
 1

Mimblewimble Non-Interactive Transaction Scheme

Gary Yu
gary.yu@gotts.tech

Revised, Dec. 21, 2020

Abstract. I describe a non-interactive transaction scheme for Mimblewimble protocol, so as to
overcome the usability issue of the Mimblewimble wallet. With the Diffie–Hellman, we can
use an Ephemeral Key shared between the sender and the receiver, a public nonce 𝑅 is added
to the output for that, removing the interactive cooperation procedure. And an additional one-
time public key 𝑃′ is used to lock the output to make it only spendable for the receiver, i.e. the
owner of 𝑃′. Furtherly, to keep Mimblewimble privacy character, the Stealth Address is used
in this new transaction scheme.

Keywords: Mimblewimble, Stealth address, Bitcoin, Grin, Confidential transaction, Privacy

License. This work is released into the public domain.

Fig.1 Mimblewimble non-interactive transaction scheme design.

1 Introduction

Mimblewimble. In July 2016, someone called Tom Elvis Jedusor (Voldemort's French name
in J.K. Rowling's Harry Potter book series) placed the original Mimblewimble white
paper[MW16] on a bitcoin research channel, and then disappeared. Tom's white paper
"Mimblewimble" (a tongue-tying curse used in "The Deathly Hallows") was a blockchain
proposal that could theoretically increase privacy, scalability and fungibility. In January
2017, Andrew Poelstra, a mathematician at Blockstream, presented on this work at Stanford
University's Blockchain Protocol Analysis and Security Engineering 2017 conference. And he
wrote a paper[Poe16] to make precise Tom's original idea, and added further scaling
improvements on it. Mimblewimble is a blockchain protocol with confidential transaction and
obscured transaction graph, also it has the ability to merge transactions in transaction pool, or
even merge them across blocks.

 2

Because only UTXOs are kept, Mimblewimble blockchain data is much smaller than
other chain types. For example, Bitcoin[Bit08] today there are about 646,300 blocks, total
300GB or so of data on the hard drive to validate everything. These data are about 560 million
transactions and 68 million unspent nonconfidential outputs. Estimate how much space the
number of transactions take on a Mimblewimble chain. Each unspent output is around 0.7KB
for bulletproof[BBB16]. Each transaction kernel also adds about 100 bytes. The block headers
are negligible. Add this together and get 104GB -- with a confidential transaction and obscured
transaction graph!

Grin. At the end of 2016, Ignotus Peverell (name also comes from "Harry Potter", the original
owner of the invisibility cloak, if you know the Harry Potter characters) started a GitHub
project called Grin[Pev16]. Grin is the first project that implements a Mimblewimble
blockchain to provide extremely good scalability, privacy and fungibility, by relying on strong
elliptic curve cryptographic primitives. And it is a purely community driven project, just like
Bitcoin.

Interactive Transaction. In Mimblewimble and Grin, a typical transaction with 1 input and 2
outputs is defined as:

(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) + (𝐸′ + 𝑠 ∗ 𝐺) = (𝑥" ∗ 𝐺 + 𝑎" ∗ 𝐻) + (𝑥# ∗ 𝐺 + 𝑎# ∗ 𝐻) + 𝑓 ∗ 𝐻
Where,

- (𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) is the input coin owned and selected by the sender.
- (𝑥# ∗ 𝐺 + 𝑎# ∗ 𝐻) is the output coin created by the receiver.
- (𝑥" ∗ 𝐺 + 𝑎" ∗ 𝐻) is the change coin created by the sender.
- 𝑥! , 𝑥" , 𝑥# are the private keys.
- 𝑎! , 𝑎" , 𝑎# are the transaction values, which is hidden in the bulletproof attached on

each output commitment.
- 𝑓 is the transaction fee, which is an open value in the transaction kernel.
- 𝑠 is the offset, a random number selected by the sender.

The 𝐸$ is called as “public excess” which is the signature public key of the transaction kernel
and consists of:

𝐸′ = (𝑥" − 𝑥! − 𝑠) ∗ 𝐺 + 𝑥# ∗ 𝐺
Where,

- (𝑥" − 𝑥! − 𝑠) ∗ 𝐺 is a public key which only sender knows the private key.
- 𝑥# ∗ 𝐺 is a public key which only receiver knows the private key.

To sign this transaction with 𝐸$ as the public key, the Simpler Variants of MuSig[DCC19]
interactive signature scheme is used, meaning both the sender and the receiver exchanges the
public key and public nonce info, then executes a MuSig partial signature in both side, then
either the sender or the receiver finally aggregate these two partial signatures to get a final joint
Schnorr signature, which can be verified exactly as a standard Schnorr signature with respect
to a single public key:	𝐸$.

The pros of this transaction scheme are impressively on the simplicity and the minimum
size, which only needs one 2-of-2 Schnorr signature to authorize this spending, i.e. a 64-bytes
signature info. But the cons are also extremely impressed at:

- The bad usability on the wallet implementation, mainly because of the interactive
process.

- Slow, because of the cooperation time between payer and payee.

 3

- The wallet security concern, because the receiver wallet must listen online to the
payments and the private key must be used to receive.

Grin should have gotten much more adoption and be much more popular than today if it does
not need an interactive transaction.

My Contribution. In this paper, I propose a new transaction scheme for Mimblewimble
protocol, which is non-interactive so as to overcome above major weakness. With the Diffie–
Hellman, we can use an Ephemeral Key shared between the sender and the receiver, a public
nonce 𝑅 is added to the output for that, so as to remove the interactive cooperation process.
And an additional one-time public key 𝑃′ is used to lock the output to make it only spendable
for the owner of 𝑃′. The new data 𝑅 and 𝑃′ can be committed into the bulletproof to avoid the
miner’s modification. Furtherly, to keep Mimblewimble privacy character, the Stealth
Address[Byt11, Sab13, Tod14, CM17, Yu20] is used in this new transaction scheme. All the
cost of these new features is 130-bytes additional data (a public nonce 𝑅, an one-time public
key 𝑃′, and a 𝑅 signature) in each output, plus input signature. That is about 20% payload size
increasing in a typical 1 input 2 outputs Mimblewimble transaction, which is about 1.6KB in
the original Mimblewimble scheme.

2 Mimblewimble Non-Interactive Transaction Scheme

For the easiness of description, the following abbreviations will be used for the remaining

parts of this paper:
IT - Interactive Transaction
NIT - Non-Interactive Transaction
OWO - Output w/o that 𝑅 and 𝑃′
ORP - Output w/ that 𝑅 and 𝑃′
OR - Output w/ that 𝑅 but w/o 𝑃′

2.1 Non-Interactive Transaction Scheme Design

2.1.1 Transaction Creation

An Output in NIT is defined as {𝑐𝑜𝑚𝑚𝑖𝑡, 𝑅, 𝑃$, 𝑡, 𝑠𝑖𝑔, 𝑏𝑢𝑙𝑙𝑒𝑡𝑝𝑟𝑜𝑜𝑓}.
Where,

- 𝑐𝑜𝑚𝑚𝑖𝑡 is the Pedersen commitment with (𝑥 ∗ 𝐺 + 𝑎 ∗ 𝐻).
- 𝑅 is the public nonce for Stealth Address.
- 𝑃$ is the one-time public key for the owner.
- 𝑡 is a Unix timestamp for the time of output creation. The receiver can invalid a received

output if this 𝑡 is suspicious, refer to the replay attack discussed in §2.9.2 for the detail.
And this 𝑡 is proposed to be encoded by a random factor (hidden in bulletproof together
with value 𝑎), to avoid same 𝑡 appears in multiple Outputs.

- 𝑠𝑖𝑔 is the signature of message 𝐻𝑎𝑠ℎ(𝑐𝑜𝑚𝑚𝑖𝑡||𝑃$||𝑡), with 𝑅 as the signature public
key. This signature is used as the spending coin ownership proof, refer to formula
②	below for detail.

- 𝑏𝑢𝑙𝑙𝑒𝑡𝑝𝑟𝑜𝑜𝑓 is created by the blinding factor 𝑥 and the value 𝑎, with a rewind nonce
which can be calculated by 𝑥 and 𝑐𝑜𝑚𝑚𝑖𝑡.

With 𝑅 and 𝑃$ attached in the output, we make it spendable only for someone who knows the
private key of 𝑃$.

A kernel in NIT is defined as {𝑓, 𝐸′, 𝑠𝑖𝑔}.

 4

Where,
- 𝑓 is a public value for transaction fee.
- 𝐸′ is named as public excess, it’s the public key of the kernel signature.
- 𝑠𝑖𝑔 is the kernel signature for message {𝑓, 𝑒𝑡𝑐. }.

An Input here is defined as {𝑐𝑜𝑚𝑚𝑖𝑡, 𝑠𝑖𝑔}.

Where,
- 𝑐𝑜𝑚𝑚𝑖𝑡 is the Pedersen commitment with (𝑥 ∗ 𝐺 + 𝑎 ∗ 𝐻) , linking to an unique

unspent Output.
- 𝑠𝑖𝑔 is the signature of one-time public key 𝑃$ for the spending Output, as the coin

ownership proof which looks like a duplicate proof but mandatory for Rogue-Key
attack described in §2.9.3.

The coin ownership proof is mainly provided by the 𝑅 signature of the output, refer to formula
②	below for detail. The signature here in Input cannot be taken as a valid ownership proof,
because it could be reused by anyone, if there’s no randomness for the signing message here.

A typical transaction with 1 input and 2 outputs is defined as:

E
(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) + (𝐸$ + 𝑠 ∗ 𝐺) = (𝑥" ∗ 𝐺 + 𝑎" ∗ 𝐻) + (𝑞 ∗ 𝐺 + 𝑎# ∗ 𝐻) + 𝑓 ∗ 𝐻													①
𝑃!$ + (𝐸$ + 𝑠 ∗ 𝐺) = 𝑅" + 𝑅%																																																																																																															②

Where,

- (𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) is the commitment of input coin spending by the sender.
- (𝑞 ∗ 𝐺 + 𝑎# ∗ 𝐻) is the commitment of output coin created by the sender.
- (𝑥" ∗ 𝐺 + 𝑎" ∗ 𝐻) is the commitment of change coin created by the sender.
- 𝑥! , 𝑥" are the private keys of the sender.
- 𝑞 is the Ephemeral Key shared between the sender and the receiver, which will be

explained later.
- 𝑎! , 𝑎" , 𝑎# are the coin values, which is a hidden info in the bulletproof attached

with each output commitment.
- 𝑓 is the transaction fee, which is a transparent value in the transaction kernel.
- 𝑠 is a random offset number selected by the sender.
- 𝑅% is the public nonce selected by sender randomly, which is used to calculate the

Ephemeral Key q.
- 𝑅" is calculated by 𝑃!$ + (𝐸$ + 𝑠 ∗ 𝐺) − 𝑅%.
- 𝑃!$ is the one-time public key 𝑃′ of the spending output (𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻).

The 𝐸$ is named as “public excess” which is the signature public key of the transaction kernel
and consists of:

𝐸$ = (𝑞 + 𝑥" − 𝑥! − 𝑠) ∗ 𝐺
Where,

- (𝑞 + 𝑥" − 𝑥! − 𝑠) is a private key which is used for kernel signature.
To sign this transaction with 𝐸$ as the public key, the standard Schnorr signature scheme
[WNR18] is used.

The related private key of 𝑅" can be calculated as 𝑟" = 𝑝!$ + (𝑞 + 𝑥" − 𝑥!) − 𝑟% , where
𝑟" , 𝑟% , 𝑝!′ are the private keys of 𝑅" , 𝑅% , 𝑃!$. With the formula ②, the output 𝑅 is locked to avoid
modified by the receiver; and with the 𝑅 signature, the output 𝑃$ is locked to avoid modified
by the receiver. And the 𝑅 signature is an implicit ownership proof for the spending coin.

 5

Now, look at the Ephemeral Key 𝑞, which is the core part of this non-interactive transaction
scheme.

Definitions.

𝑨$ = 𝐻(𝑘 ∗ 𝐴) ∗ 𝐺 ≡ 𝐻(𝑎 ∗ 𝑅) ∗ 𝐺
𝑷′ = 𝐻(𝐴′) ∗ 𝐺 + 𝐵

𝑷 = 𝐴$ + 𝐵
𝒒 = 𝐻(𝑃)

Where 𝐻 is a hash function, and (𝐴, 𝐵) is the concatenation of the public view key and
the public spend key of the recipient’s Stealth Address, which is designed to protect recipient
privacy. 𝑘 is a secret nonce (a random number) selected by the sender and a related public
nonce 𝑅 = 𝑘 ∗ 𝐺 is attached to the transaction output. Each output has a 𝑅 and a 𝑃′, i.e., The
𝑅 in above definition is the 𝑅% in formula ② for payment output, or the 𝑅" for change output.
𝑃′ is similar, refers to the 𝑃%′ for payment output, or 𝑃"′ for change output, in above 1 input 2
outputs transaction example.

Thanks to the Diffie–Hellman key exchange, i.e. the truth that 𝑎 ∗ 𝑅 ≡ 𝑘 ∗ 𝐴, the recipient can
also calculate this Ephemeral Key 𝑞 by 𝑎, where 𝑎 is the recipient’s private view key of 𝐴.

The receiver checks every passing transaction (UTXO actually) with his/her private key (𝑎, 𝐵),
picks the 𝑅 and 𝑃′ from the UTXO, computes 𝐴$ = 𝐻(𝑎 ∗ 𝑅) ∗ 𝐺 and then 𝑞$ = 𝐻(𝐴′ + 𝐵)
and 𝑃" = 𝐻(𝐴′) ∗ 𝐺 + 𝐵, collects the payments if 𝑞$ = 𝑞 by bulletproof rewinding and if 𝑃" =
𝑃′.

With the sharing private key of 𝐴, an auditor for example can also computes this 𝑞$ and 𝑃"
therefore is capable to view every incoming transaction for that recipient’s Stealth Address.

The private key of 𝑃′:

𝑝$ = 𝐻(𝐴′) + 𝑏

Where 𝐴$ = 𝐻(𝑎 ∗ 𝑅) ∗ 𝐺 and (𝑎, 𝑏) is the private keys of the recipient’s Stealth Address and
𝑅 is the public nonce in the output data.

2.1.2 Cut-Through

Since 𝑅 ≠ 𝑃′, the transaction cut-through does not work anymore because the existence of
formula ②. This is the design by purpose. The cut-through makes the NIT scheme very
difficult to provide a payment proof. It is much easier and instinct if we ensure a payment
output always appear in the chain.

But the cut-through is one of the most beautiful features of Mimblewimble, which helps for
scalability. To compensate this, we define a TotalRmP in the block header to accumulate all
(𝑅 − 𝑃$) of spent outputs, so as to make the block cut-through still feasible in this NIT scheme,
the maintain the same scalability as the original Mimblewimble.

2.1.3 Transaction Validation

The validation logic includes but not limited the following items:
• Validate the sorting of inputs, outputs and kernels by their hashes.

 6

• Verify all output range proofs.
• Verify all outputs 𝑅 ≠ 𝑃′.
• Verify all kernel signatures against the public excess 𝐸$ and the message (𝑓𝑒𝑒, 𝑒𝑡𝑐.).
• Verify the "sum" of formula ①, all input commitments plus all kernel excess 𝐸$ and

the offset, all output commitments plus fee.
• Verify the "sum" of formula ②, all input 𝑃′ plus all kernel excess 𝐸$ and the offset,

all output 𝑅.

Block and chain validation are almost same as original Mimblewimble, except the
block/chain validation of "sum" of formula ②. For non-archive node, all the spent outputs are
pruned except those spent in recent blocks (within the horizon height). So, an additional
validation with formula ③ is needed for block, and an additional validation with formula ④
is needed for chain state validation, when node is non-archive mode or a fast synced fresh
installation:

E
𝑇𝑜𝑡𝑎𝑙𝑅𝑚𝑃&'!(&)*+ + 𝑆𝑈𝑀(𝑅 − 𝑃$),-'.)	0)	&'!(&) = 𝑇𝑜𝑡𝑎𝑙𝑅𝑚𝑃&'!(&)																																					③
𝑆𝑈𝑀(𝐸$)&'!(&) + 𝑇𝑜𝑡𝑎𝑙𝑂𝑓𝑓𝑠𝑒𝑡&'!(&) = 𝑆𝑈𝑀(𝑅)1.,-'.)	0)	&'!(&) + 𝑇𝑜𝑡𝑎𝑙𝑅𝑚𝑃&'!(&)									④	

2.2 Analysis on Security

2.2.1 Transaction Confirmation

Transaction confirmation is a common concept in blockchain, which presents the truth that
as blocks are buried deeper and deeper into the blockchain the transactions become harder and
harder to change or remove, this gives rise of blockchain's Irreversible Transactions. And
because of the possible forks of the chain, a best practice for a recipient is to wait enough block
confirmations before he/she confirms the payment and deliver the products or service, for
example waiting 6 block confirmations in Bitcoin or waiting 10 block confirmations in Grin.

For original Mimblewimble (interactive transaction scheme), the transaction confirmation
is using the kernel instead of the output coin. But here with this non-interactive transaction
scheme, it’s able to follow the common confirmation rule, sticking to the UTXO confirmations,
meaning the payment output must be unspent on the chain and have enough confirmations
before someone confirms he/she receives the payment. The proposed implementation of wallet
should use the output confirmation for this NIT scheme, instead of the kernel confirmation.

2.2.2 Transaction with Single Output

In this case, a typical transaction with 1 Input and 1 Output is defined as:

(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) + (𝐸$ + 𝑠 ∗ 𝐺) = (𝑞 ∗ 𝐺 + 𝑎# ∗ 𝐻) + 𝑓 ∗ 𝐻													
𝑃!$ + (𝐸$ + 𝑠 ∗ 𝐺) = 𝑅%																																																																																			

Where,
- 𝐸′ = (𝑞 − 𝑥! − 𝑠) ∗ 𝐺.
- 𝑟% = 𝑝!$ + (𝑞 − 𝑥!)
- 𝑎# = 𝑎! − 𝑓

𝑅% is not a random selection anymore like the example case of 2 Inputs 2 Outputs in
§2.1.1, because there’s no change Output. but it still has the randomness since the formula
𝑝$ = 𝐻(𝐴′) + 𝑏 including a hash function.

 7

If the Input came from the same people as the receiver of this new transaction, for example
this Input was a payment made by Bob to Alice, and now Alice is paying to Bob with it, then
both Alice and Bob know the private 𝑥!, and they both also know the private 𝑞, and then they
both know the private key of 𝐸′. Therefore, Bob is able to hack this transaction data with a
modified kernel info, even he must still keep the same Output data (with same 𝑅% and same
𝑃%′) because he has to reuse the 𝑅% signature made by Alice.

Conclusion: Creating a transaction with a single Output could be insecure in some cases,
either you know what you’re doing, or just forbid creating such transaction with single Output
by a wallet default configuration.

2.3 Multiple Payments in One Transaction

In original Mimblewimble, a transaction with multiple payments could look like this for
example:

𝑇+2:		𝐼+ + 𝐸+ + 𝐸2 = 𝐶2 + 𝑂+ + 𝑂2

This means there’re at least one kernel for each payment output, two 2-of-2 aggregated
signatures are needed for the payment to two receivers in the same transaction.

Instead, for payments to multiple receivers in this non-interactive transaction scheme, it
becomes much more simple, for example a single transaction for that:

𝑇:		𝐼+ + 𝐸+ = 𝐶+ + 𝑂+ + 𝑂2

Only one kernel/signature is needed in above example. And this scheme can save 25%
transaction fee for above example. For 𝑚 receivers, the fee of the original Mimblewimble
needs 0.004 ∗ (2𝑚) coins, but the fee of this scheme only needs 0.004 ∗ (𝑚 + 1) coins. In
addition, the latter is much easier to use.

2.4 The Change Output

Change output/s format
in a NIT

Pros Cons

with 𝑅	&	𝑃′ Obscured Change and Payment 130 bytes size increment

w/o 𝑅	&	𝑃′ Save 130-bytes for smaller size Linkability between Input
and Change

For the strict privacy, all the change output should use the same structure as the payment

output, even it’s possible to save 130-bytes payload by keeping the original simple format as
{𝑐𝑜𝑚𝑚𝑖𝑡, 𝑏𝑢𝑙𝑙𝑒𝑡𝑝𝑟𝑜𝑜𝑓}. Otherwise, it will leak a private information about which output is a
change output.

2.5 The Migration

The mixing of the native interactive transaction and the new non-interactive transaction
scheme is possible but strongly not proposed, not only because of the complexity of the mixing,
but also the privacy concern. All outputs data should have same data structure and they should
looks no obvious difference between any output.

Therefore, for those existing Mimblewimble blockchains, a hard fork and a migration is
proposed, to obsolete the interactive transaction and adopt the new non-interactive transaction

 8

scheme. All existing UTXOs can be kept as same as before, but all the new transaction outputs
will use the new format.

2.6 The Mixing

Even not proposed, the mixing of the native interactive transaction and the new non-
interactive transaction scheme is possible, but it needs a very careful design to consider all
kinds of security concerns.

First of all, to support the mixing, an indicator has to be added to differentiate these output
types. And the dedicated MMR for unspent OWO and ORP could be applied because of
different output data size.

2.6.1 Spending ORP with NIT

This is the normal case described in §2.1 for NIT. All the outputs generated must be ORP.

2.6.2 Spending OWO with IT

This is the normal case of the original Mimblewimble transaction. All the outputs

generated must be OWO.

2.6.3 Spending ORP with IT

It’s impossible to spend ORP with IT in practical, since an ORP need the Output 𝑅

signature to be there for ownership proof. But a fake IT (because self-sending only here) is
designed here to migrate an ORP as an OWO, for the possibility of using all available coins in
IT scenario.

In this case, a typical migration transaction (1 Input 1 Output) for self-sending is defined

as:

`
(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) + (𝐸$ + 𝑠 ∗ 𝐺) = (𝑥# ∗ 𝐺 + 𝑎# ∗ 𝐻) + 𝑓 ∗ 𝐻																																					
𝑃!$ + (𝐸$ + 𝑠 ∗ 𝐺) = 0																																																																																																															

Where,

- 𝑥# = 𝑥! − 𝑝!′.
- 𝐸$ = (𝑥# − 𝑥! − 𝑠) ∗ 𝐺.

The example here is using one Input, the definition is similar for multiple Inputs case.

After this migration transaction, the unspent outputs in wallet become OWOs. To spend it,

the normal case of spending OWO with IT is feasible.

2.6.4 Spending OWO with NIT

In this case, a typical transaction with 1 input and 2 outputs is defined as:

`
(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) + (𝐸$ + 𝑠 ∗ 𝐺) = (𝑥" ∗ 𝐺 + 𝑎" ∗ 𝐻) + (𝑞 ∗ 𝐺 + 𝑎# ∗ 𝐻) + 𝑓 ∗ 𝐻													
(𝐸$ + 𝑠 ∗ 𝐺) = 𝑅" + 𝑅%																																																																																																																								

Where,

 9

- 𝐸$ = (𝑞 + 𝑥" − 𝑥! − 𝑠) ∗ 𝐺.
- 𝑟" = (𝑞 + 𝑥" − 𝑥!) − 𝑟%
- 𝑟% is selected by the sender randomly, as the private nonce of 𝑅%.

All the outputs generated must be ORP.

The system migration discussed in §2.5 is also a typical use case of this, all the existing

unspent outputs are OWOs.

2.7 Payment Proof

Payment proof means a proof to the third party (normally an arbiter) to prove the payment
was made, when someone sends money to a party who then disputes the payment was made.
The payment proof in Bitcoin is simple since the recipient address is recorded in the chain and
open to anyone, but for a blockchain which uses stealth address, the payment proof is not so
straight.

For NIT with an output as {𝑐𝑜𝑚𝑚𝑖𝑡, 𝑅, 𝑃$, 𝑡, 𝑠𝑖𝑔, 𝑏𝑢𝑙𝑙𝑒𝑡𝑝𝑟𝑜𝑜𝑓}, a simple method is to use
the secret nonce 𝑘 since only the sender knows this secret and 𝑅 can be found on the chain.
Just provide a signature on a given message from the third party with this 𝑘 as the secret key.

In a payment proof with signature, the following info will be provided as the payment proof:
1. The transaction output, which can be used to get that corresponding public nonce 𝑅;
2. The transaction output MMR[Tod12] proof;
3. The receiver’s address but please note the third party arbiter will also need to know this

address to assert it all ties together;
4. A message from the third party and the corresponding signature from the sender. The

signature can be verified with above 𝑅 as the public key.

The pros of this method are obviously the simplicity of proof construction. The cons are

mainly on the reliability, meaning the sender is incapable to create the proof once the secret 𝑘
is lost, since this secret nonce 𝑘 is only stored in local wallet.

2.8 Special Application with Missing 𝑷′

With 𝑃′ missing in the output, an interesting feature is feasible here with this NIT scheme,
which makes the output spendable both for the sender and for the receiver, since both of them
know that Ephemeral Key 𝑞. With this feature, recovering funds sent to the wrong receiver is
also easy. The developers can facilitate this feature to design some kinds of interesting
applications.

For example, for the transaction among the trusted people such as family members, it will
be able to recover funds if the receiver lose his/her key or forget wallet password. Another
example is the airdrop in an early stage, if many years later some of those airdropped coins are
still there unspent, it will be a very high probability that those airdropped receivers lost their
keys, then the one who did that airdrop can recover those unspent airdrop coins. The 3rd
example is the gift application, which enable the receiver to “reject” receiving, considering a
Bitcoin wallet is unable to refuse receiving any payment.

A common ground of all these special applications is that the receiver will never require a
payment proof, which is not available without a 𝑃′ there.

 10

It’s optional for the receiver to finalize such kind of payments, so as to transfer the funds
into an output commitment which only he/she knows the blinding factor, i.e. creating a new
transaction to send these received coins to him/her self.

To spend an OR w/o 𝑃′ with a NIT, it’s same as spending OWO with NIT. And spending

an OR w/o 𝑃′ with a IT is same as spending OWO with IT.

2.9 Attacks

2.9.1 Leakage of the One-Time Key Difference

In case the sender makes two payments to the same receiver, the one-time public key
𝑃$	difference between both payment outputs is known to the sender.

𝑂+:			𝑃+$ = 𝐻(𝐻(𝑘+ ∗ 𝐴) ∗ 𝐺) ∗ 𝐺 + 𝐵
𝑂2:			𝑃2$ = 𝐻(𝐻(𝑘2 ∗ 𝐴) ∗ 𝐺) ∗ 𝐺 + 𝐵
=> 𝑃+′ − 𝑃2′ and the related secret 𝑝+$ − 𝑝2$ is known for the sender.

This is not an issue at all for us, since 𝑝+′/𝑝2′ must be known for spending

𝑂+/𝑂2,	considering the similar Stealth Address scheme has been used in Monero[Xmr13] for
years. But it must be clear that any future application must not rely on this difference.

If want a fix for this leakage, a modified 𝑃′ can be used here to add a multiply factor on 𝐵
component, for example 𝑃$ = 𝐻(𝐴$) ∗ 𝐺 + 𝐻(𝑐𝑜𝑚𝑚𝑖𝑡) ∗ 𝐵. The cost of this modified 𝑃′ is
the calculation complexity increment.

2.9.2 Replay Attack

Almost same as the replay attack found by Kurt[Kur20] in Grin forum for Mimblewimble
IT, this attack also works for this NIT. Consider the simplest form of a replay: a transaction
from Alice to Bob, with 1 Input and 1 Output is, and with 1 kernel:

(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) + (𝐸$ + 𝑠 ∗ 𝐺) = (𝑞 ∗ 𝐺 + 𝑎# ∗ 𝐻) + 𝑓 ∗ 𝐻													
𝑃!$ + (𝐸$ + 𝑠 ∗ 𝐺) = 𝑅%																																																																																			

A replay of this transaction happens when it appears on the chain for the 2nd time, say at
height ℎ2, after an earlier occurrence at height ℎ+, with the assumptions that same kernel is
allowed in the kernel MMR and the earlier output had been spent in between ℎ+ and ℎ2, output
(𝑥! ∗ 𝐺 + 𝑎! ∗ 𝐻) must be re-created.

At first glance this appears to be just giving free money to Bob. But the scenario described
by John Tromp[Tro20] shows how this could be an attempt to defraud Bob.

To alleviate this problem, when the wallet notices a new output received is one it has
received before since its last restore, it should invalid that receiving. But obviously the wallet
records before its last restore is lost, this cannot guarantee the wallet not be fooled into
accepting the replay as payment.

One of the feasible fix solutions of this problem is a consensus of forbidden duplicate
kernels.

For this NIT only, there is another type of replay attack, the core idea is same, generating

a new output which appeared on the chain before. Since the sender creates the output for the
receiver in NIT, it’s possible for a dishonest sender to create the same output as which he/she
created before for the same receiver, to defraud the receiver’s wallet.

 11

q = 𝐻(𝐻(𝑘 ∗ 𝐴) ∗ 𝐺 + 𝐵)
The sender just need reuse the same 𝑘 as before to get the same q, and with the same amount
𝑎#, it’s quite easy for the sender to construct the same output (𝑞 ∗ 𝐺 + 𝑎# ∗ 𝐻), even with same
𝑅 and 𝑃′. In this NIT case, forbidden duplicate kernels cannot fix the problem at all.

This is why a Unix timestamp 𝑡 exists there in the output for this NIT scheme. The sender
must ensure to pack a correct 𝑡 to the output and sign it with 𝑅 signature, otherwise, the
receiver can invalid the received output if he/she find this 𝑡 is suspicious, a friendly UI in wallet
is easy to be designed to handle this.

2.9.3 Rogue-Key Attack

In case spending 2 coins in 1 transaction with 2 outputs:

c
(𝑥!+ ∗ 𝐺 + 𝑎!+ ∗ 𝐻) + (𝑥!+ ∗ 𝐺 + 𝑎!+ ∗ 𝐻) + (𝐸$ + 𝑠 ∗ 𝐺) = (𝑥" ∗ 𝐺 + 𝑎" ∗ 𝐻)

																																															+(𝑞 ∗ 𝐺 + 𝑎# ∗ 𝐻) + 𝑓 ∗ 𝐻																			(5)
𝑃!+$ + 𝑃!2$ + (𝐸$ + 𝑠 ∗ 𝐺) = 𝑅" + 𝑅%																																																			(6)

If an attacker makes 𝑃!2$ = 𝑃!2" − 𝑃!+$ so as to cancel 𝑃!+$, then

𝑟" = 𝑝!2" + (𝑒$ + 𝑠) − 𝑟%
the attacker can sign with 𝑅" w/o knowledge of 𝑝!+$. The coin ownership proof is broken.

This is why we have a definition {𝑐𝑜𝑚𝑚𝑖𝑡, 𝑠𝑖𝑔} for Input. Each Input must attach its own

signature for 𝑃!$, as the second proof for the coin ownership. This obviously increase the
payload size of the transaction, and a little bit ugly since there’re total 5 signatures in above
transaction example (2 Inputs 2 Outputs, plus kernel). But so far this is the only way what I
can think out to fix this rogue-key attack.

2.10 Recommendations for Future Research

This NIT scheme designs a P2PK(Pay to Public Key) style transaction, merged with
Mimblewimble native transaction. The P2PK was first used in Bitcoin and it could be also
feasible to integrate the P2SH(Pay to Script Hash) style payment, eventually to have the whole
Bitcoin script in the Mimblewimble.

And further optimization on the payload size of this NIT scheme is still needed, considering
a typical 1 Input 2 Ouputs transaction include 4 signatures, which is heavy and costly.

2.11 Acknowledgements

I am grateful to John Tromp for his serious reviews on multiple iterations of those middle
versions for this NIT scheme and his insightful comments on Mimblewimble soul and its
security, especially the Rogue-Key attack, Replay attack, etc. And I am also thankful for David
Burkett who found out the unsafety in the previous version of this paper.

Note: The previous version of this paper proposes an unsafe protocol. Refers to some of
the review comments here https://github.com/gottstech/gotts/issues/59.

Reference

 12

DCC19 Gregory Maxwell, Andrew Poelstra, Yannick Seurin, Pieter Wuille. Simple
Schnorr multi-signatures with applications to Bitcoin. Designs, Codes and
Cryptography volume 87, pages2139–2164(2019).
https://doi.org/10.1007/s10623-019-00608-x

BBB16 Benedikt Bunz , Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,
Greg Maxwell. Bulletproofs: Short Proofs for Confidential Transactions and
More. https://eprint.iacr.org/2017/1066.pdf

Byt11 user ‘bytecoin’. Untraceable transactions which can contain a secure message
are inevitable. 2011. https://bitcointalk.org/index.php?topic=5965.0

Sab13 Nicolas van Saberhagen. CrypoNote v 2.0. 2013.
https://cryptonote.org/whitepaper.pdf

Tod14 Peter Todd. [Bitcoin-development] Stealth addresses. 2014. http://www.mail-
archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html

CM17 Nicolas T. Courtois, Rebekah Mercer. Stealth Address and Key Management
Techniques in Blockchain Systems. In Proceedings of the 3rd International
Conference on Information Systems Security and Privacy (ICISSP 2017),
pages 559-566.

Yu20 Gary Yu. Blockchain Stealth Address Schemes.
https://eprint.iacr.org/2020/548.pdf

Tod12 Peter Todd. Merkle Mountain Range. 2012.
https://github.com/mimblewimble/grin/blob/master/doc/mmr.md

Bit08 Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
http://bitcoin.org/bitcoin.pdf

WNR18 Pieter Wuille, Jonas Nick, Tim Ruffing. Schnorr signatures for secp256k1,
2018. https://github.com/sipa/bips/blob/bip-schnorr/bip-schnorr.mediawiki

MW16 Tom Elvis Jedusor. Mimblewimble. 2016.
https://github.com/mimblewimble/docs/wiki/Mimblewimble-origin

Poe16 Andrew Poelstra. Mimblewimble.
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

Pev16 Ignotus Peverell. Introduction to Mimblewimble and Grin.
https://github.com/mimblewimble/grin/blob/master/doc/intro.md

Xmr13 https://web.getmonero.org/resources/moneropedia/stealthaddress.html
Kur20 https://forum.grin.mw/t/enforcing-that-all-kernels-are-different-at-consensus-

level/7368
Tro20 https://forum.grin.mw/t/replay-attacks-and-possible-mitigations/7415

