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Abstract. In this paper, we revisit the difference enumeration technique
for LowMC and develop new algebraic techniques to achieve efficient key-
recovery attacks. In the original difference enumeration attack framework,
an inevitable step is to precompute and store a set of intermediate
state differences for efficient checking via the binary search. Our first
observation is that Bar-On et al.’s general algebraic technique developed
for SPNs with partial nonlinear layers can be utilized to fulfill the same
task, which can make the memory complexity negligible as there is no
need to store a huge set of state differences any more. Benefiting from
this technique, we could significantly improve the attacks on LowMC
when the block size is much larger than the key size and even break
LowMC with such a kind of parameter. On the other hand, with our
new key-recovery technique, we could significantly improve the time to
retrieve the full key if given only a single pair of input and output
messages together with the difference trail that they take, which was
stated as an interesting question by Rechberger et al. at ToSC 2018.
Combining both techniques, with only 2 chosen plaintexts, we could
break 4 rounds of LowMC adopting a full S-Box layer with block size
of 129, 192 and 255 bits, respectively, which are the 3 recommended
parameters for Picnic3, an alternative third-round candidate in NIST’s
Post-Quantum Cryptography competition. We have to emphasize that
our attacks do not indicate that Picnic3 is broken as the Picnic use-case
is very different and an attacker cannot even freely choose 2 plaintexts to
encrypt for a concrete LowMC instance. However, such parameters are
deemed as secure in the latest LowMC. Moreover, much more rounds of
seven instances of the backdoor cipher LowMC-M as proposed by Peyrin
and Wang in CRYPTO 2020 can be broken without finding the backdoor
by making full use of the allowed 264 data. The above mentioned attacks
are all achieved with negligible memory.

Keywords: LowMC, LowMC-M, linearization, key recovery, negligible
memory



1 Introduction

LowMC [5], a family of flexible Substitution-Permutation-Network (SPN) block
ciphers aiming at achieving low multiplicative complexity, is a relatively new
design in the literature and has been utilized as the underlying block cipher
of the post-quantum signature scheme Picnic [3], which is an alternative third-
round candidate in NIST’s Post-Quantum Cryptography competition [1]. The
feature of LowMC is that users can independently choose the parameters to
instantiate it, from the number of S-boxes in each round to the linear layer, key
schedule function and round constants.

To achieve a low multiplicative complexity, the construction adopting a
partial S-box layer (only partial state bits will pass through the S-boxes and an
identity mapping is applied for the remaining state bits) together with a random
dense linear layer is most used. As such a construction is relatively new, novel
cryptanalysis techniques are required. Soon after its publication, the higher-order
differential attack and interpolation attack on LowMC were proposed [16,14],
both of which required many chosen plaintexts. To resist these attacks, LowMC
v2 was proposed, i.e. new formulas were used to determine the secure number
of rounds. To analyse one of the most useful settings, namely a few S-boxes
in each round with low allowable data complexities, the so-called difference
enumeration technique [29], which we call difference enumeration attack, was
proposed, which directly made LowMC v2 move to LowMC v3. The difference
enumeration attack is a chosen-plaintext attack. The basic idea is to encrypt
a pair (or more) of chosen plaintexts and then recover the difference evolutions
between the plaintexts through each component in each round, i.e. to recover the
differential trail. Finally, the secret key is derived from the recovered differential
trail. As a result, the number of the required plaintexts can be as small as 4. For
simplicity, LowMC represents LowMC v3 in the remaining part of this paper.

Recently, Picnic3 [21] has been proposed and alternative parameters have
been chosen for LowMC. Specifically, different from Picnic2 where a partial S-box
layer is adopted when instantiating LowMC, a full S-box layer is used when
generating the three instances of LowMC in Picnic3. By choosing the number
of rounds as 4, the designers found that the cost of signing time and verifying
time can be reduced while the signature size is almost kept the same with that of
Picnic2 [3]. By increasing the number of rounds to 5 for a larger security margin,
the cost is still lower than that of Picnic2. Consequently, 4-round LowMC is
recommended and 5-round LowMC is treated as an alternative choice.

As can be found in the latest source code [2] to determine the secure number
of rounds, the 3 instances of 4-round LowMC used in Picnic3 are deemed as
secure. However, there is no thorough study for the constructions adopting a
full S-box layer and low allowable data complexities (as low as 2 plaintexts6).

6 In the security proof of Picnic, 2 plaintexts are required, which can be found at
footnote 11 in Page 10 in [10]. This is also our motivation to analyze such instances
with only 2 allowed plaintexts. In the security proof, the parameters with 2 allowed
plaintexts are treated as secure.
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Therefore, it is meaningful to make an investigation in this direction. It should
be mentioned that a recent guess-and-determine attack with 1 plaintext can
only reach 2 rounds for the constructions with a full S-box layer [7]. Moreover, a
parallel work [12] also shows that 2 out of 3 instances of the 4-round LowMC in
the Picnic3 setting can be broken, though it requires a huge amount of memory.

Moreover, a family of tweakable block ciphers called LowMC-M [27] was
proposed in CRYPTO 2020, which is built on LowMC and allows to embed a
backdoor in the instantiation. It is natural to ask whether the additional available
degrees of freedom of the tweak can give more power to an attacker. Based on
the current cryptanalysis [16,14,29], the designers claim that all the parameters
of LowMC-M are secure even if the tweak is exploitable by an attacker.

Related Techniques. For the SPNs with partial nonlinear layers, Bar-On et al.
have described an efficient algebraic approach [8] to search for differential trails
covering a large number of rounds, given that the predefined number of active
S-boxes is not too large. First, the attacker introduces intermediate variables to
represent the state difference after the first round. Then, traverse all possible
differential patterns where the number of active S-boxes is below a predefined
value. For each pattern, in the following consecutive rounds, introduce again
intermediate variables to represent the output differences of all active S-boxes,
whose positions have already been fixed. Finally, set up equations in terms of
these variables according to the positions of the inactive S-boxes as their
input and output differences must be 0 and all of them can be written as linear
expressions in these variables. Such a strategy has been successfully applied to
full Zorro [17].

For algebraic techniques, they seem to be prominent tools to analyze designs
using low-degree S-boxes. The recent progress made in the cryptanalysis of
Keccak is essentially based on algebraic techniques, including the preimage
attacks [19,22,25], collision attacks [13,28,30,18] and cube attacks [15,20,23].

A pure algebraic attack is to construct a multivariate equation system to
describe the target problem and then to solve this equation system efficiently.
When the equation system is linear, the well-known gaussian elimination can
be directly applied. However, when the equation system is nonlinear, solving
such an equation system is NP-hard even if it is quadratic. For the design
of block ciphers, there may exist undesirable algebraic properties inside the
design which can simplify the equation system and can be further exploitable
to accelerate the solving of equations. Such an example can be found in the
recent cryptanalysis of the initial version of MARVELLOUS [6] using Gröbner
basis attacks [4]. Indeed, there was once a trend to analyze the security of AES
against algebraic attacks [11,26]. In the literature, the simple linearization and
guess-and-determine methods are also common techniques to solve a nonlinear
multivariate equation system.

Recently at CRYPTO 2020, a method is proposed to automatically verify
a specified differential trail [24]. The core technique is to accurately capture
the relations between the difference transitions and value transitions. We are
inspired from such an idea and will further demonstrate that when the relations
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between the two transitions are special and when the difference transitions are
special, under the difference enumeration attack framework [29], it is possible to
utilize algebraic techniques to efficiently recover the differential trail for a single
pair of (plaintext, ciphertext) and then to efficiently retrieve the full key from
the recovered differential trail.

Our Contributions. This work is based on the difference enumeration attack
framework and we developed several non-trivial techniques to significantly
improve the cryptanalysis of LowMC. Our results are detailed as follows:

1. Based on Bar-On et al.’s general algebraic technique [8], it is feasible to
efficiently check the compatibility of differential trails in the difference
enumeration attack [29] by solving a linear equation system, which directly
leads to negligible memory complexity. Moreover, it can be found that this
technique will be more effective for LowMC due to a special property of
the 3-bit S-box, especially when the partial nonlinear layer is close to a full
nonlinear layer.

2. By studying the S-box of LowMC, we develop an efficient algebraic technique
to retrieve the full key if given only a single pair of (plaintext, ciphertext)
along with the corresponding differential trail that they take, which was
stated as an interesting question by Rechberger et al. at ToSC 2018.

3. We further develop a new difference enumeration attack framework to
analyze the constructions adopting a full S-box layer and low allowable data
complexities.

4. Combining our techniques, we could break the 3 recommended parameters
of 4-round LowMC used in Picnic3, which are treated as secure against the
existing cryptanalysis techniques, though it cannot lead to an attack on
Picnic3. In addition, much more rounds of 7 instances of LowMC-M can be
broken without finding the backdoor, thus violating the security claim of the
designers.

All our key-recovery attacks on LowMC only require 2 chosen plaintexts and
negligible memory. For the attacks on LowMC-M, we will make full use of the
allowed data to achieve more rounds. More details are displayed in Table 1,
Table 2 and Table 3. To advance the understanding of the secure number of
rounds for both LowMC and LowMC-M, we focus on the attacks reaching the
largest number of rounds with the complexity below the exhaustive search.

Organization. A brief introduction of LowMC and LowMC-M is given in Section
2. We then revisit the difference enumeration attack framework in Section 3. In
Section 4, we make a study on the S-box of LowMC. The techniques to reduce
the memory complexity and to reduce the cost to retrieve the secret key from
a differential trail are detailed in Section 5 and Section 6, respectively. The
application of the two techniques to LowMC with a partial S-box layer and
LowMC-M can be referred to Section 7. The attack on LowMC with a full S-box
layer is explained in Section 8. The experimental results are reported in Section
9. Finally, we conclude the paper in Section 10.
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2 Preliminaries

2.1 Notation

As there are many parameters for both LowMC [5] and LowMC-M [27], we use
n, k, m and R to represent the block size in bits, the key size in bits, the number
of S-boxes in each round and the total number of rounds, respectively. Besides,
the number of allowed data under each key is denoted by 2D. In addition, the
following notations will also be used:

1. Pr[ω] represents the probability that the event ω happens.
2. Pr[ω|χ] represents the conditional probability, i.e. the probability that ω

happens under the condition that χ happens.
3. x >> y represents that x is much larger than y.

2.2 Description of LowMC

LowMC [5] is a family of SPN block ciphers proposed by Albrecht et al. in
Eurocrypt 2015. Different from conventional block ciphers, the instantiation
of LowMC is not fixed and each user can independently choose parameters to
instantiate LowMC.

LowMC follows a common encryption procedure as most block ciphers.
Specifically, it starts with a key whitening (WK) and then iterates a round
function R times. The round function at the (i + 1)-th (0 ≤ i ≤ R − 1) round
can be described as follows:

1. SBoxLayer (SB): A 3-bit S-box S(x0, x1, x2) = (x0⊕x1x2, x0⊕x1⊕x0x2, x0⊕
x1 ⊕ x2 ⊕ x0x1) will be applied to the first 3m bits of the state in parallel,
while an identity mapping is applied to the remaining n− 3m bits.

2. MatrixMul (L): A regular matrix Li ∈ Fn×n
2 is randomly generated and the

n-bit state is multiplied with Li.
3. ConstantAddition (AC): An n-bit constant Ci ∈ Fn

2 is randomly generated
and is XORed to the n-bit state.

4. KeyAddition (AK): A full-rank n × k binary matrix Mi+1 is randomly
generated. The n-bit round key Ki+1 is obtained by multiplying the k-bit
master key with Mi+1. Then, the n-bit state is XORed with Ki+1.

The whitening key is denoted by K0 and it is also calculated by multiplying the
master key with a random n× k binary matrix M0.

It has been studied that there is an equivalent representation of LowMC by
placing (AK) between (SB) and (L). In this way, the size of the round key
Ki (i > 0) becomes 3m, which is still linear in the k-bit master key and can
be viewed as multiplying the master key with a 3m× k random binary matrix.
Notice that K0 is still an n-bit value. We will use this equivalent representation
throughout this paper for simplicity.

Moreover, for convenience, we denote the plaintext by p and the ciphertext
by c. The state after WK is denoted by A0. In the (i + 1)-th round, the input
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state of SB is denoted by Ai and the output state of SB is denoted by AS
i , as

shown below:

p
WK−→ A0

SB−→ AS
0

AK−→ L−→AC−→ A1 → · · · → AR−1
SB−→ AS

R−1
AK−→ L−→AC−→ AR.

In addition, we also introduce the notations to represent the xor difference
transitions, as specified below:

∆p
WK−→ ∆0

SB−→ ∆S
0

AK−→ L−→AC−→ ∆1 → · · · → ∆R−1
SB−→ ∆S

R−1
AK−→ L−→AC−→ ∆R.

Specifically, in the (i + 1)-th round, the difference of the input state of SB is
denoted by ∆i and the difference of the output state of SB is denoted by ∆S

i .
The difference of plaintexts is denoted by ∆p, i.e. ∆p = ∆0.

Definition 1. A differential trail ∆0 → ∆1 → · · · → ∆r is called a r-round
compact differential trail when all (∆j , ∆

S
j ) (0 ≤ j ≤ r − 1) and ∆r are

known.

LowMC-M [27] is a family of tweakable block ciphers built on LowMC,
which was introduced by Peyrin and Wang at CRYPTO 2020. The feature
of LowMC-M is that backdoors can be inserted in the instantiation. The only
difference between LowMC and LowMC-M is that there is an addition operation
AddSubTweak (AT) after AK and WK where the sub-tweaks are the output
of an extendable-output-function (XOF) function by setting the tweak as the
input. A detailed description can be referred to the full version of this paper on
eprint.

3 The Difference Enumeration Techniques

In this section, we briefly revisit the difference enumeration techniques in [29].
The overall procedure can be divided into three phases, as depicted in Fig. 1.

Phase 1: Determine an input difference ∆0 such that it will not activate any
S-boxes in the first t0 rounds, i.e. Pr[∆0 → ∆t0 ] = 1.

Phase 2: Compute the corresponding ∆t0 from ∆0 obtained at Phase 1. Then,
enumerate the differences forwards for t1 consecutive rounds and collect
all reachable values for ∆t0+t1 . Store all possible values of ∆t0+t1 in a
table denoted by Df .

Phase 3: Encrypt a pair of plaintexts whose difference equals ∆0 and compute
the difference ∆r of the corresponding two ciphertexts. Enumerate all
reachable differences of ∆t0+t1 backwards for t2 = r − t0 − t1 rounds
staring from ∆r and check whether it is in Df .

For convenience, suppose the reachable differences of ∆t0+t1 obtained by
computing backwards are stored in a table denoted by Db, though there is
no need to store them. To construct a distinguisher, one should expect that
|Df | × |Db| < 2n. In this way, one could only expect at most one solution that
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ROUNDS

1 to t0

ROUNDS

1 to t0

ROUNDS

t0 + 1 to t0 + t1

∆t0
∆0

ROUNDS

t0 + 1 to t0 + t1

ROUNDS

t0 + t1 + 1 to r

t0 + t1 + 1 to r

ROUNDS

∆t0+t1
∆r

No active S-boxes Meet-in-the-middle

Fig. 1: The framework of the difference enumeration techniques

can connect the difference transitions in both directions. Since there must be a
solution, the solution found with the above difference enumeration techniques
is the actual solution. After the compact differential trail is determined, i.e. the
difference transitions in each round are fully recovered, the attacker launches the
key-recovery phase.

To increase the number of rounds that can be attacked, the authors exploited
the concept of d-difference7 [31], which can increase the upper bound for |Df |×
|Db|, i.e. |Df | × |Db| < 2nd and max(|Df |, |Db|) < 2k. The constraint |Df | ×
|Db| < 2nd can ensure there is only one valid d-differential trail left since there
are in total 2nd possible values for the n-bit d-difference. The remaining two
constraints are used to ensure the time complexity to enumerate d-differences
cannot exceed that of the brute-force attack. It should be noted that |Df | = λmt1

d

and |Db| = λmt2
d , where λd denotes the average number of reachable output d-

differences over the S-box for a uniformly randomly chosen input d-difference.
For the 3-bit S-box used in LowMC, λ1 ≈ 3.62 ≈ 21.86 and λ2 ≈ 6.58 ≈ 22.719.
Therefore, a larger number of rounds can be covered with d-differences (d > 1)
when k ≥ n. As for n > k, it is thus more effective to use the standard difference
(d = 1) rather than the d-difference (d > 1). This paper is irrelevant to the
concept of d-difference [31] and hence we omit the corresponding explanation.

It is claimed in [29] that to efficiently recover the secret key based on the
recovered compact differential trail, a few pairs of plaintexts are required to
identify the unique secret key. As our key-recovery technique is quite different,
we refer the interested readers to [29] for details.

3.1 The Extended Framework

It is stated in [29] that the above framework can be extended to more rounds
if the allowed data are increased. Specifically, as depicted in Fig. 2, when the
allowed data complexity is 2D, after choosing a good starting input d-difference

in the plaintexts, the attacker could construct ⌊ 2D

d+1⌋ different tuples of plaintexts
satisfying the chosen input d-difference. For each tuple of plaintexts, the attacker
can obtain the corresponding d-difference in the ciphertexts and check whether
it will activate the S-boxes in the last r3 rounds.

7 For a tuple of (d + 1) values (u0, u1, . . . , ud), its d-difference is defined as
(δ0, δ1, . . . , δd−1) = (u0 ⊕ u1, u0 ⊕ u2, . . . , u0 ⊕ ud).
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r0 rounds

r0 rounds

r1 rounds

∆r0
∆0

r1 rounds

r2 rounds

r2 rounds

∆r0+r1
∆r0+r1+r2

No active S-boxes Meet-in-the-middle

r3 rounds

r3 rounds

∆r

No active S-boxes

Fig. 2: The extended framework of the difference enumeration techniques

From now on, as shown in Fig. 2, it is assumed that there is a probability-1
differential trail covering the first r0 rounds, and that the difference enumeration
in the forward and backward directions will cover r1 and r2 rounds, respectively.

A simple extension of the original difference enumeration attack [29] is to
consider larger r1 and r2. In this case, there will be much more candidates for
compact differential trails, i.e. the number of which is λr1+r2

1 × 2−n for the
standard xor difference. Then, it is essential to efficiently retrieve the full key
from each compact differential trail, which is indeed an interesting question
raised in [29].

Based on the method mentioned in [29], when only 2 plaintexts are allowed,
the cost to retrieve the full key from each compact differential trail is lower
bounded by 2k/3 as each non-zero difference transition through the 3-bit S-box
will suggest two solutions and the master key is a k-bit value. The reason why
it is a lower bound is that there may exist inactive S-boxes in the differential
trails and the attacker has to try all the 8 values. Thus, an efficient method to

retrieve the full key will allow us to enlarge λ
m(r1+r2)
1 × 2−n, thus increasing the

number of rounds that can be attacked.
Apart from the high cost of key recovery, in the original difference enumeration

attack, it seems to be inevitable that the attacker needs to store a huge set of
∆r0+r1 , whose size is about λ

mr1
1 for the standard xor difference. We believe that

attacks with negligible memory are more effective and meaningful if compared
with a pure exhaustive key search.

4 Observations on the S-box

Before introducing our linearization-based techniques for LowMC, it is necessary
to describe our observations on the 3-bit S-box used in LowMC. Denote the 3-bit
input and output of the S-box by (x0, x1, x2) and (z0, z1, z2), respectively. Based
on the definition of the S-box, the following relations hold:

z0 = x0 ⊕ x1x2, z1 = x0 ⊕ x1 ⊕ x0x2, z2 = x0 ⊕ x1 ⊕ x2 ⊕ x0x1.

Therefore, for the inverse of the S-box, there will exist

x0 = z0 ⊕ z1 ⊕ z1z2, x1 = z1 ⊕ z0z2, x2 = z0 ⊕ z1 ⊕ z2 ⊕ z0z1.
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According to the specification of the 3-bit S-box, we observed the following
useful properties of the S-box.

Observation 1 For each valid non-zero difference transition (∆x0, ∆x1, ∆x2)→
(∆z0, ∆z1, ∆z2), the inputs conforming to such a difference transition will
form an affine space of dimension 1. In addition, (z0, z1, z2) becomes linear
in (x0, x1, x2), i.e. the S-box is freely linearized for a valid non-zero difference
transition. A similar property also applies to the inverse of the S-box.

Observation 2 For each non-zero input difference (∆x0, ∆x1, ∆x2), its valid
output differences form an affine space of dimension 2. A similar property also
applies to the inverse of the S-box.

Observation 3 For an inactive S-box, the input becomes linear in the output
after guessing two output bits. If guessing two input bits, the output also becomes
linear in the input. The same property holds for its inverse.

Example. The last observation is trivial and let us make a short explanation
for the remaining observations. For example, when (∆x0, ∆x1, ∆x2) = (0, 0, 1)
and (∆z0, ∆z1, ∆z2) = (0, 0, 1), it can be derived that x0 = 0 and x1 = 0.
Therefore, the expressions of (z0, z1, z2) become z0 = 0, z1 = 0 and z2 = x2.
When the input difference is (0, 1, 1), the corresponding valid output differences
satisfy ∆z1⊕∆z2 = 1. When the output difference is (0, 1, 1), the corresponding
valid input differences satisfy ∆x1 ⊕∆x2 = 1.

Generalization. It is easy to identify Observation 1 since it is a 2-differentially
uniform 3-bit S-box. However, it is surprising that such a property has never
been exploited in the cryptanalysis of LowMC. To generalise our results, we
prove that the above 3 observations hold for all 3-bit almost perfect nonlinear
(APN) S-boxes. Observation 3 is trivial and we only focus on the remaining 2
observations, especially on Observation 2.

To save space, we simply explain what a 3-bit APN S-box is. For simplicity,
we still denote the input and output of the S-box by (x0, x1, x2) and (z0, z1, z2) =
S′(x0, x1, x2), respectively. Formally, for a 3-bit APN S-box, for any valid
nonzero difference transition (∆x0, ∆x1, ∆x2)→ (∆z0, ∆z1, ∆z2), there are only
2 solutions of (x0, x1, x2) to the following equation:

S′(x0 ⊕∆x0, x1 ⊕∆x1, x2 ⊕∆x2)⊕ S′(x0, x1, x2) = (∆z0, ∆z1, ∆z2).

For a 3-bit APN S-box, its algebraic degree must be 2. Hence, the S-box can
be defined in the following way:

z0 = φ0(x0, x1, x2)⊕ κ0x0x1 ⊕ κ1x0x2 ⊕ κ2x1x2 ⊕ ϵ0,

z1 = φ1(x0, x1, x2)⊕ κ3x0x1 ⊕ κ4x0x2 ⊕ κ5x1x2 ⊕ ϵ1,

z2 = φ2(x0, x1, x2)⊕ κ6x0x1 ⊕ κ7x0x2 ⊕ κ8x1x2 ⊕ ϵ2,
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where φi(x0, x1, x2) (0 ≤ i ≤ 2) are linear boolean functions and κj ∈ F2

(0 ≤ j ≤ 8), ϵi ∈ F2 (0 ≤ i ≤ 2). For a specific 3-bit APN S-box, all φi(x0, x1, x2),
κj and ϵi will be fixed.

First, consider the case when (∆x0, ∆x1, ∆x2) = (0, 0, 1). It can be found that
there are four assignments to (x0, x1) that will influence the output difference, as
shown below, where ∆φi (0 ≤ i ≤ 2) represents the xor difference of the outputs
of the linear function φi(x0, x1, x2).

(x0, x1)→ (∆z0, ∆z1, ∆z2)

(0, 0)→ (∆φ0, ∆φ1, ∆φ2),

(0, 1)→ (∆φ0 ⊕ κ2, ∆φ1 ⊕ κ5, ∆φ2 ⊕ κ8),

(1, 0)→ (∆φ0 ⊕ κ1, ∆φ1 ⊕ κ4, ∆φ2 ⊕ κ7),

(1, 1)→ (∆φ0 ⊕ κ1 ⊕ κ2, ∆φ1 ⊕ κ4 ⊕ κ5, ∆φ2 ⊕ κ7 ⊕ κ8).

As the S-box is APN, the above four possible values of the output difference
(∆z0, ∆z1, ∆z2) are the actual 4 distinct output differences for the input difference
(∆x0, ∆x1, ∆x2) = (0, 0, 1). As the set

{(0, 0, 0), (κ2, κ5, κ8), (κ1, κ4, κ7), (κ1 ⊕ κ2, κ4 ⊕ κ5, κ7 ⊕ κ8)}

forms a linear subspace of dimension 2 over F3
2, the 4 possible output differences

for the input difference (0, 0, 1) form an affine subspace of dimension 2. For each
of the 4 valid difference transitions, there will be 2 linear conditions on the input
bits and hence the S-box is always freely linearized, i.e. each output bit can be
written as a linear expression in the input bits. Due to the symmetry of the
expressions, the same holds for the input differences (1, 0, 0) and (0, 1, 0).

When (∆x0, ∆x1, ∆x2) = (0, 1, 1), we can write the accurate 4 distinct
output differences in a similar way, as listed below:

(x0, x1 ⊕ x2)→ (∆z0, ∆z1, ∆z2)

(0, 0)→ (∆φ0 ⊕ κ2, ∆φ1 ⊕ κ5, ∆φ2 ⊕ κ8),

(0, 1)→ (∆φ0, ∆φ1, ∆φ2),

(1, 0)→ (∆φ0 ⊕ κ0 ⊕ κ1 ⊕ κ2, ∆φ1 ⊕ κ3 ⊕ κ4 ⊕ κ5, ∆φ2 ⊕ κ6 ⊕ κ7 ⊕ κ8),

(1, 1)→ (∆φ0 ⊕ κ0 ⊕ κ1, ∆φ1 ⊕ κ3 ⊕ κ4, ∆φ2 ⊕ κ6 ⊕ κ7).

Therefore, for each valid difference transition, there are 2 linear conditions on
the input bits and the S-box is freely linearized. In addition, it can be found
that the set

{(0, 0, 0), (κ2, κ5, κ8),

(κ0 ⊕ κ1, κ3 ⊕ κ4, κ6 ⊕ κ7), (κ0 ⊕ κ1 ⊕ κ2, κ3 ⊕ κ4 ⊕ κ5, κ6 ⊕ κ7 ⊕ κ8)}

forms a linear subspace of dimension 2 over F3
2, thus resulting in the fact that

the 4 output differences form an affine subspace of dimension 2. Due to the
symmetry, the same conclusion also holds for the input differences (1, 1, 0) and
(1, 0, 1).
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When (∆x0, ∆x1, ∆x2) = (1, 1, 1), the 4 distinct output differences can be
written as follows:

(x0 ⊕ x1, x1 ⊕ x2)→ (∆z0, ∆z1, ∆z2)

(0, 0)→ (φ0 ⊕ κ0 ⊕ κ1 ⊕ κ2, φ1 ⊕ κ3 ⊕ κ4 ⊕ κ5, φ2 ⊕ κ6 ⊕ κ7 ⊕ κ8),

(0, 1)→ (φ0 ⊕ κ0, φ1 ⊕ κ3, φ2 ⊕ κ6),

(1, 0)→ (φ0 ⊕ κ2, φ1 ⊕ κ5, φ2 ⊕ κ8),

(1, 1)→ (φ0 ⊕ κ1, φ1 ⊕ κ4, φ2 ⊕ κ7).

Therefore, for each valid difference transition, there are 2 linear conditions on
the input bits and the S-box is freely linearized. Moreover, since the set

{(0, 0, 0), (κ1 ⊕ κ2, κ4 ⊕ κ5, κ7 ⊕ κ8),

(κ0 ⊕ κ1, κ3 ⊕ κ4, κ6 ⊕ κ7), (κ0 ⊕ κ2, κ3 ⊕ κ5, κ6 ⊕ κ8)}

forms a linear subspace of dimension 2 over F3
2, the 4 distinct output differences

must also form an affine subspace of dimension 2.
As the inverse of an APN S-box is also APN, Observation 1 and Observation 2

hold for all 3-bit APN S-boxes, thus completing the proof.

5 Reducing the Memory Complexity

As mentioned in the previous section, it seems to be inevitable to use a
sufficiently large amount of memory to store some reachable differences to
achieve efficient checking for the reachable differences computed backwards. It
is commonly believed that attacks requiring too much memory indeed cannot
compete with a pure exhaustive key search. Therefore, our first aim is to
significantly reduce the memory complexity in both the original and extended
frameworks.

The main underlying strategy in Bar-On et al.’s algorithm [8] is to introduce
intermediate variables to represent the output differences of S-boxes. Then, each
intermediate state difference can be written as linear expressions in terms of
these variables. It is obvious that such a strategy can be used to efficiently
check whether the reachable differences computed backwards can be matched.
Specifically, for each reachable difference computed in the backward direction,
we can construct an equation system whose solutions can correspond to the
difference transitions in the forward direction.

As illustrated in Fig. 3, after we determine the differential trail in the first r0
rounds, ∆r0 is known and there should be at least one active S-box when taking
two inputs with ∆r0 as difference to the (r0 + 1)-th round, otherwise we could
extend the deterministic differential trail for one more round.

As in [8], we can introduce at most 3m variables (d0, · · ·, d3m−1) to denote
the output difference of the m S-boxes for the input difference ∆r0 . However,
by exploiting Observation 2, it is sufficient to introduce at most 2m variables.
Specifically, for an inactive S-box, the output difference is (0, 0, 0), i.e. three
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Fig. 3: Constructing the affine subspace of reachable differences

linear relations can be derived for these variables. When there is an active S-box,
the valid output differences form an affine space of dimension 2 according to
Observation 2, i.e. 1 linear relation can be obtained. In other words, we only need
to introduce at most 3m −m = 2m variables to denote the output differences
for ∆r0 . For the next l − 1 rounds, since the input difference of the S-box is
uncertain due to the diffusion of a random linear layer, we directly introduce
3m(l−1) variables (d3m, · · ·, d3ml−1) to represent the output differences for each
S-box. In this way, ∆r0+l is obviously linear in the introduced 3m(l− 1)+2m =
3ml −m = m(3l − 1) variables. In other words, ∆r0+l can be written as linear
expressions in terms of the introduced m(3l − 1) variables.

Then, for the difference enumeration in the backward direction, after we
obtain the output difference of the S-box for ∆r0+l, we start to construct the
equation system to connect the output difference. If we directly use the idea in [8],
at least n−3m linear equations can be constructed as there are m S-boxes in the
nonlinear layer. However, according to Observation 2, once the output difference
of the m S-boxes becomes known, it will leak at least m linear relations for the
input difference. Specifically, when the S-box is inactive, the input difference is 0,
i.e. three linear relations. When the S-box is active, according to Observation 2,
one linear relation inside the input difference can be derived. In other words, we
could collect at least m + (n − 3m) = n − 2m linear equations in terms of the
introduced m(3l − 1) variables. When

m(3l − 1) ≤ n− 2m→ n ≥ m(3l + 1), (1)

we can expect at most one solution of the equation system.
Once a solution is found, all output differences of the S-box in the middle l

rounds become known and we can easily check whether the difference transitions
are valid by computing forwards. If the transitions are valid, a connection
between the difference transitions in both directions are constructed. Otherwise,
we need to consider another enumerated output difference of the S-box for
∆r0+l in the backward direction. We have to stress that when enumerating the
differences backwards for r2 rounds, there are indeed l + 1 + r2 rounds in the
middle, i.e. r1 = l + 1 if following the extended framework as shown in Fig. 2.
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However, in some cases where m is large, there is no need to make such a
strong constraint as in Equation 1. Even with n < m(3l + 1), at the cost of
enumerating all the solutions of the constructed linear equation system, more
rounds can be covered. In this way, the time complexity to enumerate differences
becomes 21.86mr2+m(3l+1)−n. Thus, the constraint becomes

1.86mr2 +m(3l + 1)− n < k. (2)

As l = r1 − 1, it can be derived that

m(1.86r2 + 3r1 − 2) < n+ k (3)

In addition, the following constraint on r2 should hold as well.

1.86mr2 < k (4)

Therefore, when r1+r2 is to be maximized, the above two inequalities should be
taken into account. In this way, the time complexity of difference enumeration
becomes

max(21.86mr2 , 2m(1.86r2+3r1−2)−n). (5)

Comparison. Due to Observation 2, we can introduce fewer variables and
construct more equations to efficiently compute the compact differential trails
if comparing our algorithm with the general algorithm in [8]. The advantage of
such an optimized algorithm may be not evident when m is much smaller than n.
However, as the nonlinear layer is closer to a full nonlinear layer, our algorithm
will become more and more effective and may allow us to break one more round,
which is essential to break the 4-round LowMC with a full S-box layer discussed
in Section 8.

6 Efficient Algebraic Techniques for Key Recovery

In this section, we describe how to retrieve the full key from a compact differential
trail with an algebraic method. Following the extended framework, we assume
that there is no active S-box in the last r3 rounds. As illustrated in Fig. 4, we
could introduce 3mr3 variables to represent all the input bits of the S-boxes in the
last r3 rounds. Although Ar is the known ciphertext, the round key used in AK
is unknown in the r-th round. Therefore, the input of the S-box is unknown in the
r-th round and is quadratic in terms of the unknown secret key. By introducing
variables (v0, · · ·, v3m−1) to represent the expressions of the inputs of the S-box
when reversing the S-box, we could write Ar−1 as linear expressions in terms of
these variables8. Similarly, it can be derived that Ar−r3 can be written as linear
expressions in terms of all the introduced 3mr3 variables (v0, · · ·, v3mr3−1).

8 If we use the equivalent representation of LowMC, such a statement is correct. If we
do not use it, Ar−1 can be written as linear expressions in terms of (v0, · · ·, v3m−1)
and the key bits, which will not affect our attack as our final goal is to construct a
linear equation system in terms of the 3mr3 variables and the key bits. For simplicity,
we consider the equivalent representation.
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6.1 Exploiting the Leaked Linear Relations

Since all the S-boxes in the last r3 rounds are inactive, we have to introduce
3mr3 variables to achieve linearization. However, we have not yet obtained any
linear equations in terms of these variables. Therefore, we will focus on how to
construct a sufficiently large number of linear equations such that there will be
a unique solution of these introduced variables.

It should be noticed that the difference enumeration starts from ∆r−r3 in
the backward direction. For a valid r2-round differential propagation (∆r−r3 →
∆r−r3−1 → ··· → ∆r−r3−r2) enumerated in the backward direction, there should
be one valid r1-round differential propagation (∆r0 → ∆r0+1 → · · · → ∆r0+r1)
enumerated in the forward direction such that ∆r0+r1 = ∆r−r3−r2 . Once such
a sequence is identified, i.e. (∆r0 → · · · → ∆r−r3) is fully known, we start
extracting linear equations from the difference transitions inside the S-boxes in
the middle r1 + r2 rounds.

Specifically, for each active S-box, there will be two linear equations inside
the 3-bit output according to Observation 1. In addition, the 3-bit S-box is freely
linearized once it is active according to Observation 1, i.e. the 3-bit input can
be written as linear expressions in terms of the 3-bit output. Note that Ar−r3 is
linear in (v0, · · ·, v3mr3−1).

As depicted in Fig. 5, denote the equivalent round key bits used in the (r−r3)-
th round by (e0, · · ·, e3m−1). For simplicity, assume that all the S-boxes are
active when going back b rounds starting from Ar−r3 . The case when there are
inactive S-boxes will be discussed later. Under such an assumption, we could
derive 2m linear equations in terms of (v0, · · ·, v3mr3−1, e0, · · ·, e3m−1) based
on Observation 1. In addition, since the input becomes linear in the output
for each active S-box, Ar−r3−1 becomes linear in (v0, · · ·, v3mr3−1, e0, · · ·, e3m−1).
Similarly, denote the equivalent round key bits used in the (r−r3−i)-th round by
(e3mi, ···, e3mi+3m−1) (0 ≤ i ≤ b−1). Then, one could derive 2m linear equations
in terms of (v0, · · ·, v3mr3−1, e0, · · ·, e3mi+3m−1) in the (r − r3 − i)-th round and
Ar−r3−i−1 will be linear in (v0, · · ·, v3mr3−1, e0, · · ·, e3mi+3m−1). Repeating such a
procedure for b rounds backwards, we could collect in total 2mb linear equations
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in terms of 3mr3 + 3mb variables (v0, · · ·, v3mr3−1, e0, · · ·, e3mb−1). Since each
equivalent round key bit is linear in the k-bit master key according to the linear
key schedule function, we indeed succeed in constructing 2mb linear equations
in terms of (v0, · · ·, v3mr3−1) and the k-bit master key. To ensure that there is a
unique solution to the equation system, the following constraint should hold:

2mb ≥ k + 3mr3. (6)

As 2m linear equations will be leaked when going back 1 round, there may exist
redundant linear equations, i.e. 2mb > k + 3mr3. Indeed, only

h = ⌈ (k + 3mr3)− 2m(b− 1)

2
⌉ (7)

active S-boxes are needed in the (r− r3− b)-th round. In this way, we only need
in total

H = h+m(b− 1) (8)

S-boxes to ensure that there exists a unique solution of the constructed equation
system.

6.2 Linearizing the Inactive S-boxes

After discussing the case when all the S-boxes are active when going back b
rounds starting from Ar−r3 , consider the case when there are q inactive S-boxes
among the required H S-boxes in these b rounds (0 ≤ q ≤ H). Specifically, we
aim to compute the time complexity to recover the full key for such a case.

While 2 linear equations can be freely derived from the output of an active
S-box and the input becomes freely linear in the output for an active S-box as
explained previously, linearizing the inactive S-box will require additional cost
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when going backwards. For an inactive S-box, it can be linearized by guessing
two bits of its input or output according to Observation 3. In other words, even
for an inactive S-box, we could guess 2 linear equations for its output and then
the input still becomes linear in the output. Therefore, the number of equations
remain the same as in the case when all the S-boxes are active. The only cost is
that we need to iterate 22q times of guessing. If Equation 6 holds, for each time
of guessing, one could only expect 1 unique solution of the k-bit master key.

Assuming there are N valid compact differential trails left in the extended
framework, we can expect there are N ×

∑H
q=0(

7
8 )

H−q × ( 18 )
q ×

(
H
q

)
differential

trails where there are q inactive S-boxes in the key-recovery rounds. Recovering
the full key from each of these trails will require time complexity 22q. After the
full key is recovered, we need to further verify it via the plaintext-ciphertext
pair. Hence, the expected time to recover the full key from one random compact
differential trail can be evaluated as follows:

T0 =

H∑
q=0

(
7

8
)H−q × (

1

8
)q ×

(
H

q

)
× 22q =

H∑
q=0

(
7

8
)H−q × (

1

2
)q ×

(
H

q

)
= 1.375H .

Therefore, the total time complexity to recover the correct master key is

T1 = N × 1.375H = N × 20.46H . (9)

Similar to the above method, we could also give a formula to compute the
expected time to recover the correct key if following the simple method as
discussed in [29]. It should be noted that there is no extra strategy used in
the key-recovery phase in [29] if with only 2 plaintexts. Specifically, when the
S-box is active, the attacker needs to try the two possible values. When the S-box
is inactive, the attacker needs to try all the 8 possible values. However, since the
attacker could always derive 3-bit information of the master key from one S-box
in this way, he only needs to go back b′ = ⌈k−mr3

3m ⌉ rounds and the number of

required S-boxes is H ′ = ⌈k3 ⌉ −mr3 in these b′ rounds. Thus, the expected time
T2 can be formalized as follows:

T2 = N × 8mr3 ×
H′∑
q=0

(
7

8
)H

′−q × (
1

8
)q ×

(
H ′

q

)
× 8q × 2H

′−q

= N × 23mr3 ×
H′∑
q=0

(
7

8
× 2)H

′−q × (
1

8
× 8)q ×

(
H ′

q

)
= N × 23mr3 × (

7

4
+ 1)H

′
.

To explain the significant improvement achieved by our linearization techniques
to recover the master key, we make a comparison between T1 and T2 as shown
below:

T2

T1
=

23mr3( 74 + 1)H
′

1.375H
.
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Since H = ⌈k+3mr3
2 ⌉ and H ′ = ⌈k3 ⌉ −mr3, we have

T2

T1
=

23mr3( 74 + 1)H
′

1.375H
≈ 23mr3+1.46( k

3−mr3)

20.46(0.5k+1.5mr3)
≈ 20.256k+0.85mr3 .

Obviously, our new key-recovery technique is much faster if compared with the
method in [29].

6.3 Further Improvement

Indeed, one could further reduce the cost to retrieve the full key from a compact
differential trail. Specifically, we first lower bound b as in Equation 6. Then,
when going back r3 + b− 1 rounds from the ciphertext, there will be 2m(b− 1)
leaked equations and the last r3 + b − 1 rounds are fully linearized. Since only
k + 3mr3 equations are needed and each active S-box will leak 2 equations, we
only need to use

h = ⌈ (k + 3mr3)− 2m(b− 1)

2
⌉

active S-boxes in the (r − r3 − b)-th round.
Therefore, in the (r − r3 − b)-th round, when there are more than h active

S-boxes, there is no need to guess extra equations but we still need to construct
the equation system. However, when there are i (i < h) active S-boxes, it
is necessary to guess 2h − 2i extra equations. Therefore, the expected time
complexity can be refined as:

T3 = N × T4 ×
h∑

i=0

(
m

i

)
× (

7

8
)i × (

1

8
)m−i × 22h−2i

+ N × T4 ×
m∑

i=h+1

(
m

i

)
× (

7

8
)i × (

1

8
)m−i

≈ N × T4 × 22h ×
h∑

i=0

(
m

i

)
× (

7

32
)i × (

1

8
)m−i

+ N × T4 × (1−
h∑

i=0

(
m

i

)
× (

7

8
)i × (

1

8
)m−i)

< N × T4 × (1 + 22h ×
h∑

i=0

(
m

i

)
× (

7

32
)i × (

1

8
)m−i)

where

T4 =

m(b−1)∑
q=0

(
7

8
)m(b−1)−q × (

1

8
)q ×

(
m(b− 1)

q

)
× 22q = 20.46m(b−1).
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There is no simple approximation for T3 and we therefore provide a loose upper
bound which can be easily calculated, as specified below:

T3 < N × T4 × (1 + 22h ×
m∑
i=0

(
m

i

)
× (

7

32
)i × (

1

8
)m−i) = N × T4 × (1 + 22h−1.54m).

Hence, in general, we can use the following formula Equation 10 to calculate
the time complexity to retrieve the full key from N compact differential trails.

T3 ≈ N × 20.46m(b−1) × (1 + 22h−1.54m). (10)

It is not surprising that one could go back more than b+ r3 rounds to obtain
more leaked linear equations if b ≤ r1 + r2. However, the cost of linearization
cannot be neglected, i.e. it is necessary to introduce more variables to represent
the 3 input bits of an inactive S-box. In other words, although more linear
equations can be derived, more variables are involved into the equation system.
Note that we need to introduce 3 extra variables to linearize an inactive S-box
and only 2 linear equations can be derived from an active S-box. For such a case,
it is difficult to give a simple formula describing the expected time complexity to
retrieve the full key. Thus, the formula Equation 10 can be viewed as an upper
bound.

7 Applications

The above two algebraic techniques can be utilized to further understand the
security of LowMC as well as LowMC-M. LowMC is the underlying block cipher
used in Picnic, which is an alternative third-round candidate in NIST’s post-
quantum cryptography competition. For LowMC-M, it is a family of block
ciphers based on LowMC which allows to insert a backdoor.

7.1 Applications to LowMC with a Partial S-Box Layer

In this section, we describe how to apply our techniques to instantiations with a
partial S-box layer. The results are summarized in Table 1. All these attacks only
require 2 chosen plaintexts and negligible memory. For better understanding,
we take the attack on the parameter (n, k,m,D,R) = (128, 128, 10, 1, 20) for
instance.

When (n, k,m,D) = (128, 128, 10, 1), as explained in the extended framework,
r3 = 0 as there are only two allowed plaintexts for each instantiation and
r0 = ⌊ 12830 ⌋ = 4. According to Equation 6, b = 7. Therefore, the time complexity

to retrieve the master key becomes T3 ≈ 21.86m(r1+r2)−128 × 20.46m(b−1) =
218.6(r1+r2)−81.8 < 2128 based on Equation 10. The time complexity to enumerate
differences is max(1.86mr2,m(1.86r2 + 3r1 − 2) − n) = max(18.6r2, 18.6r2 +
30r1 − 148) < 2128 based on Equation 5 while 18.6r2 < 128 (Equation 4) and
18.6r2 + 30r1 < 276 (Equation 3) should hold. Therefore, we have r1 + r2 ≤ 11,
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r2 ≤ 6, 18.6r2 + 30r1 ≤ 276. To maximize r1 + r2 and minimize the total time
complexity, we can choose r1 = 5 and r2 = 6. In this way, the time complexity
to recover the master key is 2122.8 while the time complexity to enumerate
differences is max(2111.6, 2111.8) = 2111.8. Therefore, we could break 15 (out
of 20) rounds of LowMC taking the parameter (n, k,m,D) = (128, 128, 10, 1)
with time complexity 2122.8 and only 2 chosen plaintexts.

Remark. It is not surprising to further extend r1 by using a huge amount of
memory when n = k for some parameters. However, such attacks are indeed less
effective compared with a pure exhaustive search. Therefore, we omit the simple
extension of how to attack more rounds using huge memory.

On the other hand, when n >> k, we could significantly improve r1 as the
constraint becomes 3r1 < n when using our efficient technique to reduce the
memory complexity, while the constraint is λr1

1 < min(2nd, 2k) in the extended
framework. For example, when attacking (n, k,m,D) = (1024, 128, 1, 1), r1
cannot reach 342 without our technique to reduce the memory complexity since
21.86r1 < 2128 has to be satisfied if simply enumerating the reachable differences.

Table 1: The results for LowMC with a partial S-box layer
n k m D R r0 r1 r2 r3 r Data Time Memory Success Pro.

128 128 1 1 182 42 43 67 0 152 2 2124.62 negligible 1
128 128 10 1 20 4 5 6 0 15 2 2122.8 negligible 1
192 192 1 1 273 64 64 101 0 229 2 2187.86 negligible 1
192 192 10 1 30 6 7 10 0 23 2 2186 negligible 1
256 256 1 1 363 85 86 137 0 306 2 2254.82 negligible 1
256 256 10 1 38 8 9 13 0 30 2 2241.8 negligible 1
1024 128 1 1 776 341 342 66 0 749 2 2122.76 negligible 1
1024 256 1 1 819 341 342 136 0 819 2 2253 negligible 1

7.2 Applications to LowMC-M

The only difference between LowMC and LowMC-M is that there is an additional
operation after the key addition, i.e. the sub-tweak addition. Since the sub-
tweaks are generated with an XOF function, the attacker loses the capability to
directly control the difference of the sub-tweaks. However, the additional degree
of freedom provided by the tweak can still be utilized to further extend r0.

Maximizing r0 based on [9]. A very recent work [9] shows how to compute
the maximal value of r0 with a birthday search method. In a word, one could
construct a probability-1 differential trail for the first r0 rounds with time

complexity 2
3mr0−n

2 and negligible memory in an offline phase. Therefore, r0
should satisfy the following constraint:

3mr0 − n

2
< k. (11)
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We will use this method to maximize r0 in our attacks.
Since the allowed data complexity is 264 for all instances of LowMC-M,

we can also construct a differential trail in the last r3 rounds where no active
S-boxes exist with 23mr3+1 attempts, i.e. 3mr3 ≤ 63. Similar to the cryptanalysis
of LowMC, we could compute (r0, r1, r2, r3) and the corresponding total time
complexity, as summarized in Table 2. It should be mentioned that LowMC-M
has moved to LowMC-M v2 by taking our attacks into account.

Table 2: The results for LowMC-M
n k m D R r0 r1 r2 r3 r Data Time Memory Success Pro.

128 128 1 64 208 122 43 64 21 250 264 2120 negligible 1
128 128 2 64 104 61 22 32 10 125 261 2120 negligible 1
128 128 3 64 70 40 15 21 7 83 264 2118.18 negligible 1
128 128 10 64 23 12 5 6 2 25 261 2118 negligible 1
256 256 1 64 384 253 86 136 21 496 264 2252.96 negligible 1
256 256 3 64 129 83 29 45 7 164 264 2250.1 negligible 1
256 256 20 64 21 12 5 6 1 24 261 2232 negligible 1

Comparison. Compared with the differential-linear attacks [9] on LowMC-M,
our attacks are always better. As we utilized the idea in [9] to find a weak tweak
pair, with the same time complexity to find a weak tweak pair, r0 is always
the same in their attacks and our attacks. Then, r1 is also almost the same in
their attacks and our attacks, though sometimes we will have a slightly larger
r1 according to Equation 5. The most evident advantage of our attacks exists
in r2 and r3. With the same data, there are extra r3 rounds in our attacks
while r3 is always zero in differential-linear attacks [9]. For r2, it is bounded by
1.86mr2 < n in our attacks while it is bounded by 3mr2 < n in [9] as 3m key
bits are all guessed to reverse one round. Consequently, with the same data and
the same time to find a weak tweak pair, our attacks are always better than the
differential-linear attacks in [9], i.e. a larger number of rounds can be attacked.

8 A Refined Attack Framework for the Full S-Box Layer

The above two techniques are quite general and therefore they can be applied
to arbitrary instances of LowMC. However, when it comes to a full S-Box
layer, we need to make extra efforts to improve the extended attack framework
developed by the designers of LowMC. Specifically, it is impossible to construct
a probability-1 differential trail anymore in the first few rounds. On the other
hand, the cost of difference enumeration becomes rather high as a full S-box
layer is applied.

To overcome the obstacle that there is no probability-1 differential trail,
we turn to consider how to choose a desirable input difference such that it
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will activate a small number of S-boxes as possible in the first two rounds.
However, since the linear layer is randomly generated, it is difficult to provide
an accurate answer. Thus, similar to the method to calculate the time complexity
to retrieve the full key, the general case is taken into account and we calculate
the expectation of the number of inactive S-boxes in the first two rounds and
verify it via experiments.

To reduce the cost of the difference enumeration, we will demonstrate that it
is possible to reduce the problem of enumerating differences to the problem
of enumerating the solutions of a linear equation system by exploiting our
observations on the S-box.

8.1 Maximizing the Number of Inactive S-boxes

To maximize the number of inactive S-boxes in the first two rounds, we consider
the case when there is only one active S-box in the first round, which can
obviously reduce the total number of reachable differences after two rounds.

First, consider a simple related problem. Suppose there are two boolean
vectors µ = (µ0, µ1, µ2) ∈ F3

2 and γ = (γ0, γ1, γ2) ∈ F3
2. For a random binary

matrix M of size 3× 3 satisfying

γ = M × µ,

it can be calculated that

Pr[(γ0, γ1, γ2) = (0, 0, 0)|(µ0, µ1, µ2) ̸= (0, 0, 0)] = 2−3.

Note that ∆1 = L0 ×∆S
0 , where ∆1 and ∆S

0 are two Boolean vectors of size
n and L0 is a n × n invertible binary matrix. When there is only one active
S-box in the first round, we can know that there is only one non-zero triple
(∆S

0 [3i], ∆
S
0 [3i+ 1], ∆S

0 [3i+ 2]) (0 ≤ i < n
3 ).

Consider a randomly generated L0 and a fixed value of ∆S
0 with only one

non-zero triple (∆S
0 [3i], ∆

S
0 [3i + 1], ∆S

0 [3i + 2]). Denote the event by α that
(∆S

0 [3i], ∆
S
0 [3i+1], ∆S

0 [3i+2]) ̸= (0, 0, 0). Denote by IA the number of inactive
S-boxes in the second round. In this way, we could calculate the conditional
probability that there are q inactive S-boxes under α happens, as specified below:

Pr[IA = q|α] =
(n

3

q

)
× 2−3q × (

7

8
)

n
3 −q,

Since that there are 7 assignments for a non-zero triple (∆S
0 [3i], ∆

S
0 [3i+1], ∆S

0 [3i+
2]) and there are n

3 such triples, there are in total 7 × n
3 assignments for ∆S

0

satisfying that there is only one active S-box in the first round. Hence, we can
expect to find

V (n, q) =
n

3
× 7× Pr[IA = q|α]. (12)

required assignments for ∆S
0 which can ensure q inactive S-boxes in the second

round. In other words, when V (n, q) > 1, it is expected to find more than 1
assignments for ∆S

0 such that there are q inactive S-boxes in the second round.
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8.2 Enumerating Differences Via Solving Equations

Assuming ∆i and ∆S
i+1 are fixed and known, our aim is to enumerate all the

solutions for ∆S
i such that they can reach ∆S

i+1.
First, consider the case where all the S-boxes in the (i+ 1)-th and (i+ 2)-th

rounds are active. In this case, there are 4
n
3 possible reachable differences for

∆i+1 and each reachable difference of ∆i+1 can reach ∆S
i+1 with probability 2−

n
3

as each output difference can correspond to 4 different input differences through
the 3-bit S-box of LowMC. Thus, it is expected to find the valid 2

n
3 solutions of

∆i+1 in 4
n
3 time using the simple difference enumeration.

However, similar to our technique to reduce the memory complexity, based
on Observation 2, we could introduce 2 × n

3 variables to represent the possible
values of ∆S

i . In this way, ∆i+1 will be linear in these variables. Furthermore,
based on Observation 2, there will be n

3 linear constraints on ∆i+1. Therefore,
an equation system of size n

3 in terms of 2× n
3 variables is constructed and each

solution of the equation system will correspond to a valid connection between
∆i and ∆S

i+1. Thus, we could find the valid 2
n
3 solutions in only 2

n
3 time.

After discussing the case where all the S-boxes are active, we consider the
general case. Specifically, assume there are w random pairs (∆i, ∆

S
i+1). The

expected time complexity to enumerate all the valid difference transitions ∆i →
∆S

i+1 for these w random pairs using our techniques can be formalized as follows.

T5 = (

⌊0.5m⌋∑
t=0

(
m

t

)
× (

1

8
)t × (

7

8
)m−t ×

⌊0.5m⌋−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w

+ (1−
⌊0.5m⌋∑
t=0

(
m

t

)
× (

1

8
)t × (

7

8
)m−t ×

⌊0.5m⌋−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j)w

≈ (

⌊0.5m⌋∑
t=0

(
m

t

)
× (

1

8
)t × (

7

8
)m−t ×

⌊0.5m⌋−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w + w.

Specifically, when there are t and j inactive S-boxes in the (i+ 2)-th round and
(i+1)-th round, respectively, the equation system is of size 3t+(m− t) = m+2t
and in terms of 2(m − j) variables. Thus, for the case 2(m − j) − (m + 2t) =
m− 2j− 2t < 0→ 2j+2t > m, there is no need to enumerate the solutions and
we only need to construct the equation system with time 1. However, for the
case 2j+2t ≤ m, we need to construct the equation system as well as enumerate
the 2m−2j−2t solutions.

As m > 1, a loose upper bound for T5 can be as follows:

T5 < w + w × 2m × (
29

32
)m × (

29

32
)m ≈ w × 20.716m (13)

A fixed random ∆S
i+1. We also feel interested in that ∆S

i+1 takes a fixed
random value while ∆i takes w random values, which is exactly the case in our
attack on 4-round LowMC with a full S-box layer.
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When there are t ≤ ⌊0.5m⌋ inactive S-boxes in the (i+2)-th round, the time
complexity T5 to enumerate all the valid difference transitions can be refined as
below:

T5 = (

⌊0.5m⌋−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w

+ (1−
⌊0.5m⌋−t∑

j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j)w

= (

⌊0.5m⌋−t∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 2m−2j−2t)w + w.

Similarly, a bound for T5 can be as follows:

T5 < w + w × 2m−2t × (
29

32
)m ≈ w + w × 20.858m−2t. (14)

When there are t > ⌊0.5m⌋ inactive S-boxes in the (i+2)-th round, the time
complexity T5 to enumerate all the valid difference transitions can be refined as
below:

T5 = (

m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j)w = w (15)

Combining Equation 14 and Equation 15, we can know that whatever value
t takes, the following bound for T5 holds

T5 < w + w × 20.858m−2t. (16)

8.3 Applications to 4-Round LowMC with a Full S-box Layer

As can be found in the latest released Picnic3 document, three recommended
parameters (n, k,m,D) ∈ {(129, 129, 43, 1), (192, 192, 64, 1), (255, 255, 85, 1)} with
R = 4 are adopted to achieve the required security. By increasing the number of
rounds by 1, i.e. R = 5, the designers claim that Picnic3 will provide stronger
security. Anyway, 4-round LowMC with a full S-box layer is the recommended
instance and such three parameters are deemed as secure against the existing
attacks [2]. In the following, we explain how to break such 3 parameters with
our linearization techniques under the difference enumeration attack framework.

As depicted in Fig. 6, our attack procedure consists of 4 steps:

Step 1: According to Equation 12, we find a suitable assignment for ∆S
0 such

that the number of inactive S-boxes in the 2nd round can be maximized
and there is only one active S-box in the first round. Denote the number
of inactive S-boxes in the 2nd round by q.
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Fig. 6: The attack framework for 4-round LowMC with a full S-box layer

Step 2: Choose a value for ∆0 such that it can reach ∆S
0 and encrypt two

arbitrary plaintexts whose difference equals∆0. Collect the corresponding
ciphertexts and compute ∆S

3 .
Step 3: Enumerate 4m−q possible difference transitions from ∆1 to ∆2. For each

possible difference transition, move to Step 4.
Step 4: For each obtained ∆2, we enumerate the possible difference transitions

from ∆2 to ∆S
3 via solving a linear equation system, as detailed above.

For each solution of the equation system, a compact differential trail
is obtained and we retrieve the full key from it using our linearization
techniques.

Although the formula to calculate the time complexity to retrieve the full
key has been given, we should refine it for the attack on 4-round LowMC with a
full S-box layer. As can be observed in our attack procedure, once guessing ∆S

0

from its 4 possible values, we already collect two linear equations in terms of the
master key and the plaintexts which can ensure that ∆0 → ∆S

0 is deterministic
based on Observation 1.

On the other hand, due to a sufficiently large number of S-boxes in each
round, for the last round, we can introduce extra variables to represent the
output bits of the inactive S-boxes. In this way, it is required to extract more than
k−2 linear equations when a compact differential trail is confirmed. Specifically,
assuming that there are t inactive S-boxes in the 4th round, the required number
of equations becomes 3t + k − 2. Therefore, we try to extract linear equations
from the active S-boxes in the 3rd round and 2nd round, which requires that all
the S-boxes in the 3rd are linearized. Therefore, the following formula can be
used to estimate the expected time complexity to retrieve the full key from all
compatible differential trails:

T6 = 4m−q × (

⌊ 6m−k+2−2q
5 ⌋∑

t=0

(
m

t

)
× (

1

8
)t × (

7

8
)m−t
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×
m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 22j × 2m−2j−2t

+

m∑
t=⌊ 6m−k+2−2q

5 ⌋+1

(
m

t

)
× (

1

8
)t × (

7

8
)m−t

×
m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 22j

× 2(3t+k−2)−(2(m−t)+2m+2(m−q)) × 2m−2j−2t)

Specifically, when there are t and j inactive S-boxes in the 4th and 3rd round,
respectively, the equation system used to retrieve the master key will be of size
2+ 2(m− t) + 2m+2(m− q) and in terms of 3t+ k variables. More specifically,
from the assumed difference transition ∆0 → ∆S

0 , two linear equations in terms
of the master key and the plaintext can be obtained. From the 4th round, as
there are (m − t) active S-boxes, 2(m − t) equations are obtained. For the 3rd
round, we linearize all the j inactive S-boxes by guessing two extra equations
based on Observation 3, i.e. guessing two output bits of each inactive S-box. In
this way, there will always be 2m equations derived from the 3rd round. For the
2nd round, as the 4th round and 3rd round are fully linearized and there are
(m−q) active S-boxes, we can obtain 2(m−q) linear equations in the 2nd round.
Thus, if 3t+k−(2+2(m−t)+2m+2(m−q)) < 0→ 5t < 6m−k+2−2q, the cost
is to establish the equation system. When 5t ≥ 6m− k + 2− 2q, it is necessary
to enumerate all the 2(3t+k−2)−(2(m−t)+2m+2(m−q)) solutions and check them via
the plaintext-ciphertext pair.

∆S
3 is a fixed random value. In our attack using only two chosen plaintexts,

∆S
3 is a random fixed value while ∆S

2 behaves randomly. Similar to computing
the upper bound for the time complexity to enumerate differences for this case,
i.e. Equation 14 and Equation 15, we also try to deal with the time complexity
T6 to retrieve the master key for this case. Similarly, we assume that there are
t inactive S-boxes in the 4th round.

When t ≤ ⌊ 6m−k+2−2q
5 ⌋, we have

T6 = 4m−q ×
m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 22j × 2m−2j−2t = 23m−2q−2t (17)

When t > ⌊ 6m−k+2−2q
5 ⌋, we have

T6 = 4m−q ×
m∑
j=0

(
m

j

)
× (

1

8
)j × (

7

8
)m−j × 22j

× 2−6m+k−2+2q+5t × 2m−2j−2t = 2−3m+3t+k−2

As k = 3m for the construction using a full s-box layer, when t > ⌊ 6m−k+2−2q
5 ⌋,

we indeed have

T6 = 23t−2. (18)
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Remark. Indeed, when t ≤ ⌊ 6m−k+2−2q
5 ⌋, Equation 17 is an overestimation of

the time complexity to retrieve the key. Specifically, when there are a sufficient
number of active S-boxes in the 3rd round, there is no need to linearize the
nonactive S-boxes in the 3rd round. Formally, assuming that there are j inactive
S-boxes in the 3rd round, when 2 × (m − j + m − t) + 2 ≥ k + 3 × t, i.e.
5t ≤ 4m − k + 2 − 2j < 6m − 2q − k + 2, the time complexity to retrieve the
key is 1 rather than 22j . Therefore, Equation 17 is an overestimation of the time
complexity in order to achieve a simple approximation of the time complexity.

Attacks on (129, 129, 43, 1, 4). For (n, k,m,D,R) = (129, 129, 43, 1, 4), we have
V (129, 11) > 1 based on Equation 12, i.e. we can expect to find an assignment
to ∆S

0 such that there will be q = 119 inactive S-boxes in the 2nd round. After
such a ∆S

0 is chosen, we randomly choose ∆0 such that ∆0 → ∆S
0 is valid. There

are 4 different values of ∆S
0 for such a ∆0 and one of ∆S

0 is expected to inactivate
11 S-boxes in the second round.

The time complexity to retrieve the master key from all valid 4-round
compact differential trails is related to the value of (t, q). As t ∼ B(m, 1

8 ) where
B represents the binomial distribution, we can expect t = 5. In this way, we have
5t = 25 < 6m − k + 2 − 2q = 131 − 2q whatever value q (0 ≤ q ≤ m) takes. In
other words, for the expected case q = 11, the time complexity to retrieve the
master key is 23m−2q−2t = 297 based on Equation 17. By taking the remaining
3 different possible values of ∆S

0 into account, even for the worst case (q = 0),
the total time complexity to retrieve the master key for all 4 possible values of
∆S

0 will not exceed 3× 23m−2t = 2120.6, i.e. less than exhaustive key search.

For the time complexity to enumerate the difference, for the expected case
q = 11, we have T5 < 22m−2q×(1+20.858m−2t) = 22.858m−2q−2t+22m−2q = 290.9

based on Equation 16. For the worst case q = 0, we have T5 < 22.858m−2t = 2112.9.
Therefore, the total time complexity to enumerate the difference will not exceed
3× 2112.9 ≈ 2114.5. i.e. less than exhaustive key search.

As t increases, T5 will become smaller. However, when 5t ≥ 6m−k+2−2q =
132 − 2q, we need to use another formula to calculate the time complexity to
retrieve the master key, i.e. T6 = 23t−2 as shown in Equation 18. As 3t < 3m = k
must holds, it means that the time complexity T6 is always smaller than that of
the exhaustive search.

As Pr[t ≥ 4] ≈ 0.62 and Pr[42 ≤ t ≤ 43] ≈ 0, we conclude that with
success probability 0.62, the total time complexity to retrieve the master key
will be max(3 × 23m−2t, 4 × 23×41−2) = 2122.6 and the total time complexity
to enumerate differences will not exceed 3 × 22.858m−2t < 2117.5. Thus, we can
break the parameter (n, k,m,D,R) = (129, 129, 43, 1, 4) with time complexity
less than 2122.6 and success probability 0.62.

As Pr[t ≥ 2] ≈ 0.97 and Pr[36 ≤ t ≤ 43] ≈ 0, if further reducing the success
probability to 0.97 × 0.25 = 0.24, i.e. ∆0 → ∆S

0 is assumed to be deterministic
and we expect q = 11, the time complexity to enumerate the difference will not

9 Experiments show that it is better to choose q = 11, though V (129, 12) > 1.
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exceed 22m−2q + 22.858m−2q−2t ≈ 296.9 and the time complexity to retrieve the
master key be max(23m−2q−2t, 23t−2) < 2104.

A similar detailed description of our attacks on another two parameters can
be referred to the full version. All the results are summarized in Table 3. We
remark that for the construction with a full S-box layer, if more data is allowed,
our technique may not be competitive with the higher-order differential attack.
Indeed, as the number of allowed data increases, such a construction will have
much more rounds [2].

Table 3: The results for 4-round LowMC with a full S-box layer
n k m D R Data Time Memory Success Pro.

129 129 43 1 4 2 2122.6 negligible 0.62
129 129 43 1 4 2 2104 negligible 0.24
192 192 64 1 4 2 2187.6 negligible 0.99
192 192 64 1 4 2 2180 negligible 0.82
192 192 64 1 4 2 2156 negligible 0.247
255 255 85 1 4 2 2246.6 negligible 0.986
255 255 85 1 4 2 2236.6 negligible 0.848
255 255 85 1 4 2 2208 negligible 0.2465

9 Experiments

To confirm the correctness of our methods, we performed experiments10 on two
toy LowMC instances with parameters (n, k,m,D,R) = (20, 20, 1, 1, 23) and
(n, k,m,D,R) = (21, 21, 7, 1, 4), respectively.

For the first parameter, R = 23 is the largest number of rounds that can be
attacked, i.e. r0 = 6, r1 = 7 and r2 = 10. The expected number of iterations to
enumerate the differences is estimated as 21.86r2 ≈ 397336. The expected number
of valid compact differential trails is 21.86(r1+r2)−n ≈ 3147. Experimental results
indeed match well with the estimated values11. As the guessing times to recover
the key is affected by the number of inactive S-boxes, for each valid compact
differential trail obtained in the experiments, we counted the number of inactive
S-boxes in the last 10 rounds, which will dominate the time to recover the key
as each S-box will give us 2 equations and there are 10 S-boxes in the last 10
rounds. The distribution of the number of inactive S-boxes is somewhat better
than expected, thus resulting that the guessing times to recover the key is better
than the estimated guessing times 3147 × 20.46×10 ≈ 76319. Anyway, the total
time complexity is dominated by the backward difference enumeration.

10 See https://github.com/LFKOKAMI/LowMC_Diff_Enu.git for the code.
11 In several experiments with 1000 random tests each, the average number of iterations

to enumerate differences is 392500±12500 and the average number of valid compact
differential trails is 3425± 125.
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For the parameter (n, k,m,D,R) = (21, 21, 7, 1, 4), we constrained that the
difference transition in the first round follows our expectation by checking ∆s

0

when encrypting two plaintexts, i.e. the number of inactive S-boxes in the second
round will be maximized. Based on the generated matrix L0, there will be 3
inactive S-boxes in the second round. Then, the output difference of the first
round is fixed and we enumerate the output differences of the second round and
compute all possible compact differential trails by solving an equation system. In
several experiments with 10000 tests each, the number of iterations to enumerate
all compact differential trails is smaller than the upper bound computed based
on Equation 16 with probability higher than 0.99 and they are almost the same
in the remaining tests. Then, the guessing times to recover the key is computed
based on the number of active S-boxes in the last 3 rounds for each valid compact
differential trail by summing the costs of guesses12 or enumerating solutions. It
is found that the obtained value is almost the same with the theoretical value
computed based on Equation 17 or Equation 18.

10 Conclusion

Benefiting from the low-degree S-box and the linear key schedule function of
LowMC, we developed an efficient algebraic technique to solve a general problem
of how to retrieve the key if given a single pair of (plaintext, ciphertext) along
with its compact differential trail. Such a technique is quite meaningful as
much more differential trail candidates are allowed to exist under the difference
enumeration attack framework. As a result, we could significantly extend the
number of attacked rounds even with only 2 chosen plaintexts.

On the other hand, based on Bar-On et al.’s algorithm and our observation
on the property of the 3-bit S-box in LowMC, the difference enumeration in the
original difference enumeration attack is optimized and can be achieved with
negligible memory. The new strategy to enumerate differences performs quite
well for the cases when the block size is much larger and when a full S-box layer
is adopted. Especially for the latter case, much more invalid difference transitions
can be filtered out in advance as all valid difference transitions are constrained
by a linear equation system.

Combining all our techniques, we violate the security claim for some instances
of LowMC. Especially, the 3 recommended parameters of LowMC used in Picnic3
are shown to be insecure against our attacks. As the backdoor cipher LowMC-M
is built on LowMC, making progress in the cryptanalysis of LowMC directly
threatens the security claim for 7 instances of LowMC-M even without finding
the backdoor.
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A Description of LowMC-M

LowMC-M [27] is a family of tweakable block ciphers built on LowMC, which is
introduced by Peyrin and Wang at CRYPTO 2020. The feature of LowMC-M is
that backdoors can be inserted in the instantiation. The only difference between
LowMC and LowMC-M is that there is an addition operation AddSubTweak
(AT) after AK and WK. In other words, the round function in the (i + 1)-
round (0 ≤ i ≤ R− 1) can be described as follows:

1. SBoxLayer (SB): Same with LowMC.
2. LinearLayer (L): Same with LowMC.
3. ConstantAddition (AC): Same with LowMC.
4. KeyAddition (AK): Same with LowMC.
5. AddSubTweak (AT): Add an n-bit sub-tweak TWi+1 to the n-bit state.

For the state after WK, it will also be XORed with an n-bit sub-tweak TW0.
To strengthen the security of the backdoors, TWi (0 ≤ i ≤ R) are generated

via an extendable-output-function (XOF) function. SHAKE-128 and SHAKE-
256 are used as the XOF functions in LowMC-M for 128-bit and 256-bit security
respectively. Specifically, the tweak TW is the input of the XOF function and
the corresponding n(R+1)-bit output will be split into (R+1) sub-tweaks TWi,
i.e. (TW0, TW1, · · ·, TWR)← XOF(TW ).

B Exploiting the Tweak to Maximize r0 for LowMC-M

In brief, when there is no active S-box in the first r0 rounds, an attacker can
construct a linear equation system of size 3mr0 and in terms of ∆0 as well as the
difference of the sub-tweaks (∆TW0, · · ·, ∆TWr0−1). When the sub-tweaks are
fixed, the equation system is thus only in terms of ∆0, i.e. n variables. Therefore,
when 3mr0 > n, the equation system is consistent with probability 2n−3mr0 .
Thus, the attacker needs to find an assignment for (∆TW0, · · ·, ∆TWr0−1) such
that the constructed equation system is consistent.

To achieve this goal, the equation system will be first re-organized by placing
(∆TW0, · · ·, ∆TWr0−1) on the right-hand of the equation system and placing
∆0 on the left-hand of the equation system. In other words, the equation system
becomes

A ·∆0 = B · (∆TW0, · · ·, ∆TWr0−1),

where A is a binary matrix of size 3mr0 × n and B is a binary matrix of size
3mr0×nr0. To ensure that there is a solution to ∆0, one can derive an equation
system of size 3mr0−n and only in terms of (∆TW0, · · ·, ∆TWr0−1). Specifically,
apply a transform A′

3mr0×3mr0 to both A and B such that the first n rows of A′ ·A
is an identity matrix and the remaining (3mr0−n) rows of A′ ·A are all zero. In
this way, we only need to focus on the last (3mr0−n) rows of A′ ·B, i.e. a linear
equation system of size 3mr0 − n and in terms of (∆TW0, · · ·, ∆TWr0−1) can
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be derived to ensure that there is always a solution to ∆0. Thus, with a parallel
collision search [32], it is expected to find (∆TW0, · · ·, ∆TWr0−1) with time

complexity 2
3mr0−n

2 and negligible memory satisfying such an equation system.
Therefore, the constraint for r0 becomes

3mr0 − n

2
< k. (19)

In this way, one could find the desirable pair of tweaks as well as the plaintext

difference ∆0 with time complexity 2
3mr0−n

2 . This is the method given in [9] to
maximize r0.

C Explanation of the Attacks on LowMC with a Full
S-box Layer

Attacks on (192, 192, 64, 1, 4). Similar to the above analysis, we first confirm
q. As V (192, 15) > 1 based on Equation 12, we can expect to always find an
assignment to ∆S

0 such that there will be q = 1513 inactive S-boxes in the 2nd
round.

As Pr[t ≥ 3] ≈ 0.99 and Pr[62 ≤ t ≤ 64] ≈ 0, based on Equation 17
and Equation 18, the time complexity to retrieve the master key will be
max(3× 23m−2t, 4× 23t−2) < 2187.6. Based on Equation 16, the time complexity
to enumerate the difference is less than 3× (22m +22m−2t+0.858m) = 3× (22m +
22.858m−2t) < 2178.5. Therefore, we could break (n, k,m,D,R) = (192, 192, 64, 1, 4)
with time complexity less than 2187.6 and success probability 0.99.

As Pr[t ≥ 6] = 0.82 and Pr[61 ≤ t ≤ 64] ≈ 0, the time complexity to
retrieve the master key will be max(3×23m−2t, 4×23t−2) = 2180, while the time
complexity to enumerate the differences will not exceed 3× (22m+22.858m−2t) <
2170.9. Therefore, we could break (n, k,m,D,R) = (192, 192, 64, 1, 4) with time
complexity less than 2180 and success probability 0.82.

To further reduce the success probability, we focus on the expected case
q = 15 and 3 ≤ t ≤ 52. As Pr[t ≥ 3] ≈ 0.99 and Pr[53 ≤ t ≤ 64] ≈ 0, we
have Pr[3 ≤ t ≤ 52] ≈ 0.99. The time complexity to retrieve the master key
becomes max(23m−2t−2q, 23t−2) < 2156. The time complexity to enumerate the
difference is less than 22m−2q + 22.858m−2t−2q < 2146.9. Therefore, we could
break (n, k,m,D,R) = (192, 192, 64, 1, 4) with time complexity less than 2156

and success probability 0.99× 0.25 = 0.247.

Attacks on (255, 256, 85, 1, 4). For (n, k,m,D,R) = (255, 255, 85, 1, 4), we have
V (255, 19) > 1 based on Equation 12, i.e. we can expect to always find an
assignment to ∆S

0 such that there will be q = 1914 inactive S-boxes in the 2nd
round.
13 It can be found that V (192, 16) is only slightly greater than 1. Experiments show

that it is better to choose q = 15.
14 It can be found that V (255, 20) is only slightly greater than 1. Experiments show

that it is better to choose q = 19.
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As Pr[t ≥ 5] ≈ 0.986 and Pr[79 ≤ t ≤ 85] ≈ 0, based on Equation 17
and Equation 18, the time complexity to retrieve the master key will be
max(3× 23m−2t, 4× 23t−2) < 2246.6. Based on Equation 16, the time complexity
to enumerate the difference is less than 3 × (22m + 22m−2t+0.858m) = 3 ×
(22m + 22.858m−2t) < 2234.53. Therefore, we could break (n, k,m,D,R) =
(255, 255, 85, 1, 4) with time complexity less than 2246.6 and success probability
0.986.

As Pr[t ≥ 8] = 0.848 and Pr[79 ≤ t ≤ 85] ≈ 0, the time complexity to
retrieve the master key will bemax(3×23m−2t, 4×23t−2) < 2240.6, while the time
complexity to enumerate the differences will not exceed 3× (22m+22.858m−2t) <
2228.53. Therefore, we could break (n, k,m,D,R) = (255, 255, 85, 1, 4) with time
complexity less than 2240.6 and success probability 0.848.

To further reduce the success probability, we focus on the expected case
q = 19 and 5 ≤ t ≤ 85. As Pr[t ≥ 5] ≈ 0.986 and Pr[70 ≤ t ≤ 85] ≈ 0, we
have Pr[5 ≤ t ≤ 69] ≈ 0.986. The time complexity to retrieve the master key
becomes max(23m−2t−2q, 23t−2) < 2208. The time complexity to enumerate the
difference is less than 22m−2q + 22.858m−2t−2q < 2194.93. Therefore, we could
break (n, k,m,D,R) = (255, 255, 85, 1, 4) with time complexity less than 2208

and success probability 0.986× 0.25 = 0.2465.
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D A Table

Table 4: The full list for all valid non-zero difference transitions
(∆x0,∆x1,∆x2) (∆z0,∆z1,∆z2) Conditions z0 z1 z2

(0,0,1)

(0,0,1) x0 = 0, x1 = 0 0 0 x2

(0,1,1) x0 = 1, x1 = 0 1 1⊕ x2 1⊕ x2

(1,0,1) x0 = 0, x1 = 1 x2 1 1⊕ x2

(1,1,1) x0 = 1, x1 = 1 1⊕ x2 x2 1⊕ x2

(0,1,0)

(0,1,0) x0 = 1, x2 = 0 1 x1 + 1 1
(0,1,1) x0 = 0, x2 = 0 0 x1 x1

(1,1,0) x0 = 1, x2 = 1 1⊕ x1 x1 0
(1,1,1) x0 = 0, x2 = 1 x1 x1 1⊕ x1

(1,0,0)

(1,0,0) x1 = 1, x2 = 1 1⊕ x0 1 0
(1,0,1) x1 = 0, x2 = 1 x0 0 1⊕ x0

(1,1,0) x1 = 1, x2 = 0 x0 1⊕ x0 1
(1,1,1) x1 = 0, x2 = 0 x0 x0 x0

(0,1,1)

(0,0,1) x1 = x2 ⊕ 1, x0 = 1 1 0 x1

(0,1,0) x1 = x2 ⊕ 1, x0 = 0 0 x1 1
(1,0,1) x1 = x2, x0 = 1 1⊕ x1 1 1⊕ x1

(1,1,0) x1 = x2, x0 = 0 x1 x1 0

(1,1,0)

(0,1,0) x0 = x1 ⊕ 1, x2 = 1 1 x1 0
(0,1,1) x0 = x1, x2 = 1 0 x1 1⊕ x1

(1,0,0) x0 = x1 ⊕ 1, x2 = 0 x1 ⊕ 1 1 1
(1,0,1) x0 = x1, x2 = 0 x1 0 x1

(1,0,1)

(0,0,1) x1 = 1, x0 = x2 0 1 1⊕ x2

(1,0,0) x1 = 0, x0 = x2 x2 0 0
(0,1,1) x1 = 1, x0 = x2 ⊕ 1 1 x2 1⊕ x2

(1,1,0) x1 = 0, x0 = x2 ⊕ 1 1⊕ x2 1⊕ x2 1

(1,1,1)

(0,0,1) x1 = x2, x0 = x2 ⊕ 1 1 1 x0

(0,1,0) x1 = x2, x0 = x2 0 x0 0
(1,0,0) x1 = x2 ⊕ 1, x0 = x2 ⊕ 1 x0 0 1
(1,1,1) x1 = x2 ⊕ 1, x0 = x2 x0 1⊕ x0 1⊕ x0
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