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Abstract

We analyze the authenticated encryption algorithm of ORANGE, a submission
to the NIST lightweight cryptography standardization process. We show that it
is practically possible to craft forgeries out of two observed transmitted messages
that encrypt the same plaintext. The authors of ORANGE have confirmed the
attack, and they discuss a fix for this attack in their second-round submission of
ORANGE to the NIST lightweight cryptography competition.
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1. Introduction

In symmetric cryptography, competitions play an essential role in converging
towards good standards. In the past, competitions held by the US National In-
stitute of Standards and Technology (NIST) resulted in cryptographic primitives
and algorithms that became de facto a world-wide standard, e.g., the AES [1, 2]
and SHA-3 [3, 4]. The newest competition in this field is the NIST lightweight
cryptography standardization process [5], which aims to bring forward standards
for authenticated encryption schemes that perform well on resource-constrained
devices. With 56 candidates entering the first round, the pool of candidates
is very diverse, and hence, comparison between them is not straightforward.
However, the one thing that all candidates have in common is that they have to
be appropriately secure. Therefore, in order to achieve that only excellent and
reliable candidates get standardized, as much cryptanalysis as possible is needed.

In this work, we contribute to this effort by providing an analysis of the
candidate called ORANGE [(], or to be more precise, the authenticated encryp-
tion algorithm contained in this proposal: ORANGE-Zest. ORANGE-Zest is
a permutation-based design. It is inspired by the duplex construction [7], but
differs in the fact that it uses the full b-bit state output by the permutation for
plaintext/ciphertext processing. As the duplex construction does not support
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this, the authors have proposed modifications to that mode in order to accommo-
date this change. In the case of ORANGE-Zest, half of the state of the previous
permutation call is used when processing the data of the current one.

Whenever changes to well-established structures are made, it is easy to
overlook details that might lead to powerful attacks. In the case of ORANGE-
Zest, such a detail was, indeed, missed. If ORANGE-Zest is evaluated on a
message without associated data, for the first message block there is no such
thing as “the previous permutation call” and the absorbing of the message has
a special structure. In particular, the bottom part of the state is independent
of the nonce. The other half of the state is known to an attacker who knows
the message and it can be modified with the ciphertext. Hence, an attacker can
change it to a value of its choice. We will use this knowledge to show a practical
forgery that an attacker can make by just observing two encryptions of the same
message block.

We first reported our findings on the NIST mailing list after the list of
second-round candidates was announced. As ORANGE moved on to the second
round, the authors could respond to the attack in an updated design document.
In their second-round design document [3], the authors acknowledge our findings
and discuss a modified algorithm of ORANGE-Zest that would fix our attack.
However, since NIST did not allow design changes for the second round, the
original version of ORANGE-Zest is still specified in the second-round submission.

2. ORANGE-Zest

We provide a short summary of the details of ORANGE-Zest needed to
understand our attack. We refer to the design document [6] for a full specification.
In Figure 1, we show the working principles of ORANGE-Zest in the absence of
associated data.
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Figure 1: Encryption of in absence of associated data.

We consider a permutation of width b bits. First, the b-bit state is initialized
with a concatenation of the nonce N and the key K plus one. Then, the
permutation is applied to the state to get Yy. The function FB™ takes as input
the state Yy, the secret key K, and the b-bit plaintext block Fy. It updates the
state to Xy and creates a b-bit ciphertext block Cy. Then, the permutation p
is applied on the state X, and the next plaintext block P; is absorbed. It is
important to note that only starting from the second plaintext block FB™ takes



as input the state Y;, plaintext block P;, and half of the previous state Y; 1
instead of the key K. If all plaintext blocks are absorbed, the tag T is created.

Algorithm 1 Description of FBT(Y;, [Y;_1], P;) for a full plaintext block
Require: state Y;,

half of previous state [Y;_1],

plaintext block P;
Ensure: ciphertext block C;,

updated state X;

(Y2 Y < Y,

)/’ib — Oéé]w}/ib

Zi (Y @ alYia DY < 1)
Xi+ Cio (YY)

return (C;, X;)

Next, we inspect the behavior of FB' in Algorithm 1. The keystream Z;
is created by first splitting the state into two halves. One half of the state is
transformed by xoring half of the state of the previous processing multiplied
by a. The other half is just rotated by one. The value §;; equals 0, 1,2 for an
intermediate block, incomplete last block, or complete last block, respectively.
We stress that, if no associated data is present, for an initial plaintext block Py
the value Y_; is defined as the secret key K (see also Figure 1). The ciphertext
block is just the xor of the plaintext block with the keystream. Then, the
ciphertext block is absorbed into the state to form Xj.

3. Attack

As mentioned, our attack is a forgery attack that targets ORANGE-Zest if
there is no associated data. First, let us have a look at the state X, that is
created in this case.

An Observation. In the absence of associated data, FB" takes the secret key
K as input as shown in Figure 1. Then, half of the keystream is computed as
7 = a%MY? @ aK and the other half is Z! = Y}! < 1. If we now take a look at
the updated state halves, we get

Xzb _ aéMY'ib @Pib EBOC(SM}/ib ®ak = Rib @aK,
X/ =PaoY'xl)aY,.
We see that the bottom half X? is independent of the nonce and constant if the

respective half of the message block is constant, while the top half X! is known
to an attacker that knows P!. Hence, we can do the following forgery attack.



The Forgery. Assume we observe two transcripts of a single-block ciphertext
(N, Py, Cy, T) and (N', P, C},T"), where Py = Pj. Then, we can craft a forgery
in the following manner. First, we calculate

W= (CtaoC)>1=(Yik)oePo(Y')oP)>1=Y]oY".
After that, we can compute

Cl'=W'ecCl=YjoY'a (Y1) ®P.
Then, the transcript (N', CR||C4*, T') gives then a valid forgery.

Correctness of Forgery. We will show that above forgery is valid. To do so, we
will show that the state X{/ of our forgery equals X and hence, will result in
tag T. Since we use nonce N’, after the first permutation call we end up with
state YJ. For one halve of the state, we absorb C{¥ into a® Y, which gives
us X0 = a'MYP @MY @ aK @ P = aK @ P, which is the same as X,
since we required P¢ = PJ’. For the other half, we absorb Cj* into Y. Here,
we then get

Xt=Cl'oY'=YjaYS'e (Y<K )aoRaoY'=Ya (Y] <1)® P,

which equals X{. Hence, the state of the forgery X{/ before the last permutation
call equals to Xy and thus, the tag value T is the same in both cases.

4. Conclusion

In this paper, we have shown a practical forgery attack on ORANGE-Zest.
In the second-round version of their submission document [3], the authors
acknowledge our attack and provide a fix against it. This is done by not fixing
the input of FB" to K in the absence of associated data. Instead, the scheme is
modified so that a secret nonce-dependent value is fed into FBT instead of K.
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