You are looking at a specific version 20190905:071817 of this paper. See the latest version.

Paper 2019/994

A new family of APN quadrinomials

Lilya Budaghyan and Tor Helleseth and Nikolay Kaleyski

Abstract

The binomial $B(x) = x^3 + \beta x^{36}$ (where $\beta$ is primitive in $\mathbb{F}_{2^4}$) over $\mathbb{F}_{2^{10}}$ is the first known example of an Almost Perfect Nonlinear (APN) function that is not CCZ-equivalent to a power function, and has remained unclassified into any infinite family of APN functions since its discovery in 2006. We generalize this binomial to an infinite family of APN quadrinomials of the form $x^3 + a (x^{2^i+1})^{2^k} + b x^{3 \cdot 2^m} + c (x^{2^{i+m}+2^m})^{2^k}$ from which $B(x)$ can be obtained by setting $a = \beta$, $b = c = 0$, $i = 3$, $k = 2$. We show that for any dimension $n = 2m$ with $m$ odd and $3 \nmid m$, setting $(a,b,c) = (\beta, \beta^2, 1)$ and $i = m-2$ or $i = (m-2)^{-1} \mod n$ yields an APN function, and verify that for $n = 10$ the quadrinomials obtained in this way for $i = m-2$ and $i = (m-2)^{-1} \mod n$ are CCZ-inequivalent to each other, to $B(x)$, and to any other known APN function over $\mathbb{F}_{2^{10}}$.

Note: Minor update to Table 2 and one paragraph added on F13 before Corollary 1.

Metadata
Available format(s)
PDF
Category
Foundations
Publication info
Preprint. MINOR revision.
Keywords
Boolean functionAPNdifferential uniformity
Contact author(s)
nikolay kaleyski @ uib no
History
2019-09-05: received
Short URL
https://ia.cr/2019/994
License
Creative Commons Attribution
CC BY
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.