
Improved Related-Tweakey Rectangle Attacks
on Reduced-round Deoxys-BC-384 and

Deoxys-I-256-128

Boxin Zhao1,2, Xiaoyang Dong3, Keting Jia4?, and Willi Meier5

1 Key Laboratory of Cryptologic Technology and Information Security (Shandong
University), Ministry of Education, P.R. China

2 School of Cyber Science and Technology, Shandong University, P.R. China,
boxinzhao@mail.sdu.edu.cn

3 Institute for Advanced Study, Tsinghua University, P.R. China,
xiaoyangdong@mail.tsinghua.edu.cn

4 Department of Computer Science and Technology, Tsinghua University, P.R.
China, ktjia@mail.tsinghua.edu.cn

5 FHNW, Institute ISE, Windisch, Aargau Switzerland, willimeier48@gmail.com

Abstract. Deoxys-BC is the core internal tweakable block cipher of the
authenticated encryption schemes Deoxys-I and Deoxys-II. Deoxys-II is
one of the six schemes in the final portfolio of the CAESAR compe-
tition, while Deoxys-I is a 3rd round candidate. By well studying the
new method proposed by Cid et al. at ToSC 2017 and BDT technique
proposed by Wang and Peyrin at ToSC 2019, we find a new 11-round
related-tweakey boomerang distinguisher of Deoxys-BC-384 with proba-
bility of 2−118.4, and give a related-tweakey rectangle attack on 13-round
Deoxys-BC-384 with a data complexity of 2125.2 and time complexity of
2186.7, and then apply it to analyze 13-round Deoxys-I-256-128 in this
paper. This is the first time that an attack on 13-round Deoxys-I-256-128
is given, while the previous attack on this version only reaches 12 rounds.

Keywords: CAESAR, Authenticated Encryption, Deoxys-BC, Rectan-
gle Attack

1 Introduction

During recent years, Authenticated encryption (AE) schemes have attracted in-
creasing attention of cryptanalysts all around the world. In addition to assuring
the confidentiality and authenticity for messages simultaneously, authenticated
encryption also provides security resisting the chosen ciphertext attack. In order
to meet the increasing demand for AE schemes, and with the aim to receive
new AE algorithms that can offer advantages over the most widely used AE
scheme AES-GCM [1], the CAESAR [2] competition organised by the interna-
tional cryptologic research community was launched in 2014. In February 2019,

? Corresponding author

the final portfolio for different use cases was announced, only six AE schemes
out of the 57 candidates survived.

Deoxys-II [3], which was submitted to CAESAR by Jérémy Jean et al., is
one of the six AE schemes listed in the final portfolio. The designers proposed
two AE modes as a Deoxys family, i.e., Deoxys-I and Deoxys-II. Deoxys-I is one
of the third round candidates and Deoxys-II is in the finalists. Both modes are
based on two tweakable block ciphers (TBC) Deoxys-BC-256 or Deoxys-BC-384,
which are AES-based designs.

The concept of tweakable block cipher was first invented by Liskov, Rivest
and Wagner [4] at CRYPTO 2002. It not only adopts the two standard inputs,
the secret key and the plaintext, but also takes a third public element called
tweak. Most tweakable block ciphers take an existing block cipher as a black box
and employ a tweak to change the input/output of the cipher. At ASIACRYPT
2014, Jean, Nikolic and Peyrin [5] introduced a new TWEAKEY framework to
construct tweakable block ciphers. They use a unified view of the key and tweak,
denoted as tweakey, and generate subtweakeys for each round by a key schedule.
Deoxys-BC follows the TWEAKEY framework.

Related Work. Since the birth of the Deoxys AE family, there have been
many public security evaluation results on both internal tweakable block ciphers
Deoxys-BC and the Deoxys AE schemes. At ToSC 2017, Cid et al. [6] intro-
duced a related-tweakey rectangle attack on Deoxys-BC, which was the first
third-party analysis for it. They gave a new lower bound on the number of ac-
tive Sboxes of the differential characteristic, and developed a new method to
search related-tweakey boomerang differentials utilizing a Mixed Integer Linear
Programming (MILP) model, and launched attacks on Deoxys-BC-256 up to
10 rounds and Deoxys-BC-384 for 13 rounds. In addition, key-recovery attacks
on 9-round Deoxys-I-128-128 and 12-round Deoxys-I-256-128 were given. Then,
Sasaki [7] improved the boomerang attack with lower complexity by a structural
technique. Later, Mehrdad et al. [8] and Zong et al. [9] evaluated Deoxys-BC-
256 against impossible differential attacks. Li and Jin [10] gave meet-in-the-
middle attacks on Deoxys-BC. At EUROCRYPT 2018, a new technique called
Boomerang Connectivity Table (BCT) proposed by Cid et al. [11] was used to in-
crease the probability of the 10-round related-tweakey boomerang distinguisher
on Deoxys-BC-384 by a factor of 20.6. Later, at ToSC 2019, Wang and Peyrin [12]
studied the boomerang switch in multiple rounds and introduced a new tech-
nique named Boomerang Difference Table (BDT), and finally they improved the
9-round distinguisher of Deoxys-BC-256 by a factor of 21.6.

Our Contribution. In this paper, we focus on the versions of Deoxys-BC-
384 and its AE mode Deoxys-I-256-128 against the related-tweakey rectangle
attacks. Based on the method proposed in [6], we add some more constraints to
the MILP model and obtain a new 11-round related-tweakey boomerang distin-
guisher of Deoxys-BC-384 with probability 2−120, which has fewer active Sboxes
when extending two forward rounds. With the help of the BDT technique, we
increase the probability of the distinguisher by a factor of 21.6, resulting in a
probability of 2118.4. With the new and more efficient distinguisher, we can ap-

2

pend two rounds to the end of the differential trail without activating all the
output bytes. Besides, we can guess part of the key bytes involved in the ex-
tending two rounds step by step. Finally, we gain an improved related-tweakey
rectangle attack on 13-round Deoxys-BC-384 with 2125.2 chosen plaintexts and
2186.7 encryptions. Note that the time complexity is reduced by a factor of 283.3

when comparing with the best previous work by Cid et al. [6]. Therefore, we
could break one more round on a Deoxys AE scheme, Deoxys-I-256-128, to 13
rounds, while the best previous attack could only reach to 12 rounds. We sum-
marize the results of Deoxys-BC-384 and the AE scheme Deoxys-I-256-128 in
Table 1.

Table 1. Summary of analysis results of Deoxys-BC-384.

Deoxys-BC-384, ”KR” represents key recovery attack.

Rounds Approach Goal Time Data Memory Size set up Ref.

12/16
rectangle

KR
2127 2127 2125 t = 128, k = 256 [6]

boomerang 2148 2148 217 t = 128, k = 256 [7]
boomerang 2148 2100 2100 t = 128, k = 256 [7]

13/16
rectangle

KR
2270 2127 2144 t < 114, k > 270 [6]

boomerang 2191.3 2125 2136 t = 128, k = 256 [13]
rectangle 2186.7 2125.2 2136 t = 128, k = 256 Sect. 6.1

14/16
rectangle

KR
2286.2 2127 2136 t < 98, k > 286 [13]

rectangle 2282.7 2125.2 2136 t < 102, k > 282 Sect. 6.2

Deoxys-I-256-128

Rounds Goal Key size Time Data Memory Approach Ref.

12/16 KR 256 2236 2126 2124 rectangle [6]

12/16 KR 256 2208 2115 2113 rectangle [13]

13/16 KR 256 2186.7 2125.2 2136 rectangle Sect. 7

Notations. In follows, Xi, Yi denote the internal states before and after the
AddRoundTweakey operation in Round i (0 ≤ i ≤ r−1) of the r-round cipher; Zi
is the state after the ShiftRows ◦ SubBytes operation in Round i; ∆X means
the difference of the state X; ∇X is the difference of the state X in the lower
part of the boomerang distinguisher; Xi[j · · · k] is the jth byte, · · · , kth byte of
Xi. IKi[j] is the equivalent key byte in Round i with the same index as Yi[j].

2 Specifications of Deoxys and Deoxys-BC

Deoxys-BC, including Deoxys-BC-256 and Deoxys-BC-384, is a tweakable block
cipher [3]. Both versions of the authenticated encryption scheme Deoxys have
Deoxys-BC as its internal primitive. Deoxys-BC conforms the TWEAKEY frame-
work [5], so besides a plaintext P (or a ciphertext C) and a secret key K, it will
take another variable named tweak T as its standard inputs. According to the
TWEAKEY framework, the concatenation of the tweak and key can be named a

3

tweakey to provide a unified view. For Deoxys-BC-n (n = 256, 384), the length of
tweakey is n which is the sum of the size of tweak and key. Both Deoxys-BC-256
and Deoxys-BC-384 have a 128-bit block size, and the size of tweak and key can
vary according to users as long as the key size is greater or equal to the block
size, i.e. 128 bits. In the following part of this section, we specify the details of
the block cipher Deoxys-BC and the authenticated encryption operating modes
Deoxys.

Deoxys-BC is an iterative substitution-permutation network (SPN) and adopt-
s an AES-like design. It transforms the initial plaintext through a series of
AES [14] round functions to a ciphertext. Different from AES, Deoxys-BC gen-
erates the round subkeys by linear operations and doesn’t omit the MixColumns

operation (defined below) in the last round. Besides, the state of Deoxys-BC is
also seen as a 4× 4 matrix of bytes, but the index of the 16 bytes is defined as

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

.
The round number r is 14 for Deoxys-BC-256 and 16 for Deoxys-BC-384,

respectively. The same to AES, Deoxys-BC transforms the internal state in each
round by the following four ordered transformations:

– AddRoundTweakey (AK) - Obtain a new internal state by XOR of the former
internal state with the 128-bit round subtweakey, i.e. STKi in round i (0 ≤
i ≤ r − 1) defined further below.

– SubBytes (SB) - Apply the 8-bit Sbox S of AES to the each byte of the
internal state separately.

– ShiftRows (SR) - Rotate the 4 bytes of the j-th (j ∈ {1, 2, 3, 4}) row left
by j − 1 positions.

– MixColumns (MC) - Multiply an invertible 4×4 MDS matrix left to the state.

At the end of the last round, there is an additional AddRoundTweakey oper-
ation to obtain the ciphertext.

Definition of the Subtweakeys. The round function is the same as in
AES, but different from AES, the key production process of Deoxys-BC is simply
composed of linear operations. With the same representation as [3], denote the
concatenation of key K and tweak T as KT , i.e. the master tweakey KT =
K ‖ T . For Deoxys-BC-256, the 256-bit tweakey KT is divided into two 128-bit
words denoted by TK1 (most significant) and TK2. And for Deoxys-BC-384,
the 384-bit tweakey is divided into three 128-bit words denoted by TK1, TK2

and TK3. Then a series of 128-bit subtweakeys STKi will be produced in Round
i (i ≥ 0) used in the AddRoundTweakey operation by STKi = TK1

i ⊕ TK2
i ⊕

RCi for Deoxys-BC-256, whereas defined as STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕

RCi for Deoxys-BC-384. The 128-bit TK1
i , TK

2
i , TK

3
i are produced by several

fixed linear algorithms or permutations in the tweakey schedule, initialized with
TK1

0 = TK1, TK2
0 = TK2 for Deoxys-BC-256, while TK1

0 = TK1, TK2
0 = TK2

4

and TK3
0 = TK3 for Deoxys-BC-384. The tweakey schedule algorithm operates

as: TK1
i+1 = h(TK1

i), TK2
i+1 = LFSR2(h(TK2

i)), TK3
i+1 = LFSR3(h(TK1

i)),
where h is a linear byte permutation defined by:

h =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
.

The LFSR2 and LFSR3 are two linear feedback shift registers applied to
each byte of the internal state. More precisely, the definitions of LFSR2 and
LFSR3 are listed in Table 2:

Table 2. The two LFSRs used in Deoxys-BC tweakey schedule.

LFSR2 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

LFSR3 (x7||x6||x5||x4||x3||x2||x1||x0)→ (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Finally, RCi are the round constants used in the tweakey schedule. For more
clarity, we give an instantiation of the framework of Deoxys-BC-384 in Figure 1.

Deoxys-BC is an AES-like design, i.e. it is an iterative substitution-permutation network
(SPN) that transforms the initial plaintext (viewed as a 4 × 4 matrix of bytes) using
the AES round function, with the main differences with AES being the number of rounds
and the round subkeys that are used every round. Deoxys-BC-256 has 14 rounds, while
Deoxys-BC-384 has 16 rounds.

Deoxys-BC round function. Similarly to the AES, one round of Deoxys-BC has the fol-
lowing four transformations applied to the internal state in the order specified below:

• AddRoundTweakey – XOR the 128-bit round subtweakey (defined below) to the
internal state.

• SubBytes – Apply the 8-bit AES S-box S to each of the 16 bytes of the internal state.

• ShiftRows – Rotate the 4-byte i-th row left by ρ[i] positions, where ρ = (0, 1, 2, 3).

• MixColumns – Multiply the internal state by the 4× 4 constant MDS matrix of AES.

After the last round, a final AddRoundTweakey operation is performed to produce the
ciphertext.

𝑃 = 𝑠0

XOR 𝑅𝐶0

𝑆𝑇𝐾0

𝐾𝑇 = 𝑠0

𝑇𝐾0
1

𝑇𝐾0
3

𝑇𝐾0
2

ℎ

ℎ

ℎ

XOR 𝑅𝐶1

𝑆𝑇𝐾1

𝑇𝐾1
1

𝑇𝐾1
3

𝑇𝐾1
2

ℎ

ℎ

ℎ

𝑓

𝐿𝐹𝑆𝑅2

𝐿𝐹𝑆𝑅3

XOR 𝑅𝐶2

𝑆𝑇𝐾2

𝑇𝐾2
1

𝑇𝐾2
3

𝑇𝐾2
2

ℎ

ℎ

ℎ

𝑓

𝐿𝐹𝑆𝑅2

𝐿𝐹𝑆𝑅3 ⋯

⋯

⋯

⋯

XOR 𝑅𝐶𝑟−1

𝑆𝑇𝐾𝑟−1

𝑇𝐾𝑟−1
1

𝑇𝐾𝑟−1
3

𝑇𝐾𝑟−1
2

ℎ

ℎ

ℎ

XOR 𝑅𝐶𝑟

𝑆𝑇𝐾𝑟

𝑇𝐾𝑟
1

𝑇𝐾𝑟
3

𝑇𝐾𝑟
2

𝑓

𝐿𝐹𝑆𝑅2

𝐿𝐹𝑆𝑅3

𝑠𝑟 = 𝐶

Tweakey Schedule (𝑝 = 3)

Figure 1: Instantiation of the TWEAKEY framework for Deoxys-BC-384.

Definition of the Subtweakeys. We denote the concatenation of the key K and the tweak
T as KT , i.e. KT = K||T . The tweakey state is then divided into 128-bit words. More
precisely, in Deoxys-BC-256 the size of KT is 256 bits with the first (most significant) 128
bits of KT being denoted W2; the second word is denoted by W1. For Deoxys-BC-384,
the size of KT is 384 bits, and we denote the first (most significant), second and third
128-bit words of KT by W3, W2 and W1, respectively. Finally, we denote by STKi the
128-bit subtweakey that is added to the state at round i during the AddRoundTweakey
operation. For Deoxys-BC-256, a subtweakey is defined as STKi = TK1

i ⊕ TK2
i ⊕RCi,

whereas for Deoxys-BC-384 it is defined as STKi = TK1
i ⊕ TK2

i ⊕ TK3
i ⊕RCi.

The 128-bit words TK1
i , TK

2
i , TK

3
i are outputs produced by a special tweakey schedule

algorithm, initialised with TK1
0 = W1 and TK2

0 = W2 for Deoxys-BC-256 and with
TK1

0 = W1, TK2
0 = W2 and TK3

0 = W3 for Deoxys-BC-384. The tweakey schedule
algorithm is defined as

TK1
i+1 = h(TK1

i), TK2
i+1 = h(LFSR2(TK2

i)), TK3
i+1 = h(LFSR3(TK3

i)),

where the byte permutation h is defined as
(

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 11 12 5 10 15 0 9 14 3 4 13 2 7 8

)
,

5

Fig. 1. Tweakey schedule and encryption process of Deoxys-BC-384 [6].

The Authenticated Encryption Deoxys. Utilizing the tweakable block
cipher Deoxys-BC as its internal primitive, Deoxys provides two AE modes
named Deoxys-I and Deoxys-II. The two modes are both nonce-based AEAD,
but Deoxys-I is assumed to be nonce-respecting for the adversary, meaning that
the same nonce N can not be used twice for the same key in encryption. This
variant is similar to TAE [15]. While Deoxys-II adopts a nonce-misuse setting
that allows users to reuse the same N under the same key.

When employing Deoxys-BC-256 as their internal primitive, the two AE
modes, Deoxys-I-128-128 and Deoxys-II-128-128, lead to a 128-bit key version.
While when based on Deoxys-BC-384, Deoxys-I-256-128 and Deoxys-II-256-128
are two 256-key variants. With the parameters given in [3], there is a 4-bit prefix
for the tweak input to represent the different types of encryption/authentication

5

blocks. Therefore, the adversary can not get more than 2124 plaintext-ciphertext
pairs with the same key.

3 The Boomerang Attack and Rectangle Attack

The boomerang attack, proposed by Wagner [16] in 1999, is an adaptive chosen-
plaintext or chosen-ciphertext differential attack that allows adversary to con-
nect two short differential paths to get a longer distinguisher. After an adaptive
chosen plaintext and ciphertext process, adversary can get a quartet structure
by exploiting the two shorter differentials.

The attacker treats the whole encryption process E(·) as a decomposition
of two sub-ciphers E = E1 ◦ E0, where E0 represents the upper part and E1

denotes the lower half of the cipher. For the sub-cipher E0, there exists a short
differential characteristic α → β with probability p, and there exists a differ-
ential characteristic γ → δ over E1 with probability q. With the assumption
that the two differentials are independent, the adversary can get a boomerang
distinguisher with property:

Pr[E−1(E(m)⊕ δ)⊕ E−1(E(m⊕ α)⊕ δ) = α] = p2q2. (1)

Thus, a correct plaintext quartet (m,m′, m̄, m̄′) with the corresponding ci-
phertext (c, c′, c̄, c̄′) can be generated with a probability of p2q2 that meets the
conditions m ⊕m′ = α, c ⊕ c̄ = δ, c′ ⊕ c̄′ = δ, m̄ ⊕ m̄′ = α. If p2q2 > 2−n, we
can distinguish E from an ideal cipher.

A variant of boomerang attack called amplified boomerang attack [17] or
rectangle attack [18] only needs chosen plaintexts. In the amplified boomerang
attack, one could find a right quartet with probability of 2−np2q2 while for an
ideal cipher the probability is 2−2n. At EUROCRYPT 2001, Biham et al. [18]
proposed the rectangle attack, where only the differences α and δ are fixed,
and any of the possible values of β and γ except β 6= γ are considered. The
probability of obtaining a correct quartet can be increased to 2−np̂2q̂2, where n
is the size of state, and

p̂ =

√∑
βi

Pr2(α→ βi) and q̂ =

√∑
γj

Pr2(γj → δ).

At EUROCRYPT 2005, Biham et al. [19] proposed the related-key boomerang
and rectangle attack. Different from the single-key attack, each plaintext in a
quartet (m,m′, m̄, m̄′) will be encrypted under different keys. Denote them by
K1, K2, K3 and K4 respectively. Assume there exists a related-key differential
α→ β over E0 under a key difference ∆K with probability p and a related-key
differential γ → δ over E1 under a key difference ∇K with probability q. With
the related-key rectangle distinguisher, one finds a right quartet (m,m′, m̄, m̄′)
as follows shown in Figure 2:

6

1. Randomly choose a plaintext m and compute another plaintext m′ by m′ =
m⊕ α, then make queries to the encryption oracle to get the corresponding
ciphertexts c and c′ under K1 and K2 respectively, i.e. c = EK1

(m), c′ =
EK2

(m′).

2. Randomly choose another plaintext m̄ and get the plaintext m̄′ by m̄′ =
m̄⊕ α, then make queries to the encryption oracle to get the corresponding
ciphertexts c̄ and c̄′ under K3 and K4 respectively, i.e. c̄ = EK3

(m̄), c̄′ =
EK4

(m̄′).

3. Check whether both the constraints c⊕ c̄ = δ and c′⊕ c̄′ = δ are satisfied. If
yes, a correct quartet (m,m′, m̄, m̄′) is obtained, otherwise go to step 1 for
other plaintexts.

Note that if any one of the Ki (i = 1, 2, 3, 4) such as K1 is known, all other keys
can be computed by K2 = K1 ⊕∆K, K3 = K1 ⊕∇K, K4 = K1 ⊕∆K ⊕∇K.

0E 0E

1E 1E

0E 0E

1E 1E

m

m

m

m

c

c

c

c

1K

2K 4K
3K

Fig. 2. Related-key rectangle attack framework.

4 The Boomerang Difference Table (BDT)

At EUROCRYPT 2018, a new technique called Boomerang Connectivity Table
(BCT) proposed by Cid et al. [11] was used to increase the probability of the 10-
round related-tweakey boomerang distinguisher on Deoxys-BC-384 by a factor
of 20.6. Later, at ToSC 2019, Wang and Peyrin [12] studied the boomerang
switch in multiple rounds and introduced a new technique named Boomerang
Difference Table (BDT), and finally they improved the 9-round distinguisher of
Deoxys-BC-256 by a factor of 21.6. Since our paper is highly related to the BDT
technique, we briefly recall it in this section.

Definition 1. Boomerang Difference Table (BDT) [12]. Let S be an invert-
ible function which is from Fn2 to Fn2 , and a 3-tuple (∆0, ∆1,∇0) ∈ Fn2 . The

7

boomerang difference table (BDT) of S is a three-dimensional table, in which
each 3-tuple entry (∆0, ∆1,∇0) can be computed by

BDT (∆0, ∆1,∇0) = #{x ∈ {(0, 1)}n|S−1(S(x)⊕∇0) ⊕ S−1(S(x⊕∆0)⊕∇0)
= ∆0, S(x) ⊕ S(x⊕∆0) = ∆1}.

(2)

To make the description more clear, the generation of boomerang difference table
(BDT) can be visualized in Figure 3.

Haoyang Wang and Thomas Peyrin 145

K2 = K1⊕∆K, K3 = K1⊕∇K and K4 = K1⊕∆K⊕∇K. The attack is then performed
with the following process:

1. Choose a plaintext P1 at random, compute another plaintext P2 = P1 ⊕ α.

2. Ask for the encryption of P1 and P2 with secret key K1 and K2 separately, denote
the ciphertexts C1 and C2 respectively.

3. Compute C3 = C1 ⊕ δ and C4 = C2 ⊕ δ.

4. Ask for the decryption of C3 and C4 with K3 and K4 separately, denote the new
plaintexts P3 and P4 respectively.

5. Check whether P3 ⊕ P4 = α.

2.2 Boomerang Switch and Boomerang Connectivity Table.
The boomerang switch, proposed in [BK09], was used to obtain free rounds in the middle
of the cipher in the attacks against full AES-192 and AES-256. The idea was to optimize the
transition between the sub-paths of E0 and E1 in order to minimize the overall complexity
of the distinguisher. In [BK09], two S-box based switches were introduced: the ladder
switch, and the S-box switch. The idea of the ladder switch is to realize that instead of
necessarily decomposing the cipher into rounds, one can decompose it into smaller parallel
transformations and this may lead to better distinguishers. The idea of the S-box switch
is that when a same S-box is activated in both E0 and E1, and when the output difference
in E0 is identical to the input difference in E1, then the differential transition through the
S-box is free in one of the two directions.

These switches were further generalized with the boomerang connectivity table [CHP+18]
and we provide here the definition.

Definition 1 ([CHP+18]). Let S be an invertible function from Fn
2 to Fn

2 , and ∆0, ∇0 ∈
Fn

2 . The boomerang connectivity table (BCT) of S is defined by a 2n × 2n table, in which
the entry for (∆0,∇0) is computed by:

BCT (∆0,∇0) = #{x ∈ {0, 1}n|S−1(S(x)⊕∇0)⊕ S−1(S(x⊕∆0)⊕∇0) = ∆0}.

The generation of the BCT can be visualized in Figure 3. The ladder switch is captured
by the BCT in the case where at least one of the index equals to zero. The S-box switch
is captured by the BCT in the case where ∇0 equals ∆1. Moreover, the incompatibility
pointed out by Murphy [Mur11] simply corresponds to zero entries in the BCT.

∆0 ∆0

∇0

∇0

∆1 ∆1

∇1

∇1

S S

S S

x1

y1

x2

y2

x3

y3

x4

y4

Figure 3: Generation of a right quartet at the S-box level

Fig. 3. Generation of a right quartet at the Sbox level [12].

Definition 2. BDT′ [12]. When the boomerang returns back, decryption op-
eration will be considered first. The difference ∇1 of the Sbox determines the
differential characteristic in the backward rounds. Therefore, a variants of BDT
called BDT′ that takes into account a 3-tuple (∇0,∇1, ∆0) can be obtained by

BDT ′(∇0,∇1, ∆0) = #{x ∈ {(0, 1)}n|S(S−1(x)⊕∆0) ⊕ S(S−1(x⊕∇0)⊕∆0)
= ∇0, S

−1(x) ⊕ S−1(x⊕∇0) = ∇1}.
(3)

Application in Two-round Boomerang Switch. In the two-round boomerang
switch, we can only consider the two Sbox layers (SL) and the linear layer (R)
in between, which is illustrated in Figure 4.

When analyzing the two-round boomerang switch, the BDT will be applied
to the first Sbox layer and the BDT′ will be applied to the second one. Denote
the probability of the two Sbox layers by p1 and p2, respectively. They can be
computed by

p1 =
∏

(∆0,∆1,∇0)∈L1

BDT (∆0, ∆1,∇0)/2n, (4)

p2 =
∏

(∇0,∇1,∆0)∈L2

BDT ′(∇0,∇1, ∆0)/2n, (5)

where L1 and L2 contain the 3-tuple difference of the Sbox in (β, β′, γ′′) and
(γ, γ′, β′′), respectively.

Given the truncated differential pattern, there might exist three cases for the
2-round boomerang switch as follows:

8

150 Boomerang Switch in Multiple Rounds

Incompatibility. A 3-tuple (∆0,∆1,∇) is incompatible if the corresponding entry of the
BDT is 0. The incompatible difference pair (∆0,∇) detected by the BCT can also be
detected by the BDT through Equation (4). Moreover, the BDT is able to detect new
incompatibilities even if the corresponding values of the BCT and the DDT are nonzero.

With the help of the BDT, the incompatibility exhibited in Section 3.2 can be easily
detected: the BDT entry for (0xdf, 0xf1, 0xa9) is 0.

Variants of BDT. When the boomerang returns back in the decryption direction, the ∇1
of the S-box in the last S-box layer of Em determines the differential characteristic in the
backward rounds. Thus, naturally a variant BDT′ that takes into account (∇0,∇1,∆0)
can be proposed to evaluate the last S-box layer:

BDT ′(∇0,∇1,∆0) =#{x ∈ {0, 1}n|S(S−1(x)⊕∆0)⊕ S(S−1(x⊕∇0)⊕∆0) = ∇0,

S−1(x)⊕ S−1(x⊕∇0) = ∇1}.

From the symmetry of the boomerang, all the previous analysis of the BDT also applies
to the BDT′. Furthermore, another variant of the BDT to capture all the four factors
(∆0,∇0,∆1,∇1) is needed when analyzing the middle S-box layers in the case where Em

consists of more than two rounds. The analysis is also similar, but as it is not used in this
paper, we ignore it to prevent redundancy.

3.4 Boomerang Switch in Two Rounds
In this section, we discuss the application of the BDT (BDT′) to the boomerang switch in
two rounds. Em consists of two S-box layers and one linear layer in between — as depicted
in Figure 6, the S-box layer being denoted by SL and the linear layer by R. The switching
probability of the first S-box layer is denoted by p1, and the switching probability of the
second S-box layer is denoted by p2, the whole probability of Em is then computed by
r = p1p2.

SL

R

SL

SL

R

SL

SL

R

SL

SL

R

SL

β

β′

β′′

γ′′

γ′′

γ′

γ′

γ

γ

β

β′

β′′

x1

x2

y1

y2

x3

x4

y3

y4

Figure 6: A 2-round Em which consists of two S-box layers and one linear layer.

In the analysis of the boomerang switch, the BDT is applied at the first S-box layer,
and the BDT′ is applied at the second S-box layer. In general, the probability p1 and p2
are the product of the switching probability of each S-box in the internal state, and are

Fig. 4. A 2-round switch which only considers two Sbox layers and one linear layer [12].

– There is no active Sbox at the same position in both Sbox layers: the prob-
ability can be computed only by DDT.

– There are active Sboxes at the same position in only one of the two Sbox
layers: we can use BDT to compute the probability for this Sbox layer.

– There are active Sboxes at the same position in both of the two Sbox layers.
BDT will be applied to both of them but we must check the compatibility.

In [12], they specify the processes how to compute the probability for the 2-round
boomerang switch. For more details, we refer to [12].

5 New Related Tweakey Distinguisher of Deoxys-BC-384

5.1 Searching truncated differentials by MILP model

In this subsection, we simply describe the method proposed by Cid et al. [6]
to search truncated differentials by MILP model. For simplicity, we omit the
numerous inequality constraints. Let xi, stki, yi denote the activeness of a state
byte before the AddRoundTweakey operation, the subtweakey byte, and the state
byte after the AddRoundTweakey operation, respectively.

In the AddRoundTweakey operation, we only need to exclude all the solutions
of xi + stki + yi = 1, and record the number of cancellations between xi and
stki in each column which can be denoted by c. For the MixColumns operation,
we only need to guarantee that the branch number is at least 5. Cid et al. also
introduced d to denote the degrees of freedom in the MILP model. If a, b are
the number of active bytes before the MixColumns operation and inactive bytes
after the MixColumns operation in each column, then this column will consume
−(a − b − c) degrees only when (a − b − c) < 0. If stki = 0 but stk16+h(i) > 0
or stk−16+h−1(i) > 0, another degree consumption occurs. Suppose the number
of active bytes in subtweakey of i−th round is di(i = 1, 2, 3 · · ·), then the total
degrees that could be consumed are d = 3 · max{d1, d2, d3, ...} in Deoxys-BC-
384. Taking all the former constraints into account, when the sum of the degree

9

consumption is smaller than the total degrees d, a truncated related-tweakey
differential is obtained by the MILP model. By generating the MILP model
for the upper part and lower part, respectively, and adding some connection
constraints between them, a truncated related-tweakey boomerang differential
can be obtained. For more details, we refer to [6].

Inspired by the MILP method proposed in [20], we add two more rounds of
constraints to the MILP model. Here, we will specify the details of the extra
constraints.

– For the first extra round. When processing a related-key boomerang
or rectangle attack under a specific characteristic, the differences at the
end of the characteristic are known. Therefore, the differences before the
SubBytes operation can be deduced, and the cancellation may occur in the
AddRoundKey operation. Thus when we treat them as truncated differences,
the constraints on the AddRoundKey operation are the same as those in [6].
However, the differences after the SubBytes operation will be unknown, the
branches of the MixColumns operation will be not 5, all the four output
bytes of a column under the MixColumns operation will be active if any in-
put byte of the column is active. Let Boolean variables (yi, yi+1, yi+2, yi+3)
denote the activeness of the input 4-byte of MixColumns operation and
(xi, xi+1, xi+2, xi+3) denote the activeness of the output 4-byte, then the
constraints are as follows:

dk − yi ≥ 0, dk − yi+1 ≥ 0, dk − yi+2 ≥ 0, dk − yi+3 ≥ 0,

yi + yi+1 + yi+2 + yi+3 − dk ≥ 0,

xi − dk = 0, xi+1 − dk = 0, xi+2 − dk = 0, xi+3 − dk = 0,

where dk is a dummy variable so that dk = 0 only when yi, yi+1, yi+2, yi+3

are all zero.

– For the second extra round. When processing the specific attack, the
differences at the start of the second extended round are unknown, and
cancellation can not occur in the AddRoundKey operation, i.e. for the Boolean
variables (xi, stki, yi) that xi ⊕ stki = yi, yi must be active if xi or stki are
active. The constraints are different from those in [6] and expressed as

yi − xi ≥ 0, yi − stki ≥ 0, xi + stki − yi ≥ 0.

Since we omit the last MixColumns operation in the key recovery attacks,
there are no constraints for it.

At the end of the MILP model, we add a group of extra constraints to con-
strain the number of active columns. Let Boolean variables (xi, xi+1, · · · , xi+15)
denote the activeness of the 16 bytes after the SubBytes operation, we will con-
strain the number of the active columns being not bigger than 3 as:

dk − y4k+i ≥ 0, dk − y4k+i+1 ≥ 0, dk − y4k+i+2 ≥ 0, dk − y4k+i+3 ≥ 0,

10

y4k+i + y4k+i+1 + y4k+i+2 + y4k+i+3 − dk ≥ 0,

for k ∈ {0, 1, 2, 3} and

d0 + d1 + d2 + d3 ≤ 3.

5.2 The method of deriving paths given the truncated differential

Given the truncated differential of Deoxys-BC, we can search the detailed dif-
ferential paths in two steps:

1. Deduce all the master tweakey differences that satisfy the truncated differ-
ential;

2. For each master tweakey difference, check the compatibility by the MixColumns
operation and the difference distribution table (DDT) of Sbox.

We specify the process to get the path listed in Table 4.
Deduce the Tweakey Difference.
We first deduce the master tweakey difference from the truncated differential
shown in Table 4, where we just ignore the concrete values of the bytes and only
care for the activeness or inactiveness of the bytes.

We first consider the upper part of Table 4, and note that we convert all
the constraints in the differential into the constraints of the 3 tweakeys ∆TK1

1 ,
∆TK2

1 and ∆TK3
1 in the 1st round. According to Table 4 and the definition of

degree of freedom in Cid et al. [6], we get the knowledge that there are totally
15 active bytes in the 3 tweakeys ∆TK1

1 , ∆TK2
1 and ∆TK3

1 . We find that
the indices of the five active bytes in ∆STK1 are {6, 9, 12, 13, 15}. According
to the h permutation of the tweakey schedule, the active bytes will shift to
∆STK2[1, 8, 3, 12, 6], respectively. However, all the active bytes are canceled in
∆STK2. Similarly, we could get the indices in Table 3, which the active bytes
in ∆STK1 will shift to in the following 7 rounds. Note that, the indices in red
mean inactive bytes, where the differences are canceled.

Table 3. The index of subtweakey difference.

Round Index

1 6 9 12 13 15

2 1 8 3 12 6

3 0 15 10 3 1

4 7 6 5 10 0

5 14 1 4 5 7

6 9 0 11 4 14

7 8 7 2 11 9

In Table 3, the active byte ∆STK1[6] will be canceled in ∆STK2[1] in the
2nd round and ∆STK5[14] in the 5-th round. According to the tweakey schedule,

11

we deduce the following equations for ∆TK1
1 , ∆TK2

1 and ∆TK3
1 :

∆TK1
1 [6]⊕ LFSR1

2(∆TK2
1 [6])⊕ LFSR1

3(∆TK3
1 [6]) = 0,

∆TK1
1 [6]⊕ LFSR4

2(∆TK2
1 [6])⊕ LFSR4

3(∆TK3
1 [6]) = 0,

where ∆TKi
j [k] means the k-th byte of ∆TKi

j , i ∈ {0, 1, 2} in j-th round, and

LFSRji , i ∈ {2, 3} means executing the linear operation LFSRi for j times
successively. Similarly, we can also write two equations for each of the other four
indices as:

∆TK1
1 [9]⊕ LFSR1

2(∆TK2
1 [9])⊕ LFSR1

3(∆TK3
1 [9]) = 0,

∆TK1
1 [9]⊕ LFSR4

2(∆TK2
1 [9])⊕ LFSR4

3(∆TK3
1 [9]) = 0,

∆TK1
1 [12]⊕ LFSR1

2(∆TK2
1 [12])⊕ LFSR1

3(∆TK3
1 [12]) = 0,

∆TK1
1 [12]⊕ LFSR5

2(∆TK2
1 [12])⊕ LFSR5

3(∆TK3
1 [12]) = 0,

∆TK1
1 [13]⊕ LFSR1

2(∆TK2
1 [13])⊕ LFSR1

3(∆TK3
1 [13]) = 0,

∆TK1
1 [13]⊕ LFSR3

2(∆TK2
1 [13])⊕ LFSR3

3(∆TK3
1 [13]) = 0,

∆TK1
1 [15]⊕ LFSR1

2(∆TK2
1 [15])⊕ LFSR1

3(∆TK3
1 [15]) = 0,

∆TK1
1 [15]⊕ LFSR2

2(∆TK2
1 [15])⊕ LFSR2

3(∆TK3
1 [15]) = 0.

Totally, we can get ten equations for ∆TK1
1 , ∆TK2

1 and ∆TK3
1 by the cancel-

lations of the differences in the subtweakeys.
Besides, we can also get some equations by the cancellations between the

differences in the internal state and subtweakey. For example, as shown in Figure
4, at the end of the 4-th round and the start of the 5-th round, the second column
of the internal state is transformed in truncated form as:

(1, 0, 0, 1)
MC−→ (1, 1, 0, 1)

AK−−−−−−→
⊕(1,1,0,1)

(0, 0, 0, 0),

which means, the second column of ∆STK5 is equal to the second column of
∆X5 in 5-th round. By looking up in Table 3, the three bytes of ∆STK5 are
corresponding to byte 12, 13, 15 of ∆STK1. By utilizing the MC−1 operation, we
can get the following equations:

09 ·∆STK5[4]⊕ 0e ·∆STK5[5]⊕ 0d ·∆STK5[7] = 0,

0d ·∆STK5[4]⊕ 09 ·∆STK5[5]⊕ 0b ·∆STK5[7] = 0,

where

∆STK5[4] = ∆TK1
1 [12]⊕ LFSR4

2(∆TK2
1 [12])⊕ LFSR4

3(∆TK3
1 [12]),

∆STK5[5] = ∆TK1
1 [13]⊕ LFSR4

2(∆TK2
1 [13])⊕ LFSR4

3(∆TK3
1 [13]),

∆STK5[7] = ∆TK1
1 [15]⊕ LFSR4

2(∆TK2
1 [15])⊕ LFSR4

3(∆TK3
1 [15]).

12

Similarly, we can obtain another two equations by the second column in 4-th
round as:

03 ·∆STK4[5]⊕∆STK4[6] = 0,

02 ·∆STK4[6] = 0⊕∆STK4[7] = 0,

where

∆STK4[5] = ∆TK1
1 [12]⊕ LFSR3

2(∆TK2
1 [12])⊕ LFSR3

3(∆TK3
1 [12]),

∆STK4[6] = ∆TK1
1 [9]⊕ LFSR3

2(∆TK2
1 [9])⊕ LFSR3

3(∆TK3
1 [9]),

∆STK4[7] = ∆TK1
1 [6]⊕ LFSR3

2(∆TK2
1 [6])⊕ LFSR3

3(∆TK3
1 [6]).

With the above 14 equations for ∆TK1
1 , ∆TK2

1 and ∆TK3
1 , since there are

only 15 active bytes in ∆TK1
1 , ∆TK2

1 and ∆TK3
1 , we can deduce 256 concrete

values for ∆TK1
1 , ∆TK2

1 and ∆TK3
1 .

Search for the Differential Path with the Highest Probability.
For each value of ∆TK1

1 , ∆TK2
1 and ∆TK3

1 , the subtweakey differences in
any round can be computed since the key schedule is linear. Then the difference
of every byte of the internal states is determined by combining the truncated
differential: when the cancellation occurs between state bytes and subtweakey
difference, the state difference is equal to the subtweakey difference; the other
bytes can be computed by MC and MC−1 operation.

Since the input and output differences of the SubBytes operation in each
round are all known, it will be easy to verify the compatibility of the differential
path by the difference distribution table (DDT) of Sbox. Note that there exist
6 active Sboxes in the upper part, and each input-output difference pair could
pass the DDT of a Sbox with probability about 2−1 (the entry of the DDT is
not zero). So only 4 values out of the 256 values for ∆TK1

1 , ∆TK2
1 and ∆TK3

1

are expected to survive from the verification. Finally, we find three 7-round
differential paths having the probability 2−42, and the other one is of probability
2−41. The differential paths of the lower part can be deduced in similar process,
and we omit it.

5.3 Computing the accurate probability of the distinguisher by
BDT

As shown in Table 4, ∆Y6[0] = 0x9a in the upper part and ∇Z7[0] = 0x1f in the
lower part of the boomerang distinguisher are known. Therefore, ∆0 = ∆Y6[0] =
0x9a used in BDT and ∇0 = ∇Z7[0] = 0x1f used in BDT′ are know. So we can
get the differential characteristic in the 2 switch rounds by the following step:

– Step 1. As shown in Figure 3, in BDT, we fix ∆0 = ∆Y6[0] = 0x9a in
BDT, traverse all the values of ∇0 = ∇Z6[0] and obtain all the 3-tuples
(0x9a,∆1,∇0) whose corresponding entry in BDT is greater than 0, where
∆1 = ∆Z6[0].

13

– Step 2. For each tuple we obtained, ∆1 = ∆Z6[0] and ∇0 = ∇Z6[0] are
known, therefore ∆Y7[0] can be deduced. Hence, the value of ∆0 = ∆Y7[0]
used in BDT′ is known, so we can construct BDT′ with the fixed ∆0.

– Step 3. In the BDT′, extract all the 3-tuples (0x1f,∇1, ∆0) whose entry in
BDT′ obtained in step 2 is greater than 0, and ∇1 = ∇Y7[0] in lower part
will be determined.

In total, we get two differential characteristics in the 2-round switch, which
are listed in Tables 4 and 5. In Table 4, the entry for (0x9a, 0xdb, 0x23) in the
BDT is 4 which gives probability 2−6, and the entry for (0x1f, 0xad, 0xad) in
the BDT′ is 2 which results in the probability 2−7. Therefore, probability of
the switch is 2−13. For the other differential characteristic listed in Table 5, the
entries for (0x9a, 0xbf, 0xbf) in the BDT and the entries for (0x1f, 0x65, 0x65)
in the BDT′ are all 2, which has probability 2−14. So the switching probability in
round 6 and 7 is 2−13+2−14 = 2−12.4, and the total probability of the boomerang
distinguisher is 2118.4.

Experimental Verification. We used 220 data and iterated it for 1000
times for randomly chosen plaintexts and keys for the 2-round switch. And the
result shows that the average probability of obtaining a right quartet is 212.4.

5.4 The advantage of our new distinguisher

We have well studied the paper of Cid et al. [6], and since the difference δ in the
11-round distinguisher is δ = (00 00 00 00 00 00 00 00 00 00 00 00 08 00 7f 00), if
we append two rounds at the end of the distinguisher, all of the 16 bytes shown
in Figure 5.

11 rounds

6f

89

67

f6

6f

89

67

f6

6f

89

67

f6

SB
SR

SB
SR

af

8d

af

8d

6f

89

67

f6

6f

89

67

f6

af

8d

6f

89

67

f6 MC

af

8d

af

8d

af

8d

8989

dddd

89

dd

SB

SR

SB

SR

Fig. 5. Appending two rounds for Cid et al.’s 11-round distinguisher of Deoxys-BC-384.

Based on the method proposed in [6] and BDT technique in [12], we find a
new 11-round boomerang distinguisher of Deoxys-BC-384 with the probability of
2−118.4, which holds with higher probability than that in [6]. More impressively, it
is more effective to recover the key, since the only active column at the end of the
path is (9e, 1d, 00, 00), and it will become (00, a4, 83, a4) after the MixColumns

operation. If we append two rounds to the end of the trail, there are only 12
active bytes after the SubBytes operation in the last round as illustrated in
Figure 6. This helps us mount a 13-round related-tweakey rectangle attack on
Deoxys-BC-384 with ≤ 2124 queries under the same key and time complexity
≤ 2256. Hence, it leads to the first 13-round attack on the corresponding AE
scheme Deoxys-I-256-128, which are given in the following section.

14

Table 4. New 11-round distinguisher of Deoxys-BC-384. The probabilities marked with
† are only spent once.

∆TK1
0 : 00 00 00 00 00 00 8b 00 00 c4 00 00 a6 7a 00 c5

∆TK2
0 : 00 00 00 00 00 00 ad 00 00 c4 00 00 d8 73 00 21

∆TK3
0 : 00 00 00 00 00 00 a3 00 00 9a 00 00 2e 3b 00 0d

∇TK1
0 : 00 00 00 00 00 00 00 51 00 00 ea 00 00 00 00 00

∇TK2
0 : 00 00 00 00 00 00 00 f0 00 00 74 00 00 00 00 00

∇TK3
0 : 00 00 00 00 00 00 00 e6 00 00 7d 00 00 00 00 00

R ∆X ∆K ∆Y ∆Z pr

1

00 00 00 50
00 00 9a 32
00 85 00 00
00 00 00 e9

00 00 00 50
00 00 9a 32
00 85 00 00
00 00 00 e9

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

2

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

3

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

57 00 00 00
00 00 00 00
00 00 4f 00
7a 00 00 f1

57 00 00 00
00 00 00 00
00 00 4f 00
7a 00 00 f1

6b 00 00 00
00 00 00 00
2a 00 00 00
15 a6 00 00

2−28

4

e9 a6 00 00
00 a6 00 00
00 f1 00 00
bd 57 00 00

e9 00 00 00
00 a6 00 00
00 f1 00 00
00 57 00 00

00 a6 00 00
00 00 00 00
00 00 00 00
bd 00 00 00

00 2b 00 00
00 00 00 00
00 00 00 00
00 19 00 00

2−13

5

00 4f 00 00
00 32 00 00
00 00 00 00
00 4f 00 00

00 4f 00 00
00 32 00 00
00 00 00 00
00 4f 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

6

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

9a 34 00 00
00 00 85 00
00 00 00 b9
00 00 00 00

9a 34 00 00
00 00 85 00
00 00 00 b9
00 00 00 00

db 00 00
00 00 00
00 00 00
00 00 00

2−6 †

7

ad 00 00
db 00 00
db 00 00
76 00 00

00 00 1b 00
00 00 08 00
50 00 00 00
00 13 09 00

ad 00
00

00 00
00

00
00

00 00
00

1

6

00
00

00
00

23 00
d2 00
60 00
e6 00

1

7

ad 00
da 00
00 00
00 00

00 00
da 00
00 00
00 00

ad 00 00
00 00 00
00 00
00 00 00

1f 00 00
00 00 00

00 00
00 00 00

2−7 †

8

8a 00 00 00
00 00 00 00
00 00 00 00
21 00 00 00

8a 00 00 00
00 00 00 00
00 00 00 00
21 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

9

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

10

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

1

11

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

00 21 00 00
00 00 8a 00
00 00 00 00
00 00 00 00

00 21 00 00
00 00 8a 00
00 00 00 00
00 00 00 00

00 9e 00 00
00 1d 00 00
00 00 00 00
00 00 00 00

2−12

15

Table 5. Another 2-round switch for round 6 to 7. The probabilities marked with †
are only spent once.

R ∆X ∆K ∆Y ∆Z pr

6

00 00 00 00
00 00 00 00
00 00 00 00
00 00 00 00

9a 34 00 00
00 00 85 00
00 00 00 b9
00 00 00 00

9a 34 00 00
00 00 85 00
00 00 00 b9
00 00 00 00

bf 00 00
00 00 00
00 00 00
00 00 00

2−7 †

7

65 00 00
bf 00 00
bf 00 00
da 00 00

00 00 1b 00
00 00 08 00
50 00 00 00
00 13 09 00

65 00
00

00 00
00

00
00

00 00
00

1

6

00
00

00
00

bf 00
00 00
bf 00
bf 00

1

7

65 00
da 00
00 00
00 00

00 00
da 00
00 00
00 00

65 00 00
00 00 00
00 00
00 00 00

1f 00 00
00 00 00

00 00
00 00 00

2−7 †

11 rounds SB
SR

SB
SR MC

SB

SR

SB

SR

da

f2

a4

83
a4

da

f2

a4

83
a4

1d
58

Fig. 6. Appending two rounds for our 11-round distinguisher of Deoxys-BC-384.

6 Rectangle Attack on Round-reduced Deoxys-BC-384

6.1 Attack on 13-round Deoxys-BC-384

Different from AES, Deoxys-BC does not omit the MixColumns operation in the
last round. However, as MixColumns is a linear operation, the attacker can get
the same differential cryptanalysis result by deleting it in the last round. For the
sake of simplicity, we omit the MixColumns operation in the last round.

Based on the new distinguisher listed in Tables 4 and 5, we construct a 13-
round related-tweakey rectangle attack on Deoxys-BC by extending two rounds
at the end of the 11-round trail, which is illustrated in Figure 7. The upper
part of the trail through E0 is under the related key ∆K = {∆TK1

0 , ∆TK
2
0 ,

∆TK3
0} , and the lower part through E1 is under the related key ∇K =

{∇TK1
0 ,∇TK2

0 ,∇TK3
0}.

As we can see from Tables 4 and 5 and Figure 7, the initial difference of the
rectangle distinguisher is α = (00 00 00 00 00 00 85 00 00 9a 00 00 50 32 00 e9),
and the final difference is δ = (00 00 00 00 9e 1d 00 00 00 00 00 00 00 00 00 00).
After two-round transition, difference δ will propagate to

η = (∗ 00 ∗ ∗ 00 ∗ ∗ ∗ ∗ ∗ ∗ 00 ∗ ∗ 00 ∗)

where ‘*’ means active but unknown bytes, and note that there are four inactive
bytes in difference η. We follow the generalized related-key rectangle attacks on
block ciphers with linear key schedule that was proposed in [21], the detailed

16

SB

SR

SB

SR

11-round distinguisher of Deoxys-BC-384

Round 11

Round 12

X11 Y11 Z11

X12 Y12 Z12 Ciphertext

STK11

STK12 STK13

Known difference Unknown difference

Round 0

…
…

MC

Fig. 7. Key-recovery attack against 13-round Deoxys-BC-384.

attack process is as follows:

Data Collection.
Randomly choose 2t plaintext pairs (m,m′) such that they all satisfy m⊕m′ = α,
where α = (00 00 00 00 00 00 85 00 00 9a 00 00 50 32 00 e9). For all the
2t plaintext pairs, we make queries to the encryption oracle under K1 and K2

respectively, so that we can receive the corresponding ciphertext pairs (c, c′), i.e.
every plaintext-ciphertext pair (m,m′, c, c′) is computed by c = EK1(m), c′ =
EK2(m′).

Figure 7 shows that there are four zero-difference bytes in the ciphertext pair
(∆c[1, 4, 11, 14] = 0), and since the goal of Data Collection is to collect quar-
tets (c, c′, c̄, c̄′) following the same form as η, i.e. the bytes 1, 4, 11, 14 of c⊕ c̄ and
c′⊕ c̄′ are all zeros. So we can insert all the elements formed by (m,m′, c, c′) into
a hash table H indexed from 0 to 264−1 by 8 bytes (c[1, 4, 11, 14], c′[1, 4, 11, 14]).

Then for each of the 2t plaintext pairs, denoted by (m̄, m̄′), we make queries
to the encryption oracle under K3 and K4 respectively to get the corresponding
ciphertext pair (c̄, c̄′). The required quartets are obtained, where the 8-byte dif-
ference of c̄‖c̄′ and c‖c′ have the same value, by looking up the hash table. As a
result of 264 indices, there will remain 2t · (2t · 2−64) = 22t−64 quartets.

Key Recovery.
As we can see from the Figure 7, in the partial computation from ciphertext
to Y11, there are totally 17 bytes of subkeys being involved including 12 bytes
of STK13 and 5 bytes of equivalent keys of STK12. Guessing all the possible
values of the 17 bytes of subkeys simultaneously will cost much time complexity.
Therefore, we guess partial involved keys step by step.

17

Firstly, we should initialize a list of 2136 counters, where each index means
a corresponding guessed 136-bit value. Then for each of the 22t−64 remaining
quartets (c, c′, c̄, c̄′), the detailed key recovery proceeds as follows.

1. Note that there are three zero-difference bytes in the first column of ∆Z11,
so guessing the involved keys from ciphertext to the first column of Y12 may
be a wise choice.

For each of the guessed 28 values of STK13[0], both the value and d-
ifference of Y12[10] can be deduced by (c, c̄). Since there are three known
zero-difference bytes in the first column of ∆Z11, ∆Y12[1, 2, 3] can be com-
puted utilizing the property of the MixColumns operation6. Besides, the dif-
ference values of ∆Z12[7, 10, 13] that are equal to the difference of ciphertext
pair (c, c̄) are known. With the input and output differences of the SBox-
es being known, we can get the corresponding value of STK13[7, 10, 13].
Then partially decrypt (c′, c̄′) to compute ∆Y12[0, 1, 2, 3], and verify whether
∆Z11[0, 2, 3] = 0 or not. If so, we keep the 32-bit subkeys and the quartet.
Otherwise, jump to Step 1 for a next quartet. Note that, about 22t−64−16 =
22t−80 quartets can enter Step 2.

2. Utilize the value of ∆Y12[0, 1, 2, 3] computed in Step 1 to get the value of
∆Z11[1] corresponding to (c, c̄). With the known difference ∆Y11[5], 8-bit
equivalent subkeys can be deduced, and verify it using the corresponding
pair (c′, c̄′). If the 8-bit equivalent subkeys pass the verification, we keep
them and the quartet, otherwise go to Step 1. About 22t−88 quartets remain
with 40-bit subkeys.

3. Similarly, guess the value of STK13[5, 8], and we can compute both the value
and difference of Y12[8, 9] with corresponding ciphertext pair (c, c̄). Utiliz-
ing the two zero-difference bytes in the third column of ∆Z11, ∆Y12[10, 11]
can be computed, and we can deduce the value of STK13[2, 15] by study-
ing the input and output differences of the SBoxes in a similar way as in
Step 1. Partially decrypt (c′, c̄′) and compute the third column of ∆Z11. If
∆Z11[9, 10] = 0, keep the quartet and 72-bit subkeys. About 22t−88 quartets
remain.

4. With the deduced 32-bit subkeys of STK13 in Step 3, we can get the value
of ∆Z11[8, 11] corresponding to (c, c̄). Figure 7 shows that ∆Y11[7, 8] are
known, and 16-bit equivalent subkeys of STK12 related to Z11[8, 11] will be
deduced, and the subkey is verified using (c′, c̄′). It can pass the verification
with a probability of 2−16. Keep the quartet and the 88-bit subkeys if they
can pass the check. Up to now, there are about 22t−104 quartets that can
enter next step.

5. Using a similar method as in Step 3 and 4, by guessing the 216 values of
STK13[9, 12], we can deduce the 16-bit subkeys STK13[3, 6] and verify them
by partially decrypting (c′, c̄′). Then partially decrypt (c, c̄) to deduce the
16-bit equivalent subkeys of STK12 and verify them by (c′, c̄′). Totally, about
22t−120 quartets remain with the corresponding 136-bit subkeys.

6 Note that if 4 out of 8 input-output bytes of MixColumns are known, all other bytes
could be deduced.

18

6. We count the 136-bit subkeys and choose the higher count values as the
candidate subkeys.

Complexity.
Since each plaintext pair is queried under (K1,K2) and (K3,K4) successively,
the data complexity is 2 · 2 · 2t = 2t+2 queries. In the key recovery process, the
attacker processes about 22t−64 · 28 = 22t−56 one-round encryptions, which are
equivalent to 224−56/13 ≈ 22t−59.7 encryptions.

Since the probability of the 11-round related-tweakey rectangle distinguisher
is p̂2 · q̂2 · 2−128 = 2−246.4, 2t plaintext pairs can provide about 22t−246.4 right
quartets. The right subkey will be counted once a right quartet occurs. Finally,
there are 22t−120 quartets to count the 136-bit subkeys, and the expected value
of the right subkey counter is 22t−246.4, and the expected counter of wrong guess
is 22t−256.

In conclusion, we choose t = 123.2. Then the data complexity is 2125.2 queries
and the time complexity is bounded by the key recovery process which is 2186.7.
The memory complexity equals to the size of the subkey counter which is 2136.
Under the right key, the expected number of the counter is 1, while under the
wrong key, the expected number of the counter is 2−9.6. The success probability
is about 68% using Poisson distribution.

6.2 Attack on 14-round Deoxys-BC-384

By prefixing one more round to the start of the related-tweakey boomerang
distinguisher than the 13-round attack in sec. 6.1, a 14-round related-tweakey
rectangle attack can be proceeded, which is illustrated in Figure 8.

There are 96 bits of subtweakey involved in the first round and 136 bits of
subtweakey involved in the last two rounds. According to the generalized attack
model described in [13] and [21], the time complexity is 2282.7 encryptions, the
data complexity is 2125.2 chosen plaintexts and the time complexity is 2136.

11-round distinguisher of Deoxys-BC-384 and

two extending rounds

SB

SR

Y0 Z0 X1 Y1Plaintext

Round 0

STK0 STK1

MC

Known difference Unknown difference

Fig. 8. Key-recovery attack against 14-round Deoxys-BC-384. The last 13 rounds are
the same to the 13-round attack.

19

7 Impact on Deoxys Authenticated Encryption

As mentioned in [3], both versions of Deoxys adopts a 4-bit prefix for the tweak
input to properly separate the different phases of authentication/encryptiong
blocks. So differential paths that can be used to analyze Deoxys can not con-
tain a difference in the 4 bits. Fortunately, the new related-tweakey rectangle
distinguisher satisfies this constraint that no difference occurs in these 4 bits.

Besides, the designers of Deoxys recommend that the maximum length of a
message can not exceed 260 128-bit blocks, and the maximum number of mes-
sages that can be encrypted under the same key is 264. So the adversary can not
make more than 2124 queries under the same key.

For the version Deoxys-I, the concatenation of the nonce and the block
counter is used as tweak input for Deoxys-BC. The adversary can make queries
easily with the controllable tweak. So the related-tweakey rectangle attack with
a data complexity of ≤ 2126 (≤ 2124 per key) and a time complexity ≤ 2128 for
Deoxys-BC-256 or ≤ 2256 for Deoxys-BC-384 can be applied to analyze the AE
mode Deoxys-I.

Deoxys-BC-384 is the internal primitive of Deoxys-I-256-128. We present a
related-tweakey rectangle attack on 13-round Deoxys-BC-384 in the previous
section, and our attack has no difference in these 4 bits mentioned before. So the
attack with a data complexity of 2125.2 (≤ 2124 per key) and a time complexity
of 2186.7 (≤ 2256) can be applied to analyze to 13-round AE mode Deoxys-I-256-
128.

However, Deoxys-II generates a tag utilizing the message, nonce and key.
Then the tag is used as a part of tweak input to obtain the ciphertexts, which
implies that the tweak input of Deoxys-BC can not be controlled. So the previous
attack can not impact the security of Deoxys-II.

8 Conclusion

The 11-round related-tweakey distinguisher given in [6] has the lowest number of
active Sboxes, but it can only extend one round forward when analyze Deoxys-
BC-384. Motivated by the method of searching differential paths, we successfully
find a 11-round distinguisher with comparable probability to that in [6], but
with fewer active Sboxes when appending two rounds. Therefore, we can attack
Deoxys-BC-384 with lower complexity and analyze Deoxys-I-256-128 for one
more round. Our attack can not be applied to Deoxys-II.

Acknowledgments

We would like to thank the anonymous reviewers for their insightful comments.
This work is supported by the National Key Research and Development Pro-
gram of China (No.2017YFA0303903), the National Natural Science Foundation
of China (No. 61902207), the National Cryptography Development Fund (No.
MMJJ20180101, MMJJ20170121), Zhejiang Province Key R&D Project (No.
2017C01062).

20

References

1. National Institute of Standards and Technology. ADVANCED ENCRYPTION
STANDARD. In FIPS PUB 197, Federal Information Processing Standards Pub-
lication, 2001.

2. The CAESAR committee. CAESAR: Competition for authen-
ticated encryption: Security, applicability, and robustness, 2014.
http://competitions.cr.yp.to/caesar.html.

3. Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick
Seurin. Submission to caesar : Deoxys v1.41, October 2016.
http://competitions.cr.yp.to/round3/deoxysv141.pdf.

4. Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block ciphers. In
Advances in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology
Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings,
pages 31–46, 2002.

5. Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block ci-
phers: The TWEAKEY framework. In Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application of Cryptolo-
gy and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014,
Proceedings, Part II, pages 274–288, 2014.

6. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. A security
analysis of deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric
Cryptol., 2017(3):73–107, 2017.

7. Yu Sasaki. Improved related-tweakey boomerang attacks on deoxys-bc. In Progress
in Cryptology - AFRICACRYPT 2018 - 10th International Conference on Cryp-
tology in Africa, Marrakesh, Morocco, May 7-9, 2018, Proceedings, pages 87–106,
2018.

8. Alireza Mehrdad, Farokhlagha Moazami, and Hadi Soleimany. Impossible differen-
tial cryptanalysis on deoxys-bc-256. Cryptology ePrint Archive, Report 2018/048,
2018. https://eprint.iacr.org/2018/048.

9. Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Related-tweakey impossible differ-
ential attack on reduced-round deoxys-bc-256. Cryptology ePrint Archive, Report
2018/680, 2018. https://eprint.iacr.org/2018/680.

10. Rongjia Li and Chenhui Jin. Meet-in-the-middle attacks on round-reduced tweak-
able block cipher deoxys-bc. IET Information Security, 13(1):70–75, 2019.

11. Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling Song. Boomerang
connectivity table: A new cryptanalysis tool. In Advances in Cryptology - EU-
ROCRYPT 2018 - 37th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II, pages 683–714, 2018.

12. Haoyang Wang and Thomas Peyrin. Boomerang switch in multiple rounds. appli-
cation to AES variants and deoxys. IACR Trans. Symmetric Cryptol., 2019(1):142–
169, 2019.

13. Boxin Zhao, Xiaoyang Dong, and Keting Jia. New related-tweakey boomerang and
rectangle attacks on Deoxys-BC including BDT effect. IACR Trans. Symmetric
Cryptol., 2019(3):121–151, 2019.

14. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

15. Moses Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block ciphers.
J. Cryptology, 24(3):588–613, 2011.

21

16. David A. Wagner. The boomerang attack. In Fast Software Encryption, 6th Inter-
national Workshop, FSE ’99, Rome, Italy, March 24-26, 1999, Proceedings, pages
156–170, 1999.

17. John Kelsey, Tadayoshi Kohno, and Bruce Schneier. Amplified boomerang at-
tacks against reduced-round MARS and serpent. In Fast Software Encryption,
7th International Workshop, FSE 2000, New York, NY, USA, April 10-12, 2000,
Proceedings, pages 75–93, 2000.

18. Eli Biham, Orr Dunkelman, and Nathan Keller. The rectangle attack - rectangling
the serpent. In Advances in Cryptology - EUROCRYPT 2001, International Con-
ference on the Theory and Application of Cryptographic Techniques, Innsbruck,
Austria, May 6-10, 2001, Proceeding, pages 340–357, 2001.

19. Eli Biham, Orr Dunkelman, and Nathan Keller. Related-key boomerang and rect-
angle attacks. In Advances in Cryptology - EUROCRYPT 2005, 24th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Aarhus, Denmark, May 22-26, 2005, Proceedings, pages 507–525, 2005.

20. Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song. Auto-
matic security evaluation and (related-key) differential characteristic search: Appli-
cation to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block cipher-
s. In Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference
on the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 158–178, 2014.

21. Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Gen-
eralized related-key rectangle attacks on block ciphers with linear key schedule:
Applications to SKINNY and GIFT. Designs, Codes and Cryptography, 2020.
https://eprint.iacr.org/2019/714.

22

