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Abstract. Rank metric is a very promising research direction for code-
based cryptography. In fact, thanks to the high complexity of generic
decoding attacks against codes in this metric, it is possible to easily select
parameters that yield very small data sizes. In this paper we analyze
cryptosystems based on Low-Rank Parity-Check (LRPC) codes, one of
the classes of codes that are efficiently decodable in the rank metric. We
show how to exploit the decoding failure rate, which is an inherent feature
of these codes, to devise a reaction attack aimed at recovering the private
key. As a case study, we cryptanalyze the recent McNie submission to
NIST’s Post-Quantum Standardization process. Additionally, we provide
details of a simple implementation to validate our approach.

1 Introduction

It is well known that, once quantum computers of an appropriate size will be
available, traditional cryptographic schemes will not be secure anymore [43].
Code-based cryptosystems are among the most promising candidates for Post-
Quantum Cryptography, the area concerned with designing cryptographic primi-
tives which will be secure in this scenario. This is evident from the recent Call for
Standardization issued by NIST [37], where the number of code-based submis-
sions is second only to that of lattice-based ones [38]. In particular, code-based
schemes seem to shine as solutions for encryption and key-exchange.

McEliece in 1978 [27] was the first to propose a code-based encryption scheme,
based on the hardness of decoding random linear codes. This NP-hard problem
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was exploited by selecting a binary Goppa code, for which a random-looking
generator is released as public key, and encrypting a plaintext as a noisy code-
word. While the private description allows for decoding (and hence decryption),
the public one conveys no information about the code, and so the best attacks
are generic decoding attacks such as Information-Set Decoding (ISD) [40], which
are of exponential nature. This “code indistinguishability” assumption has been
true for binary Goppa codes ever since, and the McEliece framework has now
over 40 years of security history. However, this comes with the price of a fairly
large public-key size, which can be as large as 1Mb with modern parameters [6].

The quest for obtaining compact key sizes started with investigating other
families of codes (e.g. [35,44]), many of which have been shown to be inse-
cure [45,30]. On top of that, a popular approach is to choose structured codes,
such as Quasi-Cyclic [13,5] or Quasi-Dyadic [31,39], which allow for a dramatic
reduction in the size of the public key. However, introducing algebraic structure
is not always safe, as shown in [11]. As a result, algebraic codes with an algebraic
structure do not seem to be an optimal choice for cryptographic schemes.

Currently, there are two major trends for obtaining code-based schemes with
small keys. The first makes use of codes defined by very sparse parity-check
matrices, such as LDPC and MDPC codes [4,32], while the second is based on
rank metric codes [12]. In this paper, we focus on the latter, and in particular, we
consider the case of LRPC codes, which are in a sense a point of contact between
the two. In fact, LRPC stands for Low-Rank Parity-Check, and this class of codes
is characterized by a “sparse” (in the rank metric sense) parity-check matrix, and
therefore it can effectively be seen as a rank-metric equivalent of LDPC/MDPC
codes. As we will see, and as it is often the case for rank-metric schemes, LRPC
codes share many of the aspects of their Hamming metric counterpart, including
vulnerabilities.

Our Contribution. In this paper, we show how to devise a reaction attack
based on observing a collection of decryption failures, which are an inherent
feature for all schemes based on probabilistic decoding algorithms. These attacks
become feasible when the Decoding Failure Rate (DFR) of the scheme is non-
negligible, as illustrated, for the Hamming case, in a famous paper by Guo,
Johansson and Stankovski [21].

The scenario behind a reaction attack is that the attacker sends a large
number of encrypted messages with small modifications on the messages and then
observes the reaction of the decryption of those messages (the attacker does not
take into account the results of the computation). For code-based cryptography,
it is common to induce a decoding failure by selecting messages with a certain
property, which is the case presented in [22]. It is important to mention that in
this scenario the goal of the attacker is not to recover the message, but rather
the private key (or an equivalent key for decryption). In our attack, we use
an approach similar to [22], in that we are interested in collecting errors that
produce decoding failures. However, in our case we only need to collect a small
amount of error patterns to complete the attack. We will give a justification for
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this nice feature, and explain how it works in detail, in the main body of the
paper.

While preparing the camera ready version of this paper, we became aware
of an independent work proposing a reaction attack against LRPC cryptosys-
tems [34]. In [34], the attack requires a significantly larger amount of decryption
queries and is less general, since it assumes that the adversary is free to choose
the error vectors which are used for encryption.

The paper is organized as follows. We begin with preliminary notions, and
notation, in Section 2, including an overview of LRPC cryptosystems. Our attack
is described in Section 3, with a detailed analysis of the success probability. In
Section 4 we discuss equivalent keys and in Section 5 we give a description of an
attack in this case, while also investigating the possibility of applying quantum
techniques to speed up the attack. As a case study, in Section 6 we provide the
results obtained when applying our attack to McNie, one of the first round NIST
submissions.

2 Preliminaries

We use capital bold letters to denote matrices, and small bold letters to denote
vectors. Given a matrix A, its entry in the i-th row and j-th column is denoted
as ai,j ; in analogous way, the i-th entry of a vector a is denoted as ai. The rank
of a matrix A is denoted by |A|.

Let q be a prime power and m be an integer; we denote with Fq and Fqm
the finite fields of cardinality respectively equal to q and qm; the set of all n×n
matrices over Fq will be denoted byMn(Fq), and the set of all n× n invertible
matrices by GLn(Fq). We denote an index set {1, 2, . . . , τ} by [1; τ ].

When treating codes in rank metric, a useful description can be obtained by
considering each vector as a matrix.

Let B = {B1, · · · , Bm} be a basis of Fqm over Fq, and define the function
Fi : Fqm → Fq such that, for each a ∈ Fqm , Fi(a) corresponds to the i-th
coefficient of a into the basis B. In other words, the following relation holds

a =

m∑
i=1

Fi(a)Bi.

Let Vn ⊆ Fnqm be an n-dimensional subspace of Fqm ; then, each vector v = {vi} ∈
Vn can be represented as a matrix V̄ = {vi,j} ∈ Fm×nq , whose entry in position
(i, j) corresponds to Fi(vj). In other words, the following two representations
are equivalent

v = [v1, · · · , vn]↔ V̄ =


F1(v1) F1(v2) · · · F1(vn)
F2(v1) F2(v2) · · · F2(vn)

...
...

. . .
...

Fm(v1) Fm(v2) · · · Fm(vn)

 .
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Using this representation, rank metric codes can be defined in a very natural
and intuitive way. In particular, given two vectors a,b ∈ Fnqm , the rank distance
between a and b is defined as

rd(a,b) =
∣∣Ā− B̄

∣∣ .
The rank weight of a vector a is then defined as wt(a) = rd(a,0n) = |Ā|, where
0n denotes the length-n null vector. The support of a vector v ∈ Vn is denoted
as 〈v〉 and corresponds to the subspace generated by its entries v1, · · · , vn. With
some abuse of notation, we use 〈Vn〉 to denote the subspace generated by the
vectors in Vn.

2.1 Circulant Matrices and Quasi-Cyclic Codes

A circulant matrix is a matrix in which every row is obtained as a right cyclic
shift of the previous. Eq. (1) shows a circulant matrix of size5 p.

Cp =


t0 t1 · · · tp−1
tp−1 t0 · · · tp−2
...

. . .
...

t1 t2 · · · t0

 (1)

Circulant p×p matrices over Fqm form a ring that we will denote by Cp(Fqm).
Its cardinality is |Cp(Fqm)| = qmp.

Proposition 1. Let xp − 1 = pα1
1 (x) · · · · · pαtτ (x) be the factorization of xp − 1

over Fqm into powers of irreducible factors. The number of invertible circulant

matrices in Cp(Fqm) is equal to
τ∏
i=1

(qm·diαi − qm·di(αi−1)), where di is the degree

of pi(x) in the factorization of xp − 1.

Proof. It is well known that Cp(Fqm) is isomorphic to Fqm [x]/〈xp− 1〉. From the
factorization xp− 1 = pα1

1 (x) · · · · · pαττ (x) and the Chinese Remainder Theorem,
Fqm [x]/〈xp − 1〉 is isomorphic to the direct product:

Fqm [x]/〈xp − 1〉 ∼= Fqm [x]/〈pα1
1 (x)〉 × · · · × Fqm [x]/〈pαtτ (x)〉

The number of invertible elements in Fqm [x]/〈pαii (x)〉 is qm·diαi − qm·di(αi−1)

where di is the degree of pi(x). Now it is easy to count the number of invertible
elements in Fqm [x]/〈xp−1〉. It is precisely the product of the invertible elements

in each Fqm [x]/〈pαii (x)〉, i.e., Cp(Fqm) =

τ∏
i=1

(qm·diαi − qm·di(αi−1)).

Note that when α1 = α2 = · · · = ατ = 1, Fqm [x]/〈xp−1〉 factors into a direct

product of fields, and our formula turns into
τ∏
i=1

(qm·di − 1). ut

5 A circulant matrix can be defined as a special case of Toeplitz matrix; for more
details about Toeplitz matrices see [19].
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A quasi-cyclic code is a code with generator matrix of the form

G =


C11 C12 · · · C1n0

C21 C22 · · · C2n0

...
. . .

...
Ck01 Ck02 · · · Ck0n0

 (2)

where each matrix Cij is a circulant matrix of the form (1).

2.2 LRPC Codes

A Low-Rank Parity-Check (LRPC) code C over Fqm of length n, dimension k and
rank d is described by an (n−k)×n parity-check matrix H = {hi,j} ∈ F(n−k)×n

qm ,
whose coefficients hi,j generate a subspace of Fqm of dimension at most d. More
precisely, each coefficient hi,j can be written as

hi,j =

d∑
l=1

hi,j,lFl, hi,j,l ∈ Fq, (3)

where each Fi ∈ Fqm , and F = 〈F1, F2, · · · , Fd〉 is a Fq subspace of Fqm of
dimension at most d generated by the basis {F1, F2, · · · , Fd}.

Decoding of LRPC codes. Consider an LRPC code with parity-check matrix
H of length n, dimension k and rank d, with basis F = {F1, · · · , Fd}. Let e =
{ei} ∈ Fnqm be a vector of rank r, with basis E = {E1, · · · , Er}. Recall that,
considering the matrix representation, the vector e can be described as a matrix
Ē = {ei,j}, with i ∈ [1;n], j ∈ [1; r], such that

ei =

r∑
j=1

ei,jEj , ei,j ∈ Fq. (4)

Let s ∈ Fn−kqm be the syndrome of e with respect to H, i.e. He> = s. De-
coding consists in recovering e, from the knowledge of s. A decoding procedure,
specific for the case of LRPC codes, has been proposed in [14], and is shown
in Algorithm 1. In this section we briefly recall its main principles, in order to
provide a basic understanding of the attack procedure we propose in this paper.

Under proper conditions (which we investigate in the following), the syn-
drome equation can be rewritten as a linear system whose unknowns are nr
scalars in Fq. Indeed, for the i-th coordinate of s, we have

si =

n∑
j=1

hi,jej =

n∑
j=1

(
d∑
l=1

hi,j,lFl

)(
r∑

u=1

ej,uEu

)

=

d∑
l=1

r∑
u=1

FlEu

 n∑
j=1

hi,j,lej,u

 . (5)
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Then, by considering Eq. (5) for all i ∈ [1;n− k], the syndrome equation can be
rewritten as

s′ = AHe′>, (6)

where s′ ∈ F(n−k)rd
q , AH ∈ F(n−k)rd×nr

q and e′ ∈ Fnrq .

Essentially, the above equation corresponds to the writing of the syndrome
equation in the base field Fq. In particular, s′ contains the coefficients of the
syndrome in the basis {FiEj} i≤i≤d

1≤j≤r
, while AH and e′ are obtained through a

rewriting of H and e. Then, decoding can be performed through Algorithm 1;
essentially, what the decoder does is firstly recovering the support of the error
vector (lines 1-5 in the algorithm), computing a basis for the found subspace (line
6) and then reconstructing the coefficients of the error vector in the selected basis
(line 7).

Algorithm 1 Decoding of LRPC codes

Input: s ∈ Fn−k
qm , s′ ∈ F(n−k)rd

q , AH ∈ F(n−k)rd×nr
q

Output: e′ ∈ Fq.
1: S ← 〈s1, s2, · · · , sn−k〉 . Syndrome space
2: for i← 1 to d do
3: Si ← F−1

i S
4: end for
5: E ←

⋂d
j=1 Sj . Compute the error support

6: {E1, · · · , Er} ← basis for E
7: Solve s′ = AHe′> . Find the coefficients of e in the basis E
8: return e′

Note that Algorithm 1 is characterized by a certain failure probability, which
can be estimated according to the system parameters. In particular, decoding
failures can happen only because of the following three events [14].

1. Case of Dim
(
〈EF 〉

)
< rd: this happens with probability P1 = d

qm−rd . (see
[14, Sec. 3, Prop. 1]).

2. Case of E 6=
⋂d
i=1 Si: when m > rd + 8, this happens with probability

P2 � 2−30. (see [14, Sec. 3, Remark 3]).
3. Case of Dim

(
S
)
< rd this happens with probability P3 = 1

qn−k+1−rd . (see
[14, Sec. 5, Prop. 4]).

For parameters of practical interest, we usually have P1, P2 � P3: as we describe
in the following sections, this fact is crucial for the success of our attack.

2.3 LRPC Cryptosystems

The key generation, encryption and decryption of the typical LRPC cryptosys-
tem are summarized in Figure 1.

6



1 Key generation: Choose a random LRPC code over Fqm of low rank d
with support F and parity check (n− k)× n matrix H, generator matrix G
and decoding matrix DH which can correct errors of rank r and a random
invertible (n− k)× (n− k) matrix R.
Secret Key: the low rank matrix H, the masking matrix R.
Public Key: the matrix G′ = RG.

2 Encryption: Translate the message m into a word x, generate e ∈ Fqm

randomly with rank r. Compute c = xG′ + e.
3 Decryption: Compute syndrome s = HcT , recover the error vector e by

decoding the LRPC code, then compute xG′ = c− e and x.

Fig. 1. LRPC cryptosystem.

The LRPC cryptosystem described above was introduced in [14]. The au-
thors first present the low-rank parity-check codes and their application in cryp-
tography, and then describe a McEliece-like scheme; note that, in principle, a
Niederreiter setting can be used as well.

While Figure 1 and the LRPC cryptosystem provide a general framework for
schemes based on LRPC codes, the usual setting in practical schemes is to use
specific types of LRPC codes that allow shorter keys. These include Quasi-cyclic
codes, as shown in [15] (and later also used in McNie [17,24] and Ouroboros-
R [29]), or ideal codes (which are a generalization of LRPC codes and used in
LAKE [1], Locker [2] and Rollo [28]). All of the previous cryptosystems show
clear advantage over cryptosystems in the Hamming metric - for the same level
of security, the keys are orders of magnitude smaller. For instance, the public
key in Classic McEliece is 132KB while Rollo-II has a public key of size 2.4KB.
Furthermore, ideal codes (with additional assumptions) have been used in the
construction of the signature scheme Durandal [3] - showing once more the ad-
vantage over the Hamming metric where the construction of efficient signature
schemes is still a problem.

In what follows, we describe McNie [17,24] - a first round candidate [38] to
the NIST PQ crypto standardization process [37]. We will use McNie to showcase
our reaction attack in Section 6.

McNie follows a “hybrid” framework using both McEliece and Niederreiter in
the encryption process. The scheme employs QC codes with low weight parity-
check matrices of the form [H1 H2 H3] and

[
H1 H2 H3 H4
H5 H6 H7 H8

]
whereHi are circulant

matrices. The authors refer to these codes as 3- and 4-Quasi-Cyclic codes. The
key generation, encryption and decryption of McNie are summarized in Figure 2.

Remark 1. According to the protocol specifications [17], in the general descrip-
tion of the scheme, the authors suggest the possibility to further use a permu-
tation matrix P used to form F as F = G′P−1H>S. However, in the actual
proposal, this matrix is set to the identity matrix, so it is never used. Therefore,
we do not see a reason to use it and burden the description.
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1 Key generation: Choose a random 3 or 4 generator QC LRPC code over
Fqm of low rank d, parity check (n−k)×n matrix H and generator matrix G.
Further, choose a random invertible (n−k)× (n−k) matrix S and a random
l × (n− k) matrix G′.
Secret Key: The low rank matrix H, and the masking matrix S.
Public Key: The matrices F = G′H>S and G′.

2 Encryption: To encrypt a message m ∈ Fqm , generate a random e ∈ Fqm

of rank r. Compute c1 = mG′ + e and c2 = mF. The ciphertext is (c1, c2).
3 Decryption: Compute syndrome s′ = c1H

> − c2S
−1 = eH>. Recover the

error vector e by decoding the LRPC code, then compute mG′ = c1− e and
obtain m by solving the obtained system.

Fig. 2. The McNie cryptosystem [17,24].

3 A Reaction Attack

We are now ready to describe the details of our attack. The main idea is to
exploit decoding failures caused by the syndrome s not generating the whole
space 〈FE〉. Thus, for ease of exposition, in this section we will assume that
this is the case. Later we will show that the influence of other types of decoding
failures to the success of our attack is negligible, thus justifying the current
assumption.

Suppose that an adversary A interacts with a decryption oracle D of an
LRPC cryptosystem. He continuously sends encrypted messages to D and waits
for the reaction from the oracle. If D returns failure, A records the error e that
he used in the encryption of the message. A collects a total of t error vectors,
where t is chosen appropriately. We will discuss this choice later in this section.

Let e be an error vector that A collected during his interaction with D. We
now show to use this information to recover the secret matrix H.

Recall from Section 2.2, Eq. (6), that we can express the syndrome equa-
tion over the base field as s′ = AHe′>, where s′ contains the coefficients of the
syndrome in the basis {FiEj} 1≤i≤d

1≤j≤r
. Alternatively, directly from (5), the syn-

drome equation can be written in a matrix form: s can be written as the product
between the basis (F1E1, F1E2 . . . , FdEr) and a matrix ĀH,e ∈ Frd×(n−k)q :

s = (F1E1, F1E2 . . . , FdEr) · ĀH,e (7)

The key observation in our attack is that a decoding failure occurs when the
matrix ĀH,e is not of full rank - in other words, the left kernel of the matrix
ĀH,e is non-trivial. This means that there must exist (at least) one nonzero
vector ve ∈ Frdq , ve 6= 01×rd, such that

ve · ĀH,e = 01×n−k. (8)

Now consider our attack scenario. The adversary A knows the error e that
caused the matrix ĀH,e to be of non-full rank. He, however, does not know
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the coefficients h = {hi,j,l} 1≤l≤d
1≤i≤n−k
1≤j≤n

of the matrix H, and therefore he does not

know the kernel vector ve. Setting Āe(h) = ĀH,e to emphasize the unknown
coefficients h, we can rewrite (8) as

ve · Āe(h) = 01×n−k. (9)

The main step of our attack now boils down to finding the solutions to Eq. (9)
in the unknown coefficients h of H and the unknown kernel vector ve.

Observe that we can actually use several errors e1, . . . , et to form equations
similar to Eq. (9). In these equations for each error ei we introduce a new appro-
priate kernel element vei . However, they all share the same unknown coefficients
of the matrix H. Thus, we can form the following system:

ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .
vet · Āet(h) = 01×n−k

(10)

The right value for t depends on several factors: the method of solving, the
parameters of the system, but most notably the nature of the system. In prin-
ciple, t should be big enough such that solving the system unambiguously gives
the coefficients of H. We will discuss the choice of t in the next section.

Suppose that t is chosen appropriately. Observe that system (10) is a system
of bilinear equations reminiscent to the equations obtained in the MinRank prob-
lem [8]. We can thus try solve this system using similar strategies as in at least
three different methods for solving MinRank - the Kernel method [18], Kipnis-
Shamir method [25] and the minors method [9]. The main difference is that first,
there are several polynomial matrices whose non trivial kernel needs to be found
and second, all of these matrices are polynomial matrices in the same variables.
At first sight, this situation bears similarities to Simultaneous MinRank [7,10]
which is commonly encountered inMQ cryptography. However, since the differ-
ent errors e1, e2, . . . , et produce different matrices Āe1

(h), Āe2
(h), . . . , Āet(h),

it is not clear how to use the common techniques that significantly speed up the
attack inMQ cryptosystems.

In the next subsection, we will describe in detail a Kernel method - like
approach to solving system (10). A straightforward application of the other al-
gebraic methods results in a significantly larger complexity. Therefore a deeper
insight into the properties of system (10) is necessary in order to apply these
efficiently.

3.1 Solving System (10) by Kernel Guessing

Suppose that the adversary A has collected t error vectors e1, e2, . . . , et that
cause decryption failures. As before, we assume that the corresponding matrices
Āe1(h), Āe2(h), . . . , Āet(h) are singular. This means that size of the kernels of

9



these matrices is at least 1. The adversary now tries to guess the vectors vei ,
such that vei belongs to the kernel of Āei(h) for each i ∈ [1; t]. If all vectors vei

are correctly guessed, what remains, is to solve the obtained linear system in the
unknown coefficients h. In general, in order to obtain a unique solution we need
to form at least the same number of equations as variables. For each vei we can
form n−k equations, so we need t(n−k) to be at least as the number of variables.
For a random LRPC code of rank d, the number of unknown coefficients of the
matrix H is n(n− k)d. Hence we need:

t ≥ nd.

If, in addition, the code is quasi-cyclic and its parity-check matrix is made of
circulant matrices of size p, the number of unknown coefficients is n(n− k)d/p.
In this case

t ≥ nd

p
. (11)

Let us denote the probability of correctly guessing a kernel vector corresponding
to an error ei by Pei . This probability clearly depends on the dimension of the
kernel of Āei(h). Let us denote this dimension as Kei ≥ 1: then, we know that
|Ker(Āei(h))| = qKei . Then,

Pei =
qKei

qrd
= q−(rd−Kei

). (12)

Clearly, a larger kernel of some of the matrices would make the attack faster.
However, there is no way to detect whether a matrix Āei(h) associated to an
error ei would have a larger kernel. Therefore we must assume the worst case,
i.e. a kernel of dimension 1. It remains open whether it is possible to devise a
strategy to generate error vectors that induce matrices of larger kernels.

Let us denote the probability of all vectors vei being correctly guessed by Pt.
Then

Pt = P tei = q−(rd−1)t (13)

After the kernel vectors have been guessed, system (10) becomes an over-
determined linear system over Fq. Solving it gives the coefficients of H. However,
the basis F is still unknown. Luckily, knowing the coefficients of H turns out to
be enough to find the basis F : this part is now easy and F can be obtained from
sufficiently many message-ciphertext pairs and the syndrome equation. A high
level description of the attack is given by Algorithm 2.

In Algorithm 2, through the procedure CollectErrors, the adversary interacts
with the decryption oracle D, by sending him encrypted messages and waiting
for decryption failures. Each time there is a failure, the adversary saves the error
he used, until enough errors that cause decryption failures are collected. The
additional operations that the adversary performs are one encryption and one
decryption of the scheme.

Once the errors have been obtained the main part of the attack can begin.
Note that the collection of the errors can be done only once, and we need only

10



Algorithm 2 Reaction attack on LRPC codes
Input: d, t, ` ∈ Z
Output: Matrix H of rank d

1: e1, e2, . . . , et ← CollectErrors(pk,D(sk)) . Collect errors from decryption failures
2: repeat
3: ve1 ,ve2 , . . . ,vet ←R Frd

q . Guess kernel vectors
4: h← SolveH(ve1 ,ve2 , . . . ,vet , e1, e2, . . . , et) . Solve system (10)
5: if h 6= ⊥ then
6: {(mi, ei, ci)}`i=1 ← CollectMEC(pk) . Collect messages, errors, ciphertexts
7: F, success← SolveF(h, {(mi, ei, ci)}`i=1) . Find basis F
8: else success← ⊥
9: end if
10: until success
11: H← Reconstruct(h, F ) . Reconstruct the matrix H
12: return H

a handful of errors unlike in the Hamming metric (see Section 3.2 for a more
detailed discussion).

Next, the function SolveH denotes the procedure for solving system (10) for
some guessed kernel elements corresponding to the obtained errors. If system (10)
has a solution, then SolveH will return this solution, otherwise it will return ⊥.
This solution is then used in SolveF together with ` valid triplets (mi, ei, ci) of
messages, errors and ciphertexts generated in the procedure CollectMEC. SolveF
is a procedure whose main goal is to find the basis F . However depending on
the scheme, there might be other parts of the secret key sk that can be found in
this procedure. The value of ` is also dependant on the scheme. We present an
instantiation of SolveF for McNie [17] in Section 6.

We are now ready to state the total complexity of our attack. It is

Cost(React) =P−13 (Cost(Enc ∧ Dec))+

+P−1t (Cost(SolveH) + `Cost(Enc) + Cost(SolveF)) (14)

where P3 = 1
qn−k+1−rd is the failure rate of the scheme (see Section 2.2), Pt =

q−(rd−1)t for a d rank LRPC code and errors of rank r. In the case of ran-
dom LRPC codes t = nd and Cost(SolveH) = n3(n − k)3d3. When the code is
quasi-cyclic and uses circulant matrices of size p, t = nd

p and Cost(SolveH) =
n3(n−k)3d3

p3 . As said earlier, Cost(SolveF) depends on the scheme, but usually,
Cost(SolveF) < Cost(SolveH). See Section 6 for more details about this.

3.2 Analogies and Differences with the Hamming Metric

The cryptanalysis procedure we have described in this section resembles the
one proposed by Guo et al. in [21], tailored at the McEliece cryptosystem us-
ing quasi-cyclic Moderate-Density Parity-Check (MDPC) codes [33], decoded in
the Hamming metric. Essentially, these codes are a special case of Low-Density
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Parity-Check (LDPC) codes [16], i.e., codes which are described by a parity-check
matrix that contains a low number of set entries. These codes admit efficient de-
coding algorithms, like the Bit Flipping (BF) decoder or some of its variants,
which are all based on the sparsity of the parity-check matrix and are character-
ized by some intrinsic decoding failure probability which, as originally observed
in [21], somehow depends on geometrical relations between the error vector and
the secret parity-check matrix.

Then, reaction attacks can be mounted, by means of statistical tests on the
decoding outcomes of a large number of decryption queries. In particular, these
tests are used to guess the number of overlapping ones between columns in the
secret key [41]; clearly, in order to achieve statistical reliability, the number of
observed decryption instances (i.e., the number of queries) needs to be sufficiently
large. For instance, we can consider the empirical results for the parameters that
were broken in [21]: the authors used, in all successful attacks, more than 108

decryption queries. Considering a decoding failure probability approximately
equal to 10−4, this leads to a number of observed events of decoding failures in
the order of 104.

There are clear differences between reaction attacks in the Hamming metric
and the one we propose in this paper. First of all, in the rank metric case, no
statistical test is needed: events of decoding failures are due (with overwhelming
probability) to some rank deficiency in the syndrome, and this fact is used to
establish algebraic relations like that in Eq. (9). This difference is emphasized
by the fact that the number of failure events that an adversary needs to collect
is significantly lower than the one that is needed for the Hamming metric case.

Additionally, in the Hamming metric case, the feasibility of reaction attacks
is somehow related to the chosen decoder and to its setting [36], in the sense that
modifications in the decoding procedure and/or slight variations in its setting
might lead to significant differences in the attack outcome. This difference arises
a question on the existence of alternative LRPC decoding techniques, and on
their eventual effect on reaction attacks procedures.

Another crucial difference is represented by the fact that, for LDPC codes,
only few parity-check matrices can be used to efficiently perform decoding on
a given corrupted codeword. Indeed, for a given parity-check matrix H, each
matrix H′ = WH, with W being non-singular, is again a valid parity-check
matrix, but W preserves the density only when it is a permutation matrix.
When W is not a permutation matrix, in fact, rows of H′ correspond to linear
combinations of rows of H: thus, their density is, with overwhelming probability,
larger than that of H. This means that only the actual H, or a row-permuted
version of it, guarantees efficient decoding of intercepted ciphertexts. Then, when
mounting a reaction attack, the adversary’s goal is that of reconstructing exactly
one of these matrices. In the rank metric case the number of parity-check matrices
that allow for efficient decoding techniques is significantly larger - we show in the
next section that any matrix of the form WH can be used to efficiently decode.
In such a case, we speak of equivalent keys: this fact, as we describe in the next
section, allows for significant reductions in the attack complexity.
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4 Equivalent Keys in LRPC Cryptosystems

In the previous section we described the basic attack that makes use of decryption
failures. Now, we dig a little deeper, and show that due to existence of particular
equivalent keys, it is possible to speed up the attack by an exponential factor.

We start with a well known property of weight preservation in the rank
metric. For completeness we include a proof that will be useful later on.

Proposition 2. Let b ∈ Fnqm , and let W ∈ GLn(Fq). Then:

wt(b) = wt(b ·W).

In other words, weight is preserved under multiplication by non-singular matrices
over Fq.6

Proof. Let wt(b) = d. This means that b can be represented as b = F ·B̄, where
F = (F1, . . . , Fd), and < F1, . . . , Fd > is a basis of some d-dimensional subspace
of Fnqm , and B̄ ∈Md,n(Fq) is the (full rank) matrix representation of b. Now

b ·W = F · B̄ ·W = F · (B̄ ·W).

Since W is invertible, B̄ ·W is of full rank, i.e., wt(b ·W) = d. ut

As a direct consequence, we have the following:

Proposition 3. Let H ∈Mn−k,n(Fqm) be the parity check matrix of an LRPC
code C of rank d. Let W ∈ GLn−k(Fq) be arbitrary. Then WH is a parity check
matrix for the code C of the same rank d.

Proof. Follows directly from the previous proposition, by considering the columns
of H as vectors of weight d. ut

Definition 1. Let P = (KeyGen,Enc,Dec) be an LRPC cryptosystem with a
secret key sk = (H, ·). We say that P has an equivalent key sk′ = (H′, ·′), if
sk′ 6= sk and sk′ can be used as a secrete key for P with equal efficiency as sk. In
particular, H′ is of the same rank as H and can be used in the decoding procedure
with the same efficiency as H.

With some abuse of this definition, we will also say that H′ is an equivalent
key of H.

As a direct consequence of Proposition 3, we have:

Corollary 1. Let P = (KeyGen,Enc,Dec) be an LRPC cryptosystem with
a secret key sk = (H, ·) where H ∈ Mn−k,n(Fqm). Let W ∈ GLn−k(Fq) be
arbitrary. Then, sk′ = (WH, ·) is an equivalent key for P .

6 Recall that in Hamming metric, weight is preserved under multiplication by permu-
tation matrices
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A particular equivalent key is of our interest; later we present a key recovery
attack that recovers exactly such a key.

Let H ∈ Mn−k,n(Fqm) be the parity check matrix of an LRPC code C of
rank d. We rewrite H as:

H =



d∑
i=1

h1,1,iFi

d∑
i=1

h1,2,iFi · · ·
d∑
i=1

h1,n,iFi

...
...

. . .
...

d∑
i=1

hn−k,1,iFi

d∑
i=1

hn−k,2,iFi · · ·
d∑
i=1

hn−k,n,iFi


=

=

d∑
i=1


 h1,1,i h1,2,i · · · h1,n,i

...
...

. . .
...

hn−k,1,i hn−k,2,i · · · hn−k,n,i


Fi

i.e as

H =

d∑
i=1

Ĥi · Fi =

d∑
i=1

[Ĥi1|Ĥi2] · Fi (15)

where Ĥi is the matrix of coefficients corresponding to the basis element Fi.
Without loss of generality, assume: Ĥ1 = [Ĥ11|Ĥ12] where Ĥ11 ∈ GLn−k(Fq).

Then H′ = Ĥ−111 ·H is an equivalent key and can be written as:

H′ = [In−k|Ĥ′12] · F1 +

d∑
i=2

[Ĥ′i1|Ĥ′i2] · Fi (16)

where Ĥ′t1 = Ĥ−111 · Ĥt1 and Ĥ′t2 = Ĥ−111 · Ĥt2.

A crucial observation to make is that in the general case, the equivalent key
H′ is determined by n(n− k)d− (n− k)2 coefficients, as opposed to n(n− k)d
coefficients for H. This observation can be used to reduce the size of the private
key by storingH′ instead ofH. It can also be used to speed up our reaction attack
if we recover H′ instead of H because now we have less unknown coefficients,
i.e., less variables in system (10). We need however to show that the collected
error vectors that correspond to a secret H are also valid for the equivalent keys.

Proposition 4. For an arbitrary LRPC code C of length n, dimension k and
rank d over Fqm , with parity check matrix H, if an error vector e causes a decod-
ing failure, then the same error vector causes decoding failure for any equivalent
WH where W ∈ GLn−k(Fq).

Proof. Recall that the error vector e in system (10) cause the syndrome to be of
non-maximal rank. By multiplying the syndrome equation by W ∈ GLn−k(Fq)
we obtain (WH) · e>i = W · s>, which from Proposition 2 means that the same
error vectors cause syndrome of non-maximal rank for the matrix WH. From
Proposition 3 we know that WH is an equivalent key. ut
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Equivalent Keys for Quasi-cyclic codes. Note that if H is quasi-cyclic,
then so are the matrices Ĥi in Eq. (15). Then H′ = Ĥ−111 ·H is an equivalent
key of the form (16). This key H′ is determined by n(n−k)d−(n−k)2

p coefficients,

as opposed to n(n−k)d
p coefficients for H.

5 Equivalent Key Attack on Quasi-Cyclic H

In the previous section we showed that under some plausible conditions, there
exists an equivalent key that is determined by less coefficients than the original
one. Therefore it makes sense to look for this key in our attack. In the case of
QC codes, we need (n−k)2

p less variables, so the number of kernel elements that
we need to guess instead of (11) becomes

t ≥ nd− (n− k)

p
. (17)

The gain in the probability compared to (13) is a factor of q(rd−1)
n−k
p , so looking

for an equivalent key speeds the attack by an exponential factor.

5.1 Probability of Success
The success of the attack described above depends on two conditions being
satisfied. First, recall that in Section 3 we assumed that all collected errors are a
result of the syndrome not being of full rank. The results from Section 2.2 show
that this is not always the case. However, as we will show shortly, this happens
with significant probability, so we can conclude that the feasibility of our attack
is not affected by these other types of decryption failures.

There is however one more place where the attack may fail - if we want to
recover the good equivalent key from Section 4, the success of the attack further
depends on the probability that such an equivalent As we will see later, this
probability is also big, so it is safe to assume that an appropriate equivalent key
exists.
Syndrome of non-full rank. We say that an observed decoding failure event
is useful if it is due to the case of Dim

(
S
)
< rd. This happens with probability

ρ =
P3

P1 + P2 + P3
=

1

1 + P1+P2

P3

, (18)

where the above probabilities depend on the system parameters and have been
defined in Section 2.2. Since we typically have P1, P2 � P3, we commonly have
ρ ≈ 1. Now the the attack will be successful only if all of the t collected errors
are useful, i.e.,

Prs = ρt. (19)

Existence of good equivalent key. The attack presented in Section 5 requires
that a good equivalent key exists. Recall that in Eq. (20), we assumed that Ĥ11

is invertible matrix of size n − k. Actually, note that our attack does not make
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a difference between the matrices Ĥl1, for l ∈ [1; d], so it is enough that at least
one of these is invertible. In other words, our attack will find an equivalent key
of the form:

H′ = [In−k|Ĥ′l2] · Fl +

d∑
i=2
i 6=l

[Ĥ′i1|Ĥ′i2] · Fi (20)

for any l ∈ [1; d].
Since we are dealing with quasi-cyclic codes, the matrices Ĥl1, for l ∈ [1; d]

are block matrices of circulant matrices (block-circulant). Each of these circulant
matrices can be uniquely represented by a polynomial. Now considering the de-
terminant of the block-circulant matrix as a polynomial and assuming it behaves
as a random polynomial, we can use the result from Proposition 1. Hence, the
probability that the block-circulant matrix is invertible is given by:

Prc =

∏τ
i=1 (qdiαi − qdi(αi−1))

qn−k
(21)

where xn−k − 1 = pα1
1 (x) · · · · · pαττ (x) is the factorization over Fq.

Now the probability that at least one of the matrices Ĥl1, for l ∈ [1; d] is
invertible is

Prek = 1− (1− Prc)d. (22)

Eq. (22) gives the probability that an equivalent key exists.

Remark 2. We should emphasize that forcing the matrices Ĥl1, for l ∈ [1; d] to
be singular in the design of the scheme does not help prevent our attack. It only
requires a small modification on the equivalent key. The rest of the attack is
essentially the same.

5.2 A Quantum-Enhanced Attack

Since cryptosystems based on LRPC codes are considered post-quantum, it
makes sense to estimate their security against quantum-enhanced attack, using
the full power of quantum computers. A second look at our attack immediately
shows a possibility for a quantum speed-up using Grover’s algorithm [20]. Recall
that Grover’s algorithm searches for an item in an unsorted database satisfying
a given condition. In our attack, a huge component is represented by searching
for elements in appropriate kernels (see Eq. (10)). The rest is just solving linear
equations. It follows that it is straightforward to apply Grover’s algorithm, and
we can expect roughly a quadratic speed-up in the search phase, i.e., we can find
a vector in the kernel with a number of trials which is about

Te = O(
√
qrd−1). (23)

We could also think to apply a quantum algorithm for solving the linear
systems like for example HHL [23]. However, in our case, there is no benefit
from doing so, since HHL requires a large amount of quantum memory, and is
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not particularly suited for the systems that we have. Therefore, we decided to
simply “Groverize” our attack. For the design of the oracle, we can reuse [42] with
a small modification. The modification is that in [42] the authors use multiple
variables and the cost in number of quantum gates is 2m(n2 + 2n). However,
we are using a linear system which means that for our attack, using an m × n
matrix and a vector of length n, we have a gate complexity of mn.

6 Case Study: McNie

6.1 Recovering the Secret Key in McNie

Recall the generic structure of our attack from Algorithm 2. The two main
procedures are SolveH and SolveF. The first recovers the coefficients of a key
equivalent to H and is generic for LRPC cryptosystems. SolveF, instead, finds
the secret basis F and the rest of the secret key. In the case of McNie the secret
key is sk = (H,S) where S is an invertible (n− k)× (n− k) matrix.

Recall that for McNie (see Figure 2) it is true that:

c1H
> − c2S

−1 = eH>

Suppose that in SolveH we have recovered an equivalent key H′ = T ·H. Multi-
plying the previous equation by T> we obtain

c1(T ·H)> − c2((T>)−1S)−1 = e(T ·H)>

i.e., sk′ = (H′,S′) = (T ·H, (T>)−1S) is an equivalent secret key for sk = (H,S),
so we can continue with recovering S′ instead of S. Now we can rewrite the
previous equation as

(c1 − e)H′> = c2S
′. (24)

Notice that if we know a triple (m, e, (c1, c2)) of message, error and ciphertext
(which of course anyone can generate from the public key), once the coefficients
of H′ are known, the remaining unknowns in Equation (24) are the (n − k)2

coefficients of S′ and the d basis elements of F , all in Fqm . Furthermore, seen as
a system of equations over Fqm in these unknowns, Equation (24) is a system of
n−k linear equations. Hence, by generating at least d (n−k)

2+d
n−k e = n−k+1 valid

triples (mi, ei, (c1, c2)i) we can form an overdetermined system in (n− k)2 + d
variables. Solving this system will give the remaining parts of the secret key.
Thus in the case of McNie we can define SolveF as the procedure that solves this
system. Its cost is Cost(SolveF) = ((n− k)2 + d)3.

Based on the results from this Section and Sections 3 and 5 we have es-
timated our attack complexity for the McNie parameters given in their NIST
submission [17]. The results are given in Table 1. We recall that we do not ex-
ploit any specific properties of McNie as the attack in [26] which dramatically
decreases the security of the scheme, since our goal is that of providing a general
reaction attack against LPRC cryptosystems.

We have implemented the attack using SAGE Math [46], and verified that,
under the assumption that the kernel vectors have been found, an equivalent key
can be successfully found.
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Table 1.McNie parameters proposed to the first round of the NIST competition,
complexities and success probability of our proposed attack

n k d r q m Dec.
Failure

Security
(bits)

Attack
(Classical)

Attack
(Quantum)

t
Success

Prs ·Prek

93 62 3 5 2 37 2−17 128 128.8 82.8 8 0.5 · 0.8
105 70 3 5 2 37 2−20 128 139.7 83.7 8 2−10 · 0.74
111 74 3 7 2 41 2−17 192 188 108 8 0.08 · 0.87
123 82 3 7 2 41 2−20 192 189 109 8 2−15 · 0.875
111 74 3 7 2 59 2−17 256 188 108 8 1 · 0.875
141 94 3 9 2 47 2−20 256 238 134 8 2−22 · 0.875
60 30 3 5 2 37 2−16 128 166.5 96.5 10 0.63 · 0.67
72 36 3 5 2 37 2−21 128 168 98 10 2−20 · 0.75
76 38 3 7 2 41 2−18 192 228.3 128.3 10 2−6 · 0.875
84 42 3 7 2 41 2−21 192 229 129 10 2−37 · 0.623
76 38 3 7 2 53 2−18 256 228.3 128.3 10 1 · 0.875
88 44 3 8 2 47 2−20 256 259.5 144.5 10 2−8 · 0.875
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