

© 2019, Cossack Labs Limited, www.cossacklabs.com

Proxy-Mediated Searchable Encryption in SQL

Databases Using Blind Indexes

Eugene Pilyankevich

eugene@cossacklabs.com

Dmytro Kornieiev

dmitry@cossacklabs.com

Artem Storozhuk

artem@cossacklabs.com

ABSTRACT

Rapid advances in Internet technologies have fostered the emergence of the “software as a service”

model for enterprise computing. The “Database as a Service” model provides users with the power to create,

store, modify, and retrieve data from any location, as long as they have access to the Internet. As more and

more datasets (including those containing private and sensitive data) are outsourced to remote / cloud storage

providers, the data owner, firstly, needs to be certain of the security of data against thefts by outsiders and,

secondly, the data owner needs to secure the data not only against external threats but also from untrusted

service providers. The same is true for distributed applications with complex microservice architectures.

However, the use of standard encryption schemes for data protection also effectively eliminates the search

capability of the database service which, in turn, severely constrains the ability of the service to manage large

volumes of data.

Searchable encryption (SE) is a class of cryptographic techniques that addresses these issues. SE

allows a user to write encrypted data to an untrusted storage provider while retaining the ability to perform

queries without decrypting the data. This can be achieved by either encrypting the data in a special way that

enables queries to be executed directly on the ciphertext or by introducing a searchable encrypted index

which is stored together with the encrypted data on the storage provider.

All reasonably efficient SE schemes have a common problem. They leak the search pattern that

reveals whether two search queries were performed for the same keyword or not. Hence, the search pattern

provides the information on the frequency of occurrence for each query. This information can be further

exploited by statistical analysis, allowing an adversary to gain full knowledge about the plaintext keywords,

which significantly decreases the security benefits of encrypting the data.

There is no single best publicly known secure search system or a set of such techniques. The design

of SE schemes is a balancing act between security, functionality, performance, and usability. This is

especially true since different users will want different database architecture (SQL, NoSQL, NewSQL).

Most progress in the area of SE has been made in the setting of keyword search on encrypted

documents. While this has many practical applications (i.e. email, desktop search engines, cloud document

storage), much of the data produced and consumed is stored and processed in relational databases queried

using SQL.

In this paper, we propose Acra Searchable Encryption (Acra SE) – a solution for secure search in an

encrypted SQL database based on the blind indexing approach developing and evolving the original idea of

the CipherSweet project.

Keywords: searchable encryption, blind indexing, SQL database security, distributed applications.

2

1 INTRODUCTION

The wide proliferation of sensitive data in open information and communication infrastructures

has increased both the volume of research on secure data management and its relevance. Recent

developments in cloud computing have made it possible to store data remotely and access it from any part

of the network, and by any service or software subcomponent. However, this freedom also has its

downsides, since storage providers (administrators or attackers with root access) have full access to their

servers and – consequently – to the plaintext data. A trusted provider may sell its business to an untrusted

entity which will then have full access to your data. In short, to store sensitive data securely on an

untrusted server, the data needs to be encrypted. This reduces the security and privacy risks by hiding all

the information about the plaintext data. Encryption makes it impossible for both insiders and outsiders to

access the data without the cryptographic keys, but at the same time, this removes the ability of the data

owner to search the data. One trivial approach to searching over encrypted data is to download the whole

database, decrypt it locally, and then search for the desired results in the plaintext data. For most

applications, this approach is impractical due to the significant size of the datasets (for an enterprise that

keeps a historical database of customer facing data like sales, shipments, etc., the size of these databases

can be quite large – from Tbytes to Pbytes [1]). Another method lets the server decrypt the data, runs a

query on the server side and only returns the user the results. In this case, security is compromised as all

records protected by encryption are revealed. Instead, it is desirable to support the fullest possible search

functionality on the server side, without decrypting the data, with the smallest possible loss of data

confidentiality. This is called searchable encryption (SE). Figure 1 illustrates a typical workflow of SE.

Figure 1: Abstract searchable encryption scheme.

A SE scheme allows remote storage provider to search over encrypted data without learning the

information about the plaintext data. Some schemes implement this via ciphertext that allows searching,

while most other schemes let the client generate a special searchable encrypted index (subsequently, for

this notion, we use the term “blind index”) and store it together with encrypted data on remote storage on

the provider’s side. To search, the client includes a so-called trapdoor into the search query – a predicate

function on a searchable encrypted keyword, which can be used by storage provider to determine (as in

“check if the predicate is satisfied”) whether the stored encrypted keyword should be included in the

search result.

In recent years, the relevance of searchable encryption has significantly increased due to the

adoption of GDPR [2], which regulates personal data protection and privacy for all members of the

European Union. In particular, GDPR requires pseudonymisation (where applicable) of personal data

stored by commercial companies (usually by the means of encryption) [3]. Another example is a

requirement to encrypt electronic health records stipulated by legislation around the world. These security

demands pose the question of effective and secure search through highly sensitive data.

Remote storage provider

Client

3

The first SE scheme (and the first formal scientific definition of searchable encryption scheme)

was proposed by Song, Wagner, and Perrig [4] in 2000. The problem of search over encrypted data has

since received much interest from governments [5], academia [6 - 9] and industrial sector (Bitglass,

CipherCloud, Skyhigh, Crypteron, IQrypt, Kryptnostic, Google’s Encrypted BigQuery, Microsoft’s SQL

Server 2016, Azure SQL Database, PreVeil, SkyHigh, StealthMine).

It’s well known [8, 9] that designing a SE scheme is a balance between security, functionality,

performance, and usability. When a scheme improves in one aspect, it usually has to make sacrifices in

others. Security descriptions focus on the information that is revealed or leaked to an attacker with access

to the database server. Functionality is primarily characterized by the query types that a protected database

can answer. Queries are usually expressed in a standard language, i.e. the structured query language

(SQL). Performance and usability are affected by data structures and indexing mechanisms of the

database, as well as by the required computational and network costs.

1.1 Searchable encryption security

Any searchable encryption scheme will leak information that can be divided into three groups: blind

index metadata, search pattern, and access pattern. We will use definitions from [9], accepted for general-

purpose databases (including, as in our case, relational databases).

Blind index metadata (index information in [9]) refers to the information about the keywords

contained in the blind index (not to be confused with traditional database indexes for performance

improvement). Blind index metadata is leaked from the stored ciphertext / blind index. This information may

include the number of keywords per document / database, the number of documents, the documents’ length,

document IDs, and / or document similarity. Documents can be treated as a set of cells in the table of SQL

database.

Search pattern refers to the information that can be derived in the following sense: determining

whether two searches use the same keyword / predicate given that two searches return the same results.

Accessing the search pattern allows the server to use statistical analysis and (possibly) determine information

about the query keywords.

Access pattern refers to the information that is implied by the query results. For example, one query

can return a document , while the other query could return and another 10 documents. This implies that

the predicate used in the first query is more restrictive than that in the second query.

In practice, the following types of objects within SE systems are vulnerable to leakage [8]:

1) Data items and any indexing data structures;

2) Queries;

3) Records returned in response to queries;

4) Access control rules and the results of their application.

Most scientific papers follow the traditional security definition from [10]. Namely, it requires that

nothing leaks from the remotely stored ciphertexts and blind indexes beyond the result and pattern of search

queries. Meaning, SE schemes should not leak the plaintext keywords in either the trapdoor or the blind

index. To capture the concept that neither blind index metadata nor the search pattern is leaked there is a so-

called definition of full security of SE scheme [11]. This is an absolutely logical security requirement

because the recent works [12 - 17] demonstrated how attackers can recover plaintext data if they observe

queries over an encrypted database. And, unfortunately, in real-world scenarios, full security (not to be

confused with Shannon’s information-theoretic security which cannot be achieved in searchable encryption

by definition) for SE scheme is almost unreachable. Most theoretical schemes from [9] leak at least the

search pattern and the access pattern. The remaining schemes SSW [11] and BTH+ [18] are fully secure but

they are also inefficient in production databases (a single search query may take 47 seconds in an encrypted

database with 1000 documents [18]). At the same time, more efficient SE schemes with existing

implementations (research prototypes) such as CryptDB [19], Arx [20], Seabed [21], Mylar [22] have rather

complicated architecture that reduces real-world usage attractiveness and, moreover, are criticized for using

4

security models that are too abstract and operating under a false assumption that a snapshot attacker is unable

to obtain the search pattern [23].

1.2 Current SE solutions for SQL databases

Research on searchable encryption focuses mainly on the scenario of a user who outsources an

encrypted collection of documents and would like to further search the keywords over this encrypted dataset.

While this theoretical setting is valid, in practice, many organizations store data in relational databases that

structure data into tables according to a set of attributes. The popular SQL language (first described back in

1974 by Chamberlin and Boyce) enables users to store, query, and update their data in a user-friendly

manner. Consequently, a cryptographic data protection mechanism for searching over encrypted data stored

in a SQL database should allow the server to efficiently process the search queries without having an access

to the plaintext data. However, creating a method satisfying such constraint for SQL databases is not

straightforward. Indeed, existing solutions build an index of keywords. In the case of SQL, data is arranged

into tables and records and queries are based on conditions applied over one or more attributes of a record.

Therefore, keywords should preserve this notion of an attribute. Moreover, SQL allows comparing the data

(range queries), which is not always addressed in the existing work.

As far as we know, the first searchable encryption solution for relational database was proposed by

Hacigűműs et al. [6] and was based on quantization. Generally speaking, the attribute space of each column

is partitioned into bins and each element in the column is replaced with its bin number. In [19] Popa et al. has

proposed CryptDB. It was the first non-quantization-based solution also capable of handling a large subset of

SQL. Instead of using quantization, CryptDB relies on property-preserving encryption like deterministic and

order-preserving encryption, applied to a column of an SQL table. The CryptDB design influenced the

Cipherbase system from Arasu et al. [24] and the SEEED system from Grofig et al [25].

Some SE systems have made the transition to full database solutions. Those systems report

performance analysis, perform rule enforcement, and support dynamic data.

It is in this context that we propose Acra SE which adds SE capabilities to the existing Acra database

security suite [26] based on the “blind indexing” approach developed by the CipherSweet project [27].

Table 1 summarizes the qualities of available SE schemes. All these schemes have implementations

and support relational databases.

Table 1

System Query expressiveness Additional features Open-source

CryptDB Equality, Boolean, Range, Sum, Join,

Update

User authentication,

Access control

Yes

Blind Seer Equality, Boolean, Keyword, Range,

Update

Query policy No

OSPIR-OXT Equality, Boolean, Keyword, Range,

Substring, Wildcard, Update

Query policy No

SisoSPIR Equality, Keyword, Range, Substring Query policy No

CipherSweet Equality Key management Yes

Acra

Equality Authentication,

Query policy,

Intrusion detection,

Key management,

Monitoring and observability

Acra: Yes

Acra SE: No

5

CryptDB replicates most of the functionality of database management systems with a performance

overhead of under 30% [19]. Blind Seer [28] reports slowdown between 20% and 300% for most queries,

while OSPIR-OXT [29] report that they occasionally outperform a baseline MySQL 5.5 system with a

cold cache and are one order of magnitude slower than MySQL with a warm cache. The SisoSPIR system

[30] reports performance slowdown of 500% compared to a baseline MySQL system on keyword equality

and range queries. CipherSweet doesn’t provide measurable performance characteristics.

At the same time, data leakage types may vary. CryptDB is the fastest and the easiest to deploy.

However, once a column is used in a query, CryptDB reveals the statistics on the entire dataset’s value on

this column. Blind Seer and OSPIR-OXT also leak information to the server but primarily on the data

returned by the query. Thus, they are appropriate in setups where a small fraction of the database is

queried. Finally, SisoSPIR is appropriate if a large fraction of the data is queried regularly. However,

SisoSPIR does not support Boolean queries, which is limiting. CipherSweet only supports equality queries

but offers simple and straightforward security model, which is essentially a time-memory trade off that

introduces the risk of partially-known plaintext attacks. These attacks are more similar to a crossword

puzzle than traditional cryptanalysis techniques [31].

1.3 Our contribution

Our contribution is a new SE system based on the blind indexing approach – storing keyed hashes of

keywords on the database side.

Unlike the existing solutions, our system provides strict separation of duties (based on reverse

proxying – see Figure 2) which guarantees absence of cryptographic key leakage from application, secure

storage and management of cryptographic keys, and a set of additional security features that better

correspond to the real-world threats.

Figure 2: Reverse proxy between application and untrusted storage provider.

1.4 Organization

This paper has the following structure: Section 2 introduces common definitions of cryptographic

schemes used as building blocks for our design, details on data flow and cryptographic keys management;

Section 3 describes the practical security evaluation of our system; Section 4 provides information about

implementation and performance evaluation; Section 5 sets out our conclusions.

2 PRELIMINARIES

 In the previous section, we discussed the notion of searchable encryption that allows a client to

store encrypted data with an untrusted storage provider, while still being able to query the data securely.

Significant progress has been made in this field after more than a decade of research. The main academic

efforts were dedicated to improving query expressiveness, efficiency, and security. One can recognize the

tradeoffs among these three directions: (1) security versus efficiency, (2) security versus query expressive-

6

ness, and (3) efficiency versus query expressiveness. When a scheme tries to be better in one aspect, it

usually has to make sacrifices in others [9].

In practice, many organizations such as governments, hospitals, or private companies store data in

relational databases [32], where users are able to store, query, and update their data using SQL. As noted,

direct application of the existing solutions for search over an encrypted collection of files in SQL

databases is not straightforward (due to infrastructural requirements, trust model and / or application

demands). Besides, only a few of them have industry-proven implementations with available source code

[19, 27, 33].

Based on our analysis of available implementations, one of the most noteworthy secure search

frameworks is CipherSweet. It is based on a blind indexing strategy, which relies on storing keyed hashes

of search keywords on the database side. In the following sections, we provide a cryptographic design of

our approach (proxy-mediated encrypted search with blind indexing) based on the ideas from CipherSweet

and implemented in Acra database encryption suite [33].

 2.1 Low-level cryptographic schemes

2.1.1 Cryptographic key generation (CKG)

Cryptographic key generation scheme is a pair of algorithms , such

that:

1) The algorithm takes no input and returns a symmetric key : ;

2) The algorithm takes no input and returns an Elliptic Curve Diffie-Hellman (ECDH)

[34] key pair where is a public key and is a private key: .

The security of algorithm is defined similarly to the security definition of PRNG with Input

object [35], while the security of can be defined by “cryptographic quality” of the underlying

elliptic curve [36]. For simplicity’s sake, we assume that the input parameters of and

are secure and skip them (i.e. key length for , domain parameters of the elliptic curve for

 , etc.).

2.1.2 Authenticated encryption with associated data (AEAD)

The cryptographic scheme for authenticated encryption with associated data is a pair of algorithms

 , such that:

1) The algorithm (encryption algorithm) takes a plaintext , a key , and returns the ciphertext:

 and the authentication tag (we consider the authentication tag to be a part of the

ciphertext).

2) The algorithm (decryption algorithm) takes a ciphertext , a key , and returns the decrypted

text: and the indication of the integrity of the plaintext.

The security is defined similarly to the definition of Authenticated Encryption scheme from [37].

The preferable candidates for the AEAD scheme would be popular block cipher AES-256 [38] in GCM mode

[39] or ChaCha20 [40] with Poly1305 authenticator [41].

2.1.3 Key Encapsulation (KE)

The cryptographic scheme for key encapsulation is a combination of three algorithms:

 . Let’s formally define these algorithms:

1) The algorithm has been defined earlier (see section 2.1.1);

2) The algorithm (encapsulation algorithm) takes a public key from ECDH key pair ,

a private key from ECDH key pair , a symmetric key , and returns the encapsulated

symmetric key: .

7

3) The algorithm (decapsulation algorithm) takes a private key from ECDH key pair ,

a public key from ECDH key pair , an encapsulated key , and returns a

decapsulated symmetric key: .

The definition of key encapsulation scheme security is similar to the common security definition of

the Elliptic Curve Integrated Encryption Scheme (ECIES) [42], which is also the most preferable candidate.

2.1.4 Blind index calculation (BIC)

The cryptographic scheme of blind index calculation is a single algorithm that takes some data ,

a symmetric key , and returns a string The security of the blind index calculation is

defined similarly to the definition of pseudo-random function (PRF) [43]. The preferable candidates for the

BIC scheme include HMAC-family algorithms [43].

2.1.5 Secure communication (SC)

The cryptographic scheme of secure communication is used for establishing a secure channel

between two entities. Let’s denote those entities as A (which possesses a private key and a public key

 from A’s long-term ECDH key pair) and B (possesses a private key and a public key from B’s

long-term ECDH key pair).

SC includes three phases:

1) Mutual authentication;

2) Key establishment ();

3) Secure data transfer.

During the first phase, A authenticates B and B authenticates A. This phase works under a standard

assumption that long-term public keys and have been previously exchanged securely (without

tampering), i.e. with a help of public-key infrastructure [44].

During the second phase, A and B establish a common session encryption key using ECDH-based

protocol . Actually, A uses that takes private key , public key and returns a shared secret

 , while B uses that takes private key , public key and returns the same

shared secret .

The first two phases can be represented by the well-known authenticated key agreement protocols

[45]. The security of such protocols is defined in [45, 46]. The preferable candidates include Blake-Wilson

protocols (2 or 3) [45] or protocol from [46].

During the third phase, both A and B use an authenticated encryption scheme (defined above) to

protect the data transferred over the communication channel.

2.2 AcraStruct object

AcraStruct is a multipurpose cryptographic container that stores encrypted data (and the associated

metadata) using a specific format. AcraStruct can be stored as a binary record in the table of a database or as

a blob on a filesystem. AcraStruct is specially designed with respect to high-level practical purpose: encrypt

sensitive data by having only public ECDH key of an application.

According to Acra’s documentation [48], AcraStruct can be informally defined as a set of five

elements (concatenated together, one after another): Begin_Tag[8], Throwaway_Public_Key[45],

Encrypted_Random_Key[84], Data_Length[8] and, finally, Encrypted_Data[Data_Length].

Note that each element is a byte array with its length provided inside the square brackets. Next, let’s provide

a more formal definition of AcraStruct.

Definition 1. AcraStruct AS is a sequence (byte array) of variable length:

AS = Tag || ||
 || len || ,

8

where Tag is a special tag that marks the beginning of an AcraStruct; is a public key from a

randomly generated ECDH key pair (,);
 is a random symmetric key encapsulated by

KE scheme:
 , where is a public key from ECDH key pair (,) that

belongs to the client A; len is a little-endian representation (byte array with a length of 8) of an integer

variable that defines the length of the encrypted data;
 — is data R, encrypted with

AEAD scheme (see above).

Along with defining AcraStruct, let’s introduce two algorithms that abstract the low-level

cryptographic logic:

1) The algorithm CreateAS (AcraStruct creation) takes a plaintext , a public key from ECDH key

pair , and returns AcraStruct: by performing the following steps:

 Generating ephemeral ECDH key pair: ;

 Generating random symmetric key: ;

 Encrypting : ;

 Calculating length: , where object is a function that takes

a byte array and calculates its length;

 Wrapping : ;

 Discarding ;

 Returning AcraStruct:
 .

2) The algorithm DecryptAS (AcraStruct decryption) takes an AcraStruct , a private key from

ECDH key pair , and returns plaintext : by performing the

following steps:

 Extracting , , and from according to the AcraStruct format;

 Unwrapping : ;

 Decrypting : ;

 Returning .

2.3 Functional scheme and data flow of Acra SE

The main component of Acra SE scheme is a so-called AcraServer that works as a reverse proxy. It

sits between the application and the database. Figure 3 illustrates the typical data flow (including sensitive

data) from two different applications (Application A and Application B) to Database and vice versa.

Application issues query, AcraServer performs all cryptographic operations (if necessary) and pushes query

(which may be modified) further to the Database. Database processes query and send result back. AcraServer

got result from Database, performs (if necessary) cryptographic operations and pushes result (which may

also be modified) further to Application.

In cases when communication channel between application and AcraServer is not secure, it’s critical

(!!! – triple exclamation marks in Figure 3) to enable the construction of queries by Application using

AcraStructs instead of plaintext (a library that implements CreateAS algorithm is supplied [33]). These

scenarios may take place only if the infrastructure between Application and AcraServer is trustworthy.

AcraServer supports two operation modes: standard and transparent. In standard mode encryption

(creating AcraStructs) is performed on Application side. In transparent mode, encryption is performed on

AcraServer. It allows easily integrating Acra SE into existing infrastructure without altering the source code

of Application.

9

Figure 3: Data roundtrip

It should be noted that one AcraServer instance can work with multiple Applications and only one

Database at the time.

2.4 Key Management

We presume that each component stores its own transport encryption keys for establishing secure

communication and do not show them in Figure 4 for the simplicity’s sake.

Figure 4: Key management in Acra SE

Note that AcraServer is a single place where the decryption keys are stored. Neither the Application

nor the Database can decrypt AcraStructs. Moreover, the Database is unable to execute cryptographic

operations of any kind. It can only store pre-encrypted (AcraStructs , from Application A and

 from Application B) or plaintext data. Only AcraServer is able to decrypt the sensitive data and

calculate its blind indexes, but both Application and AcraServer are able to encrypt the sensitive data.

If AcraServer receives some plaintext data (from Application) that is configured as encryptable (i.e.

a legitimate INSERT query into the encryptable table), it will encrypt it (transparently for application) and

push it further to the Database. When the data (on the way back from database to application) comes to

10

AcraServer, it is transparently decrypted. Finally, application operates with the data according to the standard

flow. Table 2 illustrates the cryptographic abilities of the components related to sensitive data.

Table 2

 Application AcraServer Database

Able to encrypt data (apply CreateAS algorithm) + + –

Able to decrypt data (apply DecryptAS algorithm) – + –

Able to create blind index (apply algorithm) – + –

2.5 Blind indexes and filtration

 Blind indexes should not be confused with traditional indexes introduced for performance

improvement in database management systems. Informally, blind indexes (,

) are keyed hashes of plaintext data computed on AcraServer with the help of the

scheme and stored together with the encrypted data (,) on the database side (as shown in

Figure 4). It is recommended to truncate values of blind indexes for security reasons (see section 4.3.2 for

details). Truncated value of blind index can be treated as Bloom filter [49]. This data structure offers a

compact probabilistic way to represent a set that can result in false positives, but never in false negatives. In

case of data querying, this means that greater blind index truncation leads to greater amount of collisions –

when two different records have two equal truncated values of blind indexes. Consequently, non-relevant

encrypted records may appear in SELECT query response which can be a problem in non-proxy solutions. In

our case, AcraServer (located between application and database) can resolve those issues by filtering non-

relevant records from the response. Finally, the application only obtains relevant decrypted data.

 Note that filtering functionality is limited by filter configuration. Filtering is currently only

supported for PostgreSQL database for SELECT queries with single comparison WHERE expressions.

2.6 Secure search over encrypted data

Let’s suppose, Application A needs to perform a search over its AcraStructs , . In this

case, blind indexes () should be provided, in order to enable the Database

to distinguish AcraStructs without decrypting them. Table 3 provides an example of the encryption

configuration that should be stored in the AcraServer’s memory.

Table 3

Tables in Database Columns Encryption Searching

Employees

emp_no

ENABLED

ENABLED first_name

last_name

Departments

emp_no ENABLED ENABLED

from_date DISABLED DISABLED

to_date DISABLED DISABLED

Salaries
emp_no ENABLED DISABLED

salary ENABLED ENABLED

Acra SE provides secure search over encrypted data by implementing modifications of INSERT,

UPDATE, and SELECT queries that were created and sent to the Database by the Application. Note that

encryption (and secure search) functionality of AcraServer can be configured on the per-column basis. This

means that each table in the Database can be encrypted completely (each column), partially (some columns

are encrypted, some are not), or be completely unencrypted.

In configuration above, the “Employees” table is fully encrypted and the search functionality is

enabled for all columns, while the “Departments” table has an encrypted column “emp_no” with search

11

functionality enabled along with unencrypted columns “from_date” and “to_date”. The “Salaries” table

contains an encrypted “emp_no” column with the search functionality disabled and an encrypted “salary”

column with the search functionality enabled.

Secure search requires an introduction of two procedures: 1) secure upload of the encrypted data

with indexes to the untrusted storage provider and 2) secure retrieving of the requested data from the storage

provider.

2.6.1 Secure Upload (SUpload)

Secure Upload is a modification of typical INSERT and UPDATE queries. It can be expressed by an

algorithm SUpload that takes: an input query
 (where is a sensitive data), ECDH key pair

of the Application , a blind index key and returns a threefold:

 , where
 is a query that should be

transferred to the Database, binary flag that indicates if

 , and error message

 .

AcraServer evaluates the output from SUpload in the following way: if is not null, AcraServer

logs and notifies Application. Nothing is transferred to the Database. If is true,
 is

transferred to the Database; otherwise,
 is transferred to the Database.

Let’s formally define SUpload algorithm, step-by-step (for simplicity’s sake, we’ll do it without the

 output parameter. If an error occurs on any step, as it was mentioned above, nothing is being

transferred to the Database):

1) Check if
 is an INSERT or UPDATE query and is addressed to the encryptable column;

2) Go over the
 structure (according to the query type) and check if is a valid AcraStruct.

If it’s true, perform:

 ;

 ;

(where is an identifier of chosen scheme);

 .

Otherwise, perform:

 ;

 ;

 ;

 ;

 Set

 and return
 .

The pseudocode that illustrates the execution of SUpload is supplied in Appendix A.

2.6.2 Secure Select (SSelect)

Secure Select is a modification of a typical SELECT query. It can be expressed by the algorithm

SSelect that takes: query

(where is a searchable data, is a set of searchable column

identifiers) from Application, ECDH key pair of the Application , a blind index key and

returns threefold:

 , where

is the query that should be transmitted to the Database, binary flag changed that indicates if

 and error message .

AcraServer evaluates the output from SSelect in the same way as for SUpload.

12

Let’s formally define the SSelect algorithm, step-by-step (again, without output parameter for

simplicity):

1) Check if

 is a SELECT query and is addressed to an encryptable column;

2) Go over the

 (according to the query structure) and check if is a valid AcraStruct.

If it’s true, perform:

1) ;

2)
 ;

3) Change each column identifier in WHERE expression:

 ,

 ,

…

 , where is the length of and

is a Database-specific function for manipulating strings [50, 51];

4)
;

5) ;

6)

.

 Otherwise, perform:

1) ;

2) Change each column identifier in :

 ,

 ,

…

 .

3) ;

4) ;

5)

.

3) Set

 and return

 .

The pseudocode that illustrates the execution of SSelect is in Appendix B.

3. IMPLEMENTATION

Acra suite is written in the Go programming language. Acra is specifically designed for web and

mobile applications with centralised data storage, including with distributed, microservice-rich applications.

Enabling Acra in an existing infrastructure is simple and requires integration of a single-function client

library (which is available for Ruby, Python, Go, C++, NodeJS, PHP, Objective-C, Swift, Java programming

languages) with the application and deployment of the AcraServer (via Docker, pre-built binaries, or

building from source) with optional components. Acra SE functionality is implemented as a separate module

of AcraServer.

3.1 Implementation of low-level cryptographic schemes

We use the crypto/rand package from Go standard library that implements a cryptographically secure

pseudorandom number generator [52] and ECDH key generator with elliptic curve NID_X9_62_prime256v1

from Themis cryptographic library [53] as CKG scheme.

We use Themis’ Secure Cell (in Seal mode) cryptosystem as the AE scheme (with AES-256 in GCM

mode “under the hood”).

13

We use Secure Message cryptosystem from Themis as KW scheme. Secure Message is similar to

elliptic curve integrated encryption scheme with the following algorithms: ECDH with elliptic curve

NID_X9_62_prime256v1, Key derivation function [54], based on HMAC-SHA256 and AES-256 in GCM

mode cipher.

We use HMAC-SHA256 algorithm from Go programming language standard library [55] as MAC

scheme.

We use the well-known SSL / TLS protocol implementation from the Go programming language

standard library [56] for SC scheme.

3.2 Additional features

The additional features are the competitive advantages of Acra SE. These features enable a rather

easy integration of Acra SE into existing infrastructures and increase the practical security level, making it a

complete production-ready security tool.

The list of mentioned features:

 Authentication (two-level access control list for application and user authentication);

 Query policy (a separate SQL firewall module);

 Intrusion detection (poison records [48]);

 Key management (key rotation utility);

 Monitoring and observability (logging, metrics, and tracing. There are three different logging formats

supported by Acra: plaintext, CEF [57], JSON [58]. Logs are compatible with various external log

analysing tools and SIEM systems [59]. Metrics of AcraServer to Prometheus [60] are also supported).

3.3 Performance evaluation

We evaluated the performance of Acra SE with a help of a specially developed benchmarking

application [26]. All measurements have been taken on a single desktop machine with Intel Core i7, 4000

MHz (12 cores), 16 GB RAM running Ubuntu 18.04 LTS x64 operating system. The benchmarking

application was implemented in Go programming language (v. 1.11). The storage server ran PostgreSQL (v.

11) and was wrapped into a Docker container. The source code of application, Docker Compose file of the

database, and data material used for evaluation are stored in Acra GitHub repository [26].

The database consisted of one table with a sequence generator created with the following SQL

queries:

1) DROP TABLE IF EXISTS test_raw;

2) DROP SEQUENCE IF EXISTS test_raw_seq;

3) CREATE SEQUENCE test_raw_seq START 1;

4) CREATE TABLE test_raw (id INTEGER PRIMARY KEY DEFAULT

nextval(‘test_raw_seq’), plaintext BYTEA, ciphertext BYTEA).

A standard functional index used for measurements of different blind index sizes was created with

the following SQL pseudo-query:

CREATE INDEX IF NOT EXISTS test_raw_ciphertext_secure_index_idx ON

test_raw (substr(ciphertext, 1, secureIndexSize));

AcraServer was running in transparent mode (when an application issues a query with plaintext

keywords and AcraServer encrypts them) and was configured to encrypt ‘ciphertext’ column and perform

secure search on it.

An example of INSERT pseudo-query issued by application:

INSERT INTO test_raw (plaintext, ciphertext) VALUES (input, input)

14

An example of SELECT pseudo-query issued by application:

SELECT * FROM test_raw WHERE ciphertext=input

To evaluate the performance, we measured the total time (query latency) taken by the SUpload and

SSelect procedures with a help of the following experiment:

1) We generated input dataset (denoted as R) with n=50000 items by randomly taking values from the

provided data material (a collection of 25000 unique emails);

2) Inserted R into the database;

3) Selected a non-existing row with ciphertext value (‘\xFFFFFFFFFFFFFFFFFFFFFF’) from the

database and checked that no rows were fetched;

4) Inserted (1 time) a new row r1 with the same plaintext and ciphertext value

(‘\x62614C494E31353247444F437177657274793132333435363738393040686F746D61696C2E63

6F6D’) into the database, then selected r1 and checked that exactly 1 row was fetched;

5) Inserted (10 times) a new row r2 with the same plaintext and ciphertext value

(‘\x67737072323336656E747A61732E627261646C65793039383736353433407961686F6F2E636F

6D’) into the database, then selected r2 and checked that exactly 10 rows were fetched.

Such experiment was carried out on two different datasets with 350 and 25000 keyword universe

size respectively.

Table 4 summarizes the results (the average of 3 runs) of the 2
nd

 step – SUpload procedure that used

INSERT queries with single value.

Table 4

Keyword

universe

size

Time

PostgreSQL

(s)

Blind

index

size

(bytes)

Time Acra SE Relative

overhead Encryption

(calls / time in s)

Blind index calculation

(calls / time in ms)

Other

Acra SE

operations

(time in s)

Total

(time in s)

350 707.1668 2 50000 / 57.6947 50000 / 620.1667 679.0150 737.3299 ~4%

15 50000 / 57.7494 50000 / 617.1465 736.5025 794.8690 ~12%

25000 691.9133 2 50000 / 59.1564 50000 / 619.2667 648.3589 708.1346 ~2%

15 50000 / 58.2443 50000 / 625.7523 670.7465 729.6166 ~5%

One can see that encryption takes up 7% – 8% of the time, blind index calculation takes up to 1%,

and other operations (network communications with database and client application) take 92% – 93%. It is

worth noting that a significant number of issued queries (50000) causes noticeable load on the network

subsystem of the operating system. This can explain the spread of relative overhead values obtained in the

measurements.

The approximate value of relative overhead is within 2% – 12%.

Table 5 summarizes the results (average of 10 runs) of the 2
nd

 step – SUpload procedure that used

INSERT queries with 1000 values (so-called BULK INSERT).

Table 5

Keyword

universe

size

Time

PostgreSQL

(s)

Blind

index

size

(bytes)

Time Acra SE Relative

overhead Encryption

(calls / time in s)

Blind index calculation

(calls / time in ms)

Other

Acra SE

operations

(time in s)

Total

(time in s)

350 2.5993 2 50 / 23.7783 50000 / 230.4363 5.2013 29.2100 ~1024%

15 50 / 23.7612 50000 / 232.5844 4.5905 28.5843 ~1000%

25000 2.3125 2 50 / 23.6542 50000 / 229.2123 4.7324 28.6158 ~1137%

15 50 / 23.8756 50000 / 240.4962 4.5991 28.7152 ~1142%

15

One can see that encryption takes up 81% – 83% of the time, blind index calculation takes up to 1%,

and networking operations take 16 – 18% of the total Acra SE execution time.

Note that in this case only 50 INSERT queries (compared with 50000 queries in the previous

measurement) were issued by benchmarking application, so networking operations cause less but still

noticeable deviations of the result values.

The relative overhead is approximately one order of magnitude.

Table 6 summarizes the results (an average of 10000 runs) of the 3
rd

 step – SSelect procedure that

returns nothing.

Table 6

Keyword

universe

size

Time

PostgreSQL

(ms)

Blind

index

size

(bytes)

Time Acra SE Relative

overhead Decryption

(calls / time

in ms)

Apply

filtration

(calls / time

in µs)

Blind index

calculation

(calls / time in

µs)

Other

Acra SE

operations

(time in ms)

Total

(time in

ms)

350 0.1840 2 - - 1 / 41.9543 0.4933 0.5353 ~191%

15 - - 1 / 39.1419 0.4623 0.5014 ~172%

25000 0.1770 2 - - 1 / 37.7230 0.4397 0.4774 ~170%

15 - - 1 / 38.6630 0.4577 0.4964 ~180%

One can see that in this case, networking operations take up 92% of time, while blind index

calculation takes up the remaining 8% of the total Acra SE execution time. It’s obvious that in this case, no

decryption and no filtration operations should be performed.

The approximate value of relative overhead is within 170% – 191%.

Table 7 summarizes the results (average of 10000 runs) of the 4
th
 step – SSelect procedure that

returns exactly 1 relevant row.

Table 7

Keyword

universe

size

Time

PostgreSQL

(ms)

Blind

index

size

(bytes)

Time Acra SE Relative

overhead Decryption

(calls / time in

ms)

Apply

filtration

(calls / time

in µs)

Blind index

calculation

(calls / time

in µs)

Other

Acra SE

operations

(time in

ms)

Total

(time in

ms)

350 0.1920 2 1 / 0.4988 - 1 / 32.2792 0.5747 1.1058 ~476%

15 1 / 0.4971 - 1 / 28.9147 0.5700 1.0960 ~471%

25000 0.1920 2 3 / 1.3528 2 / 73.6460 1 / 30.6646 0.6666 2.1237 ~1006%

15 1 / 0.500 - 1 / 32.3181 0.5797 1.1120 ~479%

One can see that in case of dataset with 25000 keyword universe size and 2 bytes blind index size,

decryption takes 64% out of the total Acra SE execution time compared to 45% in other time measurements.

Traces show that there were 3 decryption function calls instead of the expected 1.

Also, it’s worth pointing out that there were 2 “apply filtration” function calls. This is explained by

the fact that, in this case, the result of SELECT query contained 2 non-relevant rows that were filtered by

AcraServer. Note that filtering is performed after decryption since AcraServer should evaluate plaintext

values of the rows in result.

Finally, we got an approximate value of the relative overhead, which is within 471% – 1006%.

Table 8 summarizes the results (average of 10000 runs) of the 5

th
 step – SSelect procedure that

returns exactly 10 relevant rows.

16

Table 8

Keyword

universe

size

Time

PostgreSQL

(ms)

Blind

index

size

(bytes)

Time Acra SE Relative

overhead Decryption

(calls / time in

ms)

Apply

filtration

(calls / time

in µs)

Blind index

calculation

(calls / time

in µs)

Other

Acra SE

operations

(time in

ms)

Total

(time in

ms)

350 0.2410 2 10 / 4.2650 - 1 / 29.7211 0.9265 5.2212 ~2066%

15 10 / 4.2619 - 1 / 28.9147 0.9682 5.2590 ~2082%

25000 0.2550 2 14 / 5.8788 4 / 69.5195 1 / 30.0456 0.9842 6.9626 ~2630%

15 10 / 4.2538 - 1 / 28.9155 0.9051 5.1878 ~1934%

Again, one can see blank decryptions and filtering in a dataset with 25000 keyword universe size and

2 bytes blind index size.

The approximate value of relative overhead is within 1934% – 2630%.

According to results in Tables 4 – 8, it can be reported that Acra SE has 2 orders of magnitude

slowdown compared to plain PostgreSQL. Most significant impact is caused by cryptographic operations

(encryption in SUpload and decryption in SSelect). Also, it should be noted that results of SELECT queries

may contain non-relevant rows at small sizes of blind index (1 - 2 bytes). This may lead to blank decryptions

and consequently to further performance degradation.

4. SECURITY CONSIDERATIONS

This section contains practical security evaluation of our SE scheme implemented in Acra [32]. All

Acra’s searchable encryption security properties are quite similar to the security properties of CipherSweet

[29], which introduces the risk of partially-known plaintext attacks. We expect the presence of similar risks,

however, an introduction of a proxy between the application and the database allows for a separation of

duties that guarantees that there is no cryptographic key to leak from an application (neither for blind indexes

nor for data). Moreover, security functions are added in a transparent and convenient manner at the cost of

introduction of an additional infrastructure component.

4.1 Security assumptions

1) The AcraServer is trusted (it works in a separate, computationally isolated environment and isolation

mechanism is also trusted);

2) Cryptographic keys (except for public keys) never leave the AcraServer;

3) Communication between the AcraServer and the application is secure (encrypted and authenticated);

4) An attacker is only able to see the ciphertexts and blind indexes.

This implies that the database server is on one piece of physical hardware, the AcraServer that

accesses the database is on a different separate piece of physical hardware and that the keys never get

transferred to the database server or application. The physical deployment of the application doesn’t matter.

Separating the AcraServer, the database and the application in the cloud lowers the security

guarantees, because it relies on operating system/cloud vendor execution isolation mechanisms.

4.2 Attacker capabilities

It’s assumed that the weakest attackers only have read-only access to the SQL database in question

(i.e. via SQL injection of an existing SELECT query). Some attackers MAY have read-write access

permissions to the database. Some attackers MAY use the application legitimately (i.e. as normal users) and

encrypt some plaintexts to attempt an attack on the encryption. Some attackers MAY use the application on

their own (i.e. as a root user). Some attackers MAY use AcraServer (Figure 1) legitimately (i.e. as a normal

user) and encrypt some plaintexts to attempt an attack on both the encryption and the blind indexes.

17

4.3 Practical security evaluation

We’ve already mentioned that the security model of CipherSweet (and, consequently, of Acra’s

secure search) introduces the risk of partially-known plaintext attacks. In this attack type, the adversary’s

goal is to reconstruct as much of the client’s indexed encrypted data as possible, primarily by learning the

mapping of keywords to their encrypted versions. This keyword recovery can then be used to partially

reconstruct the plaintexts of the stored data [12]. Leakage inference (LI) attacks [8, 12] are the most powerful

examples of partially-known plaintext attacks because the adversary (i.e. honest-but-curious or malicious

database server [61]) appears in a very favourable position – they can see (to various degrees) the search and

the access patterns. The only way to mitigate those attacks is to hide the search and access patterns from an

adversary, but as it’s described in [23], in practice, it’s hard to achieve due to the real-world threats like

stealing a disk, performing an SQL injection, or compromising the OS. All this may lead to revealing of the

previous queries because each modern database management system keeps logs, caches, data structures, and

other metadata to adapt the system to the workload and help manage its performance. We can state that this

(search / access pattern availability to the adversary) is one of the main searchable encryption threats which

can be mitigated by blind index truncation which will be discussed below.

In the next subsections, we provide an informal security evaluation with a respect to the current

academic understanding of searchable encryption security. We also try to analyze the real consequences of

leakage-inference attacks on SQL databases.

4.3.1 Leakage inference attacks

Current leakage inference (LI) attacks try to recover either a set of queries or the data stored in the

database. All the current LI attacks assume the possession of some prior knowledge by an attacker. Usually it

is the information about the stored data but it may include information about the past queries. Note that some

attacks (i.e. Active Attacks) have a linear complexity and significant efficacy. For example, Count Attack

yields a 40% keyword recovery rate with 80% of dataset known to attacker. It performs well if the keyword

universe size does not exceed 5000. A Hierarchical-Search Attack is an extension of the Count Attack, which

yields the same 40% keyword recovery rate under a condition that (at least) 40% of the data leaks. The cost

of such reduction is the possibility of an attacker injecting a set of constructed records. The detailed

descriptions of the mentioned attacks can be found in [12, 14, 16, 17, 62, 63].

Table 9 (taken from [8]) summarizes the most effective LI attacks.

Table 9

Attack name Required

leakage

Required

conditions

Attack efficacy

Runtime (in

number of

keywords)

Tested keyword

universe

Data

injection

Prior

knowledge

Communication Volume Attack [12] L1 – K2 > Quadratic < 500

Binary Search Attack [14] L1 L2 + K1 Linear < 500

Access Pattern Attack [12] L1 L2 – K2 Quadratic < 500

Partially Known Documents [16] L1 L2 – K4 > Quadratic > 1000

Hierarchical-Search Attack [14] L1 L2 + K4 Quadratic > 1000

Count Attack [16] L1 L2 – K5 Quadratic > 1000

Graph Matching Attack [17] L1 L2 – K3 > Quadratic 500 … 1000

Frequency Analysis [62] L3 – K3 Linear < 500

Active Attacks [16] L3 + K3 Linear > 1000

Known Document Attacks [16] L3 – K4 Linear > 1000

Non-Crossing Attacks [63] L4 – K3 Linear > 1000

18

The required leakage is ranked (from least to most damaging) as follows:

L1 – structure leakage (properties of an object; i.e. string length, cardinality of a set);

L2 – identifier leakage (pointers to object so that their past/future accesses are identifiable);

L3 – equality leakage (information whether two objects have the same value);

L4 – order / contents leakage (numerical or lexicographical order of objects).

The prior knowledge is ranked (from least to most damaging) as follows:

K1 – keyword universe;

K2 – distributional knowledge of queries;

K3 – distributional knowledge of dataset;

K4 – contents of a subset of dataset;

K5 – contents of full dataset;

To sum it up, the existence of LI attacks introduces a very important security parameter – keyword

universe size (i.e. data entropy). If the stored data pieces have a very small keyword universe size (i.e. HIV

status of a patient in a database, which can be either “positive” or “negative”) they are more leakage-prone.

In this case, the common strategy (if such data still requires indexing) may be to create a compound index

that could point to a composite of low-entropy sensitive data concatenated with other high-entropy data.

4.3.2 Security of blind indexes

The approach of blind index truncating is one of the most effective methods of leakage-inference

attack mitigation, since it hides the search pattern in adjustable manner at the cost of query accuracy. When

blind index is truncated to a specified number of bits, it can be treated as Bloom filter [49] for database

lookups. Bloom filter was conceived by Burton H. Bloom in 1970. This data structure supports adding

element to the set and querying for element membership in the probabilistic set representation. Bloom filter

may claim an element to be part of the set when it was not inserted but never report an inserted element to be

absent from the set. The more elements are added to a Bloom filter, the higher the probability that the query

operation reports false positives.

As soon as Bloom filters allow false positives (i.e. by partial hash collisions on the non-truncated

part of the hash), truncating index leads to non-relevant records presence in the query result. Thus, these

prefix collisions cease to be collisions that reveal the fact of plaintexts probable duplication [29]. There is an

exact formula for determining the safe upper bounds for the amounts of information that one can safely leak

without also revealing duplicate plaintexts (and allowing the attacker to rule out false positives). Let’s

provide a formal definition:

Definition 2. The main security parameter of blind indexes is an upper bound plaintext leakage

(average number of rows returned) that can be expressed as:

 ,

where ∑

 , – is a number of blind indexes, – a blind index length (in bits), – the

keyspace of the input domain (in bits), – a number of encrypted records that use those blind indexes.

 A practical recommendation is to choose parameters in such a way that √ . If ,

attacker is able to infer that some plaintexts are identical (which breaks the standard security notion of the

scheme). Otherwise, if √ , too much collisions will be introduced, and no performance benefit will be

achieved.

 A safe upper limit for the plaintext leakage is, actually, the highest number of the expected

coincidences. Generally, the number and the length of each index should be minimized. The more

indexes are created, the more confidence an attacker gains. At the same time, larger indexes are more useful

than shorter indexes.

19

4.4 Risk modelling

Now, we evaluate the potential security consequences of components’ compromising. As a result,

the compromised component becomes malicious (worst case scenario). Table 10 demonstrates the worst (in

our opinion) consequences and a variety of possible attacks, depending on the component.

We use following abbreviations: SQLi — SQL injection; CPA — chosen-plaintext attack; DoS —

denial of service; LIA — leakage inference attack; COA — ciphertext-only attack, CMA — chosen-message

attack.

Table 10

Malicious

component
Consequences Attacks

Application Access to application’s flow SQLi, CPA, DoS

Database
Access to stored blind blind indexes, encrypted

sensitive data, search pattern and access pattern
LIA, COA, DoS

Application

+ Database

Access to application flow, stored blind indexes,

encrypted sensitive data, search pattern and access

pattern

SQLi, CPA, LIA, COA, DoS,

CMA

AcraServer Access to all plaintext sensitive data (worst case)

Revealing / Leaking of all the

sensitive data and decryption

keys

4.4.1 SQLi mitigation

SQL injection is an old but still relevant and prevalent attack [64]. Acra provides security against

SQL injections through an introduction of a firewall mechanism (AcraCensor) as part of AcraServer.

AcraCensor enables transparent filtration (based on denylist / allowlist approach) of SQL queries received

from the application. This way, we achieve a strictly expected behaviour of an application and prevent the

possible damage if it becomes malicious.

4.4.2 CPA mitigation

Chosen plaintext attack is a standard attack model for cryptanalysis. It presumes that the attacker can

obtain the ciphertexts for arbitrary plaintexts. Modern ciphers (we use AES in GCM mode) aim to provide

semantic security, also known as IND-CPA, and therefore by design generally immune to chosen-plaintext

attacks if correctly implemented.

4.4.3 DoS mitigation

Out of scope. Should be achieved by proper infrastructure deployment.

4.4.4 LIA mitigation

Mitigation of leakage inference attacks can be achieved through using blind index truncation

according to the formula from Definition 2. In this case, the amount of revealed statistical information about

the sensitive data will be insufficient for an attacker. But the cost is performance degradation because a

truncated blind index (which can be treated as Bloom filter) leads to false positives – non-relevant records

appear in the query result. AcraServer receives a response on query earlier than application and is able to

filter those false positives.

Other vectors of LIA mitigation are described in the security recommendations (see subsection 4.5

below).

20

4.4.5 COA mitigation

Ciphertext-only attack is a standard attack model for cryptanalysis where it’s assumed that an

attacker only has access to a set of ciphertexts. We rely on the ability of chosen ciphers to provide protection

against COA. Moreover, modular scheme implies prompt substitution of any detected vulnerable cipher with

non-vulnerable one.

4.4.6 CMA mitigation

Chosen-message attack is a standard attack model on MAC schemes. It’s assumed that an attacker is

able to choose messages and obtain corresponding message authentication codes. Modern keying hash

functions for message authentication (we use HMAC-SHA256) aim to provide security against such attacks

even if the underlying hash function is not collision-free.

4.5 Practical security recommendations

The security assumptions of Acra (and usually of any other encrypted database system) can engender

over-cautiousness. We provide a list of practical recommendations of our searchable encryption tool for

manageable and safe usage:

1) Don’t create blind indexes for the extremely sensitive data (data that should not be exposed at all

cost).

2) Create only the minimal number of blind indexes. The more indexes — the more metadata is leaked.

3) If the data that needs to be indexed is extremely sensitive and too low-entropy to be safely put in a

blind index (i.e. HIV status of a patient), it can be hashed together with some other data (i.e. with a

SSN). In this case, SELECT queries to records with a given HIV status and a given SSN may be

supported (compound index).

4) Blind index can be truncated in order to reduce the information leak at the cost of increasing the

chances of collisions (wrong SELECT results that should be filtered after decryption). It’s

recommended that for any given value of , the expression √ always remains true (see

Definition 2).

5) At the very least, secure and authenticated communication must be enabled between application and

AcraServer.

6) Use standard mode (instead of transparent mode) of Acra SE operating – enable the encryption on

the application side straight away (instead of relying on AcraServer) to minimize plaintext lifecycle

and separate duties.

7) Enable all additional security features (AcraCensor, Poison Records, encryption/decryption keys

rotation).

8) Use hardware secure module to store the master key of AcraServer.

5 FUTURE WORK / WORK IN PROGRESS

5.1 N-Gram search

The current scheme only provides search capabilities for EQUAL statements. As discussed in

section 4.3.1, building cryptographic primitives that accommodate range queries usually cause greater

leakage and consequently may lead to more powerful leakage inference attacks.

Instead of reflecting plaintext properties in encrypted text, another approach is to split the indexed

value into smaller tokens akin to full-text-search approaches — so-called N-gram search. It imposes new

threats: since the overall entropy of N-Grams is limited, reconstructing protected records on a malicious

21

database becomes easier. To mitigate that, N-Grams have to provide comparable security against existing

threat model.

Currently, the authors’ intuitive assumption is that if the entropy level of indexed string is and the

acceptable level of entropy against brute force is , then we can automatically split the indexed string

into smaller substrings, whose length / variability satisfy acceptable level of entropy , and index each one

of them separately.

The ultimate goal for such string splitting is secure and effective LIKE operator support which is

actually a tradeoff. The number of substrings should be enough for per-letter evaluation of Levenshtein

distance between encrypted string stored in the database and query keyword. Wherein, the entropy of each

substring should be as high as possible for security reason (since each substring should have own blind

index).

Aside from security considerations, this introduces sufficient performance / storage trade-offs and is

subject to further research.

5.2 Extending EVAL’s without N-Grams

Another approach would be to implement special plaintext transformation procedures to enable a

broader match syntax. For example, case-sensitive matches, normalize all data to lowercase and normalize

all queries to lowercase, too. For matches where variety between query and original text is slow regular

expression matching: in proxy-mediated design, matching regular expressions in WHERE clauses is possible

but seems abnormally slow. Acra has to render all possible values of regular expression, generate hashes and

request database with WHERE = list of hashes. This seems to replicate some of the basic database

functionality, but for cases where cost of retrieval of queries is not important / sufficient computing resources

are devoted towards Acra, such design is possible.

These efforts require additional formal security analysis before actual implementation.

5.3 Improving entropy control on application side

ORM: Acra provides deeper integration scenario into application flow that improves overall

security. Having integration library on client-side, integrated into high-level language, Acra could

automatically detect the expected level of entropy via detecting variable type in ORM and, upon evaluating

potential variable type, deciding whether it can hold sufficient entropy or not, freeing user from making

security-critical decisions.

Data learning: by running a large amount of database queries / responses through simple analytical

application, complete field of possible values, and their differences can be mapped out, providing exact

entropy level detected. In such case low-entropy data can be detected and managed appropriately.

Blind indexes learning: by running special planner that detects 1) number of blind indexes for a

given field and 2) boundaries for truncation of the newly created blind index (to follow security

recommendations from 4.3.2 and 4.5).

All these approaches would enable Acra to reject low-entropy data as a source for blind index. The

latter approach also allows mapping the balance between the number of collisions in bloom filter cutoff and

entropy programmatically, thus providing manageable collision level: sufficient to make brute-force useless,

but not penalizing the performance too much.

Understanding of the sensitive data’s nature is especially important, since many long numeric

identifiers, such as SSN or credit card number, follow an algorithm to compose one, sometimes including not

just composition rules (where various facts of the real world are encoded deterministically into ID), but also

checksum byte / bit. Entropy of such identifiers is further limited, and security of blind indexing them should

be assessed separately.

22

6 CONCLUSIONS

In this paper, we have proposed a searchable encryption scheme for SQL databases. The proposed

solution builds upon the already existing searchable encryption by CipherSweet, which is adapted to a proxy-

mediated scheme. Along with the secure search, our solution provides strict separation of duties that

guarantee no leakage of cryptographic key from application, proper key management and additional security

features that corresponds to real-world threats to sensitive data stored externally.

 7 ACKNOWLEDGEMENTS

The authors would primarily like to thank Scott Arciszewski and his project CipherSweet for the

implementation of the blind indexing approach to searchable encryption. The authors also note that the

shaping up and completion of this paper describing Acra SE would be impossible without the individual

contributions and collective work of the following individuals: Anastasiia Voitova

(anastasi@cossacklabs.com), Karen Sawrey (aka Alona Ivanova) (karen@cossacklabs.com), Dmytro

Shapovalov (shad@cossacklabs.com). Special thanks to Ignat Korchagin (ignat.korchagin@gmail.com) and

Anton Tolchanov for the insightful input on security and comments. Thank you to cryptography & software

engineer Ruslan Kiyanchuk (ruslan.kiyanchuk@gmail.com) and cryptographer Jean-Philippe Aumasson

(jeanphilippe.aumasson@gmail.com) for the overview and improvement suggestions.

 8 REFERENCES

1) Enterprise Database Applications and the Cloud: A Difficult Road Ahead / M. Stonebraker, A.Pavlo,

R. Taft, M. L. Brodie / http://people.csail.mit.edu/rytaft/cloud.pdf.

2) General Data Protection Regulation (GDPR) home / https://eugdpr.org/.

3) GDPR. Article 32 / http://www.privacy-regulation.eu/en/article-32-security-of-processing-GDPR.htm.

4) Practical Techniques for Searches on Encrypted Data / D. X. Song, D. Wagner, A. Perrig /

https://people.eecs.berkeley.edu/~dawnsong/papers/se.pdf.

5) R. Powers and D. Beede, “Fostering innovation, creating jobs, driving better decisions: The value of

government data,” Office of the Chief Economist, Economics and Statistics Administration, US Department

of Commerce, July 2014.

6) Executing SQL over Encrypted Data in the Database-Service-Provider Model / H. Hacigűműs,

B.Iyer, C. Li, S. Mehrotra / https://www.ics.uci.edu/~chenli/pub/sigmod02.pdf.

7) Cryptographically Enforced Search Pattern Hiding / C. Bosch /

https://ris.utwente.nl/ws/portalfiles/portal/6031163/thesis_C_Boesch.pdf.

8) SoK: Cryptographically Protected Database Search / B. Fuller, M. Varia, A. Yerukhimovich,

E.Shen, A. Hamlin, V. Gadepally, R. Shay, J. D. Mitchell, R. K. Cunningham /

https://arxiv.org/pdf/1703.02014.pdf.

9) A Survey of Provably Secure Searchable Encryption / C. Bosch, P. Hartel, W. Jonker, A. Peter /

https://dl.acm.org/citation.cfm?id=2636328.

10) Searchable Symmetric Encryption: Improved Definitions and Efficient Constructions / R. Curtmola,

J. Garay, S. Kamara, R. Ostrovsky / https://eprint.iacr.org/2006/210.pdf.

11) Predicate Privacy in Encryption Systems / E. Shen, E. Shi, B. Waters /

https://www.iacr.org/archive/tcc2009/54440456/54440456.pdf.

12) Leakage-abuse attacks against searchable encryption / D. Cash, P. Grubbs, J. Perry, T. Ristenpart /

https://eprint.iacr.org/2016/718.pdf.

13) Breaking web applications built on top of encrypted data / P. Grubbs, R. McPherson, M. Naveed,

T.Ristenpart, V. Shmatikov / https://eprint.iacr.org/2016/920.pdf.

14) Leakage-abuse attacks against order-revealing encryption / P. Grubbs, K. Sekniqi, V.Bindschaedler,

M. Naveed, T. Ristenpart / https://eprint.iacr.org/2016/895.pdf.

mailto:anastasi@cossacklabs.com
mailto:karen@cossacklabs.com
mailto:shad@cossacklabs.com
mailto:ignat.korchagin@gmail.com

23

15) Access pattern disclosure on searchable encryption: Ramification, attack and mitigation /

M.S.Islam, M. Kuzu, M. Kantarcioglu / https://pdfs.semanticscholar.org/9614/87973d4b33f96406f

ddbfcf1235dc587571f.pdf.

16) Generic attacks on secure outsourced databases / G. Kellaris, G. Kollios, K. Nissim, A. O’Neill /

https://privacytools.seas.harvard.edu/files/privacytools/files/generic.pdf.

17) Inference attacks on property-preserving encrypted databases / M. Naveed, S. Kamara, C.V.Wright /

https://cs.brown.edu/~seny/pubs/edb.pdf.

18) Selective Document Retrieval from Encrypted Database / C. Bosch, Q. Tang, P. Hartel, W. Jonker /

https://ris.utwente.nl/ws/files/5335662/Bosch12SDR.pdf.

19) CryptDB: Protecting confidentiality with encrypted query processing / R. A. Popa, C. Redfield,

N.Zeldovich, H. Balakrishnan / https://dl.acm.org/citation.cfm?id=2043566.

20) Arx: A strongly encrypted database system / R. Poddar, T. Boelter, and R. A. Popa /

https://eprint.iacr.org/2016/591.pdf.

21) Big data analytics over encrypted datasets with Seabed / A. Papadimitriou, R. Bhagwan,

N.Chandran, R. Ramjee, A. Haeberlen, H. Singh, A. Modi, S. Badrinarayanan /

https://www.usenix.org/system/files/conference/osdi16/osdi16-papadimitriou.pdf.

22) Building web applications on top of encrypted data using Mylar / R. A. Popa, E. Stark, S. Valdez,

J.Helfer, N. Zeldovich, H. Balakrishnan / https://www.usenix.org/system/files/conference/nsdi14/n

sdi14-paper-popa.pdf.

23) Why Your Encrypted Database Is Not Secure / P. Grubbs, T. Ristenpart, V. Shmatikov /

https://eprint.iacr.org/2017/468.pdf.

24) Orthogonal Security With Cipherbase / A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,

R. Ramamurthy, R. Venkatesan / http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.7

093&rep=rep1&type=pdf.

25) Experiences and observations on the industrial implementation of a system to search over

outsourced encrypted data / P. Grofig, M. Haerterich, I. Hang, F. Kerschbaum, M. Kohler, A. Schaad, A.

Schroepfer, W.Tighzert / https://subs.emis.de/LNI/Proceedings/Proceedings228/115.pdf.

26) Acra project GitHub / https://github.com/cossacklabs/acra/.

27) CipherSweet project GitHub / https://github.com/paragonie/ciphersweet/.

28) Blind seer: A scalable private DBMS / V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G.

Choi, W. George, A. D. Keromytis, S. Bellovin / https://www.cs.columbia.edu/~angelos/Papers/20

14/blind_seer.pdf.

29) Highly-scalable searchable symmetric encryption with support for Boolean queries / D. Cash,

S.Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and M. Steiner / https://eprint.iacr.org/2013/169.pdf.

30) Rich queries on encrypted data: Beyond exact matches / S. Faber, S. Jarecki, H. Krawczyk, Q.

Nguyen, M.-C. Rosu, M. Steiner / http://sprout.ics.uci.edu/pubs/rich-queries-ESORICS15.pdf.

31) CipherSweet security question and answers on security.stackexchange.com /

https://security.stackexchange.com/questions/196833/how-secure-is-the-ciphersweet-library-for-searchable-

encryption-and-why-is-a-du.

32) Framework for Searchable Encryption with SQL Databases / M. Azraoui, M. Onen, R. Molva /

https://www.scitepress.org/papers/2018/66661/66661.pdf.

33) Arx project GitHub / https://github.com/arx-deidentifier/arx/.

34) The Elliptic Curve Diffie-Hellman (ECDH) / R. Haakegaard, J. Lang /

https://koclab.cs.ucsb.edu/teaching/ecc/project/2015Projects/Haakegaard+Lang.pdf.

35) Security Analysis of Pseudo-Random Number Generators with Input: /dev/random is not Robust /

Y. Dodis, D. Pointcheval, S. Ruhault, D. Vergnaud, D. Wichs / https://eprint.iacr.org/2013/338.pdf.

36) Selecting Elliptic Curves for Cryptography: An Efficiency and Security Analysis / J. W. Bos,

C.Costello, P. Longa, M. Naehrig / https://eprint.iacr.org/2014/130.pdf.

37) Authenticated Encryption in Theory and in Practice / J. P. Degabriele /

http://www.isg.rhul.ac.uk/~kp/theses/JPDthesis.pdf.

https://pdfs.semanticscholar.org/9614/87973d4b33f96406fddbfcf1235dc587571f.pdf
https://pdfs.semanticscholar.org/9614/87973d4b33f96406fddbfcf1235dc587571f.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-popa.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-popa.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.7093&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.362.7093&rep=rep1&type=pdf
https://www.cs.columbia.edu/~angelos/Papers/2014/blind_seer.pdf
https://www.cs.columbia.edu/~angelos/Papers/2014/blind_seer.pdf

24

38) Announcing the ADVANCED ENCRYPTION STANDARD (AES) / FIPS publication 197 /

https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf.

39) The Security and Performance of the Galois/Counter Mode (GCM) of Operation (Full Version) /

D.A. McGrew, J. Viega / https://eprint.iacr.org/2004/193.pdf.

40) The ChaCha family of stream ciphers / D. J. Bernstein / https://cr.yp.to/chacha.html.

41) ChaCha20 and Poly1305 for IETF protocols / https://tools.ietf.org/html/rfc7539.

42) Evaluation report on the ECIES cryptosystem / J. Stern / https://www.cryptrec.go.jp/exreport/cryp

trec-ex-1016-2002.pdf.

43) Keying Hash Functions for Message Authentication / M. Bellare, R. Canetti, H. Krawczyk /

https://cseweb.ucsd.edu/~mihir/papers/kmd5.pdf.

44) Public Key Infrastructure Implementation and Design / S. Choudhury, K. Bhatnagar, W. Haque /

Transworld; London, New York, 2002.

45) Authenticated Diffie-Hellman Key Agreement Protocols / S. Blake-Wilson, A. Menezes /

https://link.springer.com/content/pdf/10.1007/3-540-48892-8_26.pdf.

46) Special Signature Schemes and Key Agreement Protocols / C. J. Kudla /

http://www.isg.rhul.ac.uk/~kp/theses/CKthesis.pdf.

47) A secure key agreement protocol using elliptic curves / C. Popescu /

https://pdfs.semanticscholar.org/fa6b/2179671ab9c2c7a58bf6b4f57628585c3022.pdf.

48) Documentation Server of Cossack Labs Limited / https://docs.cossacklabs.com/.

49) Theory and Practice of Bloom Filters for Distributed Systems / S. Tarkoma, C.E. Rothenberg, E.

Lagerspetz / http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.4228&rep=rep1&type=pdf.

50) MySQL project documentation (string functions) / https://dev.mysql.com/doc/refman/8.0/en/string

-functions.html.

51) PostgreSQL project documentation (string functions) / https://www.postgresql.org/docs/9.1/functio

ns-string.html.

52) The Go Programming Language (rand Package) / http://golang.ir/pkg/crypto/rand/.

53) Themis project GitHub / https://github.com/cossacklabs/themis/.

54) ZRTP: Media Path Key Agreement for Unicast Secure RTP/ https://tools.ietf.org/html/rfc6189.

55) The Go Programming Language hmac Package / https://golang.org/pkg/crypto/hmac/.

56) The Go Programming Language tls Package / https://golang.org/pkg/crypto/tls.

57) Common Event Format / ArcSight, Inc / https://kc.mcafee.com/resources/sites/MCAFEE/content

/live/CORP_KNOWLEDGEBASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf.

58) Understanding JSON schema / M. Droettboom / http://json-schema.org/understanding-json-sche

ma/UnderstandingJSONSchema.pdf.

59) The Absolute Guide to SIEM / ManageEngine Log360 / https://download.manageengine.com/log-

management/the-absolute-guide-to-siem.pdf.

60) The Prometheus Methodology / Lin Padgham, Michael Winikoff / https://pdfs.semanticscholar.org

/34a3/77d06ec0ba72caca94b36bfa138f6c68d222.pdf.

61) Techniques in Computing on Encrypted Data / W. Chen / https://inst.eecs.berkeley.edu/~cs261/fa

17/scribe/08_28_encdata.pdf.

62) All your queries are belong to us: The power of file-injection attacks on searchable encryption /

Y.Zhang, J. Katz, C. Papamanthou / https://www.usenix.org/system/files/conference/usenixsecuri

ty16/sec16_paper_zhang.pdf.

63) The shadow nemesis: Inference attacks on efficiently deployable, efficiently searchable encryption /

D. Pouliot, C. V. Wright / http://web.cecs.pdx.edu/~dpouliot/p1341-pouliot.pdf.

64) 2018 Verizon Data Breach Investigations Report / Verizon /

http://www.documentwereld.nl/files/2018/Verizon-DBIR_2018-Main_report.pdf.

https://www.cryptrec.go.jp/exreport/cryptrec-ex-1016-2002.pdf
https://www.cryptrec.go.jp/exreport/cryptrec-ex-1016-2002.pdf
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
https://www.postgresql.org/docs/9.1/functions-string.html
https://www.postgresql.org/docs/9.1/functions-string.html
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf
http://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
http://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
https://download.manageengine.com/log-management/the-absolute-guide-to-siem.pdf
https://download.manageengine.com/log-management/the-absolute-guide-to-siem.pdf
https://www.semanticscholar.org/paper/The-Prometheus-Methodology-Winikoff-Padgham/34a377d06ec0ba72caca94b36bfa138f6c68d222
https://www.semanticscholar.org/paper/The-Prometheus-Methodology-Winikoff-Padgham/34a377d06ec0ba72caca94b36bfa138f6c68d222
https://inst.eecs.berkeley.edu/~cs261/fa17/scribe/08_28_encdata.pdf
https://inst.eecs.berkeley.edu/~cs261/fa17/scribe/08_28_encdata.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_zhang.pdf
https://www.usenix.org/system/files/conference/usenixsecurity16/sec16_paper_zhang.pdf

25

APPENDIX A

INPUT:

 string: input_Query

OUTPUT:

 string: output_Query

 bool: changed

changed := false

parsed_input_query := Parse(input_Query)

switch statement := parsed_input_query.(type) {

case *Insert:

table := GetTable(statement)

columns := GetColumns(statement)

rows := GetRows(statement)

for i from 0 to len(rows) {

for j from 0 to len(rows[i]) {

if column[j].Encryptable() {

if !ValidAcraStruct(rows[i][j]) {

if column[j].IsSearchable() {

EncryptWithSearch(rows[i][j])

 } else {

 // secure searching is disabled for this column

 }

 changed = true

 } else {

 if column[j].IsSearchable() {

 decryptedData := Decrypt(rows[i][j])

 index_value := CreateIndexValue(decryptedData)

 rows[i][j] = index_value + rows[i][j]

 } else {

 // secure searching is disabled for this column

 }

 }

 }

 statement.Rows = rows

 }

case *Update:

 // Performing data encryption according to UPDATE query structure

case *Replace:

 // Performing data encryption according to REPLACE query structure

}

output_query := statement

returnoutput_query, changed

Parse function transforms the input SQL query string into AST (abstract syntax tree) that can be further

analyzed; GetTable function extracts the table node from the query structure; GetColumns function

extracts a set of columns; GetRows function extracts a set of rows; IsEncryptable function checks

whether a column is encryptable according to the encryption configuration; IsSearchable function

checks whether a column is searchable according to the encryption configuration; ValidAcraStruct

function validates the actual data in the row and checks if it’s a valid AcraStruct created by Application

26

(remember that data can come from the Application in both encrypted or unencrypted forms);

EncryptWithSearch function encrypts data and enables the further secure search; Decrypt function

decrypts AcraStruct; CreateIndexValue function calculates the UT for specified data (applies

algorithm) which is a blind index value.

APPENDIX B

INPUT:

 string: input_Query

OUTPUT:

 string: output_Query

 bool: changed

 error: error

changed := false

parsed_input_query := Parse(input_Query).(*Select)

exprs := GetComparisonExpressions(select_query.Where)

for i from 0 to len(exprs) {

 column := exprs[i].Left

 if column.IsEncryptable() {

 if column.IsSearchable() {

 exprs[i].Left = SubstrExpr{Name: column, From: 1, To: MAC_LEN }

 if ValidAcraStruct(exprs[i].Right) {

 Decrypt(exprs[i].Right)

 }

 exprs[i].Right = CreateIndexValue(exprs[i].Right)

 changed = true

 }

 }

}

select_query.Where = exprs

output_query := select_query

returnoutput_query, changed, nil

Parse, IsEncryptable, IsSearchable, Decrypt and CreateIndexValue functions work as

defined in Appendix A. GetComparisonExpressions function extracts a set of comparison

expressions from the WHERE part of the input SELECT query; SubstrExpr is a constructor that creates

a new column identifier.

