thus can be simulated. Moreover, we put the corresponding i-index to a set
Iinput. This step puts at most |Pinput| indices into (I1, . . . , I`).

3. The probes in Prand can be simulated by sampling uniform distribution. Moreover, for each probe in
Prand, we put the corresponding k-index to a set Irand.

4. For each probe in PL or PO, the probe can be represented as p = g({ŷk[i] | k ∈ I ′}), where I ′ ⊆ [`],
then we partition I ′ into I ′1 and I ′2 such that I ′2 ⊆ Irand and I ′1 ⊆ [`]/ Irand. We separate our
discussion into two cases:

– I ′1 are put i into Ik, and thus {ŷk[i] | k ∈ I ′1} can be simulated.

– As long as the random variables masked to {ŷk[i] | k ∈ I ′2} are unknown, {ŷk[i] | k ∈ I ′2} can be
simulated by sampling uniform distribution.

Then, p = g({ŷk[i] | k ∈ I ′}) can be simulated with {x̂k[Ik]}`k=1. This step puts at most |Irand|
indices into each of {Ik}k∈K for |K| = |PL|+ |PO|, corresponding to a (|PL|+|Irand|)-chunk of {x̂}`k=1.

Now, all the probes are simulated, and {x̂k[Ik]}k∈[`] corresponds to a (|PL|+|Prand|+|Pinput|)-chunk of
{x̂k}k∈[`]. Therefor, for any tout-chunk of output sharings and internal probes Pint such that |Pint|+tout ≤
d, there exists a (tout + |Pint|)-chunk of input sharings, and a simulator S such that

Pr
[
D
(
GP
(
{x̂k}`k=1

)
, {x̂k}`k=1

)
= 1
]

= Pr
[
D
(
S (S) , {x̂k}`k=1

)
= 1
]
,

where P is the set of probes. ut

I.3 Proof of Lemma 5

As trivial addition over packed sharings manipulates shares with different indices separately. Each internal
or output probe relates to at most one index of input packed sharings, and thus any tint internal probes
and tout output probes can be simulated with at most shares with tint + tout indices of each of input
packed sharings, which completes the proof.

J An implementation approach using multiplication chain

To implement the SubBytes step of AES-128, Rivain et al. proposed to represent the inverse by a power
function F28 → F28 , which can be further decomposed into a chain of several multiplications and squaring
functions [35]. We use MDS matrices from the Reed-Solomon code [34], and thus n = d+ 1. By the MDS
conjecture [36], d × ` MDS matrix over F28 shall satisfy ` + d ≤ |F28 | = 256. Thus, we set ` = 16 and
implement 16 S-boxes together by using the packed multiplication. The inputs and outputs of masked
S-boxes are 16 sharings. The process is shown in Figure 13. PC denotes the packed multiplication in
Gadget 1 with ` = 16 (and, by Theorem 2, is d-CSNI). The ()2, ()4, ()16 and Aff are implemented by
Gadget 3 (and, by Theorem 3, are d-CNI). The R is a d-CSNI refreshing with identical input / output
secrets by calling the packed multiplication with the input sharings and sharings of (1, . . . , 1), and, by
Theorem 2, is d-CSNI. We can confirm from the figure that the composition follows the composition rules
in Lemmas 6 and 7, and thus the composed gadget is d-CSNI.
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M: Gadget 1-M

P: Gadget 1-P
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PC PC Aff()16

Fig. 13. Masked AES S-box with packed multiplication using multiplication chain.
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K Proof of Proposition 1

Let the composed gadget be G. Assume that the probes of G consists of tint internal probes and tout-chunk
of output sharings such that tint + tout ≤ d. As shown in Figure 14, the gadgets of δ, λa2 and first ⊕
can be regarded as a whole gadget G1, then we can order the gadgets as G1, . . . ,G11, such that Gi comes
before Gj for i < j. we divide the probes of G into different subsets P1, . . . ,P11 and PO such that all the
internal probes of Gi are in Pi for i = [11] and all the internal probes are in PO. First of all, Lemma 14
provide a stronger security claim (than the NI) for the trivial addition gadget G6. ut

Lemma 14 For a trivial addition gadget with input sharings x̂1, . . . , x̂` ∈ Fnq , . . . ,Fnq and ŷ1, . . . , ŷ` ∈
Fnq , . . . ,Fnq , any tout-chunk of output sharings and tint internal probes such that tout + tint ≤ t < n can
be simulated with a t-chunk of x̂1, . . . , x̂` and a t-chunk of ŷ1, . . . , ŷ`.

Proof. The probes are either input variables (denoted as Pint), or output shares (denoted as Pint). We
have that |Pint| = tint, and Pint is tout-chunk of output sharings. We build the sets I and J and run a
simulator as following steps

– Initiate sets I and K to be empty sets.
– For each probe in Pinput, say x̂k[i] or ŷk[i], then put i and k into I and K. Then, this probe is a

function of {x̂k[I]}k∈K and {ŷ1[I]}k∈K, and thus can be simulated.
– For each probe in PO, say x̂k[i]⊕ ŷk[i], then put i and k into I and K. Then, this probe is a function

of {x̂k[I]}k∈K and {ŷ1[I]}k∈K, and thus can be simulated.

Therefor, for any tout-chunk of output sharings and internal probes Pint such that |Pint| + tout ≤ t,
there exists sets I and K such that |I|+ |K| ≤ t, and a simulator S such that

Pr
[
D
(
GP
(
{x̂k, ŷk}k∈[`]

)
, {x̂k, ŷk}k∈[`]

)
= 1
]

= Pr
[
D
(
S ({x̂k[I], ŷk[I]}k∈K) , {x̂k, ŷk}k∈[`]

)
= 1
]
,

where P = Pint ∪ PO. ut

Besides, we can see that gadget G1 operates the input shares separately, and thus by Lemma 4, it is
d-CNI. The probe propagation framework then analysis the gadgets one by one from G11 to G1. A set S
is initiated to empty. For i ∈ [11], let Si be propagated shares of Gi. We summarize the analysis based
on the probe propagation framework in Table 7.

L An illustration of GCM
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Table 7. Proof of AES S-box based on the probe propagation framework

Gadgets Security notion Probes Propagated shares Si S

G11 d-CNI
P11 ∪ PO, where PO is

tout-chunk of
G’s output sharings

t11-chunk of
G11’s input sharings,
for t11 = |P11|+ tout

∅

G10 d-OCNI
P10 ∪ S(1)

11 , where

S(1)
11 is t

(1)
11 -chunk

of G11’s input sharings

x̂G10 [IG10 ] ∪ ŷG10 [JG10 ],

|IG10 | = |P10|+ t
(1)
11 and

|JG10 | = |P10|+ t
(1)
11

∅

G9 d-OCNI
P9 ∪ S(2)

11 , where

S(2)
11 is t

(2)
11 -chunk

of G11’s input sharings

x̂G9 [IG9 ] ∪ ŷG9 [JG9 ],

|IG9 | = |P9|+ t
(2)
11 and

|JG9 | = |P9|+ t
(2)
11

∅

G8 d-ICSNI P8 ∪ ŷG10 [JG10 ] ∪ x̂G9 [IG9 ]
t8-chunk of G8’s input sharings,

for t8 = |P8|
∅

G7 d-CSNI P7 ∪ S8
t7-chunk of G7’s input sharings,

for t7 = |P7|
∅

G6 Lemma 14 P6 ∪ S7

t6-chunk of
G6’s input sharings,

for t6 = |P6|+ t7
= |P6|+ |P7|

∅

G5 d-OCNI
P5 ∪ S(1)

6 , where

S(1)
6 is t

(1)
6 -chunk

of G6’s input sharings

t6-chunk of
G6’s input sharings,

for t6 = |P6|+ t7
= |P6|+ |P7|

∅

G4 Lemma 5 P4 ∪ ŷG9 [JG9 ]
x̂G4 [IG4 ] ∪ ŷG4 [JG4 ],
|IG4 | = |P4|+ |JG9 | and
|JG4 | = |P4|+ |JG9 |

∅

G3 d-ICSNI
P3 ∪ x̂G5 [IG5 ] ∪ x̂G4 [IG4 ]

∪x̂G10 [IG10 ]
t3-chunk of G3’s input sharings,

for t3 = |P3|
∅

G2 d-ICSNI P2 ∪ ŷG5 [JG5 ] ∪ ŷG4 [JG4 ]
t2-chunk of G2’s input sharings,

for t2 = |P2|
∅

G1 d-CNI P1 ∪ S(2)
6 ∪ S2 ∪ S3

t1-chunk of G1’s input sharings,

for t1 = |P1|+ t
(2)
6 + t2 + t3,

and thus
t1 = |P1|+ |P6|+ |P7|

+|P1|+ |P2|

S1

* S6 = S(1)
6 ∪ S(2)

6 and t6 = t
(1)
6 + t

(2)
6 .

* S11 = S(1)
11 ∪ S

(2)
11 and t11 = t

(1)
11 + t

(2)
11 .
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Fig. 15. An Illustration of GCM.
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