Blind Schnorr Signatures in the Algebraic Group Model

Georg Fuchsbauer1,2, Antoine Plouviez1,2, and Yannick Seurin3

1 Inria, Paris, France
2 École normale supérieure, CNRS, PSL, Paris, France
3 ANSSI, Paris, France

\texttt{first.last@ens.fr}
\texttt{first.last@m4x.org}

July 30, 2019

Abstract. We study the security of schemes related to Schnorr signatures in the algebraic group model (AGM) proposed by Fuchsbauer, Kiltz, and Loss (CRYPTO 2018), where the adversary can only compute new group elements by applying the group operation. Schnorr signatures can be proved secure in the random oracle model (ROM) under the discrete logarithm assumption (DL) by rewinding the adversary; but this security proof is loose. We start with giving a tight security proof under DL in the combination of the AGM and the ROM. Our main focus are blind Schnorr signatures, whose only known security proof is in the combination of the ROM and the generic group model, under the assumption that the so-called ROS problem is hard. We show that in the AGM+ROM the scheme is secure assuming hardness of the one-more discrete logarithm problem and the ROS problem. As the latter can be solved in sub-exponential time using Wagner’s algorithm, this is not entirely satisfying. Hence, we then propose a very simple modification of the scheme (which leaves key generation and signature verification unchanged) and show that, instead of ROS, its security relies on the hardness of a related problem which appears much harder than ROS. Finally, we give a tight reduction of the CCA2 security of Schnorr-signed ElGamal key encapsulation to DL, again in the AGM+ROM.

Keywords: Schnorr signatures, blind signatures, algebraic group model, ElGamal encryption

1 Introduction

Idealized Models. Cryptosystems are often proved secure via a security reduction, which turns any adversary \(A \) against the system into an algorithm solving a (presumably hard) computational problem. When this does not appear possible, one can resort to idealized models.

The generic group model (GGM) \cite{Nec94, Sho97} is an idealized model for the security analysis of cryptosystems that are defined over cyclic groups. Instead of being given concrete group elements, the adversary only receives “handles” for them and has access to an oracle that performs the group operation (which we denote by addition) on handles. This implies that if the adversary is given a list of (handles of) group elements \((X_1, \ldots, X_n)\) and later returns a (handle of a) group element \(Z\), by inspecting its oracle calls one can derive a “representation” \(\vec{z} = (z_1, \ldots, z_n) \) such that \(Z = \sum_{i=1}^{n} z_i X_i \).

The algebraic group model (AGM) \cite{FKL18} lies between the standard model and the GGM. On the one hand, the adversary has direct access to group elements, but on the other hand, it is assumed to only produce new group elements by applying the group operation to received group elements; in particular, with every group element \(Z \) that the adversary outputs, it also
gives a representation \(\vec{z} \) of \(Z \) with respect to the group elements it has received so far. While the GGM allows for proving information-theoretic guarantees, security results in the AGM are proved via reductions to computationally hard problems, like in the standard model.

The random-oracle model (ROM) [BR93] replaces cryptographic hash functions by truly random functions. In security games the adversary is given oracle access to such a function, which is implemented by lazy sampling.

The results in this paper are given in the combination AGM+ROM, as already considered when the AGM was first defined [FKL18]. Adversaries are assumed to be algebraic w.r.t. the group and they are given access to a random oracle \(H \). When \(H \) takes group elements as inputs, as the adversary is algebraic, any of its queries \(Z \) must be accompanied by a representation \(\vec{z} \) of \(Z \). The security results in this paper will be by reduction to either the discrete logarithm problem or a variant of it, the one-more discrete logarithm (OMDL) problem.

Schnorr Signatures. The Schnorr signature scheme [Sch90, Sch91] is one of the oldest and simplest signature schemes based on prime-order groups. Its adoption was hindered for years by a patent which expired in February 2008, but it is by now widely deployed: EdDSA [BDL+12], a specific instantiation based on twisted Edward curves, is used for example in OpenSSL, OpenSSH, GnuPG and more. Schnorr signatures are also expected to be implemented in Bitcoin [Wui18], enabling multi-signatures supporting public key aggregation, which will result in considerable scalability and privacy enhancements [BDN18, MPSW19].

The security of the Schnorr signature scheme has been proven in the ROM under the discrete logarithm (DL) assumption by Pointcheval and Stern [PS96b, PS00]. The proof, based on the so-called Forking Lemma, proceeds by rewinding the adversary, which results in a loose reduction (the success probability of the DL solver is a factor \(q_h \) smaller than that of the adversary, where \(q_h \) is the number of the adversary’s random oracle queries). Using the “meta reduction” technique, a series of works showed that this security loss is unavoidable when the used reductions are either algebraic [PV05, GBL08, Seu12] or generic [FJS19].

Our starting point is the observation that in the AGM+ROM, we can give a reduction which is straight-line, that is, it runs the adversary only once, resulting in a tight security proof for Schnorr signatures under the DL assumption.\(^4\) We then turn to two schemes related to Schnorr signatures whose security in the standard model remains elusive: blind Schnorr signatures and Schnorr-signed ElGamal encryption.

Blind Schnorr Signatures. A blind signature scheme allows a user to obtain a signature from a signer on a message \(m \) in such a way that (i) the signer is unable to recognize the signature later (blindness, which in particular implies that the message \(m \) remains unknown to the signer) and (ii) the user can compute one single signature per interaction with the signer (one-more unforgeability). Blind signature schemes were introduced by Chaum [Cha82] and are a fundamental building block for applications that guarantee user anonymity, e.g. e-cash [Cha82, CFN90, OO92, CHL05, FPV09], e-voting [FOO93], direct anonymous attestation [BCC04], and anonymous credentials [Bra94, CL01, BCC+09, Fuc11].

Constructions of blind signature schemes range from very practical schemes based on specific assumptions and usually provably secure in the random oracle model [PS96a, PS00, PS00,

\(^4\) A similar result [ABM15] shows that Schnorr signatures, when viewed as non-interactive proofs of knowledge of the discrete logarithm of the public key, are simulation-sound extractable, with an extractor working straight-line. Our proof is much simpler and gives a concrete security statement.
Abe01, Bol03, HKL19] to very theoretical schemes based on generic assumptions and provably secure in the standard model [GRS+11, BFPV13, GG14, FHS15].

The blind Schnorr signature scheme derives quite naturally from the standard Schnorr signature scheme [CP93]. While hardness of the discrete logarithm problem in the underlying group G is obviously a necessary condition for the scheme to be secure against one-more forgeries, Schnorr [Sch01] showed that another problem that he named ROS, which only depends on the order p of the group G, must also be hard for the scheme to be secure. Informally, the ROS$_{\ell}$ problem, parameterized by an integer ℓ, asks to find $\ell + 1$ vectors $\vec{\rho}_i = (\rho_{i,j})_{j \in [\ell]}$ such that the system of $\ell + 1$ linear equations in unknowns c_1, \ldots, c_{ℓ} over \mathbb{Z}_p

$$\sum_{j=1}^{\ell} \rho_{i,j} c_j = H_{\text{ros}}(\vec{\rho}_i), \quad i \in [\ell + 1]$$

has a solution, where $H_{\text{ros}} : (\mathbb{Z}_p)^{\ell} \rightarrow \mathbb{Z}_p$ is a random oracle. Schnorr showed that an attacker able to solve the ROS$_{\ell}$ problem can produce $\ell + 1$ valid signatures while interacting (concurrently) only ℓ times with the signer. Slightly later, Wagner [Wag02] showed that the ROS$_{\ell}$ problem can be reduced to the $(\ell + 1)$-sum problem, which can solved with time and space complexity $O((\ell + 1)^{2\lambda/(\lambda + \ell + 1)})$, where λ is the bit size of p. For example, for $\lambda = 256$, this attack yields 16 valid signatures after $\ell = 15$ interactions with the signer in time and space close to 2^{55}. For $\ell + 1 = 2^{\sqrt{\lambda}}$, the attack has sub-exponential time and space complexity $O(2^{\sqrt{\lambda}})$, although the number of signing sessions becomes arguably impractical. Asymptotically, this attack can be thwarted by increasing the group order, but this would make the scheme quite inefficient.

From a provable-security point of view, a number of results [FS10, Pas11, BL13] indicate that blind Schnorr signatures cannot be proven one-more unforgeable under standard assumptions, not even in the ROM. The only positive result by Schnorr and Jakobsson [SJ99] and Schnorr [Sch01] states that blind Schnorr signatures are secure in the GGM+ROM assuming hardness of the ROS problem.

Our Results on Blind Schnorr Signatures. Our first contribution is a rigorous analysis of the security of blind Schnorr signatures in the AGM+ROM. Concretely, we show that any algebraic adversary successfully producing $\ell + 1$ forgeries after at most ℓ interactions with the signer must either solve the one-more discrete logarithm problem or the ROS$_{\ell}$ problem. Although this is not overly surprising in view of the previous results in the GGM [SJ99, Sch01], this gives a more satisfying characterization of the security of this protocol. Moreover, the proofs in [SJ99, Sch01] were rather informal; in particular, the reduction solving ROS was not explicitly described. In contrast, we provide precise definitions (in particular for the ROS problem, the exact specification of which is central for a rigorous security proof) and carefully work out the details of the security reductions to both the OMDL and the ROS problem.

Nevertheless, the threat constituted by Wagner’s attack for standard-size group orders remains. In order to remedy this situation, we propose a very simple modification of the scheme which only alters the signing protocol (key generation and signature verification remain the same) and thwarts (in a well-defined way) any attempt at breaking the scheme by solving the ROS problem. The idea is that the signer and the user engage in two parallel signing sessions, of which the signer only finishes one (chosen at random) in the last round. We show that an algebraic adversary successfully mounting an $(\ell + 1)$-forgery attack against this scheme must either solve the OMDL problem or a modified ROS problem, which appears much harder than the standard ROS problem, at least for large values of ℓ for which the standard ROS problem becomes tractable.
Chosen-Ciphertext-Secure ElGamal Encryption. Recall the ElGamal public-key encryption (PKE) scheme \cite{ElG85}: given a cyclic group \mathbb{G} (denoted additively) of prime order p and a generator G, a secret/public key pair is of the form $(y, yG) \in \mathbb{Z}_p \times \mathbb{G}$. To encrypt a message $M \in \mathbb{G}$, one draws $x \leftarrow \mathbb{Z}_p$, computes $X = xG$, and outputs ciphertext $(X, M + xY)$. This scheme is IND-CPA-secure under the decisional Diffie-Hellman (DDH) assumption \cite{TY98}, that is, no adversary can distinguish encryptions of two messages. Since the scheme is homomorphic, it cannot achieve IND-CCA2 security, where the adversary can query decryptions of any ciphertext (except of the one it must distinguish). However, ElGamal has been shown to be IND-CCA1-secure (where the adversary can only make decryption queries before receiving the challenge ciphertext) in the AGM under a “q-type” variant of DDH \cite{FKL18}.

In order to make ElGamal encryption IND-CCA2-secure, a natural solution is to add a proof of knowledge of the randomness used to encrypt. Intuitively, this would make the scheme plaintext-aware \cite{BR95}, which informally means that for any adversary producing a valid ciphertext, there exists an extractor that can retrieve the corresponding plaintext. The reduction of IND-CCA2 security can then use the extractor to answer the adversary’s decryption queries. (For ElGamal, the extractor would extract the randomness x used to produce $(X = xG, Z = M + xY)$ from the proof of knowledge and return the plaintext $M = Z - xY$.) Since the randomness x together with the first part X of the ciphertext form a Schnorr key pair, a natural idea is to use a Schnorr signature \cite{Jak98, TY98}, resulting in what is usually called (Schnorr-)signed ElGamal encryption.

Since Schnorr signatures are extractable in the ROM, one would expect that signed ElGamal can be proved IND-CCA2 under, say, the DDH assumption (in the ROM). However, turning this intuition into a formal proof has remained elusive. The main obstacle is that Schnorr signatures are not straight-line extractable. As explained by Shoup and Gennaro \cite{SG02}, the adversary could order its random-oracle and decryption queries in a way that makes the reduction take exponential time to simulate the decryption oracle. Schnorr and Jakobsson \cite{SJ00} showed IND-CCA2 security in the GGM+ROM, while Tsiounis and Yung \cite{TY98} gave another proof under a non-standard “knowledge assumption” about Schnorr signatures, which amounts to assuming that they are straight-line extractable. On the other hand, impossibility results tend to indicate that IND-CCA2 security cannot be proved in the ROM \cite{ST13, BFW16}.

A second solution is to switch to the “hashed” variant of the scheme (also known as DIIIES) \cite{ABR01}, in which a key is derived as $k = H(xY)$. In the ROM, the corresponding key-encapsulation mechanism (KEM) is IND-CCA2-secure under the gap Diffie-Hellman assumption (which states that CDH is hard even when given a DDH oracle) \cite{CS03}. We propose to combine the two approaches: concretely, we consider the hashed ElGamal KEM together with a Schnorr signature proving knowledge of the randomness used for encapsulating the key and give a tight reduction of the IND-CCA2 security of this scheme to the DL problem in the AGM+ROM.

Relevance of our results. We conclude with discussing the relevance of our results in particular for blind Schnorr signatures. While the initial proposal is arguably one of the

\footnote{\cite{FKL18} showed IND-CCA1 security for the corresponding key-encapsulation mechanism, which returns a key $K = xY$ and an encapsulation of the key $X = xG$. The ElGamal PKE scheme is obtained by combining it with the one-time-secure data-encapsulation mechanism $M \mapsto M + K$. Generic results on hybrid schemes \cite{HHK10} imply that the PKE scheme is also IND-CCA1-secure.}
simplest and most efficient blind signature schemes, Wagner’s attack represents a serious weakness, which can be thwarted by using our modification of the signing protocol.

Our results are especially relevant to applications that impose the signature scheme and for which one then has to design a blind signing protocol. This is the case for blockchain-based systems where modifying the signature scheme used for authorizing transactions is a heavy process that can take years (if possible at all). We see the major motivation for studying blind Schnorr signatures in its real-world relevance for protocols that use Schnorr signatures or will in the near future. The prime example is Bitcoin, for which developers are already actively exploring the use of blind Schnorr signatures for blind coin swaps, trustless tumbler services, and more [Nic19].

2 Preliminaries

General Notation. We denote the (closed) integer interval from \(a \) to \(b \) by \([a, b]\). We use \([b]\) as shorthand for \([1, b]\). A function \(\mu : \mathbb{N} \to [0, 1] \) is negligible (denoted \(\mu = \text{negl} \)) if for all \(c \in \mathbb{N} \) there exists \(\lambda_c \in \mathbb{N} \) such that \(\mu(\lambda) \leq \lambda^{-c} \) for all \(\lambda \geq \lambda_c \). A function \(\nu \) is overwhelming if \(1 - \nu = \text{negl} \). We let \(\log \) denote the logarithm in base 2 and write \(\log a \equiv \log b \) (mod \(p \)).

Given a non-empty finite set \(S \), we let \(x \leftarrow S \) denote the operation of sampling an element \(x \) from \(S \) uniformly at random. All algorithms are probabilistic unless stated otherwise. By \(y \leftarrow A(x_1, \ldots, x_n) \) we denote the operation of running algorithm \(A \) on inputs \((x_1, \ldots, x_n) \) and uniformly random coins and letting \(y \) denote the output. If \(A \) has oracle access to some algorithm \(\text{Oracle} \), we write \(y \leftarrow A(\text{Oracle}(x_1, \ldots, x_n)) \). A list \(\vec{z} = (z_1, \ldots, z_n) \), also denoted \(\langle z_i \rangle_{i \in [n]} \), is a finite sequence. The length of a list \(\vec{z} \) is denoted \(|\vec{z}| \). The empty list is denoted \(() \).

A security game \(\text{GAME}_{\text{par}}(\lambda) \) indexed by a set of parameters \(\text{par} \) consists of a main procedure and a collection of oracle procedures. The main procedure, on input the security parameter \(\lambda \), initializes variables and generates input on which an adversary \(A \) is run. The adversary interacts with the game by calling oracles provided by the game and returns some output, based on which the game computes its own output \(b \) (usually a single bit), which we write \(b \leftarrow \text{GAME}_{\text{par}}(\lambda) \). When the game outputs the truth value of a predicate, we identify \(\text{false} \) with 0 and \(\text{true} \) with 1. Games are either computational or decisional. The advantage of \(A \) in \(\text{GAME}_{\text{par}}(\lambda) \) is defined as \(\text{Adv}_{\text{par},A}(\lambda) := \Pr[1 \leftarrow \text{GAME}_{\text{par}}(\lambda)] \) if the game is computational and as \(\text{Adv}_{\text{par},A}(\lambda) := 2 \cdot \Pr[1 \leftarrow \text{GAME}_{\text{par}}(\lambda)] - 1 \) if it is decisional, where the probability is taken over the random coins of the game and the adversary. We say that \(\text{GAME}_{\text{par}} \) is hard if for any probabilistic polynomial-time (p.p.t.) adversary \(A \), \(\text{Adv}_{\text{par},A}(\lambda) = \text{negl}(\lambda) \). All games considered in this paper are computational unless stated otherwise (we only consider decisional games in Section 6 and Appendix B.).

Algebraic Algorithms. A group description is a tuple \(\Gamma = (p, \mathbb{G}, G) \) where \(p \) is an odd prime, \(\mathbb{G} \) is an abelian group of order \(p \), and \(G \) is a generator of \(\mathbb{G} \). We will use additive notation for the group law throughout this paper, and denote group elements (including the generator \(G \)) with italic uppercase letters. We assume the existence of a p.p.t. algorithm \(\text{GrGen} \) which, on input the security parameter \(1^\lambda \) in unary, outputs a group description \(\Gamma = (p, \mathbb{G}, G) \) where \(p \) is of bit-length \(\lambda \). Given an element \(X \in \mathbb{G} \), we let \(\log_G(X) \) denote the discrete logarithm of \(X \) in base \(G \), i.e., the unique \(x \in \mathbb{Z}_p \) such that \(X = xG \). We write \(\log X \) when \(G \) is clear from context.
An algebraic security game (w.r.t. \text{GrGen}) is a game \text{GAME}^{\text{Alg}}_{\text{GrGen}}(\lambda) that (among other things) runs \Gamma \leftarrow \text{GrGen}(1^\lambda) and gives \Gamma = (p, G, G) as input to \text{A} (see for example games DL and OMDL in Figure 1). An algorithm \text{A}_{\text{alg}} executed in an algebraic game \text{GAME}^{\text{Alg}}_{\text{GrGen}}(\lambda) is algebraic if for all group elements \mathcal{Z} that it outputs, it also provides a representation of \mathcal{Z} relative to all previously received group elements: if \mathcal{X} = (X_0, \ldots, X_n) \in \mathbb{G}^{n+1} is the list of all group elements that \text{A}_{\text{alg}} has received so far (where by convention we let \(X_0 = G\)), then \text{A}_{\text{alg}} must output \mathcal{Z} together with \mathcal{Z}[\mathcal{Z}] = (z_0, \ldots, z_n) \in (\mathbb{Z}_p)^{n+1} such that \mathcal{Z} = \sum_{i=0}^n z_i X_i. We let \mathcal{Z}[\mathcal{Z}] denote such an augmented output. When writing the vector \mathcal{Z} explicitly, we simply write \mathcal{Z}[\mathcal{Z}] (rather than \mathcal{Z}[\mathcal{Z}]) to lighten the notation.

Algebraic Algorithms in the Random Oracle Model. The original paper [FKL18] considered the algebraic group model augmented by a random oracle and proved tight security of BLS signatures [BLS04] in this AGM+ROM model. The random oracle in that work is of type \(H: \{0, 1\}^* \rightarrow \mathcal{G}\), and as the outputs are group elements, the adversary’s group element representations could depend on them.

In this work, we analyze Schnorr-type cryptosystems, for which the RO is typically of type \(H: \mathbb{G} \times \{0, 1\}^* \rightarrow \mathbb{Z}_p\). Thus, an algebraic adversary querying \(H\) on some input \((Z, m)\) must also provide a representation \(Z\) for the group-element input \(Z\). In a game that implements the random oracle by lazy sampling, to ease readability, we will define an auxiliary oracle \(\tilde{H}\), which is used by the game itself (and thus does not take representations of group elements as input) and implements the same function as \(H\).

The (One-More) Discrete Logarithm Problem. We recall the discrete logarithm (DL) problem in Figure 1. The one-more discrete logarithm (OMDL) problem, also defined in Figure 1, is an extension of the DL problem and consists in finding the discrete logarithm of \(q\) group elements by making strictly less than \(q\) calls to an oracle solving the discrete logarithm problem. It was introduced in [BNPS03] and used for example to prove the security of the Schnorr identification protocol against active and concurrent attacks [BP02].

3 Schnorr Signatures

3.1 Definitions

A signature scheme \(\text{SIG}\) consists of the following algorithms:

- \(\text{par} \leftarrow \text{SIG.Setup}(1^\lambda)\): the setup algorithm takes as input the security parameter \(\lambda\) in unary and outputs public parameters \(\text{par}\);
Game EUF-CMA$_{SIG}^A(\lambda)$

<table>
<thead>
<tr>
<th>par \leftarrow SIG.Setup(1^λ)</th>
<th>Oracle $\text{SIGN}(m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sk, pk) \leftarrow SIG.KeyGen(par); Q \leftarrow ()</td>
<td>σ \leftarrow SIG.Sign(sk, m)</td>
</tr>
<tr>
<td>$(m^, \sigma^)$ \leftarrow $A^{SIG}(pk)$</td>
<td>Q \leftarrow Q</td>
</tr>
<tr>
<td>$\text{return } (m^* \notin Q \wedge \text{SIG.Ver}(pk, m^, \sigma^))$</td>
<td>$\text{return } \sigma$</td>
</tr>
</tbody>
</table>

Fig. 2. The EUF-CMA security game for a signature scheme SIG.

- $(sk, pk) \leftarrow$ SIG.KeyGen(par): the key generation algorithm takes parameters par and outputs a secret key sk and a public key pk;
- $\sigma \leftarrow$ SIG.Sign(sk, m): the signing algorithm takes as input a secret key sk and a message $m \in \{0,1\}^*$ and outputs a signature σ;
- $b \leftarrow$ SIG.Ver(pk, m, σ): the (deterministic) verification algorithm takes a public key pk, a message m, and a signature σ; it returns 1 if σ is valid and 0 otherwise.

Correctness requires that for any λ and any message m, when running par \leftarrow SIG.Setup(1^λ), (sk, pk) \leftarrow SIG.KeyGen(par), σ \leftarrow SIG.Sign(sk, m), and $b \leftarrow$ SIG.Ver(pk, m, σ), one has $b = 1$ with probability 1. The standard security notion for a signature scheme is existential unforgeability under chosen-message attack (EUF-CMA), formalized via game EUF-CMA, which we recall in Figure 2. The Schnorr signature scheme [Sch91] is specified in Figure 3.

3.2 Security of Schnorr Signatures in the AGM

Theorem 1. Let GrGen be a group generator. Let A_{alg} be an algebraic adversary against the EUF-CMA security of the Schnorr signature scheme Sch[GrGen] running in time at most τ and making at most q_s signature queries and q_h queries to the random oracle. Then there exists an algorithm B solving the DL problem w.r.t. GrGen, running in time at most $\tau + O(q_s + q_h)$, such that

$$\text{Adv}^\text{euf-cma}_{\text{Sch[GrGen]}, A_{\text{alg}}} (\lambda) \leq \text{Adv}^\text{dl}_{\text{GrGen}, B} (\lambda) + \frac{q_s(q_s + q_h) + 1}{2^{\lambda - 1}}.$$

<table>
<thead>
<tr>
<th>Sch.Setup(1^λ)</th>
<th>Sch.KeyGen(par)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p, \mathbb{G}, G) \leftarrow GrGen(1^λ)</td>
<td>(p, \mathbb{G}, G, H) \leftarrow par; x \leftarrow \mathbb{Z}_p; X \leftarrow xG</td>
</tr>
<tr>
<td>Select H: ${0,1}^* \rightarrow \mathbb{Z}_p$</td>
<td>sk \leftarrow (par, x); pk \leftarrow (par, X)</td>
</tr>
<tr>
<td>return par \leftarrow (p, G, G, H)</td>
<td>return (sk, pk)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sch.Sign(sk, m)</th>
<th>Sch.Ver(pk, m, σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p, \mathbb{G}, G, H, x) \leftarrow sk</td>
<td>(p, \mathbb{G}, G, H, X) \leftarrow pk</td>
</tr>
<tr>
<td>r \leftarrow \mathbb{Z}_p; R \leftarrow rG</td>
<td>$(R, s) := \sigma$</td>
</tr>
<tr>
<td>$c := H(R, m)$; $s := r + cx \mod p$</td>
<td>$c := H(R, m)$</td>
</tr>
<tr>
<td>return $\sigma := (R, s)$</td>
<td>return $(sG = R + cX)$</td>
</tr>
</tbody>
</table>

Fig. 3. The Schnorr signature scheme Sch[GrGen] based on a group generator GrGen.
We start with some intuition for the proof. In the random oracle model, Schnorr signatures can be simulated without knowledge of the secret key by choosing random c and s, setting $R := sG - cx$ and then programming the random oracle so that $H(R, m) = c$. On the other hand, an adversary that returns a signature forgery $(m^*, (R^*, s^*))$ can be used to compute the discrete logarithm of the public key X. In the ROM this can be proved by rewinding the adversary and using the Forking Lemma [PS96b, PS00], which entails a security loss.

In the AGM+ROM, extraction is straight-line and the security proof thus tight: a valid forgery satisfies $R^* = s^*G - c^*X$, with $c^* := H(R^*, m^*)$; on the other hand, since the adversary is algebraic, when it made its first query $H(R^*, m^*)$, it provided a representation of R^* in basis (G, X), that is (γ^*, ξ^*) with $R^* = \gamma^*G + \xi^*X$. Together, these equations yield
\[(\xi^* + c^*)X = (s^* - \gamma^*)G.\]

Since c^* was chosen at random after the adversary chose ξ^*, the probability that $\xi^* + c^* \neq p 0$ is overwhelming, in which case we can compute the discrete logarithm of X from the above equation.

Proof. Let A_{alg} be an algebraic adversary playing EUF-CMA$_{\text{Sch}[\text{GrGen}]}$ and making at most q_s signature queries and q_h RO queries. We proceed by a sequence of games specified in Figure 4.

Game$_0$. The first game is the EUF-CMA game (Figure 2) for the Schnorr signature scheme (Figure 3) in the random oracle model for H. The game maintains a list Q of queried messages and T of values sampled for H. To prepare the change to Game$_1$, we have written the finalization of the game in an equivalent way: it first checks that $m^* \notin Q$ and then runs $\text{Sch.Ver}(pk, m^*, (R^*, s^*))$, which we have written explicitly. Note that since the adversary is algebraic, it must provide a representation (γ^*, ξ^*) for its forgery $(m^*, (R^*, \xi^*), s^*)$ such that $R^* = \gamma^*G + \xi^*X$, and similarly for each RO query $H(R[\gamma, \xi], m)$. By definition,
\[
\text{Adv}^{\text{game}_0}_{A_{\text{alg}}} (\lambda) = \text{Adv}^{\text{euf-cma}}_{\text{Sch}[\text{GrGen}], A_{\text{alg}}} (\lambda).
\]

Game$_1$. In Game$_1$, we make the following changes. First, we introduce an auxiliary table U that for each query $H(R[\gamma, \xi], m)$ stores the representation (γ, ξ) of R. Clearly, this does not modify the probability that the game returns 1. Second, when the adversary returns its forgery $(m^*, (R^*, \xi^*), s^*)$ and had previously made a query $H(R[\gamma, \xi'], m^*)$ for some (γ', ξ'), then we consider this previous representation of R^*, that is, we set $(\gamma^*, \xi^*) := (\gamma', \xi')$. The only actual difference in Game$_1$ is that it returns 0 in case $\xi^* \equiv_p -T(R^*, m^*)$ (line (I)); otherwise Game$_0$ and Game$_1$ are identical.

We show that this happens with probability exactly $1/p \leq 1/2^{\lambda-1}$. First note that line (I) is only executed if $m^* \notin Q$, as otherwise the game would already have returned 0; hence $T(R^*, m^*)$ can only have been defined either (1) during a call to H by the adversary or (2), if it is still undefined when A_{alg} stops, by the game when defining c^*. We show that in both cases the probability of returning 0 in line (I) is $1/p$:

1. If $T(R^*, m^*)$ was defined during a H query of the form $H(R[\gamma, \xi'], m^*)$ then $T(R^*, m^*)$ is drawn uniformly at random and independently from ξ'. Since then $U(R[\gamma, \xi'], m^*) \neq \bot$, the game sets $\xi^* := \xi'$ and hence $\xi^* \equiv_p -T(R^*, m^*)$ holds with probability exactly $1/p$.

2. If $T(R^*, m^*)$ is only defined after the adversary output ξ^* then again we have $\xi^* \equiv_p -T(R^*, m^*)$ with probability $1/p$. Hence,
\[
\text{Adv}^{\text{game}_1}_{A_{\text{alg}}} (\lambda) \geq \text{Adv}^{\text{game}_0}_{A_{\text{alg}}} (\lambda) - \frac{1}{2^{\lambda-1}}.
\]
Game₂, Game₁, Game₀

\[(p, G, G) \leftarrow \text{GrGen}(1^\lambda)\]
\[x \leftarrow \mathbb{Z}_p; \ X := xG\]
\[Q := \{\}; \ T := \{\}; \ U := \{\}\]
\[(m^*, (R_{[γ, ξ]}, G, s^*)) \leftarrow A^{\text{Sch}}_{\text{alg}}(p, G, G, X)\]
\[\text{if } R^* = γ^*G + ξ^*X\]
\[\text{if } m^* \in Q \text{ then return } 0\]
\[c^* := \overline{H}(R^*, m^*)\]
\[\text{if } U(R^*, m^*) \neq \perp \text{ then }\]
\[\overline{H}(R^*, m^*) := (γ^*, ξ^*) := U(R^*, m^*)\]
\[\text{if } ξ^* \equiv_p -T(R^*, m^*) \text{ then return } 0 \quad (\text{I})\]
\[\text{return } (s^*G = R^* + c^*X)\]
\[\text{Oracle } \overline{H}(R, m)\]
\[\text{if } T(R, m) = \perp \text{ then }\]
\[T(R, m) := Z_p\]
\[\text{return } T(R, m)\]

Oracle \(H(R, γ, ξ, m) \parallel R = γG + ξX\)

Game₀. In the final game we use the standard strategy for Schnorr signatures of simulating the SIGₙ oracle without the secret key \(x\) by programming the random oracle. Clearly, Game₁ and Game₂ are identical unless Game₀ returns 0 in line (II). For each signature query, \(R\) is uniformly random, and the size of table \(T\) is at most \(q_s + q_h\), hence the game aborts in line (II) with probability at most \((q_s + q_h)/p \leq (q_s + q_h)/2^{λ-1}\). By summing over the at most \(q_s\) signature queries, we have

\[
\text{Adv}^{\text{game}_2}_{\text{Alg}} (\lambda) \geq \text{Adv}^{\text{game}_1}_{\text{Alg}} (\lambda) - \frac{q_s(q_s + q_h)}{2^{λ-1}}.
\]

Reduction to DL. We now construct an adversary \(B\) solving DL with the same probability as \(A_{\text{Alg}}\) wins Game₂. On input group description \((p, G, G)\) and \(X\), the adversary runs \(A_{\text{Alg}}\) on input \((p, G, G, X)\) and simulates Game₂, which can be done without knowledge of \(\log_G(X)\). Assume that the adversary wins Game₂ by returning \((m^*, R^*, s^*)\) and let \(c^* := T(R^*, m^*)\) and \((γ^*, ξ^*)\) be defined as in the game. Thus, \(s^* \not\equiv -c^* \mod p\) and \(R^* = γ^*G + ξ^*X\); moreover, validity of the forgery implies that \(s^*G = R^* + c^*X\). Hence, \((s^* - γ^*)G = (ξ^* + c^*)X\) and \(B\) can compute \(\log X = (s^* - γ^*)(ξ^* + c^*)^{-1} \mod p\). Combining previous inequalities, we have

\[
\text{Adv}^{\text{DL}}_{\text{GrGen}, B}(\lambda) = \text{Adv}^{\text{game}_2}_{\text{Alg}} (\lambda) \geq \text{Adv}^{\text{euf-cma}}_{\text{Sch}[\text{GrGen}], A_{\text{Alg}}} (\lambda) - \frac{q_s(q_s + q_h) + 1}{2^{λ-1}}.
\]
Assuming that scalar multiplications in \mathbb{G} and assignments in tables T and U take unit time, the running time of B is $\tau + O(q_h + q_b)$. \hfill \Box

4 Blind Schnorr Signatures

4.1 Definitions

We start with defining the syntax and security of blind signature schemes and focus on schemes with a 2-round (i.e., 4 messages) signing protocol for concreteness.

Syntax. A blind signature scheme BS consists of the following algorithms:

- $par \leftarrow BS.Setup(1^\lambda)$: the setup algorithm takes the security parameter λ in unary and returns public parameters par;
- $(sk, pk) \leftarrow BS.KeyGen(par)$: the key generation algorithm takes the public parameters par and returns a secret/public key pair (sk, pk);
- $(b, \sigma) \leftarrow (BS.Sign(sk), BS.User(pk, m))$: an interactive protocol is run between the signer with private input a secret key sk and the user with private input a public key pk and a message m; the signer outputs $b = 1$ if the interaction completes successfully and $b = 0$ otherwise, while the user outputs a signature σ if it terminates correctly, and \perp otherwise. For a 2-round protocol the interaction can be realized by the following algorithms:

 \[
 (msg_{U,0}, state_{U,0}) \leftarrow BS.User_0(pk, m) \\
 (msg_{S,1}, states) \leftarrow BS.Sign_1(sk, msg_{U,0}) \\
 (msg_{U,1}, state_{U,1}) \leftarrow BS.User_1(state_{U,0}, msg_{S,1}) \\
 (msg_{S,2}, b) \leftarrow BS.Sign_2(states, msg_{U,1}) \\
 \sigma \leftarrow BS.User_2(state_{U,1}, msg_{S,2})
 \]

 (Typically, $BS.User_0$ just initiates the session, and thus $msg_{U,0} = ()$ and $state_{U,0} = (pk, m)$.)

- $b \leftarrow BS.Ver(pk, m, \sigma)$: the (deterministic) verification algorithm takes a public key pk, a message m, and a signature σ, and returns 1 if σ is valid on m under pk and 0 otherwise.

Correctness requires that for any λ and any message m, when running $par \leftarrow BS.Setup(1^\lambda)$, $(sk, pk) \leftarrow BS.KeyGen(par)$, $(b, \sigma) \leftarrow (BS.Sign(sk), BS.User(pk, m))$, and $b' \leftarrow BS.Ver(pk, m, \sigma)$, we have $b = 1 = b'$ with probability 1.

Unforgeability. The standard security notion for blind signatures demands that no user, after interacting arbitrary many times with a signer and k of these interactions were considered successful by the signer, can produce more than k signatures. Moreover, the adversary can schedule and interleave its sessions with the signer in any arbitrary way.

In game UNF\textsubscript{4}\textsubscript{BS}(λ) defined in Figure 5 the adversary has access to two oracles SIGN_1 and SIGN_2 corresponding to the two phases of the interactive protocol. The game maintains two counters k_1 and k_2 (initially set to 0), where k_1 is used as session identifier, and a set S of “open” sessions. Oracle SIGN_1 takes the user’s first message (which for blind Schnorr signatures is empty), increments k_1, adds k_1 to S and runs the first round on the signer’s side, storing its state as $state_{k_1}$. Oracle SIGN_2 takes as input a session identifier j and a user message; if $j \in S$, it runs the second round on the signer’s side; if successful, it removes j from S and increments k_2, which thus represents the number of successful interactions.
We say that \mathcal{BS} satisfies unforgeability if $\text{Adv}^\text{unf}_{\mathcal{BS},\mathcal{A}}(\lambda)$ is negligible for all p.p.t. adversaries \mathcal{A}. Note that we consider “strong” unforgeability, which only requires that all pairs (m_i^*, σ_i^*) returned by the adversary (rather than all messages m_i^*) are distinct.

Blindness. Blindness requires that a signer cannot link a message/signature pair to a particular execution of the signing protocol. Formally, the adversary chooses two messages m_0 and m_1 and the experiment runs the signing protocol acting as the user with the adversary, first obtaining a signature σ_0 on m_0 and then σ_{1-b} on m_{1-b} for a random bit b. If both signatures are valid, the adversary is given (σ_0, σ_1) and must determine the value of b. A formal definition can be found in Appendix B.

Blind Schnorr signatures. A blind signature scheme BlSch is obtained from the scheme Sch in Figure 3 by replacing Sch.Sign with the interactive protocol specified in Figure 6 (the first message $\text{msg}_{U,0}$ from the user to the signer is empty and is not depicted). Correctness follows since a signature (R', s') obtained by the user after interacting with the signer satisfies

Fig. 5. The (strong) unforgeability game for a blind signature scheme \mathcal{BS} with a 2-round signing protocol.

<table>
<thead>
<tr>
<th>Game $\text{UNF}^\mathcal{A}_{\mathcal{BS}}(\lambda)$</th>
<th>Oracle $\text{SIGN}_1(\text{msg})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{par} \leftarrow \mathcal{BS}.\text{Setup}(1^\lambda)$</td>
<td>$k_1 := k_1 + 1$ // session id</td>
</tr>
<tr>
<td>$(sk, pk) \leftarrow \mathcal{BS}.\text{KeyGen}(\text{par})$</td>
<td>$(\text{msg}', \text{state}_i) \leftarrow \mathcal{BS}.\text{Sign}(sk, \text{msg})$</td>
</tr>
<tr>
<td>$k_1 := 0; k_2 := 0; S := \emptyset$</td>
<td>$S := S \cup {k_1}$ // open sessions</td>
</tr>
<tr>
<td>$(m_i^, \sigma_i^){i \in [n]} \leftarrow A{\text{SIGN}_1, \text{SIGN}_2}(pk)$</td>
<td>$\text{return} (k_1, \text{msg}')$</td>
</tr>
<tr>
<td>$\text{return } (k_2 < n)$</td>
<td>$\text{Oracle } \text{SIGN}_2(j, \text{msg})$</td>
</tr>
<tr>
<td>$\wedge \forall i \neq j \in [n]: (m_i^, \sigma_i^) \neq (m_j^, \sigma_j^)$</td>
<td>if $j \notin S$ then return \perp</td>
</tr>
<tr>
<td>$\wedge \forall i \in [n]: \mathcal{BS}.\text{Ver}(pk, m_i^, \sigma_i^) = 1$</td>
<td>$(\text{msg}', b) \leftarrow \mathcal{BS}.\text{Sign}_2(\text{state}_j, \text{msg})$</td>
</tr>
<tr>
<td>$\text{return } \sigma := (R', s')$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{BlSch.Sign}(((p, G, G, H), x))$</th>
<th>$\text{BlSch.User}(((p, G, G, H), X), m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r \leftarrow \mathbb{Z}_p; R := rG$</td>
<td>$\alpha, \beta \leftarrow \mathbb{Z}_p$</td>
</tr>
<tr>
<td>$R' := R + \alpha G + \beta X$</td>
<td>$R' := R + \alpha G + \beta X$</td>
</tr>
<tr>
<td>$c' := H(R', m)$</td>
<td>$c := c' + \beta \mod p$</td>
</tr>
<tr>
<td>$s := r + cx \mod p$</td>
<td>if $sG \neq R + cX$ then return \perp</td>
</tr>
<tr>
<td>$s' := s + \alpha \mod p$</td>
<td>$s' := s + \alpha \mod p$</td>
</tr>
<tr>
<td>$\text{return } \sigma := (R', s')$</td>
<td>$\text{return } \sigma := (R', s')$</td>
</tr>
</tbody>
</table>

Fig. 6. The signing protocol of the blind Schnorr signature scheme.

11
Then there exists an (algebraic) adversary making at most Ω queries. The security of blind Schnorr signatures is related to the ROS (Random inhomogeneities Solvable system of linear equations) problem, which was introduced by Schnorr [Sch01]. Consider the game $\text{ROS}_{\text{GrGen},\ell,\Omega}$ in Figure 7, parameterized by a group generator GrGen, an integer $\ell \geq 1$, and a set Ω (we omit GrGen and Ω from the notation when they are clear from context). The adversary A receives a prime p and has access to a random oracle H_{ros} taking as input (\vec{p}, aux) where $\vec{p} \in (\mathbb{Z}_p)^\ell$ and aux $\in \Omega$. Its goal is to find $\ell + 1$ distinct pairs $(\vec{p}_i, \text{aux}_i) \in [\mathbb{Z}_p]^\ell \times \Omega$ such that $\text{aux}_i \equiv \sum_{j=1}^{\ell} p_i^j c_j \pmod{p}$, for $i \in [\ell + 1]$.

The lemma below, which refines Schnorr’s observation [Sch01], shows how an algorithm A solving the ROS_ℓ problem can be used to break the one-more unforgeability of blind Schnorr signatures.

Lemma 1. Let GrGen be a group generator. Let A be an algorithm for game $\text{ROS}_{\text{GrGen},\ell,\Omega}$, where $\Omega = (\mathbb{Z}_p)^2 \times \{0,1\}^*$, running in time at most τ and making at most q_h random oracle queries. Then there exists an (algebraic) adversary B running in time at most $\tau + O(\ell + q_h)$, making at most ℓ queries to SIGN$_1$ and SIGN$_2$ and q_h random oracle queries, such that

$$\text{Adv}^\text{unf}_{\text{BiSch}[\text{GrGen}],B}(\lambda) \geq \text{Adv}^\text{ros}_{\text{GrGen},\ell,\Omega,A}(\lambda) - \frac{q_h^2 + (\ell + 1)^2}{2^{\lambda-1}}.$$

Proof. We first consider a slightly modified game $\text{ROS}'_{\text{GrGen},\ell,\Omega}$, which differs from ROS in that it first draws $x, r_1, \ldots, r_\ell \leftarrow \mathbb{Z}_p$ and returns 0 if one of the following two events occurs:

Sch.Ver:

$$s'G = sG + \alpha G = (r + cx)G + \alpha G = R + \alpha G + \beta X + (\beta + c)X = R' + c'X = R' + H(R', m) X.$$

Moreover, Schnorr signatures have been shown to achieve perfect blindness [CP93].

4.2 The ROS Problem

The security of blind Schnorr signatures is related to the ROS (Random inhomogeneities Solvable system of linear equations) problem, which was introduced by Schnorr [Sch01]. Consider the game $\text{ROS}_{\text{GrGen},\ell,\Omega}$ in Figure 7, parameterized by a group generator GrGen, an integer $\ell \geq 1$, and a set Ω (we omit GrGen and Ω from the notation when they are clear from context). The adversary A receives a prime p and has access to a random oracle H_{ros} taking as input (\vec{p}, aux) where $\vec{p} \in (\mathbb{Z}_p)^\ell$ and aux $\in \Omega$. Its goal is to find $\ell + 1$ distinct pairs $(\vec{p}_i, \text{aux}_i) \in [\mathbb{Z}_p]^\ell \times \Omega$ such that $\text{aux}_i \equiv \sum_{j=1}^{\ell} p_i^j c_j \pmod{p}$, for $i \in [\ell + 1]$.

The lemma below, which refines Schnorr’s observation [Sch01], shows how an algorithm A solving the ROS_ℓ problem can be used to break the one-more unforgeability of blind Schnorr signatures.

Lemma 1. Let GrGen be a group generator. Let A be an algorithm for game $\text{ROS}_{\text{GrGen},\ell,\Omega}$, where $\Omega = (\mathbb{Z}_p)^2 \times \{0,1\}^*$, running in time at most τ and making at most q_h random oracle queries. Then there exists an (algebraic) adversary B running in time at most $\tau + O(\ell + q_h)$, making at most ℓ queries to SIGN$_1$ and SIGN$_2$ and q_h random oracle queries, such that

$$\text{Adv}^\text{unf}_{\text{BiSch}[\text{GrGen}],B}(\lambda) \geq \text{Adv}^\text{ros}_{\text{GrGen},\ell,\Omega,A}(\lambda) - \frac{q_h^2 + (\ell + 1)^2}{2^{\lambda-1}}.$$

Proof. We first consider a slightly modified game $\text{ROS}'_{\text{GrGen},\ell,\Omega}$, which differs from ROS in that it first draws $x, r_1, \ldots, r_\ell \leftarrow \mathbb{Z}_p$ and returns 0 if one of the following two events occurs:

The group generator GrGen is only used to generate a prime p of length λ; the group G is not used in the game.

The original definition of the problem by Schnorr [Sch01] sets $\Omega := \emptyset$. Our more general definition does not seem to significantly modify the hardness of the problem while allowing to prove Theorem 2.
- E_1: when A queries $H_{\text{ros}}(\vec{\rho}, (\gamma, \xi, m))$, there has been a previous query $H_{\text{ros}}(\vec{\rho}', (\gamma', \xi', m'))$ such that $m = m'$ and

$$\gamma + \xi x + \sum_{j=1}^{\ell} \rho_j r_j \equiv_p \gamma' + \xi' x + \sum_{j=1}^{\ell} \rho'_j r_j ;$$

- E_2: when A returns $((\vec{\rho}_i, (\gamma_i, \xi_i, m_i))_{i \in [\ell+1]}, (c_j)_{j \in [q]})$, there exists $i \neq i' \in [\ell + 1]$ such that $m_i = m_{i'}$ and

$$\gamma_i + \xi_i x + \sum_{j=1}^{\ell} \rho_{i,j} r_j \equiv_p \gamma_{i'} + \xi_{i'} x + \sum_{j=1}^{\ell} \rho_{i',j} r_j .$$

Games ROS and ROS' are identical unless E_1 or E_2 occurs in ROS'. Note that we could defer the random selection of x, r_1, \ldots, r_ℓ and the check whether E_1 or E_2 occurred to the very end of the game. Consider two distinct random oracle queries $(\vec{\rho}, (\gamma, \xi, m))$ and $(\vec{\rho}', (\gamma', \xi', m'))$; if $m \neq m'$ then E_1 cannot occur; if $m = m'$, then $(\gamma, \xi, \vec{\rho}) \neq (\gamma', \xi', \vec{\rho}')$ and by the Schwartz-Zippel Lemma,

$$(\gamma - \gamma') + (\xi - \xi') x + \sum_{j=1}^{\ell} (\rho_j - \rho'_j) r_j \equiv_p 0$$

with probability $1/p \leq 1/2^{\lambda - 1}$ over the draw of x, r_1, \ldots, r_ℓ. Hence, event E_1 occurs with probability at most $q^2_0/2^{\lambda - 1}$. Similarly, event E_2 occurs with probability at most $(\ell + 1)^2/2^{\lambda - 1}$. Hence,

$$\text{Adv}_{\text{GrGen}, \ell, \Omega, A}^{\text{ROS'}}(\lambda) \geq \text{Adv}_{\text{GrGen}, \ell, \Omega, A}^{\text{ROS}}(\lambda) - \frac{q^2_0 + (\ell + 1)^2}{2^{\lambda - 1}} . \quad (1)$$

We now construct an adversary B for the game UNF$^{\text{Bish}}_{\text{GrGen}}$ as follows. Adversary B, which takes as input (p, G, G, X) and has access to random oracle H and signing oracles SIGN_1 and SIGN_2, simulates game ROS' as follows. First, B initiates ℓ parallel instances of the protocol by querying $(j, R_j) \leftarrow \text{SIGN}_1()$ for $j \in [\ell]$. Then, it runs $A(p)$. When A queries $H_{\text{ros}}(\vec{\rho}, (\gamma, \xi, m))$ where $\vec{\rho} = (\rho_j)_{j \in [\ell]} \in (\mathbb{Z}_p)^\ell$ and $(\gamma, \xi, m) = \text{aux} \in (\mathbb{Z}_p)^2 \times \{0, 1\}^*$, B computes $R := \gamma G + \xi X + \sum_{j=1}^{\ell} \rho_j R_j$ and returns $H(R, m) + \xi$, unless there has been a previous query $H_{\text{ros}}(\vec{\rho}', (\gamma', \xi', m'))$ with $m = m'$ and $R = \gamma' G + \xi' X + \sum_{j=1}^{\ell} \rho'_j R_j$, in which case B aborts. It is easy to see that B perfectly simulate game ROS'. Eventually, A returns $((\vec{\rho}_1, (\gamma_1, \xi_1, m_1^*))_{i \in [\ell+1]}, (c_j)_{j \in [q]})$. Then B closes all signing sessions by calling $s_j \leftarrow \text{SIGN}_2(j, c_j)$ for $j \in [\ell]$. Finally, for $i \in [\ell + 1]$, it computes

$$R_i^* := \gamma_i G + \xi_i X + \sum_{j=1}^{\ell} \rho_{i,j} R_j$$

and returns $\ell + 1$ forgeries $(m_i^*, (R_i^*, s_i^*))_{i \in [\ell+1]}$.

Assume that A wins game ROS'. Then, in particular, (i) all pairs (m_i^*, R_i^*) are distinct and (ii) for all $i \in [\ell + 1]$,

$$\sum_{j=1}^{\ell} \rho_{i,j} c_j \equiv_p H_{\text{ros}}(\vec{\rho}_i, (\gamma_i, \xi_i, m_i^*)) \equiv_p H(R_i^*, m_i^*) + \xi_i ,$$

where the second equality follows from the way B answers A's queries to H_{ros}. While (i) implies that all forgeries $(m_i^*, (R_i^*, s_i^*))$ are distinct, (ii) implies that all forgeries are valid since for all $i \in [\ell + 1]$,

$$s_i^* G = \gamma_i G + \sum_{j=1}^{\ell} \rho_{i,j} (r_j + c_j x)G = \gamma_i G + \sum_{j=1}^{\ell} \rho_{i,j} R_j + \left(\sum_{j=1}^{\ell} \rho_{i,j} c_j \right) X = R_i^* + H(R_i^*, m_i^*) X .$$
Thus, B successfully breaks unforgeability of $\text{BlSch}[\text{GrGen}]$, and thus
\[\text{Adv}^\text{unf}_{\text{BlSch}[\text{GrGen}],B}(\lambda) = \text{Adv}^\text{ros'}_{\text{GrGen},\ell,\Omega,A}(\lambda). \tag{2} \]

Clearly, B runs in time at most $\tau + O(\ell + q_h)$ and makes at most ℓ queries to SIGN_1 and SIGN_2 and q_h random oracle queries. Combining Eqs. (1) and (2) concludes the proof. \square

The hardness of the ROS problem critically depends on ℓ. In particular, for small values of ℓ, the ROS problem is statistically hard, as captured by the following lemma.

Lemma 2. Let GrGen be a group generator, $\ell \geq 1$, and Ω be some arbitrary set. Then for any adversary A making at most q_h queries to H_{ros},
\[\text{Adv}^\text{ros}_{\text{GrGen},\ell,\Omega,A}(\lambda) \leq \frac{\binom{q_h + 1}{\ell + 1} + 1}{2^{\lambda - 1}}. \]

Proof. Consider a modified game $\text{ROS}^*_{\text{GrGen},\ell,\Omega}$ that is identical to ROS, except that it returns 0 when the adversary outputs $((\tilde{\rho}_i, \text{aux}_i)_{i \in [\ell+1]}, (c_j)_{j \in [\ell]})$ such that for some $i \in [\ell+1]$ it has not made the query $H_{\text{ros}}(\tilde{\rho}_i, \text{aux}_i)$. Games ROS and ROS^* are identical unless in game ROS the adversary wins and has not made the query $H_{\text{ros}}(\tilde{\rho}_i, \text{aux}_i)$ for some i, which happens with probability at most $1/p \leq 1/2^{\lambda - 1}$. Hence,
\[\text{Adv}^\text{ros}_{\text{GrGen},\ell,\Omega,A}(\lambda) \leq \text{Adv}^\text{ros}^*_{\text{GrGen},\ell,\Omega,A}(\lambda) + \frac{1}{2^{\lambda - 1}}. \]

In order to win the modified game ROS^*, A must in particular make $\ell + 1$ distinct random oracle queries $((\tilde{\rho}_i, \text{aux}_i)_{i \in [\ell+1]}$ such that the system
\[\sum_{j=1}^{\ell} \rho_{i,j} c_j \equiv p H_{\text{ros}}(\tilde{\rho}_i, \text{aux}_i), \quad i \in [\ell + 1] \tag{3} \]
with unknowns c_1, \ldots, c_ℓ has a solution. Consider any subset of $\ell + 1$ queries $((\tilde{\rho}_i, \text{aux}_i)_{i \in [\ell+1]}$ made by the adversary to the random oracle and let M denote the $(\ell + 1) \times \ell$ matrix whose i-th row is $\tilde{\rho}_i$ and let $t \leq \ell$ denote its rank. Then, Eq. (3) has a solution if and only if the row vector $\vec{h} := (H_{\text{ros}}(\tilde{\rho}_i, \text{aux}_i))_{i \in [\ell+1]}$ is in the span of the columns of M. Since \vec{h} is uniformly random, this happens with probability $p^t/p^{\ell+1} \leq 1/p \leq 1/2^{\lambda - 1}$. By the union bound,
\[\text{Adv}^\text{ros}^*_{\text{GrGen},\ell,\Omega,A}(\lambda) \leq \frac{\binom{q_h}{\ell + 1}}{2^{\lambda - 1}}, \]
which concludes the proof. \square

On the other hand, the ROS$_{\ell}$ problem can be reduced the $(\ell + 1)$-sum problem, for which Wagner’s generalized birthday algorithm [Wag02, MS12, NS15] can be used. More specifically, consider the $(\ell + 1) \times \ell$ matrix
\[(\rho_{i,j}) = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots \\ 0 & 0 & 1 \\ 1 & \cdots & 1 \end{pmatrix} \]
and let \(\bar{\rho}_i \) denote its \(i \)-th line, \(i \in [\ell + 1] \). Let \(q := 2^{(1+\lfloor \log(\ell+1) \rfloor)} \). The solving algorithm builds lists \(L_i = (H_{\text{ros}}(\bar{\rho}_i, \text{aux}_{i,k}))_{k \in [q]} \) for \(i \in \ell \) and \(L_{\ell+1} = (\neg H_{\text{ros}}(\bar{\rho}_{\ell+1}, \text{aux}_{\ell+1,k}))_{k \in [q]} \) for arbitrary values \(\text{aux}_{i,k} \) and uses Wagner’s algorithm to find an element \(e_i \) in each list \(L_i \) such that \(\sum_{i=1}^{\ell+1} e_i \equiv_p 0 \). Then, it is easily seen that \((\bar{\rho}_i, \text{aux}_i) \) is a solution to the ROS problem. This algorithm makes \(q_h = (\ell+1)2^{(1+\lfloor \log(\ell+1) \rfloor)} \) random oracle queries, runs in time an space \(O((\ell+1)2^{(1+\lfloor \log(\ell+1) \rfloor)}) \), and succeeds with constant probability.

4.3 Security of Blind Schnorr Signatures

We now formally prove that blind Schnorr signatures are unforgeable assuming the hardness of the one-more discrete logarithm problem and the ROS problem.

Theorem 2. Let \(\text{GrGen} \) be a group generator. Let \(\mathcal{A}_{\text{alg}} \) be an algebraic adversary against the UNF security of the blind Schnorr signature scheme \(\text{BiSch}[\text{GrGen}] \) running in time at most \(\tau \) and making at most \(q_{\text{unf}} \) queries to the random oracle. Then there exist an algorithm \(\mathcal{B}_{\text{ros}} \) for the ROS problem making at most \(q_h + q_{\text{ros}} + 1 \) random oracle queries and an algorithm \(\mathcal{B}_{\text{omdl}} \) for the OMDL problem w.r.t. \(\text{GrGen} \) making at most \(q_h \) queries to its oracle \(\text{DLog} \), both running in time at most \(\tau + O(q_{\text{unf}} + q_h) \), such that

\[
\adv_{\text{BiSch}[\text{GrGen}]}.\mathcal{A}_{\text{alg}}(\lambda) \leq \adv_{\text{GrGen},\mathcal{B}_{\text{omdl}}}(\lambda) + \adv_{\mathcal{B}_{\text{ros}}}(\lambda) .
\]

We start with explaining the proof idea. Consider an adversary in the unforgeability game, let \(X \) be the public key and \(R_1, \ldots, R_\ell \) be the elements returned by the oracle \(\text{SIGN}_1 \) and let \((R^*_i, s^*_i)\) be the adversary’s forgeries on messages \(m^*_i \). As \(\mathcal{A}_{\text{alg}} \) is algebraic, it must also output a representation \((\gamma_i, \xi_i, \bar{\rho}_i)\) for \(R^*_i \) w.r.t. the group elements received from the game: \(R^*_i = \gamma_i G + \xi_i X + \sum_{j=1}^\ell \rho_{i,j} R_j \). Validity of the forgeries implies another representation, namely \(R^*_i = s^*_i G - c^*_i X \) with \(c^*_i = H(R^*_i, m^*_i) \). Together, these yield

\[
(c^*_i + \xi^*_i)X + \sum_{j=1}^\ell \rho_{i,j} R_j = (s^*_i - \gamma^*_i)G ,
\]

which intuitively can be used to compute \(\log X \).

However, the reduction also needs to simulate \(\text{SIGN}_2 \) queries, for which, contrary to the proof for standard Schnorr signatures (Theorem 1), it cannot rely on programming the random oracle. In fact, the reduction can only break OMDL, which is an easier game than DL. In particular, the reduction obtains \(X, R_1, \ldots, R_q \) from its challenger and must compute their logarithms. It can make \(q \) logarithm queries, which it uses to simulate the \(\text{SIGN}_2 \) oracle: on input \((j, c_j)\), it simply returns \(s_j \leftarrow \text{DLog}(R_j + c_j X) \).

But this means that in Eq. (4) the reduction does not know the logarithms of the \(R_j \)'s; all it knows is \(R_j = s_j G - c_j X \), which, when plugged into Eq. (4) yields

\[
(c^*_i + \xi^*_i - \sum_{j=1}^\ell \rho_{i,j}^* c_j) X = (s^*_i - \gamma^*_i - \sum_{j=1}^\ell \rho_{i,j}^* s_j)G .
\]

Thus, if for some \(i, \chi_i \neq 0 \), the reduction can compute \(x = \log X \), from which it can derive \(r_j = \log R_j = s_j - c_j x \). Together, \(x, r_1, \ldots, r_q \) constitute an OMDL solution.

On the other hand, we can show that if \(\chi_i = 0 \) for all \(i \), then the adversary has actually found a solution to the ROS problem (see Figure 7): A reduction to ROS would answer the
We proceed with a sequence of games defined in Figure 8.

Proof of Theorem 2. Let A_{alg} be an algebraic adversary making at most q_s queries to SIGN_1 and q_h queries to the random oracle. By the above lemma, we can assume that A_{alg} makes exactly $\ell := q_s$ queries to SIGN_1, closes all sessions, and returns $\ell + 1$ valid signatures. To prove the theorem under this assumption, it now suffices to construct B_{ros} and B_{omdl} and show

$$\text{Adv}^{\text{unf}}_{B_{\text{BlSch}[\text{GrGen}]}, A_{\text{alg}}} (\lambda) \leq \text{Adv}^{\text{omdl}}_{B_{\text{GrGen}}, B_{\text{omdl}}} (\lambda) + \text{Adv}^{\text{ros}}_{\ell, B_{\text{ros}}} (\lambda). \quad (5)$$

We proceed with a sequence of games defined in Figure 8.

Game$_0$. The first game is the UNF game (see Figure 5) for scheme $B_{\text{BlSch}[\text{GrGen}]}$ played with A_{alg} in the random oracle model. We have written the finalization of the game in a different but equivalent way. In particular, instead of checking that $(m^*_i, (R^*_i, s^*_i)) \neq (m^*_i, (R^*_i, s^*_i))$ for all $i \neq i' \in [\ell + 1]$, we simply check that $(m^*_i, R^*_i) \neq (m^*_i, R^*_i)$. This is equivalent since for any pair (m, R), there is a single $s \in \mathbb{Z}_p$ such that (R, s) is a valid signature for m. Hence, if the
For the original blind Schnorr signature scheme BISch[GrGen] in the random oracle model for an algebraic adversary A_{Alg}, the light-gray comments in Game 1 and oracle H show how the reduction B_{ros} solves ROS and the comments in the SIGN oracles show how B_{omd} embeds its challenges and simulates Game 1.

adversary returns $(m_1^*, (R_1^*, s_1^*))$ and $(m_2^*, (R_2^*, s_2^*))$ with $(m_1^*, R_1^*) = (m_2^*, R_2^*)$ and $s_1^* \neq s_2^*$, at least one of the two forgeries is invalid. Thus,

$\text{Adv}_{A_{\text{Alg}}}^{\text{game}_0}(\lambda) = \text{Adv}_{\text{BISch[GrGen], A}_{\text{Alg}}}^{\text{unf}}(\lambda)$.

Game 1. In Game 1, we make the following changes (which are analogous to those in the proof of Theorem 1). First, we introduce an auxiliary table U that for each query $H(R,\gamma,\xi,\rho)$ stores the representation (γ, ξ, ρ) of R. Clearly, this does not change the output of the game. Second, when the adversary returns its forgeries $(m_i^*, (R_i^*, s_i^*))$, for each $i \in [\ell + 1]$ for which $T(R_i^*, m_i^*)$ is undefined, we emulate a call to $H(R_i^*, \gamma, \xi, \rho)$, m_i^*. Again, this does not change the probability that the game returns 1, since in Game 0, the value $T(R_i^*, m_i^*)$ would be randomly assigned when the game calls H to check the signature. Finally, for each $i \in [\ell + 1],...
we retrieve \((\gamma_i^\ast, \xi_i^\ast, \vec{\rho}_i^\ast) := U(R_i^\ast, m_i^\ast)\) (which is necessarily defined at this point) and return 0 if \(\sum_{i=1}^\ell \rho^\ast_{i,j} c_j \equiv p c_i^\ast + \xi_i^\ast\) for all \(i \in [\ell + 1]\), where \(c_j\) is the (unique) value submitted to \(\text{Sign}_2\) together with \(j\) and not answered by \(\bot\).

Clearly, \(\text{Game}_0\) and \(\text{Game}_1\) are identical unless \(\text{Game}_1\) returns 0 in line (I). We reduce indistinguishability of \(\text{Game}_0\) and \(\text{Game}_1\) to ROS by constructing an algorithm \(B_{\text{ros}}\) solving the ROS\(\ell\) problem whenever \(\text{Game}_1\) returns 0 in line (I). Algorithm \(B_{\text{ros}}\), which has access to oracle \(H_{\text{ros}}\), runs \(A_{\text{alg}}\) and simulates \(\text{Game}_1\) in a straightforward way, except that it uses its \(H_{\text{ros}}\) oracle to define the entries of \(T\).

In particular, consider a query \(H(R_{i[\gamma, \xi, \vec{\rho}], m})\) by \(A_{\text{alg}}\) such that \(T(R, m) = \bot\). Then \(B_{\text{ros}}\) pads the vector \(\vec{\rho}\) with 0’s to make it of length \(\ell\) (at this point, not all \(R_1, \ldots, R_\ell\) are necessarily defined, so \(\vec{\rho}\) might not be of length \(\ell\)), and assigns \(T(R, m) := H_{\text{ros}}(\vec{\rho}, (\gamma, \xi, m)) - \xi\) (cf. comments in Figure 8). Similarly, when \(A_{\text{alg}}\) has returned its forgeries \((m_i^\ast, (R_i^\ast, m_i^\ast))\) of \(\vec{\rho}, \gamma, \xi, \vec{\rho}, m_i^\ast\) for each \(i \in [\ell + 1]\), then for each \(i \in [\ell + 1]\) with \(T(R_i^\ast, m_i^\ast) = \bot\), reduction \(B_{\text{ros}}\) assigns \(T(R_i^\ast, m_i^\ast) := H_{\text{ros}}(\vec{\rho}_i, (\gamma_i, \xi_i, m_i^\ast)) - \xi_i\).

Since \(H_{\text{ros}}\) returns uniformly random elements in \(Z_p\), the simulation is perfect.

If \(\text{Game}_1\) aborts in line (I), then \(B_{\text{ros}}\) returns \(((\vec{\rho}_i^\ast, (\gamma_i^\ast, \xi_i^\ast, m_i^\ast)))_{i \in [\ell + 1]}, (c_j)_{j \in [\ell]}\), where \((\gamma_i^\ast, \xi_i^\ast, \vec{\rho}_i^\ast) := U(R_i^\ast, m_i^\ast)\). We show that this is a valid ROS solution.

First, for all \(i \neq i' \in [\ell + 1]\): \((\vec{\rho}_i^\ast, (\gamma_i^\ast, \xi_i^\ast, m_i^\ast)) \neq (\vec{\rho}_{i'}^\ast, (\gamma_{i'}^\ast, \xi_{i'}^\ast, m_{i'}^\ast))\). Indeed, otherwise we would have \((m_i^\ast, R_i^\ast) = (m_{i'}^\ast, R_{i'}^\ast)\) and the game would have returned 0 earlier. Second, since the game returns 0 in line (I), we have \(\sum_{j=1}^\ell \rho^\ast_{i,j} c_j \equiv p c_i^\ast + \xi_i^\ast\) for all \(i \in [\ell + 1]\). Hence, to show that the ROS solution is valid, it is sufficient to show that for all \(i \in [\ell + 1]\), \(c_i^\ast = H_{\text{ros}}(\vec{\rho}_i^\ast, (\gamma_i^\ast, \xi_i^\ast, m_i^\ast)) - \xi_i = H_{\text{ros}}(\vec{\rho}_i^\ast, (\gamma_i^\ast, \xi_i^\ast, m_i^\ast)) - \xi_i^\ast\).

Otherwise, \(T(R_i^\ast, m_i^\ast)\) was necessarily assigned during a call to \(H\), and this call was of the form \(H(R_i[\gamma, \xi, \vec{\rho}], m_i^\ast)\), which implies that \(c_i^\ast = T(R_i^\ast, m_i^\ast) = H_{\text{ros}}(\vec{\rho}_i^\ast, (\gamma_i^\ast, \xi_i^\ast, m_i^\ast)) - \xi_i = H_{\text{ros}}(\vec{\rho}_i^\ast, (\gamma_i^\ast, \xi_i^\ast, m_i^\ast)) - \xi_i^\ast\). Hence, \(\text{Adv}^\text{game}_1(\lambda) \geq \text{Adv}^\text{game}_0(\lambda) - \text{Adv}_{B_{\text{ros}}}^\text{ros}\). (7)

Moreover, it is easy to see that \(B_{\text{ros}}\) makes at most \(q_h + \ell + 1\) queries to \(H_{\text{ros}}\) and runs in time at most \(\tau + O(\ell + q_h)\), assuming scalar multiplications in \(G\) and table assignments take unit time.

Reduction to OMDL. In our last step, we construct an algorithm \(B_{\text{omdl}}\) solving the OMDL problem whenever \(A_{\text{alg}}\) wins \(\text{Game}_1\). Algorithm \(B_{\text{omdl}}\), which has access to two oracles \(\text{CHAL}\) and \(\text{DLOG}\) (see Figure 1 in Section 2) takes as input a group description \((p, G, G)\), makes a first query \(X \leftarrow \text{CHAL}\), and runs \(A_{\text{alg}}\) on input \((p, G, G, X)\), simulating \(\text{Game}_1\) as follows (cf. comments in Figure 8). Each time \(A_{\text{alg}}\) makes a \(\text{SIGN}_1()\) query, \(B_{\text{omdl}}\) queries its \(\text{CHAL}\) oracle to obtain \(R_j\). It simulates \(\text{SIGN}_2(j, c)\) without knowledge of \(x\) and \(r_j\) by querying \(s_j \leftarrow \text{DLOG}(R_j + cX)\).

Assume that \(\text{Game}_1\) returns 1, which implies that all forgeries \((R_i^\ast, s_i^\ast)\) returned by \(A_{\text{alg}}\) are valid. We show how \(B_{\text{omdl}}\) solves OMDL. First, note that \(B_{\text{omdl}}\) made exactly \(\ell\) calls to its oracle \(\text{DLOG}\) in total (since it makes exactly one call for each (valid) \(\text{SIGN}_2\) query made by \(A_{\text{alg}}\)).

Since \(\text{Game}_1\) did not return 0 in line (I), there exists \(i \in [\ell + 1]\) such that \(\sum_{j=1}^\ell \rho^\ast_{i,j} c_j \neq p c_i^\ast + \xi_i^\ast\). (8)
Since the i-th forgery is valid, we have
\[s^*_i G = R^*_i + c^*_i X . \] (9)
On the other hand, $(\gamma^*_i, \xi^*_i, \rho^*_i)$ is a representation of R^*_i, i.e.,
\[R^*_i = \gamma^*_i G + \xi^*_i X + \sum_{j=1}^\ell \rho^*_{i,j} R_j . \] (10)
Combining Equations (9) and (10), we get
\[(c^*_i + \xi^*_i) X + \sum_{j=1}^\ell \rho^*_{i,j} R_j = (s^*_i - \gamma^*_i) G . \] (11)
Finally, for each $j \in [\ell]$, s_j was computed with a call $s_j \leftarrow D\text{Log}(R_j + c_j X)$, hence
\[R_j = s_j G - c_j X . \] (12)
Injecting Eq. (12) in Eq. (11), we obtain
\[(c^*_i + \xi^*_i - \sum_{j=1}^\ell \rho^*_{i,j} c_j) X = (s^*_i - \gamma^*_i - \sum_{j=1}^\ell \rho^*_{i,j} s_j) G . \] (13)
Since by Eq. (8) the coefficient in front of X is non-zero, this allows B_{omdl} to compute $x := \log X$. Furthermore, from Eq. (12) we have $r_j := \log R_j = s_j - c_j x$ for all $j \in [\ell]$. By returning (x, r_1, \ldots, r_ℓ), B_{omdl} solves the OMDL problem whenever A_{alg} wins Game\textsubscript{1}, which implies
\[\text{Adv}_{\text{GrGen,B_{omdl}}}^{\text{omdl}}(\lambda) = \text{Adv}_{A_{\text{alg}}}^{\text{game}_1}(\lambda) . \] (14)
Eq. (5) now follows from Equations (6), (7) and (14).

5 The Clause Blind Schnorr Signature Scheme

We present a variation of the blind Schnorr signature scheme that only modifies the signing protocol. The scheme thus does not change the signatures themselves, meaning that it can be very smoothly integrated in existing applications.

The signature issuing protocol is changed so that it prevents the adversary from attacking the scheme by solving the ROS problem using Wagner’s algorithm [Wag02, MS12]. The reason is that, as we show in Theorem 3, the attacker must now solve a modified ROS problem, which we define in Figure 10.

We start with explaining the modified signing protocol, which we formally define in Figure 9. The idea is that in the first round the signer and the user execute two parallel runs of the blind signing protocol from Figure 6, of which the signer only finishes one at random in the last round, that is, it finishes $(\text{Run}_1 \lor \text{Run}_2)$: the clause from which the scheme takes its name.

This minor modification has major consequences. Recall that in the attack against the standard blind signature scheme from Section 4.2, the adversary opens ℓ signing sessions, receiving R_1, \ldots, R_ℓ, then searches a solution \vec{c} to the ROS problem and closes the signing sessions by sending c_1, \ldots, c_ℓ.

Our modified signing protocol prevents this attack, as now for every opened session the adversary must guess which of the two challenges the signer will reply to. Only if all its guesses are correct is the attack successful. As the attack only works for large values of ℓ, this probability vanishes exponentially.
In Theorem 3 we make this intuition formal; that is, we define a modified ROS game, which we show any successful attacker (which does not solve OMDL) must solve.

We have used two parallel executions of the basic protocol for the sake of simplicity, but the idea can be straightforwardly generalized to \(t > 2 \) parallel runs, of which the signer closes only one at random in the last round, that is, it closes \((\text{Run}_1 \lor \ldots \lor \text{Run}_t)\). This decreases the probability that the user correctly guesses which challenges will be answered by the signer in \(\ell \) concurrent sessions.

The Modified ROS Problem. Consider Figure 10. The difference to the original ROS problem (Figure 7) is that the queries to the \(H_{\text{ros}} \) oracle consist of two vectors \(\vec{\rho}_0, \vec{\rho}_1 \) and additional aux information. Analogously, the adversary’s task is to return \(\ell + 1 \) tuples \((\vec{\rho}_0, \vec{\rho}_i, \text{aux}_i)\), except that the ROS solution \(c_{\ast}^0, \ldots, c_{\ast}^{\ell} \) is selected as follows: for every index \(j \in [\ell] \) the adversary must query an additional oracle \(\text{Select}(j, c_{j,0}, c_{j,1}) \), which flips a random bit \(b_j \) and sets the \(j \)-th coordinate of the solution to \(c_j^* := c_{j,b_j} \).

Up to now, nothing really changed, as an adversary could always choose \(\vec{\rho}_{i,0} = \vec{\rho}_{i,1} \) and \(c_{j,0} = c_{j,1} \) for all indices, and solve the standard ROS problem. What complicates the task for the adversary considerably is the additional winning condition, which demands that in all tuples returned by the adversary, the \(\rho \) values that correspond to the complement of the selected bit must be zero, that is, for all \(i \in [\ell + 1] \) and all \(j \in [\ell] \): \(\rho_{i,1-b_j,j} = 0 \). The adversary thus must commit to the solution coordinate \(c_j^* \) before it learns \(b_j \), which then restricts the format of its \(\rho \) values.

We conjecture that the best attack against this modified ROS problem is to guess the \(\ell \) bits \(b_j \) and to solve the standard ROS problem based on this guess using Wagner’s algorithm. Hence, the complexity of the attack is increased by a factor \(2^\ell \) and requires time

\[
O \left(2^\ell \cdot (\ell + 1)2^{\lambda/(1+\lceil \log(\ell+1) \rceil)} \right).
\]

<table>
<thead>
<tr>
<th>CBISch.Sign((p, G, G, H), x))</th>
<th>CBISch.User(((p, G, G, H), X), m))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_0, r_1 \leftarrow \mathbb{Z}_p)</td>
<td>(b \leftarrow {0, 1})</td>
</tr>
<tr>
<td>(R_0 := r_0G); (R_1 := r_1G)</td>
<td>(s := r_b + c_bx \mod p)</td>
</tr>
<tr>
<td>(b \leftarrow {0, 1})</td>
<td>(s \leftarrow r_b + c_bx \mod p)</td>
</tr>
<tr>
<td>(R_0, R_1 \leftarrow \mathbb{Z}_p)</td>
<td>(b, s \leftarrow)</td>
</tr>
<tr>
<td>(\alpha_0, \beta_0, \alpha_1, \beta_1 \leftarrow \mathbb{Z}_p)</td>
<td>(c_{\ast}^0 := H(R_0, m))</td>
</tr>
<tr>
<td>(R'_0 := R_0 + \alpha_0G + \beta_0X)</td>
<td>(c_{\ast}^i := H(R_i, m))</td>
</tr>
<tr>
<td>(R'_1 := R_1 + \alpha_1G + \beta_1X)</td>
<td>(c_0 := c_{\ast}^0 + \beta_0 \mod p)</td>
</tr>
<tr>
<td>(c_1 := c_{\ast}^1 + \beta_1 \mod p)</td>
<td>(c'_0 := H(R'_0, m))</td>
</tr>
<tr>
<td>(c'_1 := H(R'_1, m))</td>
<td>(s' := s + c_b \mod p)</td>
</tr>
<tr>
<td>(\text{if } sG \neq R_b + c_bX \text{ then return } \bot)</td>
<td>(\text{return } \sigma := (R'_b, s'))</td>
</tr>
</tbody>
</table>

Fig. 9. The clause blind Schnorr signing protocol.
This estimated complexity is plotted for $\lambda \in \{256, 512\}$ in Figure 11. This should be compared to the standard Wagner attack with $\ell + 1 = 2^{\sqrt{\lambda}}$ running in time 2^{32} and 2^{45}, respectively, for the same values of the security parameter.

Unforgeability of the Clause Blind Schnorr Signature Scheme. We now prove that the Schnorr signature scheme from Figure 3, with the signing algorithm replaced by the protocol in Figure 9 is secure under the OMDL assumption for the underlying group and hardness of the modified ROS problem.

Theorem 3. Let GrGen be a group generator. Let A_{alg} be an algebraic adversary against the UNF security of the clause blind Schnorr signature scheme $\text{CBlSch}[\text{GrGen}]$ running in time at most τ and making at most q_s queries to Sign_1 and q_h queries to the random oracle. Then there exist an algorithm B_{ros} for the MROS$_{q_h}$ problem making at most $q_h + q_s + 1$ random oracle queries and an algorithm B_{omdl} for the OMDL problem w.r.t. GrGen making at most q_h
queries to its oracle DLOG, both running in time at most \(\tau + O(q_s + q_h) \), such that

\[
\text{Adv}_{\text{BlSch[GrGen],A}_{\text{alg}}}^{\text{unf}}(\lambda) \leq \text{Adv}_{\text{GrGen,B}_{\text{omdl}}}^{\text{omdl}}(\lambda) + \text{Adv}_{\text{B}_{\text{mros}}}^{\text{mros}}(\lambda).
\]

The theorem follows by adapting the proof of Theorem 2; we therefore discuss the changes and refer to Figure 12, which compactly presents all the details.

The proof again proceeds by one game hop, where an adversary behaving differently in the two games is used to break the modified ROS problem; the only change to the proof of Theorem 2 is that when simulating SIGN2, the reduction \(B_{\text{mros}} \) calls \(\text{SELECT}(j,c_{j,0},c_{j,1}) \) to obtain bit \(b \) instead of choosing it itself. By definition, Game1 aborts in line (I) if and only if \(B_{\text{mros}} \) has found a solution for MROS.

The difference in the reduction to OMDL of the modified game is that the adversary can fail to solve MROS in two ways: (1) its values \((\rho_{i,b,j}^{*})_{i,j},(c_{j})_{j}\) are not a ROS solution; in this case the reduction can solve OMDL as in the proof of Theorem 2; (2) these values are a ROS solution, but for some \(i,j \), we have \(\rho_{i,1-b,j}^{*} \neq 0 \). We show that in this case the OMDL reduction can compute the discrete logarithm of one of the values \(R_{j,1-b,j}^{*} \).

More in detail, the main difference to Theorem 2 is that the representation of the values \(R_{i}^{*} \) in the adversary’s forgery depend on both the \(R_{j,0} \) and the \(R_{j,1} \) values; we can thus write them as

\[
R_{i}^{*} = \gamma_{i}^{*} G + \xi_{i}^{*} X + \sum_{j=1}^{\ell} \rho_{i,b,j}^{*} R_{j,b,j} + \sum_{j=1}^{\ell} \rho_{i,1-b,j}^{*} R_{j,1-b,j}
\]

(this corresponds to Eq. (10) in Theorem 2). Validity of the forgery implies

\[
R_{i}^{*} = s_{i}^{*} G - c_{i}^{*} X,
\]

which together with the above yields

\[
(c_{i}^{*} + \xi_{i}^{*}) X + \sum_{j=1}^{\ell} \rho_{i,b,j}^{*} R_{j,b,j} = (s_{i}^{*} - \gamma_{i}^{*}) G - \sum_{j=1}^{\ell} \rho_{i,1-b,j}^{*} R_{j,1-b,j}.
\]

By definition of \(s_{j} \), we have \(R_{j,b,j} = s_{j} G - c_{j} X \) for all \(j \in [\ell] \); the above equation becomes thus

\[
(c_{i}^{*} + \xi_{i}^{*} - \sum_{j=1}^{\ell} \rho_{i,b,j}^{*} c_{j}) X = (s_{i}^{*} - \gamma_{i}^{*} - \sum_{j=1}^{\ell} \rho_{i,b,j}^{*} s_{j}) G - \sum_{j=1}^{\ell} \rho_{i,1-b,j}^{*} R_{j,1-b,j}
\]

(15)

(which corresponds to Eq. (13) in Theorem 2). In Theorem 2, not solving ROS implied that for some \(i \), the coefficient of \(X \) in the above equation was non-zero, which allowed computation of \(\log X \).

However, if the adversary sets all these coefficients to 0, it could still fail to solve MROS if \(\rho_{i,1-b,j}^{*} \neq 0 \) for some \(i^{*},j^{*} \) (this is exactly case (2) defined above). In this case Game1 does not abort and the OMDL reduction \(B_{\text{omdl}} \) must succeed. Since in this case the left-hand side of Eq. (15) is then 0, \(B_{\text{omdl}} \) can, after querying DLOG\((R_{j,1-b,j})\) for all \(j \neq j^{*} \), compute DLOG\((R_{j^{*},1-b,j^{*}})\), which breaks OMDL.

We finally note that the above case distinction was merely didactic, as the same OMDL reduction can handle both cases simultaneously, which means that our reduction does not introduce any additional security loss. In particular, the reduction obtains \(X \) and all values \((R_{j,0},R_{j,1})\) from its OMDL challenger, then handles case (2) as described, and case (1) by querying \(R_{1,1-b,1},\ldots,R_{\ell,1-b,\ell} \) to its DLOG oracle. In both cases it made \(2\ell \) queries to DLOG and computed the discrete logarithms of all \(2\ell + 1 \) challenges.

Figure 12 presents the unforgeability game and Game1, which aborts if the adversary solved MROS. The gray and dark gray comments also precisely define how a reduction \(B_{\text{mros}} \) solves MROS whenever Game1 aborts in line (I), and how a reduction \(B_{\text{omdl}} \) solves OMDL whenever \(A_{\text{alg}} \) wins Game1.
Fig. 12. Games used in the proof of **Theorem 3.** Game$_{i}$ is the unforgeability game for the clause blind Schnorr signature scheme in the ROM for an algebraic adversary A_{alg}. The comments in light gray show how B_{mros} solves MROS; the dark comments show how B_{omdl} solves OM DL.
Blindness of the Clause Blind Schnorr Signature Scheme. Blindness of the “clause” variant in Figure 9 follows via a hybrid argument from blindness of the standard scheme (Figure 6). In the game defining blindness the adversary impersonates a signer and selects two messages \(m_0\) and \(m_1\). The game flips a bit \(b\), runs the signing protocol with the adversary for \(m_b\) and then for \(m_{1-b}\). If both sessions terminate, the adversary is given the resulting signatures and must determine \(b\).

In the blindness game for scheme CBlSch, the challenger runs two instances of the issuing protocol from BlSch for \(m_b\) of which the signer finishes one, as determined by its message \((\beta_b, s_b)\) in the third round (\(\beta_b\) corresponds to \(b\) in Figure 9), and then two instances for \(m_{1-b}\).

If \(b = 0\), the challenger thus asks the adversary for signatures on \(m_1, m_0, m_0, m_1\); this game thus lies between the blindness games for \(b = 0\) and \(b = 1\), where the messages are \(m_1, m_1, m_0, m_0\). The original games differ from the hybrid game by exactly one message pair; intuitively, they are thus indistinguishable by blindness of BlSch.

A technical detail is that this argument only works when \(\beta_0 = \beta_1\), as otherwise in the reduction to BlSch blindness, both reductions (between each original game and the hybrid game) abort one session and do not get any signatures from its challenger. The reductions thus guess the values \(\beta_0\) and \(\beta_1\) (and return a random bit if the guess turns out wrong). The hybrid game then replaces the \(\beta_0\)-th message of the first two and the \(\beta_1\)-th of the last two (as opposed to the ones underlined as above). Following this argument, in Appendix B, where we formally define the game BLINDA, we prove the following:

Theorem 4. Let \(\mathcal{A}\) be a p.p.t. adversary against blindness of the scheme CBlSch. Then there exist two p.p.t. algorithms \(\mathcal{B}_1\) and \(\mathcal{B}_2\) against blindness of BlSch such that

\[
\text{Adv}_{\text{blind CBlSch}, \mathcal{A}}(\lambda) \leq 4 \cdot (\text{Adv}_{\text{blind BlSch}, \mathcal{B}_1}(\lambda) + \text{Adv}_{\text{blind BlSch}, \mathcal{B}_2}(\lambda))
\]

Since the (standard) blind Schnorr signature scheme is perfectly blind [CP93], by the above our variant also satisfies perfect blindness.

6 Schnorr-Signed ElGamal KEM

A public key for the ElGamal key-encapsulation mechanism (KEM) is a group element \(Y \in \mathbb{G}\). To encrypt a message under \(Y\), one samples a random \(x \in \mathbb{Z}_p\) and derives a key \(K := xY\) to encrypt the message. Given the encapsulation \(X := xG\), the receiver that holds \(y = \log Y\) can derive the same key as \(K := yX\).

Under the decisional Diffie-Hellman assumption (DDH), keys are pseudorandom when given an encapsulation. By hashing the key, that is, defining \(k := H(xY)\), the assumption can be relaxed to CDH in the random-oracle model. In the AGM, the (standard) ElGamal KEM was shown to satisfy CCA1 security (where the adversary can only make decryption queries before it has seen the challenge key) under a parameterized variant of DDH [FKL18].

The idea of Schnorr-signed ElGamal is that, in addition to \(X\), the encapsulation contains a proof of knowledge of the used randomness \(x = \log X\), in the form of a Schnorr signature on message \(X\) under the public key \(X\). The scheme is detailed in Figure 13.

The strongest security notion for KEM schemes is indistinguishability of ciphertexts under chosen-ciphertext attack (IND-CCA2), where the adversary can query decryptions of
encapsulations of its choice even after receiving the challenge. The (decisional) game IND-CCA2 is defined in Figure 14.

We now prove that the Schnorr-signed ElGamal KEM is tightly IND-CCA2-secure against algebraic adversaries in the random-oracle model under the discrete logarithm assumption.

Theorem 5. Let \(\text{GrGen} \) be a group generator. Let \(A_{\text{alg}} \) be an algebraic adversary against the IND-CCA2 security of the Schnorr-signed ElGamal KEM scheme \(\text{SEGK}[\text{GrGen}] \) making at most \(q_d \) decryption queries and \(q_h \) queries to both random oracles. Then there exists an algorithm \(B \) solving the DL problem w.r.t. \(\text{GrGen} \), such that

\[
\text{Adv}_{\text{SEGK}[\text{GrGen}], A_{\text{alg}}}^{\text{IND-CCA2}}(\lambda) \leq 2 \cdot \text{Adv}_{\text{GrGen}, B}^{\text{dl}}(\lambda) + \frac{q_d + \frac{1}{2^{\lambda-1}}(q_d + q_h)}{2^{\lambda-2}}.
\]

We give the proof idea here; a formal proof can be found in Appendix A. Let \(Y \) be the public key and let \((X^* = x^*G, R^*, s^*) \) be the challenge ciphertext. If the adversary never queries \(H'(x^*Y) \) then it has no information about the challenge key \(k_b \); but in order to query \(K^* := x^*Y \), the adversary must solve the CDH problem for \((Y, X^*) \). A CDH solution cannot

Figure 13. The Schnorr-signed ElGamal KEM scheme \(\text{SEGK}[\text{GrGen}] \) for key space \(K \).

```
\begin{align*}
\text{SEGK.Setup}(\lambda) & \quad (p, \mathbb{G}, G) \leftarrow \text{GrGen}(1^\lambda) \\
& \quad \text{Select } H : \{0,1\}^* \rightarrow \mathbb{Z}_p \\
& \quad \text{Select } H' : \{0,1\}^* \rightarrow \mathcal{K} \\
& \quad \text{return } par := (p, \mathbb{G}, G, H, H')
\end{align*}
```

```
\begin{align*}
\text{SEGK.KeyGen}(par) & \quad (p, \mathbb{G}, H, H') := par \\
& \quad y \leftarrow \mathbb{Z}_p; \; Y := yG \\
& \quad sk := (par, y); \; pk := (par, Y) \\
& \quad \text{return } (sk, pk)
\end{align*}
```

```
\begin{align*}
\text{SEGK.Enc}(pk) & \quad (p, \mathbb{G}, G, H, H', Y) := pk \\
& \quad x, r \leftarrow \mathbb{Z}_p; \; X := xG; \; R := rG \\
& \quad k := H'(xY); \; s := r + H(R, X) \cdot x \bmod p \\
& \quad \text{return } (k, (X, R, s))
\end{align*}
```

```
\begin{align*}
\text{SEGK.Dec}(sk, (X, R, s)) & \quad (p, \mathbb{G}, H, H', y) := sk \\
& \quad \text{if } sG \neq R + H(R, X) \cdot X \text{ then} \\
& \quad \quad \text{return } \bot \\
& \quad \quad \text{return } k := H'(yX)
\end{align*}
```

Figure 14. The IND-CCA2 security game for a KEM scheme \(\text{KEM} \).

```
\begin{align*}
\text{Game IND-CCA2}_{\text{KEM}}^A(\lambda) & \quad \text{Oracle ENC()} \quad \text{// one time} \\
& \quad \text{par} \leftarrow \text{KEM.Setup}(\lambda) \\
& \quad (pk, sk) \leftarrow \text{KEM.KeyGen(par)} \\
& \quad b \leftarrow \{0,1\} \\
& \quad b' \leftarrow A_{\text{Enc}, \text{Dec}}(pk) \\
& \quad \text{return } (b = b')
\end{align*}
```

```
\begin{align*}
\text{Oracle ENC()} & \quad (k_0, c^*) \leftarrow \text{KEM.Enc}(pk); \; k_1 \leftarrow \mathcal{K} \\
& \quad \text{return } (k_0, c^*)
\end{align*}
```

```
\begin{align*}
\text{Oracle DEC(c)} & \quad \text{if } c = c^* \text{ then return } \bot \\
& \quad \text{return } \text{KEM.Dec}(sk, c)
\end{align*}
```
be recognized by the reduction, so it would have to guess one of \(A \)'s \(H' \) queries, which would make the proof non-tight.

In the AGM we can give a tight reduction to a weaker assumption, namely DL: Given a DL challenge \(Y \), we set it as the public key, pick a random \(z \) and set \(X^* := zY \). If the adversary makes the query \(H'(K^*) \) then we have \(K^* = zy^2 G \). On the other hand, the adversary must provide a representation \((\gamma, v, \xi, \rho) \) of \(K^* \) w.r.t. \((G, Y, X^*, R^*)\), and thus
\[
K^* = \gamma G + vY + \xi X^* + \rho R^* = (\gamma + vy + \xi zy + \rho s^* - \rho c^* zy)G ,
\]
(16)

using the fact that \(R^* = s^* G - c^* X^* \). Setting these two representations of \(\log K^* \) equal yields the following quadratic equation in \(y \):
\[
zy^2 - (v + \xi z - \rho c^* z)y \equiv_p \gamma + \rho s^* .
\]

If one of the solutions is the DL of \(Y \), we are done; otherwise, the adversary’s query was not of the form \(K^* \) and the challenge bit remains information-theoretically hidden.

The rest of the game is simulated without knowledge of \(\log X^* \) and \(\log Y \) as follows: The Schnorr signature under \(X^* \) contained in the challenge encapsulation can be simulated by programming the random oracle \(H \) as in the proof of Theorem 1. Decryption queries leverage the fact that the Schnorr signature contained in an encapsulation \((X, R, s)\) proves knowledge of \(x \) with \(X = xG \). By extracting \(x \), the reduction can answer the query with \(k = H'(xY) \), but this extraction is trickier than in the proof of Theorem 1, since both \(X \) and \(R \) can also depend on \(Y \), \(X^* \) and \(R^* \) (if the query is made after seeing the challenge ciphertext, which is the harder case).

In more detail, given the representations \((\gamma, v, \xi, \rho)\) and \((\gamma', v', \xi', \rho')\) of \(R \) and \(X \) provided by the adversary, we can write (analogously to Eq. (16)):
\[
\begin{align*}
 r &= \log R \equiv_p \gamma + vy + \xi zy + \rho s^* - \rho c^* zy \equiv_p \alpha y + (\gamma + \rho s^*) \quad \text{and} \\
 x &= \log X \equiv_p \gamma' + v'y + \xi' zy + \rho' s^* - \rho' c^* zy \equiv_p \alpha' y + (\gamma' + \rho' s^*)
\end{align*}
\]
(17)

with \(\alpha := v + (\xi - \rho c^*) z \pmod p \) and \(\alpha' := v' + (\xi' - \rho' c^*) z \pmod p \). Since the signature \((R, s)\) contained in the query must be valid, we have \(s \equiv_p r + cx \). Plugging the above two equations into the latter yields
\[
(\alpha + \alpha' c)y \equiv_p s - (\gamma + \rho s^*) - (\gamma' + \rho' s^*) c .
\]

If \(\alpha + \alpha' c \neq p \) 0 then solving the above for \(y \) solves the challenge DL and the reduction can stop. Since \(c = H(R, X) \) was chosen by the experiment after the adversary provided representations of \(R \) and \(X \), which define \(\alpha \) and \(\alpha' \), we have that \(\alpha + \alpha' c \equiv_p 0 \) happens with probability \(\frac{1}{p} \), unless \(\alpha' = 0 \).

In the latter case however, from Eq. (17) we have \(x = \gamma' + \rho' s^* \pmod p \), meaning the reduction can compute \(x \) and can therefore answer the decryption query by returning \(H'(xY) = H'(yX) \).

ACKNOWLEDGEMENTS. The first author is supported by the French ANR *EfTrEC* project (ANR-16-CE39-0002). The first and the second authors are supported by the MSR–Inria Joint Centre.
References

Consider the games $Game_0$ through $Game_3$ in Figure 15, where in $Game_3$ the adversary's advantage is 0. $Game_0$ has the same behavior as IND-CCA2$_{SEGK|GrGen}$; the only syntactical change is that the value X^* used in the Enc oracle is already set before running A (which ensures that in later games it is defined in the abort conditions for lines (I), (III) and (IV) even when Enc has not been called yet). We prove the theorem by bounding the probability that the adversary behaves differently in two consecutive games $Game_i$ and $Game_{i+1}$.

We start with the difference between $Game_0$ and $Game_1$, which consists in a possible abort in line (I) in oracle Dec. This happens when the experiment randomly chooses c as one
The IND-CCA2 security game for the Schnorr-Signed ElGamal KEM scheme IND-CCA2$^{\text{A skept.}}_{\text{SECG[GrGen]}}(\lambda)$ (Game0) and games Game1–Game3 used in the proof. The comments in dashed boxes show how the DL reduction simulates Game3 without knowledge of x^+ and y.

![Game Diagram](image-url)
particular value. (Note that Game₁ sets \(c^* := 0 \), so the value is defined in Dec when Enc has not been called yet.)

Observe that at any point \(T(R^*, X^*) \) is the only value in \(T \) that was not set during an adversary’s call to \(H \) or Dec, and that thus does not have a corresponding entry in \(U \). Moreover, if a call \((X, R, s)\) to Dec is not answered by \(\bot \), we must have \((X, R) \neq (X^*, R^*)\), since otherwise by the 3rd line \(s = \log R^* + T(R^*, S^*) \log X^* = s^* \) and the oracle would have returned \(\bot \) in the 1st line.

Game₁ sets the values \((\gamma, v, \xi, \rho, \gamma', v', \xi', \rho')\) that were given as the representation of \(X \) and \(R \) when \(T(X, R) = c \) was defined. As we argued above, this must have been during a call from the adversary. The value \(c \) is thus independent of \((\gamma, \ldots, \rho')\), the values that define \(\alpha \) and \(\alpha' \).

The two games Game₀ and Game₁ behave identically unless Game₁ aborts in line (I), that is, if \(\alpha + \alpha' \equiv_p 0 \) and \(\alpha' \neq 0 \). By the above argument, the probability that \(c \) was chosen such as \(c = -\alpha \cdot (\alpha')^{-1} \mod p \) is upper-bounded by \(\frac{1}{2^{\lambda-1}} \). We thus have

\[
\text{Adv}^\text{game₁}_{\text{alg}}(\lambda) = 2 \cdot \Pr[1 \leftarrow \text{Game₁}] - 1 \\
\geq 2 \cdot \left(\Pr[1 \leftarrow \text{Game₀}] - q_d/2^{\lambda-1} \right) - 1 = \text{Adv}^\text{game₀}_{\text{alg}}(\lambda) - \frac{q_d}{2^{\lambda-2}} . \quad (18)
\]

The two games Game₁ and Game₂ behave identically unless oracle Enc generates values \((R^*, X^*)\) that have already been assigned a value in the table \(T \). The values \(R^* \) and \(X^* \) are uniformly random in \(G \). Moreover, after the adversary has made \(q_h \) queries to \(H \) and \(q_d \) to Dec, at most \(q_h + q_d \) values in \(T \) are assigned. Thus, the probability that \((R^*, X^*)\) collides with one of the entries is bounded by \(\frac{q_h + q_d}{(2^{\lambda-1})^2} \), and we thus have

\[
\text{Adv}^\text{game₂}_{\text{alg}}(\lambda) \geq \text{Adv}^\text{game₁}_{\text{alg}}(\lambda) - 2 \cdot \frac{(q_d + q_h)}{(2\lambda-1)^2} . \quad (19)
\]

Reduction to DL. We now construct an adversary \(B \) solving DL whenever Game₃ differs from Game₂, that is, when there is an abort in line (III) or (IV). Given a DL challenge \(Y \), the reduction \(B \) sets \(Y \) as the public key, chooses a random \(z \leftarrow \mathbb{Z}_p^* \) and sets \(X^* := zY \). It simulates Enc by computing \((R^*, s^*)\) as prescribed by the oracle, but setting \(k_b := k_1 \), a random key. (We argue below that when this introduces an inconsistency, the game aborts in line (III) anyway). \(B \) simulates the other oracles in Game₃ for \(A \) without knowledge of \(y \) and \(x^* \) as follows (cf. the comments in \(\square \) dashed boxes \(\square \) in Figure 15):

- **Queries to \(H' \):** whenever \(A \) queries \(K_{[\gamma, v, \xi, \rho]} \) with

 \[
 K = \gamma G + vY + \xi X^* + \rho R^* = (\gamma + v + \xi z + \rho s^* - \rho c^* z) G ,
 \]

 \(B \) checks whether \(K = yX^* \) (which equals \(z y^2 G \)) by solving the following equation for \(y \)

 \[
 z y^2 - (v + \xi z - \rho c^* z)y \equiv_p \gamma + \rho s^* \]

 and checking whether some solution \(y \) satisfies \(Y = yG \) (in this case Game₃ would abort in line (III)); if so, \(B \) stops and returns \(y \).

 Note that otherwise, \(K \neq yX^* \) and thus \(k_1 \) still perfectly simulates \(H'(yX^*) = k_b \).
Queries to Dec: when queried \((X, R, s)\), Dec returns \(\bot\) if \(sG \neq R + H(R, X)X\) or \((X, R, s) = (X^*, R^*, s^*)\). Since \(s\) is determined by \((R, X)\), the latter implies \((R, X) \neq (R^*, X^*)\) if Dec did not return \(\bot\). By the first lines in the box in Dec, we have that \((\gamma, v, \xi, \rho)\) and \((\gamma', v', \xi', \rho')\) are such that
\[
\begin{align*}
R &= \gamma G + v Y + \xi X^* + \rho R^* = (\gamma + vy + \xi y + \rho s^* - \rho' c^* y)G \\
X &= \gamma' G + v' Y + \xi' X^* + \rho' R^* = (\gamma' + v'y + \xi' y + \rho' s^* - \rho' c^* y)G .
\end{align*}
\]
(20)

As in Dec, we let \(\alpha := v + (\xi - \rho c^*) z \mod p\) and \(\alpha' := v' + (\xi' - \rho' c^*) z \mod p\) and thus from Eq. (20) we have
\[
\begin{align*}
r := \log R &= \gamma + \rho s^* + \alpha y \mod p \\
x := \log X &= \gamma' + \rho' s^* + \alpha' y \mod p .
\end{align*}
\]
(21)

Since the oracle did not return \(\bot\) in the 3rd line, we have \(s \equiv_p r + cx\), and thus, by substituting \(r\) and \(x\) from Eq. (21):
\[
(\alpha + \alpha' c)y \equiv_p s - (\gamma + \rho s^*) - (\gamma' + \rho' s^*)c .
\]

If \(\alpha + \alpha' c \not\equiv_p 0\) then Game\(_2\) would abort in line (IV); in this case \(\mathcal{B}\) returns the DL solution \(y = (\alpha + \alpha' c)^{-1}(s - (\gamma + \rho s^*) - (\gamma' + \rho' s^*)c) \mod p\).

If \(\alpha + \alpha' c \equiv_p 0\) and \(\alpha' \not\equiv 0\) then both Game\(_2\) and Game\(_3\) (and thus \(\mathcal{B}\)) abort in line (I). Otherwise we must have \(\alpha' = 0\) and, from Eq. (21): \(x = \gamma' + \rho' s^* \mod p\). The reduction can thus simulate the decryption query by returning \(H'(xY)\) (which might define a new \(H'\) value or not).

This shows that whenever Game\(_3\) differs from Game\(_2\) (in lines (III) or (IV)), reduction \(\mathcal{B}\) solves the DL problem, which yields:
\[
\text{Adv}_{\text{A}_{\text{alg}}}^{\text{Game}_3}(\lambda) \geq \text{Adv}_{\text{A}_{\text{alg}}}^{\text{Game}_2}(\lambda) - 2 \cdot \text{Adv}_{\text{GrGen, B}}^{\text{dl}}(\lambda) .
\]
(22)

Inspecting Game\(_3\), we note that \(\mathcal{A}\)'s output is independent of \(b\) and if the game aborts it outputs a random bit; we thus have:
\[
\text{Adv}_{\text{A}_{\text{alg}}}^{\text{Game}_3}(\lambda) = 2 \cdot \Pr[1 \leftarrow \text{Game}_3] - 1 = 0 .
\]
(23)

The theorem now follows from Equations (18), (19), (22) and (23).

B Blindness of the Clause Blind Schnorr Signatures

In this section we formally prove blindness of the clause blind Schnorr signature scheme CBlSch, whose signing protocol is defined in Figure 9, by reducing it to blindness of the (standard) blind Schnorr signature scheme BISch (Figure 6).

In the game defining blindness for BISch, the adversary plays the role of the signer and interacts with oracles that simulate a user running two signing sessions. Oracle \(U_1\) reproduces the first interaction BISch.User\(_1\) of session \(i\), in which the user sends a challenge \(c\). Oracle \(U_2\) is the second interaction BISch.User\(_2\), which, once both sessions are finished, outputs the resulting signatures.

The formal game BLIND\(_{\text{BISch}}\) for adversary \(\mathcal{B}\) is specified in Figure 16, where we follow the definition from Hauk, Kiltz and Loss [HKL19]. As usual, \(\mathcal{B}\)'s advantage is defined as \(\text{Adv}_{\text{BISch, B}}^{\text{blind}}(\lambda) := 2 \cdot \Pr[1 \leftarrow \text{BLIND}_{\text{BISch, B}}(\lambda)] - 1.\)
Proof of Theorem 4. Figure 16 shows the blindness game for clause blind Schnorr signatures, where we have replaced CBISch.User$_1$ and CBISch.User$_2$ by their instantiations in terms of BiSch.User$_1$ and BiSch.User$_2$: the user first runs two instances of BiSch.User$_1$, and the signer calls U$_2$ with an additional input β, which specifies which instance the signer completes.
To reduce blindness of CBISch to blindness of BlSch, we will guess the bits β_0 and β_1 that the adversary will use in its calls to U_2: game $G^A(\lambda)$, specified in Figure 16, is defined like $BLIND^A_{CBISch}$, except that it picks two random bits β_0 and β_1 and aborts if its guess was wrong. (We also make a syntactical change in that U_2 continues session β_i instead of β_i; when $\beta_i \neq \beta_i$, the simulation is not correct, but the game ignores A’s output anyway.) When $\hat{\beta}_0 \neq \beta_0$ or $\hat{\beta}_1 \neq \beta_1$, the bit b' is random, so we have

$$
\Pr[1 \leftarrow G^A(\lambda) | \hat{\beta}_0 \neq \beta_0 \lor \hat{\beta}_1 \neq \beta_1] = \frac{1}{2} .
$$

(24)

On the other hand, when $\hat{\beta}_0 = \beta_0$ and $\hat{\beta}_1 = \beta_1$, the game is the same as the original blindness game, whose output is independent of the guess, which yields

$$
\Pr[1 \leftarrow G^A(\lambda) | \hat{\beta}_0 = \beta_0 \land \hat{\beta}_1 = \beta_1] = \Pr[1 \leftarrow BLIND^A_{CBISch}(\lambda)] .
$$

(25)

From Eqs. (24) and (25), we have

$$
\Pr[1 \leftarrow G^A(\lambda)] = \frac{1}{2} \cdot \frac{3}{4} + \Pr[1 \leftarrow BLIND^A_{CBISch}(\lambda)] \cdot \frac{1}{4} ,
$$

and thus

$$
Adv^A_\lambda = 2 \cdot \Pr[1 \leftarrow G^A(\lambda)] - 1 = \frac{1}{4} \cdot Adv^{\text{blind}}_{CBISch,A}(\lambda) .
$$

(26)

In the remainder of the proof, we will show that the adversary’s behavior only changes negligibly when the bit b changes from 0 to 1. To do so, we define G^*_0 and G^*_1 by modifying G^A as follows: the bit b is fixed to 0 and 1, respectively, and the game directly outputs bit b'. The games are specified in Figure 17 and we define $BLIND^B_{0,BlSch}$ and $BLIND^B_{1,BlSch}$ analogously. We have:

$$
Adv^*_\lambda = \Pr[1 \leftarrow G^*_1(\lambda)] - \Pr[1 \leftarrow G^*_0(\lambda)] - 1
$$

(27)

(28)

We now define a hybrid game $G*$ which lies “between” G_0 and G_1 and is also specified in Figure 17. It differs from G_0 in the β_i-th message used in signing session i and from G_1 in the $(1 - \beta_i)$-th message. Since

$$
Adv^*_\lambda = \Pr[1 \leftarrow G^*_1(\lambda)] - \Pr[1 \leftarrow G^*_0(\lambda)] - \Pr[1 \leftarrow G^*_1(\lambda)] - \Pr[1 \leftarrow G^*_0(\lambda)] ,
$$

it suffices to bound these two differences. For the first, we construct an adversary B_1 playing game $BLIND_{BlSch}$ and simulating G to A so that if B_1 plays $BLIND_{BlSch}$, it simulates G_0 to A; whereas if it plays $BLIND_{1,BlSch}$, it simulates G_* to A. Adversary B_1 thus embeds its interaction with its challenger as the two sessions that A will conclude (provided that $\hat{\beta}_0$ and $\hat{\beta}_1$ are guessed correctly); it is specified in Figure 18. By inspection, we have

$$
\Pr[1 \leftarrow BLIND^B_{0,BlSch}(\lambda)] = \Pr[1 \leftarrow G^*_0(\lambda)]
$$

and

$$
\Pr[1 \leftarrow BLIND^B_{1,BlSch}(\lambda)] = \Pr[1 \leftarrow G^*_1(\lambda)] .
$$

(29)

We also construct an adversary B_2 that simulates game $G^*_1(\lambda)$ or $G^*_1(\lambda)$. It embeds its interaction as the sessions that A will abort and executes the concluding sessions (which are the same in G_* and G_1) on its own. Adversary B_2 is also specified in Figure 18 (note that in
which, together with Eq. (26), concludes the proof.

Oracle U2(i, s_i, b_i)

<table>
<thead>
<tr>
<th>$\beta_0, \beta_1 \leftarrow {0, 1}$</th>
<th>$b' \leftarrow A_{\text{isr}, U_1, U_2}(1^\lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>if $\hat{\beta}_0 \neq \beta_0 \lor \hat{\beta}_1 \neq \beta_1$ then $b' \leftarrow {0, 1}$</td>
<td>return b'</td>
</tr>
</tbody>
</table>

INIT(pk, m_0, m_1)

- $s_{e_{0}} := \text{init}$
- $s_{e_{1}} := \text{init}$

Oracle U1(i, R_{i,0}, R_{i,1}) / in G_0 and G_1

| if $i \notin \{0, 1\} \lor s_{e_{i}} \neq \text{init}$ then return \perp |
| $s_{e_{i}} := \text{open}$ |
| $(s_{e_{0},0}, c_{i,0}) \leftarrow \text{BiSch.User}_1(pk, R_{i,0}, m_{i})$ |
| $(s_{e_{1},1}, c_{i,1}) \leftarrow \text{BiSch.User}_1(pk, R_{i,1}, m_{i})$ |

| $(s_{e_{0},0}, c_{i,0}) \leftarrow \text{BiSch.User}_2(pk, R_{i,0,1}, m_{i-1})$ |
| $(s_{e_{1},1}, c_{i,1}) \leftarrow \text{BiSch.User}_2(pk, R_{i,1,1}, m_{i-1})$ |

Oracle U1(i, R_{i,0}, R_{i,1}) / only in G_1

| if $i \notin \{0, 1\} \lor s_{e_{i}} \neq \text{init}$ then return \perp |
| $s_{e_{i}} := \text{open}$ |
| if $\hat{\beta}_i = 0$ then |
| $(s_{e_{0},0}, c_{i,0}) \leftarrow \text{BiSch.User}_1(pk, R_{i,0}, m_{i-1})$ |
| $(s_{e_{1},1}, c_{i,1}) \leftarrow \text{BiSch.User}_1(pk, R_{i,1}, m_{i})$ |
| else if $\hat{\beta}_i = 1$ then |
| $(s_{e_{0},0}, c_{i,0}) \leftarrow \text{BiSch.User}_2(pk, R_{i,0}, m_{i})$ |
| $(s_{e_{1},1}, c_{i,1}) \leftarrow \text{BiSch.User}_2(pk, R_{i,1}, m_{i-1})$ |

Description of the games G_0 and G_1 which fix the bit b in game G from Figure 16. G_1 is a hybrid game that makes the transition between G_0 and G_1.

Its simulation of U_2, the variable state$_{i,\hat{\beta}_i}$ is always defined because of our syntactical change in Figure 16). We have

$$
\Pr[1 \leftarrow \text{BLIND}_{0, \text{BiSch}}^B(\lambda)] = \Pr[1 \leftarrow G_1^A(\lambda)] \quad \text{and} \quad \Pr[1 \leftarrow \text{BLIND}_{1, \text{BiSch}}^B(\lambda)] = \Pr[1 \leftarrow G_1^A(\lambda)].
$$

From Eqs. (28) – (30) we get

$$
\text{Adv}_A^G(\lambda) = \text{Adv}_{\text{BiSch}, B_1}^\text{blind}(\lambda) + \text{Adv}_{\text{BiSch}, B_2}^\text{blind}(\lambda),
$$

which, together with Eq. (26), concludes the proof. \qed
\[
\begin{array}{c}
\mathcal{B}_1^{\text{str}, U_i^1, U_2^1 (1^\lambda)}
\end{array}
\]

\[
\begin{array}{c}
\mathcal{B}_2^{\text{str}, U_i^2, U_2^2 (1^\lambda)}
\end{array}
\]

\[
\begin{array}{c}
\hat{\beta}_0, \hat{\beta}_1 \leftarrow \{0, 1\} \\
b' \leftarrow A^{\text{str}, U_i^1, U_2^1 (1^\lambda)}
\end{array}
\]

\[
\begin{array}{c}
\text{if } \hat{\beta}_0 \neq \beta_0 \land \hat{\beta}_1 \neq \beta_1 \text{ then } / / \beta_i \text{ could be } \perp \\
b' \leftarrow \{0, 1\}
\end{array}
\]

\[
\begin{array}{c}
\text{return } b'
\end{array}
\]

\[
\begin{array}{c}
\text{INIT}^A(pk, m_0, m_1)
\end{array}
\]

\[
\begin{array}{c}
\text{sess}_0 := \text{init} \\
\text{sess}_1 := \text{init}
\end{array}
\]

\[
\begin{array}{c}
\text{INIT}^B(pk, m_0, m_1)
\end{array}
\]

\[
\begin{array}{c}
\text{Oracle } U_1^A(i, R_1, R_i) \quad / / \text{simulated by } B_1
\end{array}
\]

\[
\begin{array}{c}
\text{if } \hat{\beta}_i = 0 \text{ then } \\
c_{i, 0} \leftarrow U_1^B(i, R_i) \\
\text{(state}_{0, i, c_{i, 0}) \leftarrow \text{BlSch.User}_1(pk, R_i, m_0)
\end{array}
\]

\[
\begin{array}{c}
\text{if } \hat{\beta}_i = 1 \text{ then } \\
\text{(state}_{0, i, c_{i, 0}) \leftarrow \text{BlSch.User}_1(pk, R_1, m_0) \\
c_{i, 1} \leftarrow U_1^B(i, R_i)
\end{array}
\]

\[
\begin{array}{c}
\text{return } (c_{i, 0}, c_{i, 1})
\end{array}
\]

\[
\begin{array}{c}
\text{Oracle } U_2^A(i, \beta_i) \quad / / \text{simulated by } B_2
\end{array}
\]

\[
\begin{array}{c}
\text{out} \leftarrow U_2^B(i, s_i) \\
\quad / / \text{out can be } \epsilon, (\sigma_0, \sigma_1), \text{ or } (\perp, \perp)
\end{array}
\]

\[
\begin{array}{c}
\text{return out}
\end{array}
\]

\[
\begin{array}{c}
\text{Oracle } U_2^A(i, s_i, \beta_i) \quad / / \text{simulated by } B_2
\end{array}
\]

\[
\begin{array}{c}
\text{if } \text{sess}_i \neq \text{open} \text{ then return } \perp
\end{array}
\]

\[
\begin{array}{c}
\text{sess}_i := \text{closed}
\end{array}
\]

\[
\begin{array}{c}
\sigma_1 \leftarrow \text{BlSch.User}_2(\text{state}_{1, i, \beta_i}, s_i)
\end{array}
\]

\[
\begin{array}{c}
\text{if } \sigma_0 = \sigma_1 = \perp \text{ then } (\sigma_0, \sigma_1) := (\perp, \perp)
\end{array}
\]

\[
\begin{array}{c}
\text{return } (\sigma_0, \sigma_1)
\end{array}
\]

\[
\begin{array}{c}
\text{else return } \epsilon
\end{array}
\]

\[
\begin{array}{c}
\text{Oracle } U_1^A(i, R_1, R_{i, 1}) \quad / / \text{simulated by } B_2
\end{array}
\]

\[
\begin{array}{c}
\text{if } i \notin \{0, 1\} \lor \text{sess}_i \neq \text{init} \text{ then return } \perp
\end{array}
\]

\[
\begin{array}{c}
\text{sess}_i := \text{open}
\end{array}
\]

\[
\begin{array}{c}
\text{if } \hat{\beta}_i = 0 \text{ then } \\
\text{(state}_{0, i, c_{i, 0}) \leftarrow \text{BlSch.User}_1(pk, R_{i, 1}, m_{1-i}) \\
c_{i, 1} \leftarrow U_1^B(i, R_{i, 1})
\end{array}
\]

\[
\begin{array}{c}
\text{if } \hat{\beta}_i = 1 \text{ then } \\
c_{i, 0} \leftarrow U_1^B(i, R_{i, 0}) \\
\text{(state}_{0, 1, c_{i, 1}) \leftarrow \text{BlSch.User}_1(pk, R_{i, 1}, m_{1-i})
\end{array}
\]

\[
\begin{array}{c}
\text{return } (c_{i, 0}, c_{i, 1})
\end{array}
\]

\text{Fig. 18. Description of adversaries } B_1 \text{ and } B_2.