
1

Practical Searchable Symmetric Encryption
Supporting Conjunctive Queries

without Keyword Pair Result Pattern Leakage
Changshe Ma, Yiping Gu, Hongfei Li

Abstract—Recently proposed searchable symmetric encryption (SSE) scheme HXT improves the OXT by avoiding the KPRP leakage
at the cost of increasing the storage by two orders of magnitude. In this paper, we reconsider the principle of designing SSE protocols
to prevent KPRP leakage. At first, we introduce a new primitive called subset membership check (SMC), where a set is encrypted such
that its subset membership can be checked only through a protocol between Sender and Tester. The security of SMC requires that
nothing is revealed other than the membership of a subset after each execution of the protocol. We propose a hash-based SMC

implementation with efficient computation, communication, and storage. Secondly, based on the hash-based SMC, we present two
practical SSE protocols that support conjunctive queries without KPRP leakage. Our first protocol, called ‘Practical Hidden Cross-Tags’
(PHXT), maintains the same storage size as OXT while preserving the same privacy and functionality as HXT. Our second protocol,
called ‘Fast Hidden Cross-Tags’ (FHXT), further optimizes the performances of PHXT through eliminating the expensive
Diffie-Hellman type operations. Compared with HXT, our FHXT reduces the storage size, server’s computational costs, client’s
computational costs, and the communication overhead by 96.09%, 98.44%, 79.54%, and 78.57%, respectively.

Index Terms—searchable symmetric encryption, subset membership check, holistic security, encrypted bloom filter, keyword pair
result pattern, conjunctive query.

F

1 INTRODUCTION

DATA outsourcing is a popular cloud service which
reduces the burden of local resource consumption. In

this setting, the data owner usually encrypts its data locally
before outsourcing to prevent the server (with a corrupted
insider) from accessing it. However, the data encrypted in
the standard way no longer supports search functionality.
To enable search functionality, a trivial solution is to send
the encrypted database to the owner, which decrypts it and
performs queries on the plaintext. This solution is out of
acceptance due to the huge communication overheads and
computational costs. Such a scenario has motivated a plenty
of researches on searchable encryption schemes.

Searchable symmetric encryption (SSE) ([1], [2], [3], [4],
[5], [6]) provides a mechanism to search on encrypted data
with acceptable performance and security level. The first
practical SSE scheme was proposed by Song, Wagner, and
Perrig [7], after which a lot of SSE schemes have been seen in
the literature. Each of the existing SSE schemes has a trade-
off between performance, security, and functionality. The
performance consists of the storage size, the computational
costs, and the communication overheads, which includes in-
teraction rounds as well as the bandwidth between the client
and the server. The security mainly focuses on reducing
the leakage of queries, the less leakage, the better security
level. The functionality mainly requires the SSE scheme to
support query operations (such as conjunctive query, insert
operation, and delete operation) as many as possible.

• C. Ma, Y. Gu, and H. Li are with the School of Computer Science, South
China Normal University, 510631 Guangzhou, China.
E-mail: changshema@gmail.com, yipinggu6@gmail.com,
hongfeili1995@gmail.com

Especially, the performance of an SSE scheme is crucial
for practical considerations. In [3], Cash et al. proposed
the concept of ‘Cross-Tags Set’ (XSeT) which is the basic
building block for SSE schemes (such as the ‘Oblivious
Cross-Tags’ (OXT) protocol [3] and the ‘Hidden Cross-
Tags’ (HXT) protocol [8]) to support efficient conjunctive
queries with worst-case sublinear complexity. Usually, XSeT
is represented by a bloom filter. The OXT protocol uses the
standard bloom filter, which can be RAM-resident easily,
while allowing the ‘Keyword Pair Result Pattern’ (KPRP)
leakage exploited in recent attacks ([9], [10], [11]). The
HXT protocol prevents the KPRP leakage by encrypting
the bloom filter of XSeT bit by bit. Specifically, the HXT
protocol uses a symmetric-key hidden vector encryption
(HVE) scheme to encrypt each bit of its bloom filter to
reduce the leakage from KPRP to the ‘Whole Result Pattern’
(WRP). Usually, HVE encrypts each bit to a ciphertext of
128 bits, which implies that the size of the encrypted bloom
filter in HXT is larger than OXT by a factor about 128. As
a result, the encrypted bloom filter will be too large to be
RAM-resident. For example, the standard bloom filter size
of wiki data 1 is about 3G bytes, then the encrypted bloom
filter of HXT should be at least 384G bytes. For practicality,
the smaller the size the bloom filter possesses, the better
performance the SSE protocols attain. Motivated by these
practical scenarios, we ask the following question.

Can we get the best of both worlds: prevent the KPRP leakage
while having a small size bloom filter as in OXT?

We make progress on this question and give an affirma-
tive answer by constructing two practical SSE schemes. Our

1. enwiki-20190328-pages-articles22.xml

2

constructions have been focused on the conjunctive queries,
like OXT and HXT, since such queries are the most common
in many practical settings. In our constructions, we assume
that the server is honest but curious and there are only one
reader and one writer.
Our Contributions. In this paper, we reconsider the prin-
ciple of preventing KPRP leakage in SSE schemes with
support for conjunctive queries. The contributions of this
paper are threefold.

• Firstly, we introduce the concept of subset member-
ship check (SMC) and its security model to test the
membership of a subset holistically. SMC encrypts a
set such that its subset membership can be checked
only through a protocol between Sender and Tester.
The security of SMC requires that nothing is revealed
other than the membership of a subset after each
execution of the protocol. We also propose a hash-
based SMC (HSMC) implementation with efficient
computation, communication, and storage. SMC en-
ables a modular design of SSE schemes to prevent
KPRP leakage.

• Secondly, based on HSMC, we propose an efficient
SSE protocol, called ‘Practical Hidden Cross-Tags’
(PHXT), which combines the advantages of both
OXT and HXT. Specifically, PHXT maintains the
optimal storage size as OXT while improving its
leakage from KPRP to WRP. Thanks to our hash-
based SMC, the bloom filter of PHXT is encrypted
without any ciphertext expansion and can be RAM-
resident conveniently. Compared to OXT, our PHXT
avoids the KPRP leakage while maintaining the same
storage size, computational costs and communica-
tion overheads. Compared to HXT, our PHXT re-
duces the storage size and communication overheads
by 91.29% and 64.29%, respectively (see table 4),
while keeping the same security level.

• Thirdly, to optimize PHXT further, we propose the
‘Fast Hidden Cross-Tags’ (FHXT) protocol, which
gets rid of the Diffie-Hellman (DH) type operations
for both the client and the server while preserving
all advantages of PHXT. It improves HXT by re-
ducing the storage, computation costs in the server-
side, computation costs in the client-side, and com-
munication overheads by 96.09%, 98.44%, 79.54%,
and 78.57%, respectively. The improved performance
of FHXT is attributed to the trick that both com-
puting and checking the membership of XSeT are
performed by the client instead of by the server,
which reduces one round of communication and
eliminates DH-type operations since no obliviously
shared computation between the client and the
server are needed.

Organization. The rest of the paper is organized as follows.
Section 2 surveys the related work. Section 3 provides the
related notations and primitives, while other needed hard-
ness assumptions and cryptographic primitives are given in
Appendix A. In Section 4, we give the concept of SMC and
an efficient hash-based implementation. We construct two
practical SSE protocols in Section 5, while their performance

comparisons and evaluations are given in Section 6 and
Section 7, respectively. In the last section, it is a conclusion.

2 RELATED WORK

Detailed reviews about SSE are referred to [12] and [13].
Here, we only review SSE schemes which support boolean
queries. The early proposed SSE schemes [14], [15], [16], [17]
usually use a keyword field to support conjunctive queries
and are provably secure against the indistinguishability
under chosen keyword attacks (IND-CKA) in the random
oracle (RO) model or standard model. The schemes of
[14] and [15] suffer from linear communication cost which
makes them be substantially impractical. The scheme of
[16] improves [14], [15] with the constant cost of both
communication and storage of each user at the cost of
each encryption requiring one extra pairing operation per
keyword per document. In 2007, Ryu et al. [17] proposed a
conjunctive SSE construction that maintains the advantages
of [16] while reducing the computational cost of each en-
cryption without using any pairing operation per keyword
per document. Subsequently, Wang et al. [18] constructed
the first keyword field-free conjunctive SSE scheme with the
size of each trapdoor for a document index linear in the
number of keywords it contains. Furthermore, each query
requires a bilinear map per keyword per document index.

All of the dedicated conjunctive SSE schemes mentioned
above have linear search complexity. Indeed, there is a
trivial sublinear conjunctive construction firstly proposed by
Curtmola et al. [1] through reducing each conjunctive query
to a series of single-keyword queries based on a masked
index in inverted form. More specifically, the client allows
the server to search for each individual keyword included
in a conjunctive query. Then, the client can find the query
result by intersection operations between the matching sets.
However, this trivial solution not only reveals the set of
documents matching each individual keyword, but also has
the complexity proportional to the number of documents
matching the most frequent keyword.

Recently, Cash et al. proposed the first non-trivial sublin-
ear conjunctive scheme named OXT [3] with the complexity
proportional to the number of documents matching the least
frequent keyword. It guarantees an acceptable leakage and
is provably IND-CKA secure under the decisional Diffie-
Hellman (DDH) assumption, while supporting large-scale
databases. OXT uses the XSeT data structure, which is a
collection of hash values derived from keyword-document
identifier pairs, to represent relations between keyword and
document. For the sake of efficiency, XSeT is represented
by a standard bloom filter, which is easy to be RAM-
resident while allowing the KPRP leakage. Moreover, DH-
type operations are imperative for OXT to guarantee the
privacy, which constitutes the main computation cost of its
search protocol. In 2018, Lai et al. proposed the HXT scheme
[8], which improves OXT by replacing the KPRP leakage
with the WRP leakage at the cost of enlarging the length of
bloom filter by two orders of magnitudes. Specifically, HXT
uses a symmetric hidden vector encryption (HVE) scheme to
encrypt the bloom filter bit by bit, resulting in an encrypted
bloom filter whose length is enlarged by a factor of at least
128. The advantage of OXT will be degraded since it is too

3

expensive to implement a RAM-resident bloom filter with
large size.

3 PRELIMINARIES

In this section, we give notations used throughout this paper
and review the definition and security notions of the SSE
scheme. We also describe the necessary building blocks such
as T-Set and bloom filter for our constructions.
Notations. Let C(·) be a probabilistic polynomial time (PPT)
algorithm, c← C(·) represents that c is assigned the output
of C(·). Let a, z be integers and a ≤ z, [a, z] represents the
set {a, a + 1, · · · , z}, while [z] represents [1, z]. Let S be a
set or a sequence, |S| represents the number of elements in
S and Sz = {(s1, s2, · · · , sz)|si ∈ S for i = 1, 2, · · · , z}.
x

$← X denotes that x is sampled uniformly at random
from the set X . x ← D denotes that x is sampled from the
distribution D. For a vector (or binary string) v, v[i] denotes
the i-th component (bit) of v. For two binary strings a and
b, a||b denotes the concatenation of a and b. The function
neg(λ) : Z 7→ (0, 1) is said to be negligible, if for every
positive polynomial p(·) there exists an integer N0 such that
neg(λ) < 1

p(λ) for all λ > N0. Let ∅ denotes the empty set
or string.

A database denoted as DB = (idi,Wi)
d
i=1 represents

that DB includes d documents, and the i − th document
is identified by the identifier idi, which contains a set of
keywords Wi. Let W =

⋃d
i=1Wi and m = |W |, and

ID = {idi | 1 ≤ i ≤ d}. Also let DB[w] denote the set
of identifiers including the keyword w. For a boolean query
φ(w̄),DB[φ(w̄)] represents the set of identifiers that satisfies
the query φ(w̄).

3.1 Searchable Symmetric Encryption: Syntax and Se-
curity
Syntax. In the single-writer single-reader setting, the data
owner (called client) encrypts his database DB and sends
the encrypted database EDB to the data server (called
server), while maintaining the ability to search throughout
the encrypted database with acceptable leakage. To enable
search on the encrypted database, an SSE scheme usually
generates some extra indexes over the plaintexts of doc-
uments before they are encrypted. Then, the ciphertexts
of the documents and the indexes are delivered to the
server, which stores them separately. Whereas the subse-
quent search process is mainly arranged on the indexes.
Definition 1. Let λ be the security parameter. An SSE scheme

Π = {EDBSetup, Search} consists of the algorithm
EDBSetup and the protocol Search. The algorithm
EDBSetup is run within the client. The protocol Search
involves several rounds of interactions between the
client and the server. They are detailed as follows.

• (SK,EDB) ← EDBSetup(1λ, DB): An algorithm
run in the client. Given a database DB, the client
outputs a secret key set SK along with an encrypted
database EDB, where SK is kept secretly in the
client, while EDB is provided to the server.

• DB[φ(w̄)] ← Search(SK, φ(w̄), EDB): A protocol
run between the client and the server interactively.
The client’s inputs are secret key set SK and a

query φ(w̄), while the server’s input isEDB. Finally,
the client outputs the set of identifiers DB[φ(w̄)]
matching the query φ(w̄), while the server outputs
nothing.

LetA be any PPT algorithm. The SSE scheme Π is said to
be correct if the game CorΠ

A(λ) defined as follows outputs
0 with all but negligible probability in λ. In CorΠ

A(λ), the
game runs (SK,EDB)← EDBSetup(1λ, DB), whereDB
is chosen by A. It provides EDB to A who then adaptively
chooses queries φ(w̄). For each query, the game runs Search
protocol to get the answer S with inputs SK, φ(w̄), and
EDB. The game outputs 1 if S 6= DB[φ(w̄)] for some query
φ(w̄), otherwise, the game outputs 0.
Security. Let L be a leakage function that describes what
an honest but curious server can learn from the encrypted
database and queries during its interaction with an honest
client. Informally, we say that an SSE scheme Π is secure
if it guarantees that no information about queries and
the database is revealed beyond the pre-described leakage
function L. If this holds for any non-adaptively adversary,
then Π is said to be non-adaptive secure. On the other
hand, if the adversary behaves adaptively, then Π is said
to be adaptively secure. A formal security definition of SSE
scheme was first proposed by Curtmola et al. [1] and later
generalized by Chase et al. in structured encryption [19].
Definition 2. Let Π = (EDBSetup, Search) be an SSE

scheme. For algorithms A and S , we define experi-
ments(algorithms) RealΠA(λ) and IdealΠA,S(λ) as follows:

• RealΠA(λ): A(1λ) chooses a database DB and gives
it to the experiment which outputs (SK,EDB) ←
EDBSetup(1λ, DB). Given EDB, A adaptively
chooses a polynomial number of queries. For
each query q, the experiment runs the protocol
Search(SK, q,EDB) and provides the transcript
and the client’s output to A. At the end, the experi-
ment outputs the bit returned by A.

• IdealΠA,S(λ): A(1λ) chooses a database DB, and the
experiment runs EDB ← S(L(DB)) and gives
EDB to A. Then A adaptively chooses a polyno-
mial number of queries. To respond, the experiment
provides A with the output of S(L(DB,Q)), where
Q is all of the queries issued by A so far. At the end,
the experiment outputs the bit returned by A.

We say that Π is L-semantically-secure against adap-
tive attacks if for any PPT adversary A there exists
a PPT algorithm S such that |Pr[RealΠA(λ) = 1] −
Pr[IdealΠA,S(λ) = 1]| ≤ neg(λ), where neg is a negli-
gible function.

A non-adaptive version of this definition is a straightfor-
ward modification of the above game where the adversary
provides all of the queries at the start of the game.

3.2 T-Set
A T-Set [3] is a special inverted-index data structure used
for constructing efficient SSE schemes. The detailed de-
scriptions of its notations, definitions, and security results
are referred to [3]. Formally, a T-Set instantiation Σ =
(Setup,GetTag,Retrieve) will consist of three algorithms. In

4

this paper, we use the dictionary encryption, e.g., the Πbas
scheme of [20], to implement the T-Set, which is described
as follows.

• (TSet,KT) ← TSet .Setup(T): It begins with select-
ing a secret key KT and preparing a list L. For each
w ∈ W , it computes K1 ‖ K2 ← F (KT , w), where
F is a keyed PRF, then for each c ∈ [1, |T[w]|], it
computes ` ← F (K1, c) and d ← Enc(K2,T[w, c]),
and adds (`, d) into a list L. Finally, the list L is
translated into a dictionary TSet.

• stag ← TSet .GetTag(KT , w): It generates K1 ‖
K2 ← F (KT , w), and returns stag ← K1 ‖ K2 as
the token corresponding to w.

• Tw ← TSet .Retrieve(TSet, stag): It pares stag as
K1 ‖ K2, prepares a list Tw, and initializes c = 1
and ` = F (K1, c). Then it does as follows: while
TSet(`) 6=⊥, it sets Tw[c] ← Dec(K2,TSet(`)),
c← c+ 1, and `← F (K1, c).

For an array T and a sequence of keywords w, we define
the leakage function LT (T,w) as the tuple (N,SP,RP),
where N , SP , and RP are detailed as follows.

- N is the total number of keyword-identifier pairs,
and equals Σw∈W |T[w]|.

- SP is the search pattern of queries, revealing the
equality pattern of queries. Initialize an empty
list Qsrch, for the i-th query w, add (i, w) into
Qsrch, and the search pattern for w is defined by
SP (w,Qsrch) = {j | (j, w) ∈ Qsrch}, indicating the
equality pattern of the queries Q.

- RP is the result pattern of queries. Formally, for the
i-th query w, RP [i] = T[w].

Lemma 1. [20] In the random oracle model, Πbas is LT -
adaptively-secure if F is a secure PRF and (Enc,Dec)
is an IND-CPA secure symmetric encryption.

3.3 Bloom Filters
A bloom filter is a probabilistic data structure used to
represent a set of N elements. Its main functionality is to
test the membership of an element. Let S = {s1, s2, · · · , sN}
be a set. The bloom filter first initializes a binary vector
BF with length m, such that BF[i] = 0 for all i ∈ [m].
Then, it chooses k independent hash functions {Hi}1≤i≤k
each of which maps elements from S to [m]. To add the
element sj into the bloom filter, it sets BF[Hi(sj)] = 1 for
all 1 ≤ i ≤ k. To test the membership of an element s, it
only needs to verify BF[Hi(s)] = 1 for all 1 ≤ i ≤ k. If it
is the case, then return 1, 0 otherwise. When the result of
a test is positive, there is a possibility (called false positive)
Pe that the bloom filter has made a wrong answer. Actually,
Pe ≤ (1 − e−k·N/m)k [21]. For a set with fixed number of
elements, there is a trade-off between m, k and Pe. Given N ,
the smaller k is preferred when the corresponding false pos-
itive is accepted. The optimal choice of k is k ≈ log2(1/Pe),
while m ≈ 1.44 log2(1/Pe) ·N [21].

4 SUBSET MEMBERSHIP CHECK

In this section, we introduce the concept of subset member-
ship check and give an efficient hash-based implementation.

4.1 Syntax and Privacy

Let Σ be a pre-defined set. Let Ω ⊆ Σ be the queried
set. There are two players, the Sender and the Tester. Ω
is encrypted as ESet, which is passed to the Sender. Sub-
sequently, they want to check the membership of a subset
V = {e1, e2, · · · , en}, i.e. V ⊆ Ω or not. A trivial method
is to authorize the Sender to check the membership of each
element of V one by one. However, this allows the Sender
to know which element is in Ω and which element is not.
Indeed, we want to require that no information is leaked,
except for the fact that V ⊆ Ω or not.

Definition 3. A subset membership check scheme SMC =
{Setup,Test} consists of the algorithm Setup to generate
an encrypted representation ESet and a key K0, and the
protocol Test between the Sender and the Tester to check
the membership of a subset. The detailed description of
SMC is as follows.

- (ESet,K0) ← SMC .Setup(1λ,Ω): takes as input a
set Ω and the security parameter λ and outputs an
encrypted representation ESet of Ω along with a
secret key K0, where ESet is provided to the Sender,
K0 is provided to the Tester.

- b ← SMC .Test(ESet, V,K0): takes as input the en-
crypted representation ESet, the subset V and the
key K0 and provides Sender with a bit b which indi-
cates V ⊆ Ω or not. During the protocol Test, Sender
generates the subset V in advance. After interactions
with Tester, Sender obtains a bit b. If b = 1, then
V ⊆ Ω, V 6⊆ Ω otherwise.

We say that an SMC scheme is computationally correct
if for all security parameter λ, all sets Ω, and all subsets V ,
after sequentially running SMC .Setup(1λ,Ω) to get ESet
and K0 and SMC .Test(ESet, V,K0) to get b, Pr[b = 1] ≥
1− neg(λ) if V ⊆ Ω, Pr[b = 0] = 1− neg(λ) otherwise.
Privacy. Informally, we say that a subset membership check
scheme SMC is private if it guarantees that no information is
leaked, except for the fact that V ⊆ Ω or not. Let LSMC be a
leakage function that describes what an adversary can learn
from the subset membership check scheme SMC in addition
to the trivial leakage that V ⊆ Ω or not. A formal privacy
definition is described below.

Definition 4. Let SMC = (Setup,Test) be a subset mem-
bership check scheme. For PPT algorithms A and S ,
we define experiments (algorithms) RealSMC

A (λ) and
IdealSMC

A,S (λ) as follows:

• RealSMC
A (λ): A(1λ) outputs a set Ω. The experiment

computes (ESet,K0) ← SMC .Setup(1λ,Ω) and
gives ESet to A. Then, A adaptively chooses a poly-
nomial number of queries. For each query V , the ex-
periment runs the protocol SMC .Test(ESet, V,K0)
and gives the transcript to A. At the end, the experi-
ment outputs the bit returned by A.

• IdealSMC
A,S (λ): A(1λ) outputs a set Ω. The experiment

runs ESet ← S(LSMC(Ω)) and gives ESet to A.
Then A adaptively chooses a polynomial number of
queries. To respond, the experiment provides A with
the output of S(LSMC(Ω,V)), where V is all of the

5

Algorithm 1 HSMC

Setup

Input: 1λ,Ω
Output: K0,EBF

1: Select key K0 for PRF F0.
2: Select hash functions {Hj}1≤j≤k for BF, and hash func-

tion H for holistic check.
3: Initialize BF← 0m.
4: for each e ∈ Ω do
5: for j = 1 : k do
6: BF[Hj(e)]← 1
7: end for
8: end for
9: for i = 1 : m do

10: EBF[i]← BF[i]
⊕
F0(K0, i)

11: end for
12: return EBF and K0

token

Input: EBF and a subset V = {e1, e2, · · · , en}
Output: Token tk

1: d = ∅
2: for i = 1 : n do
3: for j = 1 : k do
4: d← d||EBF[Hj(ei)]
5: end for
6: end for

7: tk← H(d)
8: return tk

Check

Input: K0, tk and a subset V = {e1, e2, · · · , en}
Output: Result b

1: d = ∅
2: b← 0
3: for i = 1 : n do
4: for j = 1 : k do
5: d← d||(1

⊕
F0(K0, Hj(ei)))

6: end for
7: end for
8: if tk = H(d) then
9: b← 1

10: end if
11: return b

Protocol: Test
Input: Sender’s inputs are the subset V = {e1, e2, · · · , en}

and EBF. Tester’s input is K0.
Output: Result b

1: Sender computes tk← token(EBF, V).
2: Sender sends V and tk to Tester.
3: Tester computes b← Check(K0, tk, V).
4: Tester sends b to Sender.
5: return b

queries issued byA so far. At the end, the experiment
outputs the bit returned by A.

We say that SMC is LSMC-semantically-secure against
adaptive attacks if for any PPT adversary A there ex-
ists a PPT algorithm S such that |Pr[RealSMC

A (λ) =
1]−Pr[IdealSMC

A,S (λ) = 1]| ≤ neg(λ), where neg is a neg-
ligible function. We say that an SMC scheme has holistic
security if the leakage function LSMC just reveals some
trivial information about Ω or V, from which A cannot
derive any non-trivial result about subset membership.

The symmetric HVE scheme used in HXT [8] can be
deemed as an SMC scheme with holistic security, as its
leakage function only reveals the size of Ω and the wildcard
pattern of each query.

4.2 Hashed-based Subset Membership Check

In this section, we represent the queried set Ω as a bloom
filter BF and propose a hash-based subset membership
check scheme (called HSMC) for Ω without enlarging the
length of BF. A detailed description of HSMC can be found
in Algorithm 1.

Let F0 be a pseudorandom function with domain {0, 1}.
Given the security parameter λ and the queried set Ω, the
algorithm Setup outputs a secret key K0 for F0 and an
encrypted bloom filter EBF for Ω. At first, the algorithm
Setup creates the bloom filter of Ω in the standard way. Then,
it encrypts BF bit by bit to get the encrypted bloom filter
EBF. More specifically, EBF[u]← BF[u]

⊕
F0(K0, u) for all

u ∈ [m], where m is the length of BF. We note that each

bit of BF is encrypted into one-bit ciphertext rather than a
block of at least 128 bits as in HXT. Finally, K0 is kept by
Tester and EBF is stored by Sender.

To facilitate invocations, we abstract the main computa-
tion of the protocol Test in HSMC as two algorithms, token
and Check. The algorithm token takes as input an encrypted
bloom filter EBF and a subset V and outputs a token tk. The
algorithm Check takes as input a token tk, a subset V and
a key K0 and outputs a bit b to indicate whether V ⊆ Ω or
not. The protocol Test proceeds as follows. At first, Sender
generates the token tk through the algorithm token. Then,
Sender passes tk to Tester. After receiving tk, Tester gets the
bit b through the algorithm Check. Finally, Tester passes the
bit b to Sender. If b = 1, then V ⊆ Ω, otherwise, V 6⊆ Ω. The
detailed descriptions of the two algorithms token and Check
are given as below.
Algorithm token. Given a subset V = {e1, e2, · · · , en}
and EBF, the algorithm token first concatenates EBF’s bits
corresponding to each element of V . Concretely, let d be a
nk-bit string whose ((i− 1)k+ j)-th bit equals EBF[Hj(ei)]
for 1 ≤ i ≤ n and 1 ≤ j ≤ k. Then, it generates a token
tk through a hash function H taking as input d. Finally, it
outputs the token tk.
Algorithm Check. Given the secret key K0, a subset V ,
and the token tk corresponding to V , the algorithm Check
outputs a boolean value b to judge that whether V ⊆ Ω
or not. At first, it constitutes the string d by concatenating
1
⊕
F0(K0, Hj(ei)) (1 ≤ i ≤ n and 1 ≤ j ≤ k) bit by bit.

Then, it verifies that tk = H(d). If it is the case, then return
1, 0 otherwise.

For any subset V = (e1, e2, · · · , e|V |), we define a predi-

6

Algorithm 2 PHXT

EDBSetup

Input: 1λ,DB
Output: mk,EDB

1: Select key KS for PRF FS
2: Select keys KX ,KI ,KZ for PRF Fp
3: Initialize T← ∅ indexed by W
4: Initialize XSeT← ∅
5: Initialize BF← 0m

6: for each w ∈W do
7: Initialize t← ∅
8: Ke ← FS(KS , w)
9: for id ∈ DB[w] do

10: xid← FI(KI , id)
11: z ← FZ(KZ , w||c)
12: y ← xid · z−1

13: e← Enc(Ke, id)
14: Append (y, e) to t
15: xtag ← gFp(KX ,w)·xid

16: XSeT← XSeT∪{xtag}
17: end for
18: T[w]← t
19: end for
20: (TSet,KT)← TSet .Setup(T)
21: (c,K0)← HSMC .Setup(XSeT)
22: mk ← (KX ,KI ,KZ ,KS ,KT ,K0)
23: EDB← (TSet, c)
24: return mk and EDB

Protocol: Search
Input: Client’s inputs are mk and the query φ(w̄) =

w1 ∧ · · · ∧ wn with sterm w1. Server’s input is EDB.
Output: Result R

1: Client computes stag← TSet .GetTag(KT , w1).
2: Client sends stag to server.
3: Server computes t← TSet .Retrieve(TSet, stag).
4: Server sends |t| to client.
5: for c = 1 : |t| do

6: Client computes z ← Fp(KZ , w1||c).
7: for ` = 2 : n do
8: Client computes xtoken[c, `]← gz·Fp(KX ,w`).
9: end for

10: end for
11: Client sends xtoken to server.
12: for c = 1 : |t| do
13: Server retrieves (y, e) from the c-th tuple of t.
14: for ` = 2 : n do
15: Server computes xr[c, `]← xtoken[c, `]y .
16: end for
17: Server computes tk[c]← HSMC . token(c, xr[c]).
18: end for
19: Server sends xr and tk to client.
20: Client sets E ′ ← ∅
21: for c = 1 : |t| do
22: Client computes bc ← HSMC .Check(K0, tk[c], xr[c]).
23: if bc = 1 then
24: Client adds c to E ′. (i.e. E ′ ← E ′ ∪ {c})
25: end if
26: end for
27: Client sends E ′ to server.
28: Server sets E ← ∅.
29: for c = 1, · · · , |t| do
30: if c ∈ E ′ then
31: Server retrieves (y, e) from the c-th tuple of t.
32: Server adds e to E . (i.e. E ← E ∪ {e})
33: end if
34: end for
35: Server sends E to client.
36: Client sets R← ∅.
37: Client computes Ke ← FS(KS , w1).
38: for e ∈ E do
39: Client computes id← Dec(Ke, e).
40: Client adds id to R. (i.e. R← R ∪ {id})
41: end for
42: return R

cate PΩ(V), such that

PΩ(V) =
∏

1≤i≤|V |

(
∏

1≤j≤k
BF(Hj(ei))).

Correctness. Let V = (e1, e2, · · · , e|V |). If V ⊆ Ω, then
PΩ(V) = 1, which implies that BF[uij] = 1 and EBF[uij] =
1
⊕
F0(K0, uij), for each uij ← Hj(ei), where i ∈ [1, |V |],

j ∈ [1, k]. Obviously, the string computed in token is the
same as that computed in Check, and hence b = 1. Other-
wise, V 6⊆ Ω, then PΩ(V) = 0 happens with probability
≥ (1 − Pe)|V |, where Pe is the false positive of BF. There
must exist ` ∈ {Hj(ei)}1≤i≤|V |,1≤j≤k such that BF[`] = 0,
which implies that the string computed in token is different
from that computed in Check. So b = 1 holds with negligible
probability.
Privacy. For a sequence of queried subsets V, we de-
fine two leakage functions of HSMC: LHSMC(Ω) = (N),
LHSMC(Ω,V) = (CP,b), where the tuples N , CP , and b
are detailed as follows.

- N = |Ω| is the total number of elements included in
the set Ω.

- CP is the check pattern of subsets V, recording
locations of each subset V[i] derived from the BF
hash functions, i.e., CP [i, j, k]← Hk(V[i, j]), where
V[i, j] denotes the j-th element of the i-th queried
subset.

- b is the result pattern, where b[i] indicates that
V[i] ⊆ Ω or not.

Theorem 1.
Our hash-based subset membership check scheme
HSMC is LHSMC-semantically-secure against adaptive
attacks, assuming that F0 is a secure PRF, and that H
is a collision-resistant hash function.

Proof: The proof is detailed in Appendix B.1.
We note that HSMC has holistic security since its leakage

functions described above only reveal nothing but the trivial
information.

7

TABLE 1
Communication between the client and the server during the search for φ(w̄) = w1 ∧ · · · ∧ wn.

HXT(three rounds) PHXT(three rounds) FHXT(two rounds)
stag stag stag
|t| |t| t = {e1, · · · , e|t|}

Comm. xtoken[i, j](i ∈ [1, |t|], j ∈ [2, n]) xtoken[i, j](i ∈ [1, |t|], j ∈ [2, n]) xr′[i, j](i ∈ [1, |t|], j ∈ [2, n])
components v[i, j](i ∈ [1, |t|], j ∈ [2, n]) xr[i, j](i ∈ [1, |t|], j ∈ [2, n]); tk[i](i ∈ [1, |t|]) tk[i](i ∈ [1, |t|])

token[i](i ∈ [1, |t|]) E ′ = {c|ec ∈ DB[φ(w̄)]} N/A
E = {e|e ∈ DB[φ(w̄)]} E = {e|e ∈ DB[φ(w̄)]} N/A

#(Comm.) 820 KB 291 KB 125 KB
|stag| = |e| = | xr′[i, j]| = | tk[i, j]|=128 bits, | xtoken[i, j]| = | xr[i, j]| = | token[i]|=256 bits, |v[i, j]|=1280 bits, |c|=32 bits, using the
parameters chosen in section 6. #Comm.:total communication overhead, assuming that |t| = 2000, |E|=500, n = 3.

5 OUR CONSTRUCTIONS

In this section, we propose two practical SSE protocols, the
‘Practical Hidden Cross-Tags’ (PHXT) protocol and the ‘Fast
Hidden Cross-Tags’ (FHXT) protocol, both of which support
conjunctive queries and prevent KPRP leakage. A detailed
description of them is as follows.

We observe that it is the ability of the server to check
whether a keyword is contained in a document of s-term
[3] that leads to the KPRP leakage. For a set of keywords
KW and a document D, if there is a holistic check whether
KW ⊆ D, then the KPRP leakage is prevented intuitively.
The HXT protocol uses HVE to achieve a holistic check
which circumvents the requirement that the server has to
check the relation between keyword and document one
by one, while resulting in a large representation of XSeT.
In PHXT and FHXT, we use subset membership check to
achieve holistic check of the relation between a keyword set
and a document. Moreover, the operation of a holistic check
of PHXT and FHXT is different from HXT. In PHXT and
FHXT, the holistic check is performed by the client rather
than by the server as in HXT.

5.1 PHXT: Practical Hidden Cross-Tags Protocol

Let SE = (Gen,Enc,Dec) be a symmetric encryption (SE)
scheme. The PHXT protocol consists of two algorithms:
EDBSetup and Search.

Given the security parameter λ and the database DB,
the algorithm EDBSetup (Algorithm 2) outputs the secret
key-set mk kept on the client and the encrypted database
EDB stored on the server. EDB consists of TSet and the
encrypted vector c. TSet is generated exactly the same as
in OXT and HXT, which is an encrypted inverted index of
DB. The encrypted vector c is derived from the algorithm
HSMC .Setup, taking as input the set XSeT. The secret key
K0 of the subset membership check scheme is kept by the
client. In PHXT, each bit of BF corresponding to XSeT is
encrypted into one-bit ciphertext rather than a block of at
least 128 bits as in HXT.

The protocol Search is shown in Algorithm 2, where
first 16 lines generate stag and xtoken similar to OXT
and HXT. The main difference between PHXT and HXT
is the approach to check the XSeT subset membership
for conjunctions. In our PHXT scheme, the XSeT sub-
set membership check for conjunctions is processed by
the client, while it is processed by the server in HXT.
More specifically, to check whether all the keywords are
contained in the c-th (c ∈ [1, |t|]) document, the server

generates the relation set xr[c] whose elements are xtags
and invokes HSMC . token(c, xr[c]) to get the token tk[c].
Then xr and tk are delivered to the client which invokes
HSMC .Check(K0, tk[c], xr[c]) to check whether all the el-
ements of xr[c] are contained in XSeT or not. If it is the
case, the number c is sent to the server, which retrieves ec
to be decrypted to idc. The communication is summarized
in table 1. The following theorem shows the correctness of
PHXT.

Theorem 2. For any efficient adversary A, if both the under-
lying T-Set instance and HSMC instance are correct, the
PRFs Fp and FS are secure, and the false positive Pe of
the underlying bloom filter is negligible in λ, then we
have

Pr[CorPHXTA = 1] ≤ neg(λ).

In other words, PHXT is a correct SSE scheme.

Proof: The proof of the theorem is detailed in Ap-
pendix B.2.

5.1.1 Security of PHXT

Throughout the paper, we represent a vector of Q n−term
conjunctive queries by q = (s,x2, · · · ,xn) where q[i] =
(s[i],x2[i], · · · ,xn[i]), i ∈ [Q], represents the i−th query
s[i] ∧ x2[i] ∧ · · · ∧ xn[i] with s-term s[i] and xterms [3]
x2[i], · · · ,xn[i]. For a database DB and a vector of queries
q, we define the leakage function LPHXT(DB,q) of PHXT
as the tuple (N, s̄, SP,WRP, IP) detailed as follows.

- N = Σdi=1|Wi| is the total number of keyword-
identify pairs in DB.

- s̄ ∈ [m]Q is the search pattern of s ∈ WQ. s̄ re-
veals the equality pattern of s because deterministic
stag’s corresponding to s are provided to the server.
s̄[i] = |{s̄[1], · · · , s̄[j]}|, where j is the least integer
such that s̄[j] = s̄[i], which is the number of unique
s-terms have been appeared less than or equal to the
j − th query.

- SP ∈ [d]Q is the size pattern of the queries, recording
the number of documents matched by the s-term of
each query, i.e, SP [i] = |DB[s[i]]|.

- WRP ∈ [ID]|Q| is the Whole Result Pattern of q.
Formally, WRP [i] = DB[s[i]] ∩

⋂n
j=2DB[xj [i]].

- IP is the conditional intersection pattern, which is a
four-dimensional table. Formally,

8

Algorithm 3 FHXT

EDBSetup

Input: 1λ,DB
Output: mk,EDB

1: Select keys KC ,KS for PRFs FC , FS
2: T← ∅ indexed by W
3: XSeT← ∅
4: for each w ∈W do
5: Initialize t← ∅
6: Ke ← FS(KS , w)
7: for id ∈ DB[w] do
8: e← Enc(Ke, id)
9: Append (e) to t

10: xtag ← FC(KC , w ‖ id)
11: XSeT← XSeT∪{xtag}
12: end for
13: T[w]← t
14: end for
15: Set (TSet,KT)← TSet.Setup(T)
16: (c,K0)← HSMC .Setup(XSeT)
17: mk ← (KC ,KS ,KT ,K0)
18: EDB← (TSet, c)
19: return mk and EDB

Protocol: Search
Input: Client’s inputs are mk and the query φ(w̄) =

w1 ∧ · · · ∧ wn with s-term w1. Server’s input is EDB.

Output: Result R
1: Client computes stag← TSet.GetTag(KT , w1).
2: Client sends stag to server.
3: Server computes t← TSet.Retrieve(TSet, stag).
4: Server sends t to client.
5: Client computes Ke ← FS(KS , w1).
6: for c = 1 : |t| do
7: Client retrieves ec from the c-th tuple of t.
8: Client computes idc ← Dec(Ke, ec).
9: for ` = 2 : n do

10: Client computes xr[c, `]← FC(KC , w`||idc).
11: end for
12: end for
13: Client sends xr to server.
14: for c = 1, · · · , |t| do
15: Server computes tk[i]← HSMC . token(c, xr[c]).
16: end for
17: Server sends tk to client.
18: Client sets R← ∅.
19: for c = 1 : |t| do
20: Client computes bc ← HSMC .Check(K0, tk[c], xr[c]).
21: if bc = 1 then
22: Client adds idc to R. (i.e. R← R ∪ {idc})
23: end if
24: end for
25: return R

IP [i, j, α, β] =


DB[s[i]] ∩DB[s[j]],

if i 6= j,
and
xα[i] = xβ [j]

∅, otherwise

Similar to that of [8], we first show the non-adaptive
security of PHXT, where all the queries are chosen non-
adaptively. The formal statement is as follows.

Theorem 3. Our scheme PHXT is LPHXT-semantically secure
against non-adaptive attacks where all of the queries are
conjunctions and LPHXT is the leakage function defined
as above, assuming that Fp and FS are secure PRFs,
that SE = (Gen,Enc,Dec) is an IND-CPA secure SE
scheme, that the DDH assumption holds in G, that the
TSet implementation invoked is (non-adaptively) LT -
secure and computationally correct, and that HSMC is
LHSMC-semantically-secure against adaptive attacks and
computationally correct.

Proof: The proof is detailed in Appendix B.3.
We next show that the theorem is also established against

adaptively attack for any conjunctive queries.

Theorem 4. Our scheme PHXT is LPHXT-semantically secure
against adaptive attacks where all of the queries are
conjunctions and LPHXT is the leakage function defined
as before, assuming that Fp and FS are secure PRFs, that
SE = (Gen,Enc,Dec) is an IND-CPA secure SE scheme,
that the DDH assumption holds in G, and that the TSet

implementation invoked is adaptive LT -secure and com-
putationally correct, that HSMC is LHSMC-semantically-
secure against adaptive attacks and computationally cor-
rect.

Proof: The proof is detailed in Appendix B.4.

5.2 FHXT: Fast Hidden Cross-Tags Protocol

In the framework of OXT and PHXT, the DH-type oper-
ations are necessary for computing xtags and xtoken and
for keeping the security of obliviously shared computations,
which constitutes the main computation cost of SSE protocol
and hence would be a potential bottleneck of performance.
To avoid DH-type operations while remaining the same se-
curity level, our SSE protocol FHXT adopts a different con-
struction framework and different representation of XSeT.
In short, FHXT uses pseudorandom function to compute
xtag and generates xtag in the client-side, and hence xtoken
is no needed. Our scheme FHXT consists of two algorithms:
EDBSetup and Search. A detailed description of FHXT is
given in Algorithm 3.

As depicted in Algorithm 3, the algorithm EDBSetup
is similar to that of PHXT except it uses a pseudorandom
function FC to compute the relationship between a keyword
w and a document id as xtag ← FC(KC , w||id). Hence, each
element of XSeT is an output of FC and y is no needed. That
is, each tuple in TSet with the form (y, e) is replaced with
(e), i.e., TSet only includes the encrypted identifiers.

The protocol Search of FHXT shown in Algorithm 3
adopts a different framework from OXT, HXT, and PHXT

9

TABLE 2
Computational costs, storage sizes, and communication overhead between the client and the server.

Conjunctive query q= (w1 ∧ w2 ∧ · · · ∧ wn)
HXT PHXT FHXT

Comp.

setup N(TE + TF + kTh) N(TE + TF + kTh) N(TE + TF + kTh)
+mTF +NTe +mTF +NTe +mTF

search(server) +α((n− 1)(kTh + Te)) +α((n− 1)(kTh + Te)) α(n− 1)kTh
+α(m′TX + TD) +αTh +αTh

search(client)
TF + |E|TD + αTE TF + |E|TD + αTh TF + αTh
+α(nTF + (n− 1)Te) +α(nTF + (n− 1)Te) +α(TD + (n− 1)TF)
+α(m′(TX + TF)) +α((n− 1)k(Th + TF)) +α((n− 1)k(Th + TF))

Stor. storage size N(`E + `p) +m`F N(`E + `p) +m N`E +m

Comm.
rounds 3 3 2

bandwidth `F + |t|+ |E|`E `F + |t|+ |E|(|t|+ `E) `F + α`E
+α((n− 1)(`D + k · 64) + `F + `E) +α(2(n− 1)`D + `h) +α((n− 1)`F + `h)

Comp.: Computation; Stor.: Storage; Comm.: Communication

TABLE 3
Notations used in Performance Comparison

Notation Meaning

`p size of an element from Zp

`D size of an element from the DH group
`F size of the output of a PRF
`E size of the block of SE
`h size of the output of the hash function H
m length of the BF

m′ number of non-wildcard elements in a BF

Te time taken to compute an exponentiation
TF time taken to compute a PRF
Th time taken to compute a hash
TX time of an exclusive-or operation over λ
TE time taken to encrypt a block in SE
TD time taken to decrypt a block in SE
|E| number of documents matching a query
α number of identifiers matching w1

to compute all xtag’s. After retrieving the vector t, the
server sends it to the client directly. Then, the client gen-
erates the corresponding xtag itself as follows. For each idc
decrypted from t, the xtag corresponding to the relation
between the x-term w` and the identifier idc is computed
as FC(KC , w`||idc). Finally, the holistic membership checks
are processed between the server and the client just in
the same way as in PHXT. Obviously, no oblivious shared
computation between the client and the server is required
to generate the corresponding xtag. Thus, FHXT improves
on HXT through reducing not only storage sizes but also
computational costs and communication overheads. The
communication is summarized in table 1. The following
theorem shows the correctness of FHXT.
Theorem 5. For any efficient adversary A, if both the under-

lying T-Set instance and SMC instance are correct, PRF
FC is secure, and the false positive Pe of the underlying
bloom filter is negligible in λ, then we have

Pr[CorFHXTA = 1] ≤ neg(λ).

In other words, FHXT is a correct SSE scheme.

Proof: The proof is detailed in Appendix B.5.

5.2.1 Security of FHXT
For a vector of queries q, the leakage of FHXT
LFHXT(DB,q) is defined as the tuple (N, s̄, SP,WRP, IP),
whose elements are the same as those of PHXT. Similar to
PHXT, we first show the non-adaptive security of FHXT,
where all the queries are conjunctive. The formal statement
is as follows.
Theorem 6. Our scheme FHXT is LFHXT-semantically secure

against non-adaptive attacks where all of the queries are
conjunctions and LFHXT is the leakage function defined
as above, assuming that FS and FC are secure PRFs,
that SE = (Gen,Enc,Dec) is an IND-CPA secure SE
scheme, that the TSet implementation invoked is (non-
adaptively) LT -secure and computationally correct, and
that HSMC is LHSMC-semantically-secure against adap-
tive attacks and computationally correct.

Proof: The proof is detailed in Appendix B.6.
We next show that the theorem is also established against

adaptive attack for any conjunctive queries.
Theorem 7. Our scheme FHXT is LFHXT-semantically secure

against adaptive attacks where all of the queries are
conjunctions and LFHXT is the leakage function defined
as before, assuming that FS and FC are secure PRFs, that
SE = (Gen,Enc,Dec) is an IND-CPA secure SE scheme,
that the TSet implementation invoked is adaptively LT -
secure and computationally correct, and that HSMC is
LHSMC-semantically-secure against adaptive attacks and
computationally correct.

Proof: The proof is detailed in Appendix B.7.

6 PERFORMANCE COMPARISON

We compare our schemes PHXT and FHXT with HXT
[8] in terms of computational costs (of the set-up and
search phases), storage size, and communication overheads
(including interaction rounds and bandwidth between the
client and the server) for a conjunctive query w1 ∧ w2 ∧
· · · ∧ wn with s-term w1. Assume that all hash functions of
BF have 64-bit outputs. A detailed comparison between our
schemes and HXT is summarized in Table 2 whose notations
are given in Table 3.
Set-up Computational Costs. PHXT and HXT share the
same way to compute TSet, whose costs sum up to

10

TABLE 4
Evaluations of the percentages of the overheads between PHXT,

FHXT, and HXT.

Comp. Comp. Stor. Comm.
client server size bandwidth

PPHXT /HXT 98.85% 98.34% 8.71% 35.71%

PFHXT /HXT 20.46% 1.56% 3.91% 21.43%

TABLE 5
Statistics of datasets used in the evaluations.

Size #(D) Dist. keywords Dist. (w,id) pairs

2.11GB 7.4 · 105 2.6 · 106 5.8 · 107

7.61GB 3.1 · 106 6.5 · 106 2.2 · 108

56.1GB 5.8 · 106 2.7 · 107 1.56 · 109

#(D): # of documents; Dist.: distinct

TABLE 6
Storage overhead comparisons among HXT, OXT, PHXT, FHXT in

2.11GB, 7.61GB and 56.1GB datasets, respectively.

TSet c

HXT

2.17GB, 8.17GB, 58.05GB
24.43GB, 91.48GB, 650.18GB

OXT

0.19GB, 0.71GB, 5.08GBPHXT

FHXT 0.87GB, 3.27GB, 23.22GB

N · (TF + TE) since TSet has N components each filled up
through a PRF and a symmetric encryption (SE). However,
FHXT reduces each component of its TSet to a symmetric
encryption, costing N · TE for N components. Although
each scheme does not literally output XSeT, it still computes
every component of XSeT to initiate the corresponding BF
vector, which costs N ·Te for PHXT and HXT and N ·TF for
FHXT, respectively. To generate c, each scheme costsNk ·Th
for the plain BF vector and m · TF for the encrypted one,
although HXT operates differently with PHXT and FHXT.
Search Computational Costs. During the search for w1 ∧
· · · ∧ wn, the common computational costs between PHXT
and HXT include the costs to generate stag and xtoken’s and
to decrypt all matched document identifies for the client,
which sum up to TF+α·(n·TF+(n−1)·Te)+|E|TD , and the
costs to retrieve t and to generate xtag’s for the server, which
sum up to α · (n−1) ·Te. Whereas, the holistic check costs of
PHXT are different from those of HXT. The computation of
the holistic check in HXT includes the generation of vector
vc and the operation of Query of HVE by the server, which
costs α·((n−1)k·Th)+α·(m′·TX+TD), and the operation of
KeyGen of HVE by the client, which costs α·(m′ ·(TF+TX)+
TE). The holistic check in PHXT includes the operation of
token of SMC by the server and the operation of Check of
SMC by the client, which costs α · ((n− 1)k · Th + Th) and
α · ((n− 1)k · (Th + TF) + Th), respectively.

Since FHXT operates differently from PHXT and HXT,
the computation of the client-side consists of generating the
stag, symmetric decryptions, PRF evaluations and the Check
operations of SMC, all of which cost TF +α · ((n− 1) ·TF +
TD) + α · ((n − 1)k · (Th + TF) + Th). The computation of

the server-side consists of the operations of retrieving t and
of generating the token vector tk, all of which cost α · ((n−
1)k · Th + Th).
Storage size. Each scheme needs to store EDB, which
consists of TSet and c derived from the m-bit BF. HXT
and PHXT share the same size of TSet, which equals
N · `p + N · `E since each of its components contains
an element from Zp and one block of ciphertext of SE.
The size of TSet of FHXT is reduced to N · `E since no
DH-tuples are needed. The bloom filter BF in PHXT and
FHXT is encrypted into a ciphertext with length unchanged.
Whereas, each bit of BF in HXT is encrypted into a block
of `F bit length, resulting in significant size c. Indeed, its
storage costs m · `F .
Interaction rounds and bandwidth. The search protocol
can be divided into three phases. In the first phase, all
three schemes spend their first three interactions for the
server in collecting enough information to retrieve D(w1)
and to generate all holistic check tokens tk. During these
interactions, PHXT and HXT need to transmit stag, |t|, and
xtoken which result in `F +|t|+α(n−1)·`D communication
overheads, while FHXT needs to transmit stag, t, and xr
whose bandwidth are `F + α · `E + α · (n − 1) · `F . In the
second phase, the fourth interaction is required for PHXT
and FHXT to accomplish holistic subset membership check
with communication overheads α((n−1)·`D+`h) and α·`h,
respectively. Whereas, HXT needs the fourth and the fifth
interactions to operate holistic check with communication
overheads summing up to α · ((n−1)k ·64+`F +`E). In the
third phase, HXT requires the sixth interaction with band-
width |E| · `E to send the query result to the client. PHXT
needs the fifth and the sixth interactions with bandwidth
|E|(|t|+ `E) to let the client send the holistic check result to
the server and receive the query result from it. No additional
interaction is required for FHXT to get the query result since
the client can find it from D[w1], which is transmitted in the
first interaction according to the holistic check result. Hence,
FHXT is one round less than HXT and PHXT.

To give intuitive comparisons between our schemes and
HXT, we use the percentages of overheads between them to
illustrate the improvements of our schemes (see Table 4). For
example, let PPHXT /HXT denote the overhead percentage be-
tween PHXT and HXT and PFHXT /HXT between FHXT and
HXT, respectively. The overhead ranges from computation
to communication and storage.

To evaluate PPHXT /HXT and PFHXT /HXT, we set `p =
192, `E = 128, `F = 128, `h = 128, and `D = 256 for
a 512-bit DH-type element. As described in HXT [8], the
computation time of an xor operation is 3 times faster than
hash, 3900 times than exponentiation, 50 times than Dec,
100 times than Enc, 43 times than PRF. Note that m is
approximately 1.44kN to attain a negligible probability of
false positives. Let Pe = 10−6, we get k = 20. Assume that
n = 2, evaluations of the percentages are summarized in
Table 4.

7 EVALUATIONS

We implement PHXT, FHXT, OXT, and HXT with C++,
using NTL [22] for the implementations of cryptographic
primitives needed. The key length of symmetric encryption

11

100 101 102 103 104 105 106
10−4

10−2

100

102

104

Selectivity of Variable Term (v)

Ti
m

e
(s

ec
)

PHXT v ∧ a
FHXT v ∧ a
HXT v ∧ a
OXT v ∧ a
PHXT a ∧ v
FHXT a ∧ v
HXT a ∧ v
OXT a ∧ v

Fig. 1. Server’s time comparison between PHXT, FHXT, HXT, and
OXT in 2.11GB dataset.

100 101 102 103 104 105 106
10−4

10−2

100

102

104

Selectivity of Variable Term (v)

Ti
m

e
(s

ec
)

PHXT v ∧ a
FHXT v ∧ a
HXT v ∧ a
OXT v ∧ a
PHXT a ∧ v
FHXT a ∧ v
HXT a ∧ v
OXT a ∧ v

Fig. 2. Client’s time comparison between PHXT, FHXT, HXT, and
OXT in 2.11GB dataset.

100 101 102 103 104 105 106
10−4

10−2

100

102

104

Selectivity of Variable Term (v)

Ti
m

e
(s

ec
)

PHXT v ∧ a
FHXT v ∧ a
HXT v ∧ a
OXT v ∧ a
PHXT a ∧ v
FHXT a ∧ v
HXT a ∧ v
OXT a ∧ v

Fig. 3. Overall query delay comparison between PHXT, FHXT, HXT,
and OXT in 2.11GB dataset.

0 1 2 3 4 5 6

10−1

100

101

of variable term (n)

Ti
m

e
(s

ec
)

PHXT a ∧ v1 ∧ · · · ∧ vn
FHXT a ∧ v1 ∧ · · · ∧ vn
HXT a ∧ v1 ∧ · · · ∧ vn
OXT a ∧ v1 ∧ · · · ∧ vn

Fig. 4. Overall query delay comparison between PHXT, FHXT, HXT,
and OXT in 2.11GB dataset in the multi-keyword setting.

is set to 128 in all schemes, and the false positive Pe is set
to 10−6. The server is deployed on a desktop PC having 4
cores CPU (Intel i3-8350K, 4.00GHz), 32GB of DDR4 RAM,
and 500 GB hard disk, and the client is in a notebook PC
with Intel i7-6700K CPU (4.00GHz×8), 15.6GB of RAM, and
983.7GB hard disk. They use gRPC2 to communicate each
other in a local area network. We conduct our evaluations on
three datasets from Wikimedia Downloads [23], having the
original sizes as 2.11GB3, 7.61GB4, and 56.1GB5, respectively,
whose statistical features are summarized in Table 5.

In PHXT and HXT, each DH-type xtag is replaced with
H(xtag) and sent from the server to the client during the
holistic subset membership check to reduce the communi-
cation costs. Note that these changes obliviously affect the
computational costs for the efficiency of hash computations.

2. http://www.grpc.io
3. enwiki-20190220-pages-articles22.xml
4. enwiki-20190220-pages-articles27.xml
5. enwiki-20190220-pages-articles.xml

Storage comparison. The TSet of PHXT, HXT, and OXT
corresponding to the above three datasets are 2.6GB, 9.8GB,
and 69.66GB, respectively, while TSet of FHXT are 0.87GB,
3.27GB, and 23.22GB, respectively. The encrypted vector c
of OXT, PHXT, and FHXT are 0.19GB, 0.71GB, and 5.08GB,
respectively, while c of HXT are 24.43GB, 91.48GB, and
650.18GB, respectively. A detailed comparison is listed in
Table 6.

Performance comparison. To conduct a fair comparison, we
evaluate the performance of all the search protocols on the
2.11GB dataset, which enables c of HXT to be RAM-resident
in our desktop PC. We choose a variable term v, with the
selectivity varying from 1 to 298318, and a fixed-term a to
perform two types of conjunctive queries. The first query
uses the v as s-term and the a as x-term, tested on OXT,
FHXT, PHXT, and HXT, while the other query uses the a as
s-term and the v as x-term.

The time comparisons between the four schemes on the
server-side and on the client-side are depicted in Fig. 1

12

100 101 102 103 104 105 106
10−3

10−2

10−1

100

101

102

103

104

Selectivity of Variable Term (v)

Ti
m

e
(s

ec
)

PHXT v ∧ a in 2.11GB
PHXT v ∧ a in 7.61GB
PHXT a ∧ v in 2.11GB
PHXT a ∧ v in 7.61GB

Fig. 5. Overall query delay comparison of PHXT for datasets of differ-
ent sizes.

100 101 102 103 104 105 106
10−3

10−2

10−1

100

101

102

103

104

Selectivity of Variable Term (v)

Ti
m

e
(s

ec
)

FHXT v ∧ a in 2.11GB
FHXT v ∧ a in 7.61GB
FHXT a ∧ v in 2.11GB
FHXT a ∧ v in 7.61GB

Fig. 6. Overall query delay comparison of FHXT for datasets of differ-
ent sizes.

and 2, respectively. The overall query delay comparison is
shown in Fig. 3.

As shown by Fig. 1, FHXT is the fastest scheme, while
PHXT and OXT are better than HXT and have almost the
same time consumption for the server. Concretely, for the
first query v ∧ a, the server’s time of each scheme is linear
to the selectivity of v. However, the server’s time of FHXT
is only 3.58% − 0.47% of that of HXT. It is because that
HXT has to do additional exponentiations for the server to
generate xtag’s while FHXT lets the server receive xtag’s
from the client. For the query a ∧ v, the time cost on the
server-side is constant regardless of the selectively of v. In
this case, the server’s time of FHXT is only 0.52% − 0.72%
of that of HXT.

According to Fig. 2, the time of client-side purely reflects
the computation costs and does not have any load of I/O.
It fits well with the theoretical analysis that the client’s time
cost of FHXT is only 15.2% − 36.36% of that of HXT. The
client’s time of PHXT is almost the same as OXT, which is
better than HXT.

According to Fig. 3, for the query v∧a, the overall query
time of FHXT is 17.66%− 3.73% of that of HXT, while it is
8.39%− 10.63% for the query a∧ v. The overall query time
of PHXT is almost the same as OXT, which is better than
HXT.

We further give an evaluation to compare the perfor-
mances of the four schemes for querying multiple key-
words, where s-term is identical to the fixed term a in
the previous two-keyword evaluations, while introducing
more variable {vn}, n ∈ [1, 5], as x-terms in conjunctive
queries. As shown in Fig. 4, FHXT outperforms three other
schemes although the query delay of all schemes increases
as n increases. The underlying reason is that the number of
xtags increases when n increases.

From the above performance evaluation discussions, we
can conclude that the performance of PHXT is better than
that of HXT and close to that of OXT, while FHXT is the
most efficient one of the four schemes.
Scalability of PHXT and FHXT. To illustrate the scalability
of our two schemes, we present the query delay compar-

isons on two datasets of different sizes for PHXT and FHXT,
respectively. Figures 5 and 6 show that there are negligible
differences between these query delays of our schemes on
datasets of different sizes, implying that both our schemes
are highly scalable.

8 CONCLUSION

In this work, we introduce the new primitive subset mem-
bership check which enables a modular design of SSE
schemes to prevent KPRP leakage. We also give an efficient
hash-based SMC implementation. Based on SMC, we pro-
pose two practical SSE protocols that support conjunctive
queries without KPRP leakage. Our first protocol PHXT
maintains the same storage overhead as the OXT while pre-
serving the same security and functionality as the HXT. Our
second protocol FHXT further optimizes the performances
of PHXT by eliminating the expensive DH-type operations.

To evaluate and compare the performance of our
schemes with others, we implemented OXT, HXT, PHXT,
and FHXT using C++ and NTL library. The experimental
results demonstrate that our schemes are more efficient than
OXT and HXT. In a word, FHXT is the most efficient scheme
with good scalability.

To extend our FHXT to the dynamic setting while
attaining forward/backward security [4], the underlying
building blocks TSet and SMC need to be dynamic with
forward/backward security. Recently, many studies have
focused on dynamic inverted indexing ([24], [25], [26],
[27], [28]). However, extending an SMC implementation to
a dynamic one is a challenging attempt.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural
Science Foundation of China (Grant No. 61672243).

13

REFERENCES

[1] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: Improved definitions and efficient
constructions,” in Proceedings of the 13th ACM Conference on
Computer and Communications Security, ser. CCS ’06. New
York, NY, USA: ACM, 2006, pp. 79–88. [Online]. Available:
http://doi.acm.org/10.1145/1180405.1180417

[2] S.-F. Sun, J. K. Liu, A. Sakzad, R. Steinfeld, and T. H. Yuen, “An
efficient non-interactive multi-client searchable encryption with
support for boolean queries,” in European symposium on research
in computer security. Springer, 2016, pp. 154–172.

[3] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and
M. Steiner, “Highly-scalable searchable symmetric encryption
with support for boolean queries,” in Annual Cryptology Conference.
Springer, 2013, pp. 353–373.

[4] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic
searchable encryption with small leakage.” in NDSS, vol. 71, 2014,
pp. 72–75.

[5] Q. Wang, M. He, M. Du, S. S. Chow, R. W. Lai, and Q. Zou,
“Searchable encryption over feature-rich data,” IEEE Transactions
on Dependable and Secure Computing, vol. 15, no. 3, pp. 496–510,
2016.

[6] J. Ghareh Chamani, D. Papadopoulos, C. Papamanthou, and
R. Jalili, “New constructions for forward and backward pri-
vate symmetric searchable encryption,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018, pp. 1038–1055.

[7] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proceeding 2000 IEEE Symposium
on Security and Privacy. S&P 2000. IEEE, 2000, pp. 44–55.

[8] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D. Mukhopadhyay,
R. Steinfeld, S.-F. Sun, D. Liu, and C. Zuo, “Result pattern hiding
searchable encryption for conjunctive queries,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 745–762.

[9] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: ramification, attack and mit-
igation.” in Ndss, vol. 20. Citeseer, 2012, p. 12.

[10] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are
belong to us: The power of file-injection attacks on searchable
encryption,” in 25th {USENIX} Security Symposium ({USENIX}
Security 16), 2016, pp. 707–720.

[11] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proceedings of the 22nd
ACM SIGSAC conference on computer and communications security.
ACM, 2015, pp. 668–679.

[12] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably
secure searchable encryption,” ACM Computing Surveys (CSUR),
vol. 47, no. 2, p. 18, 2015.

[13] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and M. S. Mohamad,
“Searchable symmetric encryption: designs and challenges,” ACM
Computing Surveys (CSUR), vol. 50, no. 3, p. 40, 2017.

[14] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword
search over encrypted data,” in International Conference on Applied
Cryptography and Network Security. Springer, 2004, pp. 31–45.

[15] L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient con-
junctive keyword searches over encrypted data,” in International
Conference on Information and Communications Security. Springer,
2005, pp. 414–426.

[16] J. W. Byun, D. H. Lee, and J. Lim, “Efficient conjunctive keyword
search on encrypted data storage system,” in European Public Key
Infrastructure Workshop. Springer, 2006, pp. 184–196.

[17] E.-K. Ryu and T. Takagi, “Efficient conjunctive keyword-
searchable encryption,” in 21st International Conference on Advanced
Information Networking and Applications Workshops (AINAW’07),
vol. 1. IEEE, 2007, pp. 409–414.

[18] P. Wang, H. Wang, and J. Pieprzyk, “Keyword field-free conjunc-
tive keyword searches on encrypted data and extension for dy-
namic groups,” in International conference on cryptology and network
security. Springer, 2008, pp. 178–195.

[19] M. Chase and S. Kamara, “Structured encryption and controlled
disclosure,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2010, pp. 577–594.

[20] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C.
Rosu, and M. Steiner, “Dynamic searchable encryption in very-
large databases: data structures and implementation.” in NDSS,
vol. 14. Citeseer, 2014, pp. 23–26.

[21] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[22] V. Shoup, “NTL: A Library for doing Number Theory (version
11.3.4),” https://www.shoup.net/ntl/.

[23] W. Foundation, “Wikimedia Downloads,” https://dumps.
wikimedia.org/enwiki/, 2019.

[24] X. Song, C. Dong, D. Yuan, Q. Xu, and M. Zhao, “Forward private
searchable symmetric encryption with optimized i/o efficiency,”
IEEE Transactions on Dependable and Secure Computing, 2018.

[25] S.-F. Sun, X. Yuan, J. K. Liu, R. Steinfeld, A. Sakzad, V. Vo, and
S. Nepal, “Practical backward-secure searchable encryption from
symmetric puncturable encryption,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2018, pp. 763–780.

[26] R. Bost, B. Minaud, and O. Ohrimenko, “Forward and backward
private searchable encryption from constrained cryptographic
primitives,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 1465–1482.

[27] J. G. Chamani, D. Papadopoulos, C. Papamanthou, and R. Jalili,
“New constructions for forward and backward private symmetric
searchable encryption,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp.
1038–1055.

[28] J. Li, Y. Huang, Y. Wei, S. Lv, Z. Liu, C. Dong, and W. Lou,
“Searchable symmetric encryption with forward search privacy,”
IEEE Transactions on Dependable and Secure Computing, 2019.

14

APPENDIX A
HARDNESS ASSUMPTIONS

Definition 5. (DDH Assumption.) Let G be a cyclic group
generated by g with prime order p. The DDH problem
is to distinguish the distribution {(g, ga, gb, gab)} from
the distribution {(g, ga, gb, gc)}, where a, b, c are chosen
uniformly at random from G. For a distinguisher D,
the advantage AdvDDHD,G (λ) for D to solve the DDH
problem is defined as |Pr[D(g, ga, gb, gab) = 1] −
Pr[D(g, ga, gb, gc) = 1]|. The DDH Assumption asserts
that AdvDDHD,G (λ) is negligible in λ for any probabilistic
polynomial-time (PPT) distinguisher D.

Definition 6. (Hash Function). For a security parameter λ,
a hash function H is collision resistant if for any PPT
adversary A there is a negligible function neg in λ such
that Pr[(a, b)← A(H) : H(a) = H(b)] ≤ neg(λ).

Definition 7. (PRF). Let F : {0, 1}λ×{0, 1}n → {0, 1}m be a
keyed function. We say that F is a pseudorandom func-
tion (PRF) if for any PPT adversary A, its advantage

AdvprfF,A(λ) = Pr[AF (K,·)(1λ) = 1]− Pr[Af(·)(1λ) = 1]

is negligible, where the first probability of the right part
is taken over the uniform choice of K ∈ {0, 1}λ and the
randomness of A, and the second probability is taken
over the uniform choice of f ∈ Fun({0, 1}n, {0, 1}m)
and the randomness of A.

Definition 8. (IND-CPA Security). A symmetric encryption
scheme SE =(Gen, Enc, Dec) is a triple of algorithms.
The algorithm Gen takes as input a parameter λ and
outputs a key K ∈ {0, 1}λ. The algorithm Enc takes as
input a key K ∈ {0, 1}λ and a message M and outputs
a ciphertext C . The algorithm Dec takes as input a key
K ∈ {0, 1}λ and a ciphertext C and outputs a message
M . We require that the scheme is with computationally
correctness for all possible keys K and all messages M .
We say that SE =(Gen, Enc, Dec) is indistinguishable
under chosen-plaintext attacks (IND-CPA), if the advan-
tage of any PPT adversaryA in the following experiment
is a negligible function neg(λ). The experiment first
selects a key k ← Gen and a bit b $← {0, 1}. Then,
the adversary A outputs two messages m0 and m1,
from which a challenge ciphertext is generated through
c∗ ← Enc(k,mb). Finally, the adversary takes as input c∗

and outputs a bit b′. The advantage of A is defined as
AdvIND-CPA

SE,A = |Pr[b = b′] − 1
2 |, where the probability is

taken over the randomness used in the experiment and
the randomness of A.

APPENDIX B
THEOREM PROOFS

B.1 Proof of Theorem 1

We first present a simulator SHSMC in the ideal experiment,
which takes as input the corresponding leakage profiles. The
operations of SHSMC are divided into two phases, the setup
phase and the check phase.

- Setup phase: The adversaryA chooses a set Ω. Taking
as input LHSMC(Ω) = N , the simulator SHSMC ran-
domly chooses EBF

$← {0, 1}m, which is delivered
to A.

- Check phase: The adversaryA chooses the subset Vi

adaptively. Taking as input LHSMC(Ω,V) = (CP,b)
for the i-th query, the simulator SSMC returns to A
the bit b← b[i].

The outputs of the PRF F0 are indistinguishable from
random for any PPT algorithm. Hence, the EBF is indistin-
guishable between SHSMC and the real experiment. Further-
more, all transcripts are generated in the same way as in the
real experiment. We can finally conclude that

|Pr[RealHSMC
L (λ) = 1]− Pr[IdealHSMC

A,S (λ)] = 1| ≤ neg(λ).

B.2 Proof of Theorem 2
Let G0 = CorPHXTA , and we want to show that Pr[G0 =
1] ≤ neg(λ). We firstly modify G0 to get G1 such that
the TSet of G1 retrieves the correct lists of tuples for all
legal queries. According to the correctness of the under-
lying TSet instance, it implies straightly that there exists
an adversary B1 such that Pr[G1 = 1] − Pr[G0 = 1] ≤
AdvCorTSetB1

(λ). We then modify G1 to get G2 by replay-
ing the PRFs FX and FI with random functions fX and
fI with the same domains and ranges, respectively. The
security of PRF implies that there exists an adversary B2

such that Pr[G2 = 1] − Pr[G1 = 1] ≤ 2AdvprfFp,B2
(λ). Let

φ(w̄) = w1 ∧ · · · ∧ wn with s-term w1 be the query. The
game G2 outputs 1 only if the simulated search protocol
causes the output of the client to be different from the result
DB[φ(w̄)]. According to the correctness of TSet, the simu-
lated server will retrieve the correct list T [w1]. Combining
with xtoken received from the client, the server is able to
compute xr[c] for each c ∈ [1, |DB[w1]|], where xr[c][i] =
xtag(wi, idc) = gfX(wi)·fI(idc). For each idc ∈ DB[φ(w̄)],
it will be returned as a part of the result of the client since
bc = 1, where bc is derived from HSMC .Check. Hence, the
event G2 = 1 will happen only due to false positives, which
implies there exists an index c such that idc ∈ DB[w1] and
idc /∈ DB[φ(w̄)] (i.e. idc /∈ DB(wi) for some 2 ≤ i ≤ n),
but bc = 1. There are two subcases. The first subcase is that
gfX(wi)·fI(indc) = gfX(w′)·fI(ind′) for some other (w′, id′) 6=
(wi, idc) and id′ ∈ DB(w′). Assume that fI(id) 6= 0 and
fX(w) 6= 0 for every id and every w. It is the case with
all but probability (d+m)

p . Then for certain pairs (wi, idc)
and (w′, id′), the probability that the equation described
above holds is 1

p−1 , which implies that the first subcase

happens with probability less than |DB(w1)|(n−1)N
p−1 over all

pairs (wi, idc) in the query and over all pairs (w′, id′) in
XSeT. The second subcase is that there are some mistakes
made in the scheme SMC, which happens with probabil-
ity ≤ |DB(w1)|neg(λ) over all c ∈ [|DB(w1)|]. Hence,
Pr[G2 = 1] ≤ (d+m)

p + |DB(w1)|(n−1)N
p−1 + |DB(w1)|neg(λ).

We conclude that Pr[CorPHXTA = 1] ≤ neg(λ) through a
simple hybrid argument for games G0, G1, G2.

B.3 Proof of Theorem 3
The following process of proof is similar to that of OXT and
HXT except for the use of an HSMC simulator.

15

Algorithm 4 Game G0 of PHXT (DB,q)

(idi,Wi)
d
i=1 ← DB

KX , KI , KZ , KS
$← {0, 1}λ

for w ∈ W do
(īd1, · · · , īdTw)← DB[w]

σ
$← Perm([Tw]),WPerms[w]← σ

Ke ← FS(KS , w); t← ∅
for c = 1 : Tw do
xid← Fp(KI , īdσ(c))
z ← Fp(KZ , w||c)
y ← xid · z−1

e← Enc(Ke, īdσ(c))
t[c]← (y, e)

end for
T[w]← t

end for
(TSet, KT)← TSet.Setup(T)
for i = 1, · · · , Q do

STags[i]← TSet.GetTag(KT , s[i])
end for
Initialize XSeT← ∅
for each w ∈ W and id ∈ DB[w] do
xw ← Fp(KX , w)
xid← Fp(KI , id)
xtag ← gxw·xid

XSeT← XSeT∪{xtag}
end for
(c, K0)← HSMC . Setup(XSeT)
EDB← (TSet, c)
for i = 1, · · · , Q do

for c = 1 : |DB[s[i]]| do
zc ← Fp(KZ , s[i]||c)
for ` = 2 : n do
xw` ← Fp(KX ,x`[i])
xtoken[i, c, `]← gzc·xw`

end for
end for
ResInds[i]← DB[s[i]] ∩

⋂n
`=2DB[x`[i]]

tr[i]← (ResInds[i], (STags[i], xtoken[i]))
end for
return (EDB, tr)

We establish our proof through a sequence of
games G0, G1, G2, · · · , G8 which take as input DB,
q = (s,x2, · · · ,xn), where the output of G0 has the same
distribution as that of RealPHXTA (λ) and the output of G8

has the same distribution as that of the simulator. Then, we
proceed to show that |Pr[Gi = 1]− Pr[Gj = 1]| ≤ neg(λ),
for 0 ≤ i < j ≤ 8, such that we can obtain an inequality
|Pr[RealPHXTA (λ) = 1]−Pr[IdealPHXTA,S (λ) = 1]| ≤ neg(λ) by
the standard hybrid argument, which completes our proof.
The process is similar to that of OXT and HXT except for
the use of HSMC simulator.
Game G0. As described in Algorithm 4, G0 is an implemen-
tation of the real game RealPHXTA (λ) but with some book-
keeping changes which would be useful in the following
games. G0 firstly generates the array T almost the same as
that of RealPHXTA (λ) except that it records the permutation
σ in the array Wperms indexed by keywords, which will
make the following analysis clearer. It invokes TSet.Setup
with input T. Then it generates the encrypted vector c
by invoking HSMC .Setup. The output of G0 is EDB and
a transcript tr, where for each i ∈ [Q], tr[i] comprises
(ResInds[i], (STags[i], xtoken[i])), where STags[i] contains
the stag used for TSet.Retrieve in the i-th query, xtoken[i]
comprises the sets used for XSeT membership test, and
RedInds[i] records the id values matching the i-th query,
i.e. ResInds[i] ← DB[s[i]] ∩

⋂n
`=2DB[x`[i]], which is in-

distinguishable from the output of the search protocol for

Algorithm 5 Games G1, G2. , G3 of PHXT (DB,q)

(idi,Wi)
d
i=1 ← DB

fI , fX , fZ
$← Func({0, 1}λ, Z∗p)

for w ∈ W do
(īd1, · · · , īdTw)← DB[w]

σ
$← Perm([Tw]),WPerms[w]← σ

Ke
$← {0, 1}λ; t← ∅

for c = 1 : Tw do
xid← fI(īdσ(c))
z ← fZ(w||c)
y ← xid · z−1

e← Enc(Ke, īdσ(c))

e← Enc(Ke, 0
λ)

t[c]← (y, e)
end for
T[w]← t

end for
(TSet, KT)← TSet.Setup(T)
for i = 1, · · · , Q do

STags[i]← TSet.GetTag(KT , s[i])
end for
Initialize XSeT← ∅
for each w ∈ W and id ∈ DB[w] do
xw ← fX(w)
xid← fI(id)
xtag ← gxw·xid

XSeT← XSeT∪{xtag}
end for
(c, K0)← HSMC . Setup(XSeT)

c← SHSMC(N)

EDB← (TSet, c)
for i = 1, · · · , Q do

for c = 1 : |DB[s[i]]| do
zc ← fZ(s[i]||c)
for ` = 2 : n do
xw` ← fX(x`[i])
xtoken[i, c, `]← gzc·xw`

end for
end for
ResInds[i]← DB[s[i]] ∩

⋂n
`=2DB[x`[i]]

tr[i]← (ResInds[i], (STags[i], xtoken[i]))
end for
return (EDB, tr)

the correctness of PHXT. All of them are the same as the
view of the server in the practical setting and are sent to A.
Assuming that no errors have occurred, the distribution of
the output of G0 is the same as that of RealPHXT

A (λ). With
the correctness of PHXT, we have:

|Pr[G0 = 1]− Pr[RealPHXTA (λ) = 1]| ≤ neg(λ)

Game G1. As described in Algorithm 5, G1 is al-
most the same as G0 except that we replace the PRFs
Fp, FS with random functions. More specifically, we re-
place Fp(KX , ·), Fp(KI , ·), Fp(KZ , ·) with random func-
tions fX , fI , fZ , respectively. As for FS(KS , ·), it will not
evaluate twice at the same input, so for the sake of con-
ciseness, we will not record its evaluation value at any
point. That is to say, we just need to replace the evaluation
FS(KS , ·) at every point with random number.

As stated in Theorem 3, we assume that Fp, FS are secure
PRFs, so there exists efficient adversaries B1,1,B1,2 such that

|Pr[G1 = 1]−Pr[G1 = 1]| ≤ 3AdvprfFp,B1,1
(λ)+AdvprfF,B1,2

(λ).

The details of the reductions are omitted here.
Game G2. This game described in Algorithm 5 is almost the
same as G1 except that it replaces the row above the boxed

16

Algorithm 6 Games G4, G5 , G6 , G7 of PHXT (DB,q)

(idi,Wi)
d
i=1 ← DB

fI , fX , fZ
$← Func({0, 1}λ, Z∗p)

for w ∈ W do
for id ∈ ID do
xw ← fX(w);X[w]← gxw; xid← fI(id)
A[w, id]← X[w]xid

A[w, id]
$← G

end for
end for
for w ∈ W do

(īd1, · · · , īdTw)← DB[w]

σ
$← Perm([Tw]),WPerms[w]← σ

Ke
$← {0, 1}λ; t← ∅

for c = 1 : Tw do
xid← fI(īdσ(c))
z ← fZ(w||c)
y ← xid · z−1

y
$← Z∗p

e← Enc(Ke, 0
λ)

t[c]← (y, e)
end for
T[w]← t

end for
(TSet, KT)← TSet.Setup(T)
for i = 1, · · · , Q do

STags[i]← TSet.GetTag(KT , s[i])
end for

(TSet, STags)← ST (L(DB, s), T [s])

c← SHSMC(N)
EDB← (TSet, c)
for i = 1, · · · , Q do

t← TSet.Retrieve(TSet, STags[i])
(īd1, · · · , īdTs)← DB[s[i]];σ ← WPerms[s[i]]
for c = 1 : |DB[s[i]]| do

Retrieves (yc, ec) from the c− th tuple in t
for ` = 2 : n do

xtoken[i, c, `]← A[x`[i], īdσ(c)]
1/yc

end for
end for
ResInds[i]← DB[s[i]] ∩

⋂n
`=2DB[x`[i]]

tr[i]← (ResInds[i], (STags[i], xtoken[i]))
end for
return (EDB, tr)

code with the boxed code. That is to say, for w ∈ W , each e
is an encryption of 0λ instead of the corresponding id with
the same key.

Since SE is an IND-CPA secure symmetric scheme, and
the encryption of 0λ is executed for polynomial, say poly(λ),
times, there exists an efficient adversaries B2 such that

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ poly(λ) ·AdvIND-CPA
SE,B2

(λ).

Game G3. AS described in Algorithm 5, G3 changes
the evaluations of the encrypted vector c. c is gener-
ated by invoking an HSMC simulator SHSMC rather than
HSMC .Setup. Such an efficient simulator SHSMC exists for
the security of HSMC scheme. Hence, there exists an efficient
adversary B3 perfectly simulatingG2 with HSMC real game,
and perfectly simulating G3 with HSMC ideal game. For the
security notion of HSMC, we conclude that

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ AdvHSMC
B3

(λ).

Game G4. As described in Algorithm 6, each elements of
xtoken of G4 are computed in an alternative but equivalent

Algorithm 7 Games G8 of PHXT (DB,q)

(idi,Wi)
d
i=1 ← DB

for w ∈ W and id ∈ ID do
A[w, id]

$← G
end for
for w ∈ W do

(īd1, · · · , īdTw)← DB[w]

σ
$← Perm([Tw]),WPerms[w]← σ

Ke
$← {0, 1}λ; t← ∅

for c = 1 : Tw do
y

$← Z∗p
e← Enc(Ke, 0

λ)
t[c]← (y, e)

end for
T[w]← t

end for
(TSet, STags)← ST (L(T, s),T[s])
c← SHSMC(N)
EDB← (TSet, c)
for i = 1, · · · , Q do

t← TSet.Retrieve(TSet, STags[i])
(īd1, · · · , īdTs)← DB[s[i]];σ ← WPerms[s[i]]
for c = 1 : |DB[s[i]]| do

Retrieves (yc, ec) from the c− th tuple in t
for ` = 2 : n do

if ∃j 6= i and v ∈ [2, n]: īdσ(c) ∈ DB(s[j]) ∧ x`[i] = xv [j] then
xtoken[i, c, `]← A[x`[i], īdσ(c)]

1/yc

else
xtoken[i, c, `]

$← G
end if

end for
end for
ResInds[i]← DB[s[i]] ∩

⋂n
`=2DB[x`[i]]

tr[i]← (ResInds[i], (STags[i], xtoken[i]))
end for
return (EDB, tr)

way. Roughly speaking, all values gfX(w)fI(id) for each pair
(w, id) ∈ W × ID are precomputed and recorded in an
array A, and all elements of xtoken’s are produced via the
corresponding values from A.

In the i − th query, retrieve t corresponding
to the s-term s[i], and look up DB[s[i]] =
(īd1, · · · , īdTS) and WPerms[s[i]] = σ, where
t = {(fI(īdσ(c))/fZ(s[i]||c), ec)c∈[TS]}. Then for c ∈ [TS]
and ` ∈ [2, n], it computes xtoken[c, `] as A[x`[i], īdσ(c)]

1/yc

rather than gfZ(s[i]||c)·fX(x`[i]). But A[x`[i], īdσ(c)]
1/yc =

(gfX(x`[i])fI(īdσ(c)))fZ(s[i]||c)/fI(īdσ(c)) = gfX(x`[i])·fZ(s[i]||c).
Hence, xtoken in G4 is computed in the same way as that in
G3 and we conclude that

Pr[G4 = 1] = Pr[G3 = 1].

Game G5. As described in Algorithm 6, G5 is almost the
same as G4 except that all y’s are drawn uniformly and in-
dependently from {0, 1}λ. Thanks to the modification made
in G4, no repeated computation is required for fZ of any
input. Hence, z distributes uniformly and independently,
which implies that y ← xid · z−1 also distributes uniformly
and independently. So replaying y with random values does
not change anything about the distribution of the output of
G5 from that of G4 and we have Pr[G5 = 1] = Pr[G4 = 1].
Game G6. As described in Algorithm 6, G6 is almost the
same as G5 except that we set every A[w, id] value to be
an element chosen uniformly and independently from G.
Under the DDH assumption, there exists a PPT adversary
B6 simply simulating the values of array X with ga values
and simulating the values of A with gc values, the process

17

Algorithm 8 Simulator SPHXT (N, s̄, x̂, SP,WRP, IP)

for w ∈ x̂ and id ∈
⋃Q
i=1

⋃
j 6=i,α,β IP [i, j, α, β] do

A[w, id]
$← G

end for
for w ∈ s̄ do
i

$← s̄−1[w]

WPerms[w]
$← Perms([SP [i]])

end for
for w ∈ s̄ do
Ke

$← {0, 1}λ, t← ∅
i

$← s̄−1[w]
for c = 1 : SP [i] do
y

$← {0, 1}λ
e← Enc(Ke, 0

λ), t[c]← (y, e)
end for
T[w]← t

end for
T[s]← (T[s̄[1]], · · · ,T[s̄[Q]])
(TSet, STags)← ST (LT (T, s),T[s])
c← SHSMC(N)
EDB← (TSet, c)
for i = 1, · · · , Q do

t← TSet .Retrieve(TSet, STags[i])
σ ← WPerms[s̄[i]]
Ri ←

⋃
j 6=i,α,β IP [i, j, α, β]

T ′ ← |Ri|
(īd1, · · · , īdT ′ ,⊥, · · · ,⊥︸ ︷︷ ︸

SP [i]−T ′

)← DB[s̄[i]]

for c = 1, · · · , SP [i] do
for ` = 2 : n do

(yc, ec)← t[c]
if īdσ(c) 6=⊥ then

xtoken[i, c, `]← A[x̂[i, `], īdσ(c)]
1/yc

else
xtoken[i, c, `]

$← G
end if

end for
end for
ResInds[i]← WRP [i]
tr[i]← (ResInds[i], (STags[i], xtoken[i]))

end for
Return (EDB, tr)

of which is similar to that as in [3]. Thus, B6 simulates G5

while c = ab and simulates G6 while c
$← Z∗p . And we

conclude that

|Pr[G6 = 1]− Pr[G5 = 1]| ≤ AdvDDH
G,B6

(λ).

Game G7. As described in Algorithm 6, G7 generates TSet
and STags by using a TSet simulator ST rather than by
invoking TSet.setup and TSet.GetTag. Such an efficient
simulator ST can be guaranteed because TSet is (non-
adaptively) LT secure. And there exists an efficient adver-
sary B7 can perfectly simulates G6 with TSet real game,
and can perfectly simulates G7 with TSet ideal game. For
the security notion of TSet and the discussion above, we
have

|Pr[G7 = 1]− Pr[G6 = 1]| ≤ AdvTSetB7
(λ).

Game G8. As described in Algorithm 7, G8 modifies the
way of accessing the arrayA to enable the simulator to work
with its given leakage profile. Roughly speaking, the game
only accesses array A at an index (w, id) if the game accesses
this index in A repeatedly. Note that only the generation
of xtoken will access the array A. And a value in array A
indexed by [w, id] will be repeatedly accessed only if there
exists i, j ∈ [Q] and `, v ∈ [2, n] such that j 6= i and
id ∈ (DB[s[i]] ∩ DB[s[j]]) ∧ x`[i] = xv[j]. This condition

is exactly what the last ‘If’ statement in G8 tests for. And if
this condition statement is not satisfied, the xtoken value is
randomly and independently selected from G, which does
not change anything about the distribution of the output of
G8 from that of G7. So we have

Pr[G8 = 1] = Pr[G7 = 1].

Simulator. Next, we present a simulator SPHXT , described
in Algorithm 8, which takes as input the leakage pro-
file L(DB,q) described in section 5.1.1, which consists of
(N, s̄, SP,WRP, IP). By showing that the distribution of
the simulator SPHXT is the same as that ofG8 and combining
the relations between the games showed above, we will
conclude that SPHXT satisfies all the requirements detailed
in definition 2 in the non-adaptive version.

We first define a restricted equality pattern of x, which is
denoted as x̂ and is not exactly the equality pattern of x but
the ‘known’ equality pattern derived from the leakage IP ,
which is similar to that of [3]. More specifically, we firstly
define that x̂[i, α] = x̂[j, β] iff IP [i, j, α, β] 6= ∅. Then, we
take transitive closure on x̂ to get an equivalence relation.
In particular, for all i, j ∈ [Q], we have that

x̂[i, α] = x̂[j, β]⇒ xα[i] = xβ [j], (1)

and

(xα[i] = xβ [j])∧(DB[s̄[i]]∩DB[s̄[j]] 6= ∅)⇒ x̂[i, α] = x̂[j, β].
(2)

With the leakage profile LPHXT(DB,q) and x̂ derived
from the leakage IP , the work of simulator SPHXT is de-
tailed in Algorithm 8. We claim that the distribution of the
output of SPHXT is the same as that of G8.

We first observe that TSet and STags are computed in the
same way as in G8, obviously having the same distribution.
When construct c, both SPHXT and G8 invoke a simulator
SHSMC. When computing xtoken, SPHXT first initializes an
array A, which is only filled out for the indexes (w, id)
where w ∈ x̂ and id ∈

⋃Q
i=1

⋃
j 6=i,α,β IP [i, j, α, β], used to

keep the reaccessed pattern of arrayA during the generation
of xtoken. The values of t are exactly identically distributed.
For each w ∈ s̄, the permutation σ is chosen uniformly and
independently for w with respect to SP [w], except when
the same permutation is reused from WPerms. WPerms
catches both the repetition pattern and the size pattern of
s-terms and has the same pattern of permutations with that
of G8. The ‘revealed’ identifiers Ri ←

⋃
j 6=i,α,β IP [i, j, α, β]

are denoted as īd1, · · · , īd|Ri|, and then Ri are padded up
to size SP [i] by dummy symbols ⊥, which is different from
that of G8, but there is no effect on constructing xtoken[i] for
⊥, which are just used to remind S to set the corresponding
positions of xtoken to values chosen randomly and indepen-
dently rather than from array A. The logic of S is identical
to that of G8. And we finally need to show that array A in
SPHXT follows the reaccessed pattern identical to that of G8.

For any two indexes (x`[i1], id1) and (xv[i2], id2) ac-
cessed from array A in G8, SPHXT will read the indexes
(x̂[i1, `], id1) and (x̂[i2, v], id2) instead. To show that SPHXT
is identical to G8, we claim that

(x̂[i1, `], id1) = (x̂[i2, v], id2)⇔ (x`[i1], id1) = (xv[i2], id2).

18

Algorithm 9 Game G0 of FHXT (DB,q)

(idi,Wi)
d
i=1 ← DB

KC , KS
$← {0, 1}λ

for w ∈ W do
(īd1, · · · , īdTw)← DB[w]

σ
$← Perm([Tw]),WPerms[w]← σ

Ke ← FS(KS , w), t← ∅
for c = 1 : Tw do
e← Enc(Ke, idσ(c))
t[c]← (e)

end for
T[w]← t

end for
(TSet, KT)← TSet.Setup(T)
for i = 1, · · · , Q do

STags[i]← TSet.GetTag(KT , s[i])
end for
Initialize XSeT← ∅
for each w ∈ W and id ∈ DB[w] do
xtag ← FC(KC , w||id)
XSeT← XSeT∪{xtag}

end for
(c, K0)← HSMC . Setup(XSeT)
EDB← (TSet, c)
for i = 1, · · · , Q do

t← TSet.Retrieve(TSet, STags[i])
Ke ← FS(KS , w1)
for c = 1 : |DB[s[i]]| do

Retrieves ec from the c− th tuple in t
idc ← Dec(Ke, ec)
for ` = 2 : n do

xr[i, c, `]← FC(KC ,x`[i]||idc)
end for

end for
ResInds[i]← DB[s[i]] ∩

⋂n
`=2DB[x`[i]]

tr[i]← (ResInds[i], (STags[i], xr[i]))
end for
return (EDB, tr)

If (x̂[i1, `], id1) = (x̂[i2, v], id2), that x̂[i1, `] = x̂[i2, v] and
id1 = id2, x̂[i1, `] = x̂[i2, v] implies that x`[i1] = xv[i2] from
(1), and we can conclude that (x`[i1], id1) = (xv[i2], id2). If
(x`[i1], id1) = (xv[i2], id2), that x`[i1] = xv[i2] and id1 =
id2. As has been known, an index (w, id) is accessed in array
A iff there exists an i such that id ∈

⋃
j 6=i,α,β IP [i, j, α, β].

So id1 = id2 are members of the set⋃
j 6=i1,α,β

IP [i1, j, α, β] ∩
⋃

j 6=i2,α,β
IP [i2, j, α, β].

As
⋃
j 6=i,α,β IP [i, j, α, β] ∈ DB[s[i]], we can get that id1 =

id2 are members in the set DB[s[i1]] ∩ DB[s[i2]], which
implies that DB[s[i1]] ∩ DB[s[i2]] 6= ∅, from which we
can conclude that x̂[i1, `] = x̂[i2, v] from (2). Now we can
conclude that (x̂[i1, `], id1) = (x̂[i2, v], id2).

B.4 Proof of Theorem 4
The main idea of proving Theorem 4 is similar to that
of Theorem 3, except that the TSet and all queries are
chosen adaptively. To respond to these queries, the simu-
lator initializes an array A adaptively by choosing elements
independently from the group with proper repetitions due
to the leakage profiles given adaptively.

B.5 Proof of Theorem 5
Let G0 = CorFHXTA . We modify G0 to get G1 such that
the TSet of G1 retrieves the correct list of tuples for any
TSet query and the PRF FC of G1 is replaced by ran-
dom function fC with the same domain and range. For

Algorithm 10 Game G1 of FHXT (DB,q)

(idi,Wi)
d
i=1 ← DB

KC , KS
$← {0, 1}λ

for w ∈ W and id ∈ ID do
A[w, id]← FC(KC , w||id)

end for
for w ∈ W do

(īd1, · · · , īdTw)← DB[w]

σ
$← Perm([Tw]),WPerms[w]← σ

Ke ← FS(KS , w), t← ∅
for c = 1 : Tw do
e← Enc(Ke, idσ(c))
t[c]← (e)

end for
T[w]← t

end for
(TSet, KT)← TSet.Setup(T)
for i = 1, · · · , Q do

STags[i]← TSet.GetTag(KT , s[i])
end for
Initialize XSeT← ∅
for each w ∈ W and id ∈ DB[w] do
xtag ← A[w, id]
XSeT← XSeT∪{xtag}

end for
(c, K0)← HSMC . Setup(XSeT)
EDB← (TSet, c)
for i = 1, · · · , Q do

(īd1, · · · , īdTs)← DB[s[i]];σ ← WPerms[s[i]]
for c = 1 : |DB[s[i]]| do

for ` = 2 : n do
xr[i, c, `]← A[x`[i], īdσ(c)]

end for
end for
ResInds[i]← DB[s[i]] ∩

⋂n
`=2DB[x`[i]]

tr[i]← (ResInds[i], (STags[i], xr[i]))
end for
return (EDB, tr)

the correctness of TSet and the security of PRF, we get
that |Pr[G1 = 1] − Pr[G0 = 1]| ≤ neg(λ). In G1, let
φ(w̄) = w1∧· · ·∧wn with s-term w1 be the query. The anal-
ysis is almost the same as that of G2 of the proof B.2 except
that the xtag(wi, idc) is computed as fC(wi||idc) instead of
gfX(wi)fI(idc) for every pair (wi, idc). This does not change
the fact that the client result set contains DB[φ(w̄)] and the
game will output 1 only due to false positives. There are two
subcases. The first subcase is that fC(wi||idc) = fC(w′||id′)
for some other (w′, id′) 6= (wi, idc) and id′ ∈ DB[w′].
This happens with probability 1

2λ
. Hence, the first subcase

happens with probability not greater than |DB[w1]|(n−1)N
2λ

over all pairs (wi, idc) in the query and over all pairs
(w′, id′) in the database. The second is the same as that of
G2 in the proof B.2. And we conclude that Pr[G2 = 1] ≤
|DB[w1]|(n−1)N

2λ
+ |DB[w1]|neg(λ) ≤ neg(λ).

By a simple hybrid argument of the games G0 and G1,
we conclude that Pr[CorFHXTA = 1] ≤ neg(λ).

B.6 Proof of Theorem 6

The proof of Theorem 6 is much simpler than that of
Theorem 3 for avoiding the DH-type operations. Here, we
only give a brief description. It is established through seven
games G0, · · · , G6 with (DB,q) as input.
Game G0. As described in Algorithm 9, G0 is an implemen-
tation of the real game RealFHXTA (λ) but with some book-
keeping changes which would not influence the distribution

19

Algorithm 11 Game G2, G3 , G4 , G5 of FHXT (DB,q)

(idi,Wi)
d
i=1 ← DB

for w ∈ W and id ∈ ID do
A[w, id]

$← {0, 1}λ
end for
for w ∈ W do

(īd1, · · · , īdTw)← DB[w]

σ
$← Perm([Tw]),WPerms[w]← σ

Ke
$← {0, 1}λ, t← ∅

for c = 1 : Tw do
e← Enc(Ke, idσ(c))

e← Enc(Ke, 0
λ)

t[c]← (e)
end for
T[w]← t

end for
(TSet, KT)← TSet.Setup(T)
for i = 1, · · · , Q do

STags[i]← TSet.GetTag(KT , s[i])
end for

(TSet, STags)← ST (L(T, s), T [s])

Initialize XSeT← ∅
for each w ∈ W and id ∈ DB[w] do
xtag ← A[w, id]
XSeT← XSeT∪{xtag}

end for
(c, K0)← HSMC . Setup(XSeT)

c← SHSMC(N)

EDB← (TSet, c)
for i = 1, · · · , Q do

(īd, · · · , īdTs)← DB[s[i]];σ ← WPerms[s[i]]
for c = 1 : |DB[s[i]]| do

for ` = 2 : n do
xr[i, c, `]← A[x`[i], īdσ(c)]

end for
end for
ResInds[i]← DB[s[i]] ∩

⋂n
`=2DB[x`[i]]

tr[i]← (ResInds[i], (STags[i], xr[i]))
end for
return (EDB, tr)

of the output. According to the correctness of FHXT, we
conclude that

|Pr[G0 = 1]− Pr[RealFHXTA (λ) = 1]| ≤ neg(λ)

Game G1. As described in Algorithm 10, we modify G0

to get G1 without changing the distribution of its output.
Roughly speaking, all values FC(KC , w||id) for each pair
(w, id) ∈ W × ID are precomputed and recorded in the
array A, i.e., the value of xtag for each pair (w, id) is
assigned to be A[w, id]. So it can be obviously concluded
that Pr[G1 = 1] = Pr[G0 = 1].
Game G2. As described in Algorithm 11, it replaces PRFs
FC and FS with random functions. Following the similar
argument of the proof of Theorem 3, we conclude that there
exists PPT adversaries B2,1,B2,2 such that

|Pr[G2 = 1]−Pr[G1 = 1]| ≤ AdvprfFC ,B2,1
(λ)+AdvprfFS ,B2,2

(λ)

Game G3. As described in Algorithm 11, it is almost the
same as G2 except that it generates c by invoking an HSMC
simulator SHSMC rather than HSMC .Setup. Following the
same argument of the proof of Theorem 3, we conclude that
there exists an efficient adversary B3 such that

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ AdvHSMC
B3

(λ).

Algorithm 12 Game G6 of FHXT (DB,q)

(idi,Wi)
d
i=1 ← DB

f0
$← Func({0, 1}λ)

for w ∈ W and id ∈ ID do
A[w, id]

$← {0, 1}λ
end for
for w ∈ W do

(īd1, · · · , īdTw)← DB[w]

σ
$← Perm([Tw]),WPerms[w]← σ

Ke
$← {0, 1}λ, t← ∅

for c = 1 : Tw do
e← Enc(Ke, 0

λ)
t[c]← (e)

end for
T[w]← t

end for
(TSet, Stags)← ST (L(T, s),T[s])
c← SHSMC(N)
EDB← (TSet, c)
for i = 1, · · · , Q do

(īd, · · · , īdTs)← DB[s[i]];σ ← WPerms[s[i]]
for c = 1 : |DB[s[i]]| do

for ` = 2 : n do
if ∃j 6= i and v ∈ [2, n]: īdσ(c) ∈ DB(s[j]) ∧ x`[i] = xv [j] then

xr[i, c, `]← A[x`[i], īdσ(c)]
else

xr[i, c, `]
$← {0, 1}λ

end if
end for

end for
ResInds[i]← DB[s[i]] ∩

⋂n
`=2DB[x`[i]]

tr[i]← (ResInds[i], (STags[i], xr[i]))
end for
return (EDB, tr)

Algorithm 13 Simulator SFHXT (N, s̄, x̂, SP,WRP, IP)

for w ∈ x̂ and id ∈
⋃Q
j=1 IP [i, j]) do

A[w, id]
$← {0, 1}λ

end for
for w ∈ s̄ do
i

$← s̄−1[w]

WPerms[w]
$← Perms([SP [i]])

end for
for w ∈ s̄ do
Ke

$← {0, 1}λ, t← ∅
i

$← s̄−1[w]
for c = 1 : SP [i] do
e← Enc(Ke, 0

λ), t[c]← (e)
end for
T[w]← t

end for
T[s]← (T[s̄[1]], · · · ,T[s̄[Q]])
(TSet, STags)← ST (LT (T, s),T[s])
c← SHSMC(N)
EDB← (TSet, c)
for i = 1, · · · , Q do
σ ← WPerms[s̄[i]]
Ri ←

⋃
j 6=i,α,β IP [i, j, α, β]

T ′ ← |Ri|
(īd1, · · · , īdT ′ ,⊥, · · · ,⊥︸ ︷︷ ︸

SP [i]−T ′

)← DB[s̄[i]]

for c = 1, · · · , SP [i] do
for ` = 2 : n do

if īdσ(c) 6=⊥ then
xr[i, c, `]← A[x̂[i, `], īdσ(c)]

else
xr[i, c, `]

$← {0, 1}λ
end if

end for
end for
ResInds[i]← WRP [i]
tr[i]← (ResInds[i], (STags[i], xr[i]))

end for
return (EDB, tr)

20

Game G4. As described in Algorithm 11, it is similar to G3

except that each e is an encryption of 0λ. According to the
IND-CPA security of the underlying symmetric scheme, we
conclude that there exists a PPT adversary B4 such that

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ poly(λ) ·AdvIND-CPA
SE,B4

(λ).

Game G5. As described in Algorithm 11, it is almost the
same as G4 except that it generates TSet and STags by
invoking a TSet simulator ST rather than by invoking algo-
rithms TSet.Setup and TSet.GetTag, which is similar to G7

of the proof of Theorem 3. According to the security notion
of TSet, we conclude that there exists a PPT adversary B5

such that

|Pr[G5 = 1]− Pr[G4 = 1]| ≤ AdvTSetB5
(λ)

Game G6. As described in Algorithm 12, G6 replaces the
access of array A in the same way described in G8 of
the proof of Theorem 3. Following the same argument of
Theorem 3, we conclude that

Pr[G6 = 1] = Pr[G5 = 1].

Simulator SFHXT. As described in Algorithm 13, the sim-
ulator SFHXT is similar to the proof of Theorem 3. It takes
as input the leakage profile LFHXT(DB,q) described in
5.2.1, which consists of (N, s̄, SP,WRP, IP). Following the
similar argument of the proof of Theorem 3, SFHXT satisfies
the requirements detailed in the definition 2 in the non-
adaptive version.

B.7 Proof of Theorem 7
The main process of the simulator against adaptive attack is
similar to that of SFHXT detailed in the proof of Theorem 6,
except that the queries are chosen adaptively, that the TSet
simulator ST invoked is adaptive.

To respond to the queries chosen adaptively, the sim-
ulator initializes the array A by choosing independently
random elements with proper repetitions due to the leakage
profiles provided adaptively.

