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Abstract

Key custody is a sensitive aspect of cryptocurrencies. The employment of a custodian
service together with threshold-multi-party signatures helps to manage secret keys more
safely and effectively, e.g. allowing the recovery of crypto-assets when users lose their own
keys. Advancing from a protocol by Gennaro et al. we propose a protocol with two main
properties. First it allows the recovery party to remain offline during the enrollment of any
user, solving a real-life problem of maintaining online only one trusted third party. Second
our multi-party signature is compatible with a deterministic derivation of public and private
keys.

1 Introduction

In the cryptocurrency world digital signatures determine ownership rights and control over assets,
meaning that protection and custody of private keys is of paramount importance. A particularly
sensitive issue is the resiliency against key loss, since there is no central authority that can
restore ownership of a digital token once the private key of the wallet is lost. This problem is
even more crucial for the average user that usually lacks the competence or resources necessary
to adequately manage and protect those keys.

A common solution is to rely on a trusted third-party custodian that takes responsibility of
key management, but this also means that users must relinquish control over their assets, in
complete opposition of the spirit of cryptocurrencies. Moreover this kind of centralization may
form single points of failure and juicy targets for criminal takeovers, and there have already been
plenty of examples of said events in the past [7].

More interesting is the approach that distributes the control over the wallet through multi-
signature schemes, in particular with threshold-like policies, where k signers out of n are required
in order to produce a complete and valid signature. The simplest approach to this solution are
multi-sig wallets (available for some cryptocurrencies, like Bitcoin [25]) where the signatures
are normal ones, but funds may be moved out of that wallet only with a sufficient number
of signatures corresponding to a prescribed set of public keys. The main disadvantage to this
approach is that it is not supported by every cryptocurrency (e.g. Ethereum [6]), moreover such
wallets are very easily identifiable.

Another approach is to use Secure Multi-Party Computation in order to compute a single
signature involving multiple parties, none of which has access to the secret key: each has a
partial secret that can be combined with the others to create a signature. This method has the
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advantage that the resulting signature is indistinguishable from a normal one, so it can be used
very discretely and, more importantly, with any wallet. On the other hand the signing procedure
is much more complicated and requires online collaboration of the participating parties.

Another practical problem is that often the recovery party (that allows to recover the funds
in case of key loss) is not willing to sustain the cost of frequent online collaboration. For example
a bank may safely guard a piece of the secret key but it is inconvenient and quite costly to make
it participate in the enrollment of every user. Therefore we propose a new protocol in which the
recovery party is involved only once (in a preliminary set-up) and afterwards it isn’t involved
until a lost account must be recovered.

Yet another practical problem is to derive many keys from a single secret, for example to
efficiently manage multiple wallets. Our protocol is capable of solving this problem while main-
taining full compatibility with the offline recovery party.

Our signature scheme is presented in this paper in two versions: an ECDSA version and an
EdDSA version. Its adaption to any DSA-like signature does not present any difficulty.

As use-case, we consider a custodian offering as service for its clients the possibility of relying
on the Threshold Multi-Scheme Schemes here described. A client willing to sign a transaction
relies on a Secure Multi-Party protocol involving the custodian to obtain a valid signature. The
scheme is designed to be:

• safe: when either the client or the custodian are unable to participate to the protocol (e.g.
the client’s key is lost), a recovery transaction can still be signed with the aid of a recovery
server (e.g. the custodian and the recovery server can move the client’s funds into an
alternative address whose key is still owned by the client);

• secure: signatures cannot be forged and only the rightful participants can sign their own
transactions. In particular, no one has a “master” private key which allows to sign trans-
actions: the custodian cannot sign without the help of the client, and the client’s key is
never shared with anyone.

• sound: a signature obtained with this scheme is indistinguishable from other signatures
(e.g. it is infeasible to decide whether an ECDSA signature was obtained by using the
ECDSA standard implementation or by the ECDSA-compatible Threshold Multi-Signature
Scheme)

1.1 Related Work

The first Threshold Multi-Party Signature Scheme was a protocol for ECDSA signatures pro-
posed by Gennaro et al. [14] where t + 1 parties out of 2t + 1 were required to sign a message.
Later MacKenzie proposed and then improved another scheme [22, 23], which has later been fur-
thermore enhanced [8, 20, 9]. The first scheme supporting a general t, n threshold was proposed
again Gennaro [13], improved in [5] and finally in [12] (that has been our starting point). A
parallel approach has been taken by Lindell et al. in [21].

1.2 Layout

After a high-level presentation of the protocol and some properties inSection 2, we will present
our protocol for the ECDSA digital signature in Section 3, then in Section 4 we will present the
variant for the EdDSA digital signature, and finally we will state our security claims and draw
some conclusions in Section 5. For the sake of completeness we provide some appendixes on
various techniques and cryptographic primitives used in the protocol.
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2 Protocol Overview

In this presentation we suppose a simple but realistic scenario with three actors following a 2-
out-of-3 policy, but it can easily be generalized to more actors and a more general thresholds.
The three actors that we consider are:

• A: the Custodian, which is assumed to be always online.

• B: the Recovery Server, which is assumed to be online once for the setup, then only to
perform signatures in case of key loss.

• C: the Client, which is not known and online at the beginning but only later on. Note that
a pair Custodian - Recovery Server can easily support multiple clients that may enroll at
different times.

The scheme comprises four phases:

• a Preliminary Phase, during which the Recovery Server performs its setup and communi-
cates its parameters to the Custodian;

• an Enrollment Phase when the Client comes online and sets up its own parameters syn-
chronizing with the Custodian;

• an Signature Phase where Client and Custodian collaborate online to produce a new sig-
nature;

• a Recovery Phase that takes place after the Client or the Custodian has lost its private
parameters and is therefore unable to perform the Ordinary Signature Phase: the Recovery
Server is brought back online, it synchronizes itself with the surviving party and thereafter
can substitute the missing party in the Signature Phase.

2.1 Keys and Derivation

In the Enrollment Phase it is created a public key that corresponds to the signatures that will
be created in the Signature Phase using the secret parameters created by Client and Custodian.
Implicitly there is a corresponding private key that generates equivalent signatures, but it is
never created and cannot be created unless at least two parties collude sharing their secrets.

The secret parameters obtained in the Enrollment Phase can be utilized directly to sign
messages and transactions, or they can be used to derive deterministically other key pairs. For
example in Bitcoin it is good practice to always use fresh addresses, that correspond to different
keys (e.g. with BIP32 [30]).

For this purpose it is sufficient that A and C agree on a (public) derivation index i, then,
using a common secret d computed during the Enrollment Phase, they can independently derive
other secret parameters that can be used in the Signature Phases. Note that the derived secrets
correspond to a new public, and that the derivation can also be compound, that is, more keys
can be derived from a derived key.

2.2 Mnemonic

The Recovery Phase requires to bring the Recovery Server back online, and afterwards to create
a new wallet with a fresh enrollment and then move all the assets to this new wallet, therefore
it can become quite inconvenient and/or expensive to perform. So, in order to minimize the
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occasions in which this drastic measure is necessary, alongside the protocol we propose a sub-
protocol to generate a mnemonic (a la BIP39 [27]) from the secret parameters of a user (usually
the Client) and to restore these parameters using the mnemonic.

In order to reduce the length of the mnemonic some shared secrets and public parameters
are omitted in favor of only few checksum bits. When restoring private information from the
mnemonic the other active user (usually the Custodian) will send these common information and
its correctness will be verified using the checksum.

3 Threshold Multi-Party ECDSA

This version of the protocol derives directly from the scheme of Gennaro and Goldfeder [12], and
produces signatures fully compatible with the ECDSA standard [1, 18], that is the Elliptic-Curve
version of DSA [19]. ECDSA is used in many cryptocurrencies, including the most widely known
and widespread: Bitcoin [25] and Ethereum [6].

The scheme comprises four phases: Preliminary Phase, Enrollment Phase, Signature Phase
and Recovery Phase; for each of them we report the actors involved as well as the input/output
values, specifying which values are to be kept private, which one are private and included in the
mnemonic, and which ones are publicly known and can therefore be stored without particular
precautions.

The protocol employs internal checks to protect against errors, attackers and malicious actors.
Therefore it is possible that the procedure fails before completion and the actors must abort (and
possibly start over).

3.1 ECDSA - Assumptions

The group G is the group of points of an elliptic curve, and the generator g is the base point B.
The curve has prime order q, so the scalars are in Zq.

3.2 ECDSA - Preliminary Phase

The Preliminary Phase occurs just once, at the beginning of the protocol. The actors involved
in this phase are the custodian A and the recovery server B. This is the workflow of this phase:

1. B generates a non-ephemeral private/public key pair (skB , pkB) associated to some encryp-
tion scheme with plaintext space Zq.

2. B sends the public key pkB to A.

Note 1. The encryption algorithm which generates the key pair (skB , pkB) is unrelated to
the signature algorithm.

Note 2. B keeps the private key skB secret and never reveals it to other actors.
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3.3 ECDSA - Enrollment Phase

This phase occurs whenever a new client C contacts A. The actors involved in this phase are A
and C.

Player A

Input: pkB

Output: BIP39: wA; Private: pA, qA, recBA, recCB , d; Public: ΓA, NC ,ΓC , y.

Player C

Input: −

Output: BIP39: wC ; Private: pC , qC , recBA, recCB , d; Public: ΓC , NA,ΓA, y.

The workflow of this phase is:

1. Recovery public key communication:

a) A sends pkB to C.

2. Secrets generation:

a) A generates Paillier public key (NA,ΓA) and secret key (pA, qA).
C generates Paillier public key (NC ,ΓC) and secret key (pC , qC)

b) A picks randomly uA ∈ Zq.
C picks randomly uC ∈ Zq.

c) A computes [KGCA,KGDA] := Com(uAB).
C computes [KGCC ,KGDC ] := Com(uCB).

d) A sends KGCA to C.
C sends KGCC to A.

e) A sends (NA,ΓA) to C.
C sends (NC ,ΓC) to A.

f) A sends KGDA to C.
C sends KGDC to A.

g) A gets yC := Ver(KGCC ,KGDC).
C gets yA := Ver(KGCA,KGDA).

h) A picks randomly mA ∈ Zq.
C picks randomly mC ∈ Zq.

i) A sets fA(x) := uA +mAx mod q, and σAB := fA(1), σAA := fA(2), σAC := fA(3).
C sets fC(x) := uC +mCx mod q, and σCB := fC(1), σCA := fC(2), σCC := fC(3).

j) A picks randomly σBA ∈ Zq.
C picks randomly σBC ∈ Zq.

k) A encrypts σAB and σBA with the public key pkB , getting recAB .
C encrypts σCB and σBC with the public key pkB , getting recCB .
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3. Shards communication:

a) A sends σAC , mAB, σBAB, σABB, recAB to C.
C sends σCA, mCB, σBCB, σCBB, recCB to A.

4. Private key generation:

a) A computes xA := σAA + σBA + σCA.
C computes xC := σAC + σBC + σCC .

5. ZK proofs:

a) A proves in ZK that A knows xA using Schnorr’s protocol.
C proves in ZK that C knows xC using Schnorr’s protocol.

b) A proves to C that he knows pA, qA such that NA = pAqA using integer factorization
ZK Proof.
C proves to A that he knows pC , qC such that NC = pCqC using integer factorization
ZK Proof.

6. Public key generation and shares conversion:

a) A and C compute the public key y := yA + yB + yC where yB := 3(σBAB)− 2(σBCB)
and yrec := (σABB) + 2(σBAB)− (σBCB) + (σCBB).

b) A computes wA := 3xA.
C computes wC := −2xC .

c) A and C compute the common secret d := σBAσBCB.

Note 3. σBA = uB + 2mB , σBC = uB + 3mB =⇒ uB = 3σBA − 2σBC .

Note 4. XA := xAB and XC := xCB are public.

Note 5. Defining x := uA + uB + uC , we have that wA + wC = x and y = xB.

3.4 ECDSA - Signature Phase

Two actors P1 and P2 want to sign a message M .
Each actor Pi, for i ∈ {1, 2}, is supposed to know a secret wPi

∈ Zq and the public key y.
In the case of the usual signature between the custodian P1 = A and the client P2 = C,

everything needed has been computed during the “Enrollment Phase”.

Player P1

Input: M,wP1
,ΓP1

, pP1
, qP1

, NP2
,ΓP2

, y.

Output: BIP39: −; Private: −; Public: (r, s).
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Player P2

Input: M,wP2 ,ΓP2 , pP2 , qP2 , NP1 ,ΓP1 , y.

Output: BIP39: −; Private: −; Public: (r, s).

The workflow of this phase is:

1. Commitment:

a) Each Pi picks randomly ki, γi ∈ Zq, computes Γi = γiB and [∆i, Di] := Com(Γi).

b) P1 sends ∆1 to P2

P2 sends ∆2 to P1.

2. Multiplicative to Additive Share Conversion:

a) Each Pi computes NPi
, λPi

, µPi
from ΓPi

, pPi
, qPi

, as shown in Note 18 of Appendix B.

b) P1 and P2 run MtA(k1, γ2): P1 gets α12 and P2 gets β12
(such that k1 · γ2 = α12 + β12).
P2 and P1 run MtA(k2, γ1): P2 gets α21 and P1 gets β21
(such that k2 · γ1 = α21 + β21).

c) P1 sets δ1 := k1 · γ1 + α12 + β21.
P2 sets δ2 := k2 · γ2 + α21 + β12.

d) P1 and P2 run MtAwc(k1, wP2): P1 gets µ12 and P2 gets ν12
(such that k1 · wP2

= µ12 + ν12).
P2 and P1 run MtAwc(k2, wP1

): P2 gets µ21 and P1 gets ν21
(such that k2 · wP1

= µ21 + ν21).

e) P1 sets σ1 := k1 · wP1 + µ12 + ν21.
P2 sets σ2 := k2 · wP2 + µ21 + ν12.

3. Communication:

a) P1 sends δ1 to P2.
P2 sends δ2 to P1.

b) P1 and P2 compute δ := δ1 + δ2 and δ−1 mod q.

4. Decommitment:

a) P1 sends D1 to P2.
P2 sends D2 to P1.

b) P1 gets Γ2 := Ver(∆2, D2).
P2 gets Γ1 := Ver(∆1, D1).

c) Each Pi proves in ZK that Pi knows γi such that γiB = Γi, using Schnorr’s protocol.

d) P1 and P2 compute R := δ−1(Γ1 + Γ2) and r := Rx, where Rx is the first component
of the point R = (Rx, Ry).
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Note 6. R = k−1B, where k := k1 + k2.

5. Signature and verification:

a) Each Pi computes m := H(M).

b) Each Pi computes si := mki + rσi.

c) Each Pi randomly picks li, ρi ∈ Zq, computes Vi := siR+ liB, Ai := ρiB and

[∆̂i, D̂i] = Com(Vi, Ai).

d) P1 sends ∆̂1 to P2.
P2 sends ∆̂2 to P1.

e) P1 sends D̂1 to P2.
P2 sends D̂2 to P1.

f) P1 gets [V2, A2] := Ver(∆̂2, D̂2).
P2 gets [V1, A1] := Ver(∆̂1, D̂1).

g) Each Pi proves in ZK that Pi knows si, li, ρi such that Vi = siR + liB and Ai = ρiB
(if a ZK proof fails, the protocol aborts).

h) P1 and P2 compute V := −mB − ry + V1 + V2 and A := A1 +A2.

i) Each Pi computes Ui := ρiV and Ti := liA, and [∆̃i, D̃i] := Com(Ui, Ti).

j) P1 sends ∆̃1 to P2.
P2 sends ∆̃2 to P1.

k) P1 sends D̃1 to P2.
P2 sends D̃2 to P1.

l) P1 gets [U2, T2] := Ver(∆̃2, D̃2).
P2 gets [U1, T1] := Ver(∆̃1, D̃1).

m) If T1 + T2 6= U1 + U2 the protocol aborts.

n) P1 sends s1 to P2.
P2 sends s2 to P1.

o) P1 and P2 compute s := s1 + s2.

p) If (r, s) is not a valid signature, the players abort, otherwise they accept and end the
protocol.

3.5 ECDSA - Key Derivation

In order to perform the key derivation, we need a derivation index i and the common secret d.
We use the following substitutions:

• A and C perform key derivation:

wA 7→ wiA := wA + 3H(d‖i)

wC 7→ wiC := wC − 2H(d‖i)

y 7→ yi := y +H(d‖i)B.
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• A and B perform key derivation:

wA 7→ wiA := wA −H(d‖i)

wB 7→ wiB := wB + 2H(d‖i)

y 7→ yi := y +H(d‖i)B.

• C and B perform key derivation:

wC 7→ wiC := wC −
1

2
H(d‖i)

wB 7→ wiB := wB +
3

2
H(d‖i)

y 7→ yi := y +H(d‖i)B.

Note 7. xi := wiA + wiC = x+H(d‖i), see Note 5.

3.6 ECDSA - Mnemonic

We use a BIP39-like mnemonic encoding (see Appendix A) to save the secret values. In particular
the mnemonic for the client C (which is the party most susceptible to key loss) is computed at
the end of the Enrollment Phase as:

mnemo = BIP39 encode(wC , (d‖y‖recAB‖recCB))

Later on, C can re-initialize itself from its mnemonic mnemo with the help of A:

• First A sends C the values d, y, recAB , recCB

• then C retrieves its secret:

wC = BIP39 decode(mnemo, 256, d, y, recAB , recCB)

• If the recovery is successful C generates another pair of Paillier keys performing the steps
2.a, 2.e and 5.b of the Enrollment Phase (A may generate new keys or re-use the old ones).

Once this steps are successfully completed C can resume its normal operation.

3.7 ECDSA - Recovery Phase

Player B

Input: M, skB

Output: BIP39: −; Private: −; Public: (r, s).

We consider the case in which one of the following actors is not able to sign.
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Player A

Input: M,y, recAB , recCB ,ΓA, pA, qA

Output: BIP39: −; Private: −; Public: (r, s).

Player C

Input: M,y, recAB , recCB ,ΓC , pC , qC

Output: BIP39: −; Private: −; Public: (r, s).

We consider now the case in which the client C is not able to sign, while A and B want to
sign.

The workflow of this case is:

1. Communication:

a) A contacts B, which comes back online.

b) A sends y and (recAB , recCB) to B.

2. Paillier keys generation and exchange:

a) A computes NA := pAqA.
B generates Paillier public key (NB ,ΓB) and secret key (pB , qB).

b) A sends (NA,ΓA) to B.
B sends (NB ,ΓB) to A.

c) A proves to B that he knows pA, qA such that NA = pAqA using integer factorization
ZK Proof.
B proves to A that he knows pB , qB such that NB = pBqB using integer factorization
ZK Proof.

3. B’s secrets generation:

a) B decrypts recAB and recCB with its private key skB , getting σAB , σBA, σCB , σBC .

b) B computes xB := σAB + 2σBA − σBC + σCB .

c) B proves in ZK that B knows xB using Schnorr’s protocol.

4. Signature:

a) A computes w̃A := − 1
3wA.

b) B computes wB := 2xB .

c) A and B perform the “Signature Phase” (see Section 3.4) as P1 and P2 respectively,
where the A uses w̃A in place of wA.

We consider now the case in which the custodian A is not able to sign, while C and B want
to sign.

The workflow of this case is:

1. Communication:
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a) C contacts B, which comes back online.

b) C sends y and (recAB , recCB) to B.

2. Paillier keys generation and exchange:

a) C computes NC := pCqC .
B generates Paillier public key (NB ,ΓB) and secret key (pB , qB).

b) C sends (NC ,ΓC) to B.
B sends (NB ,ΓB) to C.

c) C proves to B that he knows pC , qC such that NC = pCqC using integer factorization
ZK Proof.
B proves to C that he knows pB , qB such that NB = pBqB using integer factorization
ZK Proof.

3. B’s secrets generation:

a) B decrypts recAB and recCB with its private key skB , getting σAB , σBA, σCB , σBC .

b) B computes xB := σAB + 2σBA − σBC + σCB .

c) B proves in ZK that B knows xB using Schnorr’s protocol.

4. Signature:

a) C computes w̃C := 1
4wC .

b) B computes wB := 3
2xB .

c) C and B perform the “Signature Phase” (see Section 3.4) as P1 and P2 respectively,
where the C uses w̃C in place of wC .

Note 8. Notation: the fractions represent an element of Zq, that may be computed
as the multiplication of the numerator by the inverse of the denominator modulo q.
That is let D−1 be the unique element of Zq such that D · D−1 mod q = 1, then
N
D := N ·D−1 mod q. Similarly the minus sign indicates the opposite element in Zq:
−x := q − x mod q

Note 9. The recovery server B can calculate the common secret d = σBAσBCB decrypting,
using its private key, the values recAB and recCB from which it obtains σBA and σBC . Since
the generator B of the group is publicly known, B can compute the value d and perform the
signature also for any derived key.

4 EdDSA version

This is a variant of the protocol explained in the previous section where the same structure is
adapted in order to produce signatures indistinguishable from EdDSA signatures [4] (instead of
ECDSA signatures). EdDSA is a variant of the Schnorr signature scheme [29, ?] using Twisted
Edwards curves [3, 17]. The main cryptocurrencies that use EdDSA are Stellar [24], Libra [2],
and Tezos [16], and notably none of them use a multi-sig protocol.

The scheme still comprises four phases: Preliminary Phase, Enrollment Phase, Signature
Phase and Recovery Phase; for each of them we report the actors involved as well as the in-
put/output values, specifying which values are to be kept private, which one are private and
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included in the mnemonic, and which ones are publicly known and can therefore be stored with-
out particular precautions.

The protocol employs internal checks to protect against errors, attackers and malicious actors.
Therefore it is possible that the procedure fails before completion and the actors must abort (and
possibly start over).

4.1 EdDSA - Assumptions

The curve has order 2cq, where q is prime and the scalars are in Zq. The group G is the group
generated by the base point B.

4.2 EdDSA - Preliminary Phase

The Preliminary Phase occurs just once, at the beginning of the protocol. The actors involved
in this phase are the custodian A and the recovery server B. This is the workflow of this phase:

1. B generates a non-ephemeral private/public key pair (skB , pkB) associated to some encryp-
tion scheme with plaintext space Zq.

2. B sends the public key pkB to A.

Note 10. The encryption algorithm which generates the key pair (skB , pkB) is unrelated to
the signature algorithm.

Note 11. B keeps the private key skB secret and never reveals it to other actors.

4.3 EdDSA - Enrollment Phase

This phase occurs whenever a new client C contacts A. The actors involved in this phase are A
and C.

Player A

Input: pkB

Output: BIP39: wA, r
′
A; Private: recAB , recCB , rec

′
AB , rec

′
CB ,R, d; Public: A.

Player C

Input: −

Output: BIP39: wC , r
′
C ; Private: recAB , recCB , rec

′
AB , rec

′
CB ,R, d; Public: A.

The workflow of this phase is:

1. Recovery public key communication:

a) A sends pkB to C.
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2. Secrets generation:

a) A picks randomly uA ∈ Zq.
C picks randomly uC ∈ Zq.

b) A computes [KGCA,KGDA] := Com(uAB).
C computes [KGCC ,KGDC ] := Com(uCB).

c) A sends KGCA to C.
C sends KGCC to A.

d) A sends KGDA to C.
C sends KGDC to A.

e) A gets yC := Ver(KGCC ,KGDC).
C gets yA := Ver(KGCA,KGDA).

f) A picks randomly mA ∈ Zq.
C picks randomly mC ∈ Zq.

g) A sets fA(x) := uA +mAx mod q, and σAB := fA(1), σAA := fA(2), σAC := fA(3).
C sets fC(x) := uC +mCx mod q, and σCB := fC(1), σCA := fC(2), σCC := fC(3).

h) A picks randomly σBA ∈ Zq.
C picks randomly σBC ∈ Zq.

i) A encrypts σAB and σBA with the public key pkB , getting recAB .
C encrypts σCB and σBC with the public key pkB , getting recCB .

3. Shards communication:

a) A sends σAC , mAB, σBAB, σABB, recAB to C.
C sends σCA, mCB, σBCB, σCBB, recCB to A.

4. Private key generation:

a) A computes xA := σAA + σBA + σCA.
C computes xC := σAC + σBC + σCC .

5. Second secret generation:

a) Steps 2, 3 and 4 are repeated (except passages 2.a and 2.e) so that:
A has also elements x′A, rec

′
AB , rec

′
CB ;

C has also elements x′C , rec
′
AB , rec

′
CB

6. ZK proofs:

a) A proves in ZK that A knows xA, x
′
A using Schnorr’s protocol.

C proves in ZK that C knows xC , x
′
C using Schnorr’s protocol.

7. Public key generation and shares conversion:

a) A and C compute the public key A := yA+yB+yC , where yB := 3(σBAB)−2(σBCB),
and yrec := (σABB) + 2(σBAB)− (σBCB) + (σCBB).

b) A computes wA := 3xA and r′A := 3x′A.
C computes wC := −2xC and r′C := −2x′C .

c) A and C compute R := y′A + y′B + y′C = (r′A + r′C)B, where y′B = 3σ′BAB − 2σ′BCB,
and y′rec := (σ′ABB) + 2(σ′BAB)− (σ′BCB) + (σ′CBB).

d) A and C compute the common secret d := σBAσBCB.
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Note 12. Defining x := uA +uB +uC and x′ := u′A +u′B +u′C , we have that wA +wC = x,
y = xB and r′A + r′C = x′.

4.4 EdDSA - Signature Phase

Two actors P1 and P2 want to sign a message M .
Each actor Pi is supposed to know two secrets wPi , r

′
Pi
∈ Zq and the public key A.

In the case of the usual signature between the custodian P1 = A and the client P2 = C,
everything needed has been computed during the “Enrollment Phase”.

Player P1

Input: M,wP1
, r′P1

,A,R.

Output: BIP39: −; Private: −; Public: (R,S).

Player P2

Input: M,wP2
, r′P1

,A,R.

Output: BIP39: −; Private: −; Public: (R,S).

The workflow of this phase is:

1. Signature generation - component 1 (R):

a) Each Pi computes Ri := r′iH(R‖M)B
b) P1 computes [KGCP1

,KGDP1
] := Com(R1).

P2 computes [KGCP2
,KGDP2

] := Com(R2).

c) P1 sends KGCP1 to P2.
P2 sends KGCP2

to P1.

d) P1 sends KGDP1 to P2.
P2 sends KGDP2 to P1.

e) P1 gets R2 := Ver(KGCP2
,KGDP2

).
P2 gets R1 := Ver(KGCP1 ,KGDP1).

f) P1 and P2 compute R := R1 +R2.

Note 13. R = (r′1 + r′2)H(R‖M)B is the first component of the signature.

2. Signature generation - component 2 (S):

a) Each Pi computes Si := r′iH(R‖M) + wiH(R‖A‖M)

b) P1 computes [KGC′P1
,KGD′P1

] := Com(S1).
P2 computes [KGC′P2

,KGD′P2
] := Com(S2).

c) P1 sends KGC′P1
to P2.

P2 sends KGC′P2
to P1.
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d) P1 sends KGD′P1
to P2.

P2 sends KGD′P2
to P1.

e) P1 gets S2 := Ver(KGC′P2
,KGD′P2

).
P2 gets S1 := Ver(KGC′P1

,KGD′P1
).

f) P1 and P2 compute S := S1 + S2.

Note 14. S = (r′1+r′2)H(R‖M)+(w1+w2)H(R‖A‖M) is the second component
of the signature.

3. Signature check:

a) P1 and P2 check that 2cSB = 2cR + 2cH(R‖A‖M)A. If a check is not true, the
protocol aborts, otherwise the signature is (R,S).

4.5 EdDSA - Key derivation

In order to perform the key derivation, we need a derivation index i and a common secret d.
We use the following substitutions:

• A and C perform key derivation:

wA 7→ wiA := wA + 3H(d‖i)

r′A 7→ r′A
i

:= rA + 3H(d‖i)
wC 7→ wiC := wC − 2H(d‖i)
r′C 7→ r′C

i
:= rC − 2H(d‖i)

A 7→ Ai := A+H(d‖i)B.
R 7→ Ri := R+H(d‖i)B.

• A and B perform key derivation:

wA 7→ wiA := wA −H(d‖i)

rA 7→ r′A
i

:= r′A −H(d‖i)
wB 7→ wiB := wB + 2H(d‖i)
r′B 7→ r′B

i
:= r′B + 2H(d‖i)

A 7→ Ai := y +H(d‖i)B.
R 7→ Ri := y +H(d‖i)B.

• C and B perform key derivation:

wC 7→ wiC := wC −
1

2
H(d‖i)

rC 7→ r′C
i

:= r′C −
1

2
H(d‖i)

wB 7→ wiB := wB +
3

2
H(d‖i)

rB 7→ r′B
i

:= r′B +
3

2
H(d‖i)

A 7→ Ai := A+H(d‖i)B.
R 7→ Ri := R+H(d‖i)B.
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Note 15. xi := 3siA − 2siC = x+H(d‖i), x′i := 3r′
i
A − 2r′

i
C = x+H(d‖i), see Note 12.

4.6 EdDSA - Mnemonic

We use the BIP39 mnemonic encoding (see Appendix A) to save the secret values. In particular
the mnemonic for the client C (which is the party most susceptible to key loss) is computed at
the end of the Enrollment Phase as:

mnemo = BIP39 encode((wC , r
′
C , (d‖A‖R‖recAB‖recCB‖rec′AB‖rec′CB))

Later on, C can re-initialize itself from its mnemonic mnemo with the help of A:

• First A sends C the values d,A,R, recAB , recCB , rec′AB , rec′CB

• then C retrieves its secret:

wC = BIP39 decode(mnemo, 512, d,A,R, recAB , recCB , rec′AB , rec′CB)

Once this steps are successfully completed C can resume its normal operation.

Note 16. In BIP39 decode function the length 512 is the maximum bit representation of
the secrets.

4.7 EdDSA - Recovery Phase

Player B

Input: M, skB

Output: BIP39: −; Private: −; Public: (R,S).

We consider the case in which one of the following actors is not able to sign.

Player A

Input: M,A,R, recAB , recCB , rec′AB , rec′CB

Output: BIP39: −; Private: −; Public: (R,S).

Player C

Input: M,A,R, recAB , recCB , rec′AB , rec′CB

Output: BIP39: −; Private: −; Public: (R,S).

We consider now the case in which the client C is not able to sign, while A and B want to
sign.

The workflow of this case is:
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1. Communication:

a) A contacts B, which comes back online.

b) A sends A, R, recAB , recCB , rec′AB , rec′CB to B.

2. B’s key creation:

a) B decrypts recAB , recCB , rec′AB and rec′CB with its private key skB , getting:
σAB , σBA, σCB , σBC , σ′AB , σ′BA, σ′CB , σ′BC .

b) B computes:

• xB := σAB + 2σBA − σBC + σCB ;

• x′B := σ′AB + 2σ′BA − σ′BC + σ′CB .

c) B proves in ZK that B knows xB , x
′
B using Schnorr’s protocol.

3. Signature:

a) A computes w̃A := − 1
3wA and r̃′A := − 1

3rA
′.

B computes wB := 2xB and r′B := 2x′B .

b) A and B perform the “Signature Phase” (see 4.4) as P1 and P2 respectively, where
the A uses w̃A and r̃′A in place of wA and r′A

We consider now the case in which the custodian A is not able to sign, while C and B want
to sign.

The workflow of this case is:

1. Communication:

a) C contacts B, which comes back online.

b) C sends A, R, recAB , recCB , rec′AB , rec′CB to B.

2. B’s key creation:

a) B decrypts recAB , recCB , rec′AB and rec′CB with its private key skB , getting:
σAB , σBA, σCB , σBC , σ′AB , σ′BA, σ′CB , σ′BC .

b) B computes:

• xB := σAB + 2σBA − σBC + σCB ;

• x′B := σ′AB + 2σ′BA − σ′BC + σ′CB .

c) B proves in ZK that B knows xB , x
′
B using Schnorr’s protocol.

3. Signature:

a) C computes w̃C := 1
4wC and r̃′C := 1

4rC
′.

b) B computes wB := 3
2xB . and r′B := 3

2x
′
B .

c) C and B perform the “Signature Phase” (see 4.4) as P1 and P2 respectively, where
the C uses w̃C and r̃′C in place of wC and r′C .
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Note 17. The recovery server B can calculate the common secret d = σBAσBCB decrypting,
using its private key, the values recAB and recCB from which it obtains σBA and σBC . Since
the generator B of the group is publicly known, B can compute the value d and perform the
signature also for any derived key.

5 Security Claims and Conclusion

Both protocols presented in the previous sections are provable secure in the standard model,
although the actual proofs are omitted here, they will be included in a more complete future
version. More precisely the signatures are proven unforgeable following the standard notion
of existential unforgeability against chosen message attacks (EU-CMA) as introduced in [15],
adapted for a threshold multi-party scheme.

Definition 5.1 (Existential Unforgeability of a 2-out-of-3 Threshold Signature Protocol). Con-
sider a malicious Probabilistic Polynomial Time (PPT) adversary A who participates in a 2-
out-of-3 threshold signature protocol S = (KeyGen,Sig,Ver) for the creation of a public key pk
and in creation of signatures on adaptively chosen messages of its choosing. Let M be the set
of messages queried by A. The protocol is said to be existentially unforgeable if there is no such
PPT adversary A that can produce a signature on a message m /∈ M , except with negligible
probability.

The main result is the following:

Theorem 5.1. Assuming that:

• the original signature scheme is unforgeable;

• the Strong RSA Assumption holds;

• there is a non-malleable commitment scheme;

• the DDH Assumption holds;

then our threshold scheme is unforgeable.

The design of these schemes aims to solve the real-world problem of the custody of digital
assets, in particular cryptocurrencies, adding resiliency to key loss without sacrificing control
and decentralization.
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A BIP39-like Mnemonic

The BIP39 mnemonic encoding allows to save binary data as a list of common words that can
be memorized and later used to reconstruct the original bytes.

The protocol uses this method to save critical private data in order to avoid the Recovery
Signature Phase as long as the mnemonic is available. Normally it is the client C that takes
advantage of this enhancement (since it is the party most susceptible to key loss), but the same
steps may be performed by the custodian A.

We now describe the functions BIP39 encode and BIP39 decode that can be used by an Actor
P to retrieve its secret values and resume normal operativity.

A.1 BIP39 encode

It is the function that computes the mnemonic mnemo, with input a primary secret sec and a
complementary secret comp.

• Let I := H Indexes(sec) be a list of unique indexes Ij pseudo-randomly generated from the
secret sec, and denote with zi the i-th bit of the binary representation of a generic element
z, and denote with #z the bit-length of z.

• C constructs a sequence of l bits b := (bi)i=0...l−1 where

bi :=

{
seci 0 ≤ i < #z

H(comp)Ii−#z
#z ≤ i < l

• P computes the checksum bits check := Checksum(b) and the list of words

mnemo := Mnemonic(b, check)

A.2 BIP39 decode

It is the function that retrieves a primary secret sec of length ` and checks the validity of the
complementary secret comp, with input a mnemonic mnemo a complementary secret comp, and
the bit-length of the secret `.

• The bits encoded by mnemo are retrieved and separated from the checksum:

(b, check) = Retrieve(mnemo)

• The validity of the checksum is verified: check = Checksum(b)

• The first ` bits of b are extracted as the value sec and the set of indexes I := H Indexes(sec)
is computed

• The integrity of comp is checked verifying that

bi = H(comp)Ii−`
` ≤ i < l

• if all the checks are successful, the algorithm outputs sec, otherwise it fails.
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B Paillier encryption scheme

In this appendix we describe the additively homomorphic encryption scheme of Paillier [26].

B.1 Key Generation

This function generates the public and private keys for the encryption scheme.

1. Choose two random safe primes P and Q, different and having the same length.

2. Compute N := PQ and λ := lcm(P − 1, Q− 1).

3. Pick Γ ∈ Z∗N2 such that its order is a multiple of N : as explained in [26] it is enough to
pick randomly Γ and check whether the following inverse exists µ := (L(Γλ mod N2))−1

(mod N), where the function L is the integer division quotient L(u) := (u− 1)/N .

4. Return the public key (N,Γ) and the private key (P,Q, λ, µ).

Note 18. Note that just by the knowledge of Γ, P,Q, we can compute all the other values
of the key:

N = PQ, λ = lcm(P − 1, Q− 1), µ = (L(Γλ mod N2))−1 (mod N)

B.2 Encryption

Given as input the public key (N,Γ) and a message m ∈ ZN , this function encrypts the message
m with the public key (N,Γ) in the following way:

1. Pick randomly r ∈ Z∗N .

2. Return the ciphertext c := ΓmrN (mod N2).

B.3 Decryption

Given as input the public key (N,Γ), the private key (λ, µ) and a ciphertext c ∈ Z∗N2 , this
function decrypts the ciphertext c with the private key (λ, µ) in the following way:

1. Return the plaintext m := L(cλ mod N2) · µ (mod N).

B.4 Homomorphic properties

Let E and D denote the encryption and decryption functions respectively.
Given two ciphertexts c1, c2 ∈ Z∗N2 , associated to the plaintexts m1,m2 ∈ ZN respectively,

i.e. c1 = E(m1) and c2 = E(m2), then we have that

c1 +E c2 := c1c2 (mod N2)

D(c1 +E c2) = m1 +m2 mod N.

Similarly, given a ciphertext c = E(m) and a number a ∈ ZN , we have that

a×E c := ca (mod N2)

D(a×E c) = am (mod N).
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C Commitments

In this appendix we describe the commitment system that we use in the protocol.
We assume to work on a group G.

C.1 Commitment function

Com

Input: g1, . . . , gn ∈ G

Output: C string, D string

1. Generates a random value R.

2. Transform (via bijection) each element gi into a sequence of bits zi.

3. Set C to be the hash of R‖z1‖ . . . ‖zn.

4. Set D := (R, z1, . . . , zn).

Note 19. If gi is a point of an elliptic curve, then a possible bijection is to take zi as the
concatenation of its two components.

C.2 Decommitment function

Ver

Input: C string, D string

Output: g1, . . . , gn ∈ G / false

1. Get the values R, z1, . . . , zn from the tuple D.

2. Set C ′ to be the hash of R‖z1‖ . . . ‖zn.

3. If C ′ 6= C return false.

4. Transform (via the bijection) each integer zi into the corresponding element gi.

5. Return g1, . . . , gn.
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D Feldman’s verifiable secret sharing protocol

In cryptography, a secret sharing scheme is verifiable if auxiliary information is included that
allows players to verify that their shares are consistent and define a unique secret. More formally,
verifiable secret sharing ensures that even if the dealer is malicious there is a well-defined secret
that the players can later reconstruct.

A VSS scheme is the protocol by Paul Feldman [10], which is based on Shamir’s secret sharing
scheme combined with any homomorphic encryption scheme.

D.1 Shamir’s SS

In order to share a secret s ∈ Zq so that at least t+ 1 shares are necessary to reconstruct it, the
dealer generates a random polynomial of degree t:

p(x) = s+ a1x+ a2x
2 + · · ·+ atx

t ∈ Zq[x]

(note that p(0) = s). The secret shares are the evaluations si := p(i) mod q.

D.2 Feldman’s VSS

It extends the Shamir’s SS protocol in the following way. We consider a group G with generator
g where the DLOG is (supposed to be) hard.

The dealer also publishes commitments to the coefficients of p:

• c0 := gs

• ci := gai for every i ∈ {1, . . . , t}

Using this auxiliary information, each player Pi can check its share si for consistency (i.e. that
si is actually p(i) mod q), by checking:

gsi =

t∏
j=0

ci
j

j = c0c
i
1 · · · ci

t

t .

D.3 Our case

In our case t = 1 and n = 3, so the whole VSS to share the secret s ∈ Zq becomes:

• The dealer picks randomly a1 ∈ Zq and considers the line p(x) = s+ a1x ∈ Zq[x].

• The dealer sends to the players s1 := p(1) mod q, s2 := p(2) mod q, and s3 := p(3)
mod q.

• The dealer publishes c0 := gs and c1 := ga1 .
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E Multiplicative to additive share conversion protocol

Assume that two actors Alice and Bob have multiplicative shares a, b ∈ Zq respectively of a
secret x = ab mod q. In this appendix we show a protocol that lets Alice an Bob to convert
their multiplicative shares into additive shares α, β ∈ Zq of x, i.e. such that x = α + β mod q.
This protocol is based on an additively homomorphic encryption scheme, like the one presented
in appendix B.

E.1 MtA (Multiplicative to Additive) share conversion protocol

Assumptions:

• q is a known prime.

• Alice has a secret a ∈ Zq.

• Bob has a secret b ∈ Zq.

• Alice is associated with a Paillier public key (N,Γ).
The encryption function associated will be denoted by EA(·).

• K is a public integer such that K > q and N > K2q.

MtA protocol:

1. Alice

• Sends cA := EA(a) to Bob.

• Proves in ZK that a < K via a range proof.

2. Bob

• Picks randomly β′ ∈ ZN .

• Computes cB := (b×E cA) +E EA(β′) via homomorphic properties.

• Sets β := −β′ mod q.

• Sends cB to Alice.

• Proves in ZK that b < K.

3. Alice

• Decrypts cB getting α′.

• Sets α := α′ mod q.
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E.2 MtAwc (Multiplicative to Additive with check) share conversion
protocol

Assumptions:

• q is a known prime.

• Alice has a secret a ∈ Zq.

• Bob has a secret b ∈ Zq.

• Alice is associated with a Paillier public key (N,Γ).
The encryption function associated will be denoted by EA(·).

• K is a public integer such that K > q and N > K2q.

• There is a public group G of order q and generator g.

• B := gb is public.

MtAwc protocol:

1. Alice

• Sends cA := EA(a) to Bob.

• Proves in ZK that a < K via a range proof.

2. Bob

• Picks randomly β′ ∈ ZN .

• Computes cB := (b×E cA) +E EA(β′) via homomorphic properties.

• Sets β := −β′ mod q.

• Sends cB to Alice.

• Proves in ZK that b < K.

• Proves in ZK that he knows b, β′ such that B = gb and cB = (b×E cA) +E EA(β′).

3. Alice

• Decrypts cB getting α′.

• Sets α := α′ mod q.

Note 20. Both for the MtA and MtAwc protocols we require that K ∼ q3 and that N ∼ q8.
Indeed, a typical choice of parameters is q 256-bit long, K 768-bit long and N 2048-bit long.
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F Zero-Knowledge proofs

A Zero-Knowledge (ZK) proof is an interactive protocol between a prover who wants to convince
a verifier that an object belongs to a language (proof of membership) or that he knows a secret
information (proof of knowledge), without revealing anything about his secret knowledge.

Note 21. The following Zero-Knowledge proofs are described within the context of a group
G, with generator g, in multiplicative notation.

F.1 Proof of knowledge of integer factorization

This proof has been taken from [28].
Given a public number n, the prover wants to prove to a verifier that he knows some prime

numbers whose product is n, without giving any information about this decomposition.
Let us consider:

• n the public integer, whose number of digits in its binary expansion is denoted by |n|.

• k the security parameter.

• A, B, l, K integers which depend a priori on k and |n|.

• z1, . . . , zK random elements of Z∗n.

A round of the proof consists in the following steps:

a) The prover picks randomly an integer r ∈ {0, . . . , A− 1}.

b) The prover computes xi := zri (mod n) for i = 1, . . . ,K and sends them to the verifier.

c) The verifier picks randomly an integer e ∈ {0, . . . , B − 1} and sends it to the prover.

d) The prover computes y := r + (n− φ(n)) · e and sends it to the verifier.

e) The verifier checks that 0 ≤ y < A and that zy−nei = xi (mod n) for i = 1, . . . ,K.

A complete proof consists in repeating l times the elementary round.
In order to guarantee the soundness, the completeness and the security of the protocol, the

choice of the parameters must respect the following constraints:

• l · logB = θ(k).

• (n− φ(n))lB < A < n.

• K ≈ k.

Note 22. The protocol works only if n does not have small prime factors.

Note 23. The zi can be pseudo-randomly generated from a seed of the form h(n, i) where
h is a hash function.
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Note 24. The xi can be precomputed.

Note 25. It is possible to optimize the protocol by replacing x1, . . . , xK by their hash value
H(x1, . . . , xK), where H is an appropriate hash function.

F.2 ZK proofs for the MtA protocol

These proofs have been taken from [12].
In these proofs the Verifier uses the following auxiliary data:

• An RSA modulus Ñ , which is the product of two safe primes P̃ = 2p̃+ 1 and Q̃ = 2q̃ + 1
with p̃, q̃ primes.

• Two values h1, h2 ∈ Z∗
Ñ

.

Note 26. The initialization protocol must be augmented with each actor generating those
values, together with a proof that they are of the correct form (see [11]).

F.2.1 Range Proof

This proof is run in both MtA and MtAwc protocols, when Alice wants to prove to Bob that
a < K.

In that context we have that:

• The Prover (Alice) is provided with:

– A Paillier public key (N,Γ) ∈ Z× Z∗N2 .

– A value m ∈ Zq (which is the a in MtA(wc) protocol).

– The ciphertext c = ΓmrN (mod N2) ∈ ZN2 with respect to Paillier’s scheme, where
r ∈ Z∗N is the random quantity generated during the encryption.

• The Verifier (Bob), at the end of the protocol, is convinced that m ∈ [−q3, q3].
This is consistent with the choice of picking K ∼ q3.

Here we describe the protocol:

1. The Prover picks randomly α ∈ Zq3 , β ∈ Z∗N , γ ∈ Zq3Ñ , ρ ∈ ZqÑ .

The Prover computes z := hm1 h
ρ
2 (mod Ñ), u := ΓαβN (mod N2), w := hα1h

γ
2 (mod Ñ).

The Prover sends z, u, w to the Verifier.

2. The Verifier picks randomly e ∈ Zq.
The Verifier sends e to the Prover.

3. The Prover computes s := reβ (mod N), s1 := em+ α, s2 := eρ+ γ.
The Prover sends s, s1, s2 to the Verifier.

4. The Verifier checks that s1 ≤ q3, u = Γs1sNc−e (mod N2), hs11 h
s2
2 z
−e = w (mod Ñ).
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F.2.2 Respondent ZK Proof for MtA

This proof is run in MtA protocol, when Bob wants to prove to Alice that b < K.
In that context we have that:

• Everyone knows:

– The Paillier public key (N,Γ) ∈ Z× Z∗N2 associated to the Verifier (Alice).

– The ciphertext c1 ∈ ZN2 (corresponding to cA).

– The ciphertext c2 ∈ ZN2 (corresponding to cB).

• The Prover (Bob) is provided with:

– A value x ∈ Zq (corresponding to b).

– A value y ∈ ZN (corresponding to β′).

– The ciphertext c2 = cx1ΓyrN (mod N2) ∈ ZN2 with respect to Paillier’s scheme, where
r ∈ Z∗N is the random quantity generated during the encryption of y.

• The Verifier (Alice), at the end of the protocol, is convinced that x ∈ [−q3, q3] and that
the Prover (Bob) knows x ∈ Zq, y ∈ ZN , r ∈ Z∗N such that c2 = cx1ΓyrN (mod N2).

Here we describe the protocol:

1. The Prover picks randomly α ∈ Zq3 , ρ ∈ ZqÑ , ρ′ ∈ Zq3Ñ , σ ∈ ZqÑ , β ∈ Z∗N , γ ∈ Z∗N ,
τ ∈ ZqÑ .

The Prover computes z := hx1h
ρ
2 (mod Ñ), z′ := hα1h

ρ′

2 (mod Ñ), t := hy1h
σ
2 (mod Ñ),

v := cα1 ΓγβN (mod N2), w := hγ1h
τ
2 (mod Ñ).

The Prover sends z, z′, t, v, w to the Verifier.

2. The Verifier picks randomly e ∈ Zq and sends it to the Prover.

3. The Prover computes s := reβ (mod N), s1 := ex + α, s2 := eρ + ρ′, t1 := ey + γ,
t2 := eσ + τ .
The Prover sends s, s1, s2, t1, t2 to the Verifier.

4. The Verifier checks that s1 ≤ q3, hs11 h
s2
2 = zez′ (mod Ñ), ht11 h

t2
2 = tew (mod Ñ),

cs11 s
NΓt1 = ce2v (mod N2).

F.2.3 Respondent ZK Proof for MtAwc

This proof is run in MtAwc protocol, when Bob wants to prove to Alice that b < K and that he
knows b, β′ such that B = gb and cB = (b×E cA) +E EA(β′).

In that context we have that:

• Everyone knows:

– The Paillier public key (N,Γ) ∈ Z× Z∗N2 associated to the Verifier (Alice).

– The ciphertext c1 ∈ ZN2 (corresponding to cA).

– The ciphertext c2 ∈ ZN2 (corresponding to cB).

– A value X ∈ G (corresponding to gb in multiplicative notation or to bB in additive
notation).
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• The Prover (Bob) is provided with:

– A value x ∈ Zq (corresponding to b).

– A value y ∈ ZN (corresponding to β′).

– The ciphertext c2 = cx1ΓyrN (mod N2) ∈ ZN2 with respect to Paillier’s scheme, where
r ∈ Z∗N is the random quantity generated during the encryption.

• The Verifier (Alice), at the end of the protocol, is convinced that x ∈ [−q3, q3] and that
the Prover (Bob) knows x ∈ Zq, y ∈ ZN , r ∈ Z∗N such that c2 = cx1ΓyrN (mod N2) and
X = gx.

Here we describe the protocol:

1. The Prover picks randomly α ∈ Zq3 , ρ ∈ ZqÑ , ρ′ ∈ Zq3Ñ , σ ∈ ZqÑ , β ∈ Z∗N , γ ∈ Z∗N ,
τ ∈ ZqÑ .

The Prover computes u := gα, z := hx1h
ρ
2 (mod Ñ), z′ := hα1h

ρ′

2 (mod Ñ), t := hy1h
σ
2

(mod Ñ), v := cα1 ΓγβN (mod N2), w := hγ1h
τ
2 (mod Ñ).

The Prover sends u, z, z′, t, v, w to the Verifier.

2. The Verifier picks randomly e ∈ Zq and sends it to the Prover.

3. The Prover computes s := reβ (mod N), s1 := ex + α, s2 := eρ + ρ′, t1 := ey + γ,
t2 := eσ + τ .
The Prover sends s, s1, s2, t1, t2 to the Verifier.

4. The Verifier checks that s1 ≤ q3, gs1 = Xeu ∈ G, hs11 h
s2
2 = zez′ (mod Ñ), ht11 h

t2
2 = tew

(mod Ñ), cs11 s
NΓt1 = ce2v (mod N2).

F.3 Schnorr’s proofs

This proof has been taken from [29].

schnorr proof

Input: Prover, Verifier, q ∈ Z, G group, g ∈ G, x ∈ Zq, y ∈ G

Output: true/false

We are in the context of a cyclic group G of cardinality q, with generator g. The Prover
knows x such that y = gx. The Verifier knows y. The Prover wants to prove to the Verifier that
he knows such an x.

1. The Prover picks randomly r ∈ Zq.
The Prover computes t := gr.
The Prover sends t to the Verifier.

2. The Verifier picks randomly c ∈ Zq.
The Verifier sends c to the Prover.

3. The Prover computes s := r + cx.
The Prover sends s to the Verifier.

4. The Verifier checks that gs = tyc.
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This proof has been taken from [12].

schnorr proof2

Input: Prover, Verifier, q ∈ Z, G group, g ∈ G, x1 ∈ Zq, x2 ∈ Zq, y1 ∈ G, y2 ∈ G

Output: true/false

We are in the context of a cyclic group G of cardinality q, with generator g. The Prover
knows x1, x2 such that y2 = yx1

1 gx2 . The Verifier knows y1, y2. The Prover wants to prove to the
Verifier that he knows such x1, x2.

1. The Prover picks randomly r1, r2 ∈ Zq.
The Prover computes t := y1

r1gr2 .
The Prover sends t to the Verifier.

2. The Verifier picks randomly c ∈ Zq.
The Verifier sends c to the Prover.

3. The Prover computes s1 := r1 + cx1 (mod q), s2 := r2 + cx2 (mod q).
The Prover sends s1, s2 to the Verifier.

4. The Verifier checks that y1
s1gs2 = ty2

c.
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