
c© IACR 2020. This is the full version of a paper with the same title in the proceedings
of Asiacrypt 2020 [33].

Unbounded HIBE with Tight Security

Roman Langrehr?1 and Jiaxin Pan2

1 ETH Zurich, Zurich, Switzerland
roman.langrehr@inf.ethz.ch

2 Department of Mathematical Sciences
NTNU – Norwegian University of Science and Technology, Trondheim, Norway

jiaxin.pan@ntnu.no

Abstract. We propose the first tightly secure and unbounded hierarchical
identity-based encryption (HIBE) scheme based on standard assumptions.
Our main technical contribution is a novel proof strategy that allows us to
tightly randomize user secret keys for identities with arbitrary hierarchy
depths using low entropy hidden in a small and hierarchy-independent
master public key.
The notion of unbounded HIBE is proposed by Lewko and Waters

(Eurocrypt 2011). In contrast to most HIBE schemes, an unbounded
scheme does not require any maximum depth to be specified in the setup
phase, and user secret keys or ciphertexts can be generated for identities
of arbitrary depths with hierarchy-independent system parameters.

While all the previous unbounded HIBE schemes have security loss that
grows at least linearly in the number of user secret key queries, the security
loss of our scheme is only dependent on the security parameter, even
in the multi-challenge setting, where an adversary can ask for multiple
challenge ciphertexts. We prove the adaptive security of our scheme
based on the Matrix Decisional Diffie-Hellman assumption in prime-order
pairing groups, which generalizes a family of standard Diffie-Hellman
assumptions such as k-Linear.
Keywords. Unbounded hierarchical identity-based encryption, tight
security, multi-challenge security

1 Introduction

1.1 Motivation

Hierarchical identity-based encryption (HIBE) [27,17] is a generalization of
identity-based encryption (IBE) [39]. It offers more flexibility in sharing sensitive
data than IBE or classical public-key encryption (PKE).

In an HIBE scheme, users’ identities are arranged in an organizational hierar-
chy and, more precisely, a hierarchical identity is a vector of identities of some
length p > 0. As in an IBE scheme, anyone can encrypt a message with respect to
an identity id := (id1, ..., idp) by access to only the public parameters. To decrypt
? Part of the work done at Karlsruhe Institute of Technology, Karlsruhe, Germany.
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this encrypted message, one of id’s ascendants at level p′ where 0 < p′ < p can
delegate a user secret key for id, in addition to asking the trusted authority
for id’s user secret key as in the IBE setting. Furthermore, a user at level p is
not supposed to decrypt any ciphertext for a recipient who is not among its
descendants.

The security we focus on in this paper is adaptive security, where an adversary
is allowed to declare a fresh challenge identity id? adaptively and obtain a challenge
ciphertext of id? after seeing user secret keys for arbitrary chosen identities and
(master) public keys. It is a widely accepted security notion for both HIBE and
IBE schemes. Most of the existing HIBE schemes in the standard model have
a security loss of at least Qe (such as [10,6]) or even QLe [42], where Qe is the
maximum number of user secret key queries and L is the maximum hierarchy
depth. Constructions from recent work of Langrehr and Pan (LP) [31,32] are the
known exceptions. Their security loss depends only on the security parameter,
but not Qe. However, their master public key size3 depends on L. As L grows,
the master public key becomes larger.

In particular, the maximum hierarchy depth L needs to be fixed in the setup
phase. Once it is fixed and master public keys are generated, there is no way to
add new levels into the hierarchy. This can be an undesirable burden to deploy
HIBE in practice since institutions grow rapidly nowadays. Hence, it is more
desirable to construct a tightly secure HIBE scheme whose master public keys
are independent of the maximum hierarchy depth.

We note that the limitation mentioned above exists not only in the LP schemes
but also in almost all the HIBE schemes even with non-tight security in the
standard model. The notion of unbounded HIBE from Lewko and Waters [36] is
proposed to overcome this limitation. In an unbounded HIBE, the whole scheme
is not bounded to the maximum depth L. In particular, its master public keys,
user secret keys and ciphertexts are all independent of L. (Though the user
secret keys and ciphertexts can still depend on the actual hierarchy depth of the
identity.) They and the follow-up work [34,19] give constructions of unbounded
HIBE in composite- and prime-order pairing groups, respectively, to implement
this notion. Unfortunately, none of these constructions is tight.

Our goal: Tightly secure unbounded HIBE. In this paper, we aim at
constructing unbounded HIBE with tight reductions based on standard assump-
tions. We start recalling tight security and then give some reasons about why it
is technically challenging to achieve this goal.

A security reduction is usually used to prove the security of a cryptographic
scheme S by reducing any attacker A against S to an attacker R against a
corresponding computational hard problem P in an efficient way. After that, we
can conclude that breaking the security of S is at least as hard as solving P .
More precisely, we establish a relation that states εA ≤ ` · εR. Here εA and εR
are success probability of A and R, respectively, and for simplicity we ignore the

3 We measure the size of the master public key in terms of the number of group
elements.
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additive negligible terms and assume that the running time of R is approximately
the same as that of A.

Ideally, we want a reduction to be tight, namely, ` to be a small constant.
Recent works are also interested in “almost tight security”, where ` may be (for
instance, linearly or logarithmically) dependent on the security parameter, but
not the size of A. We will not distinguish these two tightness notions, but state
the precise security loss in security proofs and comparison of schemes. A tight
security reduction means the security of S is tightly coupled with the hardness
of P . A scheme with tight reductions is more desirable since it provides the same
level of security regardless of the application size. Moreover, we can implement it
with smaller parameters and do not need to compensate for the security loss. As
a result, tightly secure schemes drew a lot of attention in the last few years, from
basic primitives, such as PKE [14,15,22] and signature [1,16] schemes, to more
advanced ones, such as (non-interactive) key exchange [18,23,11], zero-knowledge
proof [3,2], IBE [10,6,21,24] and functional encryption [40] schemes. Currently,
research is carried out to reduce the cost for tight security. For instance, for PKE,
the public key size is shortened from being linear [14] (in the security parameter)
to constant [15,22]. In particular, the scheme in [15] only has one element more
in the ciphertext overhead than its non-tight counterpart [30] asymptotically. By
taking the concrete security loss into account, we are optimistic that scheme in
[15] will have shorter ciphertext length in terms of bits.

Difficulties in achieving our goal. Given the existing research, it is quite
challenging to construct a tightly secure HIBE, even for a bounded one. Firstly,
the potential difficulty of this task has been shown by Lewko and Waters [37],
namely, it is hard to prove an HIBE scheme with security loss less than exponential
in L, if its user secret keys are rerandomizable over all “functional” keys. Secondly,
the work of Blazy, Kiltz, and Pan (BKP) [6] is the first that claimed to have
solved this challenge by proposing a bounded tightly secure HIBE. Their scheme
has indeed bypassed the impossibility result of [37] by having its user secret keys
only rerandomizable in a subspace of all “functional” keys, which is similar to
schemes based on the dual system technique [10,35]. Unfortunately, shortly after
its publication, a technical flaw was found in their proof, which shows that their
proof strategy is insufficient for HIBE with flexible identity depth.

Recently, Langrehr and Pan have proposed the first tightly secure HIBE in
the standard model [31]. A very recent and concurrent work [32] improves this
HIBE and proposes a tightly secure HIBE in the multi-challenge setting. Core
techniques in both papers crucially require their master public key size depend
on the maximum hierarchy, L. More precisely, they need to know L in advance
so that they can choose independent master secret keys for different levels, which
will be turned into master public keys. With these relatively large master secret
keys, they can apply their independent randomization to isolate randomization
for identities with different maximum levels. As a result, their scheme is bounded
to the maximum level L of the whole HIBE scheme and its master public key
size is dependent on L.
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1.2 Our Contribution

We construct the first tightly secure unbounded HIBE based on standard as-
sumptions. Our scheme is furthermore tightly multi-challenge secure. The multi-
challenge security is a more realistic notion for (H)IBE, where an adversary is
allowed to query multiple challenge identities adaptively and obtain the cor-
responding ciphertexts. It has comparable efficiency to its non-tight counter-
parts [34,19], and, in particular, it has shorter ciphertext and user secret key than
the scheme of [34]. At the core of our construction is a novel technique that allows
us to prove tight adaptive security of HIBE with “small”, hierarchy-independent
master public keys.

More precisely, the identity space for our scheme ID := S∗ has unbounded
depth and the base set S can be arbitrary. In this section, we consider S := {0,
1}n for simplicity, where n is the security parameter. The master public key of
our scheme is independent of L and contains only O(n)-many group elements,
which is the same as the existing tightly secure IBE schemes [10,6,21,24].

All our security proofs are in the standard model and based on the Matrix
Decisional Diffie-Hellman (MDDH) assumption [12] in prime-order asymmetric
pairing groups. The MDDH assumption is a generalization of a class of Decisional
Diffie-Hellman assumptions, such as the k-Lin [25] and aSymmetric eXternal
Diffie-Hellman (SXDH) (for k = 1) assumptions. The security of our MAC
requires an additional assumption on the existence of collision-resistant hash
functions. There exist collision-resistant hash functions in the standard model
that maps arbitrary-length bit-strings to fixed-length ones using fixed-length keys.
For instance, one can use the Merkle-Damgård construction with hash functions
from the SHA familiy or the less efficient but completely provably secure one
from the discrete logarithm assumption.
Efficiency comparison. We compare the efficiency of bounded and unbounded
HIBE schemes in the standard model with prime-order pairings in Table 1. We
note that [38] achieves a weaker notion of unbounded HIBE in the sense that
their master public key is independent of L, but the size of the user secret key is
dependent on L. More precisely, their user secret key contains Ω(L− p)-many
group elements for an identity id := (id1, . . . , idp).

According to Table 1, our scheme has shorter ciphertexts and user secret
keys than Lew12, which is comparable to GCTC16. We note that both Lew12
and GCTC16 are unbounded HIBE with non-tight reductions, while ours are
tight. Thus, when accounting for a larger security loss in the reduction with
larger groups, our scheme may have shorter ciphertexts and user secret keys than
GCTC16 at the concrete level. We want to emphasize that our scheme is not
fully practical yet, but it lays down a theoretical foundation for more efficient
unbounded HIBE with tight security in the future.
Extensions. Our unbounded HIBE scheme directly implies a tightly secure
unbounded identity-based signature by the Naor transformation. Furthermore,
our HIBE is compatible with the Quasi-Adaptive NIZK (QANIZK) for linear
subspaces and thus, similar to [24] it can be combined with a tightly simulation-
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Scheme U |mpk| |usk| |C| Loss MC Assumption
Wat05 [42] 7 O(nL)|G| O(nL)|G| (1 + p)|G| O(nQe)L 7 DBDH
Wat09 [41] 7 O(L)|G| O(p)(|G|+ |Zq|) O(p)(|G|+ |Zq|) O(Qe) 7 2-LIN
Lew12[34] 3 60|G|+ 2|GT | (60 + 10p)|G| 10p|G| O(Qe) 7 2-LIN
OT12 [38] 7 160|G| O(p2L)|G| 3 + 6p|G| O(QeL

2) 7 2-LIN
CW13 [10] 7 O(L)(|G1|+ |G2|) O(L)|G2| 4|G1| O(Qe) 7 SXDH
BKP14 [6] 7 O(L)(|G1|+ |G2|) O(L)|G2| 4|G1| O(Qe) 7 SXDH
GCTC16 [19] 3 18(|G1|+ |G2|) + 3|GT | (18dp/3e − 3p+ 18)|G2| 9dp/3e|G1| O(QL) 7 SXDH
LP19H1 [31] 7 O(γL)(|G1|+ |G2|) O(γL)|G2| 5|G1| O(γL) 7 SXDH
LP19H2 [31] 7 O(γL)(|G1|+ |G2|) (3p+ 2)|G2| (3p+ 2)|G1| O(γ) 7 SXDH
LP20H1 [32] 7 O(γL)(|G1|+ |G2|) O(γL)|G2| 5|G1| O(γL) 3 SXDH
LP20H2 [32] 7 O(γL)(|G1|+ |G2|) (3p+ 2)|G2| (3p+ 2)|G1| O(γL) 3 SXDH
Ours (Fig. 14) 3 O(γ)(|G1|+ |G2|) (7p+ 2)|G2| (7p+ 2)|G1| O(γ) 3 SXDH

Table 1. Comparison of bounded and unbounded HIBEs in prime-order pairing groups
with adaptive security in the standard model based on static assumptions. The second
column indicates whether an HIBE is bounded (7) or unbounded (3). The identity
space for bounded HIBE is ({0, 1}n)≤L and that for unbounded HIBE is ({0, 1}n)∗.
γ is the bit length of the range of a collision-resistant hash function. ‘|mpk|,’ ‘|usk|,’
and ‘|C|’ stand for the size of the master public key, a user secret key and a ciphertext,
respectively. We count the number of group elements in G1,G2, and GT . For a scheme
that works in symmetric pairing groups, we write G(:= G1 = G2). In the ‘|usk|’ and ‘|C|’
columns p stands for the hierarchy depth of the identity vector. In bounded HIBEs, L
denotes the maximum hierarchy depth. In the security loss, Qe denotes the number of
user secret key queries by the adversary. MC stands for multi-challenge and this column
indicates whether the adversary is allowed to query multiple challenge ciphertexts (3)
or just one (7). Lew12 is the prime-order variant of the unbounded scheme in [36].

sound QANIZK to construct a tightly CCA-secure unbounded HIBE in the multi-
challenge setting. We give a detailed treatment in Appendix C.3 for completeness.

1.3 Technical Overview

To achieve our goal, we develop a novel tight method that uses (limited) entropy
hidden in hierarchy-independent master public key to generate enough entropy
to randomize user secret keys of identities with unbounded hierarchy depths
(in a computational manner). As a bonus, our technique naturally give us tight
multi-challenge security.

A modular treatment: From MAC to HIBE. We follow the modular
approach of Blazy, Kiltz, and Pan (BKP) [6] to construct our unbounded HIBE.
The basis of our construction is a novel tightly secure message authentication
code (MAC). Our MAC has suitable algebraic structures and thus can be turned
into an unbounded HIBE tightly by adapting the BKP framework.

The BKP framework [6] tightly reduces constructing an (H)IBE to a suitable
affine MAC. As a result, we only need to focus on constructing the suitable
MAC. Affine MACs are algebraic MACs that have affine structures, and such
structures allow transformation to (H)IBEs. This framework abstracts the first
tightly secure IBE from Chen and Wee (CW) [10] and can be viewed as extending
the “MAC → Signature” framework of Bellare and Goldwasser [5] to the IBE
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setting by using the affine structure and pairings. Most of the tightly secure IBE
and HIBE schemes are related to this framework, such as [26,21,20,24,31,32].
Preparation: Shrinking the message space via hashing. We first apply a
collision-resistant hash function to shrink the message space which the “bit-by-bit”
argument applies on. More precisely, let H : {0, 1}∗ → {0, 1}n be a collision-
resistant hash function. For an (unbounded) hierarchical message m := (m1, . . . ,
mp) ∈ ({0, 1}n)p, we hash every i-th prefix (1 ≤ i ≤ p) and have the hashed
message hm := (hm1, hm2, . . . , hmp) where hmi := H(m1, . . . ,mi) ∈ {0, 1}n. The
collision-resistance guarantees that it is hard for an adversary to find two distinct
m and m? messages with H(m) = H(m?). In particular, after hashing every
prefixes of a message, if a hierarchical message m is not a prefix of m?, then
the last hash value of m is different to every hash value of m?. As a result, our
argument is only applied on the last hash value.
Our strategy: “Inject-and-Pack”. Our strategy contains two steps: (1)
injecting enough randomness into MAC tags locally and (2) packing the local
randomness and lift it up to the global level. Both steps are compatible with each
other, and they only rely on the limited entropy in the hierarchy-independent
MAC keys and can provide tight security even in the multi-challenge setting.

Our MAC has the following structures that enable our “inject-and-pack”
strategy. This is captured by our MAC scheme MACu in Section 3.2.

For a hierarchical message m := (m1, . . . ,mp), our MAC tag τm := (([ti]2,[
t̃i
]

2, [ui]2)1≤i≤p, [ũ]2) has the following form:

ti := Bsi ∈ Zn1
q and t̃i := B̃s̃i ∈ Zn2

q for si, s̃i $← Zn3
q

ui :=
∑n
j=1 Xj,hmiJjKti + X̃1t̃i ∈ Zn4

q (1)

ũ :=
∑p
j=1 X̃2t̃j + x′ ,

where B $← Zn1×n3
q , B̃ $← Zn2×n3

q
4, Xj,b

$← Zn4×n1
q for 1 ≤ j ≤ n, b ∈ {0, 1} and

X̃1, X̃2
$← Zn4×n2

q and x′ $← Zn4
q and they are all contained in the secret key

of our MAC, namely, skMAC := (B, B̃, (Xj,b)for 1≤j≤n,b∈{0,1}, X̃1, X̃2,x′). Here
the (hierarchical) message space of a MAC is the identity space of the resulting
HIBE.

We highlight different purposes of different parts in our MAC tags:
– randomizing x′ is our end goal. In the resulting HIBE, once x′ is randomized,

it will further randomize challenge ciphertexts;
– the linear part,

∑n
j=1 Xj,hmiJjKti , is used to inject randomness;

– with the packing helpers, X̃1t̃i and
∑p
j=1 X̃2t̃j , we can transfer the

injected randomness in up to randomize x′ .

4 For simplicity, we choose B and B̃ uniformly at random here, while in the actual
scheme we choose them based on the underlying assumption.
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We will discuss how to choose the dimensions of these random matrices and
vectors to enable our strategy.

Before that, we stress that it is crucial to generate ([ti]2,
[
t̃i
]

2, [ui]2) for all
1 ≤ i ≤ p and hmi := H(m1, ...,mi) so that we can delegate and randomize MAC
tags for further levels by publishing ([B]2,

[
B̃
]

2, ([Xj,bB]2)j,b,
[
X̃1B̃

]
2,
[
X̃2B̃

]
2).

Details about public delegation can be found in Remark 1 and Theorem 2.
Interlude: Security requirement. The MAC security we need for the
“MAC-to-HIBE” transformation is pseudorandomness against adaptive chosen
message attacks, which is a decisional version of the EUF-CMA security of MAC.
To simplify our discussion, we use the EUF-CMA notion only in this chapter, but
in the main body we prove the decisional one. In the EUF-CMA security game,
an adversary can adaptively ask many MAC tag queries and at some point it
will submit one forgery. For the multi-challenge security, we allow the adversary
submit multiple forgeries. Here we only consider one forgery for simplicity. Note
that our technique works tightly for multiple forgeries.
Local step: Injecting randomness. Here we only focus terms in the solid box
of Equation (1) and find a right way to define the dimensions to implement the
injection strategy. We note that one cannot use the idea of BKP MAC here, since
it uses a square full-rank matrix B ∈ Zk×kq and there is no room to hide Xj,b from
the published terms [Xj,bB]2. These terms have to be public to delegate secret
keys, while it is not a problem for IBE. Moreover, the same (Xj,b)1≤j≤n,b∈{0,1} is
re-used for all ui and the injected randomness will be leaked along them, which
is another issue we encounter with the BKP MAC.

To have control on where to inject randomness, we increase the number of
row vectors in B $← Z3k×k

q , namely, n1 := 3k, as the LP method in [31], where
Xj,b

$← Z1×3k
q are row vectors. Now the column space of B, Span(B) := {v |

∃w ∈ Zkq s.t. v = B · w}, is a subspace of Z3k
q and there is a non-zero kernel

matrix B⊥ ∈ Z3k×2k
q such that (B⊥)>B = 0 ∈ Z2k×k

q . Span(B⊥) is orthogonal
to Span(B).

We introduce a random function “inside” Span(B⊥) by tight reductions to
the MDDH assumption and all ui (1 ≤ i ≤ p) in Equation (1) will distribute
according to the following new form:

ui :=
(

n∑
j=1

X>j,hmiJjK + RF(hmi) · (B⊥)>
)

ti + X̃1t̃i ∈ Zq . (2)

Now RF(hmi) is multiplied by B⊥ and we can control where it gets introduced
by choose ti /∈ Span(B). More precisely, we only introduce the random function,
RF, in up at level p for a hierarchical identity m := (m1, ...,mp).

The above idea is borrowed from [31], but it is still not enough to correctly
inject randomness: It only helps us to hide RF in MAC tag queries, but we still
have issue in answering the verification query for an adversary’s forgery. The
issue described below does not happen in the BKP and LP [31] schemes, since
our MAC has more expressive structure. More precisely, on a forgery of message
m? := (m?

1, ...,m?
p), we need to verify whether the forgery satisfies Equation (1),
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which form an explicit hierarchy. Since we have no control of how an adversary
computes its random t?i , in answering one verification query, we compute RF on
p many distinct messages, hm?

1, ..., hm?
p. This leaks too much information about

RF.
Our solution is to increase the number of row vectors in Xj,b from 1 to k,

namely, n4 := k. As a result, there is room for us to use an assumption (namely,
the MDDH assumption [12]) to tightly inject randomness into these row vectors.
Thus, in the end, verification equations defined by Equation (1) get randomized
and the information about RF is properly hidden. We refer Lemma 4 for technical
details. The whole core step is formally captured by the Randomness Injection
Lemma (cf. Lemma 4). Furthermore, this lemma abstracts the core ideas of [32].
Global step: Packing randomness. After the randomness is injected in ui
at the local level, we pack and move it into the global level to randomize x′
which will be use to randomize the challenge ciphertexts. Implicitly, we pack the
randomness firstly in t̃p for an identity has p levels via the packing helper X̃1t̃p.
Secondly, via another packing helper X̃2t̃p, we move the randomness into ũ.

We choose B̃ $← Z2k×k
q , namely, n2 := 2k, so that there is enough room to

implement the above packing steps. Although the randomness is successfully
injected, it may be leaked from MAC tag and verification queries during the
packing process. In particular, we have small MAC secret keys. To accomplish
the task, we carefully design several intermediate hybrid steps and apply the
MDDH assumption several times. We refer Lemma 5 for details. The whole core
step is formally captured by the Randomness Packing Lemma (cf. Lemma 5).
An alternative interpretation: Localizing HIBEs into IBEs, tightly.
In contrast to the methods of Langrehr and Pan [31,32], our overall idea can
be viewed as localizing a p-level HIBE into p IBE pieces which share the same
master public and secret keys, and p is an arbitrary integer. In the security proof,
we generate enough entropy locally and then extract it to the global level to
argue the security of HIBE. Such an idea is borrowed from [36,34,19], where some
variants of Boneh-Boyen’s IBE [7] are used at the local level and all these IBE
pieces are connected via a secret sharing method. However, implementing this
idea with tight reductions is rather challenging, even with the existing tightly
secure (H)IBEs (such as [10,6,21,31,32]). We observed that these techniques either
fail to introduce local entropy or cannot collect the local randomness to argue
the security of the (global) HIBE.

1.4 More Discussion on Related Work

The family of LP HIBE schemes. To implement the “level-by-level” argument,
the LP HIBEs [31,32] require the size of master public keys dependent on the
maximum hierarchy depth, L, so that they have enough entropy to randomize
corresponding MAC tags.

Our approach provides an economic, tightly secure technique to do the
randomization with more compact and hierarchy-independent master keys. Our
technique uses and abstracts the core technique in a very recent and concurrent
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work [32] to inject randomness. As we showed above, injecting randomness is not
enough for our goal and we require an additional suitable randomness packing
technique. [32] achieves tight multi-challenge security for bounded HIBE, while
ours is for unbounded HIBE.
Other techniques for tight multi-challenge security. Over the last
few years, several techniques have been proposed for tightly secure IBE in
the multi-challenge setting, such as [4,26,20,21,24], where [4,20] are based on
strong and non-standard assumptions and [26] requires a composite-order group.
Motivated by [26], the work of [21,24] construct the tightly multi-challenge secure
IBE schemes in the prime-order group and they both follow the BKP method.
They have the same limitation as discussed in the “Local Step: Injecting
randomness” section and cannot be used for our goal, since their B is also
full-rank square matrix. The same kind of information about Xj,b is leaked.

Furthermore, in the work of Hofheinz, Jia, and Pan [24] (also in [21] and
BKP), they randomize their MAC by developing a random function, RF, in the
Zq full space gradually. This is problematic in the unbounded HIBE setting:
When we “plug” their MAC into our framework, there is no room to hide RF
and by a “mix-and-match” approach an adversary can learn RF(hm?), where
hm? := H(m?). Imagine a challenge message m? ∈ {0, 1}n. By asking a MAC
tag of (m?,m), an adversary can easily learn RF(hm?) from u1. Finally, [31]
has discussed why these multi-challenge security techniques cannot be used for
HIBEs.
Other unbounded technique. Chen et al. [9] proposes a variant of the
bilinear entropy expansion lemma [29] in prime-order groups, which can be
used to transform a (bounded) attribute-based encryption (ABE) scheme to an
unbounded one in a tight manner. However, we note that their lemma requires a
certain algebraic structure of the underlying scheme, which the LP schemes [31,32]
do not have. Moreover, they only prove their scheme in the single-challenge setting,
and it is not clear for us whether their single-challenge security tightly implies
multi-challenge security.
Open problems. It is interesting to consider if we can extend our “inject-and-
pack” strategy in a more general setting, such as predicate encryption schemes.
Another open problem is to consider the Master-Key-KDM security [13] for
HIBEs. Garg et al.[13] proposed a Master-Key-KDM secure IBE based on a
tightly multi-challenge secure IBE. We are optimistic that our unbounded HIBE
can be adapted to achieve the KDM security by following the approach of Garg
et al., since our scheme has tight multi-challenge security as well. However, we
leave a formal treatment of it as an open problem.

2 Preliminaries

Notations. We use x $← S to denote the process of sampling an element x from
S uniformly at random if S is a set and to denote the process of running S with
its internal randomness and assign the output to x if S is an algorithm. The
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expression a ?= b stands for comparing a and b on equality and returning the result
in Boolean value. For positive integers k, η ∈ N+ and a matrix A ∈ Z(k+η)×k

q ,
we denote the upper square matrix of A by A ∈ Zk×kq and the lower η rows
of A by A ∈ Zη×kq . Similarly, for a column vector v ∈ Zk+η

q , we denote the
upper k elements by v ∈ Zkq and the lower η elements of v by v ∈ Zηq . We
use A−> as shorthand for

(
A−1)>. GLk(Zq) denotes the set of invertible k × k

matrices in Zq. Ik is the k × k identity matrix. For a matrix A ∈ Zn×mq , we use
Span(A) :=

{
Av | v ∈ Zmq

}
to denote the linear span of A and – unless state

otherwise – A⊥ denotes an arbitrary matrix with Span
(
A⊥
)

=
{
v | A>v = 0

}
.

For a set S and n ∈ N+, Sn denotes the set of all n-tuples with components
in S and S∗ :=

⋃∞
n=1 Sn. For an n-tuple or string m ∈ Sn, mi ∈ S and mJiK ∈ S

both denote the i-th component of m (1 ≤ i ≤ n) and m|i ∈ Si denotes the prefix
of length i of m.

All algorithms in this paper are probabilistic polynomial-time unless we state
otherwise. If A is an algorithm, then we write a $← A(b) to denote the random
variable outputted by A on input b.
Games. Following [6], we use code-based games to define and prove security. A
game G contains procedures Init and Finalize, and some additional procedures
P1, . . . ,Pn, which are defined in pseudo-code. Initially all variables in a game are
undefined (denoted by ⊥), all sets are empty (denote by ∅), and all partial maps
(denoted by f : A 99K B) are totally undefined. An adversary A is executed in
game G (denote by GA) if it first calls Init, obtaining its output. Next, it may
make arbitrary queries to Pi (according to their specification), again obtaining
their output. Finally, it makes one single call to Finalize(·) and stops. We use
GA ⇒ d to denote that G outputs d after interacting with A, and d is the output
of Finalize. T (A) denotes the running time of A.

2.1 Pairing groups and matrix Diffie-Hellman assumptions

Let GGen be a probabilistic polynomial-time (PPT) algorithm that on input 1λ
returns a description G := (G1,G2,GT , q, P1, P2, e) of asymmetric pairing groups
where G1, G2, GT are cyclic groups of order q for a λ-bit prime q. The group
elements P1 and P2 are generators of G1 and G2, respectively. The function
e : G1 × G2 → GT is an efficient computable (non-degenerated) bilinear map.
Define PT := e(P1, P2), which is a generator in GT . In this paper, we only consider
Type III pairings, where G1 6= G2 and there is no efficient homomorphism between
them. All constructions in this paper can be easily instantiated with Type I
pairings by setting G1 = G2 and defining the dimension k to be greater than 1.

We use the implicit representation of group elements as in [12]. For s ∈ {1,
2, T} and a ∈ Zq define [a]s = aPs ∈ Gs as the implicit representation of a in
Gs. Similarly, for a matrix A = (aij) ∈ Zn×mq we define [A]s as the implicit
representation of A in Gs. Span(A) := {Ar|r ∈ Zmq } ⊂ Znq denotes the linear
span of A, and similarly Span([A]s) := {[Ar]s|r ∈ Zmq } ⊂ Gns . Note that it is
efficient to compute [AB]s given ([A]s,B) or (A, [B]s) with matching dimensions.
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We define [A]1◦ [B]2 := e([A]1, [B]2) = [AB]T , which can be efficiently computed
given [A]1 and [B]2.

Next we recall the definition of the matrix Diffie-Hellman (MDDH) and related
assumptions [12].

Definition 1 (Matrix distribution). Let k, ` ∈ N with ` > k. We call D`,k
a matrix distribution if it outputs matrices in Z`×kq of full rank k in polynomial
time.

Without loss of generality, we assume the first k rows of A $← D`,k form an
invertible matrix. The D`,k-matrix Diffie-Hellman problem is to distinguish the
two distributions ([A], [Aw]) and ([A], [u]) where A $← D`,k, w $← Zkq and
u $← Z`q.

Definition 2 (D`,k-matrix Diffie-Hellman assumption). Let D`,k be a ma-
trix distribution and s ∈ {1, 2, T}. We say that the D`,k-matrix Diffie-Hellman
(D`,k-MDDH) assumption holds relative to PGGen in group Gs if for all PPT
adversaries A, it holds that

Advmddh
D`,k,PGGen,s(A) := |Pr[A(PG, [A]s, [Aw]s) = 1]− Pr[A(PG, [A]s, [u]s) = 1]|

is negligible where the probability is taken over PG $← PGGen(1λ), A $← D`,k,
w $← Zkq and u $← Z`q.

The uniform distribution is a particular matrix distribution that deserves
special attention, as an adversary breaking the U`,k assumption can also distin-
guish between real MDDH tuples and random tuples for all other possible matrix
distributions. For uniform distributions, they stated in [14] that Uk-MDDH and
U`,k-MDDH assumptions are equivalent.

Definition 3 (Uniform distribution). Let k, ` ∈ N+ with ` > k. We call U`,k
a uniform distribution if it outputs uniformly random matrices in Z`×kq of rank k
in polynomial time. Let Uk := Uk+1,k.

Lemma 1 (U`,k-MDDH ⇔ Uk-MDDH [14]). Let `, k ∈ N+ with ` > k. An
U`,k-MDDH instance is as hard as an Uk-MDDH instance. More precisely, for
each adversary A there exists an adversary B and vice versa with

Advmddh
U`,k,PGGen,s(A) = Advmddh

Uk,PGGen,s(B)

and T (A) ≈ T (B).

Lemma 2 (D`,k-MDDH⇒ Uk-MDDH [12]). Let `, k ∈ N+ with ` > k and let
D`,k be a matrix distribution. A Uk-MDDH instance is at least as hard as an D`,k
instance. More precisely, for each adversary A there exists an adversary B with

Advmddh
Uk,PGGen,s(A) ≤ Advmddh

D`,k,PGGen,s(B)

and T (A) ≈ T (B).
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For Q ∈ N+, W $← Zk×Qq ,U $← Z`×Qq , consider the Q-fold D`,k-MDDH
problem which is distinguishing the distributions (PG, [A], [AW]) and (PG, [A],
[U]). That is, the Q-fold D`,k-MDDH problem contains Q independent instances
of the D`,k-MDDH problem (with the same A but different wi). By a hybrid
argument, one can show that the two problems are equivalent, where the reduction
loses a factor Q. The following lemma gives a tight reduction.

Lemma 3 (Random self-reducibility [12]). For ` > k and any matrix dis-
tribution D`,k, the D`,k-MDDH assumption is random self-reducible. In particular,
for any Q ∈ N+ and any adversary A there exists an adversary B with

(`− k)Advmddh
D`,k,PGGen,s(B) + 1

q − 1 ≥ AdvQ-mddh
D`,k,PGGen,s(A) :=

|Pr[A(PG, [A], [AW]⇒ 1)]− Pr[A(PG, [A], [U]⇒ 1)]| ,

where PG $← PGGen
(
1λ
)
, A $← D`,k, W $← Zk×Qq , U $← Z(k+1)×Q

q , and T (B) ≈
T (A) +Q · poly(λ), where poly is a polynomial independent of A.

To reduce the Q-fold U`,k-MDDH assumption to the Uk-MDDH assumption
we have to apply Lemma 3 to get from Q-fold U`,k-MDDH to standard U`,k-
MDDH and then Lemma 1 to get from U`,k-MDDH to Uk-MDDH. Thus for every
adversary A there exists an adversary B with

AdvQ-mddh
U`,k,PGGen,s(A) ≤ (`− k)Advmddh

Uk,PGGen,s(B) + 1
q − 1 .

Formal definitons of collision-resistant hash functions (CRHF) and message
authentication codes (MACs) can be found in Appendix A.

3 Unbounded Affine MAC

3.1 Core Lemmata

The following two core Lemmata contain the main ingredient for the security
proof of our new unbounded MAC. They form the main technical novelty of this
work. Lemma 4 abstracts the technique used in [32] . It shows that the prototypic
MAC MAClin allows the injection of randomness in the tags.

We give a brief overview of how MACu is constructed from MAClin: For a
p-level hierarchical message m := (m1, . . . ,mp) ∈ ({0, 1}γ)p, we divide it into
p pieces hm1, . . . , hmp and each hmi := H(m1, . . . ,mi) where H is a collision-
resistant hash function (CRHF). For each hmi we apply MAClin on it and the
purpose of MAClin is to inject suitable randomness at the local level.

Lemma 5 is then used to move the entropy from up to the vector ũ and ran-
domize it. This makes the user secret keys information-theoretically independent
from the secret x′ and allows us to randomize hK in the Chal queries.
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GenMAC
(
1λ
)
:

PG $← PGGen
(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
B $← U3k,k
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Zk×3k

q

return skMAC :=
(
B, (Xj,b)1≤j≤γ,b∈{0,1}

)
Tag(skMAC, hm ∈ {0, 1}γ):
parse skMAC =:

(
B, (Xj,b)1≤j≤γ,b∈{0,1}

)
s $← Zkq ; t := Bs
u :=

∑γ

j=1 Xj,hmJjKt ∈ Zkq
return τ :=

(
[t]2, [u]2

)

VerMAC(skMAC, hm ∈ {0, 1}γ , τ):
parse skMAC =:

(
B, (Xj,b)1≤j≤γ,b∈{0,1}

)
parse τ =:

(
[t]2, [u]2

)
h $← Zkq
h0 :=

∑γ

j=1 X>j,hm?JjKh

return e
([

h>
]

1
, [u]2

) ?= e
([

h>0
]

1
, [t]2

)

Fig. 1. Our linear MAC MAClin for the message space {0, 1}γ

Randomness Injection Lemma. We start our exposition with a message
authentication code (MAC) with linear structure5 in Figure 1, MAClin. This MAC
scheme is abstracted from [32]. The tags of this MAC can be verified by checking
whether u =

∑γ
j=1 Xj,hmJjKt, but we require the more sophisticated randomized

verification procedure as in Figure 1 for the transformation to an unbounded
HIBE later.

The MAC MAClin is correct, since

e
([

h>
]

1, [u]2
)

=
[
h>
∑γ

j=1
Xj,hmJjKt

]
T

= e
([

h>0
]

1, [t]2
)
.

Our MAClin is a stepping stone for our unbounded MAC for constructing
HIBEs. For the transformation to unbounded HIBE our MAClin satisfies a special
security notion which is captured by Lemma 4. This security notion needs to
combine with Lemma 5 to get a secure MAC for the unbounded HIBE (cf.
Section 3.2).

In the security experiment (defined in Figure 2), the adversary gets values
in dk1 that allow her to rerandomize tags. These values also allows her to forge
arbitrary tags. This is the reason why it is not a secure MAC, but the goal of
the adversary here is not to forge a tag, but to distinguish two games RIreal and
RIrand. More precisely, A gets access to two oracles, Evalri that gives her a tag
for a message, and Chalri that gives her necessary values to check validity of
a tag. She can query these two oracles arbitrary times in an adaptive manner,
but for each message A can query it for either Evalri or Chalri, but not both.
A wins if she can distinguish game RIreal from RIrand. For technical reasons the
5 We call it “linear” since it matches the affine MAC definition from [6] without using
the affine part, i.e. the message dependent part u of the tags depends linear on the
randomness t of the tags.
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Initri:
B $← U3k,k
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Zk×3k

q

dk1 :=
(
[Xj,bB]2

)
1≤j≤γ,b∈{0,1}

return
(
[B]2, dk1

)
Chalri(hm? ∈ {0, 1}γ):
Chm := Chm ∪ {hm?}
h $← Zkq
h0 :=

∑γ

j=1 X>j,hm?JjKh

h0 := h0 + B⊥RF(hm?)>h

return
(
[h]1, [h0]1

)

Evalri(hm ∈ {0, 1}γ):
if hm ∈ Qhm then return ⊥
Qhm := Qhm ∪ {hm}
s $← Zkq ; t := Bs
t $← Z3k

q

u :=
∑γ

j=1 Xj,hmJjKt ∈ Zkq

u $← Zkq
return τ :=

(
[t]2, [u]2

)
Finalizeri(β ∈ {0, 1}):

return
(
Chm ∩Qhm

?= ∅
)
∧ β

Fig. 2. Games RIreal and RIrand that define the security of MAClin. The function RF : {0,
1}γ → Zk×2k

q is a random function, defined on-the-fly.

verification tokens are also randomized over Span
(
B⊥
)
when the tags are random.

The formal security game can be found in Figure 2. Interestingly, Lemma 4
can be used to prove the security of LP HIBEs in [32] in a black-box manner.
Essentially, Lemma 4 has a similar purpose as the core lemma in [16], namely, to
inject randomness.

Lemma 4 (Randomness Injection Lemma). For all adversaries A there
exist adversaries B1 and B2 with

∣∣∣Pr
[
RIAreal ⇒ 1

]
− Pr

[
RIArand ⇒ 1

]∣∣∣ ≤ (8kγ + 2k)Advmddh
Uk,PGGen,2(B1)

+ kγAdvmddh
Uk,PGGen,1(B2) + γQc + 6γ + 1

q − 1 + Qe
q2k

and T (B1) ≈ T (B2) ≈ T (A) + (Qe +Qc) ·poly(λ), where Qe resp. Qc denotes the
number of Evalri resp. Chalri queries of A and poly is a polynomial independent
of A. RIreal and RIrand are defined as in Figure 2.

We give the overall hybrids used to prove this Lemma in Figure 3. The proof can
be found in Appendix B.

Randomness Packing Lemma. We will use a tight variant of the Lewko-Waters
approach [36] to tie these local, linear tags together and move entropy from the
local to the global part. Lemma 5 captures this approach.
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G0 G1 G2,̂ G3

Initri:
B $← U3k,k
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Zk×3k

q

dk1 :=
(
[Xj,bB]2

)
1≤j≤γ,b∈{0,1}

return
(
[B]2, dk1

)
Chalri(hm? ∈ {0, 1}γ):
Chm := Chm ∪ {hm?}
h $← Zkq
h0 :=

∑γ

j=1 X>j,hm?JjKh

h0 := h0 + B⊥RF̂
(

hm?
|̂
)>h

h0 := h0 + B⊥RF(hm?)>h

return
(
[h]1, [h0]1

)

Evalri(hm ∈ {0, 1}γ):
if hm ∈ Qhm then return ⊥
Qhm := Qhm ∪ {hm}
s $← Zkq ; t := Bs
t $← Z3k

q

u :=
∑γ

j=1 Xj,hmJjKt

u := u + RF̂
(

hm|̂
)(

B⊥
)>t

u $← Zkq
return τ :=

(
[t]2, [u]2

)
Finalizeri(β ∈ {0, 1}):

return
(
Chm ∩Qhm

?= ∅
)
∧ β

Fig. 3. Hybrids for the security proof of Lemma 4.

Lemma 5 (Randomness Packing Lemma). For all adversaries A there
exist adversaries B1 and B2 with∣∣∣Pr

[
RPAreal ⇒ 1

]
− Pr

[
RPArand ⇒ 1

]∣∣∣ ≤ 2kAdvmddh
Uk,PGGen,2(B1)

+ kAdvmddh
Uk,PGGen,1(B2) + 6

q − 1

and T (B1) ≈ T (B2) ≈ T (A) + (Qe +Qc) ·poly(λ), where Qe resp. Qc denotes the
number of Evalrp resp. Chalrp queries of A and poly is a polynomial independent
of A. RPreal and RPrand are defined as in Figure 5.

Proof. The proof uses a hybrid argument with hybrids G0 (the RPreal game), G1,
G2, and G3 (the RPrand game). The hybrids are given in Figure 6. A summary
can be found in Table 2.

Lemma 6 (G0  G1). For all adversaries A there exists an adversary B with∣∣Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,2(B) + 1

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. The only difference between these two games is, that the Eval queries
pick the vectors t̃ uniformly random from Z2k

q instead of only from Span
(
B̃
)
.
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GenMAC
(
1λ
)
:

PG $← PGGen
(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
H $← H

(
1λ
)
; B $← U3k,k; B̃ $← U2k,k

for j ∈ {1, . . . , γ}, b ∈ {0, 1} do
Xj,b

$← Zk×3k
q

X̃1
$← Zk×2k

q ; X̃2
$← Zk×2k

q ; x′ $← Zkq
return skMAC

Tag(skMAC,m = (m1, . . . ,mp) ∈ S∗):
for i ∈ {1, . . . , p} do

si $← Zkq ; ti := Bsi
s̃i $← Zkq ; t̃i := B̃s̃i
hmi := H(m1, . . . ,mi)
ui :=

∑γ

j=1 Xj,hmiJjKti + X̃1t̃i

ũ :=
∑p

i=1 X̃2t̃i + x′

return
((

[ti]2,
[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

VerMAC(skMAC,m = (m1, . . . ,mp) ∈ S∗, τ):

τ =:
((

[ti]2,
[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

h̃ $← Zkq
for i ∈ {1, . . . , p} do

hi $← Zkq
hmi := H(m1, . . . ,mi)
h0,i :=

∑γ

j=1 X>j,hmiJjKhi

h̃0,i := X̃>1 hi + X̃>2 h̃
hK := (x′)>h̃
return

∑p

i=1

(
e
([

h>i
]

1
, [ui]2

)
− e
([

h>0,i
]

1
, [ti]2

)
− e
([

h̃>0,i
]

1
,
[
t̃i
]

2

))
+ e
([

h̃
]

1
, [ũ]2

) ?= [hK ]T

Fig. 4. Our unbounded affine MAC MACu. It uses a CRHFH with domain S∗ and range
{0, 1}γ . Throughout the scheme, skMAC :=

(
H,B, B̃, (Xj,b)1≤j≤γ,b∈{0,1}, X̃1, X̃2,x′

)
with values generated in GenMAC. The linear MAC components are highlighted in gray.

This leads to a straightforward reduction to the Qe-fold U2k,k-MDDH assumption
on B̃. ut

Lemma 7 (G1  G2). For all adversaries A there exists an adversary B with∣∣Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + 2

q − 1
and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. In game G2 the B̃⊥-part of h̃0 (for all i ∈ {1, . . . , p}) is uniformly random.
To switch to this game, pick a Qc-fold U2k,k-MDDH challenge and use the
reduction in Figure 7.

Assume that D is invertible. This happens with probability at least (1 −
1/(q − 1)). The Init, Eval, and Finalize oracles are identical in both games.
The reduction correctly simulates Init because the summand D−>D>

(
B̃⊥
)>

cancels out in public key.
To analyze the Chal queries define fc =:

(
Dwc

Dwc+rc

)
where wc is uniform

random in Zkq and rc is 0 ∈ Zkq or uniform random in Zkq . The reduction defines
h := fc, which is a uniform random vector.
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Initrp:
B̃ $← U2k,k
X̃1

$← Zk×2k
q ; X̃2

$← Zk×2k
q

dk2 :=
([

X̃1B̃
]

2
,
[
X̃2B̃

]
2

)
return

([
B̃
]

2
, dk2

)
Chalrp

(
h̃ ∈ Zkq

)
:

h $← Zkq
h̃0 := X̃>1 h + X̃>2 h̃
r $← Zkq ; h̃0 := h̃0 + B̃⊥r
return

(
[h]1,

[
h̃0
]

1

)

Evalrp:
s̃ $← Zkq ; t̃ := B̃s̃
t̃ $← Z2k

q

ũ := X̃2t̃
ũ $← Zkq
return

([
t̃
]

2
, [ũ]2

)
Finalizerp(β ∈ {0, 1}):
return β

Fig. 5. Games RPreal and RPrand for Lemma 5.

Hybrid t̃ drawn from rũ rh̃0
Transition

G0 Span
(
B̃
)

{0} {0} —

G1 Z2k
q {0} {0} Uk-MDDH in G2

G2 Z2k
q {0} Span

(
B̃⊥
)
Uk-MDDH in G1

G3 Z2k
q Zkq Span

(
B̃⊥
)
Uk-MDDH in G2

Table 2. Summary of the hybrids in Figure 6. Evalrp queries draw t̃ from the set
described by the second column and add a uniform random element from the set rũ
to ũ. The Chalrp queries add a uniform random element from rh̃0

to each h̃0. The
background color indicates repeated transitions.

The vector h̃0 is then computed as

h̃0 := J̃>1 h + X̃>2 h̃ + B̃⊥fc
= J̃>1 h + X̃>2 h̃ + B̃⊥DD−1h + B̃⊥rc
= X̃>1 h + X̃>2 h̃ + B̃⊥rc

If rc = 0, the reduction is simulating game G1 and if rc is uniform, the reduction
is simulating G2. ut

Lemma 8 (G2  G3). For all adversaries A there exists an adversary B with∣∣Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,2(B) + 3

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).
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G0 G1 G2 G3

Initrp:
B̃ $← U2k,k
X̃1

$← Zk×2k
q ; X̃2

$← Zk×2k
q

dk2 :=
([

X̃1B̃
]

2
,
[
X̃2B̃

]
2

)
return

([
B̃
]

2
, dk2

)
Chalrp

(
h̃ ∈ Zkq

)
:

h $← Zkq
h̃0 := X̃>1 h + X̃>2 h̃
r $← Zkq ; h̃0 := h̃0 + B̃⊥r
return

(
[h]1,

[
h̃0
]

1

)

Evalrp:
s̃ $← Zkq ; t̃ := B̃s̃
t̃ $← Z2k

q

ũ := X̃2t̃
ũ $← Zkq
return

([
t̃
]

2
, [ũ]2

)
Finalizerp(β ∈ {0, 1}):
return β

Fig. 6. Hybrids for the security proof of Lemma 5.

Initrp:
B̃ $← U2k,k
J̃1

$← Zk×2k
q ; X̃2

$← Zk×2k
q

// Implicit: X̃1 := J̃1 + D−>D>
(
B̃⊥
)>

dk2 :=
([

J̃1B̃
]

2
,
[
X̃2B̃

]
2

)
return

([
B̃
]

2
, dk2

)
Finalizerp(β ∈ {0, 1}):
return β

Evalrp:
t̃ $← Z2k

q

ũ := X̃2t̃
return

([
t̃
]

2
, [ũ]2

)
Chalrp

(
h̃ ∈ Zkq

)
:

Let this be the c-th Chal query.
h := fc
h̃0 := J̃>1 h + X̃>2 h̃ + B̃⊥fc
return

(
[h]1,

[
h̃0
]

1

)
Fig. 7. Reduction for the transition from G1 to G2 to the Qc-fold U2k,k-MDDH challenge(
[D]1, [f1]1, . . . , [fQc ]1

)
.
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Initrp:
B̃ $← U2k,k

if rank
(
B̃
)
6= k ∨ rank

(
B̃
)
6= k then

abort

B̃⊥ :=

(
B̃
−>

−B̃−>

)
; B̃′ := 1

2

(
B̃
−B̃

)
X̃1

$← Zk×2k
q ; J̃2

$← Zk×2k
q

// Implicit: X̃2 := J̃2 + DD−1(B̃⊥)>
dk2 :=

([
X̃1B̃

]
2
,
[
J̃2B̃

]
2

)
return

([
B̃
]

2
, dk2

)

Evalrp:
Let this be the c-th Eval query.
s̃ $← Zkq ; t̃ := B̃s̃ + B̃′fc
ũ :=

∑p

i=1 J̃2t̃ + fc
return

([
t̃
]

2
, [ũ]2

)
Chalrp

(
h̃ ∈ Zkq

)
:

h $← Zkq
r $← Zkq ; h̃0 := X̃>1 h + J̃>2 h̃ + B̃⊥r
return

(
[h]1,

[
h̃0
]

1

)
Finalizerp(β ∈ {0, 1}):
return β

Fig. 8. Reduction for the transition from G2 to G3 to the Qe-fold U2k,k-MDDH challenge(
[D]2, [f1]2, . . . , [fQe ]2

)
.

Proof. In game G3 the vector ũ is chosen uniformly random. For the transition
to this game, we need a Qe-fold U2k,k-MDDH challenge. The reduction is given
in Figure 8.

The reduction aborts if the upper or lower k × k-submatrix of B̃ does not
have full rank. This happens only with probability at most 2/(q − 1). Assume in
the following, that the reduction does not abort. Furthermore assume q > 2.

The way we defined B̃⊥ and B̃′ we get the following three properties:(
B̃⊥
)>B̃ = B̃

−1
B̃− B̃−1B̃ = Ik − Ik = 0 (3)(

B̃⊥
)>B̃′ = 1

2

(
B̃
−1

B̃ + B̃−1B̃
)

= 1
2(Ik + Ik) = Ik (4)

B̃, B̃′ is a basis of Z2k
q (5)

To see Equation (5), note that this is equivalent to the column vectors b1, . . . ,b2k
of (

B̃|2B̃′
)

=
(

B̃ B̃
B̃ −B̃

)
being linear independent. Assume there exist µ1, . . . , µ2k ∈ Zq with

µ1b1 + · · ·+ µ2kb2k = 0 .

Looking at the first k entries in each vector and using that B̃ has full rank we get

µ1 = −µk+1, . . . , µk = −µ2k .

Now looking at the remaining lower k entries and using that the column vectors
of B̃ can not be 0 (because we already assumed that B̃ has full rank) we get that

µ1 = 0, . . . , µ2k = 0 .
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The Init oracle is identically distributed in both games and correctly simulated
by the reduction, because the DD−1(B̃⊥)> cancels out in the public key.

The Chal oracle is also distributed identically in both games and simulated
correctly since the B̃⊥-part of h̃0 is uniform random. More precisely, r is identically
distributed to r + D−>D>h̃. Thus h̃0 as computed by the reduction:

h̃0 := X̃>1 h + J̃>2 h̃ + B̃⊥r

is identically distributed to

X̃>1 h + J̃>2 h̃ + B̃⊥
(
r + D−>D>h̃

)
= X̃>1 h + X̃>2 h̃ + B̃⊥r ,

which is the real h̃0.
To analyze the Eval queries, define fc =:

(
Dwc

Dwc+rc

)
where wc is uniform

random in Zkq and rc is 0 ∈ Zkq or uniform random in Zkq . In the Eval queries
the reduction computes t̃ as t̃ := B̃s̃ + B̃′fc, but this is distributed identically to
a uniform random vector, because s̃ and fc are uniform random and B̃, B̃′ are a
basis of Z2k

q (see Equation (5)).
The vector ũ is computed as

ũ :=
p∑
i=1

J̃2t̃ + fc

=
p∑
i=1

J̃2t̃ + DD−1fc + rc

=
p∑
i=1

J̃2t̃ + DD−1 (B̃⊥)>B̃′︸ ︷︷ ︸
=Ik (Eq. (4))

fc + rc

Eq. (3)=
p∑
i=1

J̃2t̃ + DD−1(B̃⊥)>(B̃s̃ + B̃′fc
)︸ ︷︷ ︸

=t̃

+ rc

=
p∑
i=1

X̃2t̃ + rc .

If rc = 0, the reduction is simulating game G2 and if rc is uniform, the
reduction is simulating G3. ut
Summary. To prove Lemma 5, we combine Lemmata 6–8. ut

3.2 An Unbounded Affine MAC

Our next step is to construct an unbounded affine MAC as in Figure 4. Again,
our idea is to divide a hierarchical message (m1, . . . ,mp) into p pieces hmi :=
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InitMAC:
skMAC

$← GenMAC
(
1λ
)

parse skMAC =:
(
H,B, B̃, (Xj,b)1≤j≤γ,b∈{0,1},

X̃1, X̃2,x′
)

dk1 :=
(
[Xj,bB]2

)
1≤j≤γ,b∈{0,1}

dk2 :=
([

X̃1B̃
]

2
,
[
X̃2B̃

]
2

)
return

(
PG, H, [B]2,

[
B̃
]

2
, dk1, dk2

)
Eval(m = (m1, . . . ,mp) ∈ S∗):
QM := QM ∪ {m}
return Tag(skMAC,m)

FinalizeMAC(β ∈ {0, 1}):
return

( ⋃
m?∈CM

Prefix(m?) ∩QM = ∅
)
∧ β

Chal
(

m? =
(

m?
1, . . . ,m?

p

)
∈ S∗

)
:

CM := CM ∪ {m?}
h̃ $← Zηq
for i ∈ {1, . . . , p} do

hi $← Zηq
hm?

i := H(m?
1, . . . ,m?

i )

h0,i :=
γ∑
j=1

X>j,hm?
i

JjKhi

h̃0,i := X̃>1 hi + X̃>2 h̃
hK := (x′)>h̃
hK

$← Zq
H :=

(
[hi]1, [h0,i]1,

[
h̃0,i
]

1

)
1≤i≤p

return
([

h̃
]

1
,H, [hK ]T

)

Fig. 9. Games uMACreal and uMACrand for defining security for MACu.

H(m1|| . . . ||mi) (1 ≤ i ≤ p) by using a CRHF H. In stark contrast to methods
in [31,32], we generate a MAC tag for each hmi with the same secret key. More
precisely, we apply MAClin on each hmi, and additionally we have a wrapper,
namely, X̃1 · t̃i to connect all these p pieces together.

One can show MACu is a secure MAC according to the (standard) UF-CMA
security (cf. Definition 6). Our MACu has stronger security which is formally
stated in Theorem 1.6 It is not a standard security for a MAC scheme, but it
is exactly what we need for the transformation to unbounded HIBE. As in the
security game for linear MACs, values in dk1 and dk2 can be used to rerandomize
tags (cf. Remark 1). Oracle Eval is available to an adversary A for a tag on any
message of her choice. Moreover, oracle Chal provides A necessary values to
check validity of a tag. She can query these two oracles arbitrary many times in
an adaptive manner. In the end, A needs to distinguish during the experiment
Chal always gives her the real values or the random ones. Of course, we exclude
the case where A trivially wins by asking Eval for any prefix of a challenge
message m?. The formal security game can be found in Figure 9.

Remark 1 (Delegation). The tags of MACu are delegatable in the following sense:
Given a tag τ =

((
[ti]2,

[
t̃i
]

2, [ui]2
)

1≤i≤p, [ũ]2
)
for a message m = (m1, . . . ,mp),

one can compute a fresh tag τ ′′ for a message m′ := (m1, . . . ,mp,mp+1) for
arbitrary mp+1 ∈ S using only the “public key” returned from the InitMAC

6 Our security notion is stronger than UF-CMA since a forged tag could be used to
distinguish the real from the random Chal queries.
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oracle in the uMACreal game. We call the tag τ ′′ fresh, because its distribution is
independent of τ .

First, we define the tag τ ′ for m′ as τ ′ :=
((

[t′i]2,
[
t̃′i
]

2, [u
′
i]2
)

1≤i≤p+1, [ũ
′]2
)
.

This tag is identical to τ on the first p levels, i.e., for all i ∈ {1, . . . , p} we define
t′i := ti, t̃′i := t̃i and u′i := ui. Furthermore we define t′p+1 := 0, t̃′p+1 := 0,
u′p+1 = 0 and ũ′ := ũ. The resulting tag τ is indeed a valid tag for m′, but it is
not fresh.

To get a fresh tag τ ′′ :=
((

[t′′i ]2,
[
t̃′′i
]

2, [u
′′
i ]2
)

1≤i≤p+1, [ũ
′′]2
)
, we rerandomize

the tag τ ′. That is, for all i ∈ {1, . . . , p+ 1} we define t′′i := t′i + Bs′i and
t̃′′i := t̃′i + Bs̃′i for uniform random s′i $← Zn′

q and s̃i $← Zñ′

q . Moreover, we adapt
ui and ũ to the new t′′i and t̃′′i in the following way:

u′′i := u′i +
γ∑
j=1

Xj,bBs′i + X̃1B̃s̃′i

ũ′′ := ũ′ +
p∑
i=1

X̃2B̃s̃′i

Theorem 1 (Security of MACu). MACu is tightly secure under the Uk-MDDH
assumption for G1, the Uk-MDDH assumption for G2 and the collision resistance
of H. More precisely, for all adversaries A there exist adversaries B1, B2 and B3
with∣∣∣Pr

[
uMACAreal ⇒ 1

]
− Pr

[
uMACArand ⇒ 1

]∣∣∣ ≤ (8k + 16kγ)Advmddh
Uk,PGGen,2(B1)

+ (1 + 2k(γ + 1))Advmddh
Uk,PGGen,1(B2) + 2Advcr

H(B3) + 16 + (12 + 2QcL)γ
q − 1 + 2Qe

q2k

and T (B1) ≈ T (B2) ≈ T (B3) ≈ T (A) + (Qe +Qc)L · poly(λ), where Qe resp. Qc
denotes the number of Eval resp. Chal queries of A, L denotes the maximum
length of the messages for which the adversary queried a tag or a challenge, and
poly is a polynomial independent of A.

Proof. The proof uses a hybrid argument with hybrids G0–G5, where G0 is the
uMACreal game. The hybrids are given in Figure 10. They make use of the random
function RF : {0, 1}γ → Zk×2k

q , defined on-the-fly.

Lemma 9 (G0  G1).

Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
Proof. In game G1 each time the adversary queries a tag for a message m, where
she queried a tag for m before, the adversary will get a rerandomized version of
the first tag she queried. The RerandTag algorithm chooses t′i := ti + Bs′i and
t̃′i := t̃i+B̃s̃′i, which is uniformly random in Span(B) resp. Span

(
B̃
)
, independent

of ti and t̃i, because s′i and s̃′i are uniform random in Zkq . The RerandTag algorithm
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G0 G1 G2 G3 G4 G5

InitMAC:
PG $← PGGen

(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
H $← H

(
1λ
)

B $← U3k,k; B̃ $← U2k,k
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Zk×3k

q

X̃1
$← Zk×2k

q ; X̃2
$← Zk×2k

q ; x′ $← Zkq
Φ : S∗ 99K

(
G6k

2
)∗ ×Gk2

dk1 :=
(
[Xj,bB]2

)
1≤j≤γ,b∈{0,1}

dk2 :=
([

X̃1B̃
]

2
,
[
X̃2B̃

]
2

)
return

(
PG, H, [B]2,

[
B̃
]

2
, dk1, dk2

)
Chal

(
m? =

(
m?

1, . . . ,m?
p

)
∈ S∗

)
:

CM := CM ∪ {m?}
h̃ $← Zkq
for i ∈ {1, . . . , p} do

hi $← Zkq
hm?

i := H(m?
1, . . . ,m?

i )
Chm := Chm ∪ {hm?

i }
h0,i :=

∑γ

j=1 X>j,hm?
i

JjKhi

h0,i := h0,i + B⊥RF
(

m?
|i
)>hi

h̃0,i := X̃>1 hi + X̃>2 h̃
ri $← Zkq ; h̃0,i := h̃0,i + B̃⊥ri

hK := (x′)>h̃; hK
$← Zq

H :=
(
[hi]1, [h0,i]1,

[
h̃0,i
]

1

)
1≤i≤p

return
([

h̃
]

1
,H, [hK ]T

)
FinalizeMAC(β ∈ {0, 1}):

return (Chm ∩Qhm = ∅) ∧ β
return

(⋃
m?∈CM

Prefix(m?)∩QM = ∅
)
∧β

Eval(m = (m1, . . . ,mp) ∈ S∗):

if m ∈ QM then
return RerandTag(m, Φ(m))

QM := QM ∪ {m}
for i ∈ {1, . . . , p− 1} do

si $← Zkq ; ti := Bsi; s̃i $← Zkq ; t̃i := B̃s̃i
hmi := H(m1, . . . ,mi)
ui :=

∑γ

j=1 Xj,hmiJjKti + X̃1t̃i
sp $← Zkq ; tp := Bsp; s̃p $← Zkq ; t̃p := B̃s̃p
tp $← Z3k

q

t̃p $← Z2k
q

hmp := H(m)
if hmp ∈ Qhm then abort
Qhm := Qhm ∪ {hmp}

up :=
∑γ

j=1 Xj,hmpJjKtp + X̃1t̃p

up $← Zkq
ũ :=

∑p

i=1 X̃2t̃i + x′

ũ $← Zkq

Φ(m) :=
((

[ti]2,
[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

return Φ(m)

RerandTag(m = (m1, . . . ,mp) ∈ S∗, τ):

τ =:
((

[ti]2,
[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

for i ∈ {1, . . . , p} do
s′i $← Zkq ; t′i := ti + Bs′i
s̃′i $← Zkq ; t̃′i := t̃i + B̃s̃′i
u′i := ui +

∑γ

j=1 Xj,hmiJjKBs′i + X̃1B̃s̃′i
ũ′ := ũ +

∑p

i=1 X̃2B̃s̃′i
return

((
[t′i]2,

[
t̃′i
]

2
, [u′i]2

)
1≤i≤p

, [ũ′]2
)

Fig. 10. Hybrids G0–G5 for the security proof of MACu. The algorithm RerandTag is
only helper function and not an oracle for the adversary. The partial map Φ is initially
totally undefined.
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then computes u′i and ũ′ such to get another valid tag for m, that is distributed
like a fresh tag, independent of the input tag. Thus the games are equivalent.

Note that the rerandomization uses only the “public key” returned by the Init
oracle so that it could be carried out by the adversary herself. In the following,
we will ignore these duplicated Eval queries. ut

Lemma 10 (G1  G2). For all adversaries A there exist adversaries B1 and
B2 with ∣∣Pr

[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣ ≤ Advcr
H(B)

and T (B) ≈ T (A) + (Qe +Qc)L · poly(λ).

Proof. Compared to G1, the hybrid G2 aborts if two different messages, for which
the adversary queried a tag, have the same hash value. Furthermore, in G2 the
adversary looses (i.e., the output of FinalizeMAC is always 0), if the hash of a
prefix of a message sent to the Chal oracle is identical to the hash of a message
send to the Eval oracle. So the two games are identical, except when a hash
function collision occurs. ut

Lemma 11 (G2  G3). For all adversaries A there exists an adversary B with∣∣Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣ ≤ (8kγ + 2k)Advmddh
Uk,PGGen,2(B1)

+ kγAdvmddh
Uk,PGGen,1(B2) + γQcL+ 6γ + 1

q − 1 + Qe
q2k

and T (B) ≈ T (A) + (Qe +Qc)L · poly(λ).

Proof. In game G3 the value up is chosen uniformly random (and some side-effect
changes are made). For the transition to this game, we use the security of the
underlying linear MAC. The reduction is given in Figure 11.

We use the Randomness Injection Lemma to compute the components hi
and h0,i for all levels i in the Chal oracle and to compute tp and u′p, i.e. the
last-level components of the tags. For the other components, we use the public
key returned from Initri. This is important to avoid asking both the Evalri and
Chalri oracles on common prefixes of Evalri-messages and Chalri-messages.

If the reduction is accessing the RIreal game, it simulates G2. Otherwise, it
simulates G3. ut

Lemma 12 (G3  G4). For all adversaries A there exists an adversary B with∣∣Pr
[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣ ≤ 2kAdvmddh
Uk,PGGen,2(B1)+kAdvmddh

Uk,PGGen,1(B2)+ 6
q − 1

and T (B) ≈ T (A) + (Qe +Qc)L · poly(λ).

Proof. In game G4 the value ũ is chosen uniformly random (and some side-effect
changes are made). For the transition to this game, we use the Randomness
Packing Lemma (Lemma 5). The reduction is given in Figure 12.
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InitMAC:
H $← H

(
1λ
)
; B̃ $← U2k,k(

PG, [B]2, dk1
)

$← Initri

parse dk1 =:
(
[Dj,b]2

)
1≤j≤γ,b∈{0,1}

X̃1
$← Zk×2k

q ; X̃2
$← Zk×2k

q ; x′ $← Zkq
Φ : S∗ 99K

(
G6k

2
)∗ ×Gk2

dk2 :=
([

X̃1B̃
]

2
,
[
X̃2B̃

]
2

)
return

(
PG, H, [B]2,

[
B̃
]

2
, dk1, dk2

)
Chal

(
m? =

(
m?

1, . . . ,m?
p

)
∈ S∗

)
:

CM := CM ∪ {m?}
h̃ $← Zkq ; hK := (x′)>h̃
for i ∈ {1, . . . , p} do

hm?
i := H(m?

1, . . . ,m?
i )

Chm := Chm ∪ {hm?
i }

(hi,h0,i) $← Chalri(hm?
i )

h̃0,i := X̃>1 hi + X̃>2 h̃
H :=

(
[hi]1, [h0,i]1,

[
h̃0,i
]

1

)
1≤i≤p

return
([

h̃
]

1
,H, [hK ]T

)

Eval(m = (m1, . . . ,mp) ∈ S∗):
if m ∈ QM then
return RerandTag(m, Φ(m))
QM := QM ∪ {m}
for i ∈ {1, . . . , p− 1} do

si $← Zkq ; ti := Bsi; s̃i $← Zkq ; t̃i := B̃s̃i
hmi := H(m1, . . . ,mi)
ui :=

∑γ

j=1 Dj,hmiJjKsi + X̃1t̃i
hmp := H(m)
if hmp ∈ Qhm then abort
Qhm := Qhm ∪ {hmp}(
[tp]2,

[
u′p
]

2

)
$← Evalri(hmp)

s̃p $← Zkq ; t̃p := B̃s̃p
up := u′p + X̃1t̃p
ũ :=

∑p

i=1 X̃2t̃i + x′

Φ(m) :=
((

[ti]2,
[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

return Φ(m)

FinalizeMAC(β ∈ {0, 1}):
return Finalizeri(β)

Fig. 11. Reduction for the transition from G2 to G3 to the Randomness Injection
Lemma.

We use the Randomness Packing Lemma to compute the components hi and
h̃0,i for all levels i in the Chal oracle and to compute t̃p and ũ′. Everything else
can be computed with the delegation key returned from Initrp.

If the reduction is accessing the RPreal game, it simulates G3. Otherwise, it
simulates G4. ut

Lemma 13 (G4  G5). For all adversaries A there exists an adversary B with∣∣Pr
[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣ ≤ Advmddh
Uk,PGGen,1(B) + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc)L · poly(λ).

Proof. In game G5 the value hK is chosen uniformly random. For the transition
to this game, we need a Qc-fold Uk-MDDH challenge

(
[D]1, [f1]1, . . . , [fQc ]1

)
. The

reduction is given in Figure 13.
Assume that D is invertible. This happens with probability at least (1 −

1/(q − 1)). The Init and Eval oracles are identical in both games and simulated
correctly by the reduction, because they do not return anything depending on x′.
Write fc =:

(
Dwc

Dwc+rc

)
where wc is uniform random in Zkq and rc is 0 or uniform

random in Zq. In the Chal queries the reduction picks h̃ := fc. Since fc is a
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InitMAC:
H $← H

(
1λ
)
; B $← U3k,k

for j ∈ {1, . . . , γ}, b ∈ {0, 1} do
Xj,b

$← Zk×3k
q

dk1 :=
(
[Xj,bB]2

)
1≤j≤γ,b∈{0,1}([

B̃
]

2
, dk2

)
$← Initrp

parse dk2 =:
([

D̃1
]

2
,
[
D̃2
]

2

)
Φ : S∗ 99K

(
G6k

2
)∗ ×Gk2

return
(
PG, H, [B]2,

[
B̃
]

2
, dk1, dk2

)
Chal

(
m? =

(
m?

1, . . . ,m?
p

)
∈ S∗

)
:

CM := CM ∪ {m?}
h̃ $← Zkq ; hK := (x′)>h̃
for i ∈ {1, . . . , p} do

hm?
i := H(m?

1, . . . ,m?
i )

Chm := Chm ∪ {hm?
i }(

hi, h̃0,i
)

$← Chalrp
(
h̃
)

h0,i :=
∑γ

j=1 X>j,hm?
i

JjKhi

H :=
(
[hi]1, [h0,i]1,

[
h̃0,i
]

1

)
1≤i≤p

return
([

h̃
]

1
,H, [hK ]T

)

Eval(m = (m1, . . . ,mp) ∈ S∗):
if m ∈ QM then
return RerandTag(m, Φ(m))
QM := QM ∪ {m}
for i ∈ {1, . . . , p− 1} do

si $← Zkq ; ti := Bsi; s̃i $← Zkq ; t̃i := B̃s̃i
hmi := H(m1, . . . ,mi)
ui :=

∑γ

j=1 Xj,hmiJjKti + D̃1s̃i
hmp := H(m)
if hmp ∈ Qhm then abort
Qhm := Qhm ∪ {hmp}
tp $← Z3k

q

up $← Zkq([
t̃p
]

2
, [ũ′]2

)
$← Evalri(hmp)

ũ :=
∑p−1

i=1 D̃2s̃i + ũ′ + x′

Φ(m) :=
((

[ti]2,
[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

return Φ(m)

FinalizeMAC(β ∈ {0, 1}):
return Finalizeri(β)

Fig. 12. Reduction for the transition from G3 to G4 to the Randomness Packing Lemma.

uniform random vector, h̃ is distributed correctly. Furthermore, hK is computed
as

hK := (j′)>h̃ + fc = (j′)>h̃ + DD−1fc + rc = (x′)>h̃ + rc .

If rc = 0, we are simulating game G4. If rc is uniform random we are simulating
game G5. ut
Summary. To prove Theorem 1, we combine Lemmata 9–13 to change hK from
real to random and then apply all Lemmata (except Lemma 13) in reverse order
to get to the uMACrand game. ut

4 Transformation to unbounded HIBE

Our unbounded affine MAC can be tightly transformed to an unbounded HIBE
under the Uk-MDDH assumption in G1. The transformation follows the same
idea as [6]. It can be found in Appendix C.1.

The unbounded HIBE obtained from our unbounded affine MAC can be
instantiated with any MDDH assumption. The result for the SXDH assumption
can be found in Figure 14.



Unbounded HIBE with Tight Security 27

InitMAC:
H $← H

(
1λ
)
; B $← U3k,k; B̃ $← U2k,k

for j ∈ {1, . . . , γ}, b ∈ {0, 1} do
Xj,b

$← Zk×3k
q

X̃1
$← Zk×2k

q ; X̃2
$← Zk×2k

q ; j′ $← Zkq

// Implicit: x′ := j′ +
(

DD−1
)>

Φ : S∗ 99K
(
G6k

2
)∗ ×Gk2

dk1 :=
(
[Xj,bB]2

)
1≤j≤γ,b∈{0,1}

dk2 :=
([

X̃1B̃
]

2
,
[
J̃2B̃

]
2

)
return

(
PG, H, [B]2,

[
B̃
]

2
, dk1, dk2

)
Chal

(
m? =

(
m?

1, . . . ,m?
p

)
∈ S∗

)
:

CM := CM ∪ {m?}
Let this be the c-th Chal query.
h̃ := fc; hK := (j′)>h̃ + fc
for i ∈ {1, . . . , p} do

hi $← Zkq
hm?

i := H(m?
1, . . . ,m?

i )

h0,i :=
( γ∑
j=1

X>j,hm?
i

JjK +B⊥RF
(

m?
|i
)>)hi

ri $← Zkq ; h̃0,i := X̃>1 hi + X̃>2 h̃ + B̃⊥ri

H :=
([

h̃
]

1
,
(
[hi]1, [h0,i]1,

[
h̃0,i
]

1

)
1≤i≤p

)
return

(
H, [hK ]T

)

Eval(m = (m1, . . . ,mp) ∈ S∗):
if m ∈ QM then
return RerandTag(m, Φ(m))
QM := QM ∪ {m}
for i ∈ {1, . . . , p− 1} do

si $← Zkq ; ti := Bsi
s̃i $← Zkq ; t̃i := B̃s̃i
hmi := H(m1, . . . ,mi)

ui :=
γ∑
j=1

Xj,hmiJjKti + X̃1t̃i

tp $← Z3k
q

t̃p $← Z2k
q

up $← Zkq
ũ $← Zkq
Φ(m) :=

((
[ti]2,

[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

return Φ(m)

FinalizeMAC(β ∈ {0, 1}):
return

( ⋃
m?∈CM

Prefix(m?)∩QM = ∅
)
∧β

Fig. 13. Reduction for the transition from G4 to G5 to the Qc-fold Uk-MDDH challenge(
[D]1, [f1]1, . . . , [fQc ]1

)
.
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Gen
(
1λ
)
:

PG $← PGGen
(
1λ
)
; H $← H

(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
B $← U3,1; B̃ $← U2,1; A $← U1
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Z1×3

q ; Yj,b $← Z1×3
q

Zj,b
:=
(
Y>
j,b
| X>

j,b

)
A

Dj,b
:= Xj,bB; Ej,b

:= Yj,bB
for δ ∈ {1, 2} do

X̃δ
$← Z1×2

q ; Ỹδ $← Z1×2
q

Z̃δ :=
(
Ỹ>δ | X̃>δ

)
A

D̃δ := X̃δB̃; Ẽδ := ỸδB̃
x′ $← Zq; y′ $← Zq; z′ := (y′ | x′) ·A
pk :=

(
PG, H, [A]1,

([
Zj,b

]
1

)
1≤j≤γ,b∈{0,1}

,[
Z̃1
]

1
,
[
Z̃2
]

1
,
[
z′
]

1

)
dk :=

(
[B]2,

[
B̃
]

2
,
([

Dj,b

]
2
,
[
Ej,b

]
2

)
1≤j≤γ,
b∈{0,1}

,[
D̃1
]

2
,
[
D̃2
]

2
,
[
Ẽ1
]

2
,
[
Ẽ2
]

2

)
sk :=

(
skMAC,

(
Yj,b
)

1≤j≤γ,
b∈{0,1}

, Ỹ1, Ỹ2,y′
)

return (pk, dk, sk)

Ext(sk, id = (id1, . . . , , idp) ∈ S∗):
for i ∈ {1, . . . , p} do

si $← Zq; ti := Bsi; s̃i $← Zq; t̃i := B̃s̃i
hidi := H(id1, . . . , idi)
ui :=

∑γ

j=1 Xj,hidiJjKti + X̃1t̃i
vi :=

∑γ

j=1 Yj,hidiJjKti + Ỹ1t̃i
ũ :=

∑p

i=1 X̃2t̃i + x′; ṽ :=
∑p

i=1 Ỹ2t̃i + y′

return
((

[ti]2,
[
t̃i
]

2
, [ui]2, [vi]2

)
1≤i≤p

,

[ũ]2, [ṽ]2
)

Enc(pk, id = (id1, . . . , idp) ∈ S∗):
r $← Zq; c4 := Ar; K := z′ · r
for i ∈ {1, . . . , p} do

ri $← Zq; c2,i := Ari
hidi := H(id1, . . . , idi)
c1,i :=

∑γ

j=1 Zj,hidiJjKri
c3,i := Z̃1ri + Z̃2r

C :=
((

[c1,i]1, [c2,i]1, [c3,i]1
)

1≤i≤p
, [c4]1

)
return

(
[K]T ,C

)

Del(dk, usk[id], id ∈ Sp, idp+1 ∈ S):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
tp+1 := 0; t̃p+1 := 0
up+1 := 0; vp+1 := 0
id′ := (id1, . . . , idp, idp+1)
usk[id′] :=

((
[ti]2, [ui]2, [vi]2

)
1≤i≤p+1

,

[ũ]2, [ṽ]2
)

return RerandUSK(dk, id′, usk[id′])

RerandUSK(dk, id ∈ Sp, usk[id]):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
for i ∈ {1, . . . , p} do

s′i $← Zq; t′i := ti + Bs′i
s̃′i $← Zq; t̃′i := t̃i $← B̃s̃′i
hidi := H(id1, . . . , idi)
u′i := ui +

∑γ

j=1 Dj,hidiJjKs′i + D̃1s̃′i
v′i := vi +

∑γ

j=1 Ej,hidiJjKs′i + Ẽ1s̃′i
ũ′ := ũ +

∑p

i=1 D̃2s̃′i
ṽ′ := ṽ +

∑p

i=1 Ẽ2s̃′i
return

((
[t′i]2,

[
t̃′i
]

2
, [u′i]2, [v

′
i ]2
)

1≤i≤p
,

[ũ′]2, [ṽ
′]2
)

Dec(usk[id], id = (id1, . . . , idp) ∈ S∗,C):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
parse C =:

((
[c1,i]1, [c2,i]1,

[c3,i]1
)

1≤i≤p
, [c4]1

)
[K]T :=

∑p

i=1

(
e

([
c>2,i
]

1
,

[
vi
ui

]
2

)
− e
([

c>1,i
]

1
, [ti]2

)
− e
([

c>3,i
]

1
,
[
t̃i
]

2

))
+ e

([
c>4
]

1
,

[
ṽ
ũ

]
2

)
return [K]T

Fig. 14. The scheme obtained from MACu instantiated with the SXDH assumption.
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Supplementary Material

A Omitted Definitions

A.1 Message Authentication Codes (MACs)

Definition 4 (MAC). A (randomized) MAC MAC consists of three PPT algo-
rithms GenMAC, Tag and VerMAC where
– GenMAC takes the security parameter 1λ and returns a secret key skMAC,
– Tag takes the secret key skMAC and a message m and returns a tag τ ,
– and VerMAC takes a secret key skMAC, a message m and a tag τ and returns
a bit that indicates whether the tag is valid (1) or invalid (0).

Definition 5. A MAC is correct iff for all skMAC
$← GenMAC

(
1λ
)
, messages

m and tags τ $← Tag(skMAC,m) and all random coins used in VerMAC we have
VerMAC(skMAC,m, τ) = 1.

A security notion for a MAC is unforgeability under chosen message attacks
(EUF-CMA).

Definition 6 (EUF-CMA security). A MAC MAC = (GenMAC,Tag,VerMAC) is
EUF-CMA secure iff

Adveuf-cma
MAC (A) := Pr

[
EUF-CMAA ⇒ 1

]
is negligible.

Init:
skMAC

$← GenMAC
(
1λ
)

return ε

Eval(m):
QM := QM ∪ {m}
return Tag(skMAC,m)

Finalize(m?, τ?):
return m? /∈ QM∧VerMAC(skMAC,m?, τ?)

Fig. 15. The security game EUF-CMA.

A.2 Collision-resistant hash functions

The unbounded affine MAC of this work makes use of collision-resistant hash
functions.

Definition 7 (Hash function). A family of hash functions H is a probabilistic
algorithm that gets the security parameter 1λ and returns a hash function H.
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H is a deterministic polynomial time algorithm that gets as input X ∈ DH and
outputs a hash H(X) ∈ RH , where DH is the domain set and RH is the finite
range set.
The security notion we require for the hash functions is collision resistance.
Definition 8 (Collision resistance). A family of hash functions H is collision
resistant if for all PPT adversaries A,

Advcr
H(A) := Pr

[
X1 6= X2 ∧H(X1) = H(X2) |

(X1, X2) $← A
(
1λ, H

)
, H $← H

(
1λ
)]

is negligible in λ.

B Omitted Proofs

Proof (of Lemma 4). The proof uses a hybrid argument with hybrids G0 (the
RIreal game), G1, G2,̂, for ̂ ∈ {0, . . . , γ} and G3 (the RIrand game). The hybrids
are given in Figure 3. A summary can be found in Table 3. The proof makes use of
the random functions RF̂ : {0, 1}̂ → Zk×2k

q (̂ ∈ {0, . . . , γ}), defined on-the-fly.
Lemma 14 (G0  G1). For all adversaries A there exists an adversary B with∣∣Pr

[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ ≤ 2kAdvmddh
Uk,PGGen,2(B) + 1

q − 1
and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).
Proof. The only difference between these two games is that the Eval queries
pick the vectors t uniformly random from Z3k

q instead of only from Span(B).
This leads to a straightforward reduction to a Qe-fold U3k,k-MDDH assumption
on B. By Lemma 3 the Qe-fold U3k,k-MDDH assumption is at most 2k times
harder then the U3k,k-MDDH assumption and this assumption is equivalent to
the Uk-MDDH assumption by Lemma 1. ut

Lemma 15 (G1  G2,0).

Pr
[
GA1 ⇒ 1

]
= Pr

[
GA2,0 ⇒ 1

]
Proof. These two games are equivalent. When replacing in G1 the secret values
X1,b with X1,b+RF0(ε)

(
B⊥
)> (for b ∈ {0, 1}), we get game G2,0. The distribution

of X1,b and X1,b + RF0(ε)
(
B⊥
)> is identical. Note that the term RF0(ε)

(
B⊥
)>

cancels out in the master public key. ut

Lemma 16 (G2,̂  G2,̂+1). For all ̂ ∈ {0, . . . , γ − 1} and all adversaries A
there exist adversaries B1, B2 with∣∣Pr

[
GA2,̂ ⇒ 1

]
− Pr

[
GA2,̂+1 ⇒ 1

]∣∣ ≤ 8kAdvmddh
Uk,PGGen,2(B1)

+ kAdvmddh
Uk,PGGen,1(B2) + 6 +Qc

q − 1 ,

and T (B1) ≈ T (B2) ≈ T (A) + (Qe +Qc) · poly(λ).
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Proof. To prove this transition, we use the hybrids G2,̂,1, G2,̂,2 and G2,̂,3. The
hybrids are given in Figure 16. They make use of the random functions ZF̂,
OF̂ : {0, 1}̂ → Zk×kq (̂ ∈ {0, . . . , γ}), defined on-the-fly.

Hybrid t uniform in ru(hm) rh0 (hm) Transition

G0 Span(B) 0 Original game

G1 Z3k
q 0 Uk-MDDH in G2

G2,̂ Z3k
q RF̂

(
hm|̂

)(
B⊥
)> Identical

G2,̂,1 RF̂
(

hm|̂
)(

B⊥
)> Uk-MDDH in G2

G2,̂,2
ZF̂+1

(
hm|̂+1

)
(B∗0)>

+ OF̂
(

hm|̂
)
(B∗1)>

Uk-MDDH in G1

G2,̂,3

if hm̂+1 = 0 then
Span(B|B0)

else
Span(B|B1)

ZF̂+1
(

hm|̂+1
)
(B∗0)>

+ OF̂+1
(

hm|̂+1
)
(B∗1)>

Uk-MDDH in G1

G2,̂+1 Z3k
q RF̂+1

(
hm|̂+1

)(
B⊥
)> Uk-MDDH in G2

G3 Z3k
q unif. random RF(hm)

(
B⊥
)> Statistically close

Table 3. Summary of the hybrids in Figures 3 and 16. Evalri queries draw t from the
set described by the second column and add the randomness ru(hm)t to u or choose u
uniform random. The Chalri queries add the term rh0 (hm?)>h to h0. The background
color indicates repeated transitions.

Lemma 16 follows directly from Lemmata 17–21.

Lemma 17 (G2,̂  G2,̂,1). For all adversaries A there exists an adversary B
with ∣∣Pr

[
GA2,̂ ⇒ 1

]
− Pr

[
GA2,̂,1 ⇒ 1

]∣∣ ≤ 4kAdvmddh
Uk,PGGen,2(B) + 2

q − 1
and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. These two games are equivalent except that in the Eval queries the
vector t is generated uniformly random from Z3k

q in game G2,̂ and from either
Span(B|B0) or Span(B|B1) depending on the bit hm̂+1 in game G2,̂,1. We can
switch from G2,̂ to G2,̂,1 with two Qe-fold U3k,k-MDDH challenges.

To achieve that, we first switch t in Eval queries with hm̂+1 = 0 from a
random vector in Z3k

q to t := Bsp,1 + sp,2 where sp,1 $← Zkq and sp,2 $← Z3k
q . This

change is only conceptual. Then we change sp,2 from a random vector in Z3k
q to

a random vector in the span of B0 with a Qe-fold U3k,k-MDDH challenge.
To ensure that the column vectors of (B|B0|B1) form a basis of Z3k

q , the reduc-
tion chooses B,B1

$← U3k,k such that (B|B1) has rank 2k and checks whether the
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G2,̂ G2,̂,1 G2,̂,2 G2,̂,3

Initri:

B B0,B1 B∗0,B∗1 $← U3k,k

with the constrains:
– B,B0,B1 is a basis for Z3k

q

– B∗0,B∗1 is a basis for Span
(
B⊥
)

– B>1 B∗0 = B>0 B∗1 = 0
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Zk×3k

q

dk1 :=
(
[Xj,bB]2

)
1≤j≤γ,b∈{0,1}

return
(
[B]2, dk1

)
Chalri(hm? ∈ {0, 1}γ):
Chm := Chm ∪ {hm?}
h $← Zkq
h0 :=

∑γ

j=1 X>j,hm?JjKh

h0 := h0 + B⊥RF̂
(

hm?
|̂
)>h

h0 := h0 +
(

B∗0ZF̂+1
(

hm?
|̂+1
)>

+ B∗1OF̂
(

hm?
|̂
)>)h

h0 := h0 +
(

B∗0ZF̂+1
(

hm?
|̂+1
)>

+ B∗1OF̂+1
(

hm?
|̂+1
)>)h

return
(
[h]1, [h0]1

)

Evalri(hm ∈ {0, 1}γ):
if hm ∈ Qhm then return ⊥
Qhm := Qhm ∪ {hm}
t $← Z3k

q

s $← Z2k
q

if hm̂+1 = 0 then
t := (B|B0)s
else
t := (B|B1)s

u :=
∑γ

j=1 Xj,hmJjKt

u := u + RF̂
(

hm|̂
)(

B⊥
)>t

u := u +
(

ZF̂+1
(

hm|̂+1
)
(B∗0)>

+ OF̂
(

hm|̂
)
(B∗1)>

)
t

u := u +
(

ZF̂+1
(

hm|̂+1
)
(B∗0)>

+ OF̂+1
(

hm|̂+1
)
(B∗1)>

)
t

return τ :=
(
[t]2, [u]2

)
Finalizeri(β ∈ {0, 1}):

return
(
Chm ∩Qhm

?= ∅
)
∧ β

Fig. 16. Intermediate hybrids for the transition from G2,̂ to G2,̂+1.
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kernels of B>0 and (B|B1)> are disjoint. This is equivalent to (B|B0|B1) forming
a basis of Z3k

q and can be done over the group by testing for all column vectors b
of (B|B1)⊥ whether B>0 b 6= 0. By generating new matrices B,B1

$← U3k,k until
this is satisfied, we can ensure that B,B0,B1 is a basis of Z3k

q .
With the same argument, we can switch t from a random vector in Z3k

q to a
random vector in Span(B|B1) in Eval queries with hm̂+1 = 1.

The running time of B is dominated by the running time of A plus some
(polynomial) overhead that is independent of T (A) for the group operations in
each oracle query. ut

Lemma 18 (G2,̂,1  G2,̂,2). For all adversaries A there exists an adversary
B with ∣∣Pr

[
GA2,̂,1 ⇒ 1

]
− Pr

[
GA2,̂,2 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + Qc + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. First of all, we replace in game G2,̂,1 the term RF̂
(
hm|̂

)(
B⊥
)> with

ZF̂
(
hm|̂

)
(B∗0)> + OF̂

(
hm|̂

)
(B∗1)>. This does not change the distribution, since

B0,B1 is a basis for Span
(
B⊥
)
.

We define

ZF̂+1
(
a|̂+1

)
:=
{

ZF̂
(
a|̂
)

if a̂+1 = 0
ZF̂
(
a|̂
)

+ ZF′̂
(
a|̂
)

if a̂+1 = 1
,

for a ∈ {0, 1}γ where ZF′̂ : {0, 1}̂ → Zk×kq is another independent random
function. Since ZF̂ does not appear in game G2,̂,2 anymore, ZF̂+1 is a random
function.

Take a kQc-fold U2k,k-MDDH challenge
(
[D]1, [f1]1, . . . , [fkQc ]1

)
and define

Fc :=
(
f(c−1)k+1| . . . |fck

)
to get Qc 2k × k matrices, whose column vectors are

uniformly random chosen from either Span(D) or Z2k
q . Then the reduction in

Figure 17 can be used to bound the difference between G2,̂,1 and G2,̂,2.
In Eval queries with hm̂+1 = 0 the value u is distributed identically in G2,̂,1

and G2,̂,2, by definition of ZF̂+1. They are simulated correctly in the reduction
since X̂+1,1 is not used to answer those queries. Similarly, Chal queries with
hm?

̂+1 = 0 are identical in both games.
In Eval queries with hm̂+1 = 1 the value u is distributed identically in both

games as well, since for those queries t ∈ Span(B|B1) and both B and B1 are
orthogonal to B∗0. Thus ZF̂+1

(
hm|̂+1

)
t = 0. They are simulated correctly in the

reduction because X̂+1,1t = J̂+1,1t.
Assume that D is invertible. This happens with probability at least (1 −

1/(q − 1)). To analyze the Chal queries with hm?
̂+1 = 1 define Fχ =:

(
DWχ

DWχ+Rχ

)
where Wχ is uniform random in Zk×kq and Rχ is 0 ∈ Zk×kq or uniform random
in Zk×kq . Assume in the following that Wχ has full rank. This happens with
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Initri:
B,B0,B1,B∗0,B∗1 $← U3k,k
with the constrains:
– B,B0,B1 is a basis for Z3k

q

– B∗0,B∗1 is a basis for Span
(
B⊥
)

– B>1 B∗0 = B>0 B∗1 = 0
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Jj,b $← Zk×3k
q

if (j, b) 6= (̂+ 1, 1) then Xj,b := Jj,b

// Implicit: X̂+1,1 := J̂+1,1 + D−>D>(B∗0)>
c := 1; Γ : {0, 1}̂ 99K N+

return
(

[B]2,
(
[Jj,bB]2

)
1≤j≤γ,b∈{0,1}

)
Evalri(hm ∈ {0, 1}γ):
if hm ∈ Qhm then return ⊥
Qhm := Qhm ∪ {hm}
s $← Z2k

q

if hm̂+1 = 0 then t := (B|B0)s
else t := (B|B1)s

u :=
∑γ

j=1 Jj,hmpJjKt + X̃1t̃p
+
(

ZF̂
(

hm|̂
)
(B∗0)> + OF̂

(
hm|̂

)
(B∗1)>

)
t

return τ :=
(
[t]2, [u]2

)

Chalri(hm? ∈ {0, 1}γ):
Chm := Chm ∪ {hm?}
if Γ

(
hm?
|̂
)

= ⊥ then
Γ
(

hm?
|̂
)

:= c; c := c+ 1

χ := Γ
(

hm?
|̂
)

h′ $← Zkq ; h := Fχh′

h0 :=
∑γ

j=1 J>j,hm?JjKh

+
(

B∗0ZF̂
(

hm?
|̂
)>

+ B∗1OF̂
(

hm?
|̂
)>)h

if hm?
̂+1 = 1 then

h0 := h0 + B∗0Fχh′

return
(
[h]1, [h0]1

)
Finalizeri(β ∈ {0, 1}):

return
(
Chm ∩Qhm

?= ∅
)
∧ β

Fig. 17. Reduction for the transition from G2,̂,1 to G2,̂,2 to the kQc-fold U2k,k-MDDH
challenge

(
[D]1, [F1]1, . . . , [FQc ]1

)
.
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probability at least (1−1/(q − 1)). The reduction uses in Chal queries h := Fχh′.
Since Fχ has full rank and h′ is uniformly random in Zkq , h is distributed correctly.

The reduction computes in Chal queries h0,i as

h0,i :=

 γ∑
j=1

J>j,hm?
i
JjK + F

(
m?
|i

)h + B∗0Fχh′

=

 γ∑
j=1

J>j,hm?
i
JjK + F

(
m?
|i

)h + B∗0DD−1Fχh′ + B∗0Rχh′

=

 γ∑
j=1

X>j,hm?
i
JjK + F

(
m?
|i

)h + B∗0RχFχ
−1h

with
F
(

m?
|i

)
:= B∗0ZF̂

(
hm?
|̂

)>
+ B∗1OF̂

(
hm?
|̂

)>
.

If Rχ = 0, the reduction is simulating G2,̂,1. If Rχ is uniformly random, we

implicitly set ZF′̂
(

hm?
|̂

)>
:= RχFχ

−1 and are simulating game G2,̂,2. ut

Lemma 19 (G2,̂,2  G2,̂,3). For all adversaries A there exists an adversary
B with ∣∣Pr

[
GA2,̂,2 ⇒ 1

]
− Pr

[
GA2,̂,3 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + Qc + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. We define

OF̂+1
(
a|̂+1

)
:=
{

OF̂
(
a|̂
)

+ OF′̂
(
a|̂
)

if a̂+1 = 0
OF̂

(
a|̂
)

if a̂+1 = 1
,

for a ∈ {0, 1}γ where OF′̂ : {0, 1}̂ → Zk×kq is another independent random
function. Since OF̂ does not appear in game G2,̂,3 anymore, OF̂+1 is a random
function.

The proof for this Lemma is analogous to the proof of Lemma 18, just with
the roles of 0 and 1 swapped. ut

Lemma 20 (Optimization: G2,̂,1  G2,̂,3). For all adversaries A there exists
an adversary B with∣∣Pr

[
GA2,̂,1 ⇒ 1

]
− Pr

[
GA2,̂,3 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + Qc + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).
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Proof. We can do the reduction of Lemmata 18 and 19 in one step using only one
MDDH challenge in G1. This combined reduction embeds the challenge in both
X̂+1,1 as X̂+1,1 := J̂+1,1 +B∗0DD−1 and X̂+1,0 as X̂+1,0 := J̂+1,0 +B∗1DD−1

and picks in each Chal query χ depending on the first ̂+ 1 bits (instead of only
the first ̂ bits) of hm?. ut

Lemma 21 (G2,̂,3  G2,̂+1). For ̂ < γ and all adversaries A there exists an
adversary B with∣∣Pr

[
GA2,̂,3 ⇒ 1

]
− Pr

[
GA2,̂+1 ⇒ 1

]∣∣ ≤ 4kAdvmddh
Uk,PGGen,2(B) + 2

q − 1

and T (B) ≈ T (A) + (Qe +Qc) · poly(λ).

Proof. In game G2,̂,3 we replace all occurrences of the term ZF̂+1
(
hm|̂+1

)
(B∗0)>

+ OF̂+1
(
hm|̂+1

)
(B∗1)> with RF̂+1

(
hm|̂+1

)(
B⊥
)> to avoid computing B∗0 and

B∗1. This does not change the distribution, since B∗0,B∗1 is a basis for Span
(
B⊥
)
.

It remains to switch the distribution from t back to uniform random using two
Qe-fold U3k,k-MDDH challenges. This part is the reverse of Lemma 17. ut

ut

Lemma 22 (G2,γ  G3).∣∣Pr
[
GA2,γ ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣ ≤ Qe
q2k

Proof. Assume Chm∩Qhm = ∅, otherwise the adversary has lost the game anyway.
In G2,γ in each Eval query the value RFγ(hmi) is added to u. This is the only
place where RFγ(hmi) is used, since only one Eval query per hmi evaluates the
random function and the Chal oracle evaluates RFγ only on m? ∈ CM. Thus u is
uniform random to the adversary if t /∈ Span(B), which happens with probability
at least (1− 1/

(
q2k)). In this case the games are distributed identically. ut

Summary. To prove Lemma 4, we combine Lemmata 14–22. ut

C Transformation to unbounded HIBE

C.1 Unbounded hierarchical identity-based key encapsulation

We recall syntax and security of an unbounded hierarchical identity-based key
encapsulation mechanism (HIBKEM). We only consider HIBKEM in this paper.
By adapting the transformation for public-key encryption in [25] to the HIBE
setting, one can easily prove that every (unbounded) HIBKEM can be transformed
(tightly) into an (unbounded) HIBE scheme with a (one-time secure) symmetric
cipher. The definition of unbounded HIBKEM is like the standard HIBKEM
definition, except that there is no bound on the length of the identity vectors.
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Definition 9 (Unbounded hierarchical identity-based key encapsula-
tion mechanism). An unbounded hierarchical identity-based key encapsulation
mechanism (HIBKEM) HIBKEM consists of five polynomial-time algorithms
HIBKEM := (Gen,Del,Ext,Enc,Dec) with the following properties.
– The probabilistic key generation algorithm Gen(1λ) returns the (master)

public/delegation/secret key (pk, dk, sk). We assume that pk implicitly defines
a hierarchical identity space ID = S∗, for some base identity set S, a key
space K and a ciphertext space C.

– The probabilistic user secret key generation algorithm Ext(sk, id) returns a
secret key usk[id] for a hierarchical identity id ∈ ID.

– The probabilistic key delegation algorithm Del(dk, usk[id], id ∈ Sp, idp+1 ∈ S)
returns a user secret key usk[id||idp+1] for the hierarchical identity id′ =
id||idp+1 ∈ Sp+1.

– The probabilistic encapsulation algorithm Enc(pk, id) returns a symmetric key
K ∈ K together with a ciphertext C with respect to the hierarchical identity
id ∈ ID.

– The deterministic decapsulation algorithm Dec(usk[id], id,C) returns a decap-
sulated key K ∈ K or the reject symbol ⊥.
We make the delegation key dk explicit to make the constructions in this paper

more readable. We define indistinguishability (IND-HID-CPA) against adaptively
chosen identity and plaintext attacks for a HIBKEM via games IND-HID-CPAreal
and IND-HID-CPArand from Figure 18.
Definition 10 (Delegation invariance). An HIBKEM HIBKEM := (Gen,Del,
Ext,Enc,Dec) is delegation invariant, if the distribution of usk[id||idp+1] generated
by Del(usk[id], id, idp+1) for any valid user secret key usk[id] for id is independent
of usk[id] and identical to the distribution of keys generated by Ext(sk, id||idp+1).

In this paper, we focus only on HIBKEM schemes with delegation invariance.
The following definitions of correctness and security are only suitable for delegation
invariant schemes. For general HIBKEMs, a more involved definition that takes
the Del algorithm into account is necessary.
Definition 11 (Correctness). A delegation invariant HIBKEM HIBKEM :=
(Gen,Del,Ext,Enc,Dec) is correct, if for all λ ∈ N+, all pairs (pk, sk) generated
by Gen(λ), all id ∈ ID, all usk[id] generated by Ext(sk, id) and all (K,C) generated
by Enc(pk, id):

Pr[Dec(usk[id], id,C) = K] = 1.
The security notion we consider for HIBKEMs in this work is indistinguisha-

bility under chosen-plaintext attacks. This is the standard notion (here in the
multi-challenge setting) that guarantees that the encapsulated key is hidden from
the adversary.
Definition 12 (mIND-HID-CPA security). A delegation invariant hierarchical
identity-based key encapsulation scheme HIBKEM is mIND-HID-CPA-secure if for
all PPT adversaries A,

Advmind-hid-cpa
HIBKEM,PGGen(A) := |Pr[mIND-HID-CPAAreal ⇒ 1]− Pr[mIND-HID-CPAArand]|



42 R. Langrehr, J. Pan

Init:
(pk, sk, dk) $← Gen(λ)
return (pk, dk)

Ext(id):
QID ← QID ∪ {id}
return usk[id] $← Ext(sk, id)

Enc(id?):
(K?,C?) $← Enc(pk, id?)

K? $← K
return (K?,C?)

Finalize(β ∈ {0, 1}):

return (Prefix(id∗) ∩QID
?= ∅) ∧ β

Fig. 18. Games mIND-HID-CPAreal and mIND-HID-CPArand for defining mIND-HID-
CPA security. For any identity id ∈ Sp, Prefix(id) denotes the set of all prefixes of
id.

is negligible. The games mIND-HID-CPAreal and mIND-HID-CPArand are defined
in Figure 18.

C.2 CPA-secure transformation

Our unbounded affine MAC MAC can be transformed tightly to an unbounded
hierarchical identity-based key encapsulation mechanism (HIBKEM) under the
Uk-MDDH assumption in G1. The resulting HIBE is shown in Figure 19. It follows
the idea of the HIBKEM transformation in [6]. We only consider HIBKEM here,
and one can easily prove that every HIBKEM can be transformed (tightly) into
an HIBE scheme with a (one-time secure) symmetric cipher by adapting a similar
transformation for public-key encryption in [25].

Theorem 2 (Delegation invariance). The HIBKEM UHIBKEMCPA[U2k,k] is
delegation invariant.

Proof. The user secret keys outputted by the Del algorithm are valid user secret
keys with randomness

(
t′i, t̃′i

)
1≤i≤p where t′i := ti + Bs′i and t̃′i := t̃i + B̃s̃′i for

i ∈ {1, . . . , p}. Since s′i and s̃′i are fresh uniform random vectors and ti ∈ Span(B)
and t̃i ∈ Span

(
B̃
)
, t′i is a fresh random vector from Span(B) and t̃′i is a fresh

random vector from Span
(
B̃
)
. Thus a delegated user secret key is distributed

like an user secret key generated with the Ext algorithm. ut

Theorem 3 (Correctness). The HIBKEM UHIBKEMCPA[U2k,k] is correct.
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Gen
(
1λ
)
:

PG $← PGGen
(
1λ
)
; H $← H

(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)

B $← U3k,k; B̃ $← U2k,k; A $← U2k,k

for j ∈ {1, . . . , γ}, b ∈ {0, 1} do
Xj,b

$← Zk×3k
q ; Yj,b $← Zk×3k

q ; Dj,b
:= Xj,bB

Ej,b
:= Yj,bB; Zj,b

:=
(
Y>
j,b
| X>

j,b

)
A

for δ ∈ {1, 2} do
X̃δ

$← Zk×2k
q ; Ỹδ $← Zk×2k

q ; D̃δ := X̃δB̃
Ẽδ := ỸδB̃; Z̃δ :=

(
Ỹ>δ | X̃>δ

)
A

x′ $← Zkq ; y′ $← Zkq ; z′ :=
(
y′> | x′>

)
·A

pk :=
(
PG, H, [A]1,

([
Zj,b

]
1

)
1≤j≤γ,b∈{0,1}

,[
Z̃1
]

1
,
[
Z̃2
]

1
,
[
z′
]

1

)
dk :=

(
[B]2,

[
B̃
]

2
,
([

Dj,b

]
2
,
[
Ej,b

]
2

)
1≤j≤γ,
b∈{0,1}

,[
D̃1
]

2
,
[
D̃2
]

2
,
[
Ẽ1
]

2
,
[
Ẽ2
]

2

)
sk :=

(
skMAC,

(
Yj,b
)

1≤j≤γ,
b∈{0,1}

, Ỹ1, Ỹ2,y′
)

return (pk, dk, sk)

Ext(sk, id = (id1, . . . , , idp) ∈ S∗):
for i ∈ {1, . . . , p} do

si $← Zkq ; ti := Bsi; s̃i $← Zkq ; t̃i := B̃s̃i
hidi := H(id1, . . . , idi)
ui :=

∑γ

j=1 Xj,hidiJjKti + X̃1t̃i
vi :=

∑γ

j=1 Yj,hidiJjKti + Ỹ1t̃i
ũ :=

∑p

i=1 X̃2t̃i + x′; ṽ :=
∑p

i=1 Ỹ2t̃i + y′

return
((

[ti]2,
[
t̃i
]

2
, [ui]2, [vi]2

)
1≤i≤p

,

[ũ]2, [ṽ]2
)

Enc(pk, id = (id1, . . . , idp) ∈ S∗):
r $← Zkq ; c4 := Ar; K := z′ · r
for i ∈ {1, . . . , p} do

ri $← Zkq ; c2,i := Ari
hidi := H(id1, . . . , idi)
c1,i :=

∑γ

j=1 Zj,hidiJjKri
c3,i := Z̃1ri + Z̃2r

C :=
((

[c1,i]1, [c2,i]1, [c3,i]1
)

1≤i≤p
, [c4]1

)
return

(
[K]T ,C

)

Del(dk, usk[id], id ∈ Sp, idp+1 ∈ S):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
tp+1 := 0; t̃p+1 := 0
up+1 := 0; vp+1 := 0
id′ := (id1, . . . , idp, idp+1)
usk[id′] :=

((
[ti]2, [ui]2, [vi]2

)
1≤i≤p+1

,

[ũ]2, [ṽ]2
)

return RerandUSK(dk, id′, usk[id′])

RerandUSK(dk, id ∈ Sp, usk[id]):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
for i ∈ {1, . . . , p} do

s′i $← Zkq ; t′i := ti + Bs′i
s̃′i $← Zkq ; t̃′i := t̃i $← B̃s̃′i
hidi := H(id1, . . . , idi)
u′i := ui +

∑γ

j=1 Dj,hidiJjKs′i + D̃1s̃′i
v′i := vi +

∑γ

j=1 Ej,hidiJjKs′i + Ẽ1s̃′i
ũ′ := ũ +

∑p

i=1 D̃2s̃′i
ṽ′ := ṽ +

∑p

i=1 Ẽ2s̃′i
return

((
[t′i]2,

[
t̃′i
]

2
, [u′i]2, [v

′
i ]2
)

1≤i≤p
,

[ũ′]2, [ṽ
′]2
)

Dec(usk[id], id = (id1, . . . , idp) ∈ S∗,C):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
parse C =:

((
[c1,i]1, [c2,i]1,

[c3,i]1
)

1≤i≤p
, [c4]1

)
[K]T :=

∑p

i=1

(
e

([
c>2,i
]

1
,

[
vi
ui

]
2

)
− e
([

c>1,i
]

1
, [ti]2

)
− e
([

c>3,i
]

1
,
[
t̃i
]

2

))
+ e

([
c>4
]

1
,

[
ṽ
ũ

]
2

)
return [K]T

Fig. 19. The unbounded HIBKEM UHIBKEMCPA build from our unbounded affine
MAC. The MAC parts are highlighted gray.
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Proof. The Dec algorithm returns – when used with a user secret key for the
identity used for encryption – [K]T with

K :=
p∑
i=1

(
c>2,i
(

vi
ui

)
− c>1,iti − c>3,it̃i

)
+ c>4

(
ṽ
ũ

)

=
p∑
i=1

r>i A>
 γ∑
j=1

(
Y
j,hidiJjK

X
j,hidiJjK

)
ti +

(
Ỹ1
X̃1

)
t̃i

− r>i
γ∑
j=1

Z>
j,hidiJjK

ti

−
(
r>i Z̃>1 + r>Z̃>2

)
t̃i

+ r>A>
(

p∑
i=1

(
Ỹ2
X̃2

)
t̃i +

(
y′
x′
))

=
p∑
i=1

(
r>Z̃>2 t̃i

)
+ r>A>

(
p∑
i=1

(
Ỹ2
X̃2

)
t̃i +

(
y′
x′
))

= r>A>
(

y′
x′
)

= z′r ,

which is the key the Enc algorithm returned as well. ut

Theorem 4 (Security). The unbounded HIBKEM UHIBKEMCPA[U2k,k] is
mIND-HID-CPA secure under the Uk-MDDH assumption for G1 if MAC is uMAC
secure. More precisely, for all adversaries A there exist adversaries B1 and B2
with

Advmind-hid-cpa
UHIBKEMCPA[U2k,k],PGGen(A) ≤ (8k + 16kγ)Advmddh

Uk,PGGen,2(B1)

+ (1 + 2k(γ + 2))Advmddh
Uk,PGGen,1(B2) + 2Advcr

H(B3) + 20 + (12 + 2QcL)γ
q − 1 + 2Qe

q2k

and T (B1) ≈ T (B2) ≈ T (A) + (Qe +Qc)L · poly(λ), where Qe resp. Qc denotes
the number of Eval resp. Chal queries of A, L denotes the maximum length of
the messages for which the adversary queried a tag or a challenge, and poly is a
polynomial independent of A.

Proof. The proof makes use of the hybrids G0–G4 defined in Figure 20. G0 is the
mIND-HID-CPAreal game.

Lemma 23 (G0  G1).

Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
Proof. The only difference between these games is that c?1,i and c?3,i for i ∈
{1, . . . , p} and K? are computed with the public values Z

j,b
, Z̃1 and Z̃2 in game

G0 and with the secret values X
j,b
, Y

j,b
, X̃1, Ỹ1, X̃2 and Ỹ2 in G1. ut

Lemma 24 (G1  G2). For all adversaries A there exists an adversary B with∣∣Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + 1

q − 1

and T (B) ≈ T (A) + (Qe +Qc)L · poly(λ).
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Init:
PG $← PGGen

(
1λ
)
; H $← H

(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
B $← U3k,k; B̃ $← U2k,k

A $← U2k,k s.t. A has full rank.
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Zk×3k

q ; Yj,b $← Zk×3k
q

Dj,b
:= Xj,bB; Ej,b

:= Yj,bB
Zj,b

:=
(
Y>
j,b
| X>

j,b

)
A

Ej,b
:= A−>

(
Z>
j,b

B−A>Dj,b

)
for δ ∈ {1, 2} do

X̃δ
$← Zk×2k

q ; Ỹδ $← Zk×2k
q ; D̃δ := X̃δB̃

Ẽδ := ỸδB̃; Z̃δ :=
(
Ỹ>δ | X̃>δ

)
A

Ẽδ := A−>
(
Z̃>δ B̃−A>D̃δ

)
x′ $← Zkq ; y′ $← Zkq ; z′ :=

(
y′> | x′>

)
·A

pk :=
(
PG, [A]1, H,

([
Zj,b

]
1

)
1≤j≤γ,b∈{0,1}

,[
Z̃1
]

1
,
[
Z̃2
]

1
,
[
z′
]

1

)
dk :=

(
[B]2,

[
B̃
]

2
,
([

Dj,b

]
2
,
[
Ej,b

]
2

)
1≤j≤γ,
b∈{0,1}

,[
D̃1
]

2
,
[
D̃2
]

2
,
[
Ẽ1
]

2
,
[
Ẽ2
]

2

)
return (pk, dk)

Ext(id = (id1, . . . , idp) ∈ S∗):
QID := QID ∪ {id}
for i ∈ {1, . . . , p} do

si $← Zkq ; ti := Bsi; s̃i $← Zkq ; t̃i := B̃s̃i
hidi := H(id1, . . . , idi)
ui :=

∑γ

j=1 Xj,hidiJjKti + X̃1t̃i
vi :=

∑γ

j=1 Y
j,hidiJjK

ti + Ỹ1t̃i

vi := A−>
(∑γ

j=1 Z>
j,hidiJjK

ti + Z̃>1 t̃i

−A>ui
)

ũ :=
∑p

i=1 X̃2t̃i + x′; ṽ :=
∑p

i=1 Ỹ2t̃i + y′

ṽ := A−>
(∑p

i=1 Z̃>2 t̃i + z′> −A>ũ
)

return
((

[ti]2,
[
t̃i
]

2
, [ui]2, [vi]2

)
1≤i≤p

,

[ũ]2, [ṽ]2
)

G0 G1 G2 G3 G4

Enc
(

id? =
(

id?1, . . . , id?p
)
∈ S∗

)
:

CID := CID ∪ {id?}
r $← Zkq ; c?4 := Ar; c?4 $← Z2k

q

h̃ $← Zkq
c?4 $← Zkq
c?4 := h̃ + A ·A−1c?4
for i ∈ {1, . . . , p} do

ri $← Zkq ; c?2,i := Ari; c?2,i $← Z2k
q

hi $← Zkq
c?2,i $← Zkq
c?2,i := hi + A ·A−1c?2,i

hid?i := H(id?1, . . . , id?i )

c?1,i :=
γ∑
j=1

Z
j,hidiJjK

ri

c?1,i :=
γ∑
j=1

(
Y>
j,hid?

i
JjK
|X>j

)
c?2,i

c?1,i :=
γ∑
j=1

(
Z
j,hid?

i
JjKAc?2,i + X>

j,hid?
i

JjK
hi
)

c?3,i := Z̃1ri + Z̃2r

c?3,i :=
(
Ỹ>1 |X̃>1

)
c?2,i +

(
Ỹ>2 |X̃>2

)
c?4

c?3,i := Z̃1A−1c?2,i + X̃1hi
+ Z̃2A−1c?4 + X̃2h̃

C? :=
(([

c?1,i
]

1
,
[
c?2,i
]

1
,
[
c?3,i
]

1

)
1≤i≤p

,

[c?4]1
)

K? := z′ · r
K? :=

(
y′> | x′>

)
c?4

K? := z′A−1c?4 + x′>h̃

K? $← Zq
return

(
[K?]T ,C

?
)

Finalize(β ∈ {0, 1}):
return

( ⋃
id?∈CID

Prefix(id?) ∩QID = ∅
)
∧ β

Fig. 20. Hybrids for the security proof of the UHIBKEMCPA transformation.
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Proof. The only difference between these games is that c?4 and c?2,i for i ∈
{1, . . . , p} is chosen from Span(A) in G1 and from Z2k

q in G2. This leads to a
straightforward reduction to the Qc-fold U2k,k-MDDH assumption, where Qc
denotes the number of challenge queries.

The running time of B is dominated by the running time of A plus some
(polynomial) overhead that is independent of T (A) for the group operations in
each oracle query. ut

Lemma 25 (G2  G3).∣∣Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣ ≤ 1
q − 1

Proof. We assume from now on that A has full rank. This happens with proba-
bility at least (1− 1/(q − 1)). Next notice that the values Z

j,b
, Z̃1, Z̃2 and z′ are

uniform random when Y
j,b
, Ỹ1, Ỹ2 and y′ are hidden, so Z

j,b
, Ỹ1, Ỹ2 and z′ are

distributed identical in both games. Second notice

Z
j,b

:=
(
Y>
j,b
| X>

j,b

)
·A⇐⇒ Y>

j,b
=
(
Z
j,b
−X>

j,b
A
)
A−1

Z̃1 :=
(
Ỹ>1 | X̃>1

)
·A⇐⇒ Ỹ>1 =

(
Z̃1 − X̃>1 A

)
A−1

Z̃2 :=
(
Ỹ>2 | X̃>2

)
·A⇐⇒ Ỹ>2 =

(
Z̃2 − X̃>2 A

)
A−1

z′ :=
(
y′> | x′>

)
·A⇐⇒ y′> =

(
z′ − x′>A

)
A−1

.

Game G3 is obtained from G2 by choosing Z
j,b
, Z̃1, Z̃2 and z′ uniform random and

replacing all occurrences of the values Y
j,b
, Ỹ1, Ỹ2 and y′ by the terms described

by the above equations. Thus the games are almost identical distributed. ut

Lemma 26 (G3  G4). For all adversaries A there exists an adversary B with∣∣Pr
[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣ ≤ ∣∣∣Pr
[
uMACAreal ⇒ 1

]
− Pr

[
uMACArand ⇒ 1

]∣∣∣
and T (B) ≈ T (A) + (Qe +Qc)L · poly(λ).

Proof. The adversary B is given in Figure 21. When B plays the uMACreal game
with the underlying unbounded affine MAC challenger, he simulates the game
G3 for A. On the other hand, when B plays the uMACrand game with the MAC
challenger, he simulates the game G4 for A.

The running time of B is dominated by the running time of A plus some
(polynomial) overhead that is independent of T (A) for the group operations in
each oracle query. ut
Summary. To prove Theorem 4, we combine Lemmata 23–26 to change the
challenge keys K? from real to random and then apply all Lemmata (except
Lemma 26) in reverse order to get to the mIND-HID-CPArand game. ut
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Init:
pkMAC

$← InitMAC

parse pkMAC =:
(
PG, [B]2,

[
B̃
]

2
,(

[Xj,bB]2
)

1≤j≤γ,b∈{0,1}
,
[
X̃1B̃

]
2
,
[
X̃2B̃

]
2

)
A $← U2k,k s.t. A has full rank.
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Dj,b
:= Xj,bB; Zj,b

$← Z3k×k
q

Ej,b
:= A−>

(
Z>
j,b

B−A>Dj,b

)
for δ ∈ {1, 2} do

D̃δ := X̃δB̃; Z̃δ $← Z2k×k
q

Ẽδ := A−>
(
Z̃>δ B̃−A>D̃δ

)
z′ $← Z1×(2k)

q

pk :=
(
PG, [A]1, H,

([
Zj,b

]
1

)
1≤j≤γ,b∈{0,1}

,[
Z̃1
]

1
,
[
Z̃2
]

1
,
[
z′
]

1

)
dk :=

(
[B]2,

[
B̃
]

2
,
([

Dj,b

]
2
,
[
Ej,b

]
2

)
1≤j≤γ,
b∈{0,1}

,[
D̃1
]

2
,
[
D̃2
]

2
,
[
Ẽ1
]

2
,
[
Ẽ2
]

2

)
return (pk, dk)

Ext(id = (id1, . . . , idp) ∈ S∗):
τ $← Eval(id)
τ =:

((
[ti]2,

[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

for i ∈ {1, . . . , p} do
hidi := H(id1, . . . , idi)

vi := A−>
(

γ∑
j=1

Z>
j,hidiJjK

ti + Z̃>1 t̃i −A>ui
)

ṽ := A−>
(

p∑
i=1

Z̃>2 t̃i + z′> −A>ũ
)

return
((

[ti]2,
[
t̃i
]

2
, [ui]2, [vi]2

)
1≤i≤p

, [ũ]2,

[ṽ]2
)

Enc
(

id? =
(

id?1, . . . , id?p
)
∈ S∗

)
:

H $← Chal(id?)
parse H =:

([
h̃
]

1
,
(
[hi]1, [h0,i]1,[

h̃0,i
]

1

)
1≤i≤p

, [hK ]T
)

c?4 $← Zkq
c?4 := h̃ + A ·A−1c?4
for i ∈ {1, . . . , p} do

hid?i := H(id?1, . . . , id?i )
c?2,i $← Zkq
c?2,i := hi + A ·A−1c?2,i

c?1,i :=
(

γ∑
j=1

Z
j,hid?

i
JjKAc?2,i

)
+ h0,i

c?3,i := Z̃1A−1c?2,i + Z̃2A−1c?4 + h̃0,i

C? :=
(([

c?1,i
]

1
,
[
c?2,i
]

1
,
[
c?3,i
]

1

)
1≤i≤p

,

[c?4]1
)

K? := z′A−1c?4 + hK
return

(
[K?]T ,C

?
)

Finalize(β ∈ {0, 1}):
return FinalizeMAC(β)

Fig. 21. Adversary B for Lemma 26.
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C.3 CCA-secure transformation

The transformation from the previous section gives us an unbounded HIBE that
is only IND-HID-CPA-secure. However, the stronger IND-HID-CCA security notion,
that gives an adversary access to a decryption oracle, is more realistic.

Via CHK-transformation. An (unbounded) IND-HID-CPA-secure HIBE can be
transformed tightly in an IND-HID-CCA-secure one with the CHK-transformation
[8] using a strong7 one-time secure signature: Therefore the identity space of the
IND-HID-CPA-secure HIBE is split into to distinct parts: The new identity space
of the IND-HID-CCA-secure HIBE and the verification key space of the signature
scheme. To encrypt a message id for id one generates a signing and verification
key pair (sk, vk). The message id is then encrypted for the identity id||vk and
this ciphertext is signed with sk. The ciphertext is equipped with the signature
and vk. To decrypt, one verfies the signature with vk and – if the signature was
correct –– decrypts the actual ciphertext.

The reduction can now simulate the decryption oracle, because when the
ciphertext uses a new verification key, i.e. a verification key vk that has not been
used for the identity id before, the reduction can ask for usk[id||vk] and decrypt
with this key. Even when id turns (later) out to be the challenge identity, it is
unproblematic to query for usk[id||vk]. If vk is not new, i.e. vk was generated in a
challenge query for id during the reduction, the adversary must have forged a
signature (assuming the queried ciphertext is not one of the challenge ciphertexts,
in this case the decryption query would be invalid).

The CHK transformation is tightly secure in the single-challenge setting. In
the multi-challenge setting it is also tightly secure, if the signature scheme used
is tightly secure in the multi-instance setting.

Via zero-knowledge. Another approach is to construct an IND-HID-CCA-secure
HIBE directly. With an unbounded simulation-sound (USS) tag-based quasi-
adaptive non-interactive zero-knowledge argument (QANIZK) [28] for linear
subspaces we can transform an affine MAC with levels directly to an constrained
chosen-ciphertext (IND-HID-CCCA) secure HIBKEM. This has been represented in
[24] for IBEs, but it works likewise for HIBEs. IND-HID-CCCA-secure HIBEKEMs
can be transformed to IND-HID-CCA-secure HIBEs with a (one-time secure)
authenticated symmetric cipher by adapting a similar transformation for public-
key encryption in [25].

Definition 13 (IND-HID-CCCA security). An HIBKEM HIBKEM is IND-HID-
CCCA-secure in G2 if for all PPT adversaries A where

uncert(A) := 1
Qd

Qd∑
i=1

Pr
K $←K

[predi(K) = 1]

7 A signature is strong if it is infeasible to generate a new signature for a message id,
even when other signatures for id are known.
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Init:
(pk, dk, sk) $← Gen(λ)
return (pk, dk)

Ext(id):
QID ← QID ∪ {id}
return (usk[id], udk[id]) $← Ext(sk, id)

Enc(id?):
(K?,C?) $← Enc(pk, id?)
Cenc := Cenc ∪ {(id?,C?)}
K? $← K
return (K?,C?)

Dec(id ∈ Sp,C, pred):
(usk[id], udk[id]) $← Ext(sk, id)
K $← Dec(usk[id], id,C)
if (id,C) /∈ Cenc ∧ pred(K) ?= 1 then
return K

else
return ⊥

Finalize(β ∈ {0, 1}):
return

( ⋃
(id?,C?)∈Cenc

Prefix(id?)∩QID = ∅
)
∧β

Fig. 22. Games IND-HID-CCCAreal and IND-HID-CCCArand for defining IND-HID-CCCA
security. In Dec the time need for evaluating the polynomial-time algorithm pred is
charged to the adversaries run time.

is negligible in λ, the function

Advmind-hid-ccca
HIBKEM (A) :=

∣∣∣Pr
[
IND-HID-CCCAAreal ⇒ 1

]
− Pr

[
IND-HID-CCCAArand ⇒ 1

]∣∣∣
is negligible as well. The games IND-HID-CCCAreal and IND-HID-CCCArand are
defined in Figure 22. The number of Dec queries of A is denoted by Qd and
predi (1 ≤ i ≤ Qd) is the pred algorithm of the i-th Dec query of A.

A QANIZK is a NIZK for a class of languages. The common reference string
crs is allowed to depend on the language, but for the zero-knowledge property
there has to be a single simulator for the entire class of languages.

More formally, let Dpar be a probability distribution on a class of languages
{Lρ} where ρ is a description of each language. The languages Lρ are defined
via a witness relation Rρ, i.e. Lρ := {x | ∃w : (x,w) ∈ Rρ}. For the case of linear
subspaces we have R[A]1

= ([Ar]1, r) ∈ Gm1 × Znq for a matrix A generated by a
Dm,n matrix distribution. The languages are described by [A]1. The parameters
par contain a description of G1.

Definition 14. A quasi-adaptive non-interactive zero-knowledge argument Π
for a language distribution Dpar is a five-tuple Π := (Genpar,GenNIZK,Prove,
VerNIZK,Sim) of polynomial time algorithms with the following properties:
– The probabilistic algorithm Genpar(λ) generates par.
– The probabilistic common reference string (crs) generator Gencrs(par, ρ) gen-
erates a public crs crs and a secret trapdoor td. The crs implicitly defines a
tag space T .
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– The probabilistic proof generating algorithm Prove(crs, tag ∈ T , (x,w) ∈ Rρ)
generates a proof π for the statement x ∈ Lρ.

– The deterministic proof checking algorithm VerNIZK(crs, tag ∈ T , x, π) returns
a bit, where 1 indicates a valid proof for x ∈ Lρ.

– The probabilistic proof simulating algorithm Sim(crs, tag ∈ T , x, td) generates
proofs, but – in contrast to Prove – without using the witness, but with the
trapdoor instead.

For our purposes we require the QANIZK to satisfy the following three
properties:

Definition 15 (Perfect Completeness). A QANIZK Π is perfectly complete
iff for all λ, all par output by Genpar(λ), all ρ, all tags tag ∈ T and all (x,w) ∈ Rρ,
we have

Pr[VerNIZK(crs, tag ∈ T , x, π) = 1 | (crs, td) $← Gencrs(par, ρ),
π $← Prove(crs, tag ∈ T , (x,w) ∈ Rρ)] = 1

Definition 16 (Perfect Zero-knowledge). A QANIZK Π is perfectly zero-
knowledge iff for all λ, all par output by Genpar(λ), all ρ, all (crs, td) output by
Gencrs(par, ρ), all tags tag ∈ T and all (x,w) ∈ Rρ, the output distribution of

VerNIZK(crs, tag ∈ T , x, π) and Sim(crs, tag ∈ T , x, td)

is identical.

Definition 17 (Unbounded Simulation-soundness). A QANIZK Π is un-
bounded simulation-soundness (USS) iff for all PPT adversaries A,

Advuss
Π (A) := Pr

[
USSA ⇒ 1

]
is negligible. The game USS is defined in Figure 23.

The definition of USS is the stronger variant of [24], where the simulator oracle
can be asked for proofs with the challenge tag tag? as well.

An efficient USS QANIZK for linear subspaces is Πuss, shown in Figure 24. It
was proposed by [14] and slightly modified by [24] to match the stronger USS
definition. It makes use of a hash function H with domain T × Gm1 × Gk1 and
range {0, 1}γ .

Theorem 5 ([14,24]). The QANIZK Πuss is perfectly complete, prefectly zero-
knowledge and – if A was sampled with a Dm,n matrix distribution – unbounded
simulation soundness under the Dk-MDDH assumption for G1, the Dk-MDDH
assumption for G2 and the collision resistance of H. More precisely, for all
adversaries A there exist adversaries B1, B2 and B3 with

Advuss
Πuss

(A) ≤ Advmddh
Dk,PGGen,2(B1) + 4γAdvmddh

Dk,PGGen,1(B2) + Advcr
H(B3) + 2−Ω(λ)

and T (B1) ≈ T (B2) ≈ T (B3) ≈ T (A)+Qs ·poly(λ), where Qs denotes the number
of Sim queries of A and poly is a polynomial independent of A.
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Init:
par $← Genpar(λ)
ρ $← Dpar
(crs, td) $← Gencrs(par, ρ)
return crs

Sim(crs, tag ∈ T , x):
π $← Sim(crs, tag, x, td)
P := P ∪ (tag, x, π)
return π

FinalizeNIZK(tag?, x?, π?):
return VerNIZK(crs, tag?, x?, π?) ?= 1

∧ x? /∈ Lρ ∧ (tag?, x?, π?) 6∈ P

Fig. 23. The game USS for defining unbounded simulation-soundness for QANIZKs.

Gencrs
(
PG, [A]1 ∈ Gm×n1

)
:

parse PG =: (G1,G2,GT , q, P1, P2, e)
H $← H

(
1λ
)

M,N $← Dk; K $← Zm×(k+1)
q

for j ∈ {1, . . . , γ}, b ∈ {0, 1} do
Kj,b

$← Zk×(k+1)
q

crs :=
(
H, [M]2, [KM]2,

[
N
]

1
,
[
A>K

]
1(

[Kj,bM]2,
[
N>Kj,b

]
1

)
1≤j≤γ,b∈{0,1}

)
td := K
return (crs, td)

Prove
(

crs, tag ∈ T , [c]1 ∈ Gm1 , r ∈ Znq
)
:

assert c ?= Ar
s $← Zkq ; t := Ns
τ := H

(
tag, [c]1, [t]1

)
u := s>

∑γ

j=1 N>Kj,τj + r>A>K
return π :=

(
[t]1, [u]1

)

VerNIZK
(

crs, tag, [c]1 ∈ Gm1 , r ∈ Znq , π
)
:

parse π =:
(
[t]1, [u]1

)
τ := H

(
tag, [c]1, [t]1

)
return e

(
[u]1, [M]2

) ?= e
([

c>
]

1
, [KM]2

)
+ e
([

t>
]

1
,
[∑γ

j=1 Kj,τjM
]

2

)
Sim
(

crs, td, tag ∈ T , [c]1 ∈ Gm1
)
:

s $← Zkq ; t := Ns
τ := H

(
tag, [c]1, [t]1

)
u := s>

∑γ

j=1 N>Kj,τj + c>K
return π :=

(
[t]1, [u]1

)

Fig. 24. The USS QANIZK Πuss.
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Any unbounded affine MAC MAC can be transformed with a USS QANIZK
for linear subspaces Π := (Genpar,GenNIZK,Prove,VerNIZK,Sim) tightly to an
IND-HID-CCCA-secure unbounded hierarchical identity-based key encapsulation
mechanism (HIBKEM) under the Uk-MDDH assumption in G1. The transfor-
mation is shown in Figure 25. It applies the idea of [24] to the UHIBKEMCPA
transformation from the previous section. We only consider HIBKEM here, and
one can prove that every IND-HID-CCCA-secure HIBKEM can be transformed
(tightly) to an IND-HID-CCA-secure HIBE scheme with a (one-time secure) au-
thenticated symmetric cipher by adapting a similar transformation for public-key
encryption in [25].

Theorem 6 (Delegation invariance). The HIBKEM UHIBKEMCCA[U2k,k] is
delegation invariant.

Proof. The proof is identical to Theorem 2, because the user secret keys are
identical to UHIBKEMCPA[U2k,k]. ut

Theorem 7 (Correctness). The HIBKEM UHIBKEMCCA[U2k,k] is correct.

Proof. The Dec algorithm will never return ⊥ for ciphertexts generated by Enc
due to the perfect completeness of the QANIZK. The remaining argument is
identical to Theorem 3. ut

Theorem 8 (Security). The unbounded HIBKEM UHIBKEMCCA[U2k,k] is IND-
HID-CCCA secure under the Uk-MDDH assumption for G1 if MAC is uMAC secure
and Π is zero-knowledge und unbounded simulation-sound. More precisely, for
all adversaries A there exist adversaries B1, B2, and B3 with

Advmind-hid-ccca
UHIBKEMCPA[U2k,k](A) ≤ (8k + 16kγ)Advmddh

Uk,PGGen,2(B1)

+ (1 + 2k(γ + 2))Advmddh
Uk,PGGen,1(B2) + 2Advcr

H(B3) + 20 + (12 + 2QcL)γ
q − 1 + 2Qe

q2k

+ 2Advuss
Π (B3) + 4Qduncert(A)

and T (B1) ≈ T (B2) ≈ T (A) + (Qe +Qc +Qd)L · poly(λ), where Qe resp. Qc
denotes the number of Eval resp. Chal resp. Dec queries of A, L denotes
the maximum length of the messages for which the adversary queried a tag, a
challenge or a decryption, and poly is a polynomial independent of A.

Proof. The proof makes use of the hybrids G0–G6 defined in Figure 26. G0 is the
IND-HID-CCCAreal game.

Lemma 27 (G0  G1).

Pr
[
GA0 ⇒ 1

]
= Pr

[
GA1 ⇒ 1

]
Proof. The proof is identical to Lemma 23. ut
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Gen
(
1λ
)
:

PG $← PGGen
(
1λ
)
; H $← H

(
1λ
)

parse PG =: (G1,G2,GT , q, P1, P2, e)
B $← U3k,k; B̃ $← U2k,k; A $← U2k,k

(crs, td) $← Gencrs(PG,A)
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Zk×3k

q ; Yj,b $← Zk×3k
q

Dj,b
:= Xj,bB; Ej,b

:= Yj,bB
Zj,b

:=
(
Y>
j,b
| X>

j,b

)
A

for δ ∈ {1, 2} do
X̃δ

$← Zk×2k
q ; Ỹδ $← Zk×2k

q ; D̃δ := X̃δB̃
Ẽδ := ỸδB̃; Z̃δ :=

(
Ỹ>δ | X̃>δ

)
A

x′ $← Zkq ; y′ $← Zkq ; z′ :=
(
y′> | x′>

)
·A

pk :=
(

crs ,PG, [A]1, H,
([

Zj,b

]
1

)
1≤j≤γ,
b∈{0,1}

,[
Z̃1
]

1
,
[
Z̃2
]

1
,
[
z′
]

1

)
dk :=

(
[B]2,

[
B̃
]

2
,
([

Dj,b

]
2
,
[
Ej,b

]
2

)
1≤j≤γ,
b∈{0,1}

,[
D̃1
]

2
,
[
D̃2
]

2
,
[
Ẽ1
]

2
,
[
Ẽ2
]

2

)
sk :=

(
skMAC,

(
Yj,b
)

1≤j≤γ,b∈{0,1}
, Ỹ1, Ỹ2,y′

)
return (pk, dk, sk)

Ext(sk, id = (id1, . . . , , idp) ∈ S∗):
τ $← Tag(skMAC, id)
τ =:

((
[ti]2,

[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

for i ∈ {1, . . . , p} do
hidi := H(id1, . . . , idi)
vi :=

∑γ

j=1 Y
j,hidiJjK

ti + Ỹ1t̃i
ṽ :=

∑p

i=1 Ỹ2t̃i + y′

return
((

[ti]2,
[
t̃i
]

2
, [ui]2, [vi]2

)
1≤i≤p

, [ũ]2,

[ṽ]2
)

Enc(pk, id = (id1, . . . , idp) ∈ S∗):
r $← Zkq ; c4 := Ar; K := z′ · r
for i ∈ {1, . . . , p} do

ri $← Zkq ; c2,i := Ari; c3,i := Z̃1ri + Z̃2r
hidi := H(id1, . . . , idi)
c1,i :=

∑γ

j=1 Z
j,hidiJjK

ri

C′ :=
((

[c1,i]1, [c2,i]1, [c3,i]1
)

1≤i≤p
, [c4]1

)
for i ∈ {1, . . . , p} do
πi

$← Prove
(

crs,C′, [c2,i]1, ri
)

π̃ $← Prove
(

crs,C′, [c4]1, r
)

return
(

[K]T ,
(

C′, (πi)1≤i≤p, π̃
))

Del(dk, usk[id], id ∈ Sp, idp+1 ∈ S):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
tp+1 := 0; t̃p+1 := 0
up+1 := 0; vp+1 := 0
id′ := (id1, . . . , idp, idp+1)
usk[id′] :=

((
[ti]2, [ui]2, [vi]2

)
1≤i≤p+1

, [ũ]2,

[ṽ]2
)

return RerandUSK(dk, id′, usk[id′])

RerandUSK(dk, id ∈ Sp, usk[id]):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
for i ∈ {1, . . . , p} do

s′i $← Zkq ; s̃′i $← Zkq
t′i := ti + Bs′i; t̃′i := t̃i $← B̃s̃′i
hidi := H(id1, . . . , idi)
u′i := ui +

∑γ

j=1 D
j,hidiJjK

s′i + D̃1s̃′i
v′i := vi +

∑γ

j=1 E
j,hidiJjK

s′i + Ẽ1s̃′i
ũ′ := ũ +

∑p

i=1 D̃2s̃′i; ṽ′ := ṽ +
∑p

i=1 Ẽ2s̃′i
return

((
[t′i]2,

[
t̃′i
]

2
, [u′i]2, [v

′
i ]2
)

1≤i≤p
,

[ũ′]2, [ṽ
′]2
)

Dec(usk[id], id = (id1, . . . , idp) ∈ S∗,C):

parse usk[id] =:
((

[ti]2,
[
t̃i
]

2
, [ui]2,

[vi]2
)

1≤i≤p
, [ũ]2, [ṽ]2

)
parse C =:

(
C′, (πi)1≤i≤p, π̃

)
C′ =:

((
[c1,i]1, [c2,i]1, [c3,i]1

)
1≤i≤p

, [c4]1
)

if ∃i ∈ {1, . . . , p} : VerNIZK
(

crs,C′, [c2,i]1,
πi
) ?= 0 ∨ VerNIZK

(
crs,C′, [c4]1, π̃

) ?= 0
then return ⊥

[K]T :=
p∑
i=1

(
e

([
c>2,i
]

1
,

[
vi
ui

]
2

)
− e
([

c>1,i
]

1
, [ti]2

)
− e
([

c>3,i
]

1
,
[
t̃i
]

2

))
+ e

([
c>4
]

1
,

[
ṽ
ũ

]
2

)
return [K]T

Fig. 25. The Transformation UHIBKEMCCA of an unbounded affine MAC to an un-
bounded HIBKEM. Differences to the UHIBKEMCPA transformation are highlighted
gray.
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Init:
(G1,G2,GT , q, P1, P2, e) := PG $← PGGen

(
1λ
)

B $← U3k,k; B̃ $← U2k,k; (crs, td) $← Gencrs(PG,A)
A $← U2k,k s.t. A has full rank.
for j ∈ {1, . . . , γ}, b ∈ {0, 1} do

Xj,b
$← Zk×3k

q ; Yj,b $← Zk×3k
q

Zj,b
:=
(
Y>
j,b
| X>

j,b

)
A; Dj,b

:= Xj,bB

Ej,b
:= Yj,bB; Ej,b

:= A−>
(
Z>
j,b

B−A>Dj,b

)
for δ ∈ {1, 2} do

X̃δ
$← Zk×2k

q ; Ỹδ $← Zk×2k
q ; Z̃δ :=

(
Ỹ>δ | X̃>δ

)
A

D̃δ := X̃δB̃; Ẽδ := ỸδB̃

Ẽδ := A−>
(
Z̃>δ B̃−A>D̃δ

)
x′ $← Zkq ; y′ $← Zkq ; z′ :=

(
y′> | x′>

)
·A

pk :=
(

crs,PG, [A]1,
([

Zj,b

]
1

)
1≤j≤γ,b∈{0,1}

,[
Z̃1
]

1
,
[
Z̃2
]

1
,
[
z′
]

1

)
dk :=

(
[B]2,

[
B̃
]

2
,
([

Dj,b

]
2
,
[
Ej,b

]
2

)
1≤j≤γ,b∈{0,1}

,[
D̃1
]

2
,
[
D̃2
]

2
,
[
Ẽ1
]

2
,
[
Ẽ2
]

2

)
return (pk, dk)

Dec(id = (id1, . . . , idp) ∈ S∗,C, pred):
if (id,C) ∈ Cenc then return ⊥
parse C =:

(
C′, (πi)1≤i≤p, π̃

)
C′ =:

((
[c1,i]1, [c2,i]1, [c3,i]1

)
1≤i≤p

, [c4]1
)

if ∃i ∈ {1, . . . , p} : VerNIZK
(

crs,C′, [c2,i]1,πi
) ?= 0

∨ VerNIZK
(

crs,C′, [c4]1, π̃
) ?= 0 then return ⊥

if ∃i ∈ {1, . . . , p} : c2,i /∈ Span(A) ∨ c4 /∈
Span(A) then return ⊥

for i ∈ {1, . . . , p} do hidi := H(id1, . . . , idi)
if ∃i ∈ {1, . . . , p} :

(
c3,i 6= Z̃1A−1c2,i+Z̃2A−1c4

∨ c1,i 6=
∑γ

j=1 Z
j,hidiJjK

A−1c2,i
)
then return ⊥

else
K := z′A−1c4

if pred
(
[K]T

) ?= 1 then return [K]T
else return ⊥

usk[id] $← Ext′(id)
parse usk[id] =:

((
[ti]2,

[
t̃i
]

2
, [ui]2, [vi]2

)
1≤i≤p

,

[ũ]2, [ṽ]2
)

[K]T :=
p∑
i=1

(
e

([
c>2,i
]

1
,

[
vi
ui

]
2

)
− e
([

c>1,i
]

1
, [ti]2

)
− e
([

c>3,i
]

1
,
[
t̃i
]

2

))
+ e

([
c>4
]

1
,

[
ṽ
ũ

]
2

)
if pred

(
[K]T

) ?= 1 then return [K]T
else return ⊥

Finalize(β ∈ {0, 1}):
return

( ⋃
(id?,C?)∈Cenc

Prefix(id?) ∩QID = ∅
)
∧ β

G0 G1 G2 G3 G4 G5
�� ��G6

Ext(id = (id1, . . . , idp) ∈ S∗):
QID := QID ∪ {id}; return Ext′(id)

Ext′(id = (id1, . . . , idp) ∈ S∗):((
[ti]2,

[
t̃i
]

2
, [ui]2

)
1≤i≤p

, [ũ]2
)

$← Tag(skMAC, id)
for i ∈ {1, . . . , p} do

hidi := H(id1, . . . , idi)
vi :=

∑γ

j=1 Y
j,hidiJjK

ti + Ỹ1t̃i

vi := A−>
(∑γ

j=1 Z>
j,hidiJjK

ti+Z̃>1 t̃i−A>ui
)

ṽ :=
∑p

i=1 Ỹ2t̃i + y′

ṽ := A−>
(∑p

i=1 Z̃>2 t̃i + z′> −A>ũ
)

return
((

[ti]2,
[
t̃i
]

2
, [ui]2, [vi]2

)
1≤i≤p

, [ũ]2, [ṽ]2
)

Enc
(

id? =
(

id?1, . . . , id?p
)
∈ S∗

)
:

r $← Zkq ; c?4 := Ar; c?4 $← Z2k
q

h̃ $← Zkq ; c?4 $← Zkq ; c?4 := h̃ + A ·A−1c?4
for i ∈ {1, . . . , p} do

ri $← Zkq ; c?2,i := Ari; c?2,i $← Z2k
q

hi $← Zkq ; c?2,i $← Zkq ; c?2,i := hi + A ·A−1c?2,i

hid?i := H(id?1, . . . , id?i ); c?1,i :=
∑γ

j=1 Z
j,hidiJjK

ri

c?1,i :=
∑γ

j=1

(
Y>
j,hid?

i
JjK
|X>j

)
c?2,i

c?1,i :=
∑γ

j=1

(
Z
j,hid?

i
JjKAc?2,i + X>

j,hid?
i

JjK
hi
)

c?3,i := Z̃1ri + Z̃2r

c?3,i :=
(
Ỹ>1 |X̃>1

)
c?2,i +

(
Ỹ>2 |X̃>2

)
c?4

c?3,i := Z̃1A−1c?2,i + X̃1hi + Z̃2A−1c?4 + X̃2h̃

C?′ :=
(([

c?1,i
]

1
,
[
c?2,i
]

1
,
[
c?3,i
]

1

)
1≤i≤p

, [c?4]1
)

for i ∈ {1, . . . , p} do
πi

$← Prove
(

crs,C?′,
[
c?2,i
]

1
, ri
)

π̃ $← Prove
(

crs,C?′, [c?4]1, r
)

for i ∈ {1, . . . , p} do
πi

$← Sim
(

crs, td,C?′,
[
c?2,i
]

1

)
π̃ $← Sim

(
crs, td,C?′, [c?4]1

)
Cenc := Cenc ∪

{(
id?,
(

C?′, (πi)1≤i≤p, π̃
))}

K? := z′ · r; K? :=
(
y′> | x′>

)
c?4

K? := z′A−1c?4 + x′>h̃;
�� ��K? $← Zq

return
(
[K?]T ,

(
C?′, (πi)1≤i≤p, π̃

))
Fig. 26. Hybrids for the security proof of the UHIBKEMCCA transformation. Ext′ is just
a helper function, not an oracle for the adversary.
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Lemma 28 (G1  G2). For all adversaries A there exists an adversary B with∣∣Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]∣∣ ≤ kAdvmddh
Uk,PGGen,1(B) + 1

q − 1

and T (B) ≈ T (A) + (Qe +Qc +Qd)L · poly(λ).

Proof. In G2 Sim is used to generate the QANIZK proofs in the Enc queries
instead of Prove in G1. The adversary can not notice the difference due to the
perfect zero-knowledge of Π. The remaining argument is identical to Lemma 24.

ut

Lemma 29 (G2  G3). For all adversaries A there exists an adversary B with∣∣Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]∣∣ ≤ Advuss
Π (B) +Qduncert(A)

and T (B) ≈ T (A) + (Qe +Qc +Qd)L · poly(λ).

Proof. A difference between G2 and G3 occurs iff the adversary issues a Dec query
with

(
id,C =

(
C′, (πi)1≤i≤p, π̃

)
, pred

)
, C′ =:

((
[c1,i]1, [c2,i]1, [c3,i]1

)
1≤i≤p, [c4]1

)
where (id,C) /∈ Cenc and ∃i ∈ {1, . . . , p} : c2,i /∈ Span(A) ∨ c4 /∈ Span(A), but
still ∀i ∈ {1, . . . , p} : VerNIZK

(
crs,C′, [c2,i]1, πi

)
= 1 ∧ VerNIZK(crs,C′, [c4]1, π̃) = 1

and pred(Dec(usk[id], id,C)) = 1 for a valid user secret key usk[id] for id. In
this case, however, the adversary can be used to break the USS property of Π:
The reduction can use the Sim oracle to compute the QANIZK proofs in the
Enc queries. When the adversary issues the Dec query that satisfies the above
properties, we have to distinguish the following two cases:
– The ciphertext C was returned by the Enc oracle before for an identity id? 6=

id. (If id = id?, the Dec query would not be allowed.) Let
((

[ti]2,
[
t̃i
]

2, [ui]2,

[vi]2
)

1≤i≤p, [ũ]2, [ṽ]2
)
be a user secret key for id. Then

K =
p∑
i=1

(
c>2,i
(

vi
ui

)
− c>1,iti − c>3,it̃i

)
+ c>4

(
ṽ
ũ

)

=
p∑
i=1

c>2,i

 γ∑
j=1

(
Y
j,hidiJjK

X
j,hidiJjK

)
ti +

(
Ỹ1
X̃1

)
t̃i


− c>2,i

γ∑
j=1

(
Y
j,hid?

i
JjK

X
j,hid?

i
JjK

)
ti −

(
c>2,i
(

Ỹ1
X̃1

)
+ c>4

(
Ỹ2
X̃2

))
t̃i


+ c>4

(
p∑
i=1

(
Ỹ2
X̃2

)
t̃i +

(
y′
x′
))

= c>4
(

y′
x′
)

+
p∑
i=1

c>2,i
γ∑
j=1

(
Y
j,hidiJjK

−Y
j,hid?

i
JjK

X
j,hidiJjK

−X
j,hid?

i
JjK

)
ti .
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Assume
∑γ
j=1

( Y
j,hidiJjK

−Y
j,hid?

i
JjK

X
j,hidiJjK

−X
j,hid?

i
JjK

)
6= 0 for an i ∈ {1, . . . , p} – if such an i

would not exist, the underlying unbounded affine MAC could be trivially
broken. Since ti is a uniform random vector, K is uniformly random to the
adversary. Thus Dec queries of this type are rejected due to pred([K]T ) = 0
anyway with probability at least (1 − Qduncert(A)). So in this case the
adversary will not notice any difference between G2 and G3 for these queries.

– The ciphertext C was not returned by the Enc oracle before. In this case
one of the proofs in the ciphertext can be send to the FinalizeNIZK oracle
to win the USS game.

ut

Lemma 30 (G3  G4).∣∣Pr
[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]∣∣ ≤ Qd · uncert(A)

Proof. A difference between G3 and G4 occurs iff the adversary issues a Dec query
with

(
id,C =

(
C′, (πi)1≤i≤p, π̃

)
, pred

)
, C′ =:

((
[c1,i]1, [c2,i]1, [c3,i]1

)
1≤i≤p, [c4]1

)
where (id,C) /∈ Cenc, for all i ∈ {1, . . . , p} c2,i ∈ Span(A), c4 ∈ Span(A), and
there exists an i ∈ {1, . . . , p} such that c1,i 6=

∑γ
j=1 Z

j,hidiJjK
A−1c2,i or c3,i 6=

Z̃1A−1c2,i + Z̃2A−1c4 for some l ∈ {1, . . . , p}, but still all proofs contained in C
are accepted by VerNIZK and pred(Dec(usk[id], id,C)) = 1 for a valid user secret
key usk[id] for id. Let

((
[ti]2,

[
t̃i
]

2, [ui]2, [vi]2
)

1≤i≤p, [ũ]2, [ṽ]2
)
be a user secret

key for id. Then

K =
p∑
i=1

(
c>2,i
(

vi
ui

)
− c>1,iti − c>3,it̃i

)
+ c>4

(
ṽ
ũ

)

=
p∑
i=1

c>2,i

 γ∑
j=1

(
Y
j,hidiJjK

X
j,hidiJjK

)
ti +

(
Ỹ1
X̃1

)
t̃i

− c>1,iti − c>3,it̃i


+ c>4

(
p∑
i=1

(
Ỹ2
X̃2

)
t̃i +

(
y′
x′
))

(∗)= c>4
(

y′
x′
)

+
p∑
i=1

c2,i
>A−>

γ∑
j=1

Z>
j,hidiJjK

− c>1,i


︸ ︷︷ ︸

=:∆i

ti

+
p∑
i=1

(
c2,i
>A−>Z̃>1 + c4

>A−>Z̃>2 − c>3,i
)

︸ ︷︷ ︸
=:∆̃i

t̃i .

In step (∗) we use that for all i ∈ {1, . . . , p} we have c2,i ∈ Span(A) and
c4 ∈ Span(A). A Dec query with the properties from above has ∆i 6= 0 or
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∆̃i 6= 0 for at least one i. Since ti and t̃i are uniformly random to the adversary,
pred([K]T ) can output 1 only with probability at most Qduncert(A).

In G4 all Dec queries are answered without using a user secret key for the
queried identity. ut

Lemma 31 (G4  G5).∣∣Pr
[
GA4 ⇒ 1

]
− Pr

[
GA5 ⇒ 1

]∣∣ ≤ 1
q − 1

Proof. The proof is identical to Lemma 25. ut

Lemma 32 (G5  G6). For all adversaries A there exists an adversary B with∣∣Pr
[
GA5 ⇒ 1

]
− Pr

[
GA6 ⇒ 1

]∣∣ ≤ ∣∣∣Pr
[
uMACAreal ⇒ 1

]
− Pr

[
uMACArand ⇒ 1

]∣∣∣
and T (B) ≈ T (A) + (Qe +Qc +Qd) · poly(λ).

Proof. The proof is identical to Lemma 26. ut
Summary. To prove Theorem 8, we combine Lemmata 27–32 to change the
challenge keys K from real to random and then apply all Lemmata (except
Lemma 32) in reverse order to get to the IND-HID-CCCArand game. ut
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