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Abstract— Bitcoin has introduced an open and decentralized
consensus mechanism which in combination with an append-
only ledger allows building so-called blockchain systems,
often instantiated as permissionless cryptocurrencies. Bitcoin
is surprisingly successful and its market capitalization has
reached about 168 billion USD as of July 2020. Due to its high
economic value, it became a lucrative target and the growing
community has discovered various attacks, proposed promis-
ing improvements, and introduced contingency plans for
handling catastrophic failures. Nonetheless, existing analysis
and contingency plans are not formalized and are tailored
only to handle a small specific subset of diverse attacks, and
as such, they cannot resist unexpected emergency cases and
it is hard to reason about their effectiveness and impact on
the system.

In this work, we provide a formalized framework to
help evaluate a variety of attacks and their mitigations.
The framework is based upon the universal composability
(UC) framework [4] to describe the attacker’s power and the
system’s security goals. We propose the system in the context
of Bitcoin and to the best of our knowledge, no similar
work has been proposed previously. Besides, we demonstrate
and evaluate our model with different case studies from the
real world. Finally, we signal remaining challenges for the
contingency plans and their formalization.

Index Terms—Blockchain Security, Bitcoin, Contingency
Plans, Attacks

1. Introduction

Satoshi Nakamoto’s Bitcoin [35] is the first decentral-
ized system which does not rely on a trusted party to reach
consensus in a large set of mutually untrusting nodes.
Up to now, Bitcoin is the most popular cryptocurrency.
Every Bitcoin node replicates the public ledger, called
the blockchain, and tries to extend it by generating a
new block pointing to the previous block and aggregating
received transactions. The process of generating a new
valid block is called mining and nodes (called miners)
are incentivized to run the protocol as each added block
rewards its finder with a block reward and transaction fees
included.

With the increasing success of Bitcoin, there have been
proposed multiple blockchain systems with different capa-
bilities [20], [22], [34], [36]. Consequently, the blockchain
security has received increasing attention by researchers
analyzing various aspects of blockchain platforms [2], [7],
[14], [15], [37], [40]. Since these systems promise to

significantly change multiple sectors and businesses their
security is critical. Interestingly, their inherent properties,
like decentralization and openness, do not help with the
security life cycle known from traditional platforms and
applications. These systems are difficult to be updated
and patched and this limitation is strongly manifested
while considering hypothetical catastrophic crashes, like
a broken cryptographic primitive, that may affect most of
the blockchain users.

Unfortunately, we can predict that it is only a matter
of time when a catastrophic failure happens to a popular
cryptocurrency like Bitcoin. For instance, an implemen-
tation of a privacy-oriented cryptocurrency Zerocoin [26]
had a critical bug found by noticing irregular coin spends
on the 19 April 2019. Subsequently, the developers tried to
replace the core element of the system by another protocol
as an ad-hoc contingency plan [24]. To mitigate the effects
of such events, Bitcoin developers maintain the documen-
tation of Bitcoin contingency plans [38]. However, these
plans cover only a small subset of possible failures in their
limited scope. Moreover, these plans are based rather on
predictions and speculations, and are not supported by any
rigorous formal reasoning.

In this paper, we propose a methodology and frame-
work that helps to formally reason about crashes in
Bitcoin. In particular, we aim to answer the following
questions:

• What component failures may be particularly
harmful to the protocol?

• How could we respond if these components fail
(i.e., propose contingency plans)?

• Can we provide a uniform framework for model-
ing crashes and contingency plans of blockchain
systems?

Due to the uncertainty of the adversary’s power and
strategies, it is not an easy task to formulate possible
crashes and contingency plans. One promising direction
is to use abstraction and model the Bitcoin functionality.
In short, the main application of the The bitcoin protocol
is as a decentralized currency system with a payment
mechanism, which is what it was designed for. An impor-
tant question is then: what functions does Bitcoin achieve
and under what assumptions? To formally answer this
question we propose to use the universally composable
(UC) paradigm [4] that has been proved to be a successful
methodology reasoning about such complex systems [3].
Contributions

In this work, we aim to analyze the Bitcoin security
via the UC blockchain protocol and formalize the Bit-



coin crashes through the meticulous investigation. More
specifically, our contributions are as follows:

• Firstly, we propose a general framework for the
Bitcoin system in order to analyze, detect, and mit-
igate adversarial behaviors. Our framework takes
the given attacks as input, while handling the
detection method, damage level of the system, as
well as a contingency plan as output. To the best
of our knowledge, there is no any similar prior
work.

• Secondly, thanks to the UC treatment of the Bit-
coin protocol, we illustrate the basic structure of
our formalized security model as well as its analy-
sis by extracting the functionality of each protocol.
Our security model could help the framework to
generate contingency plans.

• Thirdly, considering the diversity of attack strate-
gies, our framework categorizes the damage level
of the system and provides a mitigation step,
which could be adopted as the template for a
contingency plan.

• Finally, we show the feasibility of our framework
by demonstrating and analyzing it with two dif-
ferent use cases (i.e., network assumptions, and
mining process). We also identify remaining chal-
lenges for the contingency plans modeling.

2. Related Work

The Bitcoin design and its rationale are mostly de-
scribed in its whitepaper [35]. The document is not formal
and does not dive into system details or its analysis,
however, multiple papers have focused on analyzing the
underlying concepts and techniques related to Bitcoin and
the blockchain technology [1], [6], [17], [41]. Due to
the immaturity of the Bitcoin protocol at the beginning,
a lot of attacks has been raised, such as selfish mining
[1], [2], [15], where a miner adopts a deviated (mali-
cious) mining strategy to increase its reward. Other attacks
include double-spending attacks [32], network-level split
attacks [9], forking the public blockchain to invalidate the
target transactions [27], or eclipse attacks isolating victims
from other peers in the peer-to-peer network [13], [25],
[29]. Given the Bitcoin’s weakness, a large kind of litera-
ture has been proposed with a novel scheme named proof
of stake protocol, With all recent interest in blockchain
systems, only a little research effort has been devoted to
blockchain catastrophic events and contingency plans [38].
Giechaskiel et al. [10] first present the systematic analysis
of the effect of broken primitives in Bitcoin. Their analysis
reveals that some breakage causes serious problems for
Bitcoin, whereas others seem to be inconsequential.

In cryptography, proof of security in the simulation-
based UC framework is considered the standard for
demonstrating that a protocol “does its job securely” [4].
The framework was subsequently extended and modified.
Katz et al. [19] proposed a novel approach to defining syn-
chrony in the UC framework by introducing functionali-
ties exactly meant to model, respectively, bounded-delay
networks and loosely synchronized clocks. No constant-
round asynchronous MPC protocols based on standard
assumptions are known at that time, Coretti et al. [5]

realized the synchronous and asynchronous models have
to a large extent developed in parallel with results on
both feasibility and asymptotic efficiency improvements
in either track and they close this gap by providing the
first constant-round asynchronous MPC protocol that is
optimally resilient (i.e., it tolerates up to 1/3 corrupted
parties), adaptively secure, and makes black-box use of a
pseudo-random function.

Based on the assumption that the computational puzzle
is modeled as a random oracle, Pass et al. [30] then proved
that the blockchain consensus mechanism satisfies a strong
forms of consistency and liveness in an asynchronous
network with adversarial delays that are a-priori bounded,
within a formal model allowing for adaptive corruption
and spawning of new players. Concurrently, Garay et al.
[7] proposed and analyzed applications that can be built
“on top” of the backbone protocol, specifically focusing
on the Byzantine agreement (BA) and on the notion of
a public transaction ledger. Garay et al. [8] subsequently
extend this work to provide the first formal analysis of
Bitcoin’s target calculation function in the cryptographic
setting, i.e., against all possible adversaries aiming to
subvert the protocol’s properties.

From those points of view, Kiayias et al. [21] modeled
the ideal guarantees as a transaction-ledger functionality
in the context of universal composition framework. Sub-
sequently, Badertscher et al. [3] put forth the first UC
(simulation-based) proof of the Bitcoin security and the
functionality allows for participants to join and leave the
computation and allows for adaptive corruption.

3. Preliminaries

3.1. Functionalities

In contrast to weaker property-based notions, that only
guarantee security in a standalone setting [18] or under
sequential composition [11], a UC-secure protocol main-
tains all security properties even when run concurrently
with arbitrary other protocol instances.

The basic idea of the security proofs in the UC model
is the real and ideal worlds paradigm [4]. First, we should
define a cryptographic task to be achieved in the real
world, namely, a distributed protocol that achieves the
task across many untrusted processes. Then, to show that
it is secure, we compare it with an idealized protocol in
which processes simply rely on a single trusted process
to carry out the task for them (and so security is satisfied
trivially). The program for this single trusted process is
called an ideal functionality as it provides a uniform way
to describe all the security properties we require from the
protocol [23]. We assume a protocol π realizes an ideal
functionality F (i.e., it meets its specification) if every
adversarial behavior in the real world can also be exhibited
in the ideal world. The steps to prove a protocol secure
can seem as follows:

1) Specification: for a given ideal functionality F in
the ideal world, we should design a protocol π
in the real world which achieves the task in the
ideal world.

2) Construction: we must provide a simulator S that
translates any attack A on the protocol π into an
attack on F .

2



3) Security proof: we need to show that running
π under an attack by any adversary A (the real
world) is indistinguishable from running F under
attack by S (the ideal world) to any distinguisher
Z called the environment.

In particular, Z is an adaptive distinguisher, meaning
that it interacts with both the real world and the ideal
world, and the simulation is sound if no Z can distinguish
between the two. The primary goal of the UC model is
composability. Suppose a protocol π is a protocol func-
tionality that realizes a functionality F , and a protocol P
relies on F as a subroutine, in turn realizes an application
specification functionality G. Then, the composed protocol
P ◦π, in which calls to F are replaced by calls to π, also
realizes G. Instead of analyzing the composite protocol
consisting of P and π, it suffices to analyze the security
of P itself in the simpler world with F , the idealized
version of π.

This paper focuses on the functionalities in the ideal
world. Because we base on a secure proof of Bitcoin’s UC
model from the previous research [3], for every attack
we consider only the functionality it breaks, i.e., the
attacker’s behavior could threaten or break nothing but
the functionality assumptions. In such a case, we fix the
protocol by “recovering” the functionality, what then can
be specified as a contingency plan.

3.2. Notation

A blockchain C = B1, ..., Bn is a sequence of blocks
where each block Bi =< si, sti, ni > is a triple consisting
of the pointer si, the state block sti and the nonce ni. The
head of the chain C is the block head(C) := Bn and the
length length(C) of the chain is the number of blocks,
i.e., length(C) = n. The chain Cek is the sequence of the
first length(C)−k blocks of C. A special block is the gen-
esis block G =<⊥, gen,⊥> which contains the genesis
block state gen := ε. The state ~st encoded in C is defined
as a sequence of the corresponding state blocks, i.e.,
~st := st1||...||stn. For a blockchain C to be considered a
valid blockchain, it needs to satisfy following two certain
conditions. The first is chain-level validity, this is defined
with respect to a difficulty parameter D ∈ [2k], where
k is the security parameter, it also requires a given hash
function H(·) from random oracle: {0, 1}∗ → {0, 1}k.

The Bitcoin system can be seen as a protocol run by
each participant (i.e., node) Pi among the Bitcoin network.
We treat each functionality in the Bitcoin protocol as
the functionality F providing some functions which are
needed for the node Pi. Before we define the security goal
of the blockchain, we introduce the basic components of
the model.

• Functionality denotes the process algorithm
which could accept a query and respond to the
query. In our model, we treat each composable
function in the UC model as the functionality.

• Protocol in the real world achieves the task in the
ideal world, the UC paradigm treats protocol as
the real world.

• Node represents each user Pi ∈ P who has
access to query a functionality. In Bitcoin, each
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Figure 1. The components of the main structure of the UC blockchain
protocol.

participant is a node, and the Bitcoin network in-
tends to allow each node to process functionalities
correctly.

• Environment. In our model, all regular processes
are within the environment. An attacker A can
observe the environment and launch adaptive at-
tacks, e.g., change the functionality output (we
will define the malicious behavior later).

3.3. Bitcoin as a Transaction Ledger

To model the Bitcoin protocol, we need to define its
(sub)protocols that will be run to facilitate access to the
Bitcoin network resources and to provide its security. The
main question in that context can be formulated as:: what
functionality can the blockchain provide to cryptographic
protocols? For a simple presentation, in this work we do
not present all functionalities and protocols of the Bitcoin
protocol, and we refer readers to the work we base on [3].
However, we select a few significant functionalities and
protocols to illustrate how our framework works. We show
the UC blockchain protocol components in Fig 1, where
the parties have access to the functionalities and execute
the protocol (including its algorithms and functions).

3.3.1. Functions and Algorithms. Each block st ∈ ~st
of the state encoded in the blockchain has the form
st = blockify( ~N) where ~N is a vector of transactions and
blockify is defined as the function to format the ledger
state output. In order to maintain the global ledger, the
function predict time is used to predict the real-world time
advancement according to the current time τL reported by
the clock functionality (see Appendix for more details).
Extend policy guarantees that the adversary cannot block
the extensions of the state indefinitely, and that occasion-
ally an honest miner will create a block. The element
buffer is used for submitting input values, and Validate
is used to clean the buffer of transactions, which decides
on the validity of a transaction with respect to the current
state.

To valid a blockchain, the two aspects should be
guaranteed: chain-level validity (Valid Struct) and state-
level validity (Is Valid State).

Chain-level Validity. This algorithm is defined to repre-
sent the chain validity requirement, i.e., for each i > 1,
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Algorithm 1 Algorithm Max Valid
Input: input (C1, C2, ..., Ck).
Output: output Ctemp.
1: Ctemp ← ε.
2: for i = 1 to k do
3: if Valid Struct and Is Valid State and (length(Ci) >

length(Ctemp)) then
4: length(Ctemp) = (length(Ci).
5: end if
6: end for
7: Return Ctemp.

Algorithm 2 Algorithm Extend Chain

Input: input valid Chain C is valid with state ~st, state
~st||st is valid.
Output: output C.
1: Set B ←⊥.
2: s← H[head(C)].
3: for i = 1 to q do
4: Choose nonce n uniformly at random form (0, 1)k

and set B ←< s, st, n >.
5: if H(B) < D then
6: break.
7: end if
8: end for
9: if B 6=⊥ then

10: C ← C||B.
11: end if
12: Return C.

the value si contained in Bi satisfies si = H[Bi−1] and
H[Bi] < D, w.r.t. D ∈ 2K which is a difficulty parameter.

State-level Validity. The state-level validity is defined on
the state ~st encoded in the blockchain C and specifies
whether this content is valid.

We omit the presentation of instantiations of these two
elements since they are proposed by the previous work.

To maintain a blockchain, the notion of the longest
valid chain is significant. The algorithm is given as Alg 1.

In addition, a core step in Bitcoin is to extend a given
chain C by a new block B to yield a longer chain C||B.
The algorithm shown in Alg 2 tries to find a proof-of-work
which allows extending the given chain C by a found
block B which encodes st.

3.3.2. UC blockchain Protocol. The UC blockchain pro-
tocol contains the following four parts.

Variables and initial values. The protocol stores a local
working chain Cloc and manages a separate chain Cexp
to store the current chain whose encoded state ~st is
exported as the ledger state. The variable isInit stores the
initialization status and the variable buffer stores a list
of transactions received from the network. A timestamp
t denotes when a given party was active last time, while
the flag Welcome is to indicate whether a notification that
a new party joined the network was received (the party
stores its registration status to the hybrid functionalities
internally).

Algorithm 3 Sub-protocol Read Ledger

Input: input t, T, τ, sid, isInit,~st, Cexp.
Output: output (Read, sid, s̃t

bT
).

1: if τ corresponds to an update mini-round and t < τ
and isInit then

2: Excute the sub-protocol Fetch Information.
3: Set t← τ .
4: end if
5: Encode state ~st in Cexp.
6: Return (Read, sid, s̃t

bT
).

Algorithm 4 Sub-protocol Fetch Information

Input: input (Fetch, sid), buffer,Welcome, ~st
bT

.
Output: output Cloc, Cexp, buffer.

1: Send (Fetch, sid) to Fbc
N−MC .

2: Denote the response from Fbc
N−MC by (Fetch, sid, b).

3: Cloc, Cexp ← maxvalid(Cloc, Cexp, C1..., Ck).
4: Send (Fetch, sid) to F tx

N−MC .
5: Denote the response from F tx

N−MC by (Fetch, sid, b).

6: Extract received transactions (tx1, ..., txk) from b.
7: Set buffer← buffer||(tx1, ..., txk).
8: if a newparty message was received then
9: Welcome = 1.

10: else
11: Welcome = 0.
12: end if
13: Remove all transactions from buffer which are invalid

with respect to ~st
bT

.
14: Return Cloc, Cexp, buffer.

(De)Registration. The protocol defines that on receiving
(register, sidC) and (deregister, sidC) it is forwarded to
Clock and its output is returned. The protocol receives
(register, sid) and (deregister, sid), sends (register, sid)
and (deregister, sid) to the network and the random oracle
functionality, if the party is registered with the clock.
Then the respective variables are set. The protocol on
receiving (is− register, sid) returns (register, sid, 1) if the
party is registered with the network and the random oracle
functionality. Otherwise, (register, sid, 0) is returned.

Ledger-Queries. Upon receiving (Submit, sid, tx),
buffer← buffer||tx is set, and (Multicast, sid, tx) is sent
to F tx

N−MC . Upon receiving (Read, sid), (Clockread, sidC)
is sent to GClock, and (Clockread, sidC, τ) is received as
a response and processed as in Alg 3.

Upon receiving (Maintainledger, sid,minerID) the fol-
lowing is executed atomically:

• If isInit = false, then set all variables to their
initial values. set isInit← true and output
(Multicast, sid, newparty) to F txN−MC .

• Execute sub-protocol Ledger Maintenance.

The sub-protocol Ledger Maintenance is specified as
following:
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Algorithm 5 Sub-protocol Maintenance
Input: input τ .
Output: output Cloc.

1: if τ corresponds to a working mini-round then
2: Let ~st be the encoded state in Cloc.
3: Set buffer′ = buffer.
4: Phase buffer′ as sequence (tx1, ..., txn).
5: Set ~N ← txcoin−baseminerID .
6: Set st← blockify( ~N).
7: repeat
8: Let (tx1, ..., txn) be the current list of transac-

tions in buffer′.
9: for i = 1 to n do

10: if V alidTx(tx, ~st||st) = 1 then
11: ~N ← ~N ||txi.
12: Remove tx from buffer′.
13: Set st← blockify( ~N).
14: end if
15: end for
16: until ~N does not increase anyone.
17: Cnew ← extendchainD(Cloc, st, q).
18: if Cnew 6= Cloc then
19: Update the local chain, i.e., Cloc ← Cnew.
20: end if
21: Send (Multicast, sid,Cloc) to Fbc

N−MC .
22: if the flag Welcome = 1 then
23: Send (Multicast, sid, buffer) to F tx

N−MC .
24: else
25: Give up activation.
26: end if
27: Go to the next step in the next activation.
28: else
29: Go to the beginning of step 2 in the next activation.
30: end if
31: Return Cloc.

1) If a (Clockupdate, sidC) has been received
during this update (mini)round then send
(Clockupdate, sidC) to Gclock, and in the next
activation go to the next step. Otherwise in the
next activation repeat this step.

2) Send (Clockread, sidC) to Gclock, receive as an-
swer (Clockread, sidC), and proceed as shown in
Alg 5.

3) If a (Clockupdate, sidC) has been received during
this working round then send (Clockupdate, sidC)
to Gclock, and in the next activation go to the next
step. Else in the next activation repeat this step.

4) Execute sub-protocol Read Ledger as shown in
Alg 3.

Handling other external calls. Upon receiving
(Clockread, sidC), forward it to Clock and return its
output. Upon receiving (Clockupdate, sidC), forward it to
Clock (if it was registered with the clock).

Algorithm 6 Functionality Random Oracle FRO

Input: input x. It maintains a function table T1 (initially
T1 = {}).
Output: output (x, y).
1: if no pair of the form (x, ) is in T1 then
2: Sample a value y uniformly.
3: Add (x, y) to T1.
4: end if
5: Get (x, y) from T1.
6: Return (x, y)

Algorithm 7 Functionality Chosen-format Bounded Pre-
image Oracle FCBRO

Input: input (a, b, yl, yh, i). It maintains a function table
T2 (initially T2 = {}).
Output: output (x, y).
1: Find x to satisfy yl ≤ h(a||xi||b) ≤ yh.
2: add (x, y) to T2.
3: Return (x, y).

4. Formalizing Bitcoin Crashes

4.1. Motivation

Bitcoin is a complex decentralized system that com-
bines network, consensus, computation, game theory and
other aspects from different areas. This paper does not
intend to model the Bitcoin system, however, we base on
the prior work [3] to extract some useful constructions
and assumptions. As a large-scale protocol, Bitcoin can
be divided into functionalities. A functionality is part of
the features to be implemented by the Bitcoin system (it
is modeled like an algorithm executed by a trusted third
party). Functionalities represent action goals the protocol
aims to achieve in the ideal world. For example, a simple
functionality is the hash query, which provides a random
number y for each input x – it is commonly recognized
as the random oracle (RO) model as presented in Alg 9.

However, with aging hash functions and their imple-
mentations the RO assumption may not hold and such
an event would “modify” this functionality. Giechaskiel
et al. [10] present the first systematic analysis of the
effects of the broken hash mechanism on Bitcoin. They
summarize different types of breakage into a chosen-
format bounded pre-image oracle as in Alg 7, and they
discuss potential migration pitfalls of the breakage and
the contingency plans.

Inspired by this approach, this work aims at another
promising direction, namely to analyze every functionality
of the Bitcoin system and to find out corresponding for-
malized contingency plans. Unlike previous work, we give
a framework allowing to reason about entire crash classes
and contingency plan of each functionality of the proto-
col (within the considered UC model). Using the above
example, we use the modified functionality F ′CBRO to
represent an adversary. The modified functionality F ′CBRO
corresponds to the adversary with the ability to access not
only the FRO, but also the FCBPO. As shown in Fig 8, the
adversary could access the random mapping y of arbitrary
input x and could also determine x of arbitrary input y
(if the input y does not have corresponding pre-image x,

5



Algorithm 8 The modified functionality Chosen-format
Bounded Pre-image Oracle F ′CBRO
Input: input x or (, , y, y, 0).
Output: output (x, y).
1: if receive x then
2: Send x to FRO and receive (x, y).
3: end if
4: if receive (, , y, y, 0) then
5: Send (, , y, y, 0) to FCBRO and receive (x, y).
6: end if
7: Return (x, y).

return φ). Such a modeling corresponds to reasoning about
the Bitcoin’s hash function being broken in the real world,
allowing the adversary to find the pre-image of the input
y.

Interestingly, the Bitcoin documentation considers the
case of the hash function being broken and the correspond-
ing contingency plan can be summarized by the following
steps:

• Every participant should be informed about the
breach.

• A new secure hash algorithm should be deployed.
• The old blockchain state (i.e., the unspent coins)

should be hardcoded and protected by the new
secure hash algorithm.

The first and third steps are introduced to eliminate
losses and to maintain the state before the breakage. From
our perspective, the second step is quite interesting as we
can view it as denying the functionality FCBRO for the
adversary, i.e., if the broken hash function is replaced,
she has no access to the functionality FCBRO anymore.

As shown in Fig 2, when the hash function is broken,
the adversary has access to F ′CBRO. F ′CBRO is the com-
bination of FCBRO and FRO, for an adversary, she could
invoke F ′CBRO, then F ′CBRO could access the FCBRO or
FRO with inputs, namely, x or (, , y, y, 0), F ′CBRO receives
the outputs from FCBRO or FRO and finally returns the
results to the adversary. Thus a contingency plan could
be specified as follows: if the adversary obtains access
to FCBRO, we need to restrict this access by replacing
(recovering) FCBRO by FRO.

...

F1

F2

FRO

...

F1

F2

F’CBRO

Broken

Recover

Protocol Breach

Figure 2. Our functionality and the contingency plan

This simple example provides the main intuitions be-
hind our framework. In short, we represent an adversary
by parts of the protocol she can affect. Then we build
the extracted functionality to analyze the advantage that

Attacker’s 
Behaviour

Check Call Difference Rectify

Output

Our Formalized Model 

The Given
    Attack

Detection Breach Contingency
      Plans

Input

Figure 3. Our methodology to cope with attacks.

the adversary is obtaining while attacking the system. The
change to the functionality that restricts such an advantage
is proposed as a contingency plan.

4.2. Methodology

We aim to analyze and mitigate attacks and crashes,
however, in practice it is infeasible to enumerate all
possible attacks due to the protocol complexity and the
huge attack vector space. On the other hand, omitting
an attack in the analysis could result in incomplete anal-
ysis or non-functional contingency plans. Therefore, to
maximize the effectiveness of our framework, we take
an approach where entire attack classes are considered
(instead of single attack vectors). Our core observation is
that abstractions introduced by the UC model significantly
help our approach to capture and handle the protocol’s
complexity in a formalized way.

Our framework is illustrated in Fig 3.

• For a given attack, we first extract the attacker’s
behavior as the basis of our process. The process
goes as follows, firstly we put the attacker’s be-
havior into our formalized model and we intend
to find the attack’s pattern and the broken parts.
We can verify the broken parts through invoking
a special function (i.e., a check call), which can
be seen as a detection module.

• Secondly, from the attacker’s behavior, we can
find the difference between the base protocol (that
we want to achieve) and the broken protocol (i.e.,
after the attack). This difference characterizes the
breakage of the protocol (i.e., its specific affected
components).

• Finally, because we identified the breakage (i.e.,
the difference between the base and broken proto-
col), we can rectify the deviation from the model’s
view and this rectification can be mapped in the
contingency plan in the real world.

To sum up, the framework imports the given attack
as the input, and exports the detection, the breakage, and
the contingency plans as the output. In the following we
sketch our framework as shown in Figure 4.

To realize our methodology, in the first place we need
to formalize the protocol by defining what are the prop-
erties of the ideal protocol (i.e., what properties should
be achieved when the protocol functions correctly). We
adopt the UC model of Badertscher et al. [3] as the base
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Figure 4. High-level overview of our framework.

model for the correct Bitcoin protocol. Once an attack is
launched by an attacker, the real world’s process could
be harmed more or less, this event will be modeled as
a deviation from the base Bitcoin protocol, i.e., some
functionalities or protocols will not work as expected
which can be seen as replacing this functionality by the
attacker.

For example, the Bitcoin protocol requires a solution
to a cryptographic puzzle as part of the block generation.
This solution is found by finding a partial pre-image
of a hash function (i.e., Proof-of-Work, PoW), requiring
enormous computation of the Bitcoin network. However,
if the adversary finds a way to solve the hard puzzle with-
out finding a pre-image, the PoW mechanism would be
replaced by a simple computation in our model (modeling
the adversary breaking the hash functionality). This would
imply that the Bitcoin protocol is partially modified by the
attacker. In our model, we define such a replacement as
an attack and we are able to give the contingency plans
to restore the Bitcoin protocol in such a case. Moreover,
another advantage in adopting the UC methodology is that
when a property is proved under some assumptions, we do
not need to consider the adversary’s behavior beyond the
Bitcoin protocol, i.e., the environment in the UC model.
We only deal with the replacement or the modification of
the affected functionalities in the ideal world.

Moreover, although we focus on Bitcoin, our frame-
work could also be deployed in other cryptocurrencies as
long as the basic protocol has been proved to be secure
in the UC model.

4.3. Adversary Model

Firstly, we assume an adversary able to change some
outputs or change the functions of the functionalities. In
addition, the adversary can delay the output or does not
execute the process. Secondly, the adversary can change
the environment which is out of the functionality, due to
the security proof of the UC framework, the breakage of
the environment will not influence the security of each
functionality, thus the security of the individual node will
be guaranteed. Finally, we also inherit one of the core
assumptions of the blockchain, i.e., the majority of the
nodes are honest (i.e., do not launch any attacks) and
the attacker’s computing power is not larger than 50%

...
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A

...

Environment

F1 F2 Fn

  Detect the change
and find the solution

Change

Figure 5. The adversary model and the security goals.

Algorithm 9 Functionality detection FCor

Input: input query or (corrupt, functionality). It main-
tains a value res (initially res = 0).
Output: output res.
1: if receive (corrupt, functionality) then
2: res = 1.
3: end if
4: if receive query then
5: Return res.
6: end if

of the total computing power in the Bitcoin network. We
emphasize, that our adversary model captures also bugs or
misconfiguration that can be introduced unintentionally.

Attack. For a PPT attacker, the protocol is secure if and
only if the output of the protocol is indistinguishable from
the output of the ideal functionality. We define that the
attacker can break the protocol if and only if the output of
the protocol targeted by the attacker can be distinguished
from the output of the ideal functionality.

4.4. Security Goals

We have the following security goals. First of all, for
any party Pi ∈ P , any feasible behavior or any potential
change from an adversary A should be visible, i.e., the
Pi should have the ability to aware of the attacker’s
potential behavior. This security goal indicates that some
detection method is established in the real world. Second,
the difference between the broken protocol and the desired
protocol should be pointed out, which would help any
node aware of the breach of the protocol. Besides, the
party Pi should have the ability to solve the problem (e.g.,
by installing a new software patch or configuring some
settings). This objective is in fact, similar to the goals of
contingency plans in the real world. Some attacks might
not have a contingency plan, i.e., a totally broken function
or protocol, and in this scenario we also would like to give
insights on why the contingency plans do not work.

4.5. Analysis

It should be noted that the universal composable Bit-
coin protocol actually consists of other functionalities
which are also composable, including the random oracle
functionality, a network functionality, and a clock func-
tionality. The adversary tries to undermine not only the
Bitcoin core functionalities, but also its dependencies and
(sub)protocols.
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The security of our framework can be split into two
parts. The first one is the UC security, which is related
to the functionality, protocol, node, and environment, and
this part is securely guaranteed by the UC framework
proof. The second part is the channel’s security, which
is related to the communication between the nodes and
functionality. In a UC protocol, node interactions with a
functionality or protocol are assumed to be secure and
atomic. In our framework, the node cannot access the
functionality which is controlled by the adversary, that
means the node’s channel is not secure, thus we need to
make an assumption necessary to detect an adversarial
behavior.

In our model nodes detect attacks by finding a differ-
ence between the original protocol and its broken mod-
ification. However, such a detection would be infeasible
if the protocol is attacked in a way that nodes cannot
detect it. Therefore, to model node actions in the face
of a functionality or protocol compromise we need to
make one assumption. We assume that there exists a
functionality that will never be corrupted by the adversary.
This functionality only responds to one question: Is any
functionality corrupted? The functionality usually does not
need to be invoked, unless all of the channels have been
corrupted. We illustrated the functionality in Algorithm 9.
It should be noted that any other functionality should be
prepared to receive a query and return the status of its
state (i.e., original or corrupted). In the ideal world, the
standard protocol should be preserved, thus the protocol
could compare itself with the standard protocol to notice
the differences between them.

Although we are aware that in practice attack detec-
tion is challenging and the assumption may seem strong,
without this functionality attacks can stay undetected, thus
rendering contingency plans useless. Interestingly, Bitcoin
developers in their contingency plans [39], make a similar
(although informal) assumption that there should guaran-
tee at least one communication channel is working while
the attack is being launched. As we have a communication
channel available, the attack would be noticed by the
participants at some points, thus they could apply the
contingency plan to fix the attack. The communication
channel is actually taking the role of the query acceptance
in reality, without the base channel like this, the Bitcoin or
other cryptocurrencies could be effectively blocked via a
severe attack censoring any information exchange between
participants. An important difference between an available
communication channel and the detection functionality is
that the former is rather for notification than for detection.

With the above assumption, we can use the following
theorem as a premise to support our methodology.

Theorem 4.1. The attacker can break the protocol πledger
if and only if the protocol is modified.

Proof. To prove this theorem, we should prove that the at-
tacker can not break ideal functionality Gledger. The ideal
world’s functionality in the ideal world is the function that
we want to realize. In the event of the breach in the ideal
world, we could modify the ideal functionality and try to
find another protocol to realize the functionality. Recently,
the previous research [33] has proved that protocol πledger
is statistically close to the ideal functionality Gledger under
the UC standard assumptions. Thus for any PPT adversary,
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Figure 6. The ledger queries in the Bitcoin protocol.

the output from the protocol πledger and the output from
the functionality Gledger are indistinguishable. That im-
plies that as long as the attacker can not break the protocol
πledger, the original protocol remains secure under various
of the attacks. However, if the protocol is modified by the
attacker, the modified protocol is not statistically close
to the ideal functionality, the attacker could break the
modified protocol naturally. Therefore the recovery of the
attacker’s modification is the key point of our analysis and
contingency plans.

We emphasize that all attacks could be handled in our
framework as long as the underlying security model is
proved (i.e., has a formal proof in the UC framework).
Every attack can be modeled as a replacement of function-
ality in Bitcoin protocol, and if the emerged attack does
not relate to the replacement of the functionality, then the
protocol remains secure under certain assumptions.

5. Case Studies

In this section, we illustrate our methodology by
modeling two attacks of different classes. Our framework
allows adversaries to damage not only the functionality
but also a protocol, and the first case study is based on
a functionality breach while the second attack scenario is
focused on a protocol breach. From the protocol’s point
of view, we analyze the consequences of the breach and
try to find contingency plans to respond to these breaches.

5.1. Mining Process

The mining process is the key component of the Bit-
coin protocol and the considered UC model. It is critical
for the stability and security of Bitcoin, therefore, mining
is often a subject of detailed analysis and studies. In the
model, the mining process is related to ledger queries in
as shown in Fig 6. In this section, we discuss attacks on
each part of the mining process (as modeled) and their
consequences.

5.1.1. Mining Process in Bitcoin. The underlying con-
cept of Bitcoin is to maintain a decentralized ledger by
a group of nodes and selecting a leader is the essential
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procedure to add new blocks (and transactions, conse-
quently). The Bitcoin system uses a proof-of-work scheme
to determine the leader in each round, roughly speaking,
every node tries to find a solution of a cryptographic
puzzle. These nodes are called miners, and a puzzle solver
for a round is its leader able to propose a new block.

Each party can create new transactions, stores a copy
of a blockchain (Valid Struct), and maintains a transaction
buffer to store transactions received from other nodes (Is
Valid State). At the beginning of a new state (Ledger
Maintenance), every miner obtains the current blockchain
state and its transaction buffer (Fetch Information, Max
Valid), then the miners try to find a solution for a given
puzzle (Extend Chain). The miner who discovers a new
solution would become the round leader who sends the
solution to other nodes (Extend State). Other nodes receive
the solution and accept it after the validation event. All
of the above processes constitute the mining process in
Bitcoin (Ledger Queries).

5.1.2. Modeling Mining Process Breach. As defined,
a breach of a component means that there is at least
one component replaced by the adversary, thus the entire
procedure does not work as intended. Each replacement
can seem like a breach, and an attack can be combined
as several different replacements. We analyze the conse-
quences of each replacement separately but the attack’s
final effect (if more components are affected) can be seen
as a sum of several partial effects. We, however, note that
the framework does not handle the breach beyond the UC
model, for example, money fraud, hijacking, private key
disclosure, and many others related to the self manage-
ment.

5.1.3. Consequences of the Breach. The consequences
of the mining process breach are summarized in Table 1
and discussed below by listing functionalities and the
impact that the adversary can make by attacking them.

1) Ledger Queries. The Ledger Queries protocol has
three main procedures which cooperate with other pro-
tocols. The main procedures include submitting transac-
tions, fetching the state, and starting mining. Hence there
are three types of consequences when Ledger Queries is
compromised:

• the node can not submit transactions,
• the node can not read the current state (e.g., the

stale block information of the node might lead to
a double-spending attack),

• the node can not start mining (for example, its
mining software or hardware is incompatible with
the network).

2) Fetch Information. The Fetch Information protocol
has three main procedures (which interconnect with other
algorithms). The main procedures are: fetching transac-
tions, fetching blocks, and handling new nodes. Similarly,
as in the previous case, there are three main types of
consequences in the fetch information breach.

• The first is that the node can not fetch the
blockchain from the network.

• The second is the node can not fetch the transac-
tions from the network.

• The third consequence is that the node can not
register during the round running, which means,
the new party’s transaction should wait until the
next round.

The first two breaches may lead the node to be the
victim of many attacks because of the stale information,
what’s worse is that the node may receive the dummy
block information as the latest block information, in that
case, the node would accept messages sent by the attacker,
especially frauds, because the message would be verified
as true through dummy block information. Like we said,
at the beginning of next round, the Ledger Queries could
receive the new transaction. In the Bitcoin mining process,
it usually needs 10 minutes for mining a block on average,
so the third consequence implies that the node’s new
transaction should wait nearly 10 minutes (on average).

Max valid The Max Valid algorithm is used to obey the
longest chain principle, namely, the node always choose
and accept the longest chain for multiple valid chains
exist in the bitcoin network. The breach of this property
may lead the node to a double spending attack, selfish
mining attack, and many others, for instance, the node
might accept the old state other than the latest state, and
the attacker could easily let the victim node to accept an
invalid transaction.

Valid Struct This algorithm is used for verification of the
block. The consequence of this algorithm breach could
make a dummy block become a valid block. In this
situation, the blockchain is obviously no longer safe and
all nodes should stop any activity immediately until the
issue is fixed. The verification process is related to the
random oracle functionality, therefore, the random oracle
breakage could lead to the breach of this algorithm too.

Is Valid State This algorithm is used for verification of
the transaction. Similar to the valid struct algorithm, the
dummy transaction could become a valid transaction in
the event of the breach of this algorithm, consequently,
the honest node may suffer losses.

3) Ledger Maintenance. The Ledger Maintenance pro-
tocol is for the preprocessing and finishing of the mining
process. The protocol transforms the transaction buffer
into a sequence and blocks the sequence into a structure
required by the mining process. The protocol handles
reaching consensus at the end of mining. There are four
steps in the Ledger Maintenance protocol:

• Voting on the state at the updating round.
• Executing the mining procedure.
• Voting on the state at the working round.
• Fetching the information at the end of the round.

For the voting steps (i.e., step 1 and step 3), if they
are compromised, then consensus might never be reached
(in their corresponding rounds), even despite the fact that
valid blocks are proposed. For the second step, there are
mainly three components.

• Reading the global state (i.e., clock) – the node
can not fetch the correct clock information without
this component compromised.
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Table 1. THE BREACHES OF THE MINING PROCESS. RED LINES ARE THE POTENTIAL CAUSES OF SELFISH MINING.

Mining Process
Breach Effect Breach

Description
Transaction submission The node can not submit the transaction.

Ledger Queries Fetching the state The node can not start fetching the state.
Mining start The node can not start mining.

Fetching the blocks The node can not fetch the block after invoking fetch information.
Fetching the transactions The node can not fetch the transactions after invoking fetch information.

Fetch Information Handling new party The node can not join the protocol during the protocol is already executed.
Max Valid The node can not start verifying the blocks and the transactions.

Valid Struct The node can not verify the blocks after invoking fetch information.
Is Valid State The node can not verify the transactions after invoking fetch information.

Voting the state
in the updating round The nodes can not reach consensus at the updating round.

Leger Maintenance Pretreatment of
mining process

The node can not fetch the current clock information (block height) before mining;
The node can not pack the transactions and blockify the blocks;

The new party who join the protocol while the protocol is already executed
can not get the latest information about the blockchain.

Voting the state
in the working round The nodes can not reach consensus at the working round.

Fetch the information
at the end The node can not fetch the information after reaching consensus.

Extend State Extend Chain The node can not mining locally by using random oracle.

• Selecting transactions and packing the block –
the node might be unable to execute the correct
mining process due to the lack of block structure.

• handling a new party, which if compromised,
would disable new nodes from receiving transac-
tion buffers during protocol rounds.

The fourth step is to keep the nodes consistent with
the same state by using the fetch information protocol,
the consequence of this breach may lead a node to accept
incorrect blockchain as the canonical view (e.g., it could
consequently result in double-spending attacks).

4) Extend State. This protocol is used for propagating
mined blocks. Once the node finds a valid block in the
local environment, the node would send the local block
into the network and try to be the longest chain block.
The consequence of the breach of this algorithm is that
the node can not submit its valid block to the longest
chain.
Extend Chain Extend chain is the core step in Bitcoin,
i.e., extend a given chain by a new block to yield a longer
chain. By accessing the random oracle, the node tries
to find the random number to satisfy the inequality. The
breach in this algorithm means the node can not access
random oracle thus the node can not start mining. Attack
on this functionality would indicate the breach of the
random oracle, for instance, the random oracle is broken
by the attacker thus she can solve proof-of-work puzzles
quicker than other nodes.

5.1.4. Contingency Plan. Any kind of the breach in
the mining process would cause the damage to nodes.
Unfortunately, nodes are usually distributed in the network
and there are no communication side channels proposed,
thus it may be challenging to detect a breach in the Bitcoin
system. The attacker may target a group of victims and
the victims have no idea of responding to the malicious
behavior. In this setting, a faithful communication channel
is however required to prevent the adversary, and once the
node realized he is likely to be attacked, the following
actions should be acted immediately.

• The nodes should stop submitting transactions and
blocks.

• The nodes should stop receiving transactions and
blocks actively or passively.

• The nodes should stop mining and any related
behaviors.

• The node should verify the recent transactions and
blocks carefully, rollback to the previous states if
necessary.

• The new node should stop attempting to join the
network.

Selfish Mining. Selfish mining attack occurs when a
node or a mining pool attempts to withhold a success-
fully validated block from being broadcast to the rest of
the bitcoin network 1. The selfish miner withholds their
successfully mined block and continues to mine the next
block, resulting in the selfish miner having mined more
valid blocks compared to other miners. This allows the
selfish miner to claim the block rewards while the rest
of the network accepts “malicious” block solutions and
abandons their “honest” fork.

In our model, selfish mining can be modeled as a
modification of the Extend State protocol. The original
behavior is broadcasting every newly mined block im-
mediately, but the modified behavior is withholding the
newly mined block. Then the attacker modifies also the
protocol Fetch Information. The original behavior is to
update to the latest blockchain view, while the modified
adversarial behavior is to monitor the Bitcoin network,
and if the attacker wins, the attacker would not take the
action; otherwise, the attacker broadcasts the mined block
invalidating the work of honest nodes. Finally, the attacker
modifies the protocol Leger maintenance, such that the
attacker can start mining without applying honest updates,
thus it will not lead to reaching the consensus phase (in
the adversarial view).

Because the modification of Extend State is actually
not the key point of the selfish mining, withholding proof-
of-work means the attacker can not earn the reward from
the blockchain. By focusing on modification of Fetch
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Information and Leger Maintenance, the following con-
tingency plans can be suggested.
• A stale block can not be accepted by other nodes.

Thus the attacker can not withhold the newly
mined block, the attacker should fetch the infor-
mation from outside if he withholds a block. This
suggestion is focusing around Fetch Information.

• The protocol should forbid the attacker to mine
the next block if the attacker has not published
the newly mined block. The feasible procedure is
that the valid block should have the majority of
the nodes’ signature after verifying it, and the next
block should contain the hash of these signatures.
This suggestion is focusing on Leger Maintenance.

Note, that although these suggestions may be insight-
ful for new systems, they actually require major protocol
changes. In fact, multiple proposed selfish-mining mitiga-
tions are based on similar observations [12], [31].

5.2. Network Model and Assumptions

The network functionality is one of the most important
assumptions in the Bitcoin protocol and Bitcoin would
no longer operate correctly when the underlying network
is compromised. In short, the network functionality [3]
is in charge of the communication environment which
also handles the synchronized condition. To illustrate the
flexibility of our framework, we show it applied to evalu-
ate the network assumptions. We however emphasize that
the network model of the used UC model differs signif-
icantly from the underlying peer-to-peer Bitcoin network
deployed in reality.

5.2.1. Network Model. We demonstrate the protocol
components related to the underlying network in Fig 7.
The core design of the network assumption is the follow-
ing: A node should be able to submit its valid transactions
to other nodes through the transaction network once it was
registered, and other nodes should be able to receive the
current transactions through the same network. To main-
tain the public ledger, the node tries to extend the state
through the block addition, similarly, other nodes should
have access to the current block information through the
block network. Furthermore, throughout its execution, the
protocol should handle registrations of new nodes, i.e.,
new nodes have the ability to send the transaction and
receive the current transactions at any time, but the new
node can not send the block at the working round.

In the considered Bitcoin model, there are two types of
networks. The first is the block network FbcNetwork, provid-
ing block transmission, i.e., allowing nodes propagating
blocks or receiving new blocks found by other nodes.
The second network is the transaction network F txNetwork,
facilitating transactions exchange, namely, allowing nodes
sending own transactions and receiving transactions cre-
ated by other nodes.

In the considered model, when a node joins the Bitcoin
network, it has to inform all of the existing nodes that
a newcomer is now executing the protocol. It is done
by the node sending a registration request to FbcNetwork
and F txNetwork. Similarly, once a node wants to quit the
network, the node should send a de-registration request to
the FbcNetwork and the F txNetwork.
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Figure 7. The network and its relative parts.

5.2.2. Modeling Network Attacks. As the network
model consists of two networks, a network breach can
affect either the transaction network, or the block network,
or both. If only one network is attacked, the functional-
ities associated with the second network are not directly
affected. There are many ways a network can be attacked.
It can be an availability attack, rendering the network to be
unable to respond or respond correctly to any requests. An
attacker can also “emulate” the real network responding
to a node, like in the eclipse attack. The attacker isolates
the victim node, the node try to access the network
functionality through the attacker, thus the attacker could
harm the victim node by providing a spurious network.
To prevent this attack, the node should be connected to
the bitcoin network no matter which manner is adopted,
the node should stop believing any incoming message if
the bitcoin network is not connected and treat arbitrarily
response from the attacker as no response.

5.2.3. Attack Impact. In Table 2 we summarize the cor-
responding network types, with potentially affected com-
ponents, and consequences of these attacks. We discuss
the details below.

Registration. At the registration step, a node sends a
message along with its related identification informa-
tion to the registration protocol. The registration protocol
forwards the information to F txNetwork and FbcNetwork,
namely, let the node registered with those functionalities.
Once F txNetwork and FbcNetwork are not operational, i.e.,
partial or fully broken in the registration step, then the
Bitcoin network can not receive new node request, con-
sequently blocking all new nodes in joining the protocol.

De-Registration. Similarly, de-registration receive an
identification information and forward it to F txNetwork and
FbcNetwork, the F txNetwork and the FbcNetwork delete the
registration information if there exists. If this step can
not work, we have not seen the adverse effect here so
far, except the tiny influence to the node’s privacy about
the identification information leakage, we use “tiny” be-
cause identification information is usually encrypted and
it would remain secure as long as the encryption is secure.

Ledger. We split the analysis of Ledger into four parts,
to determine the effect of the breach of the network.
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Table 2. THE BREACH OF NETWORK.

Attack Effect Consequence

Fbc
Network

Registration The new node can not enter the block network
to execute protocol related to the block.

De-Registration The node can not quit the
block network.

Fetch Information 1 : The node can not fetch the
latest block information.

Extend State 2 : The node’s valid block can not
submit to the public chain.

Ledger Maintenance 1 , 2 .
Ledger Queries 1 , 2 .

Ftx
Network

Registration The new node can not enter the transaction network
to execute protocols related to the transaction.

De-Registration The node can not quit the
transaction network.

Fetch Information 3 : The node can not fetch the
latest transaction information.

Ledger Maintenance 3 , 4 : The node can not submit the latest transaction
buffer to the transaction network.

Ledger Queries

3 , 4 . The node can not send the new transaction to the
transaction network; the node can not send the

new party information to the transaction network
while the protocol is executing.

• Fetch Information
This sub-protocol is executed by Ledger Queries
(see below) as well as Ledger Maintenance. The
node fetches the information from both transaction
network and block network, then the node verifies
the current chain and transaction buffer, merging
these information into local storage. Any breach
existing in F txNetwork and FbcNetwork would affect
in the unavailability of the Fetch Information sub-
protocol execution.

• Extend State
The honest node invokes the Extend Chain al-
gorithm to find (mine) a new valid block. Then
the honest node use Extend State sub-protocol to
send the new block to the FbcNetwork and notify
all online nodes to update their local blockchain
state.

• Ledger Maintenance
This sub-protocol is used to maintain the Bitcoin
ledger, it invokes the sub-protocol Extend State
and the sub-protocol Fetch Information. In addi-
tion, the sub-protocol Ledger Maintenance inter-
acts with F txNetwork to handle new participation
requests while the protocol is being executed.

• Ledger Queries
This sub-protocol Ledger Queries invoke the sub-
protocol Fetch Information and Ledger Mainte-
nance. Ledger Queries interacts with F txNetwork in
two manners. For the first manner, i.e., transac-
tion submission, the ledger is expected to accept
the transaction sent by the honest node, then the
node merges the transaction to its local transaction
storage. Otherwise, the honest node would fail
to submit transaction in case of the breach of
F txNetwork. For the second manner, i.e., interrupt-
ible registration, the new party comes into the
Bitcoin network when the protocol is executing,
the sub-protocol sends the registration information
into the F txNetwork.

5.2.4. Contingency Plan. As discussed, a potential
breach of the network assumptions may cause limited
access of the nodes to the network (i.e., the node can
not communicate with other nodes). That may result in
severe attacks, including double-spending, forking, and
many others. Finding the difference between the broken
protocol and the original protocol could inspire a detection
method. For instance, the node would only connect to a
small group of nodes to reach consistent due to the com-
munication costs rather than connecting all of the nodes in
the network, thus leading to many attacks, this application
pattern indicates the partial breach of the network, thus the
designed contingency plan should detect the connection of
the node. We propose several detection methods:

• Accessing all of the nodes at intervals (or hard-
coded the blockchain from the internet at inter-
vals).

• Accessing the white list people to get the trust-
worthy blockchain data.

• Randomly choosing the connecting nodes to make
the attacker harder to control all of the connecting
nodes of the victim node.

The security of the Bitcoin network depends on con-
nectivity between the nodes. In practice, these observa-
tions can be summarized in advising nodes to maintain
redundant and available Internet connection, provided by
multiple providers, as well as to connect to as many
other peers as possible. Better connectivity yields better
security, unfortunately, increasing connectivity would sub-
stantially increase the bandwidth and cost required by the
transaction dissemination protocol, making it prohibitively
expensive to operate a Bitcoin node. Recently, a few re-
searches have focused on how to improve the connectivity
of the node [16], [28]. This line of research focuses on
maintaining stable connections between nodes in a peer-
to-peer network.

After the node is aware of the breach, the following
steps should be taken immediately according to the anal-
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ysis.

• If the node is a newcomer, it should not actively
join the network.

• The nodes in the network should stop mining.
• The nodes in the network should stop requesting

for the latest information, including blockchain
and transaction buffer.

• The nodes in the network should stop submitting
the local state or any other relevant behaviors, such
as sending block and transaction.

6. Conclusion

We have presented the first formalized contingency
plans framework for Bitcoin. Our framework is able to
facilitate analysis of entire attack classes, giving detection
guides, breakage classification, and contingency plans as
the output. Our framework involves a formalized UC
model that describes the Bitcoin protocol and its properties
as the start point. This approach allows us to formally
reason about attacks on the system, by modeling them as
changes of the model. Consequently, contingency plans
can be proposed as fixes that recover the modified protocol
to its secure modification. Moreover, we show our frame-
work applied to different classes of failures and attacks.

Although we believe that this work can be seen as one
of the first attempt towards more complete and formal
contentingency plans, we are also aware that they still
need a substantial amount of future work to be undertaken.
In particular, we see limitations of some aspects of UC
models and its relation with the real world (e.g., network
models). We leave more realistic and practical models as
future work.
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Functionality Fclock

The following instructions that allow honest parties to join or leave the set
P of players that the functionality interacts with, and inform the adversary
about the current set of registered parties.

• Upon receiving (REGISTER, sid) from some party P , set
P ′ := P ′ ∪ {P} and if P was not registered before, set
dp := 0; subsequently, forward (REGISTER, sid, P ) to
A.

• Upon receiving (CLOCK − UPDATE, sid)
from Gledger set dG := 1 and forward
(CLOCK − UPDATE, sig,Gledger) to A.

• Upon receiving (CLOCK − UPDATE, sid) from some
honest party P ∈ P ′ set di := 1; then if dG := 1 and
dp = 1 for all honest parties in P ′, then set τ := τ + 1
and reset dG := 0 and dp = 0 for all parties in P ′. Forward
(CLOCK − UPDATE, sid, P ) to A.

• Upon receiving (CLOCK − READ, sid) from any patic-
ipant (including the environment, the adversary, or any ideal-
shared or local-functionality) return (CLOCK-READ,sid,τ ,fast)
to the requester.

• Upon receiving (CLOCK-FAST) from any honest party or ideal
functionality, set fast := 1.

Figure 8. The functionality Fclock
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Appendix A.
Blockchain Protocol

A.1. Clock

The functionality Fclock in Fig 8 is used to describe
the miner’s consensus of the blockchain, i.e., make the
distributed ledger consistent.

Functionality FNetwork

This functionality manages the set possible senders and receivers denoted
by P . Any newly registered party is added to P . The functionality manages
a list ~M , initially the empty list.
Honest sender multicast
Upon receiving (MUTICAST, sid,m) from some Pi ∈ P , where
P = P1, ..., Pn denotes the current party set, do:

1) Choose n new unique message-IDs mid1, ...,midn,
2) Initialize 2n new variables Dmid1

:= DMAX
mid1

... :=

Dmidn := DMAX
midn

:= 1.
3) Set ~M := ~M ||(m,mid1, Dmid1

, P1)||...||
((m,midn, Dmidn ),

4) Send (MULTICAST, sid,m, Ps, (P1,mid1), ...,
(Pn,midn)) to the adversary.

Adversarial sender (partial) multicast
Upon receiving (MULTICAST, sid, (mi1

, Pi1
),..., (mil

, Pil
)) from the

adversary with Pi1
,...,Pil

⊆ P , do:

1) Choose l new unique-IDs midi1 , ...,midil ,
2) initialize l new variables Dmidi1

:= DMAX
midi1

:= ... :=

Dmidil
:= DMAX

midil
:= 1,

3) set ~M := ~M ||(mi1 ,midi1 , Dmidi1
, Pi1 )||...||

(mil
,midil , Dmidil

, Pil
),

4) send (MULTICAST, sid, (mi1
, Pi1

,midi1 ), ...,
(mil

, Pil
,midil )) to the adversary.

Honest party fetching
Upon receiving (FETCH, sid) from Pi ∈ P (or from A on behalf of
Pi if Pi is corrupted):

1) For all tuples (m,mid,Dmid, Pi) ∈ ~M , set Dmid :=
Dmid − 1.

2) Let ~MPi
0 denote the subvector ~M including all tuples of the

form (m,mid,Dmid, Pi) with Dmid = 0 (in the same
order as they appear in ~M ). Delete all entries in ~M

Pi
0 from

~M , and send ~M
Pi
0 to Pi.

Adding adversarial delays
Upon receiving (DELAY S, sid, (Tmidi1

,midi1 ), ...,
(Tmidil

,midil )) from the adversary do the following for each
pair (Tmidij

,midij ):

If DMAX
midij

+ Tmidij
≤ ∆ and mid is a message-ID registered in the

current ~M , set Dmidij
:= Dmidij

+ Tmidij
and set DMAX

midij
:=

DMAX
midij

+ Tmidij
; otherwise, ignore this pair.

Adversarially reordering messages
Upon receiving (SWAP, sid,mid,mid′) from the adversary, if mid
and mid′ are message-IDs registered in the current ~M , then swap
the triples (m,mid,Dmid, ) and (m,mid′, Dmid′ , ) in ~M Return
(SWAP, sid) to the adversary.

Figure 9. The functionality Fnetwork

Given a clock, the synchronous protocols can maintain
the necessary round structure in UC paradigm [19]: For
every round ρ each party first executes all its round−ρ
instructions and then sends the clock a CLOCK-UPDATE
command. Subsequently, whenever activated, it sends the
clock a CLOCK-READ command and does not advance
to round ρ + 1 before it sees the clocks variable being
updated. This ensures that no honest party will start round
ρ+ 1 before every honest party has completed round ρ.

A.2. Network Assumption

The functionality Fnetwork is used to describe the
network assumptions and the delay in the Bitcoin network.
In order to separating the analysis, the network could be
divided as two parts: Fbcnetwork for blocks transmitting and
Fbctransaction for transactions transmitting. Two networks
can be realized from a single network Fnetwork using
different message-IDs.
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Continue using Short-term repair Long-term repair Broken (unknown) Totally broken
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Our framework

Figure 10. Classification and uniform behavior of contingency plans.

A.3. State Exchange Protocol

The protocol maintains a tree τ of all valid chains.
initially it contains the genesis chain (G).

The following exchange queries are only answered
once registered.
Upon receiving (submit− new, sid, ~st, st) do

if isvalidstate(~st, st) = 1 then
if there exists C ∈ τ with ~st then
Cnew = extendchainD(C, st, q)
if Cnew 6= C then

Add Cnew to τ
Output (success, sid, 1) to P .

else
Output (success, sid, 0) to P .

On response (continue, sid) send
(multicast, sid, Cnew) to FbcN−MC .
Upon receiving (fetch− new, sid) do the following:

Send (Fetch, sid) to FbcN−MC and denote the response
by (fetch, sid, b).

Extract all valid chains C1, ..., Ck from b and add them
to τ .

Extract states ~st1, ..., ~stk from C1, ..., Ck and output
them.

A.4. State Exchange Functionality

A.5. State Exchange Simulator

Appendix B.
Response Classification

We propose the classification of contingency plans as
shown in Fig 10 which is based on the following attack
categories:

1) Continue using. With this, least severe, attack
type the Bitcoin protocol can be used normally.
For example, it can be a function that works prop-
erly but introduces undesired side-effects (like
additional computation overhead).

2) Short-term repair. An attack of this class
can threaten the security of the Bitcoin, mean-
while, the restoration of this attack is easy and
quick, without modifying low-level mechanisms
or specifications.

3) Long-term repair. Unlike the short-term repair,
the long-term repair needs a major modification

for the Bitcoin protocol, and the Bitcoin network
should be stopped until the restoration is com-
plete.

4) Broken (unknown). In this class, an attacks does
not allow function the protocol normally as be-
fore. In this case, the nodes should be notified
and the Bitcoin network should stop the activity
until the breakage is found and fixed.

5) Completely broken. This type of attack is fatal
to the Bitcoin protocol and Bitcoin should replace
some its core function(s) by another secure func-
tion(s). Moreover, the Bitcoin network would be
shut down to not introduce any more damage.

Next we propose the following actions of potential
contingency plans:

1) Issue an alert. In Bitcoin software, the alert
mechanism allows some authorities to send the
alert message to all of the Bitcoin software. This
behavior could help honest nodes know the attack
timely.

2) Notify participants. Users should be notified
through the communication channels. This will
help the honest nodes to learn about the issue.
The differences between “issue an alert” and
“notify participants” is that the latter is not the
emergency response, while the former should
triggered only under an emergency situation.

3) Shut down clients. Nodes should shut down
clients as they are exposed to the risk of being
attacked. This behavior could mitigate the honest
node’s loss and minimize the attacker’s gain.

4) Repair. Developers realizing that the Bitcoin pro-
tocol is no longer safe can try to fix the breakage
through our framework. The developers find the
attacker’s behavior and get the rectify advice,
then patch the Bitcoin software and release it as
a new version.

5) Update and check. Every participant updates its
local Bitcoin software to the newest version (and
checks the version through the communication
channel). If the update is successful, the node
can rejoin the Bitcoin network.
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