eSIDH: the revenge of the SIDH

Daniel Cervantes-Vázquez Eduardo Ochoa-Jiménez
Francisco Rodríguez-Henríquez

January 14, 2020

Abstract

The Supersingular Isogeny-based Diffie-Hellman key exchange protocol (SIDH) was introduced by Jao and De Feo in 2011. SIDH operates on supersingular elliptic curves defined over \mathbb{F}_{p^2}, where p is a large prime number of the form $p = 4^{e_A}3^{e_B} - 1$, where e_A, e_B are positive integers such that $4^{e_A} \approx 3^{e_B}$. In this paper, a variant of the SIDH protocol that we dubbed extended SIDH (eSIDH) is presented. The eSIDH variant makes use of primes of the form, $p = 4^{e_A} \ell_B^{e_B} \ell_C^{e_C} f - 1$. Here ℓ_B, ℓ_C are two small prime numbers; f is a cofactor; and e_A, e_B, and e_C are positive integers such that $4^{e_A} \approx \ell_B^{e_B} \ell_C^{e_C}$. We show that for many relevant instantiations of the SIDH protocol, this new family of primes enjoys a faster field arithmetic than the one associated to traditional SIDH primes. Furthermore, the proposed eSIDH protocol preserves the length and format of SIDH private/public keys, and its richer opportunities for parallelism yields a noticeable speedup factor when implemented on multi-core platforms. Using a single-core SIDH p_{751} implementation as a baseline, a parallel eSIDH p_{765} instantiation yields an acceleration factor of 1.05, 1.30 and 1.41, when implemented on $k = \{1, 2, 3\}$-core processors. In addition, eSIDH p_{765} yields an acceleration factor of 1.050, 1.160 and 1.162, when both protocols are implemented on $k = \{1, 2, 3\}$-core processors. To our knowledge this work reports the first multi-core implementation of SIDH.

1 Introduction

In 2011, Jao and De Feo proposed the Supersingular Isogeny-based Diffie-Hellman key exchange protocol (SIDH) [14] (see also [11]). Thanks to the high complexity of its underlying hard problem, SIDH provides key sizes comparable to classical public-key cryptosystems currently in use. Consequently, SIDH has been studied and implemented in an impressive number of recent publications [8, 10, 17, 13, 21, 6]. Moreover, the Supersingular Isogeny Key Encapsulation (SIKE) protocol [2], which can be seen as a descendant of SIDH, is one of the candidate schemes still under consideration within the second round of the NIST post-quantum cryptography standardization project [18].

The key exchange SIKE protocol operates on supersingular elliptic curves defined over \mathbb{F}_{p^2}, where p is a large prime number of the form $p = 4^{e_A}3^{e_B} - 1$. During the SIDH

\footnote{The SIDH prime originally proposed in [11] has the very general form, $p = \ell_A^{e_A} \ell_B^{e_B} f \pm 1$ with ℓ_A, ℓ_B}
Key Generation and Key Agreement phases, Alice and Bob must compute degree-4^{e_A} and degree-3^{e_B} isogenies, respectively. Hence, by choosing the exponents e_A and e_B such that $4^{e_A} \approx 3^{e_B}$, one can assure that Alice and Bob will invest about the same computational expenses when executing SIDH. Moreover, this design choice also guarantees a healthy security balance due to the fact that the security guarantees of SIDH lie in the intractability of the Computational Supersingular Isogeny (CSSI) problem. Solving CSSI implies computing \mathbb{F}_{p^2}-rational isogenies of degrees 4^{e_A} and 3^{e_B} between pairs of supersingular elliptic curves defined over a quadratic extension field \mathbb{F}_{p^2}. Following recent analyses of the classical and quantum security of SIDH and SIKE [1, 9, 15], the authors of [2] endorsed the primes SIKEp434, SIKEp503, SIKEp610 and SIKEp751 (named so to indicate the bit-size of the underlying prime field characteristic) to meet the security requirements of NIST’s categories 1, 2, 3 and 5, respectively.

In this paper, a variant of the SIDH protocol that allows us to accelerate Bob’s computations on single and multi-core platforms without modifying the formats and lengths of its private/public keys is presented. The SIDH variant proposed in this paper is dubbed Extended-SIDH (eSIDH) because of the pair of primes assigned to Bob for performing his isogeny computations. The eSIDH domain parameters are a supersingular elliptic curve E/\mathbb{F}_{p^2}, where p is a prime of the form,

$$p = 4^{e_A}3^{e_B}f - 1.$$

Here ℓ_B, ℓ_C are two small prime numbers and f is a cofactor that for efficiency reasons is usually selected as a power of two. Finally, e_A, e_B and e_C are positive integers such that $4^{e_A} \approx \ell_B^{e_B} \ell_C^{e_C}$.

Just as it would happen in SIKE, in eSIDH Alice limits herself to compute degree-4^{e_A} isogenies. This naturally implies that Alice can still take advantage of the cheap cost associated to the fast degree-4 isogeny arithmetic. On the other hand, Bob is now responsible of computing degree-$\ell_B^{e_B} \ell_C^{e_C}$ isogenies. At first glance it would appear that Bob’s task in eSIDH has just become more expensive than what used to be his computational role on a traditional SIDH scheme. Nonetheless, we will show in this paper that Bob’s eSIDH tasks offer several advantages such as a faster underlying field arithmetic, and novel opportunities for exploiting the parallelism associated to his new computational responsibilities.

Indeed, the rich abundance of the family of primes given in Eq. 1 produces for certain instantiations of eSIDH a faster field arithmetic by taking advantage of friendlier Montgomery-friendly primes [3, 10]. Our experimental results show that the computational advantages of eSIDH more than well compensate the extra calculations demanded by this variant. For example, using a single-core SIKE prime p_{751} implementation as a small primes and f a cofactor. Later, for efficiency reasons the authors of [8] proposed to use SIDH primes of the form, $p = 2^{e_A}3^{e_B} - 1$, which were endorsed in SIKE [2]. For the sake of simplicity in this paper it is assumed that SIKE primes have the form, $p = 4^{e_A}3^{e_B} - 1$.

Footnotes:

1 Pronounced it spelling out all the letters. An early version of this paper was presented in [4] and [19, Chapter11]

2 In the eSIDH instantiations described in this paper we always choose $\ell_B = 3, \ell_C = 5$.
baseline, a comparable eSIDH prime \(p_{765} \) instantiation yields an acceleration factor of 1.05, 1.30 and 1.41, when implemented on \(k = \{1, 2, 3\} \)-core processors.

As of today, relatively few works have attempted to exploit the rich opportunities that SIDH main computations can offer for parallel computations. In this direction, we are only aware of the works reported in \[17, 13\], where explicit efforts for parallelizing the computations of the SIDH protocol were attempted and/or exploited. Using a similar approach as the one followed in \[17, 13\], in this paper we report that with respect to a sequential implementation, a two-core and a three-core parallel implementation of the SIDH \(p_{751} \) instantiation yields a speedup factor of 1.118 and 1.216, respectively. To our knowledge this work reports the first multi-core implementation of SIDH. In addition when both protocols are implemented on \(k = \{1, 2, 3\} \)-core processors, eSIDH \(p_{765} \) yields an acceleration factor of 1.050, 1.160 and 1.162 over SIDH.

The remainder of this paper is organized as follows. In §2 a summary of the SIDH protocol and associated implementations aspects is presented. In §3 three different approaches for implementing the eSIDH protocol are presented. In §4 several relevant eSIDH implementations aspects on single-core and multi-core processors are discussed. We draw our concluding remarks in §5.

2 Preliminaries

In this section, a brief summary of the SIDH protocol and its optimal strategies is given. For more in-depth details see \[11, 2\].
2.1 The SIDH protocol

The most popular key exchange SIDH protocol instantiation operates on supersingular elliptic curves defined over \mathbb{F}_{p^2}, where p is a large prime number of the form $p = 4^{e_A}3^{e_B} - 1$. The exponents e_A and e_B are typically chosen such that $4^{e_A} \approx 3^{e_B}$. Let us define the constants $r_A = 4^{e_A}$ and $r_B = 3^{e_B}$. The public parameters of SIDH are given by a supersingular base curve E_0, and the basis points $P_A, Q_A, P_B, Q_B \in E_0$, such that $\langle P_A, Q_A \rangle = E_0[r_A]$ and $\langle P_B, Q_B \rangle = E_0[r_B]$. An overview of the SIDH protocol as it was proposed in [11] is depicted in Figure 1.

During the initial Key Generation phase, Alice chooses a random integer $m_A \in [1, r_A - 1]$, which acts as her secret key. Thereafter, Alice computes a secret key $R_A = P_A + [m_A]Q_A$ and a degree-4^{e_A} isogeny public curve E_A such that $\phi_A : E_0 \rightarrow E_A$ with Ker$(\phi_A) = \langle R_A \rangle$. Likewise, Bob chooses a secret random integer $m_B \in [1, r_B - 1]$. Then, Bob computes a secret key $R_B = P_B + [m_B]Q_B$ and a degree-3e_B isogeny public curve E_B such that $\phi_B : E_0 \rightarrow E_B$ with Ker$(\phi_B) = \langle R_B \rangle$. These computations complete the Key Generation phase.

During the SIDH second phase, known as the Key Agreement phase, Alice sends Bob the tuple $[E_A, \phi_A(P_B), \phi_A(Q_B)]$, whereas Bob sends Alice the tuple $[E_B, \phi_B(P_A), \phi_B(Q_A)]$. Alice uses Bob’s information to recover the image of her secret key under Bob’s curve E_B, as $\phi_B(R_A) = \phi_B(P_A) + [m_A]\phi_B(Q_A)$. Then Alice computes the curve E_{BA} such that there is a degree-4^{e_A} isogeny $\phi_{BA} : E_B \rightarrow E_{BA}$ with Ker$(\phi_{BA}) = \langle \phi_B(R_A) \rangle$. Similarly, Bob’s recovers the image of his secret key under Alice’s curve E_A by computing $\phi_A(R_B) = \phi_A(P_B) + [m_B]\phi_A(Q_B)$. Bob then computes the isogenous curve E_{AB} such that there is a degree-3e_B isogeny $\phi_{AB} : E_A \rightarrow E_{AB}$ with Ker$(\phi_{AB}) = \langle \phi_A(R_B) \rangle$. This ends the SIDH protocol. Alice and Bob can now create a shared secret by computing the j-invariant of their respective curves, using the fact that $E_{BA} \cong E_{AB}$ implies $j(E_{BA}) = j(E_{AB})$.

Remark 1. The most prominent SIDH computational tasks include the computation of large degree isogenies and the evaluation of elliptic curve points in those isogenies. Another large operation of this scheme is the computation of four three-point scalar multiplications. For a typical software or hardware implementation of SIDH, the isogeny computations and associated point evaluations on one hand, along with the three-point scalar multiplications on the other hand, may take 70-80% and 20-30% of the overall protocol’s computational cost, respectively.

Remark 2. In order to compute the points $R_A, \phi_B(R_A)$ (resp. $R_B, \phi_A(R_B)$), Alice (resp. Bob) must perform two three-point scalar multiplication procedures using a right-to-left Montgomery ladder algorithm [4][10]. This kind of Montgomery ladder has a per-step cost of one point addition (xADD) and one point doubling (xDBL), which are usually performed in the projective space $\mathbb{F}_{p^1}^1$. Noticing that for current state-of-the-art SIDH implementations the costs of xDBL and xADD are about the same, one can assume that

4State-of-the-art SIDH implementations use differential point arithmetic on Montgomery curves. Consequently, Alice and Bob evaluate and transmit three points each, namely, $x(P_A), x(Q_A), x(P_A - Q_A)$; and $x(P_B), x(Q_B)$, and $x(P_B - Q_B)$, respectively [5].
the per-step computational cost of the three-point Montgomery ladder is essentially that of two xDBL operations. It follows that the cost of computing R_A or $\phi_B(R_A)$ (resp. R_B or $\phi_A(R_B)$) is of $4e_A$ (resp. $2\log_2(3)e_B$) xDBL operations.

2.2 Optimal strategies for SIDH

Let E be a supersingular elliptic curve defined over the quadratic extension field \mathbb{F}_{p^2}. Given a point $R_0 \in E$, let $S = (R_0)$ be an order-ℓ^e subgroup of $E[\ell^e]$. Then there exists an isogeny $\phi : E \to E'$ (with both ϕ and E' defined over \mathbb{F}_{p^2}) having kernel S. The isogeny ϕ is unique up to isomorphism. Given E and S, an isogeny ϕ with kernel S and the corresponding equation for E', can be computed as a sequence of degree-ℓ isogenies using Vélu-like formulas and scalar multiplications by ℓ such as the ones discussed in [7, 5]. The optimal computation of large smooth-degree isogenies was presented and solved in [11].

In order to efficiently compute a degree-ℓ^e isogeny, it was shown in [11] that one can apply balanced or optimal strategies for traversing a weighted directed graph, which is represented in this paper as a right triangular lattice Δ_e having $\frac{e(e+1)}{2}$ points distributed in e columns and rows (See Figure 2a). A leaf is defined as the most bottom point in a given column of the lattice. The vertexes of the graph represent elliptic curve points and its vertical and horizontal edges have as associated weight p_ℓ and q_ℓ, defined as the cost of performing one scalar multiplication by ℓ and one degree-ℓ isogeny, respectively. At the beginning of the isogeny computation, only the point R_0 of order ℓ^e is known. The goal of the isogeny construction/evaluation computation is to obtain one by one, all the leaves in Δ_e until the farthest right one, R_{e-1}, has been calculated. Then, $\phi : E \to E'$ can be obtained by simply computing a degree-ℓ isogeny with kernel R_{e-1}.

Optimal strategies as defined in [11] exploit the fact that a triangle Δ_e can be optimally and recursively decomposed into two sub-triangles Δ_h and Δ_{e-h} as shown in Figure 2b. Let us denote as Δ^h_e the design decision of splitting a triangle Δ_e at row h. Then, the sequential cost of walking through the triangle Δ_e using the cut Δ^h_e is given as,

$$C(\Delta^h_e) = C(\Delta_h) + C(\Delta_{e-h}) + (e-h) \cdot q_\ell + h \cdot p_\ell.$$

We say that Δ^h_e is optimal if $C(\Delta^h_e)$ is minimal among all Δ^h_e for $h \in [1, e-1]$. Applying this strategy recursively leads to a procedure that computes a degree-ℓ^e isogeny at a cost of approximately $\frac{e}{2} \log_2 e$ scalar multiplications by ℓ, $\frac{e}{2} \log_2 e$ degree-ℓ isogeny evaluations, and e constructions of degree-ℓ isogenous curves.

Remark 3. Let us assume that a degree-ℓ^e isogeny $\phi : E \to E'$ has been constructed using the procedure just described. Then given a point $P \in E$, its image $\phi(P) \in E'$ can be found by performing the composition of e degree-ℓ isogeny evaluations. As a way of illustration, the computation of the image of the point R_{BC} under Bob’s isogeny $\phi_B(\cdot)$ is depicted in Figure 3 as the top horizontal segment of the triangular lattice going from

\footnote{Note that we depart from the tradition that would represent the weighted directed graph Δ_e as a triangular equilateral lattice between the x-axis and the lines $y = \sqrt{3}x$ and $y = -\sqrt{3}(x - e - 1)$ (cf. [11]).}
Figure 2: Subfigure (a) shows a triangular lattice used to compute a degree-ℓ^e isogeny $\phi : E \to E'$. The kernel of ϕ is the subgroup $\langle R_0 \rangle$, where $R_0 \in E$ is an order-ℓ^e elliptic curve point. Using an optimal SIDH strategy as in [11], a triangular lattice Δ_e is processed by splitting it into two sub-triangles as shown in Subfigure (b). After applying this splitting strategy recursively, the cost of computing ϕ drops to approximately $e^{2 + \log_2 e}$ scalar multiplications by ℓ, $e^{2 + \log_2 e}$ degree-ℓ isogeny evaluations, and e constructions of degree-ℓ isogenous curves.

the vertex R_{BC} to the vertex $\phi_B(R_{BC})$. The cost of this operation is of e_B degree-ℓ_B isogeny evaluations.

3 The extended SIDH (eSIDH) Protocol

The extended SIDH (eSIDH) Protocol operates on supersingular elliptic curves defined over \mathbb{F}_{p^2}, where p is a large prime number of the form $p = 4^{e_A} \ell_B^{e_B} \ell_C^{e_C} - 1$. The exponents e_A, e_B, and e_C are chosen so that $4^{e_A} \approx \ell_B^{e_B} \ell_C^{e_C}$. The eSIDH protocol flow is quite similar to the one of a traditional SIDH as described in §2.1. Alice must still compute degree-4^{e_A} isogenies, but now Bob is responsible for computing degree-$\ell_B^{e_B}$ isogenies.

In this section, three different approaches for computing the eSIDH protocol are presented. We start in §3.1 with the description of a simple naive eSIDH approach that is relatively expensive and offers little opportunities for exploiting parallelism. In §3.2 an eSIDH approach especially designed for exploiting parallelism opportunities is presented. Then, §3.3 presents a more economical eSIDH variant for single-core implementations, whose savings come from conveniently invoking the Chinese Remainder Theorem (CRT).

Table 1 shows the estimated scalar multiplication expenses incurred by SIDH and the three eSIDH instantiations discussed in this section. All the costs are given in number of \timesDBL operations.

6We do not account for isogeny computations, because the computational cost associated to this task

Table 1: Let $\lambda = \lceil \log_2(p) \rceil$ be the bit-length of the eSIDH prime p. This table reports the approximate number of xDBL operations processed by the SIDH protocol of [11] compared against the three eSIDH variants discussed in this section (for the experimental clock cycle cost of xDBL see Table 3).

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Single Core processor</th>
<th>Two-Core processor</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIDH [11]</td>
<td>$\frac{16}{4}$</td>
<td>$\frac{16}{4}$</td>
</tr>
<tr>
<td>Naive §3.1</td>
<td>$\frac{16}{4}$</td>
<td>$\frac{16}{4}$</td>
</tr>
<tr>
<td>Parallel §3.2</td>
<td>$\frac{16}{4}$</td>
<td>$\frac{16}{4}$</td>
</tr>
<tr>
<td>CRT-based §3.3</td>
<td>$\frac{16}{4}$</td>
<td>$\frac{16}{4}$</td>
</tr>
</tbody>
</table>

yields faster computational timings than the traditional SIDH protocol. In the case of two-core implementations, the parallel eSIDH described in §3.2, is significantly faster than the SIDH implementation of [2] and any other eSIDH instantiation discussed here.

3.1 A naive approach for computing eSIDH

Mimicking his role in SIDH, in a naive eSIDH instantiation Bob can first choose a basis for $(P_{BC}, Q_{BC}) = E[\ell_B \cdot \ell_C]$. Thereafter, Bob computes his secret point as $R_{BC} = P_{BC} + [m_{BC}]Q_{BC}$ followed by the computation of a degree-$\ell_B \ell_C$ isogeny using an optimal strategy à la SIDH as shown in Figure 3.

Alice’s eSIDH computational expenses are exactly the same as in SIDH. In the case of Bob, we stress that the computational expense of computing his eSIDH secret point R_{BC} as defined above, is about the same of computing Bob’s SIDH secret point R_B as given in §2.1.

Figure 3 depicts an optimal strategy procedure for computing Bob’s degree-$\ell_B \ell_C$ isogeny. The computational cost of this isogeny is of about $\frac{\ell_B}{2} \log_2 \ell_B$, $\frac{\ell_C}{2} \log_2 \ell_C$ scalar multiplications by ℓ_B and ℓ_C, $\frac{\ell_B}{2} \log_2 \ell_B$ degree-ℓ_B and $\frac{\ell_C}{2} \log_2 \ell_C$ degree-ℓ_C isogeny evaluations, and ℓ_B and ℓ_C constructions of degree-ℓ_B and degree-ℓ_C isogenous curves, respectively.

This computational expense is nearly the same as the one required by Alice for computing a degree-4^a isogeny, using the optimal strategies described in §2.2 and Figure 2.

There seems to be no obvious way of parallelizing the main computation of this naive eSIDH instantiation. In the following two subsections, two eSIDH instantiations more amenable for parallelization are described.

3.2 A parallel approach for computing eSIDH

As mentioned before, eSIDH offers rich opportunities for exploiting its inherent parallelism. In this subsection an eSIDH instantiation specifically designed for the concurrent computation of this protocol’s scalar multiplication operations will be presented.
Computing an \(\ell_B^e \ell_C^e\)-isogeny \(\phi_{BC} = \phi_C \circ \phi_B\)

\[
R_{BC} \xrightarrow{\phi_B} \phi_B(R_{BC})
\]

\[
\begin{align*}
&\phi_C \circ \phi_B(R_{BC}) \\
& &\{\text{Computing an } \ell_C^e\text{-isogeny } \phi_C\} \\
&\phi_B \circ \phi_C \circ \phi_B(R_{BC}) \\
& &\{\text{Computing an } \ell_B^e\text{-isogeny } \phi_B\}
\end{align*}
\]

Figure 3: Overview of an strategy for computing a degree-\(\ell_B^e \ell_C^e\) isogeny. Each isogeny \(\phi_B\) and \(\phi_C\) can be computed using a traditional SIDH strategy as in [11]. The kernel of \(\phi_B\) is the subgroup \(\langle [\ell_C^e] R_{BC} \rangle\), and the kernel of \(\phi_C\) is the subgroup \(\langle \phi_B(R_{BC}) \rangle\).

As before, let \(\lambda = \floor{\log_2(p)}\) be the bit-length of the eSIDH prime \(p = 4^e A_{\ell_B^e \ell_C^e} - 1\). For the sake of compactness let us define \(r_B = \ell_B^e\) and \(r_C = \ell_C^e\). Rather than defining Bob’s secret point \(R_{BC}\) as in the previous subsection, Bob has now two secret points that he can calculate by choosing two pairs of bases such that \(\langle P_B, Q_B \rangle = E[r_B]\) and \(\langle P_C, Q_C \rangle = E[r_C]\). Afterwards, Bob randomly chooses two integers \(m_B \in [1, r_B - 1]\) and \(m_C \in [1, r_C - 1]\) to compute his secret points as,

\[
R_B = P_B + [m_B] Q_B; \quad R_C = P_C + [m_C] Q_C.
\]

(2)

Now, by picking \(\ell_B, \ell_C, e_B\) and \(e_C\) such that \(\log_2(\ell_B)r_B \approx \log_2(\ell_C)r_C\), it follows that the cost of computing \(R_B\) is of about \(\frac{2\lambda}{4}\) xDBL operations (cf. remark 2), which is nearly the same cost of computing \(R_C\), and about half of the cost of computing Alice’s secret point \(R_A\). Furthermore, the calculations of Bob’s secret points \(R_B\) and \(R_C\) are fully independent. Therefore, one can compute them in parallel on multi-core platforms. Moreover, the isogeny \(\phi_{BC} = \phi_C \circ \phi_B\) can now be determined without performing the multiplication by \(r_C\) depicted in Figure 3. This computational saving comes from the facts that \(\gcd(r_B, r_C) = 1\) and that \(R_B, R_C\) are points of order \(r_B\) and \(r_C\), respectively. Hence as shown in Figure 4, \(R_B\) and \(\phi_B(R_C)\) can serve to generate the kernels of the isogenies \(\phi_B\) and \(\phi_C\), respectively. This observation yields a significant saving of about \(\frac{1}{4}\) xDBL operations.

3.2.1 Reducing the public-key size of the parallel instantiation of eSIDH

Seemingly, an important drawback of using two secret points for Bob is that in the Key Agreement phase, this design decision forces Bob to know the images of his public points
Computing an $\ell_B^\phi \ell_C^\phi$-isogeny $\phi_{BC} = \phi_C \circ \phi_B$

Figure 4: Overview of a strategy to compute an $\ell_B^\phi \ell_C^\phi$-isogeny, which exploits parallelism by defining two secret points R_B and R_C for Bob. Each isogeny ϕ_B and ϕ_C can be computed using a traditional SIDH strategy as in [11]. The kernel of ϕ_B is the subgroup $\langle R_B \rangle$, and the kernel of ϕ_C is the subgroup $\langle \phi_B(R_C) \rangle$.

P_B, Q_B, P_C and Q_C, all of them evaluated under Alice’s degree-4^{e_A} isogeny ϕ_A. Sending these four points implies an increment on the data to be transferred from Alice to Bob. This in turn implies an increment on Alice’s computational load since now, she would need to find the isogeny images of four points (instead of two as in the original SIDH).

Alternatively, one can reduce the eSIDH public-key size at the same time that Alice’s extra work is prevented. This can be done by defining two auxiliary public points that while codifying Bob’s public points P_B, Q_B, P_C and Q_C, provide an efficient way to recover them. Let us re-define Bob’s public points as $S = P_B + P_C$ and $T = Q_B + Q_C$. This implies that,

\[
[r_C]S = [r_B]P_C, \quad [r_C]S = [r_C]P_B, \quad [r_B]T = [r_B]Q_C, \quad \text{and} \quad [r_C]T = [r_C]Q_B. \tag{3}
\]

Hence, given the points S, T, one can recover multiples of Bob’s original four public points by performing four scalar multiplications. Notice that all four of these scalar multiplications are fully independent. Nonetheless, we can do better as discussed below.

Remark 4. From the multiples $[r_C]P_B$ and $[r_C]Q_B$, one can recover the points P_B, Q_B, by multiplying them by the scalars r_C^{-1} mod r_B and r_B^{-1} mod r_C, respectively. However, it is easier to directly use $[r_C]P_B$ and $[r_C]Q_B$ to generate the point $R_B' = [r_C]P_B + [m_B][(r_C)]Q_B$. Provided that $gcd(r_C, r_B) = 1$, it follows that $R_B' = [r_C]R_B$. Thus, $\langle R_B' \rangle = \langle R_B \rangle$, which implies that the degree-r_C isogenies with kernels $\langle R_B' \rangle$ and $\langle R_B \rangle$,

In practice one uses differential point arithmetic on Montgomery curves. Hence, Alice would need to evaluate and transmit six points, namely, $x(P_B), x(Q_B), x(P_B - Q_B), x(P_C), x(Q_C)$, and $x(P_B - Q_B)$.
$R_A = P_A + [m_A]Q_A$\hspace{1cm}$R'_A = \phi_{BC}(P_A) + [m_A]\phi_{BC}(Q_A)$

$R_B = P_B + [m_B]Q_B$\hspace{1cm}$R'_B = [r_B](S + [m_B]T)$

$R_C = P_C + [m_C]Q_C$\hspace{1cm}$R'_C = [r_B](S + [m_C]T)$

Figure 5: Overview of an eSIDH parallel instantiation with Bob’s secret points computed in parallel. In the Key Generation phase $\text{Ker}(\phi_B) = \langle R_B \rangle$ and $\text{Ker}(\phi_C) = \langle \phi_B(R_C) \rangle$. In the Key Agreement phase $\text{Ker}(\phi'_B) = \langle R'_B \rangle$ and $\text{Ker}(\phi'_C) = \langle \phi'_B(R'_C) \rangle$.

are one and the same. Similarly, the point $R'_C = [r_B]P_C + [m_C][r_B]Q_C$, is sufficient to generate the degree-r_B isogeny with kernel $\langle R_C \rangle$.

The observation stated in Remark 4 along with the relations given in Eq. (3) suggest an approach where Bob can efficiently recover the points R'_B, R'_C, by the direct computation of,

$$R'_B = [r_C](S + [m_B]T) \quad \text{and} \quad R'_C = [r_B](S + [m_C]T). \quad (4)$$

Remark 5. Eq. (4) is useful during the eSIDH Key Agreement phase. For the eSIDH Key Generation phase, it results more efficient to compute the points R_B and R_C as discussed at the beginning of Subsection 3.2.

Figure 5 shows a general overview of the eSIDH parallel instantiation described in this subsection. Assuming that a multi-core platform is available for the execution of this eSIDH instantiation, most Bob’s scalar multiplications can be computed in parallel.

Remark 6. eSIDH security: Recall that $\gcd(r_B, r_C) = 1$ and $r_A \approx \log_2(\ell_B)r_B \cdot \log_2(\ell_C)r_C$. Given the points S and T, computing a degree-r_Br_C isogeny between E_0 and E_{BC} should have the same computational complexity as the problem of, given the points P_A and Q_A, finding a degree-r_A isogeny between E_0 and E_A. Furthermore, provided that $4^{r_A} \approx \ell_B^{r_B} \cdot \ell_C^{r_C}$, the heuristic polynomial time key recovery attacks presented in [20] do not appear to apply against eSIDH.
3.2.2 Computational cost of the eSIDH parallel instantiation

As in Table 1, the eSIDH required number of xDBL operations will be used as cost metric. We further assume that \(\log_2(\ell_B) r_B \approx \log_2(\ell_C) r_C \approx \frac{\lambda_B}{2} \approx \frac{\lambda_C}{4} \).

Note that the private/public key sizes of eSIDH are the same as the traditional SIDH protocol of [11]. Moreover, Alice’s isogeny computations are exactly the same for both protocols. Nevertheless, Bob can compute his two degree-\(e\) isogenies using the computational trick shown in Figure 4. This approach yields a saving of about \(\frac{2\lambda}{4}\) xDBL operations compared against the performance cost required by the SIDH strategy shown in Figure 2, without incurring in any extra computational overhead.

The scalar multiplications computational expenses of the parallel eSIDH variant are dispensed as discussed next. Let us consider the eSIDH instantiation depicted in Figure 5. Then, as in the traditional SIDH, Alice must perform two \(\frac{2\lambda}{4}\)-bit scalar multiplications that involve the computation of about \(\frac{2\lambda}{4}\) xDBL operations (cf. Remark 2). Moreover, during the Key Generation phase, Bob computes the points \(R_B\) and \(R_C\), by performing \(\frac{2\lambda}{4}\) and \(\frac{2\lambda}{4}\) xDBL operations for a single-core and two-core implementation, respectively. During the Key Agreement phase, Bob computes the points \(R'_B, R'_C\), by performing \(\frac{2\lambda}{4}\) and \(\frac{2\lambda}{4}\) xDBL operations for a single-core and two-core implementation, respectively.

Thus, the eSIDH combined scalar multiplication effort of Alice and Bob for a single-core and two-core implementation is of \(\frac{16\lambda}{4}\) and \(\frac{11\lambda}{4}\), respectively (see Table 1).

3.3 A CRT-based approach for computing eSIDH

Another instantiation of eSIDH can be constructed by taking advantage of the Chinese Remainder Theorem (CRT). As in [8, 2] let \(\lambda = \lceil\log_2(p)\rceil\) be the bit-length of the eSIDH prime \(p = 4^{\ell_B} \ell_B^{\ell_C} - 1\). For the sake of compactness let us define \(r_B = \ell_B^{\ell_C}\) and \(r_C = \ell_C^{\ell_B}\). A CRT-based approach for eSIDH can be computed as explained in the remainder of this subsection.

First choose a pair of random integers under the following restrictions. Pick randomly \(m_B \in [1, r_B]\) and \(m_C \in [1, r_C]\) such that, \(\gcd(m_B, r_C) = \gcd(m_C, r_B) = 1\). Then compute the following integers,

\[
\begin{align*}
\hat{m}_B &= m_B^{-1} \mod r_C; & \hat{m}_C &= m_C^{-1} \mod r_B; \\
\bar{m}_B &= m_B \cdot \hat{m}_B \mod r_B; & \bar{m}_C &= m_C \cdot \hat{m}_C \mod r_C; \\
mc &= m_B \cdot \bar{m}_B \cdot m_C \cdot \bar{m}_C \mod (r_B \cdot r_C).
\end{align*}
\]

From Eq. (5) it follows that \(m_{BC} \equiv \bar{m}_B \mod r_B\) and \(m_{BC} \equiv \bar{m}_C \mod r_C\).

For the execution of the eSIDH Key Generation phase the following two points are computed, \(R_B = P_B + \bar{m}_B Q_B\) and \(R_C = P_C + \bar{m}_C Q_C\). Thereafter, one can compute \(\phi_{BC}\) as shown in Figure 4 such that the kernel of \(\phi_B\) is generated by \(R_B\) and the kernel of \(\phi_C\) is generated by \(\phi_B(R_C)\). Since \(|m_B| \approx |m_C| \approx \frac{|m_{BC}|}{2}\), the combined cost of computing \(R_B\) and \(R_C\) is about the same as the cost of computing \(R_A\). As a side effect,

*The operator \(|\cdot|\) evaluates the bit-length of its operand.
note that these computations imply a saving of \(r_C \approx \frac{1}{4} \) xDBL operations corresponding to the left most vertical edge between the points \(R_C \) and \(R_B \) shown in Figure 4.

For the computation of the eSIDH Key Agreement phase as in §3.2.1, let us define the auxiliary public points \(S = P_B + P_C \) and \(T = Q_B + Q_C \). It turns out that the generators of the subgroups \(\langle R_B \rangle \) and \(\langle R_C \rangle \) can be recovered by invoking the CRT and Remark 4 applied on the integers given in Eq. 5.

Proposition 1. Let \(P_B, Q_B, P_C, Q_C, \tilde{m}_B, \tilde{m}_C, m_{BC}, R_B \) as \(R_C \) be defined as before, and fix \(S = P_B + P_C \) and \(T = Q_B + Q_C \). Then \([r_C]R_B = [r_C](S + [m_{BC}]T) \) and \([r_B]R_C = [r_B](S + [m_{BC}]T) \).

Proof. By straightforward substitution we get,

\[
[r_C](S + [m_{BC}]T) = [r_C](P_B + [m_{BC}]Q_B + [m_{BC}]Q_C) = [r_C](P_B + [m_{BC}](Q_B)) = [r_C](P_B + [\tilde{m}](Q_B)) = [r_C]R_B.
\]

Using an analogous procedure one can show that \([r_B]R_C = [r_B](S + [m_{BC}]T)\). \(\square \)

Using Proposition 1, one can recover the generator \(R'_B \) of the subgroup \(\text{Ker}(\phi'_B) \) and \(\phi'_B(R'_C) \), the generator of the subgroup \(\text{Ker}(\phi'_C) \). To this end, one can compute,

\[
R'_B = [r_C](\phi_A(S) + [m_{BC}]\phi_A(T)) = \phi_A([r_C]R_B);
\]

\[
R'_C = [r_B](\phi_A(S) + [m_{BC}]\phi(T)) = \phi_A([r_B]R_C).
\]

Nevertheless, these computations have a steep cost of \(10\lambda \) xDBL operations. Fortunately, there is an efficient way to reduce this expense.

Proposition 2. Fix \(R'_B = [r_C](\phi_A(S) + [m_{BC}]\phi_A(T)) = [r_C]R' \). The point \(\phi'_B(R') \) has order \(r_C \) and \(\phi'_B(R'_C) = \phi'_B(\phi_A(R_C)) \).

Proof. By virtue of Proposition 1, the order-\(r_B \) point \(R_B \) generates the kernel of the degree-\(r_B \) isogeny \(\phi'_B \), that is, \(\text{Ker}(\phi'_B) = \langle R'_B \rangle \). By straightforward substitution we get,

\[
R' = \phi_A(S + [m_{BC}]T) = \phi_A(P_B + [m_{BC}]Q_B + P_C + [m_{BC}]Q_C) = \phi_A(R_B + R_C).
\]

It follows that

\[
\phi'_B(R') = \phi'_B((\phi_A(R_B + R_C)) = \phi'_B(\phi_A(R_B) + \phi_A(R_C)) = \phi'_B((\phi_A(R_C)),
\]

which yields an order-\(r_C \) point. \(\square \)
As in §3.2.2 the eSIDH required number of xDBL operations will be used as cost metric, and we will assume that \(\log_2(\ell_B) r_B \approx \log_2(\ell_C) r_C \approx \frac{\lambda}{4} \). Also, as argued in §3.2.2, the private/public key sizes of eSIDH and Alice’s isogeny computations are exactly the same as in SIDH. Bob can compute his two degree-\(\ell_B \) and \(\ell_C \) isogenies using the computational trick shown in Figure 4, obtaining a saving of about \(\frac{8\lambda}{4} \) xDBL operations compared against SIDH.

The scalar multiplications computational expenses of the CRT-based eSIDH variant are dispensed as discussed next. Let us consider the eSIDH instantiation depicted in Figure 5. Then, as in the traditional SIDH, Alice must perform two \(\frac{2\lambda}{4} \)-bit scalar multiplications that involve the computation of about \(\frac{8\lambda}{4} \) xDBL operations (cf. Remark 2).

During the Key Generation phase, Bob computes the points \(R_B, R_C \), by performing \(\frac{4\lambda}{4} \) and \(\frac{2\lambda}{4} \) xDBL operations for a single-core and two-core implementation, respectively. During the Key Agreement phase, Bob computes the points \(R', R'_B \), by performing \(\frac{5\lambda}{4} \) xDBL operations for either a single-core or a two-core implementation.

Thus, the eSIDH combined scalar multiplication effort of Alice and Bob for a single-core and a two-core implementation is of \(\frac{15\lambda}{4} \) and \(\frac{13\lambda}{4} \), respectively (see Table 1).
SIKE primes as in \cite{2}. The eSIDH primes proposed in this paper are of the form $p = 2^{4223}3^{545} - 1$, where $N = \lceil \log_2(p) \rceil / 64$, and γ is the largest integer for that N such that $p \equiv -1 \pmod{2^{\gamma}64}$ holds.

<table>
<thead>
<tr>
<th>eSIDH primes proposed here</th>
<th>N</th>
<th>γ</th>
<th>SIKE primes as in \cite{2}</th>
<th>N</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_{434} = $2^{2223}3^{745} - 1$</td>
<td>7</td>
<td>3</td>
<td>p_{434} = $2^{2163}3^{137} - 1$</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>p_{508} = $2^{2258}3^{745}5^{57} - 1$</td>
<td>8</td>
<td>4</td>
<td>p_{503} = $2^{2503}3^{159} - 1$</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>p_{628} = $2^{3209}3^{445}5^{67} - 1$</td>
<td>10</td>
<td>5</td>
<td>p_{610} = $2^{3053}3^{192} - 1$</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>p_{751} = $2^{3913}1^{199}5^{81} - 1$</td>
<td>12</td>
<td>6</td>
<td>p_{751} = $2^{3723}2^{339} - 1$</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 2: Our selection of eSIDH primes matching the four security levels offered by the SIKE primes included in \cite{2}, where $N = \lceil \log_2(p) \rceil / 64$, and γ is the largest integer for that N such that $p \equiv -1 \pmod{2^{\gamma}64}$ holds.

4 Parameter selection and implementation aspects

4.1 The hunting for efficient eSIDH Primes

Let $N = \lceil \log_2(p) \rceil / w$ be the minimum number of 64-bit words needed to represent an eSIDH prime p. In this paper it is assumed $w = 64$. We say that a modulus p is γ-Montgomery-friendly if $p \equiv \pm 1 \pmod{2^{\gamma}w}$ for a positive integer γ \cite{2,16}. This property implies that $-p^{-1} \equiv \mp 1 \pmod{2^{\gamma}w}$, which is conveniently exploited to produce savings in the Montgomery’s REDC reduction algorithm \cite{3}.

SIKE uses primes of the form $p := 4^{e_A}3^{e_B} - 1$. There are at least two computer arithmetic reasons for this choice. One of them, is that this family of primes are Montgomery-friendly, which implies that they admit fast Montgomery Reduction \cite{10,3}. The second advantage is that there exist highly efficient formulas for computing degree-3 and degree-4 isogenies \cite{7,5}. The eSIDH primes proposed in this paper are of the form $p := 4^{e_A}\ell_B^{e_B} \ell_C^{e_C} f - 1$, which are much more flexible and abundant than the SIKE primes. Then, given some fixed values for N and the primes ℓ_B and ℓ_C, one searches for $N/2$-Montgomery-friendly primes (if they exist) by varying e_B, e_C and f. These friendlier Montgomery-friendly primes achieve a faster Montgomery reduction (see \cite{10} Algorithm 6) than the ones that could possibly be obtained from comparable SIKE primes.

Another important design aspect to be considered is that on Bob’s side, there exists a trade-off between the size of the base-primes ℓ_B and ℓ_C and their corresponding exponents e_B and e_C, respectively. The base-primes define the size of the step, whereas their exponents determine how many steps one must perform for isogeny evaluations and constructions. Depending on the exact choice of these parameters, one can make a few big steps or many small steps. Furthermore as discussed in \cite{3,2} in order to take full advantage of parallel computing and also for security reasons (cf. Remark 6), it is important to choose $\log_2(\ell_B)r_B \approx \log_2(\ell_C)r_C$.

For all the eSIDH instances considered in this paper, we use primes of the form $p = 4^{e_A}\ell_B^{e_B} \ell_C^{e_C} f - 1$, such that $2e_A \approx \log_2(\ell_B^{e_B} \ell_C^{e_C})$, and where e_A is chosen so that the security level offered by the SIKE primes as specified in \cite{2} is matched (see also \cite{1}). The cofactor $f = 2^k c$ is carefully selected so that p qualifies as an $N/2$-Montgomery-friendly prime (if at all possible). Table 2 shows our selection of four eSIDH primes matching the four security levels specified in \cite{2}. When searching for eSIDH primes with comparable security as the one offered by the p_{434} SIDH prime, the best choice that we were able to
Table 3: Timing performance of selected quadratic field arithmetic operations and isogeny evaluations and constructions. Timings are reported in clock cycles measured on a Skylake processor at 4.0GHz.

<table>
<thead>
<tr>
<th>Operation</th>
<th>P_{434}</th>
<th>P_{443}</th>
<th>P_{751}</th>
<th>P_{765}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction F_p</td>
<td>78</td>
<td>78</td>
<td>154</td>
<td>137</td>
</tr>
<tr>
<td>Mult F_{p^2}</td>
<td>466</td>
<td>467</td>
<td>1,029</td>
<td>977</td>
</tr>
<tr>
<td>Sqr F_{p^2}</td>
<td>349</td>
<td>349</td>
<td>780</td>
<td>716</td>
</tr>
<tr>
<td>Inv F_{p^2}</td>
<td>77,764</td>
<td>80,253</td>
<td>317,655</td>
<td>251,366</td>
</tr>
<tr>
<td>Doubling</td>
<td>2,961</td>
<td>2,920</td>
<td>6,186</td>
<td>5,845</td>
</tr>
<tr>
<td>4-IsoGen</td>
<td>1,793</td>
<td>1,758</td>
<td>3,691</td>
<td>3,442</td>
</tr>
<tr>
<td>4-IsoEval</td>
<td>3,955</td>
<td>3,921</td>
<td>8,407</td>
<td>7,972</td>
</tr>
<tr>
<td>Tripling</td>
<td>5,595</td>
<td>5,487</td>
<td>11,999</td>
<td>11,292</td>
</tr>
<tr>
<td>3-IsoGen</td>
<td>2,850</td>
<td>2,836</td>
<td>5,720</td>
<td>5,418</td>
</tr>
<tr>
<td>3-IsoEval</td>
<td>2,717</td>
<td>2,717</td>
<td>5,944</td>
<td>5,612</td>
</tr>
<tr>
<td>Quintupling</td>
<td>-</td>
<td>7,995</td>
<td>-</td>
<td>16,285</td>
</tr>
<tr>
<td>5-IsoGen</td>
<td>-</td>
<td>7,951</td>
<td>-</td>
<td>16,179</td>
</tr>
<tr>
<td>5-IsoEval</td>
<td>-</td>
<td>4,703</td>
<td>-</td>
<td>9,682</td>
</tr>
</tbody>
</table>

4.2 Results and discussion

In this subsection, a full implementation of the eSIDH protocol proposed in this work is presented. We mainly focus ourselves on the eSIDH parallel instantiation discussed in §3.2 and we use the SIDH implementation of [2] as a baseline to compare the acceleration factor achieved by the eSIDH scheme. Building on the techniques proposed in [13], we also report a multi-core implementation of the SIDH protocol. To the best of our knowledge this is the first reported software implementation of SIDH.\(^9\) Our two case studies targeted p_{434} and p_{751}, the smallest and largest SIKE primes that are included in the SIKE specification [2].

All the timings were measured using an Intel core i7-6700K processor with micro-architecture Skylake at 4.0 GHz. Using the Clang-3.9 compiler and the flags `-Ofast -fwrapv -fomit-frame-pointer -march=native -madx -mbmi2`.

4.2.1 Quadratic field arithmetic and isogeny computations

Table 3 presents a comparison of the field arithmetic costs associated to the SIKE primes p_{434} and p_{751} against the ones exhibit by the eSIDH primes p_{443} and p_{765}, respectively.

\(^9\) A reconfigurable hardware parallel version of SIDH was previously reported in [17].
Table 4: Performance comparison of the SIKE prime p_{434} against the eSIDH prime p_{443}. All timings are reported in 10^6 clock cycles measured on an Intel Skylake processor at 4.0 GHz.

<table>
<thead>
<tr>
<th>Phase</th>
<th>p_{434}</th>
<th>p_{443}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cores number</td>
<td>Cores number</td>
</tr>
<tr>
<td></td>
<td>1 2 3</td>
<td>1 2 3</td>
</tr>
<tr>
<td>Alice Key Generation</td>
<td>5.93 5.62 5.36</td>
<td>5.91 5.60 5.36</td>
</tr>
<tr>
<td>Bob Key Generation</td>
<td>6.54 6.20 5.88</td>
<td>6.53 5.03 4.54</td>
</tr>
<tr>
<td>Alice Key Agreement</td>
<td>4.80 4.49 4.22</td>
<td>4.78 4.48 4.22</td>
</tr>
<tr>
<td>Bob Key Agreement</td>
<td>5.50 5.14 4.82</td>
<td>6.23 4.88 4.55</td>
</tr>
<tr>
<td>Total</td>
<td>22.77 21.45 20.28</td>
<td>23.45 19.99 18.67</td>
</tr>
</tbody>
</table>

Note that our eSIDH prime p_{765} field arithmetic gets noticeable timing speedups compared against the SIKE p_{751} field arithmetic. This acceleration is justified from the fact that since p_{765} is a friendlier Montgomery-friendly prime, it has a faster modular reduction than p_{751}.

4.2.2 Parallelizing the SIDH protocol

Using a similar approach as the one followed in [17, 13], in this work we parallelize the SIDH implementation of [2] as follows. Alice and Bob isogeny evaluations and constructions were computed using the optimal strategy of [11]. Optimal strategies typically produce an average of four points per curve whose isogeny images can be processed concurrently [17]. Hence, our two- and three-core implementations actively strove for concurrently performing as many isogeny evaluations as possible.

Table 4 shows that with respect to a sequential implementation, a two-core and a three-core parallel implementation of the SIDH p_{434} instantiation yields a speedup factor of 1.062 and 1.123, respectively. Likewise, Table 5 reports that with respect to a sequential implementation, a two-core and a three-core parallel implementation of the SIDH p_{751} instantiation yields a speedup factor of 1.118 and 1.216, respectively.

4.2.3 Performance evaluation of the eSIDH parallel instantiation

Table 4 reports the performance timing achieved by the eSIDH p_{443} parallel instantiation. Using a single-core SIDH p_{434} implementation as a baseline, it can be seen from Table 4 that a parallel eSIDH p_{443} implementation yields an acceleration factor of 0.97, 1.22 and 1.41, when executed on $k = \{1, 2, 3\}$-core processors.

On the other hand, eSIDH p_{443} yields an acceleration factor of 0.971, 1.073 and 1.086, when both protocols are implemented on $k = \{1, 2, 3\}$-core processors. Hence for a single-core implementation, eSIDH p_{443} is slower than its SIDH p_{434} counterpart. For two-core and three-core implementations, our eSIDH variant produces a modest but noticeable speedup of about 7% and 9%, respectively.

\footnote{Parallel canonical strategies for SIDH are studied and proposed in [13].}
Table 5: Performance comparison of the SIKE prime p_{751} against the eSIDH prime p_{765}. All timings are reported in 10^6 clock cycles measured on an Intel Skylake processor at 4.0 GHz.

Table 5 reports the performance timing achieved by the eSIDH p_{765} parallel instantiation. Using a single-core SIDH p_{751} implementation as a baseline, it can be seen that a parallel implementation of eSIDH p_{765} yields an acceleration factor of 1.05, 1.30 and 1.41, when executed on $k = \{1, 2, 3\}$-core processors. Furthermore, eSIDH p_{765} yields an acceleration factor of 1.050, 1.160 and 1.162, when both protocols are implemented on $k = \{1, 2, 3\}$-core processors. We stress that even for a single-core implementation of this case study, our eSIDH variant produces a modest but noticeable speedup of about 5%.

As a general summary we note that for single-core implementations, Bob’s $3^{e_{555}}$ isogeny computation has no overhead impact on the Key Generation phase. However, the public key recovery mechanism (cf. §3.2.1) proves to be relatively expensive on the Key Agreement phase. On the other hand, for two- and three-core implementations, our eSIDH instantiation clearly outperforms SIDH on all Bob’s computations. In Table 5, the comparison of SIDH p_{751} against eSIDH p_{765} reveals the superiority of the latter over the former in all the phases of the protocol, even for a sequential implementation. The one exception being Bob’s Key Agreement phase. For the two- and three-core implementations, Bob’s Key Agreement for eSIDH p_{765} is even faster than Alice’s Key Agreement for SIDH p_{751}.

4.2.4 Performance evaluation of the CRT-based eSIDH instantiation

A shown in Table 1, the CRT-based eSIDH instantiation presented in §3.3 offers less parallelism opportunities than the ones enjoyed by the eSIDH parallel instantiation discussed in 3.2. However, according to the estimates given in Table 1, the CRT-based eSIDH instantiation is a promising economical scheme for a sequential single-core processor. As before, let $\lambda = \lceil \log_2(p) \rceil$. Referring to Table 1, the computational cost of the CRT-based eSIDH instantiation saves $\approx \frac{1}{2}$ xDBL operations.

Case study p_{443}

Based on the timing computational costs reported in Table 3, the expected computational saving for a single-core implementation of SIDH p_{434} with respect to eSIDH p_{443}...
is given as,
\[
e_C \cdot \text{Quintupling} = 45 \cdot 7995
= 359,775 \text{ clock cycles.}
\]

This implies that compared against a single-core SIDH \(p_{434} \) implementation, a single-core CRT-based eSIDH \(p_{443} \) implementation is expected to produce a 1.02 speedup factor.

Case study \(p_{765} \)

Based on the prime specifications given in \([2]\) and the timing computational costs reported in Table \([3]\), the expected computational saving for a single-core implementation of eSIDH \(p_{765} \) with respect to SIDH \(p_{751} \) is given as,
\[
e_C \cdot \text{Quintupling} = 81 \cdot 16285
= 1,319,085 \text{ clock cycles.}
\]

This saving combined with the experimental results reported in Table \([5]\) implies that compared against a single-core SIDH \(p_{751} \) implementation, a single-core CRT-based eSIDH \(p_{765} \) implementation is expected to produce a 1.07 speedup factor.

5 Conclusions

In this paper the extended SIDH scheme, a variant of the SIDH protocol in \([11]\), was presented. Our experimental results show that an eSIDH parallel implementation is faster than a corresponding parallel version of SIDH. Moreover for certain security levels, a CRT-based eSIDH single-core implementation is slightly faster than SIDH.

Our future work includes to expand the search of more efficient eSIDH primes for all the four security levels considered in \([2]\). Building on the work presented in \([13]\), we would also like to explore more aggressive approaches for parallelizing the SIDH isogeny computations and evaluations. The algorithmic ideas discussed here might be useful for the B-SIDH construction \([6]\), where given the large size of the prime factors involved in the factorization of \(p \pm 1 \), parallel implementations of SIDH become mandatory. We also would like to explore applications of eSIDH to the client-server scenarios discussed in \([6]\).

Acknowledgements

This work was done while the first and third authors were visiting the University of Waterloo. The authors would like to thank Jesús-Javier Chi-Domínguez and Luca de Feo for the extensive discussions and comments that greatly helped to improve the technical material of this paper.
References

