A Comparison of Single-Bit and Multi-Bit DPA
for Attacking AES128 on an ATmega328P

Michael Yonli
Email: michiy@gmx.net

Abstract

Side channel attacks have demonstrated in the past that it is possible
to break cryptographic algorithms by attacking the implementation rather
than the algorithm. This paper compares an adaptation of Paul Kocher’s
Differential Power Analysis (DPA) for AES with a multi-bit variant by
attacking an AES128 implementation for an ATmega328P microcontroller
board. The results show that the use of multi-bit DPA can significantly
reduce ghost peaks and allow for the recovery of a key with far fewer
traces.

1 Background
1.1 Side Channel Attacks

While widely used algorithms have successfully been designed to be resistant
against attacks, side channel attacks which target implementations have had a
bigger impact on the security of cryptographic systems. Popular implement-
ations of widely used algorithms have been shown to be vulnerable to such
attacks. These side channel attacks utilise implementation specific characterist-
ics in order to attack cryptographic systems [6]. Examples include Bernstein’s
timing attack [2] on the Advanced Encryption Standard (AES), in which he
demonstrates how an attacker can recover the key of an algorithm within a few
hours, and Kocher’s Diffrential Power Analysis (DPA) [6], which demonstrates
how power draw can be used to recover the key being used for the Data Encryp-
tion Standard (DES). What sets these attacks apart is that they are completely
independent of the security of the attacked algorithm. An algorithm with no
known attacks may still be vulnerable to side channel attacks. This complic-
ates the design of secure systems, since the implementational aspects have to be
considered. The algorithm itself may be vulnerable, the software system that
was written to implement the algorithm may be vulnerable or the underlying
hardware may be vulnerable.

mailto:michiy@gmx.net

1.2 Original DPA Attack

In his publication Kocher describes an attack which uses the correlation between
the power dissipation of a processor and the data it is operating on to recover the
cryptographic key of a smartcard running DES [6]. Fundamentally, his attack
uses the correlation in order to create an oracle which allows the attacker to
bruteforce each possible key block separately. Rather than guessing the whole
key at once, the attacker can bruteforce the key chunk by chunk.

The first step of the attack is to recover a set of power traces [6]. Each trace
represents the power dissipation of the system as it encrypts a piece of data
with a fixed key [6]. Kocher attacks the last round of the encryption process
and makes use of a selection function [6]: D(C,b, K;). C denotes the ciphertext
(note that we need to capture the ciphertext along with the power traces) [6].
b selects the bit of the DES intermediate L at the beginning of the last round,
which is the value of the function [6]. And K, is a guess for the key block
that enters the S-box corresponding to bit b of the intermediate [6]. The attack
assumes that an incorrect guess of K results in D computing the correct value
of bit b in half of all cases [6].

The attacker now captures m traces with k samples each [6]: T1. m[1... k]
and computes the differential trace Ap[l... k] [6].

PUTUSIDEGRK) (- Db K)

If the correct K is chosen, then the differential trace will correspond to the
average power consumption of having that one bit set |6]. For an incorrect
K, there is no correlation between the differential trace and the average power
consumption of the chosen bit [6]. As D is going to compute the correct value in
half of all cases, we are effectively looking at a function which randomly assigns
traces into two sets, for an incorrect K. Thus:

Tim_ Aplj]~0 @)
for an incorrect K, [6]. We can calculate Ap[j] for every possible K, in the
case of DES that would be 64 possibilities [11]. The differential trace with the
biggest peak will then correspond to the correct key block.

1.3 Problems with DPA

One of the issues which was hinted at by Kocher and also encountered by various
other researchers are so called ghost peaks [6][8]. Differential traces for incorrect
key guesses are not always close to 0 |6], they may display peaks and these peaks
can be even bigger than the ones for the correct key guess [8]. Ghost peaks are
partially caused by a bias of the S-boxes [3].

Some researches attempted to leverage these ghost peaks by predicting where
they would occur for different roundkeys and then comparing them to the meas-
ured peaks |[8].

Another possibility of approaching this issue is to make use of what is called
multi-bit DPA [7].

2 Multi-Bit DPA

As the name suggests, multi-bit DPA uses multiple bits rather than a single bit
to calculate the differential trace. But first, we have to adjust Kocher’s DPA
from DES to AES. Instead of attacking the intermediate L, we will be attacking
a bit of the S-box input. The last round of AES consists of the SubBytes,
ShiftRows and AddRoundKey operations in that order [4]. We simply guess
the key byte and invert SubBytes; Shift Rows can be ignored since the position
of the targeted byte in the state does not matter. We then use the value of the
S-box input bit b to partition the traces into two sets. What makes this version
distinct from ordinary DPA is that we perform this partition for every possible
b. This reduces the impact of S-box biases and other unwanted correlations.
The new formula is as follows:

oli] = 2= i DCub K)TLY - oy (5, (1 = D(Cinb, KT
b1 (7 D(Ci b, Ky)) Yo (S (1= D(Ci, b, K)))

Note that the formula assumes that we are dealing with an 8-bit S-box.

(3)

3 Measurement Setup

3.1 Device under Attack

In order to minimise the time period that needed to be captured per trace,
a highly optimised assembly implementation of AES-128 was chosen [9]. The
attack would also work with a less efficient implementation, but the limited
number of sample points that can be stored on the oscilloscope would require
a lower sampling frequency. Additionally, less sample points per trace reduce
both the file size of the traces and make the attack less time-consuming.

This implementation had to be modified since it violates the avr-gcc ap-
plication binary interface (ABI), which makes an integration with high level
programming languages difficult. The author did not follow the conventions
regarding the use of registers and parameter passing. As a result, wrapper
functions were added which store and restore certain registers and translate
the passed parameters from the high level language ABI to the interface used
by the AES implementation. In addition, some assembly instructions were ad-
ded in order to toggle a pin for the duration of the encryption routine. This
ensures that the oscilloscope can measure the process efficiently and simplifies
synchronisation.

The platform to run the cryptographic algorithm was the Arduino Uno, a
microcontroller board. The Arduino Uno uses an ATmega328P with a clock
frequency of 16MHz to execute uploaded programs |1]. One of the main reasons

Figure 1: Left: ATmega328P microcontroller with its VCC pin bent in order
to avoid making contact with the socket in the package. Right: Back of the
Arduino board with a wire soldered to a contact corresponding to the VCC
socket in the package.

why this platform was chosen is because of its low clock frequency. A higher
clock frequency would have required us to capture signals that have a higher
frequency, which in turn would have required more expensive equipment that
we did not have access to. Another benefit is the microcontroller’s determin-
istic behaviour. Table lookups are executed in constant time, since this simple
architecture does not make use of data caches. This ensured that an encryption
always took the same amount of time and made it easier to align traces. The
only feature which added variation to the process were interrupts, these were
simply disabled for the duration of the encryption.

The firmware that ran on the Arduino read one block (16 bytes) over a
universal serial bus (USB) connection, encrypted it and sent the ciphertext
back over the USB connection. The cipher mode being used was electronic code
book (ECB).

Measuring the current draw of the processor requires the addition of a shunt
resistor. This resistor was added between the VC'C contact of the DIP-package
and the VCC pin of the microcontroller by bending the microcontroller pin so
that no contact with the socket is made on that pin and soldering the other
part of the resistor to the package contact. The microcontroller is capable of
running without any current coming through the VCC pin as it has a second
pin, AVCC, for the analogue parts which can fully supply the microcontroller
on its own. We verified this by completely disconnecting the VC'C pin and
running a program that would modify pins on the microcontroller. The change
in state of the pins showed that the program still ran as expected. However, the
voltage of the digital pins was reduced and programs which require the output
of signals with higher voltages may run into issues.

Using USB to power the board resulted in strong fluctuations of the power
supply which could have impacted the attack. Hence, we decided to power the
board with a dedicated power supply, which resulted in a fairly stable supply
voltage.

Figure 2: The DPA setup: two probes are connected to the shunt resistor and
the third probe which is not fully in the picture is connected with the trigger

pin.

3.2 Oscilloscope

A Tektronix TDS3034B oscilloscope was used to capture traces from the device
under attack. Two probes were attached to the shunt resistor and one probe was
attached to the trigger pin. This pin was manipulated in order to indicate the
state of the Arduino. The ground clamps of all three probes were attached to
the ground pin of the board. The roughly fixed value of the shunt resistor would
allow us to calculate the current that is currently flowing through the processor.
However, this calculation is essentially a multiplication by a constant factor
and can therefore be neglected for our purposes. The attack may be carried
out by using the voltage drop across the resistor rather than the actual current
flowing through it. In order to recover the voltage difference across the two
channels, an internal function of the oscilloscope which calculates the difference
between two inputs was used. This allowed us to half the amount of data that
needed to be transferred from the oscilloscope, when compared with sending
both signals and calculating the difference on another platform. The fact that
the microcontroller is capable of running without a voltage being applied to
VCC means that we may use resistors with an arbitrarily high resistance for
our shunt resistor. Empirically, we determined that a resistor with a higher
resistance resulted in bigger voltage differentials. But this effect disappeared as
we moved towards higher resistances, for example no clear difference between 1k

1.10

1.05 4

Volts

1.00 4

T T T T T T
2000 2100 2200 2300 2400 2500
Nanoseconds

Figure 3: A small portion of a trace. A clock period corresponds to 62.5 nano-
seconds.

Ohm and 1M Ohm were found. The final resistance of the resistor was chosen
to be 10M Ohm.

The oscilloscope offers a bandwidth of 300 MHz which is sufficient, consid-
ering that our target uses a clock frequency of 16 MHz. The whole captured
spectrum is affected by noise and limiting the bandwidth to the frequencies
of the signal can result in a higher signal-to-noise ratio [5|. We experimented
with halving the bandwidth in an attempt to remove noise and recover a higher
quality signal, but the effects were marginal and the full bandwidth was used.

A sampling frequency of 1 GS/s was used for the experiment since this is
the highest frequency supported when considering the storage constraints and
the time needed for an encryption. The oscilloscope is capable of storing a total
of 10 000 sample points, which turned out to be a limiting factor and made the
experiment more difficult. According to the official documentation of the AES
implementation, the encryption of a block of data takes 2474 clock cycles [9].
Hence, we would be left with about 4 samples per clock period if we were to
capture the full encryption. This translates to a sampling frequency of roughly
64MS/s. However, we are using 1GS/s which allows us to capture about 160
clock cycles. In order for the attack to succeed, only a specific part of the whole
encryption process is needed. Namely, the beginning of the last round during
which the final S-box lookup happens. We were able to limit that space to these
160 cycles by adding assembly instructions to raise a pin during the parts of
the encryption that needed to be captured and then measuring the time. These
instructions were removed during the actual measurement, since there was some
concern that they could influence the supply voltage. Driving or lowering a pin
is an expensive action which leaves a clearly visible peak in the power trace.
The results were verified by examining the source code and counting the clock
cycles that the processor would take to execute the program.

3.3 Laptop

The whole experiment is orchestrated from a laptop which is controlling the
oscilloscope via an Ethernet connection and the Arduino over an USB connec-
tion. The oscilloscope exposes a programming interface over a protocol called
VXI-11. This interface allows us to download data and to configure the settings

of the oscilloscope. A library was developed, with the help of the developer’s
handbook, in order to implement the commands that are essential for the ex-
periment. These are mostly related to the downloading of data and managing
the trace acquisitions.

As part of the initialisation, some parameters such as the format of the
downloaded data and trigger settings are set. This is followed by the arming of
the trigger, which enables the oscilloscope to capture data. We now proceed to
send a block of random data to the Arduino which encrypts the data, toggles the
trigger pin in the process and sends the ciphertext back over the USB connec-
tion. At this point the oscilloscope will have captured a trace of the encryption
process and will disarm the trigger to avoid synchronisation issues. The pro-
gram running on the laptop now verifies the encryption of the Arduino by using
a different AES implementation and comparing the results. A deviation results
in the abortion of the experiment and an error message. So far no deviations
have occurred, which indicates that the AES implementation is correct and
that no corruption occurs as part of the measurement process. The ciphertext
is saved in a file and the trace is downloaded from the oscilloscope. We have
experimented with using a relational database for the data, but code profiling
revealed that the database increases the time taken to store each measurement
by a significant amount while offering no clear benefits. This download of data
turned out to be the bottleneck in the process of taking measurements and care
was taken to optimise this. As part of the optimisation the internal oscilloscope
data format is used for the data. This format needs the least amount of data for
a trace and is also the fastest according to the documentation [10]. A custom
parser for the internal format was written as part of the project and verified
with a sine wave. This parser converts the traces from the internal format to a
format known as comma separated value (CSV). Finally, the CSV data is stored
in a flat file. This whole process takes about one second per trace with the bulk
of the time being spent on waiting for the oscilloscope.

The next step is to process the captured data and perform the attack de-
scribed in the next chapter. First we need to parse the CSV file, which is done
by Panda’s CSV-parser. It was chosen since it allows to parse the file in chunks
as opposed to reading the whole file into memory at once and then parsing it.
This approach allowed us to reduce the memory usage and resulted in a better
overall performance. The size of the file is going to be around 1.8 GB for about
10 000 traces. NumPy is used to implement the algorithm itself, since arith-
metic on NumPy arrays is far more efficient than on Pandas Dataframes. This
was determined by using a Python profiler. Once we have the set of differen-
tial traces, we sort it by the sample point with the biggest magnitude in each
differential trace.

4 DPA Results

The original DPA algorithm failed to recover the AES key with 10 000 traces
and in general appeared to be inferior to the modified multi-bit version. In order

to account for errors in the measurement process, additional sets of data were
captured and the differential traces were compared. These traces showed, as
expected, some minor differences, but overall the results were similar. Increasing
the number of traces to 15 000 offered little improvement and the number of
traces would likely need to be orders of magnitudes bigger.

However, when ranking the differential traces by their peaks, the original
algorithm consistently places the correct subkey in the upper half. This suggests
that the algorithm can, at the very least, be used in order to guess the key in
an educated manner, which is more efficient than an exhaustive search.

The modified version fares far better and is capable of recovering the full
key with 10 000 traces. It should be noted that the modifications come with
an increase in time complexity. The original algorithm takes about 24 minutes
to attempt to recover the roundkey, while our version recovers the roundkey in
140 minutes. Of these times roughly one minute is spent just reading the file.
However, the scripts used to extract the key could still be further optimised by
parallelising operations.

Metrics described in [8] were used in order to evaluate and compare the
performance of the algorithms. The results in table [I| were acquired by running
the DPA attack multiple times on a full key and then treating each subkey
attack as an independent result. The numbers are averages and the number of
guesses needed refers to attacking a byte of the key, not the whole key.

The table makes it clear that our modified approach is more efficient even
when we are only using 1000 traces. It should also be noted that the original
method reaches a peak ratio with 8000 traces comparable to the modified ap-
proach with 1000 traces, but it still fails to reach a comparable number of guesses
needed. Another interesting insight is that we actually experience a temporary
drop in correctly identified key bytes as we add more traces. The modified al-
gorithm is capable of instantly identifying all key bytes when using 8000 traces
but fails to do so when presented with 9000. This is likely just a result of noise,
the overall trend is clearly that the attacks improve as more traces are used.

5 Conclusion

We have demonstrated that AES128 can be easily broken by using multi-bit
DPA and that this version offers significant benefits over the original DPA al-
gorithm. The fact that the Arduino offers no hardware implementation of AES
requires authors to mitigate any attacks in software. This likely decreases the
performance of the code and makes the development of cryptographic routines
more difficult. However, physical access and tampering is required to perform
these attacks and contrary to devices such as smartcards, the Arduino is not
commonly deployed in scenarios where attacks with these requirements pose a
threat.

Kocher’s original DPA algorithm fares fairly poorly when modified to run
with AES and was unable to recover the key. A possible explanation might
be that the original algorithm was published on DES, which uses different S-

Traces Ratio Guesses
Original | Modified | Original | Modified
1000 0.6373 1.0736 71.1875 7.7500
2000 0.7983 1.4482 52.3750 2.7500
3000 0.8627 1.7709 41.9375 1.7500
4000 0.9640 1.9955 43.1250 1.3750
5000 1.0174 2.1958 36.1250 1.1250
6000 1.0390 2.2209 35.6250 1.1250
7000 1.0354 2.2792 34.0000 1.1250
8000 1.0730 2.3096 34.2500 1.0000
9000 1.0559 2.3493 32.1875 1.0625
10000 1.0574 2.3586 30.8125 1.0000

Table 1: Comparison of original and modified DPA. Traces is the number of
traces used for the algorithm. Ratio is the average ratio of the correct peak to
the highest incorrect peak. Guesses is the average number of guesses needed in
order to find the correct subkey.

boxes from AES and that the original attack targeted a smartcard while we are
targeting a microcontroller. The modified mutli-bit variant that this project
produced coped far better and achieved better performance with one tenth of
the data. This variant takes roughly six times as long as the original algorithm
to recover the key, but has no other drawbacks and can be applied in the same
scenarios as the original algorithm, which is an advantage when compared to
other algorithms proposed by the research community. The performance gap
may be further narrowed by parallelising the calculation of differential traces
for different bits.

Hardware was one of the limiting factors for the project and care should be
taken that the available instruments are capable of capturing the desired data in
a quick and efficient manner. This also implies that only an attacker with access
to high-end equipment would be capable of performing this attack on devices
which have a significantly higher clock frequency, such as desktop computers.

References

[1] Arduino. Arduino Uno Rev3. 2019. URL: https://store.arduino.cc/
arduino-uno-rev3.

[2] Daniel J. Bernstein. ‘Cache-timing attacks on AES’. 2005.

[3] Eric Brier, Christophe Clavier and Francis Olivier. ‘Correlation Power
Analysis with a Leakage Model’. In: Lecture Notes in Computer Science
Cryptographic Hardware and Embedded Systems - CHES 2004 (2004),
pp. 16-29. DOI: |10.1007/978-3-540-28632-5_2.

[4] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. 1999.

https://store.arduino.cc/arduino-uno-rev3
https://store.arduino.cc/arduino-uno-rev3
https://doi.org/10.1007/978-3-540-28632-5_2

[5] Tektronix Experts. Scope tip: Use Bandwidth Limiting to Reduce Noise
on Captured Signals. 2014. URL: https://www.tek.com/blog/scope-
tip-use-bandwidth-limiting-reduce-noise-captured-signals.

[6] Paul Kocher, Joshua Jaffe and Benjamin Jun. ‘Differential Power Ana-
lysis’. In: Advances in Cryptology — CRYPTO’ 99 Lecture Notes in Com-
puter Science (1999). https://www.paulkocher.com/doc/DifferentialPowerAnalysis.
pdfl, pp. 388-397. DOIL: |10.1007/3-540-48405-1_25.

[7] Thanh-Ha Le et al. ‘A Proposition for Correlation Power Analysis En-
hancement’. In: Lecture Notes in Computer Science Cryptographic Hard-
ware and Embedded Systems - CHES 2006 (2006), pp. 174-186. DOI: [10.
1007/11894063_14.

[8] Jing Pan et al. ‘Improving DPA by Peak Distribution Analysis’. In: Se-
lected Areas in Cryptography Lecture Notes in Computer Science (2011),
pp- 241-261. DOI: [10.1007/978-3-642-19574-7_17.

[9] B. Poettering. AVRAES: The AES block cipher on AVR controllers. Mar.
2007. URL: http://point-at-infinity.org/avraes/|

[10] Tektronix. Digital Phosphor Oscilloscopes Programmer Manual. 2008. URL:
https://www.tek.com/oscilloscope/tds3014b - manual /tds3000 -
tds3000b-tds3000c-series.

[11] U.S. DEPARTMENT OF COMMERCE/National Institute of Standards
and Technology. DATA ENCRYPTION STANDARD (DES). Gaithers-
burg, MD, USA: U.S. DEPARTMENT OF COMMERCE/National In-
stitute of Standards and Technology, Oct. 1999. URL: https://csrc.
nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-
25/documents/fips46-3.pdfl

10

https://www.tek.com/blog/scope-tip-use-bandwidth-limiting-reduce-noise-captured-signals
https://www.tek.com/blog/scope-tip-use-bandwidth-limiting-reduce-noise-captured-signals
https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf
https://www.paulkocher.com/doc/DifferentialPowerAnalysis.pdf
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/11894063_14
https://doi.org/10.1007/11894063_14
https://doi.org/10.1007/978-3-642-19574-7_17
http://point-at-infinity.org/avraes/
https://www.tek.com/oscilloscope/tds3014b-manual/tds3000-tds3000b-tds3000c-series
https://www.tek.com/oscilloscope/tds3014b-manual/tds3000-tds3000b-tds3000c-series
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf
https://csrc.nist.gov/csrc/media/publications/fips/46/3/archive/1999-10-25/documents/fips46-3.pdf

	Background
	Side Channel Attacks
	Original DPA Attack
	Problems with DPA

	Multi-Bit DPA
	Measurement Setup
	Device under Attack
	Oscilloscope
	Laptop

	DPA Results
	Conclusion

