Probabilistic analysis on Macaulay matrices over finite fields and complexity of constructing Gröbner bases∗

Igor Semaev Andrea Tenti

July 15, 2019

Abstract

Gröbner basis methods are used to solve systems of polynomial equations over finite fields, but their complexity is poorly understood. In this work an upper bound on the time complexity of constructing a Gröbner basis and finding a solutions of a system is proved. A key parameter in this estimate is the degree of regularity of the leading forms of the polynomials. Therefore, we provide an upper bound on the degree of regularity for a sufficiently overdetermined system of forms over any finite field. The bound holds with probability tending to 1 and depends only on the number of variables, the number of polynomials, and their degrees. Our results imply that sufficiently overdetermined systems of polynomial equations are solvable in polynomial time with high probability.

Keywords—Polynomial equation systems, finite fields, Macaulay matrices, Groebner bases, multisets, complexity

1 Introduction

Let x_1, \ldots, x_n be variables over a field. Systems of polynomial equations

$$P_1(x_1, \ldots, x_n) = 0, \ldots, P_m(x_1, \ldots, x_n) = 0. \quad (1)$$

is a main object to study in algebraic geometry and commutative algebra. Several methods to find an explicit solution to (1) were developed. In particular, Macaulay [Mac16] introduced multivariate resultants and used them to solve polynomial equations by eliminating variables. He also introduced the so called Macaulay matrices for a system of polynomials. Buchberger [Buc65] defined the notion of a Gröbner basis for a polynomial ideal (e.g., generated by P_1, \ldots, P_m) and showed how to construct such a basis. In some

∗An extended abstract of this paper was reported at WCC2019 [ST19]
cases a solution to (1) may be instantly read from a reduced Gröbner basis. Lazard [Laz83] showed that a Gröbner basis may also be constructed by triangulating a suitable Macaulay matrix.

For a finite ground field \mathbb{F}_q, two problems are of special interest: how many \mathbb{F}_q-rational solutions does the system allow and how to compute them. The number of solutions may be estimated using the Lang-Weil bound [LW54]. The second problem is reducible to a satisfiability problem and is generally NP-hard.

Applications in cryptography renewed interest in solving polynomial equations over finite fields. Finding a solution is equivalent to breaking a cryptosystem. A particularly successful example is due to Faugère and Joux that broke HFE (Hidden Field Equations) with a Gröbner basis algorithm [FJ03].

In some applications the problem is reduced to overdetermined polynomial systems, where the number of equations m is larger than the number of variables n. For instance, one has to solve an overdetermined quadratic equation system over \mathbb{F}_2 to find an AES key given some plain-text and relevant cipher-text, [CP02]. In practice, such systems may be solved faster when using algorithms from Gröbner basis or XL families [BFS03; Cou+00]. Hence, time-complexity of those algorithms for overdetermined polynomial equation systems is interesting to study.

Let I be an ideal in $\mathbb{R}^h = \mathbb{F}_q[x_1, \ldots, x_n] / (x_1^q - x_1, \ldots, x_n^q)$ generated by the leading forms f_1, \ldots, f_m of the polynomials P_1, \ldots, P_m. By I_d we denote a vector space over \mathbb{F}_q containing all forms in I of degree d. The degree of regularity of I is the smallest integer d for which $\dim_{\mathbb{F}_q} I_d = \ell_q(n,d)$, the number of monomials in \mathbb{R}^h of total degree d. It corresponds to the degree at which the Hilbert series of \mathbb{R}^h/I vanishes. The expression "the degree of regularity" was first used in [BFS03] and it is also called index of \mathbb{R}^h/I in [HMS17].

In Theorem 2.1 we show that time-complexity of constructing a Gröbner basis for P_1, \ldots, P_m (we need to add $x_i^q - x_i$, $i = 1, \ldots, n$ to avoid solutions in the extensions of the ground field) is polynomial in $L_q(n, d_{\text{reg}})$, where $L_q(n,d)$ is the number of monomials in \mathbb{R}^h of total degree $\leq d$. At least one solution to (1), if it exists, may be then found even faster according to Theorem 2.2.

The notion of a semiregular system of polynomials (forms) was introduced by Bardet, Faugère, and Salvy in [BFS03]. The degree of regularity for a particular semiregular polynomial system may be computed by expanding a Hilbert series defined by n,m, and the degree of P_i. It was also conjectured that a random system of polynomials over \mathbb{F}_2 is semiregular with probability tending to 1 as n increases. The conjecture, in the way it was presented, was disproved in [HMS17]. Still it is believed that most systems behave like semiregular ones.

The present work gives an upper bound on the degree of regularity for an overdetermined system of forms f_1, \ldots, f_m of the same degree D with coef-
ficients in \mathbb{F}_q taken uniformly at random. The bound holds with probability tending to 1. We do not impose any other restrictions on the polynomials as semiregularity, etc. The following statement is proved.

Theorem 1.1. Let $q \geq 2$ and D be fixed, and $m \geq l_q(n, D + d)/l_q(n, d)$, where $D > d > 0$. Then

$$\mathbb{P}(d_{\text{reg}} \leq D + d) \geq 1 - q^{l_q(n, D + d) - ml_q(n, d)} + O(n^d q^{-Cn^D})$$

for a positive constant C as $n \to \infty$.

Let $q = 2$. It is well known and easy to prove that for $m \geq \frac{n(n-1)}{2} + c$ random quadratic polynomials, $d_{\text{reg}} = 2$ with high probability depending on c. Theorem 1.1 (for $D = 2, d = 1$) implies that $m \geq \frac{(n-1)(n-2)}{6} + 1$ random quadratic polynomials have $d_{\text{reg}} \leq 3$ with probability tending to 1. Similarly, for $D = 3, d = 2$, and $m \geq \frac{(n-2)(n-3)(n-4)}{60} + 1$ random cubic polynomials, $d_{\text{reg}} \leq 5$ with probability tending to 1, etc. A total degree Gröbner basis and a solution to a relevant equation system may then be computed in polynomial time. In fact, our complexity bounds depend on the leading forms of the polynomials and do not depend on their lower degree terms.

Over \mathbb{F}_2 the bound on d_{reg} is as predicted in [BFS03] for a semiregular system with the same parameters (number of variables n, number of equations m, and of degree D). Under a conjecture from commutative algebra a lower bound on the degree of regularity for homogeneous polynomial systems in $\mathbb{F}_q[x_1, \ldots, x_n]$ is proved in [Die04]. Our result complies with this bound as well.

The core of the proof of Theorem 1.1 is in Section 4, where we show that a Macaulay matrix of size $ml_q(n, d) \times l_q(n, d + D)$ constructed for the forms f_1, \ldots, f_m has linearly independent columns with probability tending to 1. The rows of the matrix are coefficients of the leading forms of $gf_i \in R^d$, where g runs over all monomials of degree d.

Section 3 contains the combinatorial Theorem 3.1 used in the proof of the main Theorem 1.1. Each monomial $x_1^{a_1} \ldots x_n^{a_n}$ of total degree d defines a d-multiset (a_1, \ldots, a_n), where $0 \leq a_i < q$ and $\sum_{i=1}^n a_i = d$. Let v be a natural number and A a family of monomials of degree d such that $|A| = v$. By B we denote a family of monomials of degree $d + D$ divisible by at least one monomial from A. Theorem 3.1 implies that $|B|$ achieves its minimum when A is a family of the first (largest) v monomials of total degree d taken in a lexicographic order.

Theorem 2.1 was proved by Semaev. The main idea of the proof of Theorem 1.1 belongs to Semaev too, who first proved it for \mathbb{F}_2 and $D = 2, d = 1$. The generalisation for any \mathbb{F}_q and $D > d$ is due to Tenti, who also proved Theorem 2.2. Tenti conjectured the statement of Theorem 3.1 for $k = k_1 = \ldots = k_n$ and proved it for $k = 1, d = 2$. With a different method, presented in Section 3, the theorem in its generality was proved by Semaev.
2 Complexity of constructing Gröbner bases

Let
\[I = (P_1, \ldots, P_m, x_1^q - x_1, \ldots, x_n^q - x_n) \]
be an ideal in \(\mathbb{F}_q[x_1, \ldots, x_n] \). In this section we show how to construct a Gröbner basis for \(I \) and estimate the complexity of the construction in monomial operations over \(\mathbb{F}_q \). Assume a total degree monomial ordering.

We denote \(R = \mathbb{F}_q[x_1, \ldots, x_n]/(x_1^q - x_1, \ldots, x_n^q - x_n) \) and let \(\bar{N} = L_q(n, \deg) \), the number of monomials in \(R^h \) of degree \(\leq \deg \) as above. We have that \(\deg \leq (q-1)n \). To compute \(\deg \) one gradually triangulates with elimination Macaulay matrices for the forms \(f_i \) multiplied by monomials of degree \(d - \deg f_i \) in \(R^h \). The number of rows is at most
\[
\sum_{i=1}^d l_q(n, i)l_q(n, d - i) = O(d N^2)
\]
and the number of columns is \(l_q(n, d) \leq N \). The overall cost for all \(d \leq \deg \) is \(O(d^2 N^4) \) operations. At the same cost one constructs a basis \(U_1, \ldots, U_r \) for the ideal generated by \(P_1, \ldots, P_m \) in \(R \). The polynomials \(U_i \) are linearly independent and of degree \(\leq \deg \). Exactly \(l_q(n, \deg) \) polynomials are of degree \(\deg \) and their leading forms are all possible monomials of degree \(\deg \). Then \(\{U_1, \ldots, U_r, x_1^q - x_1, \ldots, x_n^q - x_n\} \) is a basis for \(I \) in \(\mathbb{F}_q[x_1, \ldots, x_n] \).

One now replaces \(x_i^q - x_i \) in the basis with their residues after division by \(U_1, \ldots, U_r \). That produces a new basis \(B \) for \(I \). When computing a residue of \(x_i^q - x_i \) one can have the intermediate polynomials after each division step incorporate only monomials \(x_i^{b_1}x_1^{a_1} \ldots x_n^{a_n} \), where \(b_j, a_j \leq q - 1 \) and \(\sum_{j=1}^n a_j < \deg \). So the number of monomials at each division step is at most \(qN \). The division cost is \(O(qN^2) \) per each \(x_i^q - x_i \) and \(O(nqN^2) \) overall.

That is not generally enough. For instance, the polynomial system \(P_1 = x_1 x_2 + 1, P_2 = x_1 x_3, P_3 = x_2 x_3, x_1^2 + x_1, x_2^2 + x_2, x_3^2 + x_3 \in \mathbb{F}_2[x_1, x_2, x_3] \) has \(\deg = 2 \). However, that is not a Gröbner basis, as the ideal contains the polynomial \(x_3 = x_3 P_1 + x_2 P_2 \) and its leading term is not divisible by the leading terms of the basis. So the argument in Section 2.2 of \(\text{BFS03} \), on the complexity of constructing a Gröbner basis, is not valid. In order to compute a Gröbner basis one generally has to work with polynomials of degree \(> \deg \) as well. The following theorem, in particular, proves that with the basis \(B \) one can construct a Gröbner basis for \(I \) at maximum degree \(\leq 2\deg \).

Theorem 2.1. Time-complexity of constructing a Gröbner basis for \(I \) is polynomial in \(N \) and \(q \).

Proof. It is enough to prove that, given \(B \), the construction takes \(O(N^6) \) operations in \(\mathbb{F}_q \). Let’s consider an application of the Buchberger algorithm,
see [CLO13], to the polynomials B. For each $Q_1, Q_2 \in B$ the algorithm computes a residue T of the S-polynomial $S(Q_1, Q_2)$ after division by the polynomials B. Each monomial of degree d_{reg} occurs as a leading monomial of some polynomial in B, so the degree of the residue $< d_{\text{reg}}$. If $T \neq 0$, then B is augmented with T and the step repeats. If the residue is 0 for each pair, then B is a Gröbner basis. At each step of the algorithm the polynomials in B are linearly independent.

One has to examine $\leq N^2$ pairs before finding a non-zero residue or terminating. The number of possible linearly independent residues is $\leq N$, so the number of divisions is $\leq N^3$. Each S-polynomial incorporates $\leq N^2$ monomials. Computing its residue takes $O(N^3)$ operations. Overall complexity is the one stated.

A more careful analysis shows that one can work with polynomials of degree $\leq 2d_{\text{reg}} - 2$ and the time-complexity is $O(N^2 L_{q}(n, d_{\text{reg}} - 1) L_{q}(n, 2d_{\text{reg}} - 2))$ operations.

2.1 From a Gröbner basis to a solution of the system

Let $Z(I) \subseteq \mathbb{F}_q^n$ be the set of zeroes for the ideal I defined by (2). Here we show how to compute $(a_1, \ldots, a_n) \in Z(I)$ and will estimate the time complexity. Let G be a Gröbner basis for I computed as above. Then $\deg(g) \leq d_{\text{reg}}$ for every $g \in G$.

Theorem 2.2. One can compute $(a_1, \ldots, a_n) \in Z(I)$ or prove $Z(I) = \emptyset$ in $O(nN^3)$ operations.

Proof. Let G' be a reduced Gröbner basis for I, then $G' = \{1\}$ if and only if $Z(I) = \emptyset$. So the algorithm we employ is the following. First, we compute the reduced Gröbner basis G' of I. If $G' = \{1\}$, then the system has no solutions. Otherwise, we take $a_n \in \mathbb{F}_q$ and compute the reduced Gröbner basis G' of $I + (x_n - a_n)$. If $G' = \{1\}$, we take another a_n and compute the reduced Gröbner basis, etc. Otherwise, if $G' \neq \{1\}$, we replace I with $I + (x_n - a_n)$ and repeat the previous step. This repeats until a solution (a_1, \ldots, a_n) is found.

Obviously, the algorithm produces a zero of I if it exists or proves $Z(I) = \emptyset$. One has to compute up to qn reduced Gröbner bases of ideals $I + (x_n - a_n)$. We will now prove that it is possible to compute the reduced Gröbner basis in $O(N^3)$ operations at any step. Let LT denote the leading term of a polynomial or the set of the leading terms of a set of polynomials.

According to [KR00], to reduce G we first remove from G all g such that $LT(g) \in \{(LT(G \setminus \{g\}) \}$ and make the rest of the polynomials monic. As $|G| \leq N$, it takes $\leq N^2$ monomial divisions. We call the new set G',
which is still a Gröbner basis for I. Next, for every $g \in G'$ one computes its residue g' after division by $G' \setminus \{g\}$ and sets $G' = G' \setminus \{g\} \cup \{g'\}$. As every polynomial in G' incorporates $\leq N$ monomials, computing the residue takes $O(N^2)$ operations. Since $LT(g) = LT(g')$, once an element is modified, it does not change further. The overall cost is $O(N^3)$ operations.

Let $G = \{g_1, \ldots, g_t\}$ be a Gröbner Basis for I and let $I_{\leq d}$ denote the space of polynomials in I of degree $\leq d$. From the properties of polynomial division and Gröbner basis, we have the following

Lemma 2.3. The set of polynomials $x^\alpha g_i$ such that $\deg(g_i) \leq d$ and $|\alpha| + \deg(g_i) \leq d$ generates $I_{\leq d}$ as a vector space over \mathbb{F}_q.

Lemma 2.4. Let g be a linear polynomial. The vector space $(I + (g))_{\leq d_{\text{reg}}}$ is generated by $x^\alpha g_i$ and $x^\beta g$, with $|\alpha| + \deg(g_i) \leq d_{\text{reg}}$ and $|\beta| < d_{\text{reg}}$.

Proof. First we show that every $f \in (I + (g))$ may be represented as $f = p + gr$ for some $p \in I$ and r with $\deg(r) < d_{\text{reg}}$. Obviously, $f = f_1 + f_2 g$ with $f_1 \in I$, $f_2 \in \mathbb{F}_q[x_1, \ldots, x_n]$. Let r be a residue of f_2 after division by G. Then $f_2 = h + r$, where $h \in I$ and $\deg(r) < d_{\text{reg}}$. Hence $f = p + r g$, with $p = f_1 + gh \in I$.

Therefore, $f = p + r g$ is in $(I + (g))_{\leq d_{\text{reg}}}$ if and only if $\deg(p) \leq d_{\text{reg}}$. Hence

$$(I + (g))_{\leq d_{\text{reg}}} \subseteq I_{\leq d_{\text{reg}}} + (g)_{\leq d_{\text{reg}}}.$$

The first vector space is generated by $x^\alpha g_i$ with $|\alpha| + \deg(g_i) \leq d_{\text{reg}}$ thanks to Lemma 2.3. On the other hand, $(g)_{\leq d_{\text{reg}}}$ is trivially generated by $x^\beta g$ with $|\beta| + \deg(g) \leq d_{\text{reg}}$. The proof is complete.

Corollary 2.5. Let $B = \{b_1, \ldots, b_k\}$ be a basis for the vector space $(I + (g))_{\leq d_{\text{reg}}}$. Then $G^+ = \{b_1, \ldots, b_k, g_1, \ldots, g_t\}$ is a Gröbner basis for $(I + (g))$.

Proof. Obviously, G^+ is a basis for $I + (g)$. Let $f \in I + (g)$. If $\deg(f) \leq d_{\text{reg}}$, then $LT(f) = LT(b_i)$ for some $b_i \in B$. If $\deg(f) > d_{\text{reg}}$, then $LT(f)$ is divisible with some $LT(g_i)$ by the definition of d_{reg}.

Therefore, any leading term of $f \in I + (g)$ is divisible by the leading term of one of the elements in G^+. Hence the latter is a Gröbner basis for $I + (g)$.

In order to compute B, one triangulates a matrix with $\leq N$ columns and $\leq 2N$ rows. The size of G^+ is $\leq 2N$. So each computation of a reduced Gröbner basis that we perform has a cost of $O(N^3)$ operations. In order to find one zero in $Z(I)$, we need to perform at most qn iterations. Hence the total cost is $O(nN^3)$ as claimed.

Remark 2.6. The algorithm just presented returns only one of the zeroes in $Z(I)$. The entire set can be found by using the Shape Lemma after a linear change of coordinates in an extension of \mathbb{F}_q. This approach has the
drawback that if the system has many solutions, then the extension has a very bulky size. The full process is described in chapter 3.7 of [KR00].

3 Minimal covering family of multisets

Let \{1, 2, \ldots, n\} be an ordered set of \(n\) elements and \(k_1, \ldots, k_n, d\) be non-zero integer numbers. The tuple \(X = (x_1, x_2, \ldots, x_n)\) is called \(d\)-multiset if \(0 \leq x_i \leq k_i\) and \(\sum_{i=1}^{n} x_i = d\). We say \(n\) is the length of \(X\). The family of all \(d\)-multisets is denoted \(X = \mathcal{X}^d\).

Let \(Y = (y_1, y_2, \ldots, y_n)\) be a \(D\)-multiset for some \(D \geq d\). We say \(X\) is a subset of \(Y\), denoted \(X \subseteq Y\), if \(x_i \leq y_i, 1 \leq i \leq n\). One defines \(X + Y = (x_1 + y_1, \ldots, x_n + y_n)\) and if \(X \subseteq Y\), then \(Y \setminus X = (y_1 - x_1, \ldots, y_n - x_n)\).

The reverse ordering on \{1, 2, \ldots, n\} induces a lexicographic ordering \(>\) on the family of all \(d\)-multisets \(\mathcal{X}\). Let \(X_v = \{X_1, \ldots, X_v\}\) denote the family of the first (largest) \(v\) multisets according to that ordering, that is \(X_1 > \ldots > X_v\). We call \(X_v\) a minimal family of size \(v\). The family of the first (largest) \(u\) elements in \(\mathcal{Y}\) according to the ordering. For instance, ordered 2 and 3-multisets (\(d = 2\) and \(D = 3\)) of length 3, where \(k_1 = k_2 = k_3 = 2\), are presented in Table 1.

<table>
<thead>
<tr>
<th>(X)</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_6)</td>
<td>002</td>
</tr>
<tr>
<td>(X_5)</td>
<td>011</td>
</tr>
<tr>
<td>(X_4)</td>
<td>020</td>
</tr>
<tr>
<td>(X_3)</td>
<td>101</td>
</tr>
<tr>
<td>(X_2)</td>
<td>110</td>
</tr>
<tr>
<td>(X_1)</td>
<td>200</td>
</tr>
</tbody>
</table>

By \(Y_{\ell(v)}\) we denote the smallest \(D\)-multiset such that \(Y_{\ell(v)} \supseteq X_v\) (we say covered by \(X_v\)). For instance, \(\ell(2) = 4\) in Table 1. So \(\mathcal{Y}_{\ell(v)} = \{Y_1, \ldots, Y_{\ell(v)}\}\) the ordered family of \(Y \geq Y_{\ell(v)}\) in \(\mathcal{Y}\). Let \(\mathcal{A} = \{X_{i_1}, \ldots, X_{i_v}\}\) be a family of \(d\)-multisets. By \(|\mathcal{A}|\) we denote the number of \(D\)-multisets which contain at least one element from \(\mathcal{A}\) (we say covered by \(\mathcal{A}\)). The goal of this section is to prove

Theorem 3.1. Let \(k_1 \leq k_2 \leq \ldots \leq k_n\) and \(|\mathcal{A}| = v\), then \(|\mathcal{A}| \geq |\mathcal{X}_v| = \ell(v)\).

If the condition \(k_1 \leq k_2 \leq \ldots \leq k_n\) is not satisfied, then the theorem is not generally true. We will prove several lemmas first. We can assume that \(d\) is large enough, otherwise the proofs below may be easily adjusted.
Lemma 3.2. The family of D-multisets covered by X_v is $\mathcal{Y}_{\ell(v)}$. In particular, $|X_v| = \ell(v)$.

Proof. Let $X \in X_v$ or, in other words, $X \geq X_v$. Firstly, we will prove that for any $-D$-multiset $Y \supseteq X$ we have $Y \in \mathcal{Y}_{\ell(v)}$. If $X = X_v$, that holds by the definition of $\ell(v)$. Let $X < X_v$ then

$$X_v = (x_1, \ldots, x_{i-1}, x_i, \ldots, x_n), \quad X = (x_1, \ldots, x_{i-1}, x_i', \ldots, x_n'),$$

where $x_i' > x_i, 1 \leq i < n$ and

$$Y_{\ell(v)} = (y_1, \ldots, y_{i-1}, y_i, \ldots, y_n), \quad Y = (y_1', \ldots, y_{i-1}', y_i', \ldots, y_n').$$

Let $i > 1$. If $y_i' > y_i$, then $Y > Y_{\ell(v)}$ and there is nothing to prove. Assume $y_i' \leq y_i$. If $y_i' < y_i$, then $x_1 \leq y_i' \leq y_i - 1$. There exists a $-D$-multiset $Y' = (y_1 - 1, y_2, \ldots, y_j, 1, \ldots, y_n)$ for some $j > 1$ or $Y_{\ell(v)} = (y_1, k_2, \ldots, k_n)$. The latter is impossible as $Y_{\ell(v)}$ and Y are both $-D$-multisets. Therefore, we have $Y' < Y_{\ell(v)}$ and $X_v \subseteq Y'$ which contradicts the definition of $Y_{\ell(v)}$. We conclude that $y_i' = y_i$. By the same argument one proves $y_j' = y_j$ for all $1 \leq j \leq i - 1$.

So we can assume $i = 1$ or $i > 1$ and $y_i' = y_i$ for $1 \leq j \leq i - 1$. If $y_i' > y_i$, then $Y > Y_{\ell(v)}$ and the statement holds. Otherwise, if $y_i' \leq y_i$, then $x_i < x_i' \leq y_i' \leq y_i$. As $i < n$, there exists a $-D$-multiset $Y'' = (y_1, \ldots, y_{i-1}, y_i - 1, \ldots, y_j + 1, \ldots, y_n)$ for some j such that $Y'' < Y_{\ell(v)}$ and $X_v \subseteq Y''$, a contradiction with the definition of $\ell(v)$.

Secondly, it is easy to see that for any $-D$-multiset $Y \supseteq Y_{\ell(v)}$ there exists a $-D$-multiset $X \geq X_v$ such that $X \subseteq Y$. Therefore, the family of $-D$-multisets covered by X_v is exactly $\mathcal{Y}_{\ell(v)}$. That proves the lemma.

Lemma 3.3. It is enough to prove Theorem 3.1 for $D = d + 1$.

Proof. Let the theorem be true for $D = d + 1$ and any d. We prove it is true for $D = d + 2$. Let $\ell_{01}(s), \ell_{12}(s), \ell_{02}(s)$ be above function for $d, d + 1$, and $d + 1, d + 2$, and $d, d + 2$ respectively. Assume a family A of d-multisets covers a family B of $(d + 1)$-multisets, and B covers a family C of $(d + 2)$-multisets. Then C consists of all $(d + 2)$-multisets covered by A. In particular, $\ell_{12}(\ell_{01}(s)) = \ell_{02}(s)$. Let $|A| = s, |B| = r, |C| = t$. Then

$$t \geq \ell_{12}(r), \quad r \geq \ell_{01}(s)$$

as Theorem 3.1 holds for $D = d + 1$ by the assumption. Therefore, $t \geq \ell_{12}(\ell_{01}(s)) = \ell_{02}(s)$ and the lemma is true for $D = d + 2$. One uses the same argument to prove it for $D > d + 2$.

Let s be a natural number and

$$f(v) = |\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}|$$

for $0 \leq v \leq |X| - s$. The family $\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}$ incorporates all D-multisets covered by $\{X_{v+1}, \ldots, X_{v+s}\}$ and not covered by $\{X_1, \ldots, X_v\}$.
Lemma 3.4. $f(|X| - s) \leq f(v) \leq f(0)$.

Proof. We will only prove the right hand side inequality

$$|\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}| \leq |\mathcal{Y}_{\ell(s)}|.$$ (3)

The left hand side inequality is proved by a similar argument. The proof is by induction. The statement is correct for $s = 0$, any v, and $v = 0$, any s.

We will reduce (3) to a "smaller" problem $|\mathcal{Y}_{\ell(v_1+s_1)} \setminus \mathcal{Y}_{\ell(n_1)}| \leq |\mathcal{Y}_{\ell(s_1)}|$, where $s_1 = s$ and $v_1 < v$ or $s_1 < s$. If $v < s$, then it is enough to prove $|\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}| \leq |\mathcal{Y}_{\ell(v)}|$, as $|\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}| = |\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(s)}| + |\mathcal{Y}_{\ell(s)} \setminus \mathcal{Y}_{\ell(v)}| \leq |\mathcal{Y}_{\ell(s)}|$. So the problem got reduced.

Assume $v \geq s$. Let u be the largest index such that $X_u = (1, 0, a_3, \ldots, a_n)$ for some a_3, \ldots, a_n. So z is the largest index such that $X_z = (0, 1, a_3, \ldots, a_n)$ and therefore $X_u > X_z$. If such u does not exist, then the proof is easily reduced to one of the cases below.

1. Firstly, $u \leq v$. Then the first entry in each of $\{X_{v+1}, \ldots, X_{v+s}\}$ is 0. If $v < u$, then by induction (right hand side inequality of the lemma for a smaller n) $|\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}| \leq |\mathcal{Y}_{\ell(u+s)} \setminus \mathcal{Y}_{\ell(u)}|$ and the problem got reduced to a "smaller" problem $|\mathcal{Y}_{\ell(u+s)} \setminus \mathcal{Y}_{\ell(u)}| \leq |\mathcal{Y}_{\ell(s)}|$. So one can assume $v = u$. Let $X_{v+s} = (0, x_2, x_3, \ldots, x_n)$. One defines a mapping

$$\varphi : (0, y_2, y_3, \ldots, y_n) \to (1, y_2 - 1, y_3, \ldots, y_n).$$ (4)

If $x_2 \geq 1$, then φ is well defined on $\{X_{v+1}, \ldots, X_{v+s}\}$ and maps it to $\{X_{w+1}, \ldots, X_{w+s}\}$ for some $w < v$. It is not difficult to see that φ is a bijection between $\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}$ and $\mathcal{Y}_{\ell(w+s)} \setminus \mathcal{Y}_{\ell(w)}$. So $|\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}| = |\mathcal{Y}_{\ell(w+s)} \setminus \mathcal{Y}_{\ell(w)}|$. We got a reduction to a "smaller" problem $|\mathcal{Y}_{\ell(w+s)} \setminus \mathcal{Y}_{\ell(w)}| \leq |\mathcal{Y}_{\ell(s)}|$. Let $x_2 = 0$. So $X_{v+1} \leq X_{v+s})$. As $\varphi(X_2) = X_u = X_v$, then

$$|\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(v)}| = |\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(z)}| + |\mathcal{Y}_{\ell(z)} \setminus \mathcal{Y}_{\ell(v)}| \leq |\mathcal{Y}_{\ell(v+s-z)} \setminus \mathcal{Y}_{\ell(v)}| + |\mathcal{Y}_{\ell(z)} \setminus \mathcal{Y}_{\ell(v)}| = |\mathcal{Y}_{\ell(w+s)} \setminus \mathcal{Y}_{\ell(w)}|,$$

where $|\mathcal{Y}_{\ell(v+s)} \setminus \mathcal{Y}_{\ell(z)}| \leq |\mathcal{Y}_{\ell(v+s-z)} \setminus \mathcal{Y}_{\ell(v)}|$ comes by induction (right hand side inequality of the lemma for a smaller n) and $|\mathcal{Y}_{\ell(z)} \setminus \mathcal{Y}_{\ell(u)}| = |\mathcal{Y}_{\ell(u)} \setminus \mathcal{Y}_{\ell(w)}|$ for some $w < v$ as φ is a bijection between these two sets. We got a reduction to a "smaller" problem $|\mathcal{Y}_{\ell(w+s)} \setminus \mathcal{Y}_{\ell(w)}| \leq |\mathcal{Y}_{\ell(s)}|$.

2. Secondly, $v < u$. If $v+s \leq u$, then the first entry in each of $\{X_{v+1}, \ldots, X_{v+s}\}$ is > 0. The statement follows by induction (right hand side inequality of the lemma for a smaller k_1).
We may assume \(v < u < v + s \). By induction (left hand side inequality of the lemma for a smaller \(k_1 \), \(|Y(u) \setminus Y(u)| \leq |Y(s) \setminus Y(s+u)| \)) as \(s \leq v < u \). It is enough now to show that \(|Y(v+u) \setminus Y(u)| \leq |Y(v+s-u)| \), where \(0 < v + s - u < s \), and that is a "smaller" problem. Really, it implies (3) as

\[
|Y(v+u) \setminus Y(u)| = |Y(v+u) \setminus Y(u)| + |Y(u) \setminus Y(v)|
\leq |Y(v+u) \setminus Y(u)| + |Y(s) \setminus Y(s+u)| = |Y(s)|.
\]

That finishes the proof of the lemma.

Proof. We will now prove Theorem 3.1 by induction. Let \(\{1, 2, \ldots, n\} = \{i_1, \ldots, i_r\} \cup \{j_1, \ldots, j_{n-r}\} \), where \(1 \leq r < n \).

One splits \(A = \bigcup Z A_Z \) into subfamilies \(A_Z \), where \(Z \) are \(t \)-multisets \((z_1, z_2, \ldots , z_i) \), \(0 \leq t \leq d \). Each \(x_1, x_2, \ldots , x_n \) \(\in A_Z \) satisfies \((x_1, x_2, \ldots , x_i) = Z \) and \((x_{j_1}, x_{j_2}, \ldots , x_{j_{n-r}}) \) is a \((d-t) \)-multiset.

We construct a new family \(C \) of multisets of the same size as \(A \). Let \(C_Z \) be a family of \(d \)-multisets \((x_1, x_2, \ldots , x_n) \), where \((x_{i_1}, x_{i_2}, \ldots , x_{i_r}) = Z \) and \((x_{j_1}, x_{j_2}, \ldots , x_{j_{n-r}}) \) are first \((\text{largest}) |A_Z| \) of \((d-t) \)-multisets according to a lexicographic order. Then \(C = \bigcup Z C_Z \). Obviously, \(|C| = |A| \). We say \(C \) satisfies the condition \([i_1, \ldots , i_r] \).

Lemma 3.5. \(|C| \leq |A| \)

Proof. Let \(B \) be a family of \(D \)-multisets \((y_1, y_2, \ldots , y_n) \) covered by \(A \). One splits \(B = \bigcup U B_U \) into subfamilies \(B_U \), where \(U \) runs over \(T \)-multisets \((u_1, u_2, \ldots , u_i) \). Each \(D \)-multiset \((y_1, y_2, \ldots , y_n) \in B_U \) satisfies \((y_1, y_2, \ldots , y_i) = U \) and \((y_{j_1}, y_{j_2}, \ldots , y_{j_{n-r}}) \) is a \((D-T) \)-multiset. One further splits \(B_U = \bigcup Z C_Z \) into subfamilies \(B_U Z \) covered by \(A_Z \), where \(Z \) is a \(t \)-multiset and \(0 \leq t \leq d \).

Let \(\ell_{U,Z}(s) \) be the number of \((D-T) \)-multisets of length \(n-r \) covered by a minimal family of \((d-t) \)-multisets of length \(n-r \) and of size \(s \). By induction, Theorem 3.1 is true for multisets of length \(n-r \). So \(|B_U Z| \geq \ell_{U,Z}(|A_Z|) \) and therefore \(|\bigcup Z B_{U,Z}| \geq \max Z \ell_{U,Z}(|A_Z|) \). Then

\[
|A| = |\bigcup Z B_{U,Z}| = \sum U |\bigcup Z B_{U,Z}| \geq \sum U \max Z \ell_{U,Z}(|A_Z|) = |C|.
\]

If the family \(A \) does not satisfy a condition \([i_1, \ldots , i_r] \), one transforms \(A \) into a family of \(d \)-multisets with the same size for which this condition is satisfied. \(|A| \) does not grow by Lemma 3.5. After each transformation, the members of \(A \) are becoming larger (according to the lexicographic order).
so this process stops at some point. We may assume \(A \) satisfies all the conditions \([i_1, \ldots, i_r]\) for \(1 \leq r < n \).

The family \(A \) may be split \(A = \bigcup_{z=0}^{k_1} A_z \), where \(A_z \) incorporates multisets with the first entry \(z \). As \(A \) satisfies the condition [1], each \(A_z \) is a minimal family of \((d - z)\)-multisets of length \(n - 1 \).

Let \(s_0 = |A_0|, s_1 = |A_{k_1}|, \) and \(u \) denote the number of all \(d\)-multisets the first entry of which is \(k_1 \). If \(s_0 = 0 \) or \(s_1 = u \), then the theorem is true by induction for a smaller \(k_1 \). Assume \(s_0 > 0 \) and \(s_1 < u \).

Let \(A_0 = \{X_{v-s_0+1}, \ldots, X_v\} \), where \(X_v = (0, x_2, x_3, \ldots, x_n) \) for some \(x_2, x_3, \ldots, x_n \). If \(x_2 < k_1 \), then \(A_0 \) contains all \(d\)-multisets \((0, k_1, *, \ldots, *)\) as \(A_0 \) is a minimal family. By condition \([3, \ldots, n]\), the family \(A \) contains all \(d\)-multisets \((k_1, 0, *, \ldots, *)\) and therefore all \(d\)-multisets \((k_1, *, *, \ldots, *)\). The latter is impossible as \(s_1 < u \). So we can assume \(x_2 \geq k_1 \). Let’s consider a mapping

\[\varphi : (0, y_2, y_3, \ldots, y_n) \rightarrow (k_1, y_2 - k_1, y_3, \ldots, y_n). \]

The mapping is well defined on \(A_0 \). By condition \([3, \ldots, n]\), it maps \(A_0 \) to

\[\{X_{w-s_0+1}, \ldots, X_{w}\} \subseteq A_{k_1} \]

for some \(w \leq u \). It also maps \(\mathcal{Y}_{\ell(w)} \setminus \mathcal{Y}_{\ell(v-s_0)} \) to \(\mathcal{Y}_{\ell(w)} \setminus \mathcal{Y}_{\ell(v-s_0)} \). It is not difficult to see that \(\varphi \) is a bijection between those two sets. So \(|\mathcal{Y}_{\ell(v)} \setminus \mathcal{Y}_{\ell(v-s_0)}| = |\mathcal{Y}_{\ell(w)} \setminus \mathcal{Y}_{\ell(w-s_0)}| \). This is also true for any subinterval of \(\{X_{v-s_0+1}, \ldots, X_v\} \). We now consider two cases.

1. Firstly, \(u \geq s_0 + s_1 \). Then \(|\mathcal{Y}_{\ell(v)} \setminus \mathcal{Y}_{\ell(v-s_0)}| = |\mathcal{Y}_{\ell(w)} \setminus \mathcal{Y}_{\ell(w-s_0)}| \geq |\mathcal{Y}_{\ell(s_1+s_0)} \setminus \mathcal{Y}_{\ell(s_1)}| \). The inequality comes from the left hand side inequality of Lemma [3.4] applied for \((d - k_1)\)-multisets of length \(n - 1 \) and defined by the numbers \(k_2 - k_1, k_3, \ldots, k_n \).

The multisets in \(A_0 \) cover \(D\)-multisets in \(\mathcal{Y}_{\ell(v)} \setminus \mathcal{Y}_{\ell(v-s_0)} \), the first entry of which is 0, and some other \(D\)-multisets, the first entry of which is \(> 0 \). The latter are covered by \(A \setminus A_0 \) as well. Really, by Lemma [3.3] it is enough to consider \(D = d + 1 \). Let \((0, y_2, y_3, \ldots, y_n) \in A_0 \), then it covers \(D\)-multiset \((1, y_2, y_3, \ldots, y_n) \). The latter is covered by \((1, y_2 - 1, y_3, \ldots, y_n) \), which belongs to \(A_1 \) by condition \([3, \ldots, n]\). We define a new family

\[C = (A \setminus A_0) \cup \{X_{s_1+1}, \ldots, X_{s_1+s_0}\}. \]

Then \(|C| = |A|\) and \(|C| \leq ||A|| \) by the inequality above. As \(|C_0| = 0\), the theorem follows as above.

2. Secondly, \(u < s_0 + s_1 \). As \(\varphi \) is a bijection between \(\mathcal{Y}_{\ell(v)} \setminus \mathcal{Y}_{\ell(v-u+s_1)} \) and \(\mathcal{Y}_{\ell(w)} \setminus \mathcal{Y}_{\ell(w-u+s_1)} \), we have

\[|\mathcal{Y}_{\ell(v)} \setminus \mathcal{Y}_{\ell(v-u+s_1)}| = |\mathcal{Y}_{\ell(w)} \setminus \mathcal{Y}_{\ell(w-u+s_1)}| \geq |\mathcal{Y}_{\ell(u)} \setminus \mathcal{Y}_{\ell(s_1)}|. \]
The inequality comes from the left hand side inequality of Lemma 3.4 applied for \((d - k_1)\)-multisets of length \(n - 1\) and defined by the integers \(k_2, k_3, \ldots, k_n\). The multisets in \(\{X_{v - u + s_1 + 1}, \ldots, X_v\}\) cover \(D\)-multisets in \(\mathcal{Y}_{l(v)} \setminus \mathcal{Y}_{l(v - u + s_1)}\) and some other \(D\)-multisets. The latter are covered by \(A \setminus \{X_{v - u + s_1 + 1}, \ldots, X_v\}\) as well, which is easy to show under the condition \([3, \ldots, n]\) and \(D = d + 1\) as above. We define a new family

\[
\mathcal{C} = (A \setminus \{X_{v - u + s_1 + 1}, \ldots, X_v\}) \cup \{X_{s_1 + 1}, \ldots, X_u\}.
\]

Then \(|\mathcal{C}| = |A|\) and \(||\mathcal{C}|| \leq ||A||\) by the inequality above. As \(|C_{k_1}| = u\), the theorem follows in this case.

The proof is now complete.

\[\square\]

4 Analysis of the probability

We consider a system of forms \(f_1, \ldots, f_m\) of degree \(D\). Let \(d\) be a natural number. The degree \(d + D\) Macaulay matrix of the system is the matrix \(M\), whose rows are labelled by pairs \((r, f_i)\), where \(r\) are all monomials of degree \(d\), and columns are labelled by the monomials \(t\) of degree \(d + D\). The entry of the matrix \(M\) in the row \((r, f_i)\) and the column \(t\) is equal to the coefficient of the monomial \(t\) in \(rf_i\) computed in \(R_h\), see the Introduction. The size of the matrix \(M\) is \(ml_q(n, d) \times l_q(n, d + D)\). If the columns of \(M\) are linearly independent, then \(d_{\text{reg}} \leq d + D\).

Let \(f_1, \ldots, f_m\) be taken independently and uniformly at random and let \(p\) denote the probability that the columns of \(M\) are linearly dependent. We here prove that if \(d < D\) and \(m \geq l_q(n, d + D)/l_q(n, d)\), then

\[
p \leq q^d(n^{d+D}-ml_q(n,d)) + O(n^d q^{-cn^D})
\]

for a positive constant \(C\) as \(n\) tends to infinity. This implies Theorem 1.1.

The matrix \(M\) can be divided into \(m\) blocks \(M_1, \ldots, M_m\), each with \(l_q(n, d)\) rows. The matrix \(M_j\) is the Macaulay matrix for the single polynomial \(f_j\). Its rows are indexed by the multisets \(\mathcal{X}^d\) and the columns by the multisets \(\mathcal{X}^{d+D}\). For instance, let \(q = 3, n = 3, D = 2\) and

\[
f = c_{200}x_1^2 + c_{110}x_1x_2 + c_{101}x_1x_3 + c_{020}x_2^2 + c_{011}x_2x_3 + c_{002}x_3^2.
\]

The degree 3 Macaulay matrix for \(f\) is in Table 2.

As \(f_j\) are chosen independently, the matrices \(M_j\) are independent. Let \(u\) be a vector over \(\mathbb{F}_q\) and of length \(l_q(n, d + D)\). Its entries are indexed by the multisets \(\mathcal{X}^{d+D}\). Then

\[
p_u = \mathbb{P}(Mu = 0) = p^m_{1u},
\]
where \(p_{ju} = \mathbb{P}(M_j u = 0) \). Therefore, \(p \leq \sum_{u \neq 0} p_u = \sum_{u \neq 0} p_{1u}^m \).

Let \(c \) denote a vector of coefficients of \(f_1 \). It is of length \(l_q(n, D) \), and its entries \(c_L \) are indexed by the multisets \(L \in X^D \). Let \(m_{JI} \) denote the entry of \(M_1 \) in the row \(J \in X^d \) and the column \(I \in X^{d+D} \). By the definition of \(M_1 \), we have \(m_{JI} = c_{I \setminus J} \) if \(J \subseteq I \) and \(m_{JI} = 0 \) otherwise, see Table 2 for an example. So \(M_1 u = 0 \) is equivalent to the following equalities which hold for every row of \(M_1 \) indexed by \(J \in X^d \).

\[
\sum_{I \in X^{d+D}} m_{JI} u_I = \sum_{J \subseteq I} c_{I \setminus J} u_I = \sum_{L+J \in X^{d+D}} c_L u_{L+J} = 0, \tag{5}
\]

where the second sum is over \(I \in X^{d+D} \) such that \(J \subseteq I \), and the third sum is over \(L \in X^D \) such that \(L + J \in X^{d+D} \).

Let \(Y^{(u)} \) be a matrix of size \(l_q(n, d) \times l_q(n, D) \), whose rows and columns are labelled by the multisets from \(X^d \) and \(X^D \) respectively. The entries of \(Y^{(u)} \) are defined by

\[
Y_{J,L}^{(u)} = \begin{cases}
 u_{J+L} & \text{if } J + L \in X^{d+D}, \\
 0 & \text{otherwise}.
\end{cases}
\]

For \(n = 3, q = 3, d = 1, \) and \(D = 2 \) the matrix \(Y^{(u)} \) is in Table 3. By (5),

\[
\text{the equality } M_1 u = 0 \text{ is equivalent to } Y^{(u)} c = 0. \text{ So } p_{u1} = q^{-\text{rank}(Y^{(u)})} \text{ and therefore}
\]

\[
p \leq \sum_{u \neq 0} q^{-m \text{rank}(Y^{(u)})} = \sum_{v=0}^{l_q(n,d)-1} N_v q^{-m(l_q(n,d)-v)}, \tag{6}
\]
where N_v denotes the number of vectors u such that $\text{rank}(Y^{(u)}) = l_q(n, d) - v$.
The value N_v is upper bounded by the size of the set

$$S_v = \left\{ u | \text{rank}(Y^{(u)}) \leq l_q(n, d) - v \right\}.$$

In particular, $u \in S_v$ if and only if there exists a row vector subspace $V \subseteq \mathbb{F}_q^{l_q(n, d)}$ of dimension v in the kernel of $Y^{(u)}$. Let $B = (b_1, \ldots, b_v)$ be a basis of this subspace. We index the coordinates of b_i with $J \in \mathcal{X}^d$ according to the lexicographic order from left to right. Then $b_iY^{(u)} = 0$ is equivalent to

$$\sum_{J + L \in \mathcal{X}^{d+D}} b_{i,J} u_{J+L} = 0,$$

where the sum is over $J \in \mathcal{X}^d$ such that $J + L \in \mathcal{X}^{d+D}$. The basis B may be represented as a matrix of size $v \times l_q(n, d)$ in a row echelon form, where every leading coefficient is 1.

$$B = \begin{pmatrix} 0 & \ldots & 0 & 1 & \ast & \ldots & \ast & 0 & \ast & \ldots \\ 0 & \ldots & 0 & 0 & 0 & \ldots & 0 & 1 & \ast & \ldots \\ \vdots & \end{pmatrix}.$$

For each vector b_i, $i = 1, \ldots, v$ in the basis B we now define a matrix A_i. The matrix A_i has $l_q(n, d + D)$ rows and $l_q(n, D)$ columns, indexed by $I \in \mathcal{X}^{d+D}$ and by $L \in \mathcal{X}^D$ respectively. The indices are ordered according to the lexicographic order from left to right and from top to bottom. The entry I, L of A_i is defined by

$$A_{i,I,L} = \begin{cases} b_{i,I \setminus L} & \text{if } L \subseteq I, \\ 0 & \text{otherwise}. \end{cases}$$

For $n = 3, q = 3$ and $d = 1, D = 2$ the matrix A_i constructed for $b_i = (b_{100}, b_{010}, b_{001})$ is in Table 3. Let A_V denote the horizontal concatenation of the matrices A_1, \ldots, A_v, that is $A_V = A_1|A_2| \ldots |A_v$. The equalities (7) are equivalent to $uA_V = 0$ and therefore

$$|S_v| \leq \sum_{\dim(V) = v} q^{l_q(n, d+D) - \text{rank}(A_V)},$$

where the sum is over subspaces V of dimension v in $\mathbb{F}_q^{l_q(n, d)}$. Let the multiset $J_i \in \mathcal{X}^d$ indexes the first nonzero entry of the vector $b_i \in B$. As B is in a row echelon form, then the multisets J_1, \ldots, J_v are pairwise different. We denote $\mathcal{I} = \bigcup_{i=1}^v \{ I \in \mathcal{X}^{d+D} | I \supseteq J_i \}$.

Lemma 4.1. $\text{rank}(A_V) \geq |\mathcal{I}|.$
Proof. For $I \in \mathcal{I}$ we fix some multiset $J_k \subseteq I$ and take a column in the block A_k indexed by $L = I \setminus J_k$. We will show that those $|\mathcal{I}|$ columns in A_V are linearly independent. It is enough to prove that the row with index I has 1 in the column L of the block A_k and all entries upper in this column are zeroes. The latter formally means $A_{k,I,L} = 0$ if $I' < I$. First of all, $A_{k,I,L} = b_{J_k}$ since $J_k = I \setminus L$. Let $I' < I$. We consider two cases.

1. Let $I' \nsubseteq L$, then $A_{k,I',L} = 0$ by the definition of A_k.

2. Let $I' \supseteq L$, so $I' = L + J$ for some d-multiset J. As $I = L + J_k$ and $I' < I$, then $J < J_k$ by the properties of the lexicographic order. Then $A_{k,I',L} = b_{J_k} = 0$.

The lemma is proved.

Similar to Section 3, let $\ell(v)$ here denote the minimal number of $(d+D)$-multisets covered by v of d-multisets. By Lemma 4.1 and Theorem 3.1, $\text{rank}(A_V) \geq |\mathcal{I}| \geq \ell(v)$. So

$$N_v \leq \sum_{\text{dim}(V) = v} q^{\ell_q(n,d+D) - \text{rank}(A_V)} \leq s_v q^{\ell_q(n,d+D) - \ell(v)},$$

where s_v is the number of subspaces of dimension v in $F_q^{l_q(n,d)}$. It is easy to see that $s_v \leq q^{(l_q(n,d) - v + 1)^v}$. By (6), we get $p \leq$

$$\sum_{v=0}^{l_q(n,d)-1} q^{l_q(n,d-v+1)v + l_q(n,d+D) - \ell(v) - (l_q(n,d)-v)m} = q^{l_q(n,d+D) - ml_q(n,d)} + \sum_{v=1}^{l_q(n,d)-1} q^{l_q(n,d-v+1)v + l_q(n,d+D) - \ell(v) - (l_q(n,d)-v)m}.$$ \hspace{1cm} (8)

In Section 5 we prove that the second term is $O(n^d q^{-Cn^D})$ for fixed $d < D, q$, a positive constant C and n tending to infinity. That will finish the proof of Theorem 1.1.

15
Remark 4.2. We notice that if \(m < l_q(n, d+D)/l_q(n, d) \), then the regularity degree for \(m \) polynomials of degree \(D \) has to be larger than \(d + D \), for the Macaulay matrix of degree \(d + D \) cannot have linearly independent columns.

5 The second term

In this section we bound the second term in (3). Let \(d < D \) and \(q \geq 2 \) be fixed and let \(n \) tend to infinity. Let \(\mathcal{X} = \{(a_1, \ldots, a_n) | 0 \leq a_i < q, \sum_{i=1}^{n} a_i = d \} \) be a family of \(d \)-multisets according to the definitions in Section 3 for \(k_i = q - 1 \).

By \(\ell(v) \) we denote the number of \((d+D) \)-multisets covered by the family of the first \(v \) of lexicographically ordered \(d \)-multisets \(\mathcal{X} \). Let \(S(t) = \sum_{i=0}^{\infty} \alpha_i t^i \) and \([t^d] S(t) \) denote the coefficient at \(t^d \). Obviously,

\[
\ell_q(n, d) = [t^d] \left(1 - t^q\right)^n / (1 - t)^n.
\]

Let \(\left[\begin{array}{c} n \\ j \end{array}\right] \) denote the number of solutions to \(j = x_1 + \ldots + x_n \) in integer \(x_i \geq 0 \). Then

\[
\frac{1}{(1-t)^n} = \sum_{j=0}^{\infty} \left[\begin{array}{c} n \\ j \end{array}\right] t^j.
\]

Lemma 5.1. \(l_q(n, d) = \left[\begin{array}{c} n \\ d \end{array}\right] + O(n^{d-q+1}) \) as \(n \to \infty \).

Proof. By (9), \(l_q(n, d) = \)

\[
\left[\begin{array}{c} n \\ d \end{array}\right] \left(1 - t^q\right)^n / (1 - t)^n.
\]

\[
= \left[\begin{array}{c} n \\ d \end{array}\right] + \sum_{i=1}^{\left\lfloor d/q \right\rfloor} (-1)^i \left[\begin{array}{c} n \\ i \end{array}\right] \left[\begin{array}{c} n \\ d - iq \end{array}\right] = \left[\begin{array}{c} n \\ d \end{array}\right] + O(n^{d-q+1}).
\]

Let \(s \geq 1 \) and \(l_{s,q}(n, d) \) denote the number of monomials of degree \(d \) in \(\mathbb{F}_q[x_1, \ldots, x_n]/(x_1^s, x_2^q, \ldots, x_n^q) \). Obviously,

\[
l_{s,q}(n, d) = \sum_{i=0}^{s-1} l_q(n - 1, d - i).
\]

Let \(S = \{1, \ldots, l_q(n, d)\} \) and \(X_v \) denote the \(v \)-th largest multiset in the family of \(d \)-multisets \(\mathcal{X} \) according to the lexicographic order. We will partition \(S \) into disjoint intervals.

Let \(0 \leq \delta \leq d \). By division with remainder, \(d - \delta = \sigma(q - 1) + t \) for some \(\sigma \geq 0 \) and \(0 \leq t < q - 1 \). We consider a family of all \(d \)-multisets

\[
(q - 1, \ldots, q - 1, u, a_{\sigma+2}, \ldots, a_n),
\]

16
where \(u \geq t \), for some \(a_{\sigma+2}, \ldots, a_n \). Let \(v_\ell \) denote the largest index \(v \) such that \(X_v \) belongs to that family. If that does not exist we put \(v_\ell = v_{\delta-1} \), where \(v_{\ell-1} = 0 \). Obviously, \(v_\ell = l_{q-\ell q}(n-\sigma, \delta) \). In particular, \(v_0 = 1, v_d = l_q(n, d) \), and \(v_{\ell-1} < v_0 \leq v_1 \leq \ldots \leq v_d \).

Let \(I_\delta \) denote all \(v \) such that \(v_{\delta-1} < v \leq v_\delta \). Clearly, \(v \in I_\delta \) if and only if \(X_v \) belongs to the family of \(d \)-multisets

\[(q-1, \ldots, q-1, t, a_{\sigma+2}, \ldots, a_n)\]

for some \(a_{\sigma+2}, \ldots, a_n \). So \(|I_\delta| = v_\delta - v_{\delta-1} = l_q(n-\sigma-1, \delta) \). We have

\[S = \bigcup_{\delta=0}^d I_\delta \text{.} \]

Let \(0 \leq x \leq n - \sigma - 1 \). We consider a family of all \(d \)-multisets

\[(q-1, \ldots, q-1, t, 0, \ldots, 0, a_{\sigma+x+2}, \ldots, a_n)\],

where \(a_{\sigma+x+2} \neq 0 \). Let \(v_{\delta,x} \) denote the largest \(v \) such that \(X_v \) belongs to that family. If the family is empty we put \(v_{\delta,x} = v_{\delta,x-1} \), where \(v_{\delta,x-1} = v_{\delta-1} \). Then \(v_{\delta-1} = v_{\delta,0} \leq \ldots \leq v_{\delta,n-\sigma-1} = v_\delta \). Obviously, \(v_{\delta,x} = v_\delta - l_q(n-\sigma-x-2, \delta) \). Let \(I_{\delta,x} \) denote the set of all \(v \) such that \(v_{\delta,x-1} < v \leq v_{\delta,x} \). Then \(I_\delta = \bigcup_{x=0}^{n-\sigma-1} I_{\delta,x} \).

Proposition 5.2. If \(\delta = 0 \), then \(\ell(v_{0,n-\sigma-1}) = l_q(n-\sigma, \delta + D) \), and \(\ell(v_{0,x}) = 0 \) for \(x < n - \sigma - 1 \). If \(\delta > 0 \), then

\[\ell(v_{\delta,x}) = l_{q-\ell q}(n-\sigma, \delta + D) - l_q(n-\sigma-x-2, \delta + D)\].

Proof. For \(\delta = 0 \) the statement is obviously correct. Let \(\delta > 0 \). We notice that the family of \(d \)-multisets \(X_v \), where \(1 \leq v \leq v_{\delta,x} \), consists of \(d \)-multisets

\[(q-1, \ldots, q-1, t+a_{\sigma+1}, a_{\sigma+2}, \ldots, a_n)\],

where at least one among \(a_{\sigma+1}, \ldots, a_{\sigma+x+2} \) is non-zero and \(\sum a_i = \delta \). That family covers all and only \((d + D)\)-multisets of the form

\[(q-1, \ldots, q-1, t+a_{\sigma+1}, a_{\sigma+2}, \ldots, a_n)\],

where at least one among \(a_{\sigma+1}, \ldots, a_{\sigma+x+2} \) is non-zero and \(\sum a_i = \delta + D \). The number of such \((d + D)\)-multisets is \(l_{q-\ell q}(n-\sigma, \delta + D) - l_q(n-\sigma-x-2, \delta + D) \). That implies the statement for \(\delta > 0 \).

Lemma 5.3. Let \(v \in I_{\delta,x} \). Then \(\ell(v+1) - \ell(v) \leq l_q(n-\sigma-x-2, D) \).

Proof. Since \(v \in I_{\delta,x} \), then

\[X_v = (q-1, \ldots, q-1, t, 0, \ldots, 0, a_{\sigma+x+2}, \ldots, a_n)\],

for some \(a_{\sigma+x+2}, \ldots, a_n \), where \(a_{\sigma+x+2} \neq 0 \). It follows that

\[X_{v+1} = (q-1, \ldots, q-1, t, 0, \ldots, 0, a_{\sigma+x+2}, \ldots, a_{j-1}, a_j - 1, b_{j+1}, \ldots, b_n)\],

17
for \(j \geq \sigma + x + 2 \) and some \(b_{j+1}, \ldots, b_n \). Any \((d + D)\)-multiset covered by \(X_{v+1} \) and not covered by \(\{X_1, \ldots X_v\} \) is in the family of \((d + D)\)-multisets
\[
(q - 1, \ldots, q - 1, t, 0, \ldots, 0, a_{\sigma + x + 2}, \ldots, a_{j-1}, a_j - 1, c_{j+1}, \ldots, c_n),
\]
for some \(c_{j+1}, \ldots, c_n \). The size of that family is at most \(l_q(n - \sigma - x - 2, D) \). That implies the lemma. \(\Box \)

Lemma 5.4. Let \(1 < s \leq q \), then
1. \(l_{s,q}(n, \delta) - l_q(n - x, \delta) \geq xl_q(n - x, \delta - 1) \).
2. for \(x \leq \sqrt{n} \) and large enough \(n \),
\[
l_{s,q}(n, \delta) - l_q(n - x, \delta) \leq x(l_q(n - 1, \delta - 1) + (q - 2)l_q(n - 1, \delta - 2)) \).
\]

Proof. By (10),
\[
l_{s,q}(n, \delta) - l_q(n - x, \delta) =
\]
\[
= (l_{s,q}(n, \delta) - l_q(n - 1, \delta)) + \sum_{i=1}^{x-1} (l_q(n - i, \delta) - l_q(n - i - 1, \delta)) =
\]
\[
= \sum_{j=1}^{s-1} l_q(n - 1, \delta - j) + \sum_{i=1}^{x-1} \sum_{j=1}^{q-1} l_q(n - i - 1, \delta - j) \geq xl_q(n - x, \delta - 1)
\]
by considering only summands for \(j = 1 \). On the other hand for \(x < \sqrt{n} \) and \(n \) large enough \(l_q(n - x, \delta - i) > l_q(n - x, \delta - i - 1) \). Therefore,
\[
l_{s,q}(n, \delta) - l_q(n - x, \delta) =
\]
\[
= \sum_{j=1}^{s-1} l_q(n - 1, \delta - j) + \sum_{i=1}^{x-1} \sum_{j=1}^{q-1} l_q(n - i - 1, \delta - j) \leq
\]
\[
\leq \sum_{i=0}^{x-1} \sum_{j=1}^{q-1} l_q(n - i - 1, \delta - j) \leq
\]
\[
\leq xl_q(n - 1, \delta - 1) + (q - 2) \sum_{i=0}^{x-1} l_q(n - i - 1, \delta - 2) \leq
\]
\[
\leq x(l_q(n - 1, \delta - 1) + (q - 2)l_q(n - 1, \delta - 2)).
\]
As stated. \(\Box \)

We consider the exponent in the second term of (8). As \(m \geq \frac{l_q(n, d + D)}{l_q(n, d)} \),
\[
(l_q(n, d) - v + 1) v + l_q(n, d + D) - \ell(v) - (l_q(n, d) - v) m \leq E(v),
\]
18
Proof.ассume $v \in I_\delta$, that is $v_{\delta-1} < v \leq v_{\delta}$. First, let $\delta = 0$, then $v = 1$ and
\[
E_n(1) = l_q(n, d) + \frac{l_q(n, d + D)}{l_q(n, d)} - \ell(1),
\]
where, by Proposition 5.2, $\ell(1) = l_{t,q}(n - \sigma, D) = \frac{n^D}{D!} + O(n^{D-1})$ for large n. Therefore,
\[
E_n(1) = -n^D \left(\frac{1}{D!} - \frac{d^!}{(d + D)!} \right) + O(n^{D-1}). \tag{11}
\]
Let $\delta > 0$ and $v \in I_{\delta,x}$, that is $v_{\delta,x-1} < v \leq v_{\delta,x}$.

Lemma 5.5. Let $0 < \alpha < \sqrt{\frac{d(D)}{(d+D)!}}$. Then for $x > n(1 - \alpha)$ and $v \in I_{\delta,x}$, we have $E_n(v + 1) - E_n(v) > 0$ for all n large enough. In particular, the maximum on the given intervals of the function E_n can be found at $v = v_\delta$.

Proof. Using Lemma 5.3, we can see that
\[
E_n(v + 1) - E_n(v) = P - 2v - 1 - \ell(v + 1) + \ell(v) \geq \frac{l_q(n, d + D)}{l_q(n, d)} - l_q(n, d) - l_q(n - \sigma - x - 2, D).
\]
As $x > n(1 - \alpha_0)$,
\[
E_n(v + 1) - E_n(v) \geq \left[\frac{n^D}{\alpha} \right] - \left[\frac{\alpha n - \sigma - 2}{D} \right] + O(n^{D-1}) \geq n^D \left(\frac{d^!}{(d+D)!} - \frac{\alpha^D}{D!} \right) + O(n^{D-1}).
\]
So for n large enough we have $E_n(v + 1) - E_n(v) > 0$ for $v \in I_{\delta,x}$ and $x > n(1 - \alpha)$.

Proposition 5.6. There exists positive C and n_0 such that $E_n(v) < -Cn^D$ for $n \geq n_0$ and $1 \leq v \leq l_q(n, d) - 1$.

Proof. Let $v \in I_{\delta,x}$, that is $v_{\delta,x-1} < v \leq v_{\delta,x}$. Then $E_n(v) < P\ell(v_{\delta,x}) - \ell(v_{\delta,x-1})$. Let $0 < \alpha < \sqrt{\frac{d(D)}{(d+D)!}}$ be a fixed number. We will divide I_δ into three intervals: $0 \leq x \leq \sqrt{n}, \sqrt{n} < x \leq n(1 - \alpha), n(1 - \alpha) < x \leq n - \sigma - 1$ and bound $E_n(v)$ from above on each of them.

Case 1. Let $0 \leq x \leq \sqrt{n}$. By Lemma 5.4,
\[
E_n(v) \leq P \ell(v_{\delta,x}) - \ell(v_{\delta,x-1}) \leq P(x + 2)(l_q(n - \sigma - 1, \delta - 1) + (q - 2)l_q(n - \sigma - 1, \delta - 2)) - (x + 1)l_q(n - \sigma - x - 1, \delta + D - 1) \leq (x + 1) \left(n^{\delta + D - 1} \left(\frac{2\delta}{(d+D)(d-1)!} - \frac{1}{(d+D-1)!} \right) + O(n^{\delta + D - 3/2}) \right). \tag{12}
\]

19
The leading term of the last expression is negative for every \(x \geq 0 \), since
\[
2(\delta + D - 1)! = (2\delta)(\delta + D - 1) \ldots (\delta + 1)(\delta - 1)! < (d + D) \ldots (d + 1)(\delta - 1)!.
\]
Hence, for \(n \) sufficiently large the maximum of (12) is achieved for \(x = 0 \).

Case 2. Let \(\sqrt{n} < x \leq n(1 - \alpha_0) \). For simplicity, we replace \(n - \sigma - x - 2 = y \), so \(\alpha_0 n - 2 - \sigma \leq y < n - \sqrt{n} - 2 - \sigma \). By rearranging the terms,
\[
E_n(v) \leq P v_{\delta,x} - \ell(v_{\delta,x-1}) = P l_{q-t,q}(n - \sigma, \delta) - l_{q-t,q}(n - \sigma, \delta + D) - P l_{q}(y, \delta) + l_{q}(y + 1, \delta + D).
\]
We have
\[
Pl_{q-t,q}(n - \sigma, \delta) - l_{q-t,q}(n - \sigma, \delta + D) = n^{\delta + D} \left(\frac{d!}{(D + d)! \delta!} - \frac{1}{(D + \delta)!} \right) + O(n^{\delta + D - 1}). \tag{13}
\]
Then
\[
-Pl_{q}(y, \delta) + l_{q}(y + 1, \delta + D) = \left[\frac{y}{\delta} \right] - \left[\frac{n}{d + D} \right] + O(n^{\delta + D - 1}) = \left[\frac{y}{\delta} \right] - \left[\frac{n - \sqrt{n}D!}{(D + d)!} + \frac{(n - \sqrt{n})D!}{(D + \delta)!} \right] + O(n^{\delta + D - 1}) = \left[\frac{y}{\delta} \right] - \left[\frac{y}{(D + \delta)!} \right] - \frac{n^{D - 1/2}D!}{(D + \delta)!} + O(n^{\delta + D - 1}). \tag{14}
\]
We notice that for \(n \) large enough (this choice depends only on \(\delta, d, \) and \(D \)) the sum in the parenthesis is positive if \(\delta < d \) and negative if \(\delta = d \). If \(\delta < d \), then
\[
-Pl_{q}(y, \delta) + l_{q}(y + 1, \delta + D) \leq n^{\delta + D} \left(\frac{1}{(\delta + D)!} - \frac{d!}{(D + d)! \delta!} \right) - \frac{n^{\delta + D - 1/2}D!}{(D + \delta)!} + O(n^{\delta + D - 1}). \tag{15}
\]
If \(\delta = d \), then
\[
-Pl_{q}(y, \delta) + l_{q}(y + 1, d + D) \leq -\frac{n^{d + D - 1/2}D!\alpha_0 d}{(d + D)!} + O(n^{d + D - 1}). \tag{16}
\]
Overall for \(\delta < d \), by putting together (13) and (15), we have
\[
E_n(v) \leq -\frac{n^{\delta + D - 1/2}D!}{(\delta + D)!} + O(n^{\delta + D - 1}) \tag{18}
\]
for \(n \) large enough. For \(\delta = d \), by putting together (13) and (17),

\[
E_n(v) \leq -\frac{n^{d+D-1/2}D\alpha^d}{(d + D)!} + O(n^{d+D-1})
\]

(19)

for \(n \) large enough.

Case 3. Let \(n(1 - \alpha) < x \leq n - \sigma - 1 \). Then, by Lemma 5.5 \(E_n(v) \leq E_n(v_\delta) \).

For \(\delta = d \), since \(v_d = l_q(n, d) \) is not in the domain of \(E_n \), we use \(E_n(v_d - 1) \) as an upper bound, where

\[
E_n(v_d - 1) = 2l_q(n, d) - 2 - \frac{l_q(n, d + D)}{l_q(n, d)} = -\frac{n^{D+d}}{(d+D)!} + O(n^{D-1})
\]

(20)

since \(l_q(n, d + D) = \ell(v_d - 1) \). For \(\delta < d \), the maximum of \(E_n \) on the interval is achieved at \(v_\delta \):

\[
E_n(v_\delta) \leq P l_{q-t,q}(n \sigma,) - l_{q-t,q}(n - \sigma, \delta + D) = -n^{\delta+d} \left(\frac{1}{(d+D)!} \right) - \frac{d!}{(d+D)!} + O(n^{\delta+d-1}).
\]

(21)

Overall, by combining (11), (12), (18), (19), (20), (21), we get \(E_n(v) \leq -Cn^D \) for a positive \(C \), large enough \(n \) uniformly in \(v \in (1, l_q(v,d) - 1) \) (that means \(n \geq n_0 \) and \(n_0 \) is independent of \(v \)).

We can conclude the proof of Theorem 1.1.

\[p \leq 2q^{l_q(n,d+D)-ml_q(n,d)} + \sum_{v=1}^{l_q(n,d)-1} qE_n(v) \leq q^{l_q(n,d+D)-ml_q(n,d)} + O(q^{Dq-Cn^D}). \]

Acknowledgements

The research was funded by the University of Bergen and by the Norwegian Research Council under the project *Modern Methods and Tools for Theoretical and Applied Cryptology*.

References

