
Precise and Mechanised Models and Proofs for
Distance-Bounding

and an Application to Contactless Payments

Ioana Boureanu1, Constantin Catalin Dragan1, François Dupressoir2, David
Gerault3, and Pascal Lafourcade4

1 University of Surrey, UK i.boureanu@surrey.ac.uk, c.dragan@surrey.ac.uk
2 University of Bristol, UK f.dupressoir@bristol.ac.uk

3 Nanyang Technological University, Singapore dagerault@gmail.com
4 University Clermont Auvergne, France pascal.lafourcade@uca.fr

Abstract. Distance-bounding protocols provide a means for a verifier
(e.g., an RFID reader) to estimate his relative distance to a prover (e.g.,
a bankcard), in order to counteract relay attacks. We propose FlexiDB,
a new cryptographic model for DB, parameterised over fine-grained cor-
ruptions. It allows to consider trivial cases, classical cases but also new,
generalised scenarios in which we show manipulating differently-corrupt
provers at once leads to new attacks. We propose a proof-of-concept
mechanisation of FlexiDB in the interactive cryptographic prover Easy-
Crypt, and use it to prove a flavour of man-in-the-middle security on a
variant of MasterCard’s contactless-payment protocol.

1 Introduction

Not only do we use contactless payments, but we use them more and more.
Across the UK alone, “contactless payments have grown in recent years, with a
record 34% of card payments using contactless5 in June 2017. And, we use con-
tactless systems because of their high usability and convenience. Yet contactless
communications, such as tap-and-pay and remote keyless ignition system (RKI),
due to them requiring no active user-input, are particularly vulnerable to relay
attacks. In these, a man-in-the-middle (MiM) ferries the communication back
and forth between two parties P and V , unbeknown to them. The setting is
one where P and V are not within the right communication range to start com-
municating as intended, but the relaying adversary forces a stealth out-of-band
communication by impersonating V to P and vice-versa. The aim of the relay-
ing MiM is to get some illicit gain, that normally is attributed to P and/or V .
Indeed, relay attacks working successfully across distances as wide as from the
US to the UK have been shown on contactless payments [17]; in this case, the
attacker pays fraudulently by a payment terminal V by stealing the funds asso-
ciated to a bankcard P , without any untoward evidence in the communications
seen by P and V .

5 https://www.visa.co.uk/about-visa/newsroom/press-releases.2130476.html

https://www.visa.co.uk/about-visa/newsroom/press-releases.2130476.html

Distance Bounding (DB). To counteract relay attacks, one classical means
is to add a distance-bounding (DB) or proximity-checking mechanism on top
of contactless protocols, be them authentication, payments schemes or RKI. In
its simplest form, in distance-bounding, the verifier party V (i.e., the car, the
payment-terminal) measures the round trip times (RTT) of an exchange with the
prover party P (i.e., the key-fob, the bankcard) and compares this measurement
to a given bound; thus, if the measurement is within the bound, then the verifier
concludes that the prover should be physically within some given, acceptable
range. Nowadays, distance bounding is not just in the realms of theory, it is
very much adopted in real-life systems, in various applications. For instance,
since 2016, Mastercard has augmented its original, contactless payment scheme
called PayPass with a relay protection protocol (RRP) which is indeed a distance-
bounding procedure.

Incomparable DB Security Models. The security of DB constructs has been
studied for two decades [2], not just as a RTT-measuring mechanism but gener-
ally as an authentication protocol. Semi-formal and formal models of its security
appeared from 2011 onwards [2]. However, the particular security-modelling de-
tails of the threat models vary from formalism to formalism: (a) should we have
multiple provers be exploitable in an attacks or consider that just the victim
prover is present? (b) should device corruption be considered black-box or white-
box? (c) should the attacker have powerful control over the network (e.g., use
signal amplification, flip bits) or just do pure relaying? Not having a consensus
on such matters leads to incomparable (in)security results.

No Mechanised Cryptographic Proofs for DB. In formal methods for
security analysis, there are two main schools of thought: symbolic and compu-
tational [9]. The tools used by each of these two methodologies view general-
purpose security/cryptography, having no built-in capabilities to facilitate the
reasoning about physical aspects such as time-measurements or distance bounds.
In the last two years, symbolic verification made steps towards the mechanisation
of verification of distance-bounding protocols, including looking at those used in
payments such as PayPass. However, there is no computational mechanisation of
distance-bounding models.

Contributions. We will address the two main shortcomings described above.
Our two main contributions are:

1. We develop a new DB security formalism, called FlexiDB, which is in fact
a hierarchy of threat-models for DB, parameterised over the capabilities of
the adversary w.r.t. its corruption and at the network-manipulation abili-
ties. This means that each application (i.e., authentication, payments, RKI)
can pick the adversary or sets thereof that fit their domain and security
requirements.
– Given this generic/flexible nature, the security properties included in our

FlexiDB model capture and generalise existing DB-security properties,

as well as being –in the strongest attacker-model possible– totally new
additions to this area.

– Indeed, the latter leads to us also exhibiting new attacks on DB protocols,
including on contactless payments.

2. We mechanise, in EasyCrypt, both the core of FlexiDB and a proof that –
against one of the threat models in FlexiDB– one of MasterCard’s contactless-
payment protocol does indeed realise distance-bounding against MiM attack-
ers.

Finally, the take-home message of our contributions is also two-fold. First,
our model permits to prove the security of a protocol within a specific corruption
“scenario”, such as adversaries being able to obtain several secret keys, but hav-
ing limited channel manipulation abilities. The need for such granularity arises
directly from practical applications. For instance, in the plastic-card contactless
payments, communications are assumed to only be possible within limited range,
and cards are assumed to be resistant to tampering. Conversely, in smartphone
contactless payments, key extraction can become feasible. Second, by providing
and demonstrating support for the model in EasyCrypt, we aim to allow future
proofs in the model to be machine-checked. Beyond ensuring that (computa-
tional) proofs are indeed correct—a worthy goal in and of itself, this in turn will
allow evaluators and decision makers to focus their critical efforts on evaluating
the security claims themselves to ensure they are appropriate for the use case
considered, without having to also evaluate the claims’ truth.

2 Related Work

Distance-Bounding Notions. Distance-bounding protocols are subject to
four main threats. 1. Mafia fraud (MF) is an attack whereby a MiM, present
in the range of the verifier V , tries to authenticate as a legitimate prover P ,
whilst P is out of V ’s range. 2. In a distance fraud (DF), a malicious prover
located passed the acceptable bound from the verifier attempts to authenticate.
3. Distance hijacking (DH) is generalising DF, as the far-away, corrupt prover is
abusing honest provers found close to the verifier. 4. In a terrorist fraud (TF),
the DF-mounting far-away prover P has an accomplice located near the verifier
and this accomplice is supposed to authenticate as P under special conditions
(e.g., the accomplice does not learn P ’s cryptographic secrets). Variations and
generalisations of the above descriptions of DF, DH, MiM exist [2]. In our model
we consider the strongest generalisation of these and even strengthen them fur-
ther. However, due to the lack of consensus on TF, we leave this threat out of
our model.

Main Cryptographic Models for DB. In 2009, Avoine et al. put forward
the first a semi-formal, computational framework for DB security [4]. They con-
sidered a single prover and verifier present in all attack scenarios. Possibly the

most relevant contribution of [4] was to explicitly distinguish black-box provers
from white-box provers6.

In 2011, Dürholz et al. proposed a cryptographic model more formal than [4],
where the DB setups (DF positioning, MF positioning) where modelled via al-
lowed/disallowed protocol-session interleaving. This formalisms allows for con-
currency, all dishonest provers are corrupted just in the white-box manner, and
the formalisation of DF, MF is not generalised.

In 2013, Boureanu et al. published the so-called BMV model [14,11], which
formalises DB security as interactive proofs. This model allows for concurrency,
all dishonest provers are corrupted just in the white-box manner, but unlike [4],
the BMV model generalises the DF, DH and MF definitions, allowing for e.g.,
learning phases before the attacks and multiple provers being present alongside
during the attacks. In 2017, Ahmadhi et al. [1] slightly extended the BMV model
by allowing the adversary to send unicast messages (as opposed to the traditional
broadcast-only); this gave rise to new attacks.

Main Symbolic Models for DB. In 2011, the first symbolic verification of DB
was proposed [7]. Building on these ideas, in 2017 – 2018, three symbolic formal-
ism for DB-security verification emerged: Mauw et al. [31], Chothia et al. [16],
and Debant et al. [20]. Very recent and very specific extensions (i.e., around TF
verification) are [32] (of 2018’s Mauw et al.), [21] (of 2018’s Debant et al.). On
the one hand, these, being symbolic, are less precise than their aforementioned
cryptographic counterparts. On the other hand, they make different assump-
tions on the capacities of the adversary and/or the communication patterns. For
instance, in all these symbolic formalisms, the adversary has the “new” ability
to block or replace messages in flight, even from afar. In fact, this capability is
realistic and grounded in well-known signal manipulation techniques [35].

Symbolic models are particularly well-suited to mechanised verification. We
note, however, that security claims in the computational model are often not
comparable to their symbolic counterparts, and view support for mechanisation
in both worlds as complementary, with symbolic verification particularly useful
for rapid design-time iteration, and computational mechanisation useful to make
precise concrete security claims, often at considerably greater expense.

Note. There are more variations on the cryptographic models mentioned
above (i.e., on Dürholz et al., on the BMV model), yet for the purpose of this
work, these are not essential. For a summary of these, please see [2]. We also do
not further review work on the symbolic verification of DB: we place ourselves
squarely in a computational model of cryptography, and view our efforts are
complementary to—rather than competing with—those of symbolic verification.
We direct the reader interested in a review of symbolic verification work for DB
to Pozo’s very thorough survey [36]. We discuss and compare specific detail of
prior work where relevant in the manuscript’s developments. For example, we

6 The user of a white-box device has access to its secret key, while black-box provers
operate in a manner that it totally opaque to their users.

compare and contrast with other formulations of the threats we consider after
giving our security definitions after giving them.

Our FlexiDB Model vs. Existing Models for DB. FlexiDB is a new cryp-
tographic model for distance bounding, which additionally includes variations
on the types of device-corruptions and illicit network-manipulation, as well as
advanced levels of concurrency. All these adversarial capabilities are given as
parameters inside our FlexiDB model, therefore enabling a fine-grained analysis
in line with the practical realities of protocol implementation.

Our FlexiDB model runs closest in the style of definitions to the BMV model
(e.g., we consider learning/attack phase, full concurrency). However, we operate
in an oracle-based model rather than interactive-Turing-machines setting. Fur-
ther, by allowing the variation in adversaries, we offer a hierarchy of definitions
for each security property, as well as a strengthening the definitions in the BMV
model. Concretely, in our DF and MF definitions, it is possible to have corrupt
provers, and also corrupted in various ways, present in the security experiments,
which was not the case in the BMV model. Indeed, we adopt the white/black-
box corruption idea from [4] as Insider,Outsider adversaries but take it further.
That is, whilst our weak-insider adversaries correspond to Avoine’s white-box
attackers, we additionally formalise the new and even stronger notion of strong
insiders adversaries, who can pick their own secret keys. We further allow mul-
tiple, concurrent presences thereof, as well as combine this in various ways with
other attacker’s capabilities (e.g., network manipulation); to this end, like [1], we
allow both broadcast and unicast messages. Finally, we also allow, like symbolic-
verification works do, that messages can be modified by the adversary from afar.

3 FlexiDB: Formalising Refined Threats in DB

3.1 Distance-Bounding Protocols

Def. 1 gives our formally formulation of a DB protocol.

Definition 1 (Distance-Bounding Protocols). A distance-bounding proto-
col is a tuple Π=(P,V, Setup,B), such that:
– P and V are the prover and, respectively, the verifier algorithm,
– B is a fixed distance bound considered in a context of a metric space and a
metric/distance,
– V is such that it has a binary output outV , denoting success/failure of his ex-
ecution,
– Setup is an algorithm used to initialise the DB system.

All algorithms are polynomial probabilistic time (ppt) in a security parameter7

s.

7 Computational measures such as polynomial probabilistic time (ppt), negligible,
etc., vary with the security parameter. We consider these and associated notions,
e.g., Interactive Turing Machines (ITMs) [40], commonplace.

We assume the existence of an infrastructure that supports DB protocols to
be run, i.e., the authentication material generation algorithms and cryptographic
primitives relevant to a given protocol. We call this infrastructure a DB system.

Setup, Algorithms & Parties The main purpose of the Setup algorithm
in Def. 1 is to generate the authentication material of provers and verifiers, as
new provers and verifiers are registered onto the DB system. During this Setup
phase, the P and V algorithms will also be loaded onto physical devices (e.g.,
cards, phones, terminals). Moreover, at Setup, each device is assigned a unique
identifier, i.e., no two devices have the same authentication material and/or
identifier. A party P with public identifier i is denoted Pi.

There are a polynomial number of devices present in the system. Some of
these devices are corrupted by the adversary, as it will become clearer later.
We use the words parties and devices interchangeably; concretely, a party is a
uniquely identifiable device running any algorithm as part of a protocol execu-
tion: be it a prover, a verifier or adversarial algorithm.

3.2 Physical & Communication Model

Now, we present our modelling of distance and timing.
Positions & Distances. As usual in distance bounding, we operate in a

metric space. Each party U occupies a position/place in this metric space. We
denote the position of party U as placeU . Also, in this metric space, we con-
sider d to be the distance-function. And, as normal in DB, in security require-
ments we will also ascertain whether for some given parties U , V , we have that
d(placeU , placeV) ≤ B. I.e., if this holds, we say that party U is close to party
V , otherwise we say that U is far from V .

Messages sent by all parties, including adversaries, are subject to a time of
flight. The time-of-flight is measured w.r.t. a global counter called Clock. This
Clock is incremented as messages travel, and the communication model will later
explain this in detail. We assume that messages that are normally computed in
polynomial time take 0 ticks of the Clock.

The distance d between two parties in fact measures the time-of-flight of
messages between two positions, considering the messages travel uniformly at a
speed c of one distance-unit per time-unit. No message, honest or adversarial,
can travel faster that at the given speed c.

All messages sent by prover and verifier parties are broadcast. Adversarial
parties can send unicast messages.

There is a system-recall of the position of parties, as well as of all sent and re-
ceived messages, including their timestamps; we will later develop on the system-
recall.

3.3 Threat Model

The adversary A has full control over two adversarial parties operating as ITMs.
We distinguish these adversarial parties from the honest parties (provers and

verifiers), and we denote the latter as AP and AV . This mirrors the classical
mafia fraud, where two adversary parties are involved. Following this convention,
AV and AP respectively represent the adversary near a verifier and the one near
a prover.

We consider a hierarchy of adversaries, determined by two different types of
adversarial abilities:
(1) corrupting/controlling parties;
(2) corrupting/controlling the network.

Party Corruption We distinguish three levels of this:
� Outsider (O), if the adversary is only given access to the public identifiers of
all parties;
� Insider (I), if the adversary is also given access to the authentication material
of some parties. Particularly, an Insider adversary can be of two kinds:

– Weak-Insider (WI), if the adversary is just given access to the authentication
material of prover-devices of his choice;

– Strong-Insider (SI), if the adversary is also allowed to register prover-devices
with his own choice of authentication material and identifiers.

Moreover, Insider adversaries are divided as follows:

– 1-Weak-Insider (1-WI) or 1-Strong-Insider (1-SI), when the adversary can
only corrupt one prover;

– n-Weak-Insider (n-WI) or n-Strong-Insider (n-SI), when the adversary can
corrupt several provers.

When the distinction between Weak-Insider and Strong-Insider is not im-
portant, we simply write “Insider”.

These corruption abilities mean the adversary can register one or more provers
for which he knows (Weak-Insider) or, alternatively, choses (Strong-Insider) the
secret material. Table 1 recaps our party-corruption capabilities.

Nb. of Prover-Keys Adv. knowing keys Adv. choosing Keys

0 O O

1 1-WI 1-SI

n >1 n-WI n-SI

Table 1. Party-corrupting Adversaries by Nb. of Provers’ Keys Known/Chosen.

Network Corruption We distinguish three types of adversarial communica-
tion capability, mainly determined by the physical-layer implementation of the
protocol. This entails the following types of adversary:
� Dummy (Dum), if the adversary cannot control the whole network, in that

it can only send and receive messages to/from honest parties within a distance
smaller than or equal to the bound B;
� Amplifier (Amp), if the adversary can do signal-amplification, meaning that
it can receive and send messages to/from honest parties across distances larger
than the bound B;
� Injector (Inj), if the adversary can block messages, or overwrite them with
its own, when the message is originated from a point found no further than the
bound B;
� Full (Full), if the adversary can do all of the above, i.e., send, receive, block
and overwrite messages even if they originate from point found further than the
bound B.

Note: An Injector adversary may seem strong or even unrealistic. However,
this is in line with practice: it is known as overshadowing, see [35] for more
details. Moreover, whilst prior cryptographic models fo not capture this abil-
ity, all symbolic verification mechanisms (e.g., [21,32]) do model adversarial
overshadowing/injection (almost by implicit virtue of symbolic formalisms).

Table 2 recaps our adversaries partitioned by network-corruption capabilities,
and next we propose to focus only on the categories defined below, while noting
that other combinations may be relevant.

Adversary Type Capability to replace msgs. Capability to amplify msgs.

Dum × ×
Amp × X
Inj X ×
Full X X
Table 2. Network-corruption Capabilities Across Our Adversaries.

The entire threat model and the adversarial communications aforementioned
are formalised via a set of oracles presented in Subsection 3.4.

3.4 Execution Model

Sessions. As usual, a party’s execution of (a part of) a DB protocol is called
a session. If one execution is run on a prover-device or verifier-device, then it
is a prover session or a verifier session, respectively. We write Xi for the i-th
session of a party X.

Each prover and verifier party has a status, active or inactive, meaning that
it is running at least one session or none.

As customary, the chronologically-ordered list of the messages sent and re-
ceived by a party in a session is called the transcript of the session. All sessions
are attributed a unique identifier (e.g., via the application of the pseudorandom
function to the transcript). A session is full if its transcript contains all messages
of the specification. As per our DB definition (Def. 1), the verifier-transcripts
show whether the authentication is accepted or not. Moreover, we consider that

from a successful, full verifier-transcript one can extract the public identifier of
the prover-party that was authenticated8.

Execution environment. We consider the concurrent sessions of a polyno-
mial number of honest and corrupted parties, including potentially the adver-
sarial devices as well as their concurrent sessions. We refer to such a setting as
an execution environment.

Challenger (Ch). To mechanise the execution environment and to arbitrate
the adversarial actions within it, we introduce (as expected) a challenger. The
main abilities of Ch are:

1. The challenger Ch is aware of the global clock Clock.
2. The challenger Ch keeps a list Pts of all parties9 in the system, indexed by

their id.
Also, Ch deals with all adversarial actions via a set of oracles presented later;
as such, challenger Ch knows if a given party has been corrupted by A and
his list Pts is kept up-to-date accordingly.

3. The challenger Ch keeps track of every session opened by every party in a
list called Sess. This list is indexed by the unique session identifier, and
it registers the time the session started, if it is a prover session, a verifier
session, as well as the up-to-date status of a session(i.e., finished or running),
and a transcript of the session.

4. The challenger Ch keeps a list Sends of timed, sent messages. This contains:
the id of the session (of the sender party) to which this is message belongs to,
the sender party, the aimed receiver party (which is optional), the message,
and the time of send. Recall that most messages are sent in broadcast mode,
and only the adversary can send messages in unicast mode; so, the latter is
the only case in which is there is an aimed receiver.

5. The challenger Ch keeps a list Reads of read messages at given times. This
contains: the id of the session (of the reading party) in which this message is
being read, the (apparent) sender party, the (real) sender party, the receiver
party, the message, the time of the receipt.

We underline one time-keeping aspect here. Firstly, if the “read” is from/to
a sender and receiver, then an entry in the Reads list is possible only if the mes-
sage appears in the sent-messages list Sends and if the message had the time to
travel from the sender to the receiver. I.e., d(sender, receiver) ≤ (current time−
tsent)× c where the challenger Ch finds the positions of sender, receiver in the
Pts list , the time tsent in the Sends list, the current time by using the global
Clock, and c is the speed of messages. If this inequality holds, then the time of
receipt inside Reads is recorded as the current time.

The points above show that the challenger Ch is an arbiter for the setup of
the system, of honest and corrupt behaviours, and of the communication rules.
Specifically, w.r.t. point (5) above, the challenger Ch uses his “communication

8 This is realistic (as such public identifiers are often sent in clear) and poses no
problem herein, as we do not treat provers’ anonymity or privacy.

9 “Parties” include all adversarial parties, as aforesaid.

logs” kept via the lists Pts, Sess, Sends and Reads, so that he does not allow
our communication rules to be broken.

Adversarial Oracles. The challenger Ch in fact generates the execution en-
vironment, and permits the adversary to interact with the environment through
a polynomial number of calls to oracles. These oracles permit the adversary to
populate the environment with provers and verifiers at positions of his choice,
and enforce the communication and corruption rules.

All our oracle calls are done by an adversary party Aid and each call takes
account of Aid’s position in the metric space. For instance, all parties can read a
message sent by Aid only at a time proportional to the distance between Aid and
themselves. Similarly, creation of parties at a given position are only effective
after the time proportional to the distance between the party created and Aid.
For simplicity, we often omit the Aid parameter in the description of our oracles.

To describe each oracle, we generally write oracle-nameadversarymax , where “ad-
versary” denotes the kind of adversary (e.g., Amplifier, Weak-Insider , etc) al-
lowed to call the oracle in cause, and “max” denotes the maximum value of a
counter internal to the oracle. If the superscript is missing, this denotes that the
oracle at hand can be called by any type of adversary. If the subscript is missing
from the description of an oracle, this denotes that it is the challenger Ch who
keeps the tally of numbers of calls for this oracle, as opposed to the oracle itself.
Our oracles are as follows.
join(type, pos): This oracle simulates the registration of a new honest party

of a given type (i.e., prover or verifier) at a position pos in the metric space. To
Aid calling join, the oracle returns the public identifier of the new party.
joink

WI(pos): This oracle simulates a Weak-Insider adversary registering a
corrupted prover at a position pos in the metric space. To Aid calling joinWI ,
the oracle returns the public identifier and authentication material of the new
prover.
joink

SI(id, auth, pos): This oracle simulates a Strong-Insider adversary choos-
ing a public identifier id and authentication material auth, and then registering
a corrupted prover with this id and auth, at a position pos in the metric space.
It aborts without creating the prover and returns ⊥ if another prover with the
same identifier or authentication material already exists. Otherwise, to Aid call-
ing joink

SI , the oracle returns >.
For the oracles join, joink

WI , joink
SI , we also have that:

– the challenger Ch adds the registered party to the Pts list and it also specifies
its type: honest for join, corrupted for joink

WI and joink
SI ;

– at each call, an internal counter is incremented; after k calls, the oracle is
disabled, i.e., returns ⊥.

enable-broadcast(): This oracle activates a communication mode in which,
by default, all messages by prover and verifier parties are sent to all parties even
if they are found far apart from where the message originates. The challenger
Ch stores and s sets a flag broadcast, once this is called.
init([P, V]): This oracle simulates the start of new executions of their respec-

tive algorithms by a prover-party with id P and/or for a verifier-party with the

id V . Either P or V can be omitted, in which case the adversary is running a
session with the party invoked.

If the broadcast flag is not set, then this oracle can only be called on provers
and verifiers within the distance bound from the position of Aid who calls this.

From the point of the call, the Ch delays the start of session by the time
proportional to the distance the parties in the session (P and/or V and/or A).

The session identified is returned to the adversary and it is stored by Ch in
the Sess list. All other relevant aspects (e.g., status of P , V in the Pts list) are
updated by Ch at its end.

move([P], pos): This oracle moves a party with the identifier P from its current
position to pos. If P is omitted, the party being moved is the adversary party
Aidcalling this oracle.

The challenger updates its Pts list accordingly.

sendDum([X, sid],m): This oracle simulates the sending of a message m from
Aid to the session sid of the party with the id X. If X is a prover.verifier party
far from Aid who call this, and broadcast is not set, then the oracle aborts and
returns ⊥.

The parameters X and sid are optional. If omitted, then the message m is
broadcasted to all parties, either within the distance-bound fromAid if broadcast
is not set, or otherwise broadcast even past the distance bound from Aid.

The challenger records this in the Sess list (updating transcripts), the Sends
list (updating time, etc.).

replace(X, sid,B,P,S,m′): Let M = M0 . . .Mk denote all the bits of the next
message to be sent by the party X in the session sid, P be a (possibly empty)
set of parties, S be a (possibly empty) set of sessions, and m′ be a message.
This oracle replaces the message bits {Mi|i ∈ B} with m′, so that the sessions
in S and the parties in P receive the modified message; this modification can
result also in deleting bits from the message. If B = ?, then the whole message
is replaced.

If X is a prover or verifier party located past the distance bound from Aid

who is the called of this oracle, and if broadcast is not set, then the oracle aborts
and returns ⊥.

In addition to these adversary oracles, we define the following tool function,
used by the challenger to determine the success of the adversary in a given attack.
It is not accessible to the adversary, and merely used as a syntactic shortcut to
express the result of a session.

result(sid, V): Retrieves the session with id sid of the verifier party V . If the
session exists, and the V accepted the authentication of a prover P.id, returns
(>, P.id). Otherwise, it returns ⊥ – meaning the session was unsuccessful in
authenticating a party.

Note: For simplicity, in this section, we included the level of detail necessary
for the reader to understand the crux of our model, the security properties/games
in Section 4 and the attacks in Section 5. To this end, we omitted the following:
(a) a read oracle aligned to that of the send oracle; (b) details of the man-
agement by the challenger of the exact timing-keeping w.r.t. the send/ read

adversary type Ocore Ocorr Ocom

Outsider {join, init, move, sendDum} ∅ NaN

1-Weak-Insider {join, init, move, sendDum} {joinWI
1 } NaN

n-Weak-Insider {join, init, move, sendDum} {joinWI
n } NaN

1-Strong-Insider {join, init, move, sendDum} {joinSI
1 } NaN

n-Strong-Insider {join, init, move, sendDum} {joinSI
n } NaN

Dummy {join, init, move, sendDum} NaN ∅
Amplifier {join, init, move, sendDum} NaN {enable-broadcast}
Injector {join, init, move, sendDum} NaN {replace}

Full {join, init, move, sendDum} NaN {enable-broadcast, replace}

Table 3. Oracles per Type of Adversary.

oracles; (c) details of exact book-keeping the Sess list, w.r.t. these two oracles;
(d) the honest versions of the send/ read oracle, which the adversary would
also have to call to emulate the execution environment. However, in Section 6,
where we present the mechanisation of this model in EasyCrypt, such details are
included.

4 DB Security Properties in FlexiDB

We first define a categorisation of the set of oracles in function of adversary type
(i.e., Amplifier Weak-Insider, etc.).

4.1 Oracles, Adversary Positions and Attack Phases.

We write AO to mean that the adversary has access to a particular set O of
oracles. Our oracles are split in three sets:
– Ocore: set of oracles accessible to all adversaries.
– Ocom: set of oracles related to network-corruption only;
– Ocorr: set of oracles related to party-corruption only.

Our different adversaries are described in Table 3.
By integrating our advanced/fine-grained corruption capacities, we generalise

the classical notion of mafia fraud with resistance to generalised mafia-fraud
(GMF) and distance fraud with generalised distance-fraud (GDF).

In the GMF experiment, the adversary is considered as 2 entities: A =
(AV ,AP), one being close to the designated verifier, and the second being close
to the designated prover.

In the GDF security experiment, a single adversary party AP is located far
away from the designated verifier.

In both cases, the designated prover is far from the designated verifier. These
two settings are illustrated on Figure 1.

In our GMF and GDF, the adversary is allowed to perform a learning phase,
in which he can freely interact with the environment, with no positioning restric-
tions w.r.t. to provers/verifiers. During this phase, A populates the environment

dV, P dP
AV AP

> B

dV, P dP
AP

> B

Fig. 1. Possible GMF Setting (on the LHS) and GDF Setting (on the RHS). dV is the
designated verifier, dP is the designated prover authenticated/attacked, and P denotes
an arbitrary set of provers.

with provers and verifiers, interacts with them and sets all positions as he wishes
(all formally done via our oracles). Then, the adversary selects a designated
prover dP and a designated verifier dV, and gives their identifiers to the chal-
lenger. The challenger then disables some of the oracles (see formal definitions
for details), verifies that the setting of the environment is correct with regards
to the security property, and allows the adversary run the actual attack phase.
During this phase, the adversary has access to a restricted set of oracles com-
pared to the learning phase, and his position w.r.t. to the dP and dV is restricted
(i.e., the adversary cannot be close to either of the two).

4.2 Security Properties Definitions

We formalise our definitions which lead to new attacks presented in Section 5.

Generalised Distance Fraud (GDF) It comprises in fact a class of distance
frauds and distance-hijacking attacks, which vary with the strength of the cor-
ruption and network-manipulation of our attackers.

Our Fine-Grained GDF & Its Benefits. In the classical setting of distance
fraud, a dishonest prover P tries to fraudulently authenticate from afar. As
such, in our terminology, this would be an Insider adversary A who called (at
least) joinWI(if not joinSI)on P (i.e, knows the authentication material of P)
and who attempts to authenticate from afar. However, we do not restrict our A
to be an Insider at all; this is possible in our generic framework, but so is the
much stronger setting where A controls several provers and even their authen-
ticating material (i.e., A is an n-SI adversary) as well as the benign case where
A is an Outsider.

Such a n-WI adversary may not just act alone, but also exploit a series of
corrupted provers located near the verifier. It opens for new attacks that we
exhibit in Section 5. In particular, we show that under this adversary setting,
most distance bounding protocols are vulnerable to a form of GDF.

Similarly, if our attacker is a SI adversary then he may perform distance
frauds against certain protocols, that are not possible for classicalWI adversaries
(cf. Section 5).

We give our generalised distance-fraud in Definition 2: i.e., a class of attacks
in which an adversary tries to make a designated verifier dV authenticate a
prover dP, even though no adversarial party nor dP is within a distance B of dV.

Definition 2. Generalised Distance-fraud (GDF) & Security against
GDF. Let Π be the a DB protocol. A generalised distance-fraud (GDF) game
G against the DB protocol Π is split in two phases: the learning phase and the
attack phase.

– The learning phase for GDF is a multi-party execution of the protocol Γ in
the presence of an adversary A= (AP ,AV) such that the position posAP

of
AP and the position posAV

of AV is arbitrary.
– In this phase, the challenger Ch starts by setting up an execution environment

and giving access to A to the set of oracles {Ocore,Ocom,Ocorr}.
– The phase finishes with the adversary returning a designated prover and ver-

ifier pair (dP, dV), and the starting position of one adversarially controlled
parties denoted AP , i.e.,: (posAP

, dP, dV)← A{Ocore,Ocom,Ocorr}.
– The challenger Ch disables all oracles, all the parties are remain fixed at

the position at which they were when A’s output was made, AV is removed
from the environment, and then Ch checks whether the setting (posAP

, dP, dV)
returned by the adversary is valid for GDF.
A setting (posAP

, dP, dV) is a valid setting for GDF if (1) d(posAP
, dV) ≥ B

and (2) d(dP, dV) ≥ B.
– If (posAP

, dP, dV) is not a valid setting for GDF, then the challenger aborts
the game and A loses. Otherwise, the challenger begins the attack phase.

– The attack phase for GDF is a multi-party execution of the protocol Γ in the
presence of an adversary AP found at position posAP

. In this, the challenger
allows the adversary access to the set {init, sendDum,Ocom} of oracles.

– The phase finishes with the adversary outputting a session identifier sid, i.e.,

sid← A{init,sendDum,Ocom}
P .

– The adversary wins the GDF game if the session sid is a verifier-session
started during the attack phase, such that result(sid) = (>, dP), i.e., dV
accepted the far-away prover dP during the attack phase.

– advantage of an adversary A in the GDF game is his success probability α.
– protocol Π is GDF-secure if the advantage of all adversaries A in winning

in an un-aborted generalised distance-fraud game G is negligible.

Generalised Mafia Fraud (GMF) In this setting, two adversary parties
collaborate to authenticate as an uncorrupted prover located outside of the
distance-bound of a designated verifier dV. The goal of the adversary is to make
dV accept the authentication of the prover dP, while dP is at a distance greater
than B of dV.

We formalise generalised mafia-fraud in Definition 3.

Definition 3. Mafia-fraud (GMF) & Security against GMF. Let Π be
the a DB protocol. A generalised distance-fraud (GDF) game G against the DB
protocol Π is split in two phases: the learning phase and the attack phase.

– The learning phase for GMF is a multi-party execution of the protocol Γ in
the presence of an adversary A= (AP ,AV) such that the position posAP

of
AP and the position posAV

of AV can be arbitrary.

– In this phase, the challenger Ch starts by setting up an execution environment
and giving access to A to the set of oracles {Ocore,Ocom,Ocorr}.

– The phase finishes with the adversary returning a designated prover and
verifier pair (dP, dV), and the position of the two adversarially controlled
parties AP and AV , i.e.,: (posAP

, posAV
, dP, dV)← A{Ocore,Ocom,Ocorr}.

– The challenger Ch then disables all oracles, and checks whether the setting
defined by the adversary is valid setting for GMF. A setting (posAP

, posAV
, dP,

dV) is a valid setting for GMF for GMF if (1) d(dP, dV) ≥ B, (2) dP is not
marked as corrupted.

– If (posAP
, posAV

, dP, dV) is not a valid setting for GMF, then the challenger
Ch aborts the game and A loses. Otherwise, the challenger begins the attack
phase.

– The attack phase for GMF is a multi-party execution of the protocol Γ in the
presence of an adversary (AP ,AV) found at position posAP

and posAV
. In

this, the challenger allows the adversary access to the set {init, sendDum,
Ocom} of oracles.

– The phase finishes with the adversary outputting a session identifier sid, i.e.,

sid← A{init,sendDum,Ocom}
P .

– The adversary wins the GMF game if the session sid is a verifier-session
started during the attack phase, such that result(sid) = (>, dP), i.e., dV
accepted the far-away prover dP during the attack phase.

– The advantage of an adversary A in the GMF game is his success probability
β.

– The protocol Π is GMF-secure if the advantage of all adversaries A in win-
ning in an un-aborted generalised mafia-fraud game G is negligible.

Our Security Notions vs. Existing Ones
1. Our 1-Weak-Insider GDF corresponds to the classical distance fraud and

distance hijacking that is, an adversary knowing one secret key in “white-
box” manner or our attacker calling join as insider on one prover, attempts
to authenticate from a distance, possibly with honest provers located near
the verifier.

2. Our 1-Outsider GDF in terms of corruption corresponds to the more niche
black-box distance fraud by Avoine et al. in [4]. Yet, our 1-Outsider GDF
extends Avoine’s black-box distance fraud in that 1-Outsider GDF allows
additional honest provers to be present in the security experiment

3. Our 1 −Weak-Insider GDF is equivalent to the generalised distance-fraud
in the so-called BMV model [14].

4. Our n-Insider GDF is a completely new property, allowing the multiple
provers to be corrupted fully and mount a type of distance fraud as a con-
sequence of that. In Section 5, we show that this is indeed a feasible attack

5. Our GMF is new w.r.t. the fine-grained party-corruption it offers (i.e., Insider
vs Outsider, as well as 1 vs n) , in that traditional mafia-fraud definitions
only consider one Outsider adversary.

6. Our threat-model of Strong-Insider is new, in that this is an attacker who
can not only get the authenticating material of a corrupted device (as in

Avoine’s white-box) but can choose the authentication material. The latter
is stronger than even the attackers by programming pseudorandom-functions
in [10], as in that case the choice over authentication material is restricted,
whereas an Strong-Insider can fully control this choice at the setup phase of
a corrupted device.

7. In terms of network manipulation, the classical settings features limited ad-
versaries that are mix of Amplifier and Injector, with variations in the latter.
We consider the all-in-all Full as well as the fine-grained ability to send mes-
sages not in broadcast but in unicast mode.

5 Validating FlexiDB: Novel Proximity Attacks

We illustrate the applicability and (increased) expressivity of our FlexiDB
model by exhibiting:
– a new vulnerability on the EMV-RRP protocol [22];
– new distance-hijacking attacks on previously proven secure protocols;
– a generic distance-hijacking strategy that enables attacks on most protocols of
the literature.

5.1 New (1-Weak-Insider, Full)-Attack on Payments

In order to show our attacks on relay-protected contactless payments, we first
need to present the EMV-RRP protocol, which is MasterCard’s contactless-payment
protocol with relay protection. This protocol is given in Figure 2, below.

High-level Description of EMV-RRP Mastercard’s EMV-RRP (Figure 2 – with-
out the UN msg. 8) is Mastercard’s contactless-payment protocol with relay
protection. For the latter, MasterCard added to their initial contactless-payment
protocol, called PayPass, a special command ERRD (“Exchange Relay Resis-
tance Data”) which is sent by a reader to a card and explained below, with
the rest of the protocol. In PayPass and in EMV-RRP, the card possesses a pri-
vate key PrivC , a symmetric key KM shared with the bank, a certificate chain
CertPrivCA

(PubC) for the card’s public key PubC . The card and the reader gen-
erate two nonces nC and UN , respectively. After some generic setup messages,
in EMV-RRP, the reader sends an ERRD command to the card, which contains
the nonce UN . The card answers with nonce nC . The reader measures the cor-
responding round trip time. The card also gives an estimation of the time of this
exchange called “Timing Info”. The reader compares the two timings, and if the
measured time is too large, then the reader suspects a relay attack and stops the
communication. Otherwise, the reader requests that the card generates a “cryp-
togram” (a.k.a. AC). It is a MAC keyed with KS of data including the ATC ,
the nonce UN , and the transaction information. The encryption with KM of the
counter ATC of times the card has been used by the card forms a session-key
denoted KS . The card also computes the card’s signature on a message including
UN , amount, currency, ATC , NC , denoted “Signed Dynamic Application Data

(SDAD)”. Finally, before accepting the payment, the reader checks the validity
of the signature SDAD .

In [31,13], a slightly modified version of EMV-RRP is given, to which we refer
as EMV-RRPv2 ; this is shown on Figure 2 with the UN in place in message 8.
The EMV-RRPv2 protocol differs from EMV-RRP only in that in the timed phase,
the card adds the reader’s nonce UN back into its timed-phase response. This
protects against certain distance frauds in EMV-RRP, as [31,13] show.

Our Attack on EMV-RRPv2 EMV-RRPv2 was symbolically verified in [31,16,20,19]
and found secure including against distance-hijacking attacks (in the security
models considered by [31,16,20,19]). In fact, we show that EMV-RRPv2 is in vul-
nerable to a type of distance hijacking, in the presence of a (1-WI,Full) ad-
versary who substitutes messages in a legitimate authentication by an honest
prover to succeed in his fraudulent authentication.

Our attack is executed in our generalised distance-fraud (GDF) type setting:
a honest prover P and the designated verifier dV are within distance at most B of
each other, and a (1-Weak-Insider,Full)-adversary A and the designated prover
dP are both at a distance greater than B of dV. We write posP, posdV, posA and
posdP to denote their respective positions. Note that dP is not actually used in
this attack, since the insider adversary knows dP’s key and authenticates from
a distance on dP’s behalf.

The idea of attack is simple: the one value A cannot send on his own from
a distance is UN in the message (UN , nC , TimingInfo). Therefore, A simply
lets P reflect UN , and overwrites every other value sent by P with his own.
Concretely, the attack is as follows:

1. During the learning phase, A registers P by calling join(prover,posP), dV by
calling join(verifier,posdV), and dP by calling join(prover,posdP). He also
calls enable-broadcast() oracle to enable full broadcast mode, and returns
the setting (posA, dP, dV);

2. During the attack phase, A calls init(P, dV), to start a session sid between
P and dV;

3. A uses the replace oracle to piggyback all of his messages on P’s messages.

(a) all messages are fully overwritten with A’s own messages (computed
with the secret key of dP), except for (UN , nC , TimingInfo).

(b) for this message, A uses replace(P, sid,{bits(nC , TimingInfo)}, {dV},
{sid}, (nCA, TimingInfoA)), where {bits(nC , TimingInfo)} denotes the
bit-positions corresponding to the values (nC , TimingInfo).

This oracle call replaces the nC and TimingInfo from P by the ones of
A, while not modifying the UN part of the message.

4. A returns sid.

The session sid authenticates dP: all authenticating messages in the sessions
are computed with the authentication material of dP. Therefore, the prover dP
is accepted by dV, even though d(posdP, posdV) > B and d(posA, posdV) > B.

Reader Card

KM , P rivC
CertPrivCA(PubB)
CertPrivB(PubC, SSAD)
SSAD = H(PAN, exDate, . . .)

PubCA

UN ∈R {0, 1}32 nC ∈R {0, 1}32

SELECT 2PAY.SYS.DDF01

AID1,AID2,. . .

SELECT PAYPASS AID

SELECTED

GPO

AIP,AFL

ERRD (UN)

timed
[UN], ERRD-r(nC)

READ RECORD

CertPrivCA(PubB)

READ RECORD

CertPrivB(PubC,SSAD), PAN, CDOL1, . . .

GENERATE AC(UN, amount, currency, . . .)

AC = MACKs
(amount,ATC,UN,. . .)

KS = EncKM
(ATC)

SDAD = SignPrivC(AC, UN, amount,
currency, ATC, . . .)

SDAD(AC), ATC

Fig. 2. MasterCard’s EMV-RRP & EMV-RRPv2which is an EMV-RRP ex-
tension [31,13]; [UN] in msg.8 is only present in EMV-RRPv2.

Our Attack on PayBCR In [37], a new version of EMV-RRP, called PayBCR,
is proposed. An attestation of the proximity-checking performed by the reader
is sent to the card-issuing bank, who can further re-verify it. In this case, the
transaction constitutes a strong proof that the card was within the range of

the verifier when the purchase was made. Yet, PayBCR is based 10 directly on
EMV-RRP. And, our GDF against EMV-RRPv2, also applies to PayBCR.

Attacks’ Significance Firstly, distance frauds would translate into financial
loss for the banks. Assume a malicious card paying legitimately in store A. If
this card can mount a distance fraud to pay in a far-away store B at the same
time, then the card owner can then claim that their card was hacked/cloned,
as it appears to be paying in two locations at the same time. This would most
likely entail the bank having to reimburse both purchases.

Secondly, the above is even more problematic in the case of the DF we showed
on top of PayBCR. Therein, any forgery of proximity-proof by a dishonest card
is a forgery of a (hardware-attested) proof accepted by the bank. So, this can
not only lead to reimbursement of fraudulent payments, but it can be used as a
strong alibi by the card owner to show that he/she was by the payment terminal
when they were not.

5.2 New (n-Weak-Insider, Full)-Attack on 40+ DB Protocols

We now demonstrate another type of generalised distance-frauds that works
against against the vast majority of the existing distance-bounding protocols. In
particular, it mostly works against 40+, traditional distance-bounding protocols
with one-bit challenges and responses, where each round is independent from the
previous rounds. To illustrate one such protocol, we chose the DB3 protocol [12].

The DB3 Protocol [12] The DB3 protocol (with its parameter q equal to 2)
is a proven-secure protocol [12]. It works as follows. The verifier sends a nonce
NV , the prover replies with a nonce NP . Both compute a = fx(NP,NV), where
fx is a PRF keyed on the shared key x. Then, in n timed rounds, the verifier
sends a random bit ci, expects a response ri = ai ⊕ ci. Finally, the prover sends
tag = fx(NP,NV, c) (where c is the concatenation of all ci values). The verifier
accepts if the times, ri and tag are correct. A complete description can be found
in [12].

Our attack, to follow, is executed in our GDF setting: n honest provers
P1, . . . ,Pn and the designated verifier dV are within distance at most B of each
other, and a n-WI,Full adversary A and the designated prover dP are both at a
distance greater than B of dV. We write posPi, posdV, posA and posdP to denote
their respective positions, without loss of generality. Note that dP is not actually
used in this attack, as the insider adversary, knowing his key, authenticates from
a distance on his behalf.

Let Ri
j = (r0ij , r1

i
j) denote the responses of the prover Pi at round j for the

challenge cj = 0 (resp. cj = 1). In our attack, at each round j, the adversary A
selects a prover Pi such that Ri

j = RA
j , and blocks the responses of all provers

but Pi.

10 [37] does not aim for distance-fraud protection, yet if EMV-RRP has been analysed
against DF and then so should PayBCR. This is even more so since the bank receives
and verifies an attested “copy” of the proximity-check.

Our GDF Illustrated on DB3

1. During the learning phase,A registers Pi by calling joinWI(posPi) (for i from
1 to n), dV by calling join(verifier,posdV), and dP by calling joinWI(posdP).
He also calls enable-broadcast() oracle to enable full broadcast mode, and
returns the setting (posA, dP, dV);

2. During the attack phase, A calls init(Pi, dV) (for i from 1 to n), to start n
sessions sidi between Pi and dV, and records the initial messages NPi sent
by each of the provers;

3. A selects a random nonce NV , and calls sendDum(Pi, sidi, NV) to send NV
to the n provers (for i from 1 to n) ;

4. A calls init(dV) to start a session sid with dV, picks a random NP , and
calls sendDum(dV, sid,NP);

5. A uses the keys xPi
to compute ai = fPi

(NPi, NV) (for i from 1 to n) ;
6. At each round j, A selects a prover Pi, such that Ri

j = RA
j . If no such prover

exists, the attack aborts.
7. A calls replace(Pz, sidz, ∗, ∅, ∅, ∅) for z 6= i, to block the responses of all

provers but Pi. A stores the corresponding challenge issued by dV in session
sidi as Cj (denoting the jth bit of a string C);

8. A blocks the final messages of the provers with replace(Pi, sidi, ∗, ∅, ∅, ∅) (i
from 1 to n), and uses sendDum(dV, sid, tagA), where tagA = fxdP(NP,NV,C)
to send his own final message;

9. A returns sid.

The session sid authenticates dP: all authenticating messages in the session
are computed with the authentication material of dP. Therefore, the prover dP
is accepted by dV, even though d(posdP, posdV) > B and d(posA, posdV) > B.

The pair (r0ij , r1
i
j) can take 4 different values. At each challenge response

round j, the probability to have Ri
j = RA

j , for any prover dPi, is therefore 1
4 .

Hence, the probability that there exists no prover such that Ri
j = RA

j is 1−(3
4)n:

over k rounds, the success probability of our attack is (1 − (3
4)n)k. For a large

enough n, for instance n = k, the success probability PS converges to 1.

Applicability of This Attack We described our attack with the parameter
q = 2 in the DB3 protocol, meaning that the challenges and responses of each
round can take 2 possible values. However, when q is greater than 2, our attack
still applies, by having the adversary apply more granularity during the challenge
response phase. In particular, the selective blocking of responses would be done
bitwise, i.e., A would select a different prover for each bit of the response at
each round.

Some DB protocols resist this attack: e.g., those in [27], where the time
between to consecutive challenges is randomised. Similarly, we only studied pro-
tocols where the response table can be efficiently stored: each response bit only
depends on one challenge bit, so that it is sufficient to store the R vector to
be able to respond. However, protocols where the challenge is log2(q) bits long,
and where each challenge bits influence all response bits, make our attack un-
practical. For instance, let C be a log2(q) bits long challenge issued, and let

RC = H(x,C), where H is a cryptographic hash function and x is the secret key
of the prover. In this case, there are q possible responses, and they cannot be
considered bit by bit since the response bits are not independent. Therefore, the
adversary needs to find a prover that has the same q responses as him, and the
number of required provers grows exponentially with q.

5.3 More Attacks Using FlexiDB

Due to space constraints, it is only in a series of appendices that we show other
attacks, of various types, using different strengths of adversaries on a number of
DB protocols. This validates further the fine-grained nature of the threat-model
that FlexiDB promotes, showing that considering tailoring the attackers in the
ways we prescribed can lead to new vulnerabilities being exhibited. These new
attacks are as follows:
1. In Appendix A, we show that a (2-Weak-Insider, Full)-attack applying to

several distance-bounding protocols.
2. In Appendix B, we show that the famous Swiss-Knife protocol [29] is victim

of new DF if attacker can fully control the network, i.e., a (1−Strong-Insider,
Full) generalised distance fraud applies to the Swiss-Knife protocol.

6 Easycrypt-Mechanised Proofs for EMV-RRP

We now discuss our mechanisation of the FlexiDB model given in Section 3
and its GMF security property in the EasyCrypt proof assistant. Based on the
resulting formal models, we develop a machine-checked proof, in EasyCrypt, of
the MiM-security of EMV’s EMV-RRP against (Outsider,Full) adversaries with
a slightly restricted replace oracle. In particular, we consider an attacker that
corrupts cards as an outsider, can amplify and drop messages, but cannot strictly
replace or modify messages after they have been sent. We discuss this more
precisely in Section 6.5.

Beyond the security proof for EMV’s EMV-RRP and the necessary crypto-
graphic modelling, this mechanisation in EasyCrypt is the first attempt at cap-
turing —in a formal model of computational security— the physical aspects
linked to time and distance measuring in communication protocols. As such, our
EasyCrypt models constitute a feasibility study for capturing distance-bounding
in EasyCrypt, and carrying out machine-checked computational cryptographic
proofs in such physicality-enhanced communication models. We later detail on
choices made on modelling of interactive protocols vs. building a feasibility-study
for DB proofs. In Section 6.7, we discuss the lessons learned on modelling phys-
ical aspects of communication, and potential modelling alternatives that could
be usefully explored in further efforts.

6.1 A simplified EMV-RRP protocol and security model

We operate over a simplified version of the EMV-RRP protocol, displayed in Fig-
ure 3. This protocol differs from EMV-RRP in that the payment-issuing signature

Reader Card

KM , P rivC
CertPrivCA(PubB)
CertPrivB(PubC, SSAD)
SSAD = H(PAN, exDate, . . .)

PubCA

UN ∈R {0, 1}32 nC ∈R {0, 1}32

SELECT 2PAY.SYS.DDF01

AID1,AID2,. . .

SELECT PAYPASS AID

SELECTED

GPO

AIP,AFL

CertPrivCA(PubB)

READ RECORD

CertPrivB(PubC,SSAD), PAN, CDOL1, . . .

GENERATE AC(amount, currency, . . .)

ERRD (UN)

AC = MACKs(amount,ATC,UN,. . .)
KS = EncKM

(ATC)
SDAD = SignPrivC(UN,nC)

timed

ERRD-r(nC , SDAD(AC))

READ RECORD

Fig. 3. EMV-RRP with a Modified ERRD Command.

SDAD issued by the card is sent at the same time as the response to the ERRD
command, alongside the nonce nc. The verifier checks the time over the ERRD
command, as before. Like in EMV-RRP, the card is accepted by the reader if the
ERRD passes the timing check and the SDAD signature verifies. We therefore
also simplify other aspects of the protocol and model, which we consider to
be orthogonal to this goal. These simplifications are made in line with existing
mechanised models for distance-bounding. However, we note (and discuss in Sec-

tion 6.7) that—while they seem central to the feasibility of verification in other
tools—they could be avoided in EasyCrypt. However, we take care to ensure our
model could be—if desired—extended to include more of the protocol details.
As we describe below, our protocol already includes a session ID, left abstract
and controlled by the adversary, which could be used to carry some or all of the
protocol context (considering the rest of the EMV-RRP protocol as an adversary
against its authentication and distance-bounding component). More precisely,
we simplify the following aspects:
– we focus the model and proof on the authentication and distance-bounding

component of the Core-RRP protocol, noting that our model features an
abstract and adversary-controlled session ID, which could extend the proof to
the rest of the protocol, considered as an adversary against its authentication
and distance-bounding component;

– we consider a single card and a single verifier, to avoid the burden of book-
keeping credentials and corruption (which are both well-understood) taking
focus away from our goal;

– we consider a weakened model of generalized mafia fraud where the adversary
cannot interact with the card during its attack phase, in line with simplifying
arguments first made by Chothia et al. [17].

6.2 The EasyCrypt proof assistant

EasyCrypt is an interactive proof assistant designed for analysing cryptographic
primitives or protocols in the computational model. Theorem statements proved
in EasyCrypt can be interpreted as exact security statements when combined
with some (unverified) complexity analysis.

EasyCrypt can be used to prove concrete bounds on the advantage of a black-
box reduction, constructed as concrete programmes that make use of abstract,
universally-quantified modules. The same mechanism can also be used to prove
general statements on universally quantified modules (which serve as abstrac-
tions), and later instantiate these requiring any assumptions made in the abstract
proof to be discharged to concrete values without re-doing the entire proof.

This methodology aligns particularly well with game-based notions of secu-
rity. The challenger is represented as a module parameterised by a protocol and
an adversary—also modules, mediates the interactions between the adversary
and the protocol. This is done via oracles which are accessed by the adversary
as part of an experiment (or game). These oracles are usually simple wrappers
around the protocol operations, that ensure that only interactions allowed by
the threat model can occur, and keeping any state required to decide whether
security was broken in a particular execution.

Modules have procedures, which are written in a small imperative probabilis-
tic language, pWhile, which supports standard control-flow (if statements and
while loops), procedure calls, deterministic assignments (denoted with ←) and
sampling in discrete distributions (denoted with ←$). In order to simplify the
code presented, and more specifically to simplify error handling, we also make
use of an “error-checking assignment” (denoted with ←⊥) that stops execution

and returns a distinguished error symbol ⊥ if its right-hand side evaluates to ⊥,
and otherwise lets execution carry on as specified. (In code, v ←⊥ e is syntactic
sugar for if e = ⊥ then return ⊥ else v ← e.)

Procedures within a module can share state, declared as global variables.
Such variables are given a type, which we denote using set membership in mod-
ule specifications. In practice, the initial value of such global variables must
be explicitly specified as part of the model. To simplify presentation here, we
omit this initialisation. Unless otherwise specified, numeric-type variables are
initialised with 0, and global variables that model partial maps are initially ev-
erywhere undefined. Variables of other types are always explicitly initialised in
the modules discussed here.

6.3 Modelling Environments with Physicalities

As a general proof assistant, EasyCrypt does not cater for domain-specific mod-
elling of time, positions, distances, or of systems with such “physicalities” or
generalisation thereof. Further, the EasyCrypt semantics are purely sequential. It
is therefore not possible to model a ticking, global clock that keeps time during
the execution of a protocol.

High-level Choices from FlexiDB We develop a formal framework within
which our proof for Core-RRP is carried out. Our formal EasyCrypt framework
captures the essential aspects of the FlexiDB model, that is time, space, and
asynchronous broadcast communication. Our framework also gives the protocol
and adversary certain (controlled) abilities to monitor and act on the physical
environment it models. By design, we choose to only enforce simple constraints
on the behaviour of clock, positions and communication in the framework. This
should support, as and when needed, a layered imposition of additional con-
straints. Importantly, the correctness and security of mechanisms meant to pro-
vide or enforce such additional constraints could also be reasoned about in Easy-
Crypt.

Concrete Modelling of FlexiDB Our framework takes the form of a single
module Env, parameterised by three types (or sets) name, position and message,
which respectively capture the names of parties, the set of positions (in particu-
lar, we assume a notion of distance d over type position), and the set of messages
that will be exchanged. Figure 4 displays this module, whose details we now
discuss.

Time is captured as a global variable clock taking values in R. The Envi-
ronment11 exposes a getter procedure denoted get clock , and a controlled setter
procedure denoted set clock , which prevents an update if it sets time back.

The actual positions of parties are captured as a partial mapping lmap from
names to positions. The Environment allows anyone to retrieve the position

11 This is the equivalent of the Challenger Ch in FlexiDB.

module Env〈name,position,message〉

var clock ∈ R

var lmap ∈ name⇀ position

var mh ∈ N
var nmap ∈ N⇀ message

var rh ∈ N
var mmap ∈ N⇀ (message→ message)

proc get clock()

return clock

proc set clock(t)

if clock ≤ t⌊
clock← t

proc get position(p)

return lmap[p]

proc set position(p, l)

if lmap[p] = ⊥⌊
lmap[p]← l

proc send(p,m)

t← get clock()

l←⊥ get position(p)

h← mh

mh← mh + 1

nmap[h]← (t, l,m)

return h

proc replace(p, f)

t← get clock()

l←⊥ get position(p)

h← rh

rh← rh + 1

mmap[h]← (t, l, f)

return h

proc recv(p, h, rh⊥)

tr ← get clock()

lr ←⊥ get position(p)

(ts, ls,m)←⊥ nmap[h]

if d(lr, ls) ≤ |tr − ts|

if rh⊥ 6= ⊥ ∧ rh ∈ mmap (tm, lm, f)← mmap[rh]

if d(lr, lm) ≤ |tr − tm|⌊
return f(m)

return m

return ⊥

Fig. 4. Environments with physicalities.

of some party given its name (through procedure get position). Further, the
position of each party can be initialised once using set position.

Finally, we capture asynchronous broadcast communication as a net-
work map nmap that maps message handles to messages. Message handles are
indices, here in N, that are never reused.

As per FlexiDB, in our EasyCrypt framework, sending a message m on
behalf of party p proceeds by retrieving the current clock value t and the current
position l of p if it exists, and stores t, l and m against an unused message handle
h. The message handle is returned to the caller.

We make replacing messages possible through a separate modify map
mmap that maps replace handles to message transformations (functions from
messages to messages). Replace handles are as before, indices in N, which we
ensure are never reused. Our replace oracle is slightly more powerful than Flex-
iDB’s: indeed, the adversary does not need to specify where the replacement will
take place when registering her intention to replace a message. Instead, this is
delegated to network reads.

Reading a message was left underspecified in Section 3 saying that the
challenger makes the necessary check. Concretely, in our EasyCrypt framework,
to read a message from the network on behalf of party p given the corresponding
message handle h, we simply recover the time ts, position ls and message m
stored against h in the network map, recover the current time tr and the position
lr of p from the Environment, and check that enough time has elapsed between ts
and tr to allow the message’s propagation from ls to lr.12 If the message handle
does not exist, or insufficient time has elapsed, we return a distinguished error
symbol. Otherwise, the retrieved message m is returned to the caller.

In addition, an optional replace handle can be provided to the oracle. This
is used to find a transformation in the modify map, which is applied to the
message m before it is returned to the caller if enough time has elapsed since the
transformation was registered. Otherwise, the unmodified message is returned
to the caller.

6.4 Modelling Core-RRP in EasyCrypt

Modelling in EasyCrypt the operations in Core-RRP, as expected, rests on calling
the Environment oracles to obtain the current time, to send and receive messages.
Figure 5 shows the protocol code.

Modelling the verifier The code for the verifier allows an arbitrary number
of parallel protocol executions, indexed by session identifiers that allows the
adversary to control scheduling, and could be used to capture protocol context
in a broader proof. Each session is a simple two-state machine, whose state is
stored in a state map smap, indexed by session identifiers. Each session can be
either uninitialised (when smap contains no entry against sid, or smap[sid] = ⊥),
or initialised with a time in R and nonce in {0, 1}`—used to track which challenge
was sent, and at what time.

12 Our model assumes a constant message propagation speed of one “unit” of distance
per “unit” of time. This could be generalised.

Each of the protocol oracles proceeds by retrieving the session state from
the state map and checking whether the transition it captures applies to the
current state (send challenge only applies to an uninitialised session, whereas
recv response only applies to an initialised session). It then operates on the given
state, and saves the resulting state back to the state map before returning any
data needed to produce outputs to be emitted to the network, or used locally.

Apart from its state map, the reader also presents two variables: a local bound
B on the distance it considers as “near”, and a public key cpk for which it will
receive/check signatures. Both are provided as arguments to a setup procedure.
In our model, the cpk variable is a single public key, and will be set by the
experiment to be the public key of the (single) honest card. In more complex
models, it could be replaced with a dynamically-updatable set of keys whose
signatures would be accepted (idealising a PKI), or even with a single root
certificate if certificate validation were to be modelled.

Modelling the prover In contrast, modelling the prover is a much easier task,
since its part of the protocol is entirely stateless. Module P in Figure 5 captures
its operations.

The experiment is expected to initialise the prover by calling its setup proce-
dure, which generates a fresh keypair for the signing scheme, storing the secret
key on the card itself, and outputting the public key back to the experiment (for
use, for example, in initialising the reader). The recv challenge oracle captures
the prover’s step in the Core-RRP protocol: upon receiving a nonce N from the
network, the card will sample a nonce N2, then sign the pair (N,N2) and output
N2 and the signature to the network.

6.5 Modelling MiM adversaries with physicality

We aim to prove a version of FlexiDB’s GMF security for the Core-RRP protocol
against a MiM (Outsider,Full)-adversary as per FlexiDB’s hierarchy. To capture
the desired (Outsider,Full)-capabilities (with limited replace functionality), we
give our adversary control over: i. the initial position of protocol participants
(including the adversary herself); ii. the clock; iii. the scheduling of messages,
including the ability to drop or insert broadcast messages; and iv. the scheduling
of protocol steps.

This is done, as is usual, through oracles. The oracles are displayed in Fig-
ure 6. They make use of a partially instantiated environment E, in which the sets
of names and messages are defined concretely. The set of names is simply defined
as name = {A,P,V}. In this paper, the set of messages is assumed to be some
set that properly encodes requests and responses (such that we have functions
format challenge ∈ nonce→ message, and format response ∈ nonce× signature→
message; and respective partial inverses parse challenge ∈ message→ nonce⊥ and
parse response ∈ message → (nonce × signature)⊥). This implies additional, but
reasonable, assumption on the protocol’s wire format. Namely, we assume that
formatting is invertible (and indeed fully inverted by the appropriate parsing

module PS

var sk ∈ skey

proc setup()

(sk, pk)←$S.KGen()

return pk

proc recv challenge(N)

N2 ←$ {0, 1}`

σ ← S.Sig(sk, (N,N2))

return (N2, σ)

module VS

var B ∈ R
var cpk ∈ pkey

var smap ∈ sid⇀ R× nonce

proc setup(bd, pk)

B← bd

cpk← pk

smap← ⊥

proc send challenge(sid)

if smap[sid] = ⊥
t← Env.get clock()

N ←$ {0, 1}`

smap[sid]← (t,N)

return N

return ⊥

proc recv response(sid,N, σ)

b← false

if smap[sid] 6= ⊥

(t1, N1)← smap[sid]

t← Env.get clock()

if B < |t1 − t|⌊
b← S.Vf(cpk, (N1, N), σ)

smap[sid]← ⊥
return b

Fig. 5. The EMV-RRP protocol based on signature scheme S.

function) and unambiguous (that is, if parsing succeeds, then the message is
indeed a formatted value of the right kind).13

When triggering protocol operations, the adversary provides as input, where
necessary, a session identifier, or a message handle (with an optional replace
handle) used to retrieve network input from the Environment. Output from
such oracles is most often output to the Environment through send , and the
corresponding handle given out to the adversary for use in a subsequent oracle
query. In the case of the reader’s verification step, we choose instead to return
the oracle’s output directly to the adversary. This helps us capture the fact

13 Our formal model makes similar assumptions, expressed slightly differently: our type
of messages is a sum type, or tagged union, essentially leaving the adversary in charge
of parsing and formatting, under the same practical assumptions on the messages’
wire format. We note that these assumptions could be relaxed, but this is unrelated
to this paper’s objectives.

module OV,P

proc verifier send challenge(sid)

N ←⊥ V.send challenge(sid)

m← format challenge(N)

h← E.send(V,m)

return h

proc card send response(h, rh)

m←⊥ E.recv(P, h, rh)

Nc ←⊥ parse challenge(m)

(Nr, σ)← P.recv challenge(Nc)

m′ ← format response(Nr, σ)

h← E.send(P,m′)

return h

proc verifier recv response(sid, h, rh)

m←⊥ E.recv(V, h, rh)

(Nr, σ)←⊥ parse response(m)

b←⊥ V.recv response(sid,Nr, σ)

return b

proc set time(t)

E.set time(t)

proc set position(t)

E.set position(t)

proc send(m)

h← E.send(A,m)

return h

proc replace(f)

h← E.replace(A, f)

return h

proc recv(h, rh)

m← E.recv(A, h, rh)

return m

Fig. 6. Adversary oracles for a MiM adversary with control over scheduling and net-
work.

that that output is meant to be used locally by the reader in some overarching
application.

6.6 MiM security of EMV-RRP.

Figure 7 shows the GMF security property as we formalise it in EasyCrypt.
The advantage of an adversary A in breaking this notion of GMF security is

AdvbsecA,P,V = Pr
[
Expbsec

P,V,A() = true
]
.

Theorem 4. GMF Security against (Outsider,Full)-Adversaries against
Core-RRP. For any (Outsider,Full)-adversary A that makes at most q queries
to its prover recv challenge oracle, we construct a forger B(A) targeting the sig-
nature scheme S and such that: AdvbsecA,P,V ≤ q/2` + AdveufB(A),S .

Proof. We give a brief sketch in Appendix C.

ExpbsecP,V,A,S

b← false;OVS ,PS
.init()

sidc ← Aset position
1 ()

pk ← PS .setup();VS .setup(B, pk)

// Learning Phase starts

AOVS ,PS

2 (pk)

// Attack Phase starts

posP ← E.get position(P); posV ← E.get position(V)

if 2 · d(posP, posV) > B

h← OVS ,PS
.verifier send challenge(sidc)

(tc, Nc, σc)← Arecv
3 ()

if E.get time() ≤ tc E.set time(tc);h← OVS ,PS
.send(sidc, Nc, σc)

E.set time(tc + d(posV, posA)); b← OVS ,PS
.verifier recv response(sidc,⊥)

return b

Fig. 7. Security against an adversary A = (A1,A2,A3), with a single prover P, a single
verifier V, and the set of oracles O defined in Figure 6.

Mechanised proof Our formalisation is publicly available from https://

gitlab.com/fdupress/ec-db. It is composed of roughly 900 lines of model
(including a significant amount of reusable framework code) and 200 lines of
proof.

This proof involves a small example, but its definition to proof ratio is en-
couraging, and seems to indicate that our approach—based on a separate En-
vironment that serves to mediate all interactions between the adversary and
protocol participants—does not introduce a significant burden to the proof. In
fact, most of the non-cryptographic proof burden is related to the management
of verifier sessions. This is in line with previous efforts on formalising stateful
protocol, where difficulties arise mainly from non-monotonic state (such as the
verifier’s session map smap, in our case).

In more complex proofs, the heavy use of maps to model state may also
make it useful to manually express and prove framing variants for all oracles—
expressing the fact that sections of the state disjoint from those used by a par-
ticular query are both irrelevant to the query’s semantics, and left untouched
by the oracle. Such invariants can be expressed and proved once and for all,
and used as needed in combination with more direct proofs. Although we did
not rely on this in our proof, our formalisation of the Environment does include
statements and proofs to this effect.

https://gitlab.com/fdupress/ec-db
https://gitlab.com/fdupress/ec-db

6.7 Discussion

We now discuss some alternative modelling choices that could be considered for
further extension.

Enforcement vs Assumption of Physical Constraints In our model, we
choose to let the Environment enforce physical constraints on the propagation of
messages and information. A popular alternative when discussing the violation
of trust assumptions or other constraints is to explicitly include the advantage of
an adversary in violating these constraints whilst still allowing them. We discuss
this more in Appendix D.1.

Alignment with the FlexiDB Model The Environment-based framework
presented here only captures those details necessary to an Outsider adversary
with some strong control of the network. Our framework, however, captures all
core aspects of FlexiDB, and is developed in such a way as to support exten-
sions to cover all aspects of FlexiDB. We only discuss them briefly (here and in
Appendices D.2 and D.3), as we do not yet know whether such extensions could
be carried out in a way amenable to reasoning.

Positions are currently static. Implementing a move oracle, which updates
the position map, is already possible, and would align the framework fully with
FlexiDB with respect to adversarial control over participant positions. However,
care needs to be taken to prevent teleportation of parties and the information
they carry in their state. In practice, it would be sufficient to make get location
return ⊥ or some time-dependent intermediate location for parties that are “in
transit”.

Our replace oracle is slightly more powerful than that speficied by FlexiDB.
Indeed, our oracle allows the adversary to decide where and when the transfor-
mation will be applied and have these decisions propagate instantly, although
the information contained in the transformation itself still propagates within
the given physical constraints. Finer-grained modelling of the replace oracle is
possible, but would require significantly more complexity in the read oracle. In
particular, it would require the read oracle to modify the environment state (in-
stead of just consuming it) to mark a transformation as having already taken
effect. We do not add this complexity here, since it is unnecessary in our proof,
but note that the ability for the adversary to use the (instant) control channel
associated with its replace oracle may cause problems in proofs for more complex
protocols, or in settings where multiple adversaries in different physical locations
collaborate to break protocol security.

Finally, we chose in this paper not to generalise the management of mul-
tiple instances of parties, and multiple protocol sessions. This problem
is known to be hard independently of physicalities [6,15], and should first be
tackled separately. Our approach here was to capture session management as
part of the protocol directly, rather than as part of the model. We were still dis-
ciplined in our modelling of session management: although we do not describe

these details here, our formal model separates the—entirely stateless—code for
protocol steps from the stateful wrapper that manages the session state. We
believe this discipline could be generalised into a framework and folded into the
Environment, but note that this may not in fact be beneficial. Dealing with such
scenarios in ad hoc ways may currently be the best approach until more tool
support is available.

Towards full GMF security As discussed in Section 6.1, we formalise a weak-
ened notion of security—already adopted by Chothia et al. [17], by explicitly pre-
venting the adversary from interacting with the card while the challenge session
is ongoing. This restriction is in fact not necessary in our model: we can prove
systematically in EasyCrypt that the sampling and computation of data that is to
be sent through the environment can equivalently be delayed until the sampled
value, or the computation’s result, affects the adversary’s view—that is, either
because the adversary queries its recv oracle on the corresponding message han-
dle, or queries a final oracle with direct output (such as verifier recv response).

In the context of Core-RRP, allowing the adversary to interact with provers
and verifier during the attack phase would add a case to the reduction, where
the challenge nonce from the challenge session collides with one the adversary
submitted to the card independently of the reader during the attack phase.
Delaying the sampling of the challenge nonce until it becomes visible to the
adversary would reduce this case to that of a freshly sampled value being equal
to one picked by the adversary earlier—a low probability event.

7 Conclusion

In this paper, we introduce FlexiDB, a formal model for the hierarchical mod-
elling of (existing and new) threats in distance-bounding protocols. FlexiDB is
indexed by the different levels of an attacker’s ability to manipulate the network
and/or have control over active parties in the system. We extend the definitions
of distance-fraud and mafia-fraud to incorporate and strengthen existing DB-
security formulations, and add new ones. Thus, we find new attacks on most
existing DB protocols, including on contactless payments. We also provide a
feasibility-study in EasyCrypt by modelling core aspects of FlexiDB. This is the
first time DB formal model have been modelled in EasyCrypt, or any crypto-
graphic prover. We complete this study by a mechanised-proof for a version of
MasterCard’s contactless payment protocol in one of the threat models in Flex-
iDB. This current proof-of-concept can be used as basis for future work aiming
to fully formalise DB, FlexiDB and contactless payments in EasyCrypt.

References

1. Hadi Ahmadi and Reihaneh Safavi-Naini. Secure distance bounding verification
using physical-channel properties. CoRR, abs/1303.0346, 2013.

2. G Avoine, MA Bingol, Ioana Boureanu, S Capkun, G Hancke, S Kardas, CH Kim,
C Lauradoux, B Martin, J Munilla, et al. Security of distance-bounding: A survey.
ACM Computing Surveys, 2018.

3. G. Avoine, X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and
J. Robert. A terrorist-fraud resistant and extractor-free anonymous distance-
bounding protocol. In Proc. of ASIA CCS ’17, pages 800–814. ACM, 2017.

4. Gildas Avoine, Muhammed Ali Bingol, Suleyman Karda, Cedric Lauradoux, and
Benjamin Martin. A formal framework for analyzing RFID distance bounding pro-
tocols. In Journal of Computer Security - Special Issue on RFID System Security,
2010, 2010.

5. Gildas Avoine and Aslan Tchamkerten. An efficient distance bounding RFID
authentication protocol: Balancing false-acceptance rate and memory requirement.
In Information Security, 12th International Conference, ISC 2009, Pisa, Italy,
September 7-9, 2009. Proceedings, pages 250–261, 2009.

6. Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech, and Benedikt Schmidt.
Mind the gap: Modular machine-checked proofs of one-round key exchange pro-
tocols. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015, pages 689–718, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

7. David Basin, Srdjan Capkun, Patrick Schaller, and Benedikt Schmidt. Formal
reasoning about physical properties of security protocols. ACM Transactions on
Information and System Security (TISSEC), 14(2):1–28, 2011.

8. Ahmed Benfarah, Benoit Miscopein, Jean-Marie Gorce, Cédric Lauradoux, and
Bernard Roux. Distance bounding protocols on TH-UWB radios. In Proceedings of
the Global Communications Conference, 2010. GLOBECOM 2010, 6-10 December
2010, Miami, Florida, USA, pages 1–6, 2010.

9. Bruno Blanchet. Security protocol verification: Symbolic and computational mod-
els. In Principles of Security and Trust, pages 3–29, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

10. I. Boureanu, A. Mitrokotsa, and S. Vaudenay. On the pseudorandom function
assumption in (Secure) distance-bounding protocols. In Progress in Cryptology –
LATINCRYPT 2012, volume 7533 of LNCS, pages 100–120. Springer Verlag, 2012.

11. I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Practical and Provably Secure
Distance-Bounding. Journal of Computer Security, 23(2):229–257, 2015.

12. I. Boureanu and S. Vaudenay. Optimal proximity proofs. In Proc. of Inscrypt,
pages 170–190. Springer, 2015.

13. Ioana Boureanu and Anda Anda. Another look at relay and distance-based at-
tacks in contactless payments. Cryptology ePrint Archive, Report 2018/402, 2018.
https://eprint.iacr.org/2018/402.

14. Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Practical and prov-
ably secure distance-bounding. In Yvo Desmedt, editor, ISC 2013, Cham, 2015.
Springer.

15. Ran Canetti, Alley Stoughton, and Mayank Varia. Easyuc: Using easycrypt to
mechanize proofs of universally composable security. In 32nd IEEE Computer Se-
curity Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019,
pages 167–183. IEEE, 2019.

https://eprint.iacr.org/2018/402

16. Tom Chothia, Joeri de Ruiter, and Ben Smyth. Modelling and analysis of a hier-
archy of distance bounding attacks. In William Enck and Adrienne Porter Felt,
editors, 27th USENIX Security Symposium, USENIX Security 2018, Baltimore,
MD, USA, August 15-17, 2018., pages 1563–1580. USENIX Association, 2018.

17. Tom Chothia, Flavio D. Garcia, Joeri de Ruiter, Jordi van den Breekel, and
Matthew Thompson. Relay cost bounding for contactless EMV payments. In
Rainer Böhme and Tatsuaki Okamoto, editors, Financial Cryptography and Data
Security - 19th International Conference, FC 2015, San Juan, Puerto Rico, Jan-
uary 26-30, 2015, Revised Selected Papers, volume 8975 of Lecture Notes in Com-
puter Science, pages 189–206. Springer, 2015.

18. Jolyon Clulow, Gerhard P. Hancke, Markus G. Kuhn, and Tyler Moore. So near
and yet so far: Distance-bounding attacks in wireless networks. In Levente Buttyán,
Virgil D. Gligor, and Dirk Westhoff, editors, Security and Privacy in Ad-Hoc and
Sensor Networks, Third European Workshop, ESAS 2006, Hamburg, Germany,
September 20-21, 2006, Revised Selected Papers, volume 4357 of Lecture Notes in
Computer Science, pages 83–97. Springer, 2006.

19. Alexandre Debant and Stéphanie Delaune. Symbolic verification of distance bound-
ing protocols. Research report, Univ Rennes, CNRS, IRISA, France, February
2019.

20. Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling. Proving physical
proximity using symbolic models. Research report, Univ Rennes, CNRS, IRISA,
France, February 2018.

21. Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling. Symbolic analysis
of terrorist fraud resistance. In European Symposium on Research in Computer
Security, pages 383–403. Springer, 2019.

22. EMVCo. Book C-2 kernel 2 specification v2.7. EMV contactless specifications for
payment system. www.emvco.com/wp-content/plugins/pmpro-customizations/

oy-getfile.php?u=/wp-content/uploads/documents/C-7_Kernel_7_V_2_7_

Final.pdf, Feb, 2018.
23. R. Entezari, H. Bahramgiri, and M. Tajamolian. A mafia and distance fraud high-

resistance rfid distance bounding protocol. In ISCISC, pages 67–72, 2014.
24. Masoumeh Safkhani Fatemeh Baghernejad, Nasour Bagheri. Security analysis of

the distance bounding protocol proposed by jannati and falahati. Electrical and
Computer Engineering Innovations, 2(2):85–92, 2014.

25. Ali Özhan Gürel, Atakan Arslan, and Mete Akgün. Non-uniform stepping ap-
proach to rfid distance bounding problem. In Proceedings of the 5th International
Workshop on Data Privacy Management, and 3rd International Conference on
Autonomous Spontaneous Security, DPM’10/SETOP’10, pages 64–78, Berlin, Hei-
delberg, 2011. Springer-Verlag.

26. Gerhard P. Hancke and Markus G. Kuhn. An RFID distance bounding protocol.
In Proceedings of SecureComm 2005, pages 67–73. IEEE, 2005.

27. Handan Kilinç and Serge Vaudenay. Optimal proximity proofs revisited. In Tal
Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Polychronakis,
editors, Applied Cryptography and Network Security - 13th International Confer-
ence, ACNS 2015, New York, NY, USA, June 2-5, 2015, Revised Selected Papers,
volume 9092 of Lecture Notes in Computer Science, pages 478–494. Springer, 2015.

28. Chong Hee Kim and Gildas Avoine. Rfid distance bounding protocol with mixed
challenges to prevent relay attacks. In Proceedings of the 8th International Con-
ference on Cryptology and Network Security, CANS ’09, pages 119–133, Berlin,
Heidelberg, 2009. Springer-Verlag.

www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=/wp-content/uploads/documents/C-7_Kernel_7_V_2_7_Final.pdf
www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=/wp-content/uploads/documents/C-7_Kernel_7_V_2_7_Final.pdf
www.emvco.com/wp-content/plugins/pmpro-customizations/oy-getfile.php?u=/wp-content/uploads/documents/C-7_Kernel_7_V_2_7_Final.pdf

29. Chong Hee Kim, Gildas Avoine, François Koeune, François-Xavier Standaert, and
Olivier Pereira. The swiss-knife RFID distance bounding protocol. In Information
Security and Cryptology (ICISC) 2008, LNCS, pages 98–115. Springer-Verlag, 2008.

30. Sangho Lee, Jin Seok Kim, Sung Je Hong, and Jong Kim. Distance bounding with
delayed responses. IEEE Communications Letters, 16(9):1478–1481, 2012.

31. Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua.
Distance-bounding protocols: Verification without time and location. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA, pages 549–566, 2018.

32. Sjouke Mauw, Zach Smith, Jorge Toro-Pozo, and Rolando Trujillo-Rasua. Post-
collusion security and distance bounding. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2019, Lon-
don, UK, November 11-15, 2019, pages 941–958. ACM, 2019.

33. Aikaterini Mitrokotsa, Cristina Onete, and Serge Vaudenay. Mafia fraud attack
against the rč distance-bounding protocol. In 2012 IEEE International Conference
on RFID-Technologies and Applications, RFID-TA 2012, Nice, France, November
5-7, 2012, pages 74–79, 2012.

34. Jorge Munilla and Alberto Peinado. Distance bounding protocols for rfid enhanced
by using void-challenges and analysis in noisy channels. Wirel. Commun. Mob.
Comput., 8(9):1227–1232, November 2008.

35. Christina Pöpper, Nils Ole Tippenhauer, Boris Danev, and Srdjan Capkun. Inves-
tigation of signal and message manipulations on the wireless channel. In European
Symposium on Research in Computer Security, pages 40–59. Springer, 2011.

36. Jorge Luis Toro Pozo. Computational and symbolic analysis of distance-bounding
protocols. PhD thesis, University of Luxembourg, Luxembourg City, Luxembourg,
2019.

37. Liqun Chen Tom Chothia, Ioana Boureanu. Making contactless emv payments
robust against rogue readers colluding with relay attackers. In the 23rd Interna-
tional Conference on Financial Cryptography and Data Security (Financial Crypto
2019), 2019, to appear.

38. Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. The poulidor
distance-bounding protocol. In Proceedings of the 6th International Conference on
Radio Frequency Identification: Security and Privacy Issues, RFIDSec’10, pages
239–257, Berlin, Heidelberg, 2010. Springer-Verlag.

39. Rolando Trujillo-Rasua, Benjamin Martin, and Gildas Avoine. Distance-bounding
facing both mafia and distance frauds: Technical report. CoRR, abs/1405.5704,
2014.

40. Jan van Leeuwen and Jǐŕı Wiedermann. The turing machine paradigm in contem-
porary computing. In Björn Engquist and Wilfried Schmid, editors, Mathemat-
ics Unlimited — 2001 and Beyond, pages 1139–1155. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001.

A (2-Weak-Insider Full)-GDF against 13+ DB
Protocols

The distance-fraud security of distance-bounding protocols is usually proven
with regards to one dishonest prover knowing his own secret key. We now show

that our model FlexiDB allowing us to capture an adversary knowing not one
but two secret keys, leads to new attacks on protocols that were proven secure in
classical models. Concretely, the attacks rely on a weak insider controlling two
provers and a total adversary w.r.t. communications, written A2-WI,Full.

To illustrate an example of these new vulnerabilities opened by FlexiDB, we
present an attack on the proven-secure DB3 distance-bounding protocol [12],
which we recalled in Section 5.2.

The DB3 Protocol [12] & Its Security The DB3 protocol (with its main
parameter q equal to 2) is a proven-secure protocol [12]. It is a DB protocol that
works as follows. The verifier sends a nonce NV , the prover replies with a nonce
NP . Both compute a = fx(NP,NV), where fx is a PRF keyed on the shared
key x. Then, in n timed rounds, the verifier sends a random bit ci, expects a
response ri = ai ⊕ ci. Finally, the prover sends tag = fx(NP,NV, c) (where c is
the concatenation of all ci values). The verifier accepts if the times, ri and tag
are correct. A complete description can be found in [12].

Programmable PRF. In DB3, as in many distance bounding protocols, the
response to the challenge ci is computed as a function of a and ci, where a is the
output of a PRF f for some initially-exchanged nonces. Our attack assumes that
the PRF used in the protocol is programmed, as defined in [10]. Specifically, the
PRF returns a constant value R when one of its inputs has a certain form.

Let f be the PRF specified in DB3, fz denote an instance of f keyed with a
key z, and R be a constant. Let pf be the programmed version of f , such that:

pfz(NP,NV) =


R if NP = g(z)

R if NV = h(z)

fz(NP,NV) otherwise,

where g and h are functions from {0, 1}|z| to {0, 1}|nonce|. For clarity, we use
g(z) = h(z) = z. Therefore, for two different secret keys xP and xA, we have (1)
pfxP

(NP, xP) = pfxA(xA, NV) = R. Our attack exploits this equality.

A.1 Our (2-Weak-Insider Full)-GDF against DB3 [12]

This attack is executed in our GDF setting: a honest prover P and the desig-
nated verifier dV are within distance at most B of each other, and an A2-WI,Full

adversary A and the designated prover dP are both at a distance greater than
B of dV. We write posP, posdV, posA and posdP to denote their respective posi-
tions. Note that dP is not actually active in this attack, as the insider adversary,
knowing dP’s key, authenticates from a distance on his behalf.

The idea of our attack is as follows:
– A injects nonces such that equality (1) above holds;
– therefore, the response vector of P matches the response vector of A, and A
does not need to run the timed phase of the protocol himself.

In the next, let xP (resp. xdP) denote the secret keys of P and dP. Concretely,
the attack goes as follows:

1. During the learning phase, A registers P by calling join(prover,posP), dV by
calling join(verifier,posdV), and dP by calling joinWI(posdP). He also calls
the enable-broadcast() oracle to enable full broadcast mode, and returns
the setting (posA, dP, dV);

2. During the attack phase, A calls init(P, dV), to start a session sid between
P and dV;

3. A calls replace(P, sid, ∗, {dV}, {sid}, xdP). This replaces the message NP
from dP with the secret key of dP.

4. A calls replace(dV, sid, ∗, xP, {P}, {sid}). This replaces the message NV
from dV with the secret key of P. Yet, A receives the unmodified message
NV . At this stage, we have aP = aA = R.

5. During the challenge response phase of the protocol, A does not interact
with the parties, but records the challenges c issued by dV;

6. A calls replace(P, sid, ∗, {dV}, {sid}, tagA), where tagA = fxdP(xdP, NV, c),
to replace the final message of P by his own.

7. A returns sid.

The session sid authenticates dP: all authenticating messages in the session
are computed with the authentication material of dP. Therefore, the prover dP
is accepted by dV, even though d(posdP, posdV) > B and d(posA, posdV) > B.

A.2 (2-Weak-Insider, Full)-Attacks against Protocols Other than
DB3

The same attack that we showed in Subsection A on top of DB3 [12] actually
applies to other distance-bounding protocols. A non-exhaustive list of which is
given in Table 4.

In the DB protocols in Table 4, the timed-phase response function always
uses a bitstring a which, in turn, is the output a PRF on two nonces used in
the initialisation phase. However, compared with DB3, some other details may
differ. Columns 2 and 3 of Table 4 capture such differences: column 2 indicates
whether NP is sent before NV ; column 3 indicates whether messages are sent
after the timed phase.

For instance, for the protocols where V sends his nonce before the prover’s,
steps 2 and 3 of the attack against DB3 would be inverted. For the protocols
where no messages are sent during after the end of the timed phase, step 5 is
not executed. Finally, in the protocol in [5], an additional value v0, derived from
a, is sent by the prover before the timed phase: A can either send it, or let the
close-by prover send it.

B New (1-Strong-Insider,Full)-Attack on DB Protocols

We consider adversaries that can chose their secret keys. Our attack targets
protocols designed to be terrorist-fraud resistant, in which the two responses
r0j , r1j at round j are such that r0j ⊕ r1j = xj , where x is the secret key of
the prover. These protocols often have a structure similar to the Swiss-Knife
(SK) protocol [29]: we present our attack on SK, noting that it applies to other
protocols of the same family.

Protocol NP first Final message

Kim and Avoine [28] 7 7

Benfarah et al. [8] (both versions) 7 7

TMA [39] 7 7

Hancke and Kuhn [26] 3 7

Munilla et Peinado [34] 3 3

Avoine et Tchamkerten [5] 3 7

Poulidor [38] 3 7

NUS [25] 3 3

Lee et al. [30] 3 7

LPDB [33] 3 7

EBT [23] 3 7

Baghernejad et al. [24] 3 7

Table 4. Certain DB Protocols Vulnerable to Generalised Distance Fraud via Pro-
grammable PRF, in FlexiDB.

The Swiss-Knife Protocol [29] & Its Security In the SK protocol, the
verifier sends a nonce NA, and receive a nonce NB in return. Both P and
V compute a = fx(CB,NB) (where CB is a constant, and f is a PRF. The
response at round j is computed as aj if cj = 0, and aj ⊕ xj if cj = 1. In the
end, P sends TB = fx(c, ID,NA,NB), where c is the concatenation of all the
challenges and ID is the identifier of P. The verifier replies with fx(NB).

Our Attack on the Swiss-Knife Protocol In our attack, A picks a key
xdP = 0. Therefore, for all rounds, it holds that r0j = r1j = aj . Since the
response is independent of the challenge, A can send it before V issues the
challenge, so that it arrives in time.

This attack is executed in our GDF setting: a A1-SI,Full adversary A and the
designated prover dP are both at a distance greater than B of dV. As long as
these conditions are satisfied, their exact position does not change the validity of
our attack. We therefore write posA, posdP and posdV to denote their respective
positions, without loss of generality. Note that dP is not actually used in this
attack, as the insider adversary, knowing his key, authenticates from a distance
on his behalf.

Concretely, the attack goes as follows:

1. During the learning phase,A registers dV by calling join(verifier,posdV), and
dP by calling joinSI(dP, posdP). He also calls enable-broadcast() oracle to
enable full broadcast mode, and returns the setting (posA, dP, dV);

2. During the attack phase, A calls init(dV) to start a session sid with dV,
receives NA, sends a random nonce NB with sendDum(dV, sid,NB) and
computes a = fxdP(CB,NB);

3. At each round j, A uses sendDum(dV, sid, aj) in advance;

4. A uses send(dV, sid, TB), where TB = fxdP(c, dP, NA,NB).

5. A returns sid.

The session sid authenticates dP: all authenticating messages in the session
are computed with the authentication material of dP. Therefore, the prover dP
is accepted by dV, even though d(posdP, posdV) > B and d(posA, posdV) > B.

Counteraction & Applicability of Our Attack on SK While the Swiss-
Knife protocol, and other similar ones, are vulnerable to this attack due to the
mechanism introduced to counter terrorist-fraud (the presence of the key in the
response function), it is noteworthy that a fix can be applied. For instance,
in [3], a random bitmask m, chosen by the verifier at each session, is applied.
The response to challenge ci = 1 becomes ai ⊕ xi ⊕mi, while the response to
the challenge zero remains ai. Therefore, fixing the secret key to only permits
to send responses in advance for half the rounds on average (the ones where
mi = 0).

The attack presented above can be seen as a destructive attack, as the ad-
versary implicitly leaks his secret key to potential eavesdroppers by executing it.
Nonetheless, it remains relevant in settings where the adversary has no rationale
interest in protecting his credentials, i.e., the gain from executing the attack is
greater than the loss incurred by leaking his secret key.

C Proof Sketch for Theorem 4

Proof. The proof is formalised in EasyCrypt. At its core, the proof relies on
refactoring the prover and verifier as adversaries against the signature scheme,
and folding them into the adversary and oracle code. The resulting construction
forms the core of our reduction B. It is then easy to show that any response
accepted by the verifier that did not come from the prover can be used to produce
a valid forgery, while also proving that any response that did involve the prover
must have been received by the prover after time tc+ 2 ·d(posV, posP), or reused
a challenge nonce, which occurs with probability at most q/2`.

D Discussion on Easycrypt-Mechanised Proofs for
EMV-RRP

This Appendix includes some more tangential discussions that may be of interest
to the reader.

D.1 Enforcement vs Assumption of Physical Constraints

In our model, we choose to let the Environment enforce physical constraints on
the propagation of messages and information. Another popular alternative when
discussing the violation of trust assumptions or other constraints is to explicitly
include the advantage of an adversary in violating these constraints whilst still
allowing them.

In this small proof of concept, enforcement makes the most sense, for two
reasons: i. It allowed us to convince ourselves early on in the formalisation that all

physical properties we wished to rely on in proofs were accurately captured; ii. It
allowed us to directly use the constraints as invariants on the state in proofs.
For example, we knew that, at any point in any execution, it was always the
case that a message read had already been sent. Further, one could argue that
physical constraints are in fact being enforced by the real-world, and violating
them is not simply a “cheating” behaviour.

However, it is worth considering that some attacks on DB protocols rely on
the adversary’s ability to break abstractions, inferring information from partial
signals, and reacting before an honest party would have fully “received” the
information [18]. Capturing this information as advantage terms would make
security claims safer by keeping them explicit, and would also support a compo-
sitional analysis of lower-level mechanisms aimed at reducing the probability of
such attacks succeeding.

We suspect that any reduction in a model with physical constraints as an
explicit assumption would start by a transition to an enforcement model with
the probability of the physical assumption being broken appearing as a simple
term in the advantage. As such, the “enforcement-style” proof would in fact be
a part of the “assumption-style” proof itself.

D.2 Modelling Multi-Location Adversaries

We do not capture, in our model, adversaries found at multiple physical positions.
EasyCrypt supports proving properties with multiple abstract modules—in fact,
our proof keeps the signature scheme S entirely abstract throughout. However,
EasyCrypt currently only handles multiple abstract modules by assuming and
enforcing that they do not share state. Properly treating colluding adversaries
in different physical positions will require some care to ensure that the various
adversarial components do not share state but can still share information—
within the constraints placed on information propagation by the Environment.

D.3 Corrupted Participants and Control Messages

Although we do not model adversaries that can corrupt otherwise honest par-
ticipants, future developments in such models will need to take care of the fact
that control messages used to control corruption or release a corrupted party’s
state to the adversary must be passed through the environment in order to avoid
any problems with the teleportation of information. Before tackling models that
require more extensive use of control messages, it may be worth extending the
environment-based framework to capture control messages in a separate queue:
as noted in the context of UC, the ability to easily distinguish between control
and protocol messages, and to apply different processing to them, is often a key
ingredient in complex proofs.

	Precise and Mechanised Models and Proofs for Distance-Bounding

