X-DeepSCA: Cross-Device Deep Learning Side Channel Attack

Debayan Das1, Anupam Golder2, Josef Danial1, Santosh Ghosh3, Arijit Raychowdhury2, Shreyas Sen1

1School of Electrical and Computer Engineering, Purdue University, USA
2School of Electrical and Computer Engineering, Georgia Institute of Technology, USA
3Intel Labs, Hillsboro, Oregon, USA
{das60,jdanial,shreyas}@purdue.edu,anupamgolder@gatech.edu,arijit.raychowdhury@ece.gatech.edu

ABSTRACT
This article, for the first time, demonstrates Cross-device Deep Learning Side-Channel Attack (X-DeepSCA), achieving an accuracy of >99.9%, even in presence of significantly higher inter-device variations compared to the inter-key variations. Augmenting traces captured from multiple devices for training and with proper choice of hyper-parameters, the proposed 256-class Deep Neural Network (DNN) learns accurately from the power side-channel leakage of an AES-128 target encryption engine, and a N-trace (N ≤ 10) X-DeepSCA attack breaks different target devices within seconds compared to a few minutes for a correlational power analysis (CPA) attack, thereby increasing the threat surface for embedded devices significantly. Even for low SNR scenarios, the proposed X-DeepSCA attack achieves ∼10× lower minimum traces to disclosure (MTD) compared to a traditional CPA.

KEYWORDS
Side-channel Attacks, Profiling attacks, Cross-device Attack, Deep Learning, Neural Networks.

1 INTRODUCTION
In today’s computing and communication systems, cryptographic algorithms are designed to provide integrity and confidentiality of data. The mathematical security of these implementations depend on the secrecy of a short key, which provides a computational advantage to the communicating parties over the adversary. Hence, a brute-force attack on these algorithms can only succeed with negligible probability. Side-channel analysis (SCA) is a form of cryptanalytic attack which breaks the secret key of an embedded device by utilizing the unintended ‘side-channel’ leakage resulting from the physical implementation of the cryptographic algorithm. These side-channel leakage can be obtained by monitoring the power consumption of the device running the algorithm [14], electromagnetic emanations [9] during the cryptographic operations, processing time [4], cache hits/misses, and so on.

This article focuses on the power SCA attacks. Non-profiled power SCA attack techniques include differential and correlational power analysis (DPA/CPA), which have been utilized to break many real-world encryption devices [8, 21, 22]. Profiled power SCA attacks comprise of two stages: profiling and attack [6]. In the profiling phase, multiple traces from an identical device are collected with varying sub-keys (part of the cryptographic key), and a model is built. During the attack stage, the model is utilized to classify each sub-key of the device under attack.

In recent years, various machine-learning (ML) techniques have been evaluated to perform profiling power SCA attacks [2, 12, 18]. Although successful attacks have been shown, these ML techniques require pre-processing of the traces with proper time-alignment. In 2017, Cagli et al. [5] proposed a deep-learning based approach utilizing convolutional neural networks (CNNs) to provide an end-to-end profiling strategy, even in presence of trace misalignments. Masking-based countermeasures were also shown to be broken using neural networks [10, 19]. Deep Learning (DL) based SCA is still a new research paradigm [23] and all the previous works till date have focused on evaluating and improving the attack on the same device which has been used to train the neural network.

This work, for the first time, demonstrates a Cross-Device Deep Learning based Side-Channel Attack (X-DeepSCA) using a 256-class DNN. Figure 1(a) shows the measured cross-device variations in the form of a histogram (red plot) of the absolute difference of the averaged traces from the 2 different devices (TR1, D1) running the
same AES-128. For the device TR_1, the green curve shows the histogram of the variation between 2 different key bytes (classes). We see that the inter-device variations for the same key are significantly higher than the inter-key variations of the same device, which makes the cross-device attack particularly challenging. The confusion matrices in Figure 1(b) show that although the test accuracy on the same device (DNN trained with device TR_1 and tested with unseen traces from the same device) is very high (red dots represent the misclassified key bytes), the accuracy on a different test device (D_1) is significantly lower. Hence, training with one profiling device overfits to that particular device leakage and may not be able to generalize well to other devices.

Hence, in this work, we augment traces from multiple profiling devices (Figure 2(b)) and build a DNN architecture to perform cross-device deep-learning based power side-channel analysis (X-DeepSCA) attack. In addition, we analyze the individual class (key byte) accuracies and demonstrate the practicality of an N-trace ($N \leq 10$) X-DeepSCA attack to achieve > 99.9% success of attack. Finally, we study the effect of varying SNR scenarios, and show that the X-DeepSCA attacks require ~ 10x lower number of traces to attack (minimum traces to disclosure: MTD) than the traditional correlation power analysis (CPA) attacks [3].

In summary, the key contributions of this work are:

- A combination of designing the appropriate 256-class DNN with proper choice of the hyperparameters to prevent overfitting, utilizing traces from multiple devices (TR_{1-4}) during training, coupled with the proposed N-trace attack leads to the first successful demonstration of a cross-device deep-learning SCA (X-DeepSCA) attack.
- Using the Keras library with a Tensorflow backend [1], we show that the single-trace X-DeepSCA attack using the DNN model achieves an average accuracy of > 99.9% for all the test devices (D_{1-4}) under attack using 200K total traces for the training (Sec. 3).
- Further, we investigate the individual class accuracies by introducing a measure of entropy, leading to the proposed N-trace X-DeepSCA attack to guarantee > 99.9% attack success with $N \leq 10$ encryptions (Sec. 4).
- Finally, we show that the X-DeepSCA attack performs > 10x better in terms of MTD, with different signal-to-noise ratio (SNR) scenarios, reducing the time of attack from minutes to seconds (Sec. 5).

The remainder of the paper is organized as follows. Section 2 summarizes the existing works on machine-learning based profiling SCA attacks. In Section 3, the DNN architecture for the X-DeepSCA attack is proposed and single-trace attacks are analyzed. Section 4 introduces the N-trace X-DeepSCA attack. Section 5 discusses the effect of varying SNR scenarios on the X-DeepSCA attack and provides future directions. Section 6 concludes the paper.

2 BACKGROUND & RELATED WORK

Template-based profiling power SCA attacks are extremely powerful as they can potentially break the encryption key within a few encryption traces [6, 20]. Recently, machine learning (ML) based profiling attacks have been studied extensively [2, 12, 15–18]. These ML-based attacks use supervised learning models like the support vector machine (SVM), Self-Organizing Map (SOM) or Random Forest (RF) for classification.

Deep neural networks (DNNs) have generated significant interest in the recent years. It has been shown that the clock-jitter based countermeasures against power/EM SCA can be broken using a convolutional neural network (CNN) [5, 23, 24]. Also, masking based countermeasures have been shown to be broken with neural networks [10, 19].

A summary of the related works is shown in Table 1. Most of the existing works [2, 5, 6, 10, 15–18] on profiling attacks have tested their attack on the same device used for the template generation. [7, 20, 25] have evaluated cross-device template-based attacks (TA) using statistical multivariate analysis, Principal Component Analysis (PCA), Mutual Information Analysis (MIA) and Linear Discriminant Analysis (LDA). [11] showed a multi-device profiling using statistical TA.

However, none of the ML-based works have focused on the cross-device attacks yet. Also, the previous works based on neural networks (NNs) have evaluated their models with the same device used for training. We have seen in Figure 1(a), the inter-device variation is typically much higher than the inter-key (or inter-class) variations. Hence, a NN model evaluated against the same device may not necessarily work well on a different target device. This work shows the first cross-device profiling attack using a deep neural network (DNN).

Table 1: Overview of the Related Works on Profiling Attacks

<table>
<thead>
<tr>
<th>Train/Test Scenario</th>
<th>Profiling SCA Attacks</th>
<th>Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train and Test with the same Device</td>
<td>[2], [3], [6], [10], [15], [16], [17], [18], [19]</td>
<td>SVM, RF, FCN, CNN, Statistical TA</td>
</tr>
<tr>
<td>Train with one device and Test on different Devices</td>
<td>[20], [7], [25]</td>
<td>PCA/LDA, MIA, Statistical TA</td>
</tr>
</tbody>
</table>

First Cross-device Deep-Learning Side-Channel Attack
Figure 3: Architecture of the proposed Fully Connected DNN for X-DeepSCA. The input layer consists of \(N = 500 \) neurons. The 1\(^{st} \) fully-connected (FC) hidden layer consists of 200 hidden neurons, followed by Batch Normalization, Rectified Linear Unit (ReLU) activation, and a dropout layer. The 2\(^{nd} \) hidden layer is similar without the dropout layer. Finally, the output layer has 256 neurons for predicting the correct key byte utilizing the softmax function. If the traces are not aligned in time, a convolutional layer as the input layer would be required. In this work, we use the Fully Connected DNN as the traces captured from the Chipwhisperer are time-aligned.

To train a neural network, the typical leakage models used for the power consumption are the Hamming Weight (HW) model (9-class classification), and the identity (ID) model (256-class classification) [23]. In this work, we use the identity model for 256-class classification and train our DNN to learn the leakage information accurately. For all the analyses shown in this work, the attacks are performed on the 1st key byte of the AES-128 encryption engine.

Also, most of the previous NN models have been evaluated on the available DPA v4 contest dataset, or the newly published ASCAD database [24] which do not contain traces from multiple devices. Hence, to evaluate our cross-device attack, we build a new database by capturing traces from multiple devices using the Chipwhisperer platform (Figure 2(a)). Separate sets of Atmega microcontrollers (Figure 2(b)) running AES-128 are used for profiling and testing the X-DeepSCA attacks.

3 SINGLE TRACE X-DeepSCA ATTACK

In this section, we evaluate a single-trace X-DeepSCA attack. A 256-class classifier is necessary to perform a single-trace cross-device SCA attack (X-DeepSCA). However, designing a 256-class classifier is significantly difficult compared to the HW-based 9-class classifier. Hence, choice of the hyperparameters like the learning rate, number of hidden neurons, dropout, are extremely critical to prevent overfitting or underfitting.

3.1 DNN Architecture

Figure 3 shows the architecture of the proposed fully-connected (FC) DNN for the X-DeepSCA attack. Note that, for our work, the traces collected from the Chipwhisperer platform are time-synchronized and hence use of a convolutional layer is not necessary. Although the captured traces from the AES-128 encryption engine had 3000 time samples for an entire encryption operation, it was initially fed to the DNN and verified that the network learns accurately from the points of leakage (cross-verified using a CPA attack) within the first 200 time samples for the 1st key byte under attack. After
Figure 6: Attack Accuracy on the test devices (D_{1-4}) with the DNN model trained with varying number of training traces gathered from the 4 training devices, where each of them (TR_{1-4}) contributed equally.

this verification1, to reduce the model complexity (and the time for training the DNN), only the first 500 time samples from each power trace were fed to the DNN.

The first FC layer of the DNN consists of 200 neurons, and increasing the number of hidden neurons could lead to overfitting. This corroborates our observation that the leakage is within the first 200 time samples of the input traces. Batch normalization layer \cite{ioffe2015batch} and the dropout layers provide regularization to prevent overfitting and encourage generalization to unseen data. The Rectified Linear Unit (ReLU) is used as the non-linear activation function to learn non-linear mappings from the input to the output. The second FC layer is similar without the dropout layer, and is finally followed by the output layer with 256 neurons, which predicts the correct key byte in a single trace utilizing the softmax function.

Figure 4(a, b) shows the effect of choice of some of the hyperparameters of the DNN model on the accuracy of a different test device. Figure 4(a) shows that a learning rate of 0.01 provides the maximum test accuracy, while a higher learning rate could lead to overfitting resulting in reduced test device accuracy. From Figure 4(b), we see that even in case of low dropout, the test accuracy remains high, which implies that the data gathered from the real-world devices has sufficient electronic noise. However, dropout more than 30\% leads to reduced classification accuracy.

To train the DNN, for all our experiments, 10K traces (unless otherwise mentioned) each from four devices are augmented together, and 20\% of the total number of traces are kept for validation of the DNN during the profiling phase.

3.2 Performance Analysis of Single-Trace X-DeepSCA Attack

Figure 5(a,b) shows the training and validation accuracies of the DNN. We can see that the DNN model reaches an accuracy of > 99.9\% within 25 epochs and also that the training and validation loss reduce to 0. The validation set accuracy remains same as that of the training set, implying that the DNN model is not overfitting. Figure 6 shows the performance of the trained DNN model on the test devices (D_{1-4}) with varying number of training traces, drawn equally from all the four devices (TR_{1-4}) reserved for training. The X-DeepSCA attack on all the 4 test devices shown reaches 99\% accuracy with 10K training traces, and > 99.9\% with 200K training traces in total(drawn equally from each of TR_{1-4}).

Note that for the test devices, traces are collected for different keys to evaluate the accuracy of all the classes (key bytes). Figure 7(a-d) shows the confusion plots on the test devices (D_{1-4}) after

Note that for the test devices, traces are collected for different keys to evaluate the accuracy of all the classes (key bytes). Figure 7(a-d) shows the confusion plots on the test devices (D_{1-4}) after
Figure 9: Individual Key Byte (Class) Accuracy Distribution for the test device D_4 (showed the worst average accuracy out of $D_{1−4}$): The black plot represents the accuracy for each key byte, and the red plot denotes the maximum percentage of a particular class misprediction for the test device D_4. (a) With 1-device training (TR_1 - 10K traces), for some of the key bytes the black and red curves overlap, while (b) with 4-device ($TR_{1−4}$ - 10K traces each) training, there is a significant reduction in the measure of entropy and an N-trace attack would be able to predict even the lowest accuracy key byte with high success probability (refer Fig. 10).

Figure 8 shows the effect of augmenting traces from multiple devices (with 10K traces each) for training the DNN. We see that with only 1 training device, the accuracy on a test device goes to ~80%, while it increases to ~99% after augmenting traces from all the 4 training devices with only 10K traces captured from each device.

4 N-TRACE X-DeepSCA ATTACK

In the previous section, we have shown that a single-trace X-DeepSCA attack with an accuracy of > 99.9% can be performed on a test device, with 200K training traces (equally from each of the devices $TR_{1−4}$) used to build the DNN model. In this section, we analyze the training with 40K traces (10K from each of the 4 training devices). As expected, for all the test devices, we see that at most 3 key bytes are misclassified (marked in red, outside the diagonal line) out of the all 256 different key bytes.

Figure 8 shows the effect of augmenting traces from multiple devices (with 10K traces each) for training the DNN. We see that with only 1 training device, the accuracy on a test device goes to ~80%, while it increases to ~99% after augmenting traces from all the 4 training devices with only 10K traces captured from each device.

4.1 Individual Key Byte Accuracy

Figure 9(a, b) shows the individual key byte (class) accuracies and the percentage of the misclassified key byte with the highest occurrence in prediction (for every key byte class) for the test device D_4 (as it showed the lowest accuracy of the 4 test devices and poses the worst case scenario for an attacker). The separation between the class accuracy ($K_{pred} = K_{target}$) and the maximum mispredicted class (the particular key byte which is wrongly predicted maximum number of times - $K_{x} \neq K_{target}$) gives a measure of the entropy ($\eta_{K_{target}}$) of the X-DeepSCA attack, as shown in Eqn. 1,

$$\eta_{K_{target}} = 1 - \frac{|K_{pred} = K_{target}|}{|K_{total}|} = \frac{\text{argmax}(|K_{pred} = K_{x} : K_{x} \neq K_{target})}{|K_{total}|}$$ \hspace{1cm} (1)

where, K_{pred} represents the predicted key byte, K_{target} is the target key byte, K_{x} is any other key byte (mispredicted) which has the maximum occurrence for the K_{target} class, and $|K_{total}|$ denotes the total number of queries (traces) for that particular K_{target} class.

Figure 9 shows that training with 4 devices has significantly lower entropy ($\eta_{K_{target}}$) compared to 1-device training. Also, we see from Figure 9 that although the test device D_4 achieves an average accuracy of > 99% (most of the key bytes can be broken with a single-trace), as seen from Figure 6, 8, the minimum accuracy of few key byte drops below 80%. Hence, although the single-trace attack will succeed on most key bytes, it may not work for a few key bytes, and a multi-trace attack is required.
Figure 11: (a) Number of traces (averaged) required for a successful X-DeepSCA attack (with > 99.9% accuracy) in different SNR scenarios. For SNR=20dB, averaging with less than 10 traces is sufficient to achieve > 99.9% accuracy, while it requires ~ 100 traces for SNR=10dB, and ~ 1000 traces to be averaged over to achieve the 99.9% accuracy. (b) Comparison of the X-DeepSCA attack with traditional CPA attack shows a lower MTD for X-DeepSCA compared to CPA for all SNRs.

5 DISCUSSIONS

5.1 X-DeepSCA Attack: Effect of SNR Variation

Now, we evaluate the effect of varying Signal-to-Noise Ratio (SNR) on the efficacy of the X-DeepSCA attack. Figure 11(a) shows the number of traces required to average for a successful X-DeepSCA attack with > 99.9% accuracy on the test device D_1 using the training set with TR_{1-4} (10K traces each). Figure 11(b) shows that the number of traces required to retrieve the correct key byte of the AES-128 engine under attack is ~ 10x lower than the traditional CPA attack for different levels of SNR.

5.2 Future Work

For the future scope of this work, the efficacy of the proposed X-DeepSCA attacks can be further improved if we can guarantee that the accuracy of each key byte and the mispredicted classes for that key byte are uniformly distributed. This could be achieved by ensuring that the DNN has minimum bias during a misclassification, which would lower the number of traces (N) required for a successful N-trace X-DeepSCA attack. Overall, the proposed attack can put a huge dent to the security of embedded devices.

6 CONCLUSIONS

For the first time, this work shows a Cross-device Deep Learning based Side-Channel Analysis (X-DeepSCA) attack. Utilizing multiple (4) devices for training a fully-connected DNN, results showed that an average accuracy of 99.9% can be achieved with all the 4 test devices using 200K training traces, showing the possibility of a single-trace attack. However, deeper analysis utilizing the proposed measure of entropy revealed that few individual key bytes had lower accuracies, and hence an N-trace X-DeepSCA attack (N ≤ 10) is proposed to break the key with > 99.9% confidence. Finally, we show that for varying SNR scenarios, the proposed X-DeepSCA attack achieves ~ 10x lower MTD, which breaks the target devices within seconds compared to a few minutes for the traditional CPA attack, increasing the threat surface significantly.

References

X-DeepSCA: Cross-Device Deep Learning Side Channel Attack

