
Post-Quantum Authentication in TLS 1.3:
A Performance Study

Dimitrios Sikeridis∗, Panos Kampanakis†, Michael Devetsikiotis∗

dsike@unm.edu, panosk@cisco.com, mdevets@unm.edu

∗ Dept. of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA
†Security & Trust Organization, Cisco Systems, USA

Updates: Initially uploaded to Cryptology ePrint Archive
on Jan 23, 2020. Revised to the submitted NDSS 2020 camera-
ready manuscript on Jan 27, 2020. Revised to include clari-
fication in Section VII-C on optimizing the TCP initcwnd
on Feb 26, 2020.

Abstract—The potential development of large-scale quantum
computers is raising concerns among IT and security research
professionals due to their ability to solve (elliptic curve) discrete
logarithm and integer factorization problems in polynomial time.
All currently used public key algorithms would be deemed
insecure in a post-quantum (PQ) setting. In response, the National
Institute of Standards and Technology (NIST) has initiated a pro-
cess to standardize quantum-resistant crypto algorithms, focusing
primarily on their security guarantees. Since PQ algorithms
present significant differences over classical ones, their overall
evaluation should not be performed out-of-context. This work
presents a detailed performance evaluation of the NIST signa-
ture algorithm candidates and investigates the imposed latency
on TLS 1.3 connection establishment under realistic network
conditions. In addition, we investigate their impact on TLS
session throughput and analyze the trade-off between lengthy
PQ signatures and computationally heavy PQ cryptographic
operations. Our results demonstrate that the adoption of at least
two PQ signature algorithms would be viable with little additional
overhead over current signature algorithms. Also, we argue that
many NIST PQ candidates can effectively be used for less time-
sensitive applications, and provide an in-depth discussion on the
integration of PQ authentication in encrypted tunneling protocols,
along with the related challenges, improvements, and alternatives.
Finally, we propose and evaluate the combination of different PQ
signature algorithms across the same certificate chain in TLS.
Results show a reduction of the TLS handshake time and a
significant increase of a server’s TLS tunnel connection rate over
using a single PQ signature scheme.

I. INTRODUCTION

Digital communications have completely penetrated ev-
eryday life and the physical world as enablers of numerous
critical services including telemedicine, online banking, mas-
sive e-commerce, machine-to-machine automation, mobile and
cloud computing. In this reality, public-key cryptography is
ubiquitous in almost all cryptographic protocols, such as TLS

which builds encrypted tunnels between digital entities. Studies
suggest that over 60% of Internet connections are implemented
over the TLS-based secure HTTPS protocol [20], [64]. TLS
adoption is expected to keep increasing as users and client
vendors strive for ubiquitous encryption and privacy [51].

Apart from connection integrity and confidentiality, TLS
provides authentication usually with the use of X.509 certifi-
cates [45]. Such certificates are issued by trusted third-parties
called Certificate Authorities (CAs). Endpoints verify the
communicating peer’s identity and public key (PK) contained
inside his certificate by leveraging a chain of certificates that is
rooted to a pre-trusted root CA. The two most popular digital
signature algorithms used in certificates today are the Elliptic
Curve Digital Signature (ECDSA) and RivestShamirAdleman
(RSA). Their security guaranties rely on the hardness of the
elliptic curve discrete logarithm (ECDL) and integer factoriza-
tion (IF) problems respectively.

While the security of the aforementioned schemes cannot
be practically challenged by conventional computer systems,
this would not be the case in a post-quantum world where
a large scale quantum computer has become a reality [62].
Shor’s quantum algorithm [76], [87], assuming a practical
quantum computer (QC) was available, would solve ECDL and
IF problems in polynomial time which would render ECDSA
and RSA insecure. In this scenario, a QC-equipped attacker
would be able to impersonate signers that use these algorithms.
Thus, encrypted tunnel (e.g. TLS, IKEv2) authentication, PK
infrastructure (PKI), CAs, and software signing would be
broken.

To address the issue, the cryptographic community has
been researching quantum-resistant public key algorithms for
some time, while the US NIST started a public project to
standardize quantum-resistant public key encapsulation and
signature algorithms. Similarly, ETSI has formed a Quantum-
Safe Working Group [32] that aims to make assessments and
recommendations on the various proposals from industry and
academia regarding real-world deployments of quantum-safe
cryptography. Moreover, the IETF has seen multiple proposals
that attempt to introduce and investigate PQ algorithms in
protocols like TLS and IKE [33], [40], [68], [91], [93].

At the moment of this writing, NIST’s evaluation pro-
cess has moved from Round 1 to Round 2 where 26 PQ
algorithms were chosen with security guarantees being the
primary criterion, while performance was treated as a future
goal [2]. Evidently, the actual integration of these algorithms

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4, https://dx.doi.org/10.14722/ndss.2020.24203
www.ndss-symposium.org
Permission to freely reproduce all or part of this paper only for non-
commercial purposes is granted provided that copies bear this notice and the
full citation on the first page.



into existing protocols (e.g., TLS, IKEv2, SSH) and their
coexistence with today’s Internet infrastructure present chal-
lenges that pertain to (a) additional latency due to their heavy
operations, (b) communication overhead from the increased
public key and signature sizes, and (c) optimal use of exist-
ing hardware towards faster implementations. These gaps are
actively being studied by research teams in the industry with
NXP Semiconductors, Microsoft and Queensland University
of Technology [15], Amazon [18], Cloudflare and Google
focusing on the impact of key exchange mechanisms (KEMs)
on TLS [52], [54]–[56].

These efforts mostly focus on TLS PQ key exchange as
confidentiality is considered more urgent. Since a QC-equipped
attacker would be able to decrypt stored communications
retroactively, ensuring quantum-resistant encryption for critical
data is a priority. This is not the case with authentication as
digital entity impersonation cannot happen retroactively. How-
ever, there are numerous incentives that drive the early study
of PQ authentication in today’s protocols. First, PKI refresh
cycles are traditionally long and migration to new primitives
can take years. A case in point is ECDSA. Even though
it was standardized in 2005 [4] offering clear performance
advantages over RSA [39], its adoption was still not broad
a decade later. Finally, the computational performance of PQ
algorithms, along with the fact that the sizes of the resulting PQ
certificates are significantly larger, will definitely impact the
TLS handshake by worsening user experience and connection
performance. Thus, it is important to investigate and identify
promising PQ signature candidates specifically for utilization
in TLS.

In this paper, we study the overhead introduced by PQ
certificates in the establishment of TLS 1.3 tunnels. Our
goal is to identify PQ signature candidates that could be
employed in TLS without major protocol updates, measure
their performance in real-world deployments and contribute to
the overall discussion about their use in encrypted tunnels. The
key contributions of our work are summarized as follows:

(i) We analyze the candidate signature algorithms from
NIST’s Post-Quantum Cryptography Project and compare
them in terms of performance, security level claims and
key/signature sizes. In addition, we integrate software imple-
mentations of these schemes in X.509 certificates for TLS 1.3
authentication in the OQS OpenSSL library [74].

(ii) We conduct large-scale measurements to investigate the
PQ authentication algorithm impact on TLS 1.3 handshake
establishment in realistic network conditions. Moreover, we
investigate the impact that larger PQ certificate chains or
slower sign/verify operations have on the throughput of a
server performing PQ authentication in HTTPS.

(iii) We demonstrate the viability of adopting two PQ can-
didate signature algorithms, Dilithium, and Falcon, for time-
sensitive applications over TLS and we argue that Falcon is
more suitable for the web if floating point hardware is available
at the server. We argue that less time-sensitive applications can
use a larger set of PQ candidate algorithms.

(iv) We propose and study the use of different PQ signature
scheme combinations in the same certificate chain to improve
the performance of PQ authentication in TLS which, to the
best of our knowledge, has not been examined before.

(v) We provide an in-depth discussion of PQ authentication
challenges for encrypted tunnelling protocols, alternatives, and
present insights towards optimizing future deployments.

Note that we do not evaluate the PQ security claims or
security proofs of the PQ algorithms. These will be assessed
in the NIST standardization process. We also do not perform
an exhaustive benchmark of all the available parameter sets of
the signature algorithms under consideration by NIST. Relying
on preliminary findings and individual algorithm claims, we
have explicitly chosen to focus on a subset of algorithms
and parameter sets that would seamlessly fit in TLS. To the
best of our knowledge, this is the first work that assesses
the performance of PQ certificates in TLS 1.3 by considering
realistic network conditions.

The rest of the paper is organized as follows: Section II
presents background on X.509 PKI and TLS 1.3. In Section III,
the different PQ candidate signature families and algorithms
are presented, while Section IV details the integration of
PQ authentication into TLS 1.3. Section V presents the ex-
perimental procedure, results and their analysis. Section VI
summarizes related work. Finally, Section VII discusses the
general implications and potential solutions of integrating
new PQ signatures in encrypted tunnels, while Section VIII
concludes this paper.

II. BACKGROUND

This section presents an overview of the TLS 1.3 hand-
shake protocol, along with a summary of the X.509 PKI
currently used in TLS.

A. X.509 Certificates and PKI

A digital entity’s (e.g., a server) identity is bound to its
public key via a digital certificate. Since X.509 is the most
common PKI standard adopted by IETF protocols, X.509
certificates play an important role in digital authentication for
various protocols (e.g., TLS, SSH, IKEv2). X.509 certificates
are defined by RFCs 5280 [22] and 6818 [94], and their sizes
usually vary between 0.5 and 1.5KB.

A PKI infrastructure consists of various parts. A Certificate
Authority (CA) issues an entity’s certificate that assures the
entity’s identity and public key tie to that identity. The identity
is included in the Subject field of the certificate, while the
entity’s public key is stored in the Subject Public Key
Information along with the algorithm used by the issuer to
create the signature. A certificate contains a specific validity
period and extensions included by CAs to enable additional
functionality. The certificate is signed by the CA’s private key
using the specified signature algorithm and the signature is
added to the certificate’s Signature field.

Certificates are exchanged between entities during a session
setup in order for each party to verify the peer’s identity. At the
top of the X.509 PKI there are trusted CAs that self-sign their
own certificates known as root CA certificates. Normally a root
CA issues certificates for intermediate CAs (ICAs). Following
that, the root CA is kept offline for security purposes. An ICA
can further issue certificates for other ICAs that in turn sign
leaf certificates in the PKI. This process results to the creation
of certificate chains of trust that usually consist of two to four

2



certificates but can be arbitrarily long. A leaf certificate is
validated by an endpoint if (a) the endpoint trusts the chain’s
root CA, and (b) all the signatures from the leaf to the root
certificate of the chain are verified by using the public key of
the issuer.

B. TLS 1.3 Encrypted Tunnels

The TLS protocol design provides endpoint authentication
and establishes encrypted communication tunnels between
them. The aim is to ensure data integrity, confidentiality, and
authenticity. In August 2018, the latest version of the protocol
—TLS 1.3— was published as RFC 8446 [78]. TLS 1.3 offers
significant improvements over its predecessor TLS 1.2 that
include elimination of insecure or obsolete features, complete
encryption of the handshake, and reduced handshake latency
by eliminating a round-trip.

Below we present the full TLS 1.3 handshake, and a
summary of the messages exchanged between a client that
initiates a connection with a remote server: Initially, the client
calculates an ephemeral public/private key pair for the key
exchange and sends to the server a ClientHello message
that contains a random nonce, the protocol versions and
cipher suites that the client supports, and possible extensions
which include pre-shared keys, a list of supported signature
algorithms (signature_algorithms extension), or a list
of supported signature algorithms specifically for certificates
(signature_algorithms_cert extension).

In turn, the server calculates its own ephemeral key
pairs, determines the desired cryptographic parameters and
responds with a ServerHello message that contains
the server’s nonce, a public key for the key exchange,
the preferred cipher suite and optionally key_share and
pre_shared_key extensions. At this point, by combining
the ClientHello and ServerHello messages the two
entities generate a shared key and the connection gets en-
crypted. The server continues by sending a Server Change
Cipher Spec message for TLS 1.2 compatibility pur-
poses (”middlebox compatibility mode”). This is followed by
the server sending ServerEncryptedExtensions ex-
tensions, and optionally a ServerCertificateRequest
message if client certificate authentication is required. The
encrypted extensions include the server’s certificate and certifi-
cate chain for authentication (ServerCertificate), and a
ServerCertificateVerify message that contains a sig-
nature over the handshake. Finally, the server ends his part of
the handshake with a ServerFinish message that contains
a Message Authentication Code (MAC), namely verification
data generated by a hash of all the messages exchanged so far.

Following that, and again for compatibility purposes,
the client responds with a Client Change Cipher
Spec message to the server. If client authentication is
requested the client then sends its public key certifi-
cate (a ClientCertificate message) and optionally a
ClientCertificateVerify. The TLS 1.3 handshake
finishes with the client ClientFinish message. The com-
plete TLS 1.3 handshake and its variations are detailed in RFC
8446 [78], while an illustrated byte-per-byte description can be
found in [29].

III. POST-QUANTUM CANDIDATE SIGNATURE SCHEMES

In this section we present the different families of PQ sig-
nature algorithms, and document details regarding the specific
schemes and parameter sets used in this study.

A. Quantum-Resistant Families of Problems

Since currently used public-key cryptography schemes
would be threatened by large-scale quantum computers, re-
search for alternatives —namely post-quantum schemes— able
to resist QC attacks has been surging for the last decade. The
goal has been to identify suitable problems or subproblems
of NP-hardness that are not solvable in polynomial time by
quantum algorithms [16].

Hash-based Cryptography This family of PQ signa-
ture algorithms relies on Merkle trees and few or one-time-
signature (FTS/OTS) used with secure cryptographic hash
functions. Important security requirements for these functions
include collision and preimage resistance. The first scheme
in the family, Merkle signature scheme (MSS), was presented
in the late 1970s [16]. The use of hash functions with Merkle
trees and FTS/OTS for generating signatures is considered ma-
ture, well-understood, and significantly reliable. Hash-Based
Signature (HBS) schemes generate keypairs for the FTS/OTS.
The FTS/OTS signs a message and the corresponding public
key becomes a leaf in the Merkle tree. The resulting Merkle
tree root is the public key. Currently, the most mature schemes
of this family are the stateful LMS [60] and XMSS [43], and
stateless SPHINCS+, one of the NIST signature candidates [5].
A stateful HBS relies on an OTS and a signer needs to ensure
that the OTS private key is never reused. This state man-
agement requirement is considered an important disadvantage.
While stateless SPHINCS+ alleviates this issue, it also leads
to an increase in signature size to ∼40-60 KB and slower
performance.

Lattice-based Cryptography Another family of hard
problems rely on lattices [65], [70]. A lattice is the set of
all integer linear combinations of linearly independent vec-
tors in real n-space Rn. There are many lattice-related NP-
hard problems used for cryptographic purposes including the
shortest vector problem (SVP) (i.e., find a shortest vector
in the Euclidean norm), the closest vector problem (CVP)
(i.e., find a lattice vector that minimizes the distance from
another target lattice), and the lattice basis reduction problem.
The lattice problems NIST PQ signature candidates depend
on are learning with errors (LWE) [77], ring learning with
errors (RLWE) [59], module learning with rounding or errors
(MLWR or MLWE) and NTRU [41]. Some of these may be
reducible to these NP-hard lattice problems. The NTRU and
LWE families have been studied more extensively than oth-
ers. Lattice-based algorithms are promising quantum-resistant
solutions with relatively efficient implementations and strong
security properties. Among the NIST PQ signature candidates
the list of lattice-based schemes includes Dilithium [30], qTesla
[3], and Falcon [34].

Multivariate Cryptography Another family of problems
that are used by some NIST’s signature algorithm candidates
is related to solving multivariate quadratic equations over finite
fields which is an NP-hard problem. The system’s hardness to
solve depends mainly on the degree, the number of variables,

3



Signature
Specification

Hard Public Key Private Key Signature Claimed Classical
Security Level

Claimed PQ
Security LevelAlgorithm Problem Size (Bytes) Size (Bytes) Size (Bytes)

RSA 3072 [61] Integer Factorization 387 384 384 128 bits ∼0 bits
ECDSA 384 [4] EC Discrete Logarithm 48 48 48 192 bits ∼0 bits

Dilithium II [30], [31] Module Learning with Errors 1184 2800 2044 100 bits 91 bits
Falcon 512 [34] NTRU 897 1281 690 114 bits 103 bits
MQDSS 48 [21] Multivariate 46 13 20854 160 bits 99 bits
Picnic L1FS [38] Zero-Knowledge Proofs 33 49 34036 128 bits 64 bits
SPHINCS+ SHA256-128f-simple [5] Hash-Based 32 64 16976 128 bits 64 bits
Rainbow Ia - Cyclic [27] Multivariate 58144 92960 64 143 bits 106 bits

Dilithium IV [30], [31] Module Learning with Errors 1760 3856 3366 174 bits 158 bits

Falcon 1024 [34] NTRU 1793 2305 1330 263 bits 230 bits

TABLE I: Conventional and Post-Quantum Signature Algorithms and Parameter Sets used in this study.

and the underlying finite field’s size. Multivariate PQ schemes
often lead to excessive key or signature sizes. Thus, recent
research has focused on reducing keys sizes for these schemes
[16]. The NIST multivariate-based signature candidates are
Rainbow [27], MQDSS [21], LUOV [12], and GeMSS [19].

Finally, Picnic [38] is a NIST candidate signature scheme
that does not rely on structure hardness (lattice, quadratic
equations, Merkle trees). Picnic depends on zero-knowledge
proofs, and symmetric key primitives like hash functions and
block ciphers.

B. PQ Signature Algorithms and Parameter Sets Studied

In their PQ Project, NIST defined five security levels based
on the bits of security offered by the algorithm parameter set.
In our study, we focus on Level 1, 3 and 5. Level 1 corresponds
to 128-bit security, while Levels 3 and 5 offer 192 and 256
bits of security respectively. The choice of specific parameter
sets for each algorithm in our study was done specifically for
use in TLS, and by taking into account their performance and
signature/key size outputs.

SPHINCS+ [5]: The SPHINCS+ signature algorithm
specification defines 36 different parameter sets, that uti-
lize different hash functions including Haraka, SHA256, and
SHAKE256. For our experiments, we chose to integrate and
evaluate the SHA256-128f-simple parameter set that cor-
responds to NIST’s Level 1 because it was the most efficient
one integrated in PQClean [75].

Dilithium [30], [31]: In our study, we integrated and eval-
uated Dilithium II which was in PQClean [75] and corresponds
to NIST’s Level 1. We also examined Dilithium IV, Dilithium’s
highest security level (Level 3). We also tested Dilithium III
(Level 2) as an alternative since Dilithium II offers less than
128 bits of classical security.

Falcon [34]: Regarding the Falcon signature scheme, its
Round 2 submission describes two parameter sets, Falcon 512
that provides NIST’s Level 1 security, and Falcon 1024 that
corresponds to Level 5. In our experiments we integrated
and evaluated the version provided by the Falcon team in
liboqs [73], [90]. That version did not include the floating
point hardware optimizations that improve Falcon’s signing
performance by ∼20 times [72].

qTesla [3]: Initially, the heuristic version of the qTesla
I parameter set (NIST Level 1) tested as a very promising

TLS candidate. However, at the time of this writing, an
update on qTesla’s Round 2 submission eliminated all Round
2 heuristic parameter sets. In their place the qTesla team kept
the provably-secure parameter sets that result in significantly
bigger signature (2.5KB) and public key (∼15KB) which
would double the handshake time in TLS. Therefore, we did
not evaluate qTesla further.

Picnic [38]: In this study, we examine the Round 1 Picnic
L1FS parameter set which existed in the OQS OpenSSL [74]
and corresponds to NIST’s Level 1. The Round 2 submission
preserves all Round 1 parameter sets, and adds another three
that are referred to as Picnic2. This new parameter set reduces
the size of the produced signature by making the whole scheme
significantly slower while the signature is still over 10KB [37,
§ 11.3, § 11.4]. Thus, although our evaluation of Picnic is
slightly optimistic, it still does not perform well in TLS.

MQDSS [21]: The MQDSS specification provides multiple
parameter sets, and specifically recommends two of them.
MQDSSS-31-48 corresponds to NIST Levels 1-2. In our study,
we integrated and evaluated the MQDSSS-31-48 implementa-
tion from liboqs [73], [90]. Note that, in a recent NIST
mailing list thread, G. Zaverucha & D. Kales offered a new
attack which the MQDSS team acknowledged and will address
in the future with a new parameter set that will probably
worsen our measured performance.

Rainbow [27]: The specification of Rainbow suggests
three different variants, and parameter sets. By examining the
cryptographic operations’ performance, along with the public
keys of each alternative, we chose to test the Rainbow Ia -
Cyclic parameter set integrated in the PQClean project [75]
because it was the most promising one for TLS. Rainbow Ia
offers Level 1 security.

Table I summarizes the conventional, and PQ signature
algorithms examined in this study and presents the sizes of
public keys, private keys, and signatures.

Two NIST Round 2 candidate signature schemes were not
included in our study, namely GeMSS and LUOV. The GeMSS
specification [19] presents 9 parameter sets with large public
key sizes that range between 350 and 3087 KB. Those values
are too large to be considered for practical use in TLS and
would even present functionality limitations (see discussion
about Rainbow in Section V-A). The LUOV specification [12]
presents 6 parameter sets for Round 2 with big public key
sizes, accompanied with small signatures and relatively good

4



PQ X.509 Certificate

Version

Serial Number

PQ Signature Algorithm

Issuer

Validity Not Before Not After

Subject Public Key InfoSubject

PQ Public Key Algorithm

PQ Public Key 

X509v3

Extensions

PQ Signature

Fig. 1: Post-Quantum X.509 Certificate

cryptographic operation performance. This scheme was not
considered for our testing for two reasons: (a) it resembles,
like GeMSS, Rainbow (small signatures, big public key)
which we examined, and (b) a new attack against LUOV and
lifted structure schemes was presented at the Second PQC
Standardization Conference [28].

IV. POST-QUANTUM AUTHENTICATION IN TLS 1.3

This section presents details regarding the implementation
and integration of PQ authentication into TLS 1.3 with its
implications. To integrate PQ signatures into X.509 and TLS
we utilized the OQS OpenSSL [74] library, which is a fork
of OpenSSL that introduces post-quantum algorithms from the
liboqs library [73], [90]. The OQS OpenSSL version we
used was based on OpenSSL version 1.1.1c with ASM
optimizations for SHA256, SHA512, RSA and ECDSA256.
No ASM optimizations were included for ECDSA384 which
we used as reference/comparison in our experiments (see
Section V).

Migrating to PQ authentication will require changes in
X.509 and SSL libraries; in our case OpenSSL. Fig. 1 shows
the format of a PQ X.509 certificate and the fields where PQ
algorithm support will need to be added. The new certificate
will carry the subject’s PQ public key and the specific PQ
signature algorithm used to create the signature. Then the
certificate will be signed by the issuer. The PQ signature
will be placed in the Signature field. The addition of the
PQ public key and PQ signature to the X.509 certificate will
increase the size of the certificate and the size of the related
certificate chains (Table I). In TLS 1.3, the maximum default
size of a X.509 certificate or certificate chain is 224-1 bytes
and the signature size limit is 216-1 bytes. To include new
algorithm support, the OQS OpenSSL library defines new
X.509 algorithm identifiers [25], [74].

Next, we focus on the TLS 1.3 handshake pieces
affected by PQ algorithms. Fig. 2 shows an overview
of the messages exchanged by a client who attempts
to set up a TLS 1.3 session with a server utiliz-
ing quantum-resistant authentication. We assume a classic
web scenario where the client is not authenticated. The
ClientHello message will negotiate the desired PQ sig-
nature algorithm using the signature_algorithms or
signature_algorithms_cert extensions. These are es-
sentially lists of algorithm identifiers. The next adjustment for
PQ authentication is the PQ X.509 certificate/chain transmis-
sion by the server with the ServerCertificate message
that will now include PQ certificates. In addition, the server
will sign the transcripts of the handshake and transmit a PQ

Client Server

PQ 

X.509 

Cert.
ClientHello

+ signature_algorithms

+ signature_algorithms_cert

ServerHello

{EncryptedExtensions}

{PQ ServerCertificate}

{Server Change Cipher Spec}

{ServerFinished}

{ClientFinished}

Application Data

T
L

S
 H

a
n

d
sh

a
k

e
 T

im
e

C
e

rt
if

ic
a

te
 T

ra
n

sf
e

r 
T

im
e

{PQ ServerCertificateVerify}

One

PQ Sign 

Operation

PQ Verify 

Operations

Fig. 2: Post-Quantum TLS 1.3 Handshake

CertificateVerify message that contains a PQ signa-
ture. Currently, the maximum default size of this message is
102.4 KB. Additionally, when a certificate chain exceeds 16
KB, TLS utilizes Record Fragmentation [78]. Finally, the client
will will use the PQ signature algorithm to perform verification
operations to the received signatures before sending its own
Finished message to end the PQ TLS 1.3 handshake.

V. PERFORMANCE EVALUATION

In this section we present the performance of each PQ
signature scheme after its integration into OQS OpenSSL. In
our experiments, we assume a classic web scenario where only
the server is authenticated using X.509 certificates. All TLS
1.3 handshakes are full 1-RTT mode without PSK resumption.
In order to compare PQ authentication in TLS against current
algorithms, we utilize the RSA and ECDSA as baselines.
For RSA authentication, we use the 3072-bit version that
provides 128 bits of security, (Table I). Regarding ECDSA,
we utilize the secp384r1 curve which offers 192 bits of
security. We note that ECDSA with secp256r1 or Ed25519
would offer 128-bit security level equivalent to RSA3072 with
better performance, but we chose higher security level for
ECC signatures because it is believed that these primitives
will be broken by a QC before their equivalent security level
big number (RSA) signatures. We could have tested against
RSA2048 or ECDSA256 instead, but our experiments showed
that slightly faster and smaller signatures will negligibly speed
up handshakes that take an average ∼110ms [63]. RSA and
ECDSA/EdDSA would offer 0 bits of security in a post-
quantum setting. Our objective is to document strictly PQ au-
thentication in TLS. Thus, we utilize a classic X25519 elliptic
curve Diffie-Hellman (ECDH) key exchange with Curve25519.

The experiments involved one local machine and several
cloud-based instances. The local host was equipped with an
Intel i5-8350U processor and 16 GBs of RAM, while the
experiments were implemented on a virtual machine that
utilized four cores running at 1.7 GHz each and 8GB of RAM.

5



Signature
Algorithm

Local Machine (ms) Cloud Instance (ms)

Sign Verify Sign Verify

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

RSA 3072 3.19 0.023 0.06 0.001 2.39 0.010 0.04 0.002
ECDSA 384 1.32 0.012 1.05 0.020 1.28 0.015 0.93 0.004

Dilithium II 0.82 0.021 0.16 0.005 0.41 0.018 0.12 0.008
Falcon 512 5.22 0.054 0.05 0.004 6.50 0.091 0.07 0.003
MQDSS 48 10.30 0.147 7.25 0.100 10.25 0.181 7.40 0.110
Picnic L1FS 4.09 0.050 3.25 0.049 3.17 0.051 2.39 0.044
SPHINCS+ SHA256-128f-simple 93.37 0.654 3.92 0.043 62.7 0.548 2.50 0.037
Rainbow Ia 0.34 0.015 0.83 0.036 0.25 0.020 0.48 0.044

Dilithium IV 1.25 0.021 0.30 0.012 0.46 0.019 0.23 0.010

Falcon 1024 11.37 0.102 0.11 0.005 14.20 0.156 0.14 0.005

TABLE II: Duration of Sign and Verify Operations: Mean and Standard Deviation

Our cloud machines were Google Cloud Platform (GCP)
n1-standard-2 [88] instances running on an Intel Xeon
processor with two cores at 2 GHz each and 8 GBs of RAM.
All the participating machines were running Ubuntu 18.04 in
an x86_64 architecture. TCP Segmentation Offload (TSO)
and Large Receive Offload (LRO) were enabled on the hosts’
virtual network cards.

Readers should note that in our evaluation we do not con-
sider the impact of PQ signatures employed in CRL and OCSP
revocation checks which would take place over a different
connection. In addition, potential use of OCSP staples would
introduce another signature generation and verification. Staples
can be cached which would not affect the handshake until
the staple expired. That falls outside the scope of our work.
Similarly, we do not consider SCT checking which requires
more signature verifications and TLS data. PQ revocation and
SCTs could slow down the handshake, as they do already, but
there are techniques to alleviate their impact which we discuss
in Section VII-B.

Finally,we use the following metrics to evaluate the TLS
performance from the server and client’s perspective:

• TLS Handshake Time: The time between the
ClientHello message and the end of the handshake.
This metric models the latency a client experiences
before establishing a secure encryption tunnel excluding
the TCP handshake.

• Certificate Transfer Time: The time between the
ServerHello message and the Client Change
Cipher Spec message that includes the transfer of
certificate chains from the server to the client.

• TLS Transactions per Second: This metric expresses the
rate of successful HTTPS connections the server is able
to serve.

A. Speed of Cryptographic Operations

First, we evaluate the performance of cryptographic opera-
tions for the signature algorithms used in this study. Sign and
verify operations are significant differentiation points for the
PQ algorithms since they are performed by the server and the
client respectively in the TLS handshake. The measurements
for the classic algorithms (RSA, ECDSA) were taken using
the OpenSSL speed command, while for the PQ schemes

we used the testing scripts from liboqs [73], [90]. Table II
shows the average sign and verification times of the various
schemes run on the machines of this study. Since the duration
of these operatiosn directly affects the experiment’s TLS
handshake time, we measure the algorithms’ standalone perfor-
mance in milliseconds for each type of machine used instead of
CPU clock cycles which is the common practice. We observe
that Dilithium, and Rainbow offer competitive performance for
128 and 192-bit security comparable to classical algorithms
(RSA3072 and ECDSA384). Falcon offers great verification
times, and slower signing. We can see that only Falcon
is slower in the cloud machine. We attribute this behavior
to Falcon’s floating-point operations which do not exist in
other PQ signature schemes. MQDSS and Picnic are slower
and SPHINCS+ is significantly slower, especially for sign
operations. Our signing and verification measured performance
is generally confirmed by the SUPERCOP benchmarks [9] and
[83].

NIST Round 2 submissions included optimized versions
of the algorithms that take advantage of parallelization and
hardware acceleration (e.g., AVX2). These optimizations speed
up performance of the algorithms significantly. The imple-
mentations we used in our experiments (Table II) were not
optimized. Using the optimized versions would make signing
and verification greatly faster. For example, AVX2 optimized
Falcon signs ∼20 times faster and AVX2 optimized Dilithium

Signature
Cert Chain Size (KB)

CertificateVerify

Algorithm One ICA Two ICAs Size (KB)

RSA 3072 1.63 2.44 0.38
ECDSA 384 1.34 2.15 0.05

Dilithium II 6.90 10.42 2.04
Falcon 512 3.54 5.37 0.69
MQDSS 48 42.24 63.42 20.85
Picnic L1FS 66.20 99.57 30.03
SPHINCS+ SHA256-128f-si 34.46 51.74 16.98
Rainbow Ia 116.86 175.35 0.06

Dilithium IV 10.70 16.11 3.37

Falcon 1024 6.56 9.89 1.33

TABLE III: Sizes of certificate chains (excluding the root), and
CertificateVerify extension

6



RSA ECDSA Dilithium II Falcon 512 MQDSS Picnic SPHINCS Rainbow*

Authentication Algorithm

0

0.05

0.1

0.15

T
L

S
 H

a
n

d
s
h

a
k
e
 T

im
e
 (

s
e
c
)

One ICA Two ICAs

RSA
ECDSA

Dil. II Falc.

0.01

0.02

0.03

Fig. 3: TLS Handshake Time for NIST’s PQ Security Level 1 Signature Algorithms: Average and Standard Deviation

0 0.1 0.2 0.3 0.4

TLS Handshake Time (sec)

0

0.2

0.4

0.6

0.8

1

C
D

F

RSA

ECDSA

Dilithium II

Falcon 512

MQDSS

Picnic

SPHINCS

0 0.1 0.2 0.3 0.4
0.98

0.99

1

Fig. 4: TLS Handshake Time for NIST’s PQ Security Level 1
Signature Algorithms: Empirical CDF - One ICA

IV signs faster than Dilithium II without AVX2. We expect
that future hardware acceleration of the algorithms themselves
would improve their performance further and eventually the
TLS cert chain and CertificateVerify size will be the
bottleneck of PQ authentication. The results of our work are
still relevant for use-cases where acceleration is not available
(potentially on constrained devices), but they could underes-
timate the performance we can get from each scheme which
we discuss in the relevant sections in our analysis below.

B. PQ TLS Overhead Analysis - NIST Security Level 1

At the first phase of our experiments we studied
the performance of PQ schemes in NIST’s Level 1.

Root CA

PQ Root 

Cert.

PQ Int. 

Cert. b1

ICAb1

PQ Int. 

Cert. a

ICAa

PQ Int. 

Cert. b2

ICAb2

PQ Server 

Cert. 

Server

PQ Server 

Cert. 

Server

Fig. 5: X.509 certificate
chains in our experiments

The experimental setup consisted
of our local machine operating
as a client in N. Carolina and
a remote machine from GCP’s
N. Virginia region acting as the
server. Two chain lengths were
considered in our experiments
as shown in Fig. 5. The first
involves a single ICA and the
second involves two ICAs since
these account for 77% of the
SSL cert chains on the Inter-
net today [86]. The same PQ
signature scheme was used for
all certificates across each chain.
Table III summarizes the exact
Distinguished Encoding Rules

(DER) encoded certificate chain sizes excluding the root

CA cert which is not sent to the client, and the TLS
CertificateVerify extension size.

Current WebPKI certificates include extensions (SCT,
OCSP, CRL, SAN) that we did not use in our experiments.
These fields sometimes lead to conventional certificates that
exceed 1.5KB. Our tests included less extensions resulting to
slightly smaller sizes than common web certificates. Based
on the data we collected, we do not expect that one or two
hundreds of bytes of certificate extensions would effectively
change our results unless they push the certificate chain over
the TCP congestion window (cwnd). PQ SCT and OCSP
signatures would add significant data to the handshake. We
further discuss this point in Section VII-B.

In our performance experiments, we first measure the
average TLS handshake time over 1000 handshake attempts.
Fig. 3 shows these results for the PQ algorithms in NIST
Level 1 for the two certificate chain lengths considered. During
our experiments, all TLS records were received successfully
and no errors were observed due to the excessive size of
the certificates for six out of the seven algorithms exam-
ined. More specifically, the TLS client application was not
able to process the size of a Rainbow certificate yielding
an excessive message size error. After examining the
trace, we observed that the client was issuing an SSL Alert
because of the certificate public key size, however, the server
transmitted the chain before closing the connection. Since this
happened consistently for all handshake attempts, Fig. 3 shows
the duration of this exchange (the * denotes partial handshake
without a ClientFinish message).

Fig. 4 shows the empirical cumulative density function
of the single ICA measurements. The long tails observed
are attributed to the network transmission path. It is evi-
dent from the results that long certificates and slow opera-

0 50 100 150 200

Number of Handshakes

10
4

10
5

10
6

C
u

m
u

la
ti

v
e
 d

a
ta

 t
ra

n
s
fe

t 
(b

y
te

s
)

RSA

ECDSA

Dilithium II

Falcon 512

MQDSS

Picnic

SPHINCS

R
SA

EC
D
SA

D
ili

th
iu

m
 II

Fal
co

n 5
12

M
Q
D
SS

Pic
nic

SPH
IN

C
S

Authentication Algorithm

0

0.02

0.04

0.06

C
e

rt
if

ic
a

te
 T

ra
n

s
fe

r 
T

im
e

 (
s

e
c

)

Fig. 6: Impact of PQ Certificate Transfer NIST’s PQ Security Level 1
Signature Algorithms (one ICA): (a) Cumulative Transfer Overhead,
(b) Average Transfer Time

7



RSA ECDSA
Dilithium IV

Falcon 1024

Authentication Algorithm

0

0.01

0.02

0.03

0.04

T
L

S
 H

a
n

d
s

h
a

k
e

 T
im

e
 (

s
e

c
)

One ICA

Two ICAs

0 0.02 0.04 0.06 0.08 0.1 0.12

TLS Handshake Time (sec)

0

0.2

0.4

0.6

0.8

1

C
D

F

RSA

ECDSA

Dilithium IV

Falcon 1024

0 0.02 0.04 0.06 0.08 0.1
0.97

0.98

0.99

1

Fig. 7: TLS Handshake Time for Higher PQ Security Level Signature
Algorithms: (a) Average and Standard Deviation, (b) Empirical CDF
- One ICA

tions significantly reduce the authentication performance in
TLS for algorithms like MQDSS, Picnic, and SPHINCS+.
Fig. 6(a) shows the cumulative data transfer between the
ServerHello and the Client Change Cipher Spec
message for 200 consecutive handshakes providing a insight
on the network traffic generated when implementing PQ certs
in TLS. Fig. 6(b) shows the average time elapsed during
this period. As expected, algorithms with bigger public keys
and signatures lead to longer time to transfer the certificates
and TLS CertificateVerify. For small signatures (i.e.,
Dilithium II, Falcon 512) that equates to less than 5ms extra
whereas for bigger ones (i.e., MQDSS, Picnic, SPHINCS+) it
becomes ∼35-55ms extra.

The client and server were in close proximity in this
experiment. The transfer times of lengthy signatures and chains
could exceed 0.5s for longer client-server distances. That
is because algorithms with excessively large certificate sizes
and signature messages are penalized by the TCP congestion
window. Certificate chains and CertificateVerify pay-
loads of high size (i.e. MQDSS, Picnic, and SPHINCS+ from
Table III) incur round-trip(s) (for TCP initcwnd<35MSS)
which significantly slows down the handshake due to the TCP
congestion window (cwnd). Falcon 512 and Dilithium II, on
the other hand, do not incur extra round-trips and the additional
cert transfer time would remain ∼5-10ms even over longer
distances.

In Fig. 3, algorithms that result to smaller certificate chains
and CertificateVerify payloads (i.e., Dilithium, Falcon
from Table III) show competitive performance against conven-
tional signature algorithms. Falcon 512 has smaller signatures
and public key, but we see it performing worse than Dilithium
II because its signing operation at the server takes longer
(∼6.5ms without AVX2 optimizations). Signing duration of
6.5ms and chain/TLS signature transfer of ∼3ms are more
noticeable in a localized scenario (e.g., a server in N. Virginia)
with a baseline RSA3072 handshake time of ∼15ms. Falcon
512 would look better for the average Internet web connection
of ∼110ms [63] as we show in Section V-E.

C. PQ TLS Overhead Analysis - NIST Security Levels 3, 5

Next, we extend our experiments to measure the perfor-
mance of algorithms that belong to higher security levels in
NIST’s level scale. For the majority of the examined PQ
algorithms, the parameter sets that provide higher quantum-
resistant authentication result to significantly larger public keys
and signatures [3], [5], [21], [27], [31], [34], [38] and worse
performance. Due to these sizes, the certificate chain and

0 50 100 150 200

Number of Handshakes

104

105

C
u

m
u

la
ti

v
e

 D
a

ta
 T

ra
n

s
fe

r 
(b

y
te

s
)

RSA

ECDSA

Dilithium IV

Falcon 1024
RSA

ECDSA

Dilit
hium IV

Falcon 1024

Authentication Algorithm

0.005

0.01

0.015

0.02

C
e

rt
if

ic
a

te
 T

ra
n

s
fe

r 
T

im
e

 (
s

e
c

)

Fig. 8: Impact of PQ Certificate Transfer for Higher PQ Security
Level Signature Algorithms (one ICA): (a) Cumutative Transfer
Overhead, (b) Average Transfer Time

CertificateVerify message were shown in Section V-B
to exceed the TCP initcwnd which causes significant slow-
downs because of the extra round-trip(s).

Thus, for Levels 3 and 5, we limit our attention to the
two PQ algorithms that presented the most promising results
at Level 1, namely Dilithium II and Falcon 512. We examine
Dilithium IV at NIST security Level 3, and Falcon 1024 at
Level 5. Currently, Dilithium does not offer a parameter set
at Level 5, while the Falcon’s Level 3 parameter set (Falcon
768) was removed in Round 2 [34].

Again, we measure the average TLS handshake time over
1000 handshakes for our client in N. Carolina and a server
in N. Virginia. Fig. 7(a) shows these results for the examined
algorithms for the two certificate chain lengths, while Fig. 7(b)
shows the empirical cumulative density function of the single
ICA measurements. We observe that by increasing the security
level of the PQ schemes the absolute added latency to the TLS
handshake is ∼10-15ms over RSA3072. Fig. 8(a) shows the
cumulative data transfer between the ServerHello and the
Client Change Cipher Spec message for 200 consec-
utive handshakes. Fig. 8(b) shows the average time elapsed
during this period which is an additional ∼5ms for Falcon
1024. The Dilithium IV cert transfer is slower because the data
size triggers an extra round-trip (∼11ms). Falcon 1024 does
not add an extra round-trip which means that the additional
cert transfer time would remain ∼5-10ms even over longer
distances, but it adds ∼14ms of signing. An additional 14ms
is more noticeable in a localized scenario (N. Carolina to N.
Virginia) with a baseline RSA3072 handshake time of ∼15ms.

D. Combining PQ Signature Schemes

The diverse nature of the cryptographic primitives used for
each PQ signature algorithm leads to solutions with different
characteristics and behaviour, namely different signature/key
sizes and computational complexity (Tables I, II). Therefore,
by using different PQ signature schemes in the same certificate
chain, we can leverage each algorithm’s specific strengths and
effectively reduce the overall TLS handshake time. To the best
of our knowledge, this is the first time where using different
algorithms along the certificate chain has been proposed to im-
prove total handshake performance. To illustrate this intuition,
we examine a proof-of-concept combination of the Falcon
1024, and Dilithium IV algorithms across a chain with one
ICA.

The root CA and ICA certs include a Falcon 1024
public key and signature from the root CA, while the

8



Client

+ 11 ms
19 hops

+ 103 ms
24 hops

N. Virginia 
Server

Oregon
Server

Zurich
Server

Sao Paulo
Server

Sydney
Server

Singapore
Server

+ 69 ms
22 hops

+ 139 ms
25 hops

+ 205 ms
26 hops

+ 225 ms
28 hops

(a) Round-trip time and hops be-
tween client and servers

N. Virginia Oregon Zurich Sao Paulo Sydney Singapore
0

0.5

1

T
L

S
 H

a
n

d
s

h
a

k
e

T
im

e
 (

s
e

c
) RSA ECDSA

Dilithium II Falcon 512

MQDSS Picnic

SPHINCS

N. Virginia Oregon Zurich Sao Paulo Sydney Singapore

Server Location

0

0.2

0.4

T
L

S
 H

a
n

d
s

h
a

k
e

T
im

e
 (

s
e

c
) RSA ECDSA

Dilithium IV Falcon 1024

Fal. 1024 & Dil. IV

(b)

(c)

(b) NIST Level 1, (c) NIST Levels 3, 5

Fig. 9: TLS Handshake Time at a global scale

server cert utilizes a Dilithium IV public key and a Fal-
con 1024 signature from the ICA. By doing so, we re-
duce the duration of the server’s signing operation by ap-
proximately 30 times. In addition, the overall certificate
chain size is equal to 6.52 KB, which is smaller than
both the pure Falcon 1024 chain (6.56 KB), and the
pure Dilithium IV chain (10.70 KB) (Table III). Table IV
shows a comparison yielded following the experimental pro-
cedures of Section V-C (client-server round-trip ∼11ms).

Signature
TLS Handshake (ms)

Scheme Mean St. Dev.

RSA 3072 15.13 6.03

Dilithium IV 24.20 2.62
Falcon 1024 27.14 3.30
Fal. 1024 & Dil. IV 18.11 1.58

TABLE IV: Average Handshake
Time and σ of the Dilithium and
Falcon combination (single ICA).

The combined case
reduces (on average)
the overall handshake
by 25.16% compared
to the single Dilithium
IV, and by 33.27%
when put against the
single Falcon 1024
case. The combination
can work with other
signature schemes
too as discussed in

Section VII-B. It is especially suitable for the cases where (a)
the client and server are in close proximity, (b) sufficiently
fast implementations of the signature scheme are not available
at the signer or verifier, or (c) when leaf certificates are
renewed relatively often and lower security levels with
better performing parameters are acceptable. The drawback
is that the verifier is required to support both signature
algorithms. The performance improvement of this method
will be marginal for long client-server distances. The client
and server Section V-E and V-F further examine this proposed
alternative of combining schemes.

E. Global Scale Performance Analysis

Next, we extend our evaluation by adding more remote
servers across different continents. Fig. 9(a) shows the exper-
imental setup, the average number of hops, and the measured
average round-trip latency between our local client and each
remote server. Again, the handshake duration was averaged
over 1000 handshakes for each PQ signature algorithm and

parameter set. A certificate chain with a single ICA was
utilized. Fig. 9(b) shows the mean and standard deviation of
the TLS handshake time when algorithms with NIST’s security
Level 1 were tested, while Fig. 9(c) does the same for Level
3 and 5. The performance was similar across all regions,
and no handshake failures were reported due to middlebox
misbehaviour. Consistently, Dilithium and Falcon show the
most promise for replacing RSA3072 with minimum additional
delay.

Using the same setup, in a second experiment, our client
uniformly performed 3000 handshakes with the remote servers
in the course of a whole day for each examined algorithm.
The goal was to account for Internet’s unpredictability by
measuring TLS handshake latency in diverse topologies across
longer time-frames. Table V summarizes the additional latency
introduced to the TLS handshake by the PQ signature algo-
rithms when compared against RSA3072 at the 50th and 95th

percentile. The observed latency overhead of Level 1 Dilithium
II was notably small making it the most pertinent for integra-
tion into TLS. Level 1 Falcon 512 also showed small overhead
over RSA3072. Regarding higher security levels, Dilithium
IV nearly doubled the handshake duration because the data
size triggered an extra round-trip, while Falcon performed
better. Although the % increase seems high for Dilithium IV,

Signature
Handshake (ms) Latency (%)

Algorithm 50th 95th 50th 95th

RSA3072 131.54 227.26 0 0

Dilithium II 140.20 232.51 6.58 2.31
Falcon 512 142.22 235.46 8.12 3.49
MQDSS 48 598.61 726.20 355.05 219.53
Picnic L1FS 634.90 985.88 382.63 333.79
SPHINCS+ SHA256-128f-simple 553.15 904.98 320.49 298.19

Dilithium IV 276.55 449.88 110.22 97.95

Falcon 1024 152.96 240.74 16.28 5.93

Fal. 1024 & Dil. IV 140.74 228.42 6.98 0.50

TABLE V: TLS Handshake Times and Additional Latency
over RSA at the 50th and 95th Percentile.

9



the absolute time increase is ∼145ms at the 50th percentile
and ∼229ms at the 95th percentile. The Dilithium+Falcon
combination (Section V-D) reduced the handshake latency
by ∼8-50% in comparison to single PQ algorithm certificate
chains.

Our experiments so far have measured the time between
the ClientHello message and the end of the handshake.
Extending the period under examination to include the TCP
handshake (start at the TCP SYN message) increases the mean
TLS handshake with X25519 key exchange and RSA3072
certificates duration to 269.5ms. The respective median of the
handshake measured in Firefox client-server connections is
111ms considering 9.91 billion data points from their nightly
versions 69, 70, and 71 (excluding 32-bit platforms which
could deteriorate the performance unrealistically) [63]. By
extrapolation we estimate that the average PQ TLS handshake
measured from the TCP SYN to Ready for HTTP will
amount on average to ∼122-135ms for the best algorithm cases
of each security level, namely Dilithium II (level 1), and Falcon
1024 (level 5).

The PQ signing and verification times were relatively
small (<15ms) in our analysis so far for all tested algorithms
except SPHINCS+. Such times have relatively little impact on
an average handshake time of ∼110ms [63] or 269.5ms in
our tests. Arguably using optimized or hardware accelerated
versions of these algorithms would speed up the handshake,
but not by a lot because the certificate and signature data will
still incur a slowdown.

F. Server-Side Performance of TLS PQ Authentication

Up to this point, we focused on measuring the im-
pact of PQ authentication in TLS from the client’s
perspective. Next, we measure the performance of a
server that utilizes PQ certificates in TLS 1.3 to ser-
vice simultaneous secure connections with multiple clients.

S. Carolina 
Server

+ 11 ms
4 hops

N. Virginia 
Clients

Oregon
Clients

Iowa
Clients

California
Clients

+ 69 ms
7 hops

+ 33 ms
4 hops

+ 65 ms
10 hops

Fig. 10: Round-trip
latency and number of
hops between clients
and server

To do so, an Nginx web server
[66] was set up on one of the
aforementioned cloud instances, and
was configured to utilize the OQS
OpenSSL library. Thus, our server
was able to sign handshakes and
send PQ certificates using the signa-
ture schemes under study. We used
the Siege tool [35], configured with
the OQS OpenSSL library, to sim-
ulate multiple clients and set up
PQ authenticated TLS connections.
Siege clients were running in four
remote cloud instances. For this ex-
periment, all client instances were
placed in relatively close proximity

to each other. The exact topology details are shown in Fig. 10.

The clients that were uniformly distributed among the four
locations, attempted simultaneous TLS connections with the
server for 60 seconds. During that time we measured the
request rate that the server was able to handle, i.e. the number
of successful transactions per second. The requested web page
was only 0.6KB. In addition, we captured the server’s overall
availability by measuring the number of TLS handshake fail-
ures during the load testing period. Fig. 11 shows these results

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

T
ra

n
s

a
c

ti
o

n
s

/s
e

c

0

5

10

T
L

S
 H

a
n

d
s

h
a

k
e

F
a

il
u

re
 (

%
)

RSA Dilithium II Falcon 512 Picnic Ts/sec Fail Rate

0 100 200 300 400 500 600 700 800 900 1000

Number of Clients

0

200

400

600

800

T
ra

n
s

a
c

ti
o

n
s

/s
e

c

0

5

10

T
L

S
 H

a
n

d
s

h
k

e

F
a

il
u

re
 (

%
)

(b)

(a)

Fig. 11: Server Performance for NIST’s PQ Security Level 1
Signature Algorithms: (a) One ICA, (b) Two ICAs

for promising signature algorithms of NIST’s Level 1 as the
total number of clients increases from 20 to 1000. Both cases
of one and two ICAs are examined. Evidently, while still at
low load RSA3072 outperforms Dilithium II and Falcon 512
as expected from Fig. 3. However, as the server’s saturation
point is reached we observe that Dilithium II allows the server
to handle ∼25% more connections per second compared to
RSA3072 because Dilithium signing is over five times faster
compared to RSA3072 at the server (Table II). Regarding
Falcon 512, the server’s saturation point is reached early at
a much lower transaction rate than RSA and Dilithium due to
slow signing at the server (Table II).

Fig. 3 showed that the Dilithium bigger cert chain and
CertificateVerify size do not affect the server perfor-
mance other than slightly slowing down the handshake. To
further reinforce that point, the server’s transaction rate is
similar for both cert chain lengths (Fig. 11(a) vs. Fig. 11(b))
for the same algorithms which shows that just a few additional
KB of certificate payload do not affect the server performance.

To further demonstrate the higher impact of signing
over cert chain size on a busy server we tested Picnic
L1FS which presents much bigger certificate chain and
CertificateVerify message (Table III) while maintain-
ing a better than Falcon 512 sign operation (Table II). Fig. 11
shows that the server signing with Picnic L1FS outperforms
signing with Falcon 512 by ×1.7 higher transaction rate. That
can be attributed to the sign operation performance. Moreover,
and in accordance with our earlier experiments, Picnic still
leads to a much lower maximum transaction rate compared
to RSA3072 and Dilithium II due to its excessively big cert
chains that slow down the handshake significantly (Fig. 3).
Another interesting observation is that before reaching the
server saturation point, Picnic’s transaction rate is half than
RSA3072. The reason is that up to this point the server has not
gotten overloaded and the transaction slowdown solely comes
from the TLS performance slowdown seen in Fig. 3.

The same behaviour is observed for parameter sets that
yield higher NIST security levels as seen in Fig. 12. The
server’s saturation point is reached significantly early with
Falcon 1024 that also presents the highest handshake failure
rate among alternatives because of its signing performance.
Also, under high load, the use of Dilithium IV results to
higher transaction rates in comparison to RSA3072 and Falcon

10



0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800
T

ra
n

s
a

c
ti

o
n

s
/s

e
c

0

5

10

15

T
L

S
 H

a
n

d
s

h
a

k
e

F
a

il
u

re
 (

%
)

RSA Dilithium IV Falcon 1024 Fal. 1024 & Dil. IV Ts/sec Fail Rate

0 100 200 300 400 500 600 700 800 900 1000

Number of Clients

0

200

400

600

800

T
ra

n
s

a
c

ti
o

n
s

/s
e

c

0

5

10

15

T
L

S
 H

a
n

d
s

h
k

e

F
a

il
u

re
 (

%
)

(a)

(b)

Fig. 12: Server Performance for NIST’s Higher PQ Security Level
Signature Algorithms: (a) One ICA, (b) Two ICAs

1024 because of its better signing performance (Table II).
Moreover, we examined the proposed PQ combined certificate
chain scenario (Dilithium and Falcon in Section V-D). Results
demonstrate that by using PQ combined certificate chains the
server is able to handle more TLS connection requests than all
alternatives including the conventional RSA3072. More specif-
ically, the Dilithium+Falcon combination slightly increases the
average post-saturation transaction rate by ∼10% and ∼4%
compared to RSA3072 and pure Dilithium IV respectively.
The improvement over RSA3072 is because Dilithium IV
operations are still faster. However, the difference is smaller
than in Fig. 11 because the Dilithium IV chain slows down the
handshake more (Fig. 7). The server’s performance increase
with Dilithium+Falcon over Falcon 1024 is due to the com-
putationally lighter signing of Dilithium IV (Table II).

In summary, we saw that signing at the server is an
important factor for the server’s performance. Cert chain and
signature size affect the server transaction rate by increasing
the TLS handshake time but the effect is smaller than the
impact of a heavy signing operation. We expect that the server
performance penalty introduced by expensive sign operations
will be alleviated by optimized implementations and hardware
acceleration in the future.

Finally, it is worth noting that in our tests we observed
that the client closest to the server saw a higher transaction
rate due to the lower propagation delay. Thus, servers closely
located to clients will see better performance than the average
we are showing.

VI. RELATED WORK

A large body of research on QC and PQ cryptography [11],
[44], [50], [95] led to the NIST initiative to come up with novel
PQ algorithms for use in a post-quantum world. Recently,
more studies are exploring NIST’s Round 2 PQ candidate
schemes focusing mainly on their computational performance,
while some even evaluate their energy consumption [82]. The
authors in [6], [89] conduct a hardware implementation and
comparison of NIST Round 2 signature and KEM candidate
algorithms. Their focus is on comparing specific algorithm
operations and their impact on hardware design parameters,
without taking into account performance as a part of a system
or a protocol. In [48], Kannwischer et al. benchmark Round 2
algorithms on ARM Cortex-M4 and evaluate the more suitable

ones for embedded devices without studying additional impact
on specific use-cases. Similarly, the authors in [85] enhance the
DTLS protocol with the PQ key exchange algorithm NTRU
which showcases its feasibility for securing current systems.

In addition, research teams from the industry are in-
vestigating the performance of PQ candidate algorithms in
current Internet protocols. They have mostly been focusing
on studying key exchange. In [15], Bos et al. proposed the
use RLWE for key exchange in TLS 1.2 and study its impact
that slows down performance by a factor of ×1.4 for the
client and ×1.2 for the server. A year later, in 2016, Google
tested a hybrid KEM (NewHope combined with elliptic-
curve schemes) and ECDSA certs with TLS 1.2 in Google
Chrome [54]. Following the conclusion of NIST’s Round 1
evaluation, Google and Cloudflare resumed the experiments
on KEM integration into TLS. The new study [56] defined
three KEM families based on the primitive and the key size
and tested them with dummy extensions of proportional sizes
in the TLS ClientHello message. The goal was to emulate
the overhead that these key sizes introduce and explore issues
or failures related to such larger handshakes. Recently, Google
and Cloudflare have concluded work on a new experiments
(CECPQ2 [55]) that integrated a hybrid KEM based on the
HRSS NIST PQ candidate and X25519 into TLS 1.3 for
further performance measurements on Chrome. Additionally,
they tested the SIKE NIST PQ candidate with X25519 in TLS
1.3 as part of their CECPQ2b experiment [52]. The results of
this work are included in [53]. Moreover, Campagna recently
discussed hybrid key exchange and double tunnelling for TLS
and presented the slowdown of TLS 1.2 introduced by using
hybrid key exchange with ECDHE and SIKE or BIKE NIST
PQ candidates [18]. Campagna et al. showed that SIKE’s
impact on the handshake byte count is small, whereas BIKE’s
impact is significant.

More closely related to our work that focuses on signature
performance, Cronin et al. [26] modeled and benchmarked the
performance of forward-secure signatures against conventional
RSA, DSA and ECDSA. Focusing more on PQ signatures,
Kampanakis et al. discussed the impact of PQ signature
schemes on protocols that utilize X.509 certificates in [46].
They considered the case of hybrid certificates that include
hash-based signatures, and conducted performance experi-
ments on TLS 1.2 and IKEv2. Also, their work discussed the
use of PQ certificates by emulating their increased size through
enlarging certificate chains with additional certificates. On the
same topic, earlier work by Bindel et al. emulated large hybrid
PQ certificates and studied their impact on TLS libraries and
browsers [13]. The authors in [17] prototyped stateful XMSS
signatures in TLS and S/MIME and pointed out the challenges
with state management in live TLS connections. In [25], the
authors discuss the challenges of implementing NIST’s PQ
key exchange and authentication algorithms in TLS, with
their focus being mainly on hybrid (combination of PQ and
conventional) schemes. In addition, they perform proof-of-
concept experiments on PQ TLS that involve single certificate
exchanges, without accounting for real-world network condi-
tions. Finally, Paquin et al. [69] perform experiments with
some hybrid PQ KEM and Signature schemes in TLS and
show that lossy conditions have more negative effects on data-
heavy TLS handshakes. The loss rates they use are not very
common on the Internet today, but they could be experienced

11



in constrained or congested environments, or remote cellular
networks.

VII. DISCUSSION ABOUT ENCRYPTED TUNNELS

A. Implications of our Findings

PQ signatures will have an impact on authenticated tun-
nels like (D)TLS and IKEv2/IPSec. These protocols provide
fragmentation mechanisms to allow for lengthy signatures,
but as we showed above, larger chains and potentially slower
algorithms will impact the tunnel establishment. Applications
with lower connection rates and tunnels that stay up longer will
be less impacted than applications that establish short and fast
connections. Thus, per connection overhead is important to be
considered for the migration to PQ authentication algorithms.
In addition, the more signatures used in a handshake, the
more impact PQ algorithms would have on the protocol.
For example, SCTs in leaf certificates will add two or three
signatures to the handshake and OCSP stapling would add one
more.

IPSec VPN tunnels usually stay on for long periods of time.
Experimental RFC4478 [67] defines how a tunnel can be re-
authenticated, but in practice, IKE_AUTH messages are not
exchanged unless the tunnel is torn down and re-established.
Thus, for the majority of IKEv2/IPSec VPN applications, a
connection establishment that would take up to a few seconds
would not have material impact on the tunnel. Similarly,
WebVPN applications establish a TLS control connection and
subsequently data DTLS connections over a duration of a
few seconds. Onward, these tunnels stay up for long sessions
that usually last hours or more. A connection establishment
slowdown of up to a few seconds will not impact these
connections. The caveat with such use-cases is the impact
on the head-end that terminates these connections. It is not
unusual for a VPN concentrator to terminate thousands of
connections. A possible attempt of VPN clients to establish
a connection to the hub simultaneously could lead to overload
if the signing or verification operations are heavy. Most PQ
signature candidates we studied (except SPHINCS+) are not
likely to be a significant performance concern for VPN tunnels
that take advantage of algorithm optimizations.

Web connections, on the other hand, are usually short-lived.
At the time of this writing, clients perform 70 requests per page
to fetch 1-2KB resources per request on average [42]. If some
of these requests are performed over new TLS connections, a
heavier PQ authenticated TLS handshake would have a signifi-
cant impact on HTTP performance overall. A few KB of extra
authentication data per TLS connection has low amortization
over 1-2KB of actual web content. On the other hand, the ever-
increasing adoption of HTTP/2 [7] (55% at the time of this
writing [42]) will improve amortization as HTTP/2 multiplexes
data over a single HTTP connection. It is hard to say with
certainty how much delay is excessive on the web. Reports
like [1] lead us to believe that hundreds of extra milliseconds
per handshake are not acceptable. More importantly, extra
round-trips mean almost doubling total handshake times which
we consider excessive for time-sensitive web applications.

In summary of our testing, we found that Dilithium II,
Falcon 512 and 1024 could be deployed in X.509 certs with-
out detrimentally impacting time-sensitive TLS applications.

Dilithium is preferable over Falcon, at least when floating
point hardware is not available, because its superior sign-
ing performance allows for higher connection rates. Floating
point hardware improves Falcon’s signing performance by
∼20 times [72] which would make Falcon a better candidate
than Dilithium in terms of performance in live protocols.
Falcon would also have more impact on energy constrained
devices [83]. Dilithium IV nearly doubled the handshake
duration over RSA3072 because the data size triggered an extra
round-trip. Dilithium IV could still be used if applications were
amenable to approximately double the TLS handshake time or
if some of the mechanisms in Section VII-B (e.g., [92], [79,
§ 5.1.3]) were widely deployed. We also showed that other
NIST PQ signature candidates would not be good candidates
for such applications.

Dilithium II and Falcon 512’s claimed classical security
levels are ∼100 and ∼114 bits respectively. Although these
asymptotic bounds are probably higher in practice because
of memory costs, these parameter sets could be considered
unacceptable to use. The variants that offer more than 128
bits of classical security are Dilithium III, IV and Falcon
1024. We already discussed that Falcon 1024 had acceptable
handshake time with the shortcomings of higher energy cost
and slow signing when floating point hardware is not present
and that Dilithium IV was introducing extra round-trips. A
rerun of our experiments in Section V-E showed that the use
of Dilithium III certificates added 2.7KB to the handshake
(compared to Dilithium II) with fast signing/verification times.
That led Dililthium III to perform ∼7% slower than RSA3072
which is very similar to Dilithium II. Based on the above, if
Dilithium II and Falcon 512 security levels are considered low,
Dilithium III and Falcon 1024 are the best options. Falcon 1024
would be preferable when floating point hardware is available
at the signer and energy is not a concern.

None of our tests included OCSP revocation checks and
SCTs returned from the server. OCSP and SCTs could account
for three or more PQ signatures which could push the server
TLS data over the TCP initcwd and introduce round-
trips for all Dilithium variants. Falcon data could fit in the
initcwd (10MSS) at the cost of one slower OCSP signature
assuming floating point hardware is not available. Falcon, or
multivariate schemes would be preferable specifically for SCTs
because of their relatively fast verification and small signatures.
Readers should note that on the web, OCSP responders are
often not used by browsers [58] and staples can be cached and
are not supported by most servers. Thus, we consider OCSP
signatures a less pressing challenge for the PQ WebPKI case.

B. Minor Adjustments to Enable PQ Signatures

There are straightforward changes needed for
TLS and IKEv2 to support PQ signatures. The TLS
extensions signature_algorithms_cert and
signature_algorithms will need to use new identifiers
to convey to the TLS peer the PQ signature algorithms
supported [25, § 4.1.1]. Also, X.509 will need to use new
Public Key and Signature identifiers to convey the new
algorithms [25, § 4.1.1], [46, § 1]. In the context of IKEv2,
signature negotiation was not included in the protocol from
the beginning. Recently RFC7427 [49] added support for
signature algorithm negotiation. RFC7427 is rarely supported

12



by VPN vendors, so in a PQ authenticated IKEv2 case,
vendors will have to support all possible algorithms and not
negotiate with the peer, or support RFC7427 and negotiate
the PQ signature algorithms with new identifiers.

Crockett et. al. describe in [25, § 4.3.1] the challenges
introduced by some algorithms with signatures and cert chains
that exceed 214 B and 102.4 KB respectively. Out of the tests
we performed, only Rainbow fell in these categories and led
to failed handshakes. We do not expect schemes with such
big signatures to be used in TLS, thus TLS and protocol
implementations will likely not require further updates to
accommodate them.

On the other hand, the work in [92] proposes a new TLS
extension to inform the server that the client does not need
the ICA certificates in the certificate chain. The authors in [79,
§ 5.1.3] propose a similar method of omitting certificates from
a handshake by using a pre-established certificate dictionary.
Such mechanisms could save significant amounts of data from
handshakes that approach or exceed the TCP initcwnd to
prevent extra round-trips similar to Dilithium IV. They would
also alleviate the impact of lossy networks which was shown
to be high for data-heavy TLS handshakes [69] . The way
to implement the mechanism would be either for the client
to keep track of ICAs, or maintain an ICA cache and a
server leaf certificate Common Name (CN) cache. Both caches
would get updated from a new TLS handshake when there
is a cache miss. The server certificate itself would not be
cached. It would still be returned from the server with every
handshake. The CN cache could save additional data overhead
from OCSP and SCT PQ signatures as well. Valid OCSP
staples and SCTs could be bound to a CN cache entry. As
long as the client had an entry in the cache for the server
leaf certificate, he would not need to receive the ICAs, OCSP
or SCT information. One challenge would then be that, at the
time of this writing, SCTs are most usually included in the leaf
certificate. To omit the SCT data, the certificate could no longer
include the SCT information which would now be carried in a
signed_certificate_timestamp extension [57]. That
is a drastic paradigm change but it would allow the client to
limit the TLS handshake data if the information is in its cache.

Section V-D showed how combining algorithms could
improve the performance of the handshake. Using the same
rationale at the root CA, the algorithm combination with
relatively small signature size could shrink the ICA certificate
size and speed up the handshake. Such schemes could be
multivariate candidates like LUOV, GeMSS, and Rainbow or,
qTesla, or Stateful HBS [43], [60] with small tree heights
used at the root CA. Certificate chains that include different
signature algorithms impose an extra requirement for a client
to support multiple PQ signature algorithms.

C. Drastic changes to Enable PQ Authentication

CPU-intensive algorithms like Falcon signing could add
significant load to busy servers. Such cases could benefit
from batch signing options proposed in [8]. Batch signing
would allow the server to sign batches of handshakes with one
signature, but it would require broad client upgrades and could
introduce delays while the server is buffering handshakes to
batch-sign them.

Some lattice signature schemes like Falcon could offer
message recovery as part of the signature [71]. If the message
is longer than a plain Falcon signature then message recovery
shortens the message+sig size. This mechanism could be
integrated in X.509 to make the PQ certificate smaller. An
X.509 certificate could then only include the algorithm iden-
tifier and the signature. The message (tbsCertificate)
would be recovered from the signature itself. Such methods
would require significant changes in X.509 standards and their
implementations in tunnelling protocols.

If Dilithium and Falcon are not standardized, tunnelling
protocols will be significantly affected by the rest of the PQ
signature algorithms. Given that the industry is constantly
striving for faster handshakes and better performance [36],
[92], [79] it is unlikely that the impact of the PQ signature al-
gorithms (excluding Dilithium and Falcon) will be acceptable.
In that case, more drastic protocol changes may be necessary.

There is an argument to be made for increasing the TCP
initcwnd used in our testing from 10MSS (RFC6928) to a
much higher value which could prevent extra round-trips for
some of the schemes. Such an optimization could seemingly
improve handshake performance. Even though there are web
content providers that use optimized initcwnds that greatly
exceed 10MSS, not all TLS connections are web connections
or are terminated at a content provider. Significantly increasing
the default TCP initcwnd in every Internet server that wants
to enable PQ TLS authentication should not be done lightly as
it could have adverse effects on TCP Congestion Control. We
consider drastically increasing the TCP initcwnd in order
to speed up PQ TLS authentication for algorithms with large
signatures and public keys a potential improvement that should
be carefully studied at a large scale before being deployed.

One thought proposed in public fora is to follow the
Certificate Transparency paradigm [57] and offer a public
repository or service that could be used out-of-band to retrieve
certificates of the entities that a client would communicate
with. To offer the same functionality, the work in [80] uses
special DNS Resource Records to serve public keys used
for SNI encryption. Such proposals would eliminate the need
for certificates to be transferred in the handshake, but it
comes with a requirement of retrieving and verifying the
peer certificate out-of-band. Unless caching is enforced, this
certificate retrieval step would need to be repeated before any
TLS connection establishment which of course is unlikely to
improve the overall performance. If caching the peer certificate
is possible, it comes with concerns [84, § 7], [46, § 2.1]. We
consider such a mechanism a drastic paradigm shift from the
way the Internet works today.

On the other hand, the authors in [14, Figure 2], [10, § 2.3],
[81] propose an alternative authentication method that uses
PQ Key Encapsulation which could be more efficient than
PQ signatures. The mechanism would require for the server
leaf certificate to include a PQ KEM public key which can
be relatively short. But it would also require new protocol
message extensions and an extra round-trip in TLS because
the signature ciphertext can only be generated after the client
has retrieved the server’s public key. It would work similarly
for IKEv2. Changing the TLS or IKEv2 state machine in
order to prevent the extra round-trip would not be trivial as
it would affect current security analyses of the protocols [23],

13



[24]. Moreover, the public key would still need to tied to the
peer identity using PKI so the PQ cert chain containing PQ
signatures would still need to be transferred which minimizes
the improvement this mechanism offers.

VIII. CONCLUSION AND FUTURE WORK

In this work, we integrated PQ signature algorithms into
TLS 1.3 and evaluated the TLS handshake latency observed
by a client along with the throughput of a PQ authenticated
server by considering realistic network conditions. We proved
that the signature and certificate chain size impact the total
handshake time, especially with relatively fast signing and
verification primitives. Our results show that the PQ algo-
rithms with the best performance for time-sensitive applica-
tions are Dilithium and Falcon. When floating point hardware
is available Falcon seems more suitable for the web. Other
applications (e.g. VPN, SSH) that do not require frequent
connection establishments could use one of the other PQ
signature algorithms as well, assuming they do not overload
a server terminating multiple client connections. We showed
that although slightly slower signing does not significantly
affect the overall duration of a single handshake, it could
significantly impact the total throughput of a server. However,
as optimizations and hardware acceleration improve signing
performance, we expect signature and key size to have the
most impact on the handshake. We also proposed combining
different PQ signature algorithms in a certificate chain and
we confirmed that it can improve the overall handshake speed
and throughput. Finally, we offered improvements to avoid
round-trips by leveraging ICA suppression and discussed other
challenges and alternatives in real-world protocols.

As future work, we plan to evaluate the performance of
PQ authenticated VPNs and UDP-based tunnels like QUIC
and DTLS [47]. We also want to test AVX2 optimized hybrid
PQ KEMs as tested by others [52], [53] along with AVX2
optimized PQ signatures to evaluate the ”total” latency in-
troduced to TLS by PQ algorithms. By combining results
in [53] with our work, we could extrapolate that the total
slowdown of a PQ handshake would be around 10-25%.
Also, given that PQ key exchange could add 1-2KB each
direction, this could push the server data to the initcwnd
limit and introduce round-trips. Further experiments would
be necessary to quantify the total PQ algorithm impact on
TLS under realistic conditions that include lossy networks. It
would also be of interest to study the impact of PQ SCT and
OCSP signatures while using the caching and ICA suppression
mechanisms already discussed. Finally, it is worth investigating
hybrid certificates’ [68] performance and the improvement
that Stateful HBS, qTesla, GeMSS, LUOV or Rainbow would
achieve when used only at the root CA. As a longer-term goal,
in an attempt to reduce the certificate size, we would also like
to study the message recovery capabilities offered by schemes
like Falcon.

ACKNOWLEDGMENTS

Many thanks to Richard Barnes from Cisco for his valuable
feedback. We would also like to acknowledge Luke Valenta
from Cloudflare for his comments and experimental results
regarding longer TLS records in TLS handshakes. Hanno Böck
was kind to challenge us insightfully on the concerns PQ

signatures bring to PKI. We are grateful to Thom Wiggers
and Prof. Lejla Batina from Radboud University for their
thoughtful feedback which improved this paper. It was nice of
Dan J. Bernstein from Univ. of Illinois at Chicago to challenge
us constructively on the default TCP initcwnd used on
the Internet. Finally, thank you to Douglas Stebila, Christian
Paquin and the whole OQS OpenSSL [74] team for providing
a library that made our testing possible.

REFERENCES

[1] Akamai, “Akamai online retail performance report: Milliseconds are
critical,” https://www.akamai.com/uk/en/about/news/press/2017-press/
akamai-releases-spring-2017-state-of-online-retail-performance-report.
jsp, 2017.

[2] G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,
Y.-K. Liu, C. Miller et al., Status report on the first round of the NIST
post-quantum cryptography standardization process. US Department
of Commerce, National Institute of Standards and Technology, 2019.

[3] E. Alkim, P. S. L. M. Barreto, N. Bindel, P. Longa, and J. E. Ricardini,
“the lattice-based digital signature scheme qtesla.”

[4] ANSI, “ANSI X9.62, Public Key Cryptography For The Financial
Services Industry: The Elliptic Curve Digital Signature Algorithm
(ECDSA),” September 2005, american National Standards Institute, X9-
Financial Services.

[5] J.-P. Aumasson, D. J. Bernstein, C. Dobraunig, M. Eichlseder,
S. Fluhrer, S.-L. Gazdag, A. Hülsing, P. Kampanakis, S. Kölbl,
T. Lange et al., “SPHINCS+ - Submission to the 2nd round
of the NIST post-quantum project,” https://sphincs.org/data/sphincs+
-round2-specification.pdf, 2019, Specification document (part of the
submission package).

[6] K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST post-quantum
cryptography - a hardware evaluation study,” Cryptology ePrint Archive,
Report 2019/047, 2019, https://eprint.iacr.org/2019/047.

[7] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” RFC 7540, May 2015. [Online]. Available:
https://rfc-editor.org/rfc/rfc7540.txt

[8] D. Benjamin, “Batch Signing for TLS,” Internet Engineering Task
Force, Internet-Draft draft-davidben-tls-batch-signing-02, Nov. 2019,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-davidben-tls-batch-signing-02

[9] D. J. Bernstein, “eBACS: ECRYPT Benchmarking of Cryptographic
Systems,” https://bench.cr.yp.to/primitives-sign.html, 2019, Web page.
Accessed 2019-02-08.

[10] ——, “Visualizing size-security tradeoffs for lattice-based encryption,”
Cryptology ePrint Archive, Report 2019/655, 2019, https://eprint.iacr.
org/2019/655.

[11] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen,
L. Papachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-
O’Hearn, “SPHINCS: Practical Stateless Hash-Based Signatures,” in
Advances in Cryptology - EUROCRYPT 2015 - 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, 2015, pp. 368–397.

[12] W. Beullens, A. Szepieniec, F. Vercauteren, and B. Preneel, “Luov:
Signature scheme proposal for NIST PQC project (Round 2 version),”
https://github.com/WardBeullens/LUOV/blob/master/Supporting
Documentation/luov.pdf, 2018.

[13] N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning to a
quantum-resistant public key infrastructure,” in Proc. 8th International
Conference on Post-Quantum Cryptography (PQCrypto) 2017, ser.
LNCS, T. Lange and T. Takagi, Eds. Springer, June 2017, to appear.

[14] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehl, “Crystals – kyber: a cca-
secure module-lattice-based kem,” Cryptology ePrint Archive, Report
2017/634, 2017, https://eprint.iacr.org/2017/634.

[15] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, “Post-quantum
key exchange for the TLS protocol from the ring learning with errors
problem,” in 2015 IEEE Symposium on Security and Privacy. IEEE,
2015, pp. 553–570.

14

https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://sphincs.org/data/sphincs+-round2-specification.pdf
https://sphincs.org/data/sphincs+-round2-specification.pdf
https://eprint.iacr.org/2019/047
https://rfc-editor.org/rfc/rfc7540.txt
https://datatracker.ietf.org/doc/html/draft-davidben-tls-batch-signing-02
https://datatracker.ietf.org/doc/html/draft-davidben-tls-batch-signing-02
https://bench.cr.yp.to/primitives-sign.html
https://eprint.iacr.org/2019/655
https://eprint.iacr.org/2019/655
https://github.com/WardBeullens/LUOV/blob/master/Supporting_Documentation/luov.pdf
https://github.com/WardBeullens/LUOV/blob/master/Supporting_Documentation/luov.pdf
https://eprint.iacr.org/2017/634


[16] J. A. Buchmann, D. Butin, F. Göpfert, and A. Petzoldt, “Post-quantum
cryptography: state of the art,” in The New Codebreakers. Springer,
2016, pp. 88–108.

[17] D. Butin, J. Walde, and J. A. Buchmann, “Post-quantum authentication
in OpenSSL with hash-based signatures,” in Tenth International
Conference on Mobile Computing and Ubiquitous Network, ICMU
2017, Toyama, Japan, October 3-5, 2017. IEEE, 2017, pp. 1–6.
[Online]. Available: https://doi.org/10.23919/ICMU.2017.8330093

[18] M. Campagna, “Hybrid-key Exchanges as an Interim-to-
Permanent solution to cryptographic agility,” Jun. 2019.
[Online]. Available: https://docbox.etsi.org/Workshop/2019/
201906 ETSISECURITYWEEK/202106 DynamicNatureOfTechno/
SESSION03 CHANGINGCRYPTOGRAPHY/AWS CAMPAGNA.pdf

[19] A. Casanova, J.-C. Faugere, G. Macario-Rat, J. Patarin, L. Perret, and
J. Ryckeghem, “GeMSS: A Great Multivariate Short Signature,” Ph.D.
dissertation, PhD thesis, UPMC-Paris 6 Sorbonne Universités, 2017.

[20] C.-l. Chan, R. Fontugne, K. Cho, and S. Goto, “Monitoring TLS
adoption using backbone and edge traffic,” in IEEE INFOCOM 2018-
IEEE Conference on Computer Communications Workshops (INFO-
COM WKSHPS). IEEE, 2018, pp. 208–213.

[21] M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe,
“MQDSS specifications,” http://mqdss.org/specification.html.

[22] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“RFC 5280: Internet X. 509 public key infrastructure certificate and
certificate revocation list (CRL) profile,” IETF, May, 2008.

[23] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe,
“A Comprehensive Symbolic Analysis of TLS 1.3,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: ACM, 2017, pp. 1773–
1788. [Online]. Available: http://doi.acm.org/10.1145/3133956.3134063

[24] C. J. F. Cremers, M. Horvat, S. Scott, and T. van der Merwe, “Au-
tomated Analysis and Verification of TLS 1.3: 0-RTT, Resumption
and Delayed Authentication,” 2016 IEEE Symposium on Security and
Privacy (SP), pp. 470–485, 2016.

[25] E. Crockett, C. Paquin, and D. Stebila, “Prototyping post-quantum and
hybrid key exchange and authentication in tls and ssh,” Cryptology
ePrint Archive, Report 2019/858, 2019, https://eprint.iacr.org/2019/858.

[26] E. Cronin, S. Jamin, T. Malkin, and P. McDaniel, “On the performance,
feasibility, and use of forward-secure signatures,” in Proceedings of
the 10th ACM Conference on Computer and Communications Security,
ser. CCS ’03. New York, NY, USA: ACM, 2003, pp. 131–144.
[Online]. Available: http://doi.acm.org/10.1145/948109.948130

[27] J. Ding, M.-S. Chen, A. Petzoldt, D. Schmidt, and Y. Bo-Yin, “Rainbow
- Algorithm Specification and Documentation,” https://csrc.nist.gov/
projects/post-quantum-cryptography/round-2-submissions, 2019, The
2nd Round Proposal.

[28] J. Ding, Z. Zhang, J. Deaton, K. Schmidt, and F. Vishakha, “New
Attacks on Lifted Unbalanced oil vinega,” https://csrc.nist.gov/CSRC/
media/Events/Second-PQC-Standardization-Conference/documents/
accepted-papers/ding-new-attacks-luov.pdf, 2019.

[29] M. Driscoll, “The Illustrated TLS 1.3 Connection: Every byte ex-
plained,” https://tls13.ulfheim.net, 2018, Web page. Accessed 2019-21-
08.

[30] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature
scheme,” IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, pp. 238–268, 2018.

[31] ——, “CRYSTALS-Dilithium Algorithm Specifications and Support-
ing Documentation,” https://pq-crystals.org/dilithium/resources.shtml,
2018, Submission to round 2 of the NIST post-quantum project.

[32] ETSI, “ETSI TC Cyber Working Group for Quantum-Safe Cryptogra-
phy,” https://portal.etsi.org/TBSiteMap/CYBER/CYBERQSCToR.aspx,
2017, Web page. Accessed 2019-07-25.

[33] S. Fluhrer, D. McGrew, P. Kampanakis, and V. Smyslov,
“Postquantum Preshared Keys for IKEv2,” Internet Engineering
Task Force, Internet-Draft draft-ietf-ipsecme-qr-ikev2-08, Mar. 2019,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-ipsecme-qr-ikev2-08

[34] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon:

Fast-Fourier lattice-based compact signatures over NTRU,” https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions,
2018, Specification v1.1.

[35] J. Fulmer, “Siege HTTP regression testing and benchmarking utility,”
https://www.joedog.org/siege-home/, 2019, Web page. Accessed 2019-
02-09.

[36] A. Ghedini and V. Vasiliev, “TLS Certificate Compression,”
Internet Engineering Task Force, Internet-Draft draft-ietf-tls-certificate-
compression-05, Apr. 2019, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-ietf-tls-certificate-compression-05

[37] Z. Greg et al., “The Picnic Signature Algorithm Design Docu-
ment,” https://github.com/microsoft/Picnic/blob/master/spec/design-v2.
1.pdf, 2019.

[38] ——, “The Picnic Signature Algorithm Specification,” https://github.
com/microsoft/Picnic/blob/master/spec/spec-v2.1.pdf, 2019.

[39] V. Gupta, D. Stebila, S. Fung, S. C. Shantz, N. Gura, and H. Eberle,
“Speeding up Secure Web Transactions Using Elliptic Curve Cryptog-
raphy,” in NDSS, 2004.

[40] P. E. Hoffman, “The Transition from Classical to Post-Quantum
Cryptography,” Internet Engineering Task Force, Internet-Draft draft-
hoffman-c2pq-05, May 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-05

[41] J. Hoffstein, J. Pipher, and J. H. Silverman, “Ntru: A ring-based
public key cryptosystem,” in International Algorithmic Number Theory
Symposium. Springer, 1998, pp. 267–288.

[42] http archive, “Trends,” http://httparchive.org/trends.php.

[43] A. Huelsing, D. Butin, S.-L. Gazdag, J. Rijneveld, and A. Mohaisen,
“XMSS: eXtended Merkle Signature Scheme,” RFC 8391, May 2018.
[Online]. Available: https://rfc-editor.org/rfc/rfc8391.txt

[44] A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe, “From 5-pass
MQ-based identification to MQ-based signatures.” IACR Cryptology
ePrint Archive, vol. 2016, p. 708, 2016.

[45] International Telecommunications Union, “X.509: Information technol-
ogy - open systems interconnection - the directory: Public-key and
attribute certificate frameworks,” https://www.itu.int/rec/T-REC-X.509/
en.

[46] P. Kampanakis, P. Panburana, E. Daw, and D. Van Geest, “The Viability
of Post-quantum X.509 Certificates.” IACR Cryptology ePrint Archive,
vol. 2018, p. 63, 2018.

[47] P. Kampanakis and D. Sikeridis, “Two post-quantum signature use-
cases: Non-issues, challenges and potential solutions,” Cryptology
ePrint Archive, Report 2019/1276, 2019. https://eprint. iacr. org , Tech.
Rep., 2019.

[48] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4:
Testing and Benchmarking NIST PQC on ARM Cortex-M4,” Cryptol-
ogy ePrint Archive, Report 2019/844, 2019, https://eprint.iacr.org/2019/
844.

[49] T. Kivinen and J. Snyder, “Signature Authentication in the Internet
Key Exchange Version 2 (IKEv2),” RFC 7427, Jan. 2015. [Online].
Available: https://rfc-editor.org/rfc/rfc7427.txt

[50] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger, “Haraka
v2-efficient short-input hashing for post-quantum applications,” IACR
Transactions on Symmetric Cryptology, pp. 1–29, 2016.

[51] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson, N. Vallina-
Rodriguez, and J. Caballero, “Coming of age: A longitudinal study of tls
deployment,” in Proceedings of the Internet Measurement Conference
2018. ACM, 2018, pp. 415–428.

[52] K. Kwiatkowski, “Towards Post-Quantum Cryptography in
TLS,” Jun. 2019. [Online]. Available: https://blog.cloudflare.com/
towards-post-quantum-cryptography-in-tls/

[53] K. Kwiatkowski and L. Valenta, “The TLS Post-Quantum Experiment,”
https://blog.cloudflare.com/the-tls-post-quantum-experiment/.

[54] A. Langley, “CECPQ1 results,” Nov. 2016. [Online]. Available:
https://www.imperialviolet.org/2016/11/28/cecpq1.html

[55] ——, “CECPQ2,” Dec. 2018. [Online]. Available: https://www.
imperialviolet.org/2018/12/12/cecpq2.html

[56] ——, “Post-quantum confidentiality for TLS,” Apr. 2018. [Online].
Available: https://www.imperialviolet.org/2018/04/11/pqconftls.html

15

https://doi.org/10.23919/ICMU.2017.8330093
https://docbox.etsi.org/Workshop/2019/201906_ETSISECURITYWEEK/202106_DynamicNatureOfTechno/SESSION03_CHANGINGCRYPTOGRAPHY/AWS_CAMPAGNA.pdf
https://docbox.etsi.org/Workshop/2019/201906_ETSISECURITYWEEK/202106_DynamicNatureOfTechno/SESSION03_CHANGINGCRYPTOGRAPHY/AWS_CAMPAGNA.pdf
https://docbox.etsi.org/Workshop/2019/201906_ETSISECURITYWEEK/202106_DynamicNatureOfTechno/SESSION03_CHANGINGCRYPTOGRAPHY/AWS_CAMPAGNA.pdf
http://mqdss.org/specification.html
http://doi.acm.org/10.1145/3133956.3134063
https://eprint.iacr.org/2019/858
http://doi.acm.org/10.1145/948109.948130
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/ding-new-attacks-luov.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/ding-new-attacks-luov.pdf
https://csrc.nist.gov/CSRC/media/Events/Second-PQC-Standardization-Conference/documents/accepted-papers/ding-new-attacks-luov.pdf
https://tls13.ulfheim.net
https://pq-crystals.org/dilithium/resources.shtml
https://portal.etsi.org/TBSiteMap/CYBER/CYBERQSCToR.aspx
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-qr-ikev2-08
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-qr-ikev2-08
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://www.joedog.org/siege-home/
https://datatracker.ietf.org/doc/html/draft-ietf-tls-certificate-compression-05
https://datatracker.ietf.org/doc/html/draft-ietf-tls-certificate-compression-05
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.1.pdf
https://github.com/microsoft/Picnic/blob/master/spec/design-v2.1.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v2.1.pdf
https://github.com/microsoft/Picnic/blob/master/spec/spec-v2.1.pdf
https://datatracker.ietf.org/doc/html/draft-hoffman-c2pq-05
http://httparchive.org/trends.php
https://rfc-editor.org/rfc/rfc8391.txt
https://www.itu.int/rec/T-REC-X.509/en
https://www.itu.int/rec/T-REC-X.509/en
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2019/844
https://rfc-editor.org/rfc/rfc7427.txt
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://blog.cloudflare.com/towards-post-quantum-cryptography-in-tls/
https://blog.cloudflare.com/the-tls-post-quantum-experiment/
https://www.imperialviolet.org/2016/11/28/cecpq1.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/04/11/pqconftls.html


[57] B. Laurie, A. Langley, and E. Kasper, “Certificate Transparency,” RFC
6962, Jun. 2013. [Online]. Available: https://rfc-editor.org/rfc/rfc6962.
txt

[58] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs,
A. Mislove, A. Schulman, and C. Wilson, “An end-to-end measurement
of certificate revocation in the webs pki,” in Proceedings of the
2015 Internet Measurement Conference, ser. IMC 15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 183196.
[Online]. Available: https://doi.org/10.1145/2815675.2815685

[59] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and
Learning with Errors Over Rings,” Cryptology ePrint Archive, Report
2012/230, 2012, https://eprint.iacr.org/2012/230.

[60] D. McGrew, M. Curcio, and S. Fluhrer, “Leighton-Micali Hash-
Based Signatures,” RFC 8554, Apr. 2019. [Online]. Available:
https://rfc-editor.org/rfc/rfc8554.txt

[61] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS# 1: RSA
cryptography specifications version 2.2,” Internet Engineering Task
Force, Request for Comments, vol. 8017, 2016.

[62] M. Mosca, “Cybersecurity in an era with quantum computers: will we
be ready?” IEEE Security & Privacy, vol. 16, no. 5, pp. 38–41, 2018.

[63] Mozilla, “Mozilla Telemetry Portal - Measurement Dashboard -
HTPT PAGE TLS HANDSHAKE distribution for Firefox Desktop,”
https://telemetry.mozilla.org/new-pipeline/dist.html, 2018, Beta 68/69,
any OS, any architecture, any process. Web page. Accessed 2019-21-
08.

[64] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia,
M. Munafò, K. Papagiannaki, and P. Steenkiste, “The cost of the S in
HTTPS,” in Proceedings of the 10th ACM International on Conference
on emerging Networking Experiments and Technologies. ACM, 2014,
pp. 133–140.

[65] H. Nejatollahi, N. Dutt, S. Ray, F. Regazzoni, I. Banerjee, and R. Cam-
marota, “Post-quantum lattice-based cryptography implementations: A
survey,” ACM Computing Surveys (CSUR), vol. 51, no. 6, p. 129, 2019.

[66] Nginx, “NGINX: High Performance Load Balancer Web Server and
Reverse Proxy,” https://www.nginx.com, 2019, Web page. Accessed
2019-02-09.

[67] Y. Nir, “Repeated Authentication in Internet Key Exchange (IKEv2)
Protocol,” Internet Requests for Comments, RFC Editor, RFC 4478,
Apr. 2006. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4478.txt

[68] M. Ounsworth and M. Pala, “Composite Keys and Signatures
For Use In Internet PKI,” Internet Engineering Task Force,
Internet-Draft draft-ounsworth-pq-composite-sigs-01, Jul. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ounsworth-pq-composite-sigs-01

[69] C. Paquin, D. Stebila, and G. Tamvada, “Benchmarking post-quantum
cryptography in tls,” Cryptology ePrint Archive, Report 2019/1447,
2019, https://eprint.iacr.org/2019/1447.

[70] C. Peikert, “A decade of lattice cryptography,” Found. Trends Theor.
Comput. Sci., vol. 10, no. 4, pp. 283–424, Mar. 2016. [Online].
Available: http://dx.doi.org/10.1561/0400000074

[71] R. Pino, V. Lyubashevsky, and D. Pointcheval, “The Whole is Less
Than the Sum of Its Parts: Constructing More Efficient Lattice-Based
AKEs,” in Proceedings of the 10th International Conference on
Security and Cryptography for Networks - Volume 9841. Berlin,
Heidelberg: Springer-Verlag, 2016, pp. 273–291. [Online]. Available:
https://doi.org/10.1007/978-3-319-44618-9 15

[72] T. Pornin, “New efficient, constant-time implementations of falcon,”
Cryptology ePrint Archive, Report 2019/893, 2019, https://eprint.iacr.
org/2019/893.

[73] O. Project, “liboqs,” https://github.com/open-quantum-safe/liboqs,
2019, Web page. Accessed 2019-02-08.

[74] ——, “OQS OpenSSL,” https://github.com/open-quantum-safe/openssl,
2019, Web page. Accessed 2019-02-08.

[75] P. Project, “PQClean,” https://github.com/PQClean/PQClean, 2019, Web
page. Accessed 2019-02-09.

[76] J. Proos and C. Zalka, “Shor’s discrete logarithm quantum algorithm
for elliptic curves,” Quantum Info. Comput., vol. 3, no. 4, pp.
317–344, Jul. 2003. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2011528.2011531

[77] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, p. 34, 2009.

[78] E. Rescorla, “The transport layer security (TLS) protocol version 1.3,”
2018.

[79] E. Rescorla, R. Barnes, and H. Tschofenig, “Compact TLS
1.3,” Internet Engineering Task Force, Internet-Draft draft-rescorla-
tls-ctls-03, Nov. 2019, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-ctls-03

[80] E. Rescorla, K. Oku, N. Sullivan, and C. A. Wood, “Encrypted
Server Name Indication for TLS 1.3,” Internet Engineering
Task Force, Internet-Draft draft-ietf-tls-esni-05, Nov. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-tls-esni-05

[81] E. Rescorla, N. Sullivan, and C. A. Wood, “Semi-Static Diffie-Hellman
Key Establishment for TLS 1.3,” Internet Engineering Task Force,
Internet-Draft draft-rescorla-tls-semistatic-dh-02, Nov. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-rescorla-tls-semistatic-dh-02

[82] C. Roma, C.-E. A. Tai, and M. A. Hasan, “Energy Consumption
of Round 2 submissions for NIST PQC Standards,” Second PQC
Standardization Conference, Aug 2019.

[83] M.-J. O. Saarinen, “Mobile energy requirements of the upcoming NIST
post-quantum cryptography standards,” 2019.

[84] S. Santesson and H. Tschofenig, “Transport Layer Security (TLS)
Cached Information Extension,” RFC 7924, Jul. 2016. [Online].
Available: https://rfc-editor.org/rfc/rfc7924.txt

[85] J. Sepúlveda, S. Liu, and J. M. B. Mera, “Post-quantum enabled cyber
physical systems,” IEEE Embedded Systems Letters, 2019.

[86] SHODAN, “HTTPS (443) Overview,” Jul. 2019, https://www.shodan.
io/report/nWlAWhKG.

[87] P. W. Shor, “Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer,” SIAM J. on Computing,
vol. 26, no. 5, pp. 1484–1509, 1997.

[88] D. Sikeridis, I. Papapanagiotou, B. P. Rimal, and M. Devetsikiotis,
“A Comparative taxonomy and survey of public cloud infrastructure
vendors,” arXiv preprint arXiv:1710.01476, 2017.

[89] D. Soni, K. Basu, M. Nabeel, and R. Karri1, “A Hardware Evalua-
tion Study of NIST Post-Quantum Cryptographic Signature schemes,”
Second PQC Standardization Conference, Aug 2019.

[90] D. Stebila and M. Mosca, “Post-Quantum Key Exchange for the Internet
and the Open Quantum Safe Project,” Cryptology ePrint Archive, Report
2016/1017, 2016, https://eprint.iacr.org/2016/1017.

[91] D. Steblia, S. Fluhrer, and S. Gueron, “Design issues for
hybrid key exchange in TLS 1.3,” Internet Engineering Task
Force, Internet-Draft draft-stebila-tls-hybrid-design-01, Jul. 2019, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-stebila-tls-hybrid-design-01

[92] M. Thomson, “Suppressing Intermediate Certificates in TLS,”
Internet Engineering Task Force, Internet-Draft draft-thomson-tls-
sic-00, Mar. 2019, work in Progress. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-thomson-tls-sic-00

[93] C. Tjhai, M. Tomlinson, grbartle@cisco.com, S. Fluhrer, D. V.
Geest, O. Garcia-Morchon, and V. Smyslov, “Framework to Integrate
Post-quantum Key Exchanges into Internet Key Exchange Protocol
Version 2 (IKEv2),” Internet Engineering Task Force, Internet-
Draft draft-tjhai-ipsecme-hybrid-qske-ikev2-04, Jul. 2019, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-tjhai-ipsecme-hybrid-qske-ikev2-04

[94] P. Yee, “Updates to the Internet X.509 public key infrastructure certifi-
cate and Certificate Revocation List (CRL) profile,” 2013.

[95] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, “A Post-
Quantum Digital Signature Scheme Based on Supersingular Isogenies,”
Cryptology ePrint Archive, Report 2017/186, 2017, http://eprint.iacr.
org/2017/186.

16

https://rfc-editor.org/rfc/rfc6962.txt
https://rfc-editor.org/rfc/rfc6962.txt
https://doi.org/10.1145/2815675.2815685
https://eprint.iacr.org/2012/230
https://rfc-editor.org/rfc/rfc8554.txt
https://telemetry.mozilla.org/new-pipeline/dist.html
https://www.nginx.com
http://www.rfc-editor.org/rfc/rfc4478.txt
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-01
https://datatracker.ietf.org/doc/html/draft-ounsworth-pq-composite-sigs-01
https://eprint.iacr.org/2019/1447
http://dx.doi.org/10.1561/0400000074
https://doi.org/10.1007/978-3-319-44618-9_15
https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2019/893
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/openssl
https://github.com/PQClean/PQClean
http://dl.acm.org/citation.cfm?id=2011528.2011531
http://dl.acm.org/citation.cfm?id=2011528.2011531
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-ctls-03
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-05
https://datatracker.ietf.org/doc/html/draft-ietf-tls-esni-05
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-semistatic-dh-02
https://datatracker.ietf.org/doc/html/draft-rescorla-tls-semistatic-dh-02
https://rfc-editor.org/rfc/rfc7924.txt
https://www.shodan.io/report/nWlAWhKG
https://www.shodan.io/report/nWlAWhKG
https://eprint.iacr.org/2016/1017
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01
https://datatracker.ietf.org/doc/html/draft-stebila-tls-hybrid-design-01
https://datatracker.ietf.org/doc/html/draft-thomson-tls-sic-00
https://datatracker.ietf.org/doc/html/draft-thomson-tls-sic-00
https://datatracker.ietf.org/doc/html/draft-tjhai-ipsecme-hybrid-qske-ikev2-04
https://datatracker.ietf.org/doc/html/draft-tjhai-ipsecme-hybrid-qske-ikev2-04
http://eprint.iacr.org/2017/186
http://eprint.iacr.org/2017/186

	Introduction
	Background
	X.509 Certificates and PKI
	TLS 1.3 Encrypted Tunnels

	Post-Quantum Candidate Signature Schemes
	Quantum-Resistant Families of Problems
	PQ Signature Algorithms and Parameter Sets Studied

	Post-Quantum Authentication in TLS 1.3
	Performance Evaluation
	Speed of Cryptographic Operations
	PQ TLS Overhead Analysis - NIST Security Level 1
	PQ TLS Overhead Analysis - NIST Security Levels 3, 5
	Combining PQ Signature Schemes
	Global Scale Performance Analysis
	Server-Side Performance of TLS PQ Authentication

	Related Work
	Discussion about encrypted tunnels
	Implications of our Findings
	Minor Adjustments to Enable PQ Signatures
	Drastic changes to Enable PQ Authentication

	Conclusion and Future Work
	References

