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Abstract—The protection of intellectual property (IP) rights of well-
trained deep learning (DL) models has become a matter of major concern,
especially with the growing trend of deployment of Machine Learning as
a Service (MLaaS). In this work, we demonstrate the utilization of a
hardware root-of-trust to safeguard the IPs of such DL models which
potential attackers have access to. We propose an obfuscation framework
called Hardware Protected Neural Network (HPNN) in which a deep
neural network is trained as a function of a secret key and then, the
obfuscated DL model is hosted on a public model sharing platform. This
framework ensures that only an authorized end-user who possesses a
trustworthy hardware device (with the secret key embedded on-chip)
is able to run intended DL applications using the published model.
Extensive experimental evaluations show that any unauthorized usage of
such obfuscated DL models result in significant accuracy drops ranging
from 73.22 to 80.17% across different neural network architectures and
benchmark datasets. In addition, we also demonstrate the robustness of
proposed HPNN framework against a model fine-tuning type of attack.

I. INTRODUCTION

Deep learning (DL) algorithms are extensively used for analyzing
big data in several domains including image classification, natural
language processing, autonomous transportation, smart health, finan-
cial management, social networks, etc. [10], [15]. The key factors
attributed to the unprecedented success of these algorithms are (i)
availability of a massive and mostly labeled training dataset (ii)
allocation of powerful computing resources as well as vast amounts of
network training time and also (iii) substantial domain expertise of DL
model developers to obtain highly accurate models. Therefore, well-
trained DL models are considered to be intellectual property (IP) of
the owner as significant cost is incurred behind their training process
to gain a competitive edge in business [8], [19], [24]. In a white-box
setting [23], the neural network architecture as well as the trained DL
model parameters are made publicly available (e.g., Caffe’s Model
Zoo and Amazon’s Alexa Skills) by a DL model owner [7], [19]. As
the popularity of using such pre-trained models increases (especially
with the deployment of MLaaS), IP protection as well as Digital
Rights Management (DRM) of these distributed DL models are of
major practical concerns [19]. The prevention of model piracy is a
key challenge in this field as there exists techniques (such as scaling,
noising, fine-tuning, etc.) to cleverly modify model parameters with-
out affecting the functionality or accuracy of the network and thus,
helping attackers to claim false DL model ownership [22].

There has been a lot of research to address the privacy concerns of
user data which are used to train Deep Neural Networks (DNNs) [6],
[21], [27]. However, on the other hand, there is only a limited
number of works which primarily focus on developing techniques
to protect the IP of well-trained DL models rather than securing
sensitive user data. Watermarking strategies for DL models have been
proposed in recent literature [7], [11], [13], [17], [19] which help to
claim the ownership of stolen models by embedding identification
information into them. But such leaked DL models can be reused
privately by the adversary, thus bypassing ownership inspection
by the aforementioned watermarking techniques [26]. In order to
further strengthen the IP security of DL models, an obfuscation
technique for DNNs has been proposed in [24] which structurally
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obfuscates the network architecture. However, commonly raised DL
model theft concerns are related to the stealing of well-trained weight
parameters (or learned network functionality) and not due to the theft
of DNN topology. This is because industrial applications typically
use previously published DNN architectures which have demonstrated
high modeling capabilities [22]. This strongly motivates us to develop
a robust and efficient DNN obfuscation infrastructure which locks a
DL model’s weight parameters. Such an obfuscated DL model should
exhibit high prediction performance only if an end-user has legitimate
access to it, whereas any unauthorized usage of the locked model
should result in significant degradation of its prediction accuracy.

The above goal of IP protection of DL models can be achieved
using provably-secure cryptographic schemes to encrypt the weight
parameters. However, application of encryption/decryption on mil-
lions of model parameters (as present in modern DNNs) will incur
large time/implementation overheads and thus, conflict with the strict
response-time deadlines of DNN inference applications. In this work,
we propose an obfuscation framework called Hardware Protected
Neural Network (HPNN) as a lightweight alternative to achieve the
desired IP security of DL models in a white-box setting. The security
offered by this framework relies on the availability of a hardware
root-of-trust which embeds a secret key (called HPNN key) within
an on-chip memory [5], [25]. Such a trusted hardware serves as the
license to utilize the services provided by a DL model owner. To
ensure IP protection of a DL model using HPNN framework, the
model owner first utilizes a novel key-dependent backpropagation
algorithm to train a DNN architecture which obfuscates the model’s
learned weight space and then hosts the DL model in a public model
sharing platform. An authorized end-user downloads the locked DL
model and runs DNN inference on a trusted hardware which applies
the HPNN key (embedded on-chip) to retrieve the intended model
functionality. This framework ensures that proprietary DL models
perform inference with high accuracy (as expected from training)
only on such trusted hardware devices. In addition, we also provide
theoretical justification and experimental results to demonstrate that
the proposed key-dependent DNN training doesn’t compromise a
model’s prediction accuracy at the cost of gaining security benefits.

In order to further evaluate the IP security of DL models
obfuscated using HPNN framework, we consider model fine-tuning
attack [18], [24] where the objective of an adversary is to re-train a
locked DL model using a thief dataset (which is a small fraction of
the original dataset) and adapt it for usage in intended applications.
As evident from our experimental findings across different DNN
architectures and benchmark datasets, the success of such an attack
is limited by the size of thief dataset available. This highlights the
fact that an obfuscated DL model cannot be sufficiently fine-tuned
to achieve high prediction accuracy without the possession of secret
HPNN key. In summary, the contributions of this paper are as follows:

• Proposing an obfuscation framework called HPNN to protect the IPs
of DL models in a white-box setting. To the best of our knowledge,
this is the first work which leverages hardware as a root-of-trust to
achieve IP security of DL models.
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Fig. 1: Proposed HPNN framework for IP security of DL models.

• Providing a theoretical construct of a key-dependent backpropagation
algorithm for training a neural network which doesn’t sacrifice a
model’s prediction accuracy to gain security benefits.
• Extensive experimental evaluations across different DNN architec-

tures and benchmark datasets to assess the robustness of obfuscated
DL models against model fine-tuning attacks.

II. MOTIVATION

The development of a production-level DL model is not a trivial
task as it requires a massive amount of training data along with high
power computing resources. State-of-the-art DL models take several
weeks of training over GPU clusters. In addition, designing a well-
trained model requires significant machine learning expertise as well
as long working hours to execute numerous trial runs to properly
optimize the associated network hyper-parameters [19], [24]. The
growing trend of deployment of well-trained DL models in public
cloud infrastructure (MLaaS settings) opens the door for attackers to
steal models and establish plagiarized machine learning services. Such
IP theft of DL models poses a major threat of substantial revenue loss
in market share to its owners [7], [19]. Also, stolen DL models used
in mission-critical operations (which may involve national security)
can be sold to Darknet markets [26]. Therefore, there is a strong need
to ensure the security of well-trained DL models from illegal usage.

Attacker’s Goal. In this work, we assume that an attacker has
access to a DL model’s weight parameters either through public
cloud platform or from an information breach via malicious malware
infection or an insider source [26]. Also, we assume that the attacker
has knowledge of the DNN architecture (or topology) used to train
the model. This is reasonable assumption as industrial applications
typically use published DNN architectures which have demonstrated
high modeling capabilities [22]. The objective of the attacker is to
either utilize the stolen DL model to provide a plagiarized cloud
based service to end-users or to deploy it in a private network for
running intended DL applications (as shown in Fig. 1). Though, in
the former scenario, the DL model owner may still use watermarking
techniques [7], [11], [19] to claim digital rights (if somehow she has
obtained access privileges to the illegal cloud service), but in the
latter attack scenario, the model owner won’t have any provision to
remotely query the DL model to extract watermarked contents [26].
This strongly motivates the development of a much more effective
IP security solution for DL models which can thwart any sort of
unauthorized usage scenarios.

A robust IP protection of DL models can be achieved using
provably-secure cryptographic schemes where the DL model owner
encrypts the model parameters before uploading them in a public
cloud service. Only a legitimate end-user will be able to decrypt
(using a secret key) the encrypted parameters to retrieve the trained

DL model. However, this solution will be highly inefficient in practice
as industrial DL models have millions of weight parameters [14]
and applying cryptographic algorithms on such large-scale DNNs
will incur huge time/implementation overheads. Instead, we propose
HPNN framework as a lightweight alternative to secure IPs of DL
models by obfuscating their weight parameters. Such obfuscated DL
models can be openly distributed using public cloud infrastructure
without any IP theft concerns.

III. PROPOSED HPNN FRAMEWORK

A. Overall Flow

The global flow of HPNN framework is presented in Fig. 1. A DL
model owner spends long working hours to train a network using a
large annotated training dataset and high-performance computing plat-
forms. The crux of IP protection guarantees provided by the HPNN
framework relies on training a DNN using a key-dependent backprop-
agation algorithm (more details in section III-C) which obfuscates
the learned weight space of the model. Such a key-dependent training
approach doesn’t compromise the prediction accuracy of the obtained
model to gain security benefits. Then, the obfuscated DL model is
hosted on a public model sharing platform (such as a cloud interface
in MLaaS settings) to provide services to only authorized customers
who have acquired the requisite licenses for model usage. In our
proposed HPNN framework, licenses are distributed in the form of
trustworthy hardware devices which securely embed the secret HPNN
key on-chip [5], [25]. This scheme aims to guarantee state-of-the-art
inference phase performance of a locked DL model only on such
trusted hardware devices, while significantly degrading its prediction
accuracy for any illegal usage. Note that a model owner can train
several DNNs using the same HPNN key to obtain obfuscated DL
models targeting different applications. Later in section IV-B, we also
experimentally demonstrate the effectiveness of HPNN framework
to thwart model fine-tuning type attack where an attacker tries to
leverage the knowledge of the DNN architecture (white-box setting)
and an available thief dataset to steal a well-trained DL model.

Hardware root-of-trust. Our proposed HPNN framework relies
on the utilization of a hardware root-of-trust (with secret HPNN
key embedded on-chip) to provide services to authorized end-users.
The rationale behind the assumption of availability of such trusted
hardware devices are as follows: (i) Domain-specific hardware chips
(e.g., Google’s Tensor Processing Unit [14], Intel’s Neural Compute
Stick [3], etc.) are being deployed in industrial settings for accel-
erating the inference phase in DNN applications. In our proposed
HPNN framework also, the trusted hardware devices are utilized by
authorized end-users for running only the DNN inference phase. Note
that during the DNN training phase, the DL model owner just requires
the knowledge of HPNN key value (no need for any trusted hardware



device) to obfuscate the learned weight space of the model. (ii) Also,
in order to counter emerging threats to IoT edge devices, applications
are increasingly designed to rely on secure key storage facility
provided by a hardware root-of-trust such as Trusted Platform Module
(TPM) [5]. In addition to providing stronger security guarantees than
their software counterparts, hardware-assisted protection mechanisms
also incur significantly lower performance overhead [9], [20].

B. Neural Network Obfuscation
In this work, we assume that an attacker has knowledge of

the details of a DNN architecture, i.e., the number and types of
layers in the network as well as the connectivity graphs between the
layers (white-box setting). Henceforth, we refer to such information
as knowledge of the baseline DNN architecture. The goal of our
proposed HPNN framework is to train a DNN in such a way that
the learned weight space of the model is obfuscated as a function of
secret HPNN key. To realize this objective, we lock any jth neuron
belonging to a nonlinear layer of the network by associating a HPNN
key bit kj as illustrated in Fig. 2(a). Such a neuron basically performs
(i) multiply and accumulate (MAC) operation to compute a weighted
sum of its inputs (a1, a2, ..., aN ), i.e., MACj=

∑N
i=1 aiwji = aTwj

and (ii) then, passes MACj through a nonlinear activation function
f to produce the neuron’s output response, i.e., outj = f(MACj).
Now, in order to lock the functionality of jth neuron, we make outj
dependent on HPNN key bit kj as follows:

outj = f(LjMACj) = f(Lja
Twj) (1)

where, Lj = (−1)kj (2)

The variable Lj is called the lock factor of jth neuron, which governs
the sign of MACj based on kj value as shown in Fig. 2(b). If kj = 0,
then MACj remains the same, whereas (ii) if kj = 1, then sign of
MACj is flipped. Next, we study the implication of such key based
obfuscation of neurons on the network training process.

C. Key-dependent Backpropagation
In order to train a neural network in the HPNN framework, we

propose a key-dependent backpropagation algorithm which creates a
model whose weight space is highly optimized as a function of the
HPNN key. Such an obfuscated model strongly resists any attempts
to illegally utilize it by concealing the learned decision boundaries.
Next, we describe how the notion of HPNN key can be augmented
to a conventional backpropagation based training approach.

Neural networks are typically trained using iterative, gradient-
based optimizers with the objective of driving a desired cost function
to a very low value. We consider the training of a network using
delta rule which utilizes backpropagation algorithm to update network
parameters such that the given cost function is minimized [10]. Let
Ep denote the cost function which measures the discrepancy between
the expected (or correct) output response and the output response
produced by a network for the pth training vector. Then, the learning
rule for the ith incoming weight of jth neuron (wji) can be expressed
as follows:

∆wji = −η ∂E
p

∂wji
(3)

where, η is the learning rate. In HPNN framework, if we consider a
mean squared error (MSE) cost function, i.e., Ep = 1

2

∑
j(tj−outj)

2

with tj being the correct output label, the above weight learning rule
will be a function of lock factor Lj as shown below:

∆wj = ηδja (4)
where,

δj=

(tj − outj)f
′
(LjMACj)Lj if jth neuron ∈ output layer( ∑

k∈O
wkjδk

)
f

′
(LjMACj)Lj if jth neuron ∈ hidden layer

j th neuron

(a) (b)
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Fig. 2: Obfuscation of a neuron in HPNN framework.

with f
′

being the derivative of the activation function f , a denotes
the input vector to the neuron, and O denotes the neuron’s adjacent
layer. The above backpropagation based learning rule can now be
used to update the incoming weight vectors of all locked neurons
in the proposed obfuscation framework. This will lead the entire
network to learn an optimized weight space as a function of not
only the training dataset but also the Lj values (which are derived
from the secret HPNN key, see Eq. 2). As demonstrated later by
experimental results outlined in section IV, such a locked model
performs accurately during the inference phase only when the HPNN
key is used to retrieve the correct functionalities of the locked neurons.

Model capacity. The capacity of a model describes the complexity of
relationship it can map between the input patterns and output labels
for a given dataset. The capacity of a DL model obtained by training
a DNN using our proposed HPNN framework is independent of any
key value used. To demonstrate this property let us first consider the
case of a single layer fully-connected network, before we consider
more complex DNN architectures. Note that two models (obfuscated
using two different HPNN keys) have equivalent capacities if there
exists equivalent weight assignments which lead to the same output
predictions for any given input to the models. We show the existence
of such equivalent weight assignments for a single layer fully con-
nected network by establishing a relationship between the incoming
weight vectors of any jth neuron (locked with different HPNN key
bit values) which leads to the same neuron response outj and hence,
the same overall network’s prediction for an input vector.

Definition 1: For any jth neuron (with lock factor Lj and output
response outj), let winit

j denote its initial incoming weight vectors
(before training) and let wN

j,Lj
denote its incoming weight vectors

after N training epochs.

Theorem 1: For a single layer fully-connected network initialized
with all zero weight parameters (i.e., winit

j =0), we get wN
j,−1=−wN

j,1.

Proof: We prove this theorem using principle of mathematical
induction. (i) Base case : Before any training epoch, we have
w0

j,−1= winit
j = 0 = −w0

j,1 (ii) Induction step : Let us assume
that wK

j,−1 = −wK
j,1 after K training epochs. We now need to show

wK+1
j,−1 = −wK+1

j,1 in order to prove the lemma. In the (K + 1)th

training epoch with Lj = 1 and using Eqs. (1) and (4) we get,
∆wj,1 = η(tj − f(aTw

K

j,1))f
′
(aTw

K

j,1)a

wK+1
j,1 = wK

j,1 + ∆wj,1 (5)

Similarly, with Lj = −1 we get,
∆wj,−1 =−η(tj − f(−aTw

K

j,−1))f
′
(−aTw

K

j,−1)a

=−η(tj − f(aTw
K

j,1))f
′
(aTw

K

j,1)a

=−∆wj,1 (6)

Therefore, wK+1
j,−1 = wK

j,−1 + ∆wj,−1

=−(wK
j,1 + ∆wj,1) = −wK+1

j,1 (7)

Hence, by the principle of induction the theorem holds true.
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Fig. 3: Performance of DL models locked using different HPNN keys.

It is non-trivial to derive similar relationships for modern DNN
architectures which consist of multiple hidden layers. Also, a network
is typically initialized with small random non-zero weight parameters
for effective training [10]. But the following lemma still guarantees
that the DL model capacity is unaffected by the choice of HPNN key
used to train the DNN in our proposed obfuscation framework.

Lemma 1: DL models obfuscated using different HPNN keys
have equivalent model capacities.

Proof: For a given DNN architecture, the manner in which a jth

neuron is locked in HPNN framework ensures that the same neural
activation response outj will be produced if we have incoming weight
vectors of wj for kj= 0 and −wj for kj= 1, as evident from Eq. (1).
This implies that there exists equivalent weight assignments for
different HPNN keys which will lead to the same network prediction
outcomes, which in turn implies that all such obfuscated DL models
have equivalent capacities.

However, in practice, such key-dependent backpropagation based
DNN training is likely to yield different incoming weight vector
magnitudes of neurons for different HPNN keys due to network
nonlinearity as well as random weight initialization. To ascertain
the equivalence in capacities of DL models obtained by training
the same DNN topology but locked using different HPNN keys, we
performed the following experiment: First, we randomly generated
20 different HPNN keys, and then used these keys to train a
given DNN architecture with the same training dataset (Fashion-
MNIST [2]) and hyperparameters combination. We considered the
prediction accuracy of a DL model as the indicator of its modeling
capacity. The experimental results are presented in Fig. 3 for two
different DNN architectures, CNN1 (see Table I for network details)
and ResNet18 [12]. Each of the box plots shows the distribution
of prediction accuracy of 20 different DL models on the same test
dataset. Such model accuracy distributions highlight the fact that DL
models obtained using different HPNN keys perform on an equivalent
scale. Also, the mean prediction accuracy (shown using red lines) for
CNN1 and ResNet18 networks are 86.95% and 92.93% respectively,
which are very close to the corresponding accuracy (shown using
green arrows) of 86.99% and 92.83% of the baseline DL models
(i.e., the models obtained using conventional backpropagation based
training of baseline DNN architectures).
D. Role of hardware root-of-trust

In the proposed HPNN framework, an authorized end-user utilizes
a trusted hardware device (which embeds the secret HPNN key) to run
the DNN inference phase. In a modern DNN architecture, there are
typically thousands of neurons belonging to nonlinear network layers
and hence, associating a key bit with each such neuron (as presented
in Sec. III-B) will lead to an impractically large HPNN key length.
The hardware root-of-trust not only accelerates the DNN inference
phase but also facilitates the use of a practical size HPNN key. This
can be achieved by a simple modification in the MAC unit design of
the trusted hardware device. For illustration purposes, let us consider
a Google TPU-like chip [14] which will be deployed as a hardware
root-of-trust in our proposed DL model obfuscation framework.
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Fig. 4: Hardware realization of neuron locking mechanism.

Google TPU design. The main computational component of a Google
TPU chip is called matrix multiply unit (MMU) which performs
MAC operations in a pipelined manner. MMU consists of 256X256
MACs which compute 8-bit multiply-and-adds on signed or unsigned
integers. The resulting 16-bit products are first collected in 256
accumulator units and then passed on to an on-chip activation module
which implements standard nonlinear operations (such as ReLU,
sigmoid, etc.). For more details on TPU architecture, please refer
to [14]. Next, we outline how the MAC design of such a chip can be
modified to facilitate the use of a practical size HPNN key.

1) Key-dependent accumulator: We propose a low overhead
design modification to make the MAC computation key-dependent
as shown in Fig. 4(a). As specific design details of TPU are not
publicly available, we make the following assumptions for the sake
of illustration: (i) the design of an accumulator unit is based on a full-
adder (FA) chain as shown in Fig. 4(b). (ii) all numbers are stored
and operated on in their two’s complement representation. Now, in
order to lock the MAC computation of jth neuron as a function of
kj , we introduce 16 additional XOR gates per accumulator unit as
shown in Fig. 4(b). Each such gate takes as input − (i) a bit from
the multiplier unit’s 16-bit result and (ii) an HPNN key bit kj which
is supplied from a secure on-chip memory. The magnitude of kj
determines the functionality of the accumulation operation: If kj = 0,
then MACj =

∑N
i=1 aiwji is computed by performing a sequence

of addition in the accumulator unit. On the other hand if kj = 1,
then MACj is converted to its two’s complement by performing a
sequence of subtraction, i.e.,

∑N
i=1−aiwji = −MACj . This simple

modification in the accumulator design makes the response of jth

neuron dependent on its lock factor Lj , i.e., outj=f(LjMACj), as
expected in Eq. (1).

2) HPNN key: As there are only 256 such accumulator units in
a Google TPU-like architecture, the size of HPNN key will be 256
bits (a practical key length) and the total number of additional XOR
gates required will be 256X16 = 4096. When a large-scale DNN
inference is run on such an accelerator chip, multiple locked neurons
will be mapped to a single accumulator unit by using a hardware-
specific scheduling algorithm. This implies that a single HPNN key
bit will be associated with several locked neurons in the HPNN
framework. During the training phase, a DL model owner needs
to utilize the information from this hardware-specific scheduling
algorithm to derive the key bits corresponding to all the locked
neurons of a DNN from the 256-bit HPNN key. Note that the details
of such scheduling used in the hardware root-of-trust will also be
kept private to further enhance the security of HPNN framework.

3) Implementation overhead: The additional cost incurred to pro-
vide MLaaS using HPNN framework are as follows: (i) In the training
phase, a DL model owner needs to perform a one-time preprocessing
using the notion of hardware-specific scheduling algorithm to map
subsets of DNN neurons to their corresponding HPNN key bits.
(ii) In the inference phase, which is carried out using the trusted
hardware, small area overhead will be incurred due to introduction
of additional XOR gates (4096 gates in case of Google TPU-like
architecture) for modifying the accumulator design. If we consider a
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MMU implementation [16] which consists of gates in the order of
106, then the gate overhead due to our proposed design modification
will be less than 0.5%. Also, there will be no clock cycle overhead
(only combinational delay for calculating two’s complement) due to
the introduction of additional XOR gates. Hence, our proposed HPNN
framework offers a lightweight IP security solution for DL models.

IV. EVALUATIONS

We evaluate the security benefits offered by the HPNN framework
across 3 different benchmark datasets (Fashion-MNIST [2], CIFAR-
10 [1], and SVHN [4]) and Convolution Neural Network (CNN) ar-
chitectures (details in Table I). We used Pytorch 3.1 to run simulations
on a system consisting of an Intel Xeon CPU and a Nvidia Maxwell
GPU with 32 GB and 2 GB memories respectively.
A. Performance of locked DL models

A DL model obtained using the key-based backpropagation algo-
rithm (see Sec. III-C) should demonstrate high prediction accuracy
only when it runs inference on a trusted hardware device. Such a
hardware root-of-trust deobfuscates the locked neurons of a DNN
to retrieve the network functionality using the secret HPNN key1.
The proposed HPNN framework aims to thwart any attempts by the
attacker to run DNN inference with satisfactory prediction accuracy
by loading the baseline DNN architecture with a stolen DL model. We
performed experiments across different benchmark datasets to asses
the robustness of HPNN framework in such an attack scenario. In
columns 4 and 5 of Table I, we report the accuracy obtained when
running locked DL models on a hardware-root-of-trust (simulated by
providing the secret HPNN key to retrieve the DNN functionality)
and on the baseline DNN architecture (no key). In the latter case, we
observe substantial accuracy drops of 79.88%, 80.17%, and 73.22%
for Fashion-MNIST, CIFAR-10, and SVHN datasets respectively
compared to the original accuracy as obtained by running the locked
DL models on trusted hardware. Next, we evaluate the security offered
by HPNN framework to protect the IP of a well-trained DL model
in a stronger model fine-tuning attack scenario.
B. Model fine-tuning attack

Model fine-tuning is a type of transformation attack strategy [18],
[19] which drives the underlying neural network to converge to some
other local minimum (different from the original model) and results
in comparative performance in practical applications. To evaluate the
effectiveness of our proposed HPNN framework against a model fine-
tuning attack we consider the following threat model.
Attacker’s Capabilities. In addition to having the knowledge of the
baseline DNN architecture, the attacker has the following privileges:
• Availability of a thief dataset (annotated) which constitutes a

small fraction α (say 10%) of the original training dataset.
• Significant DNN expertise as well as powerful computational

resources to train large network architectures.

1In our experiments, we randomly assigned key bit values to neurons
belonging to nonlinear layers of a DNN. However, in practice, the DL model
owner needs to derive the key bits to be associated with such neurons from the
HPNN key using hardware-specific scheduling information (see Sec. III-D2).

Fig. 6: Effect of learning rate (lr) on fine-tuning (top) dataset:Fashion-
MNIST, network:CNN1 (bottom) dataset:CIFAR-10, network:CNN2

Attacker’s Limitation. The attacker doesn’t possess a large amount
of annotated training data as well as optimized model hyperparameters
(which are responsible for its highly accurate performance). This is
a reasonable assumption as DL model owners keep such information
private to maintain a competitive edge in business [19], [22].
Attack Methodology and results. To perform a model fine-tuning
attack, the attacker first loads the stolen DL model parameters to
initialize the baseline DNN architecture and then utilizes the thief
dataset to retrain the model. The attack is deemed successful only if
such a retrained DL model performs equivalently, i.e., shows similar
high levels of accuracy in its predictions as the owner’s DL model
running on a hardware root-of-trust (which embeds the HPNN key).

1) Impact of thief dataset size and network architecture: To
analyze the impact of the size of the thief dataset on the success rate
of a model fine-tuning attack, we assume the availability of different
thief dataset fractions (α=1%, 2%, 3%, 5%, and 10%) to the attacker.
In Fig.5, we present the experimental results of model fine-tuning
attack across 2 different DNN architectures (CNN1 and ResNet18,
see Table I for network topology) using the Fashion-MNIST dataset.
It can be observed from the accuracy trends that as the size of the
thief dataset increases, so does the success rate of a model fine-
tuning attack. However, even with α=10%, the attacker reaches a fine-
tuning accuracy of only 82.45% and 88.60% for CNN1 and ResNet18
whereas the corresponding accuracy obtained originally by DL model
owner are 89.93% and 93.92% respectively. These results highlight
the effectiveness of our proposed HPNN framework to safeguard the
IPs of DL models across different network architectures. Note that
in the above set of experiments, we used the same hyperparameter
configuration for performing model fine-tuning as used by the DL
model owner to train the network.

2) Impact of hyperparameter: We varied both the learning rate
(lr) and the number of training epochs to observe the best accuracy
that can be attained using model fine-tuning attack. In Fig. 6, we
present the results of such experiments using a thief dataset fraction
α=10% across different datasets. The best accuracy achieved by such
hyperparameter tuning on Fashion-MNIST and CIFAR-10 datasets
are 85.91% and 79.61% respectively, which are significantly lower
than their counterparts of 89.93% and 89.54% as obtained by the
DL model owner. Also, we observed that increasing lr too much (for
example setting lr = 0.05 on Fashion-MNIST dataset, see Fig. 6(top))
leads to poor generalization performance on the test dataset.

C. Information leakage from obfuscated DL model
A major challenge for HPNN framework is to ensure that a

locked DL model doesn’t leak any significant information related



Dataset Network Architecture No. of neurons in Original
HPNN locked Random fine-tuning HPNN fine-tuning

(number and types of layers) nonlinear (ReLU) layers accuracy accuracy %drop accuracy %drop accuracy %drop
Fashion-MNIST CNN1 (2 C, 2 MP, 2 ReLU, 1 FC) 4352 89.93 10.05 79.88 86.35 3.58 82.45 7.48

CIFAR10 CNN2 (6 C, 3 MP, 8 ReLU, 3 FC) 198144 89.54 9.37 80.17 78.87 10.67 78.53 11.01
SVHN CNN3 (3 C, 3 MP, 4 ReLU, 2 FC) 29696 89.06 15.84 73.22 80.97 8.09 82.89 6.17

TABLE I: Effectiveness of HPNN framework against model fine-tuning attack (C: convolutional, MP: max-pooling, FC: fully-connected layers)
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Fig. 7: Impact of thief dataset size on fine-tuning attack.

to the input-output mapping of the owner’s DL model, beyond what
can be exploited by the attacker using the thief dataset. In order to
experimentally quantify the information leakage from an obfuscated
DL model we performed two types of fine-tuning attacks under
the same hyperparameter settings (i) Random fine-tuning approach
where we initialized the baseline DNN architecture with random
small weight parameters and (ii) HPNN fine-tuning approach where
we initialized the baseline DNN with the obfuscated DL model’s
weight parameters. The intuition behind such an experiment being
that if the accuracy achieved by random fine-tuning and HPNN fine-
tuning attacks are similar, then the obfuscated DL model doesn’t leak
any significant information related to the owner’s DL model. The
experimental outcomes for such fine-tuning attacks across different
benchmark datasets (using a thief dataset fraction α=10%) are
presented in the last four subcolumns of Table I. We observe that
both types of fine-tuning attacks could achieve accuracy levels which
are significantly lower than the original accuracy obtained by the
DL model owner. Also, both the attacks perform quite similarly in
terms of the final accuracy achieved across different datasets. This
indicates that initializing the network using weight parameters of
an obfuscated DL model (which is trained on the entire annotated
training dataset) doesn’t provide any advantage compared to random
weight initialization for performing fine-tuning attack.

We further investigated the effect of available thief dataset size
on these two types of fine-tuning attacks. As we can observe from
the experimental results reported in Fig. 7, both random and HPNN
fine-tuning attacks perform very closely across different α values on
the datasets considered. Note that α=0% corresponds to the scenario
where the attacker doesn’t possess any thief dataset to perform model
fine-tuning. The accuracy trends signify that the success of attacker
is limited by the size of the available thief dataset, irrespective of the
weight initialization used. Therefore, our proposed HPNN framework
successfully thwarts IP theft attempts of DL models even under a
strong threat model which considers model fine-tuning attacks.

V. CONCLUSION

In this paper, we propose a lightweight obfuscation framework
called HPNN for IP protection of DL models. In this framework, a
DL model owner utilizes a novel key-dependent backpropagation al-
gorithm to train a network such than only an authorized end-user who
possesses a trusted hardware (with the secret HPNN key embedded
on-chip) will be able to effectively run the DNN inference phase.
The experimental outcomes across different benchmark datasets and
DNN architectures highlight the fact that any unauthorized usage of
such locked DL models will lead to a substantial degradation of the

model prediction accuracy. In addition, we also performed extensive
evaluations to demonstrate the robustness of obfuscated DL models
(trained using HPNN framework) against model fine-tuning attacks.
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