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Abstract. Recently, an article by Felke appeared in Cryptography and
Communications discussing the security of biquadratic C∗ and a further
generalization, k-ary C∗. The article derives lower bounds for the com-
plexity of an algebraic attack, directly inverting the public key, under
an assumption that the first-fall degree is a good approximation of the
solving degree, an assumption that the paper notes requires “greater
justification and clarification.”
In this work, we provide a practical attack breaking all k-ary C∗ schemes.
The attack is based on differential techniques and requires nothing but
the ability to evaluate the public key and solve linear systems. In par-
ticular, the attack breaks the parameters provided in CryptoChallenge
11 by constructing and solving linear systems of moderate size in a few
minutes.
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1 Introduction

Massively multivariate public key cryptography was first introduced outside of
Japan in the EuroCrypt ’88 paper by Matsumoto and Imai, see [1], that pre-
sented what has become known as the C∗ cryptosystem. After Shor discovered
polynomial-time factoring and discrete logarithm quantum algorithms, see [2],
schemes based on different problems, and in particular on NP-hard problems
such as that of solving multivariate nonlinear systems, became much more inter-
esting to cryptographers. Now with the ongoing post-quantum standardization
effort by the National Institute of Standards and Technology (NIST), see [3],
such multivariate schemes are now being considered for practical widespread
use.

In [4], Patarin broke the original C∗ scheme with an attack based on lineariza-
tion equations. At around this time, in the late ’90s, there was an explosion of
research in multivariate cryptography. Numerous schemes were introduced and
cryptanalyzed, see, for example, [5–11].

In 2005, Dobbertin et al. present a cryptographic challenge based on the idea
of C∗. The scheme is called a biquadratic C∗ and has a massive public key of
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quartic polynomials. Like C∗, biquadratic C∗ is based off of a power function,
but with an exponent of Hamming weight four in its q-ary expansion, where q is
the size of the public finite field. Naturally, this construction can be generalized
to a k-ary C∗ in which the q-ary expansion of the exponent of the private power
function has Hamming weight k.

This more general k-ary C∗ is analyzed by Felke in [12], where he derives lower
bounds for the first-fall degree of the public key under direct attacks via Gröbner
bases. Although we should note that first-fall degree is dependent on both the
polynomial system and the Gröbner basis algorithm, Felke’s result implies a
lower bound in the complexity of solving such a system with any Gröbner basis
algorithm. As noted in [12], the complexity estimates of the direct attack on
k-ary C∗ derived therein depend on an assumption that the first-fall degree is
equal to the solving degree which is not always the case. Even granting these
complexities, it is interesting to note that the complexity of quantum algorithms
such as quantum-FXL, see [13], which were ignored in [12], outperform these
optimistic analyses.

In this work, we provide an efficient cryptanalysis of k-ary C∗ and some
modest generalizations. This attack is based on a property of the differential of
a power function that the author derived over ten years ago, see [14]. The attack
reduces the task of deriving a decryption key to that of solving systems of linear
equations. In particular, for the CryptoChallenge 11, see [15], one evaluation of
the public key, the calculation of the differential of two public equations and the
solution of two linear systems of size 627 and 625, respectively, are sufficient to
completely break the scheme. The complexity for an optimized implementation
for these parameters is roughly 238 operations over GF(16). We implemented
the attack using crude and simple symbolic algebra techniques and, after a few
minutes of sloppily gathering coefficients, solved the linear system and broke
the proposed parameters in an instant. In the most general case, the complexity

of the optimized attack is O
(
n2
(
n
k

)2)
. Using the full formula for this estimate

produces an upper bound of 268 operations over GF (16) even for the “secure”
biquadratic scheme proposed in [12].

2 k-ary C∗

Let Fq be a finite field with q elements. Consider K, a degree n extension of Fq.
Fix an Fq-vector space isomorphism φ : Fnq → K. Then for any univariate map
f : K → K we can construct the vector-valued map F : Fnq → Fnq defined by
F = φ−1 ◦ f ◦φ. Since any multivariate function on a finite field is a polynomial,
each coordinate of F is a polynomial in its n inputs.

To hide the structure of an efficiently invertible univariate map it is neces-
sary to randomize the input and output bases of the representation of K as a
commutative Fq-algebra. Thus the public key P is related to the private map
F by an isomorphism (T,U) where T and U are Fq-affine maps of dimension n.
Thus the entire construction is given by Figure 1
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Fig. 1. The structure of big field public key cryptosystems.

As defined in [15], a k-ary C∗ map is an univariate function f : K → K of
the form f(x) = xe, where the q-ary expansion of e is binary having Hamming
weight k and e is coprime with |U(K)|. Notice that

xe = xq
a1+···+qak =

k∏
i=1

xq
ai
,

and since the Frobenius automorphisms are Fq-linear, F = φ−1 ◦ f ◦ φ is of
Fq-degree k.

3 Previous Cryptanalyses of C∗ and Variants

In [4], Patarin breaks the original C∗ scheme by deriving the so-called lineariza-

tion equations. He noticed that given a C∗ map of the form f(x) = xq
θ+1, we

obtain the relation uf(u)q
θ

= uq
2θ

f(u). That is, if we let v = f(u), then we
obtain a bilinear relation between u and v. Since u and v are related to the
plaintext and ciphertext of the public key system via the maps U and T , respec-
tively, we have a bilinear relation between plaintext and ciphertext. A simple
analysis shows that even in the most fortuitous case, the adversary can reduce
the dimension of the possible preimage space by a factor of three, thus rendering
C∗ too inefficient for practical use.

As a method of repairing the scheme, it was suggested in [16] to remove
some of the public equations. The technique avoids the linearization equations
attack since the bilinear relation between plaintext and ciphertext pairs for C∗

is explicitly given by

(Ux)(T−1(y))q
θ

= (Ux)q
2θ

(T−1(y)).

This idea eventually evolved in to the SFLASH digital signature scheme of [9].
In [17], an attack that completely breaks SFLASH is presented. The attack

uses the discrete differential of the public key. Given a function F : Fnq → Fnq ,
the discrete differential is defined by

DF (a, x) = F (a+ x)− F (a)− F (x) + F (0).
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The attack proceeds by way of a symmetric relation satisfied by a C∗ monomial

map f(x) = xq
θ+1. Specifically,

Df(σa, x) +Df(a, σx) = (σq
θ

+ σ)Df(a, x).

This property is inherited by the public key P = Π ◦ T ◦ f ◦ U in the following
form:

D [Π ◦ P ] (Nσa, x) +D [Π ◦ P ] (a,Nσx) = Π ◦ ΛσDP (a, x), (1)

where Nσ = U−1MσU and Mσ is a left multiplication representation of σ ∈ K.
For any validly formed Nσ, Equation 1 guarantees that the left-hand side

is a linear combination of the differential coordinate forms without equations
removed. Thus, Equation 1 provides a criterion for finding such an Nσ. Specifi-
cally, if we insist that a few coordinates of the left-hand side of Equation 1 are in
the span of the known differential coordinate forms, then it is likely that Nσ is
a multiplication. In this way, one can recover such a multiplication. Once found,
P ◦Nσ provides new linearly independent equations that can be added to the orig-
inal public key to recreate a compatible C∗ public key. At this point, Patarin’s
original linearization equations attack can be used to break the scheme.

4 A Different Cryptanalysis of C∗

The attack of [17] inspires a new idea for attacking the original C∗ directly. The
idea is to interpret the map recovered via the differential symmetry technique
as a multiplication map under a different basis, one parameterized by U . Using
this map one may recover a representation of K as an Fq-algebra. Then one uses
this information along with the public key to recover another representation of
K as an Fq-algebra, this time parameterized by T . Then one can view the public
key as a power function between these two representations. Once the function is
known, a single input-output pair can be used to construct an efficient inverse
function.

4.1 Alternate Decryption Key Recovery

Suppose that we have a solution Nσ of Equation 1. Then necessarily,

P ◦Nσ = T ◦ F ◦Mσ ◦ U
= T ◦Mf(σ) ◦ F ◦ U
=
(
T ◦Mf(σ) ◦ T−1

)
◦ T ◦ F ◦ U

= Zf(σ) ◦ P.

Thus P translates right composition of multiplications in the basis U−1 into left
composition of multiplications in the basis T .

Given such a matrix Nσ, we compute Zf(σ), and by guessing f (since there
are so few possibilities), we may recover the corresponding pair (Nf(σ), Zf(σ)).
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Naturally, if we have guessed f , then we can raise Zf(σ) to the appropriate
power to similarly recover Zσ. Either way, with high probability σ is a generator
of K∗ and thus f(σ) is also a generator. So we may form a basis for the two
representations of K as Fq-algebras by computing {I,Nσ, N2

σ , . . . , N
n−1
σ } and

{I, Zσ, Z2
σ, . . . , Z

n−1
σ }.

Now, given a single input output pair y0 = P (x0), we can decrypt any
message y = P (x) by first finding the appropriate multiplication Zτ such that
Zτy0 = y. Given the representation of Zτ over its basis,

Zτ =

n−1∑
i=0

λiZ
i
σ,

we construct

Nτ =

n−1∑
i=0

λiN
i
σ.

Then, by construction, we have that

y = Zτy0 = Zτ ◦ P (x0)

= T ◦Mτ ◦ T−1 ◦ T ◦ F ◦ U(x0)

= T ◦Mτ ◦ F ◦ U(x0)

= T ◦ F ◦Mf−1(τ) ◦ U(x0)

= T ◦ F ◦ U ◦ U−1 ◦Mf−1(τ) ◦ U(x0)

= P ◦Nf−1(τ)(x0).

Thus P−1(y) = x = Nf−1(τ)(x0). To find Nf−1(τ), we simply find he = 1 modulo

|K∗|, and compute Nh
τ = Nf−1(τ).

Thus, the key step in breaking C∗ in this manner is a solution of Equation 1 in
the case that Π is the identity map. We generically have no extraneous solutions
as long as 3θ 6= n as proven in [18].

This method provides a distinct cryptanalysis of C∗ involving only solving
linear systems. The technique is quite efficient, and provides a new signing key
that is different from the original signing key and the one derived with the
linearization equations attack.

These computational techniques are described in more detail in Algorithm 1.
One should note that the random selection in step 6 is selecting from exactly an
n-dimensional Fq-vector space of solutions corresponding to the “multipication
maps” of the form Nσ as proven in [18]. This step can be modified to assure that
a nontrivial solution is obtained.

4.2 Full Key Decomposition

One may extend the attack further to recover a private key of the form (T ′, U ′)—
recall that f was already guessed. We consider the decomposition in stages. First,
we derive linear maps (T ′′, U ′′) such that T ′′−1 ◦P ◦U ′′−1 is multiplicative. Once
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Algorithm 1: Decrypt∗ C∗

Input : public key P , ciphertext y = P (x)
Output: plaintext x such that P (x) = y

1 x0
$←− Fnq ;

2 y0 ←− P (x0);
3 DP (a, x)←− P (a+ x)− P (a)− P (x) + P (0);
4 Nσ ←−Matrix([[r1, . . . , rn], . . . , [rn2−n+1, . . . , rn2 ]]);
5 Λσ ←−Matrix([[s1, . . . , sn], . . . , [sn2−n+1, . . . , sn2 ]]);

6 v
$←−LinearSolve(DP (Nσa, x) +DP (a,Nσx) = ΛσDP (a, x));

7 Nσ ←−Eval(Nσ,[v[i] : i ∈ [1..n2]]);
8 Zf(σ) ←−Matrix([[r1, . . . , rn], . . . , [rn2−n+1, . . . , rn2 ]]);
9 w ←−LinearSolve(Zf(σ) ◦ P = P ◦Nσ);

10 Zf(σ) ←−Eval(Zf(σ),w);
11 for e in [1 + q1, . . . , 1 + qn−1] st (e, qn − 1) = 1 do
12 h←−InverseMod(e,qn − 1);

13 Zσ ←− Zhf(σ);
14 λ←−LinearSolve(

∑n
i=1 λiZ

i−1
σ y0 = y);

15 Nτ ←−
∑n
i=1 λiN

i−1
σ ;

16 Nf−1(τ) ←− Nh
τ ;

17 xcand ←− Nf−1(τ)x0;

18 if y == P (xcand) then
19 return xcand
20 end

21 end

obtained, a single input/output pair for this map is computed and used to anchor
this multiplicative to f and ultimately to derive equivalent maps (T ′, U ′).

Having recovered the maps Nσ and Zf(σ), we consider the relations

Nσ = U−1 ◦Mσ ◦ U and Zf(σ) = TMf(σ)T
−1.

Clearly, the minimal polynomial min(Nσ) = min(Mσ) which is the same as the
minimal polynomial of σ or any of its conjugates. In particular, under the action
of K∗ o GalFq (K) ↪→ GLn(Fq) by conjugation, the orbit of Mσ is

{Mτ : φ(σ) = τ for some φ ∈ GalFq (K)}.

Thus the stabilizer corresponds to the subgroup isomorphic to K∗.
We directly solve the linear system

ÛNσ = Mτ Û ,

in the unknown coefficients of Û for some τ a root of min(Nσ). Since the action
of K∗oGalFq (K) on the image of K in GLn(Fq) is transitive and since the choice
of τ in general fixes the automorphism, there are usually n degrees of freedom
in Û . We similarly solve the linear system

Zf(σ)T̂ = T̂Mf(τ),
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with the same τ as the first step, again with n degrees of freedom usually.

Next, we construct the augmented key P̂ = T̂−1 ◦ P ◦ Û−1. Notice that

P̂ ◦Mτ = T̂−1 ◦ T ◦ F ◦ U ◦ Û ◦Mτ

= T̂−1 ◦ T ◦ F ◦Mσ ◦ U ◦ Û

= T̂−1 ◦ T ◦Mf(σ) ◦ F ◦ U ◦ Û

= Mf(τ) ◦ T̂−1 ◦ T ◦ F ◦ U ◦ Û ,

where σ is a conjugate of τ . Thus P̂ is an isomorphic copy of the public key that
is multiplicative.

Finally, we fix and arbitrary input/output pair y′ = P̂ (x′). We can now

directly compute a decomposition of the public key as T ′′ = T̂My′ , U
′′ = M−1x′ Û ,

and of course f which was guessed before. Note that if y = P (x), then T̂−1y can

be viewed as the output of P̂ with input Û(x). So we may use the same trick from

Subsection 4.1 to find a preimage of T̂−1y under P̂ . Specifically, this involves
dividing by y′ (multiplying on the left by M−1y′ ), inverting F and multiplying by

x′ (that is, Mx′). At this point we have obtained Û(x), so inversion is completed

by the application of Û−1. More explicitly, observe that

(
T̂ ◦My′

)
◦ T̂−1 ◦ T ◦ F ◦ U ◦ Û−1 ◦

(
M−1x′ ◦ Û

)
=
(
T̂ ◦My′

)
◦ T̂−1 ◦ T ◦ F ◦M

x′
−1 ◦ U ◦

(
Û−1 ◦ Û

)
=
(
T̂ ◦My′

)
◦ T̂−1 ◦ T ◦M

f(x′)
−1 ◦ F ◦ U

= T̂ ◦
(
My′ ◦Mf(x′)−1

)
◦ T̂−1 ◦ T ◦ F ◦ U

=
(
T̂ ◦ T̂−1

)
◦ T ◦ F ◦ U

= T ◦ F ◦ U.

5 Cryptanalysis of k-ary C∗

We now prove for any k that k-ary C∗ has a differential symmetry. Moreover,
multiplication maps are the only maps inducing symmetry in this way, assuring
that once the symmetric equations are solved that a multiplication map has
been found. We then use this fact to construct an attack analogous to that of
Section 4.

We first define the rth discrete differential.
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Definition 1 The rth discrete differential of a map F : Fnq → Fnq is defined as

DrF (x1, . . . , xr) =



F if r = 0

Dr−1F (x1 + x2, x3, . . . , xr)

−Dr−1F (x1, x3, . . . , xr) otherwise.

−Dr−1F (x2, x3, . . . , xr)

+Dr−1F (0, x3, . . . , xr)

We note explicitly that since the discrete differential operator D is symmet-
ric, when given a symmetric multivariate function G(a, . . . , b), we have that
DaG(x, a, . . . , b) = DbG(a, . . . , b, x) and is symmetric; that is, the same function
is obtained when taking the differential with respect to any variable. Thus all
higher order differentials are the same regardless of the sequence of variables
with respect to which the differentials are taken and the rth differential is well-
defined.

Theorem 1 Let f : K → K be the k-ary C∗ map f(x) = xq
i1+···+qik . Then f

satisfies the differential symmetry

k∑
j=1

Dk−1f(σδj,1x1, . . . , σ
δj,kxk) = (

k∑
j=1

σq
ij

)Dk−1f(x1, . . . , xk), (2)

where δr,s is the Kronecker delta function.

Proof. By calculation, Dk−1f(x1, . . . , xk) is Fq-multilinear and so every mono-
mial summand is of the form

xα = xq
α1

1 xq
α2

2 · · ·xq
αk

k ,

for some α, a permutation of (i1, . . . , ik). Each summand of the left hand side of
Equation 2 contains exactly one term of the form σq

ai
xα and the contribution

of each differential is distinct. Thus, the sum of the xα terms of the left hand

side of Equation 2 is (
∑k
j=1 σ

qij )xα for every α. Summing over all possible α

and factoring out (
∑k
j=1 σ

qij ), we obtain the result.

Thus, k-ary C∗ monomial maps satisfy the same multiplicative symmetry
that C∗ monomial maps exhibit. The key here seems to be that these maps
are multiplicative, and the multiplicative symmetry is the manifestation of that
property in the differential. By an argument analogous to that in [18], it can
be shown that if L induces a differential symmetry with a k-ary C∗ map, then
φ(Lx) = σ(φ(x)) for some σ ∈ K. See [14] for details.

Now we may implement an attack of the exact same manner as that of
Section 4. The main difference is that we must compute a higher order differential
and guess an encryption exponent of a different form. For all of the details, see
Algorithm 2.
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Algorithm 2: Decrypt∗ k-ary C∗

Input : public key P , ciphertext y = P (x)
Output: plaintext x such that P (x) = y

1 x0
$←− Fnq ;

2 y0 ←− P (x0);

3 Dk−1P (a, x)←−Differential(P,k-1);
4 Nσ ←−Matrix([[r1, . . . , rn], . . . , [rn2−n+1, . . . , rn2 ]]);
5 Λσ ←−Matrix([[s1, . . . , sn], . . . , [sn2−n+1, . . . , sn2 ]]);

6 v
$←−LinearSolve(

∑k
j=1D

k−1P (N
δj,1
σ x1, . . . , N

δj,k
σ xk) = ΛσD

k−1P (a, x));

7 Nσ ←−Eval(Nσ,[v[i] : i ∈ [1..n2]]);
8 Zf(σ) ←−Matrix([[r1, . . . , rn], . . . , [rn2−n+1, . . . , rn2 ]]);
9 w ←−LinearSolve(Zf(σ) ◦ P = P ◦Nσ);

10 Zf(σ) ←−Eval(Zf(σ),w);

11 for e in [1 + q1 + · · ·+ qk−1, . . . , 1 + qn−k+1 + · · ·+ qn−1] st (e, qn − 1) = 1 do
12 h←−InverseMod(e,qn − 1);

13 Zσ ←− Zhf(σ);
14 λ←−LinearSolve(

∑n
i=1 λiZ

i−1
σ y0 = y);

15 Nτ ←−
∑n
i=1 λiN

i−1
σ ;

16 Nf−1(τ) ←− Nh
τ ;

17 xcand ←− Nf−1(τ)x0;

18 if y == P (xcand) then
19 return xcand
20 end

21 end

6 Complexity

Even a direct symbolic approach to implementing the attack of Section 5 is suffi-
cient to break the parameters of CryptoChallenge11 from [15]. Specifically, using
symbolic algebra, we broke the biquadratic C∗ with parameters q = 16, n = 25
and e = 1+q+q3+q12 with a simple and straightforward Magma implementation
with symbolic algebra, in 593.25 seconds using 3.9GB of memory.

The implementation is not at all optimized, as it is not necessary to make
a complex implementation to break the full-sized parameters. The implementa-
tion uses symbolic algebra over a polynomial ring over a polynomial ring over a
polynomial ring over F! We did, however, incorporate some of the trivial to im-
plement optimization techniques we now present. An optimized implementation
will make use of the fact that the symmetry relations derived to effect the attack
are linear in the coefficients of the public key; thus, with some engineering, the
entire attack can be reduced to a few operations on some matrices of moderate
size. We describe this technique in more detail at the end of the section.
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First, the linear system

k∑
i=1

Dk−1P (Nδi,1
σ x1, . . . , N

δi,k
σ xk) = ΛσD

k−1P (a, x), (3)

where δi,j is the Kronecker delta, is massively redundant. The system is dra-
matically overdefined typically even when one coordinate of the left-hand side is
used.

Each monomial x1,i1 · · ·xk,ik with the ij pairwise distinct in each coordinate
of Dk−1P produces an equation. Thus the entire linear system in Equation 3 is
n
(
n
k

)
equations in the 2n2 unknown coordinates of Nσ and Λσ.

Since we are only interested in solving for Nσ, we can reduce this system
dramatically by considering fewer coordinates of the left-hand side. The resulting
system will use a corresponding number of rows of the matrix Λσ, so fewer
variables are required as well. We may choose r coordinates to recover r

(
n
k

)
equations in n2 + r ∗ n unknowns. Clearly, the system is fully determined with
3 coordinates when k = 2 and n ≥ 9 or with even a single coordinate when
k > 3 and n > 10, for example. In particular, the large values of k make the
system more overdetermined when even a single coordinate on the left hand side
is considered.

We can improve the complexity even further by not considering all of the
coordinates of Dk−1P on the right-hand side of Equation 3. As in the attack
on SFLASH of [17], we may consider an analysis of the number of linear maps
whose symmetric action on the first r coordinates of the differential map it into
the span of the first s coordinates of Dk−1P .

Fix an arbitrary linear map M and consider the expression

M̃i =

k∑
j=1

Dk−1Pi(M
δj,1x1, . . . ,M

δj,kxk), for i ∈ {1, . . . , r},

which can be viewed as an r-tuple of symmetric k-tensors. The span of all such
symmetric k-tensors S, under the heuristic that Pi is random, q and n are suf-
ficiently large and k > 2, has dimension rn2, that is, r times the dimension of
Mn×n(Fq). The first s coordinates of Dk−1P generate an s-dimensional space
Vs of k-tensors. We note explicitly that since each multiplication of the form Nσ
produces k-tensors that are guaranteed to be in Vn that Vn, and therefore Vs is
contained in S.

Membership of each coordinate of M̃ in Vs requires the satisfaction of n2− s
linear equations. Thus the membership of all coordinates of M̃ in Vs requires
the satisfaction of r(n2 − s) linear equations. This analysis thus suggests that it

is unlikely for all coordinates of M̃ to be in Vs for random M as soon as r > 1.
On the other hand, if M is already a multiplication map of the form Nσ

then M̃ is already guaranteed to be in Vn. Moreover, the condition that each of
the first r coordinates of M̃ is in Vs is satisfied explicitly under the appropriate
change of basis by the preimage of Span(1, α−1, . . . , α1−s) under the linear map
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x 7→ xq
a1

+ xq
a2

+ · · · + xq
ak if r ≤ s. In particular, if r = s we obtain an

s-dimensional space of multiplications.
Considering the above analysis, we expect for k > 2 and n sufficiently large

that choosing the first two coordinates of the left-hand side of Equation 3 to be
in the span of the first two coordinates of the right-hand side provides enough
relations to produce a 2-dimensional subspace consisting entirely of maps of
the form of Nσ. Our experiments confirm that this approach works. Table 1
provides performance numbers for this attack using r = s = 2 for biquadratic
C∗ instances.

n 9 11 13 15 25

(s) 0.9 2.88 8.04 21.3 593.25
(MB) 22.6 46.71 85.99 287.63 3883.34

Table 1. The performance of a simple Magma implementation of the above attack
against biquadratic C∗ over GF(16) using r = 2 coordinates of the left-hand side and
the span of s = 2 coordinates of the right-hand side of Equation 3. The last column is
the performance in breaking CryptoChallenge11 from [15].

We note a couple of properties of this attack. Since the symmetric relations
of Equation 3 are linear in the highest degree terms of the public key, there exists
a massive binary matrix that produces the symmetric relations from the public
coefficients. In the symbolic implementation above, almost all of the time was
spent recovering these linear equations, with all of the overhead of the polynomial
rings with hundreds of variables, before they were nearly instantly solved.

To make the attack more efficient, one can note that the differential symmet-
ric equations are linear functions of the coefficients of the public key. Thus one
may construct a linear function to derive the relations directly from the public
key coefficients. We derive this function in the k = 2 case. The general case is
similar and quite tedious to build.

Note that

DPl(Ma,x) +DPl(a,Mx)

=
∑
i<j

cijl

[
n∑
k=1

mikakxj +

n∑
k=1

mjkaixk +

n∑
k=1

mjkakxi +

n∑
k=1

mikajxk

]

=

n∑
k=1

n∑
j=2

∑
i<j

cijlmikakxj +

n∑
k=1

n−1∑
i=1

∑
i<j

cijlmjkaixk

+

n∑
k=1

n−1∑
i=1

∑
i<j

cijlmjkakxi +

n∑
k=1

n∑
j=2

∑
i<j

mikajxk.

Collecting coefficients of arxs we obtain

[arxs] =
∑
i<s

cislmir +
∑
r<i

crilmis +
∑
s<i

csilmir +
∑
i<r

cirlmis.
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We form a matrix Al whose rows are indexed by (r, s) with r < s and whose
columns are indexed by (u, v) with 1 ≤ u, v ≤ n.

Al,(r,s),(u,v) =



cusl if u < s and v = r

curl if u < r and v = s

crul if r < u and v = s

csul if s < u and v = r

0 otherwise.

From this expression, we may derive as many as n matrices of size
(
n
2

)
× n2

(
n
2

)
which can be multiplied on the left by the vector of cross term coefficients of each
public formula to produce row vectors of Al. Each row of Al now represents the
coefficients of mij occuring in the left-hand side of coordinate l of Equation 3.
In a similar way we can construct additional matrices generating the right-hand
side of the relations from the public coefficients and horizontally join the result
to Al. Elements in the nullspace of this matrix then correspond to matrices M
satisfying Equation 3.

Considering the more general case of k-ary C∗, for k > 2, we may limit
the number of matrices above to 2 for each of the left and right-hand sides.
Then deriving the symmetry relations requires linear algebra on matrices of size
n2
(
n
k

)
, and solving the system requires finding a kernel vector for a matrix of

size 2n2
(
n
k

)
× (n2 + 4). Note that a nontrivial kernel vector exists when the rank

of this matrix is bounded by n2 + 3, and in this case we can find a vector with
high probability by only considering O

(
n2
)

rows. Thus the complexity for the
entire recovery of the multiplication map is

2n2
(
n

k

)2

+O
(
n2
)

(n2 + 4) = O

(
n2
(
n

k

)2
)
,

ignoring sparse optimizations. For CryptoChallenge11, this quantity is upper
bounded by 238, which is far superior to the symbolic implementation described
and executed above. For the “secure” variant of biquadratic C∗ recently proposed
in [12], the formula above provides an upper bound of 268, far less than the
claimed security bound of 80 bits.

7 Conclusion

Although C∗ has been the foundation of one of the main approaches to multi-
variate public key cryptography in the last decades, it has also been a source
of failure for many constructions based too directly on it, see, for example, [19].
The k-ary generalization of C∗ falls into this category as well. While the differ-
ential relations are more cumbersome to derive in the k-tensor space than for
the original C∗, the extent of the symmetry inherent to the central map makes
it easy to derive the polynomially sized overdetermined linear system required
to break the scheme.
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Some of the major accomplishments of multivariate cryptography in the
twenty-first century are derivations of proofs that certain modifications of schemes
preclude certain classes of attacks. For C∗ variants, one may provably prevent an
attack recovering a differential symmetry on the public key by using nontrivial
projections on both the input variables and the output polynomials, see [20, 18].
It is an interesting theoretical, if not entirely practical, question as to whether
the same result can be derived in the k-ary case. Clearly, the attack presented
here can be used to recover a full rank scheme from a minus modified one and
break it similarly to SFLASH. It is an open question as to whether a projected
k-ary C∗− scheme can be secure.
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