
Attack on LAC Key Exchange in Misuse

Situation

Aurélien Greuet ∗,1, Simon Montoya †,1,2, and Guénaël Renault ‡,2

1IDEMIA France, Paris La Défense, France
2École Polytechnique, INRIA, Laboratoire Informatique de l'École

Polytechnique, LIX, Équipe Grace, Palaiseau, France

Abstract

LAC is a Ring Learning With Error based cryptosystem that has
been proposed to the NIST call for post-quantum standardization and
passed the �rst round of the submission process. The particularity
of LAC is to use an error-correction code ensuring a high security
level with small key sizes and small ciphertext sizes. LAC team pro-
poses a CPA secure cryptosystem, LAC.CPA, and a CCA secure one,
LAC.CCA, obtained by applying the Fujisaki-Okamoto transformation
on LAC.CPA. In this paper, we study the security of LAC Key Ex-
change (KE) mechanism, using LAC.CPA, in a misuse context: when
the same secret key is reused for several key exchanges and an active
adversary has access to a mismatch oracle. This oracle indicates in-
formation on the possible mismatch at the end of the KE protocol.
In this context, we show that an attacker needs at most 8 queries to
the oracle to retrieve one coe�cient of a static secret key. This result
has been experimentally con�rmed using the reference and optimized
implementations of LAC. Since our attack can break the CPA ver-
sion in a misuse context, the Authenticated KE protocol, based on the
CCA version, is not impacted. However, this research provides a tight
estimation of LAC resilience against this type of attacks.

1 Introduction

The threat of a quantum computer that breaks most of the current public-key
cryptosystems with Shor's Algorithm [1], led, in 2016, the National Institute
of Standards and Technology (NIST) to begin a call for post-quantum safe

∗
Email address: aurelien.greuet@idemia.com
†
Email address: simon.montoya@idemia.com
‡
Email address: guenael.renault@lix.polytechnique.fr

1

public-key cryptography [2]. The NIST speci�cally asked for quantum safe
Key Encapsulation Mechanisms (KEMs).

Among the di�erent quantum resistant cryptosystems, those using ideal
lattices based on a Ring instantiation of the Learning With Errors problem
(RLWE) [3] are believed to be a promising direction to provide e�cient and
secure candidates. Indeed, 4 out of the 17 remaining KEMs of the round
2 of the NIST submissions are ideal lattices based on the RLWE problem
[4, 5, 6, 7]. The interest of RLWE based KEM is con�rmed by real life
experiments. In 2016, Google started to experiment RLWE based KEM be-
tween Chrome and Google's services. Moreover, several RLWE-based KEMs
are implemented by the Open Quantum Safe project in their OpenSSL and
OpenSSH forks. This project involves academics, like University of Waterloo,
and technology companies like Amazon Web Services or Microsoft Research.
However, before a world-wide practical deployment of lattice-based KEMs,
it is interesting to assess their security in di�erent scenarios, for example in
misuses conditions.

Motivation

In this paper we study LAC [4], a RLWE candidate to the NIST standar-
dization process. It di�ers from other RLWE KEMs by its small key and
ciphertext sizes, for an equivalent security level. Such small sizes can be an
advantage, particularly in constrained environments and embedded systems.
We focus on LAC.KE, a KEM based on the CPA secure public-key cryp-
tosystem LAC.CPA. Our study is inspired by previous works in [8, 9, 10]
which evaluate the resilience in a misuse context o�ered by 2 NIST KEM
candidates. We want to pursue this evaluation with another NIST candidate
to determine which one is the more resilient against this kind of attack.

Previous works

The seminal work of Di�e and Hellman [11] paved the way for active attacks
on KE protocols. The idea of key mismatch attack on LWE based key
exchange was �rst proposed by Fluhrer in [12, 13]. In a key mismatch attack,
a participant's secret key is reused for several key establishments, and his
private key can be recovered by comparing the shared secret key of the two
participants.

Some lattice-based KEM of the NIST competition were analysed in the
key reused context using a key mismatch oracle. In [14] Baetu et al. proposed
a generic attack for several algorithms using the same structure called meta-
algorithm. However, most of the algorithms attacked in [14] did not pass
the �rst round of the submission, except Frodo-640 and NewHope512. The
security of NewHope1024 CPA algorithm in this misuse scenario is analyzed
by Bauer et al. in [8] and an improvement is proposed in [9]. More recently,

2

in the same context, an attack on Kyber CPA KEM is proposed by Ding et
al. [10].

Our contribution

In this article, we investigate the resilience of the LAC KEM under a misuse
case: we assume that the same secret key is reused for multiple key estab-
lishment and we assume that an attacker can use a key mismatch oracle as
introduced in [8].

Since LAC uses encoding and compression functions di�erent from a
classical RLWE scheme, Fluhrer's attack [12] cannot be applied directly.
Furthermore, these functions are di�erent from those used in NewHope or
Kyber, so we cannot apply straightforwardly the attacks described in [8, 9,
10].

The main idea of these attacks is to send forged ciphertexts to a vic-
tim, ensuring that its decryption will leak partial information of her static
secret key. LAC algorithms use two encoding functions including an error-
correction code BCH that can correct a limited number of errors. If a message
exceeds the number of errors that the error-correction code can correct, then
a decryption failure occurs. Thus, we propose to use this failure as an oracle
to provide us leak about the static secret key.

More precisely, we propose a deterministic key mismatch attack on LAC
KE for the �rst two security levels: LAC-128 and LAC-192, which required
at most 2 queries per coe�cient of the secret key. Afterwards, we adapt our
attack to the highest security level LAC-256 which is still deterministic but
we need at most 8 queries per coe�cient of the secret key.

We experimented our attack with the reference and optimized implemen-
tation in C provided by the LAC team [4]. The code of our attack is available
in [15].

Organization

In Section 2, we introduce some notations and describe LAC.CPA and LAC
Key Exchange Mechanism and present the di�erent parameters used in LAC
algorithms. In Section 3, we describe the notion of key mismatch oracle
introduced in [8], the attack for the �rst two security levels and afterwards
the attack adapted to the higher security level.

2 Preliminaries

2.1 Notation

For an integer q ≥ 1, let Zq be the residue class group modulo q such that
Zq can be represented as {0, . . . , q − 1}. We de�ne Rq the polynomial ring

3

Rq = Zq[x]/(xn + 1). A polynomial in Rq is of degree at most (n− 1) with
coe�cients in Zq. Given P ∈ Rq, we denote by P [i] or Pi the coe�cient
associated with the monomial xi. P can also be represented as a vector
with n coordinates. Let the message spaceM be {0, 1}lm and the space of
random seeds S be {0, 1}ls , where lm and ls are two integers values. In the
following, the notation (a)lv (lv ∈ N), where a is a polynomial (or a vector)
of size n > lv, means we keep the �rst lv coordinates of a. Let ψσ be the
centered binomial distribution on the set {−1, 0, 1}. We denote the centered
binomial distribution for n independents coordinates by ψnσ i.e. for a vector a
of size n each coe�cient is sampled with the centered binomial distribution.
In LAC algorithms we use:

1. ψ1 : Pr(x = 0) = 1
2 , Pr(x = −1) = 1

4 , Pr(x = 1) = 1
4

2. ψ 1
2
: Pr(x = 0) = 3

4 , Pr(x = −1) = 1
8 , Pr(x = 1) = 1

8

Given a set A, U(A) is the uniform distribution over A. We denote by H
a hash function and Samp(D, seed) an algorithm which samples a random
variable according to a distribution D with a given seed. We denote by
[n′, k, d] a set of parameters of an error-correction code (in our case a binary
BCH code). n′ denotes the length of the codewords, k is the dimension and
d is the minimal Hamming distance of the code.

2.2 LAC

LAC is a Ring-LWE based public key encryption scheme over Rq. In or-
der to balance performance and size, LAC team chose q = 251, that �ts
on one byte. This choice of a small modulus implies a lower security or a
higher decryption error rate. To overcome these issues, an error-correction
code is used, allowing to keep a low decryption error rate and maintain
the same security level than schemes using larger modulus. Three secu-
rity levels are proposed for LAC: LAC-128, LAC-192 and LAC-256. In this
section, we describe the four algorithms CPA.KeyGen , CPA.Encrypt ,
CPA.Decrypt , CPA.Decrypt256 of the CPA version of LAC, the four
subroutines BCHEncode , BCHDecode , Compress and Decompress

and the CPA-KEM scheme.
Note that KeyGen and Encrypt are common to the three security

levels. However, the decryption depends on the security level: Algorithm 3
is the decryption process for LAC-128 and LAC-192. The decryption routine
for LAC-256 is described in Algorithm 4.

4

Algorithm 1 CPA.KeyGen()

Ensure: Key pair (pk, sk)
1: seeda ←− U(S)
2: a← Samp(U(Rq), seeda)) ∈ Rq
3: s←− ψnσ
4: e←− ψnσ
5: b← a× s+ e ∈ Rq
6: return (pk, sk) = ((seeda, b), s)

Algorithm 2 CPA.Encrypt(pk =
(seeda, b),m, seed)

Ensure: Ciphertext c = (c1, c2)
1: a← Samp(U(Rq), seeda) ∈ Rq
2: m̂← BCHEncode(m)∈{0, 1}lv
3: r ← Samp(ψnσ , seed)
4: e1 ← Samp(ψnσ , seed)
5: e2 ← Samp(ψlvσ , seed)
6: c1 ← ar + e1 ∈ Rq
7: c2 ← (br)lv + e2 + b q2em̂ ∈ Zlvq
8: if LAC-256
9: c2 ← c2||c2 //D2 encoding

10: end if

11: c2 ← Compress(c2)
12: return c = (c1, c2)

Algorithm 3 CPA.Decrypt(s :=
sk, c = (c1, c2))

Ensure: Plaintext m
1: c2 ← Decompress(c2)

2: M̂ ← c2 − (c1s)lv ∈ Zlvq
3: for i = 0 to lv − 1 do
4: if q

4 ≤ M̂i <
3q
4 then

5: m̂i ← 1
6: else

7: m̂i ← 0
8: end if

9: end for

10: m← BCHDecode(m̂)
11: return m

Algorithm 4

CPA.Decrypt256 (s := sk, c =
(c1, c2))

Ensure: Plaintext m
1: c2 ← Decompress(c2)

2: M̂ ← c2 − (c1s)2lv ∈ Z2lv
q

3: for i = 0 to lv − 1 do //D2 De-
coding

4: tmp1, tmp2 := M̂ [i], M̂ [i+ lv
]

5: if tmp1 <
q
2

6: tmp1 ← q − tmp1
7: else if tmp2 <

q
2

8: tmp2 ← q − tmp2
9: end if

10: if tmp1 + tmp2 − q < q
2

11: m̂i ← 1
12: else

13: m̂i ← 0
14: end if

15: end for

16: m← BCHDecode(m̂)
17: return m

2.2.1 Subroutines

BCHEncode and BCHDecode The function BCHEncode takes as in-
put a message m of length lm, pad it with (k − lm) zeros, where k is the
dimension of the BCH code, and returns the corresponding value c on the

5

code. The function BCHDecode takes as input a message ĉ of length n−1,
retrieves the codeword c closest to ĉ and returns m such that c = mG, where
G is the generator matrix of the code.

Compress and Decompress. The function Compress takes as input a
variable c = (c0, . . . , clenc) where each coe�cient ci is a 8-bits number and
returns c′ = (c′0, . . . , c

′
lenc

) where each c′i is a 4 bits number obtained by
keeping the highest 4 bits of ci.

The function Decompress takes as input a variable c′ = (c′0, . . . , c
′
lenc

)
where each coe�cient c′i is a 4-bit number, and returns c̃ = (c̃0, . . . , c̃lenc)
where each c̃i is a 8 bits number obtained by padding each coe�cient c′i with
4 zero bits.

2.2.2 Parameters

In the following we denote the secret key sk by s. Recall that LAC is a
RLWE public-key encryption scheme on Rq = Zq[x]/(xn + 1), with input
messages of length lm.
LAC uses di�erent parameters for its three algorithms:

Name n q Distrib lm lv Code(BCH) D2
[n′, k, d]

LAC-128 512 251 ψ1 256 lm + 144 [511, 367, 33] No

LAC-192 1024 251 ψ 1
2

256 lm + 72 [511, 439, 17] No

LAC-256 1024 251 ψ1 256 lm + 144 [511, 367, 33] Yes

The value lv depends on the BCH code. Let G be a generator matrix of
the BCH code C. By the construction of LAC, G is on systematic form
G = (Idk|An′−k). In fact, we cannot keep only lv bits of a codeword without
this condition. The BCHEncode function takes as input a message m of
length lm and pad it with (k − lm) zeros. We obtain

(m1, . . . ,mlm , 01, . . . , 0k−lm)G = (m1, . . . ,mlm , 01, . . . , 0k−lm |mAn′−k) = c

We omit the (k − lm) zeros of c then lv = lm + (n′ − k).

2.2.3 LAC Key Exchange

We describe the LAC Key Exchange, based on the CPA version of the LAC
public-key encryption scheme.

6

Alice Bob

(pk, s)←− CPA.KeyGen()
pk−→

r ←− U({0, 1}lm)
c←−CPA.Encrypt(pk, r)
KeyB ← H(pk, r) ∈ {0, 1}lk

c←−
r′ ← CPA.Decrypt(s, c)

KeyA ← H(pk, r′) ∈ {0, 1}lk

If Key Exchange succeeds then r′ = r and KeyB = KeyA.

3 Attack on LAC Key Exchange

In this section, we present the main result of this paper. We start by de�ning
the scenario of the attack.

3.1 Attack Model

We suppose that Alice does a misuse of the Key Exchange Mechanism by
caching her secret s. More precisely:

Assumption 1. Alice keeps her secret key constant for several CPA key
establishments requests.

Eve is a malicious active adversary who acts as Bob and can cheat and
generate c that is not the encryption of a random r. To mount the active
attack, we suppose Eve has access to a key mismatch oracle de�ned as follow.

De�nition 1. A key mismatch oracle outputs a bit of information on the
possible mismatch at the end of the key encapsulation mechanism. In the
LAC context, this oracle, denoted O, takes any message c and any key guess
µ as input and outputs:

O(c, µ) =
{

1 if H(CPA.Decrypt(s, c)) = µ
−1 otherwise

This oracle can also be used by Bob during an honest key exchange with
Alice, when he veri�es the match between his key and Alice's one.

The idea of the attack mounted by Eve is to send forged ciphertexts to
Alice to ensure that she obtains information on some coe�cients of Alice's
secret key. As Eve knows that c = (c1, c2) and s are used during the decryp-
tion algorithms (s is multiplied by c1), she will mount an attack using this
fact and following three mains steps:

• Construct c1 such that some coe�cients of the secret key are exposed

7

• Construct c2 such that the result of Alice's decryption can be monitored
as a function of the key guess

• Call to the oracle O to obtain information about our key guesses

The following section shows how to choose appropriate (c, µ) to retrieve
information on s. We assume that Eve has access to the oracle O.

3.2 Attack on LAC-128-KE and LAC-192-KE

First, we use a simpli�ed version where we do not consider Compress and
Decompress functions. We follow the di�erent steps of the decryption
algorithm 3.

3.2.1 Simpli�ed version

In this �rst result, we show how one can forge a LAC ciphertext in order to
impose which plaintext will be obtained after decryption.

Proposition 1. Assume that Eve forges c = (c1, c2) such that :

• c1 = −axn−w where w is an integer 0 ≤ w < n and 0 ≤ a < q
4

• c2 = (α0, . . . , αlv−1) where αi =
q
2 or 0 for all i in [0, lv − 1].

Then she can determine the plaintext m that Alice obtains after decryption.

Proof. When Alice deciphers Eve's ciphertext she:

1. Computes M̂ = c2 − (c1s)lv

2. Compares each coe�cient of M̂ to q
4 and 3q

4 to de�ne m̂

3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −axn−w and s = s0 + s1x
1 + . . .+ sn−1x

n−1 then

c1s = asn−w + asn−w+1x+ . . .+ asn−1x
w − as0xw+1 − . . .− asn−w−1xn−1

and the polynomial c1s can be represented as a vector c1s = (asn−w, . . . ,−asn−w−1).
During the computation of M̂ , two cases are possible:

• w < lv then:

M̂ = c2 − (c1s)lv

= (α0 − asn−w, α1 − asn−w+1, . . . , αw + as0, . . . , αlv−1 + aslv−1)

• w ≥ lv then:

M̂ = c2 − (c1s)lv

= (α0 − asn−w, α1 − asn−w+1, . . . , αlv−1 − aslv−1)

8

After this computation each coe�cient of M̂ is compared to q
4 ≤ M̂i <

3q
4 .

Recall that since s←− ψnσ , each of its coe�cients belongs to {−1, 0, 1}. Let i
be an integer such that 0 ≤ i < n and j ≡ n− w + i mod n. If αi =

q
2 one

gets:

αi ∓ asj =

q∓2a
2 if sj = ±1

q
2 if sj = 0
q±2a
2 if sj = ∓1

These 3 values lie in
[
q
4 ,

3q
4

[
if 0 ≤ a ≤ q

4 . If αi = 0 one gets:

αi ∓ asj =

±a if sj = ∓1
0 if sj = 0
∓a if sj = ±1

These 3 values do not lie in
[
q
4 ,

3q
4

[
if 0 ≤ a < q

4 or 3q
4 ≤ a ≤ q . Thus,

Eve can choose a < q
4 and αi =

q
2 or 0 to determine what Alice obtains on

the �rst lv coordinates of m̂ and then Eve can deduce, by applying BCH
decoding, what Alice obtains at the end of the decryption procedure.

Using Proposition 1 Eve can forge c such that she knows what Alice ob-
tains after decryption. Let explain more precisely this result with a concrete
example:

Example 1. Suppose that Eve wants that Alice obtains, after decryption, the
message m = BCHDecode(1, 0, 1, 1, 0, . . . , 0). Then she forges c = (c1, c2)
such that:

• c1 = − q
5x

512. In fact Eve can take any c1 such that c1 = −axn−w with
0 ≤ a < q

4

• c2 = (q2 , 0,
q
2 ,

q
2 , 0, . . . , 0)

First Alice computes:

M̂ = c2 − (c1s)lv

=
(q
2
, 0,

q

2
,
q

2
, 0, . . . , 0

)
− q

5
(s0, s1, . . . , slv) , si belongs to {−1, 0, 1}

=
(q
2
− q

5
s0,−

q

5
s1,

q

2
− q

5
s2,

q

2
− q

5
s3,−

q

5
s4, . . . ,−

q

5
slv

)
Then, Alice compares each coe�cients of M̂ to q

4 and 3q
4 . She obtains (see

proof of Proposition 1):

m̂ = (1, 0, 1, 1, 0, . . . , 0)

At the end, Alice obtains m by applying BCHDecode algorithm to m̂. Thus,
Eve had forged c such that Alice has m = BCHDecode(1, 0, 1, 1, 0, . . . , 0).

9

Now Eve needs to construct forged ciphertexts that allow a key guessing
strategy.

Proposition 2. Let s′w be a guess done by Eve on the w-th coe�cient of
the secret key s, where 0 ≤ w < n. Assume sw = 1 or −1. If Eve forges
c = (c1, c2) such that:

• c1 = −axn−w with q
8 < a < q

4

• c2 = (as′w, α1, . . . , αlv−1) where αi =
q
2 or 0 for all i in [0, lv − 1] and

q
8 < a < q

4 .

Then she can verify her key guess.

Proof. Suppose that Eve wants to retrieve the w-th coe�cient of s, when
Alice decipher Eve ciphertext she computes:

M̂ = c2 − (c1s)lv = (as′w − asw, α1 − asw+1, . . .)

According to Proposition 1, Eve can determine what Alice obtains for every
coe�cient di�erent from the key guess of Alice's side. Let see what happens
with as′w − asw.

as′w − asw =

0 if s′w = sw
2a if s′w = 1 and sw = −1
−2a if s′w = −1 and sw = 1
∓a if s′w = 0 or sw = 0

Let q
8 < a < q

4 then

q

4
< 2a <

q

2
and − 2a = q − 2a satis�es

q

2
< q − 2a <

3q

4

Then with q
8 < a < q

4 and the good key guess a 1 is return at the �rst
coordinate of m̂ and 0 if she did the wrong key guess. Eve can determine what
Alice obtains by applying BCHDecode algorithm to m̂ and thus veri�es her
key guess.

Proposition 2 ensures that if Eve does the good key guess, Alice obtains
m = BCHDecode(1, . . .). Otherwise, she obtainsm = BCHDecode(0, . . .).
Computational details are give in the following example.

Example 2. Suppose that Eve wants to learn information about the �rst bit
of Alice's secret key. Eve forges c = (c1, c2) such that:

• c1 = − q
5x

512−0.

• c2 =
(q
5s
′
0, 0,

q
2 ,

q
2 , 0, . . . , 0

)
where s′w is Eve's key guess.

10

First Alice computes:

M̂ = c2 − (c1s)lv

=
(q
5
s′0, 0,

q

2
,
q

2
, 0, . . . , 0

)
− q

5
(s0, s1, . . . , slv) , si belongs to {−1, 0, 1}

=
(q
5
s′0 −

q

5
s0,−

q

5
s1,

q

2
− q

5
s2,

q

2
− q

5
s3,−

q

5
s4, . . . ,−

q

5
slv

)
Then, Alice compares each coe�cients of M̂ to q

4 and 3q
4 . She obtains (see

proof of Proposition 2):

m̂ = (1, 0, 1, 1, 0, . . . , 0) if s′0 = −s0 and s0 6= 0

m̂ = (0, 0, 1, 1, 0, . . . , 0) otherwise

At the end, Alice obtains m by applying BCHDecode algorithm to m̂. Thus,
Eve did the good key guess if Alice gets m = BCHDecode(1, 0, 1, 1, 0, . . . , 0).

Proposition 2 already gives interesting information to Eve but it is not
enough to mount and attack since:

• Eve needs a way to verify if Alice obtains

� either m = BCHDecode(1, 0, 1, 1, 0, . . . , 0)

� or m = BCHDecode(0, 0, 1, 1, 0, . . . , 0).

• Moreover, most of the time

BCHDecode(1, 0, 1, 1, 0, . . . , 0) = BCHDecode(0, 0, 1, 1, 0, . . . , 0).

Nonetheless, Eve can use Proposition 2, the BCH code decryption fail-
ure and the oracle to overcome these issues as it is stated in the following
theorem.

Theorem 1. If Eve forges c = (c1, c2) such that:

• c1 = −axn−w where w is an integer, 0 ≤ w < n, and q
8 < a < q

4

• c2 = (as′w, α1, . . . , αlv−1) where αi =
q
2 or 0 for all i ∈ [0, lv − 1], s′w is

Eve's key guess and q
8 < a < q

4 .

Then with at most 2 calls to the oracle O, Eve retrieves the w-th coe�cient
of s.

Proof. According to Proposition 2, Eve can monitor Alice's decryption pro-
cedure if she does the good key guess.

An error-correction code can correct at most d−1
2 errors (where d is the

minimal Hamming distance of the BCH code). The idea is that after com-
parison with q

4 and 3q
4 , m̂ is a codeword with d

2 errors if Eve did the wrong
key guess, causing a decoding error. Suppose Eve wants to retrieve the w-th
coe�cient of s:

11

1. Eve chooses a codeword called cdword with a 1 at the �rst coordinate
such that cdword = mG where G is the generator matrix of the BCH
code

2. Eve injects d−1
2 errors to cdword at any coordinate except the �rst one

3. Eve chooses a verifying q
8 < a < q

4 according to Proposition 2

4. Eve constructs c1, c2 with her key guess at the �rst bit of c2: c2[0] = as′w
and such that after comparison with q

4 and 3q
4 , Alice retrieves cdword

with d−1
2 or cdword with d

2

5. Eve sends c = (c1, c2) to Alice

With this construction, Alice obtains a codeword with d
2 errors if Eve pro-

vides a wrong key guess. Then Eve can verify whether she did the correct
key guess with the oracle as follow:

If s′w = 1 and O(c,m) = 1 then sw = −1
If s′w = −1 and O(c,m) = 1 then sw = 1

Otherwise sw = 0

Algorithms 5 and 6 describe the attack. In our implementation [15], we
choose a = q

7 .

Algorithm 5 forge(hyp,bit)

Ensure: Forge ciphertext c = (c1, c2)

1: c1 := − q
7x

n−bit

2: m := [0 : for i := 0 to 255]
3: m[0] := 1
4: codeword := (m||0..0)G
5: Add d−1

2 errors to codeword (but
not on codeword[0])

6: For i = 0 to Len(codeword) :
7: if i == 0 :
8: c2[0]← hyp× q

7
9: else if codeword[i] == 1 :

10: c2[i]← q
2

11: else

12: c2[i]← 0
13: end if

14: end for

15: Return(m, c = (c1, c2))

Algorithm 6 recover_one_bit(bit)

Ensure: A bit of s
1: m, c := forge(−1, bit)
2: If O(c,m) == 1 :
3: Return 1
4: end if

5: m, c := forge(1, bit)
6: If O(c,m) == 1 :
7: Return −1
8: end if

9: Return 0

12

A key of length n can be fully recovered using Theorem 1 with at most
2 × n requests to the oracle. LAC-128 works with keys of length n = 512
and LAC-192 with length n = 1024.

3.2.2 Full version

The subroutine Compress removes the 4 lowers bits of c2 and they are
replaced by 4 zero-bit when the subroutine Decompress is applied at the
beginning of the decryption process. Thus, each coe�cient of c2 can be only
equal to 16, 32, 64, 128 and any sum of theses values.
For c2 in our attack, we only consider the values q

7 , −
q
7 and q

2 . In our
implementation [15] we approximate q

7 ≈ 32, − q
7 ≈ 128+ 64+ 16 = 210 and

q
2 ≈ 128. Proposition 2 is still veri�ed and we still retrieve s with at most
2× n requests to the oracle by the Theorem 1.

3.3 Attack on LAC-256-KE

The key exchange procedure is mainly the same as previously but for decryp-
tion, Alice uses the CPA.Decrypt256 routine. Since the D2 encoding is
used in this routine, the coordinates of c2 are duplicated: for all 0 ≤ i ≤ lv−1,
c2[i +

length(c2)
2] = c2[i]. This redundancy in c2 allows to decrease the de-

coding error. Thus, the decryption procedure is di�erent from LAC-128 and
LAC-192.

3.3.1 CPA.Decrypt256 description

The �rst step of the decryption it's to compute M̂ = c2 − (c1s)2lv . The
decryption algorithm considers two cases:

Case 1. If M̂ [i] and M̂ [i+ lv] <
q
2 or M̂ [i] and M̂ [i+ lv] ≥ q

2 then algorithm
CPA.Decrypt256 compares:

q

4
<
M̂ [i] + M̂ [i+ lv]

2
<

3q

4

Case 2. If M̂ [i] < q
2 and M̂ [i+ lv] ≥ q

2 or M̂ [i] ≥ q
2 and M̂ [i+ lv] <

q
2 then

CPA.Decrypt256 compares:

0 <
|M̂ [i]− M̂ [i+ lv]|

2
<
q

4

In the following we notice when we are in the case 1 or 2.

13

3.3.2 Attack on LAC-256-KE simpli�ed

As previously we �rst use a simpli�ed version where we do not consider
Compress and Decompress subroutines.

Proposition 3. Assume that Eve forges c = (c1, c2) such that:

• c1 = −axn−w where w is an integer 0 ≤ w < n and 0 ≤ a < q
4

• c2 = (α0, . . . , αlv−1, αlv , . . . , α2lv−1) where αi = q
2 or 0 for all i in

[0, 2lv − 1]

Then she can determine the plaintext m that Alice obtains after decryption.

Proof. Assuming Alice receives c = (c1, c2) then she:

1. Computes M̂ = c2 − (c1s)2lv

2. Compares q
4 <

M̂ [i]+M̂ [i+lv]
2 < 3q

4 or 0 < |M̂ [i]−M̂ [i+lv]|
2 < q

4 for i = 0 to
lv − 1 to de�ne each coe�cient of m̂

3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −axn−w and s = s0 + s1x
1 + . . .+ sn−1x

n−1 then

c1s = asn−w + asn−w+1x+ . . .+ asn−1x
w − as0xw+1 − . . .− asn−w−1xn−1

We can represent c1s as a vector c1s = (asn−w, . . . ,−asn−w−1). During
the computation of M̂ we can have two cases:

• w < 2lv then:

M̂ = c2 − (c1s)2lv

= (α0 − asn−w, α1 − asn−w+1, . . . , αw + as0, . . . , α2lv−1 + as2lv−1)

• w ≥ 2lv then:

M̂ = c2 − (c1s)2lv

= (α0 − asn−w, α1 − asn−w+1, . . . , α2lv−1 − as2lv−1)

Recall that since s ←− ψnσ , each of its coe�cients belongs to {−1, 0, 1}.
Let i be an integer such that 0 ≤ i < lv and j ≡ n− w + i mod n.
For the sake of clarity, we consider the case where M̂ [i] = αi − asj and

M̂ [i+ lv] = αi+lv −asj+lv . The other case is M̂ [i] = αi+asj and M̂ [i+ lv] =
αi+lv + asj+lv the proof is in the appendix.
If αi =

q
2 one gets:

14

• If sj = sj+lv or sj + sj+lv = −1 we are in the Case 1 described in

Paragraph 3.3.1, where αi − asj = M̂ [i]:

αi = αi+lv =
q

2
,

(αi − asj) + (αi+lv − asj+lv)
2

=

q−2a
2 if sj = sj+lv = 1

q+2a
2 if sj = sj+lv = −1

q
2 if sj = sj+lv = 0
q+a
2 if sj + sj+lv = −1

These 3 values lie in
]
q
4 ,

3q
4

[
if 0 ≤ a < q

4 .

• Otherwise we are in the Case 2 described in Paragraph 3.3.1, where
αi − asj = M̂ [i]:

αi = αi+lv =
q

2
,

|(αi − asj)− (αi+lv − asj+lv)|
2

=

a
2 if sj + sj+lv = 1
a if sj = −1, sj+lv = 1

or sj = 1, sj+lv = −1

These values lie in
[
0, q4
[
if 0 ≤ a < q

4 .

Then for both cases, if c1 = −axn−w with αi, αi+lv = q
2 , we can ensure that

we have a 1 after comparison.
If αi = 0 then we are in the Case 1 described in Paragraph 3.3.1, where
αi − asj = M̂ [i]:

(αi − asj) + (αi+lv − asj+lv)
2

=

a if sj = sj+lv = −1
0 if sj = −sj+lv or sj = sj+lv = 0
−a if sj = sj+lv = 1
±a

2 otherwise

Then these 3 values do not lie in] q4 ,
3q
4 [for 0 ≤ a <

q
4 .

So Eve can choose a < q
4 and αi =

q
2 or 0 to know what Alice obtains on

the 2lv coordinates of m̂ and then Eve can deduce what Alice obtains at the
end of decryption for m. Eve needs to construct forged ciphertexts which
allows to verify her key guesses.

Proposition 4. Assume Eve puts key guesses at the w-th and the (w+lv)-th
coe�cients of s.
Assume that sw and sw+lv are di�erent from 0 and Eve forges c = (c1, c2)
such that:

• c1 = −axn−w where w is an integer 0 ≤ w < n and q
8 < a < q

4

15

• c2 = (α0, . . . , as
′
w, . . . , αlv−1, αlv , . . . , as

′
w+lv

, . . . , αlv−1) where αi =
q
2

or 0 for all i in [0, 2lv − 1], s′w and s′w+lv are Eve's key guesses and
q
8 < a < q

4

Then she can verify her key guesses.

Proof. According to Proposition 3 Eve can determine what Alice obtains at
the end of the decryption procedure for every coe�cient di�erent from the
key guesses. Assume that Eve wants to retrieve the w-th and (w + lv)-th
coe�cients of s, s′w = s′w = 1 and q

8 < a < q
4 . So we are in the Case

1 described in Paragraph 3.3.1, let see what happens with
M̂w+M̂w+lv

2 =
as′w−asw+as′w+lv

−asw+lv

2 :

a− asw + a− asw+lv
2

=

2a if sw = sw+lv = −1
0 if sw = sw+lv = 1
3a
2 if sw = 0, sw+lv = −1

or sw = −1, sw+lv = 0
a
2 otherwise

Then only the case
a−as0+a−aslv

2 = 3a
2 can put a 1 to m̂w if q8 < a < q

4 .
With the same condition on a and with the same method Eve can have :

• If s′w = s′w+lv = 1 and m̂w = 1 then sw = sw+lv = −1

• If s′w = s′w+lv = −1 and m̂w = 1 then sw = sw+lv = 1

• If s′w = 1, s′w+lv = −1 and m̂w = 1 then sw = −1 and sw+lv = 1

• If s′w = −1, s′w+lv = 1 and m̂w = 1 then sw = 1 and sw+lv = −1

Proposition 4 ensures that Eve can know what Alice obtains if Alice's
secrets coe�cients are di�erent from 0. Let see what happens when one of
the two coe�cient is equal to 0.

Proposition 5. Suppose Eve puts key guesses at the w-th and the (w+lv)-th
coe�cients of s.
Assume that sw = 0 or sw+lv = 0 and Eve forges c = (c1, c2) such that:

• c1 = −axn−w where w is an integer 0 ≤ w < n and q
6 < a < q

4

• c2 = (α0, . . . , as
′
w, . . . , αlv−1, αlv , . . . , as

′
w+lv

, . . . , αlv−1) where αi =
q
2

or 0 for all i in [0, 2lv − 1], s′w and s′w+lv are Eve's key guesses and
q
6 < a < q

4

Then she can verify her key guesses.

16

Proof. Assume that Eve wants to retrieve the w-th and (w + lv)-th coe�-
cients of s.
Suppose a < q

4 , s
′
w = 1 and s′w+lv = 1. Let see what happens with

M̂w+M̂w+lv
2 =

as′w−asw+as′w+lv
−asw+lv

2 (Case 1 described in Paragraph 3.3.1):

a− asw + a− asw+lv
2

=

3a
2 if sw = −1 and sw+lv = 0

or sw = 0 and sw+lv = −1
a
2 if sw = 0 and sw+lv = 1

or sw = 1 and sw+lv = 0
a if sw = sw+lv = 0

With q
6 < a < q

4 then only the case where the result is 3a
2 can put a 1 to m̂w.

However Eve needs to determine if sw = −1 or sw+lv = −1.

Suppose a < q
4 , s

′
w = −1 and s′w+lv = 1, sw = −1 and sw+lv = 0 or sw =

0 and sw+lv = −1. Here, we need to consider the both decryption cases
described in Paragraph 3.3.1. Let see what happens:

• If sw = −1 and sw+lv = 0 we are in Case 1 3.3.1:

q

4
< a <

3q

4

• If sw = 0 and sw+lv = −1 we are in Case 2 3.3.1:

0 <
| − a− 2a|

2
<
q

4
implies 0 < a <

3q

8

However a < q
4 , then only one case can put a 1 to m̂0.

With the same condition on a and with the same method, Eve can retrieve
the others values:

• If s′w = 1, s′w+lv = 1 and m̂w = 1 then sw = −1, sw+lv = 0 or sw = 0,
sw+lv = −1

• If s′w = −1, s′w+lv = 1 and m̂w = 1 then sw = 0, sw+lv = −1 else
sw = −1, sw+lv = 0

• If s′w = −1, s′w+lv = −1 and m̂w = 1 then sw = 1, sw+lv = 0 or sw = 0,
sw+lv = 1

• If s′w = 1, s′w+lv = −1 and m̂w = 1 then sw = 0, sw+lv = 1 else
sw = 1, sw+lv = 0

17

As previously, Propositions 4 and 5 are not enough to mount an attack
for the same reasons:

• Eve needs a way to verify what Alice obtains.

• A bit of di�erence on m̂ is corrected by the BCH code. Thus, at the
end of the decryption procedure Alice and Eve have the same plaintext.

Nonetheless, Eve can use Propositions 4 and 5, the BCH code decryption
failure and the oracle to overcome these issues.

Theorem 2. Assume Eve forges c = (c1, c2) such that:

• c1 = −axn−w where w is an integer 0 ≤ w < n and q
8 < a < q

4

• c2 = (α0, . . . , as
′
w, . . . , αlv−1, αlv , . . . , as

′
w+lv

, . . . , αlv−1) where αi =
q
2

or 0 for all i in [0, 2lv − 1], s′w and s′w+lv are Eve's key guesses and
q
8 < a < q

4 or q
6 < a < q

4

then with 8 calls to the oracle O, Eve retrieves the w-th and (w + lv)-th
coe�cients of s.

Proof. The idea is the same as LAC-128 and 192, Eve takes c2 to ensure,
after comparison in CPA.Decrypt256 , that m̂ is a codeword with d

2 errors
if she did the wrongs key guesses, causing a decoding error (where d is the
minimal Hamming distance of the BCH code).
According to Propositions 4 and 5, Eve can monitor Alice's decryption pro-
cedure if she does the goods key guesses.
An error-correction code can correct at most d−1

2 errors. The idea is that

after comparison, m̂ is a codeword with d
2 errors if Eve did the wrongs key

guesses, causing a decoding error. Suppose Eve wants to retrieve the w-th
and the (w + lv)-th coe�cients of s:

1. Eve chooses a codeword called cdword with a 1 at the �rst coordinate
such that cdword = mG where G is the generator matrix of the BCH
code

2. Eve injects d−1
2 errors to cdword at any coordinate except the �rst one

3. Eve chooses a verifying q
8 < a < q

4 if she is on the case of Proposition
4 or q

6 < a < q
4 if she is on the case of Proposition 5

4. Eve constructs c1 and c2 with her key guesses are at the �rst and lv-th
coe�cient of c2: c2[0] = as′w and c2[lv] = as′lv+w and such that after

comparison, Alice retrieves cdword with d−1
2 errors or cdword with d

errors

5. Eve sends c = (c1, c2) to Alice

18

With this construction Alice obtains a codeword with d
2 errors if Eve does

wrongs key guesses. Then Eve can verify if she did the goods key guesses
with the oracle.
First Eve determines if sw and sw+lv are di�erent from 0 (Due by Proposition
4):

If s′w = 1, s′w+lv = 1 and O(c,m) = 1 then sw = −1 and sw+lv = −1
If s′w = −1, s′w+lv = −1 and O(c,m) = 1 then sw = 1 and sw+lv = 1

If s′w = 1, s′w+lv = −1 and O(c,m) = 1 then sw = −1 and sw+lv = 1

If s′w = −1, s′w+lv = 1 and O(c,m) = 1 then sw = 1 and sw+lv = −1

If the oracle do not return 1, then Eve determines which coe�cient is equal
to 0 (Due by Proposition 5):

If s′w = 1, s′w+lv = 1 and O(c,m) = 1 then sw = −1 and sw+lv = 0

or sw = 0 and sw+lv = −1
If s′w = −1, s′w+lv = 1 and O(c,m) = 1 then sw = 0 and sw+lv = −1
Else If O(c,m) = −1 then sw = −1 and sw+lv = 0

If s′w = −1, s′w+lv = −1 and O(c,m) = 1 then sw = 1 and sw+lv = 0

or sw = 0 and sw+lv = 1

If s′w = 1, s′w+lv = 1 and O(c,m) = 1 then sw = 0 and sw+lv = 1

Else if O(c,m) = −1 then sw = 1 and sw+lv = 0

Otherwise sw = 0 and sw+lv = 0

In our implementation [15] we choose a = q
7 for Proposition 4 and a = q

5
for Proposition 5.
To recover the entire key we need at most 8 × n requests to the oracle due
to the Theorem 2. But we can optimize this result and �nd the key with
8 × lv + 2 × (n − lv) requests to the oracle where lv = 400 and n = 1024.
In fact, when Eve does 8× lv requests she had found 800 coe�cients of the
secret key. If she wants to retrieve the following bits she can perform the
same attack as LAC-128 because si+800+lv = si+800+lv−n = si+176 and Eve
had already found this coe�cient.

3.3.3 Full version

The subroutine Compress removes the 4 lowers bits of c2 and they are
replaced by 4 zero-bit when the subroutine Decompress is applied at the
beginning of the decryption process. So each coe�cient of c2 can be only
equal to 16, 32, 64, 128 and any sum of these values.

19

For c2 in our attack, we only consider the values q
7 , −

q
7 ,

q
5 , −

q
5 and q

2 . In
our implementation [15] we approximate q

7 ≈ 32, − q
7 ≈ 128 + 64 + 16 = 210

or − q
7 ≈ 128 + 64 + 32 = 224 (we use two di�erent values to compensate

the approximation), q5 ≈ 16 + 32 = 48, − q
5 ≈ 128 + 64 = 192 and q

2 ≈ 128.
Propositions 4 and 5 are still veri�ed and we still retrieve s with at most
8× n requests to the oracle by the Theorem 2.

4 Conclusion

In this paper, we show how to mount an attack on CPA version of LAC-KE
when the same secret key is reused. We prove that this attack needs at most
8 × 1024 queries of key exchanges. This low number of queries to recover
the secret con�rmed the necessity to not reuse the same private key even for
a very small number of key exchanges. One can compare this number with
the key mismatch attack on NewHope in [9] that requires 882, 794 queries
and the one on Kyber in [10] that requires 2, 4× 1024 queries. Hence, in the
context of key reuse, LAC is much less resilient than NewHope but a little
more resilient than Kyber. It is important to note that this situation is a
misuse and thus, LAC is still believed to be safe when a fresh secret key is
used for each exchange. (The same remark applies to NewHope and Kyber.)

References

[1] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. volume 41, pages 303�332.
SIAM, 1999.

[2] Dustin Moody. Post-quantum cryptography NIST's plan for the future.
URL: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/pqcrypto-2016-presentation.pdf, 2016.

[3] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices
and learning with errors over rings. volume 60, page 43. ACM, 2013.

[4] Lu Xianhui, Liu Yamin, Jia Dingding, Xue Haiyang, He Jingnan, and
Zhang Zhenfei. LAC: Lattice-based cryptosystems. URL: https://csrc.
nist. gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions.

[5] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio
de la Piedra, Thomas Pöppelmann, Peter Schwabe, and Douglas Ste-
bila. NewHope. URL: https://csrc. nist. gov/Projects/Post-Quantum-
Cryptography/Round-2-Submissions.

20

[6] Mike Hamburg. Post-quantum cryptography proposal: THREE-
BEARS. URL: https://csrc. nist. gov/Projects/Post-Quantum-
Cryptography/Round-2-Submissions.

[7] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lep-
oint, Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor
Seiler, and Damien Stehlé. CRYSTALS-Kyber. URL: https://csrc. nist.
gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions.

[8] Aurélie Bauer, Henri Gilbert, Guénaël Renault, and Mélissa Rossi. As-
sessment of the key-reuse resilience of newhope. In Cryptographers'
Track at the RSA Conference, pages 272�292. Springer, 2019.

[9] Chao Liu, Zhongxiang Zheng, and Guangnan Zou. Key reuse attack
on newhope key exchange protocol. In International Conference on
Information Security and Cryptology, pages 163�176. Springer, 2018.

[10] Yue Qin, Chi Cheng, and Jintai Ding. An e�cient key mismatch attack
on the NIST second round candidate kyber. IEEE, 2019.

[11] Alfred Menezes and Berkant Ustaoglu. On reusing ephemeral keys in
Di�e-Hellman key agreement protocols. IJACT, 2(2):154�158, 2010.

[12] Scott R Fluhrer. Cryptanalysis of ring-LWE based key exchange with
key share reuse. IACR Cryptology ePrint Archive, 2016:85, 2016.

[13] Jintai Ding, Scott Fluhrer, and Saraswathy Rv. Complete attack on
RLWE key exchange with reused keys, without signal leakage. In Aus-
tralasian Conference on Information Security and Privacy, pages 467�
486. Springer, 2018.

[14] Ciprian B etu, F Betül Durak, Loïs Huguenin-Dumittan, Abdullah Ta-
layhan, and Serge Vaudenay. Misuse attacks on post-quantum cryp-
tosystems. In Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 747�776. Springer, 2019.

[15] Simon Montoya. LAC attack. https: // github. com/ ayotnomis/

LACAttack .

[16] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asym-
metric and symmetric encryption schemes. In Annual International
Cryptology Conference, pages 537�554. Springer, 1999.

21

https://github.com/ayotnomis/LACAttack
https://github.com/ayotnomis/LACAttack

Appendix

Proof of the other case of Proposition 3

Proof. Suppose Alice receives c = (c1, c2) then she:

1. Computes M̂ = c2 − (c1s)2lv

2. Compares q
4 <

M̂ [i]+M̂ [i+lv]
2 < 3q

4 or 0 < |M̂ [i]−M̂ [i+lv]|
2 < q

4 for i = 0 to
lv − 1 to de�ne each coe�cient of m̂

3. Retrieves m using BCHDecode algorithm on m̂

Let c1 = −axn−w and s = s0 + s1x
1 + . . .+ sn−1x

n−1 then

c1s = asn−w + asn−w+1x+ . . .+ asn−1x
w − as0xw+1 − . . .− asn−w−1xn−1

We can represent c1s as a vector c1s = (asn−w, . . . ,−asn−w−1). During
the computation of M̂ we can have two cases:

• w < 2lv then:

M̂ = c2 − (c1s)2lv

= (α0 − asn−w, α1 − asn−w+1, . . . , αw + as0, . . . , α2lv−1 + as2lv−1)

• w ≥ 2lv then:

M̂ = c2 − (c1s)2lv

= (α0 − asn−w, α1 − asn−w+1, . . . , α2lv−1 − as2lv−1)

Recall that since s ←− ψnσ , each of its coe�cients belongs to {−1, 0, 1}.
Let i be an integer such that 0 ≤ i < lv and j ≡ n− w + i mod n.
Here we consider the case where M̂ [i] = αi+asj and M̂ [i+lv] = αi+lv+asj+lv
(the other case is M̂ [i] = αi − asj and M̂ [i+ lv] = αi+lv − asj+lv).

If αi =
q
2 one gets:

• If sj = sj+lv or sj + sj+lv = 1 we are in the Case 1 described in
Paragraph 3.3.1:

αi = αi+lv =
q

2
,

αi + asj + αi+lv + asj+lv
2

=

q−2a
2 if sj = sj+lv = 1

q+2a
2 if sj = sj+lv = −1

q
2 if sj = sj+lv = 0
q+a
2 if sj + sj+lv = 1

These 3 values lie in] q4 ,
3q
4 [if 0 ≤ a <

q
4 .

22

• Otherwise we are in the Case 2 described in Paragraph 3.3.1

αi = αi+lv =
q

2
,

|(αi + asj)− (αi+lv + asj+lv)|
2

=

a
2 if sj + sj+lv = −1
a if sj = −1, sj+lv = 1

or sj = 1, sj+lv = −1

These values lie in [0, q4 [if 0 ≤ a <
q
4 .

Then for both cases, if c1 = −axn−w with αi, αi+lv = q
2 , we can ensure that

we have a 1 after comparison.
If αi = 0 then we are in the Case 1 described in Paragraph 3.3.1:

αi + asj + αi+lv + asj+lv
2

=

−a if sj = sj+lv = −1
0 if sj = −sj+lv or sj = sj+lv = 0
a if sj = sj+lv = 1
±a

2 otherwise

Then these 3 values do not lie in] q4 ,
3q
4 [for 0 ≤ a <

q
4 .

23

	Introduction
	Preliminaries
	Notation
	LAC
	Subroutines
	Parameters
	LAC Key Exchange

	Attack on LAC Key Exchange
	Attack Model
	Attack on LAC-128-KE and LAC-192-KE
	Simplified version
	Full version

	Attack on LAC-256-KE
	CPA.Decrypt256 description
	Attack on LAC-256-KE simplified
	Full version

	Conclusion

