
Fast Correlation Attacks on Grain-like Small State Stream
Ciphers and Cryptanalysis of Plantlet, Fruit-v2 and Fruit-80

Shichang Wang1,2, Meicheng Liu1(�), Dongdai Lin1, and Li Ma1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences, Beijing 100093, China

{wangshichang,liumeicheng,ddlin,mali}@iie.ac.cn
2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. The fast correlation attack (FCA) is one of the most important cryptanalytic techniques
against LFSR-based stream ciphers. In CRYPTO 2018, Todo et al. found a new property for the
FCA and proposed a novel algorithm which was successfully applied to the Grain family of stream
ciphers. Nevertheless, these techniques can not be directly applied to Grain-like small state stream
ciphers with keyed update, such as Plantlet, Fruit-v2, and Fruit80. In this paper, we study the
security of Grain-like small state stream ciphers by the fast correlation attack. We first observe that
the number of required parity-check equations can be reduced when there are multiple different
parity-check equations. With exploiting the Skellam distribution, we introduce a sufficient condition
to identify the correct LFSR initial state and derive a new relationship between the number and
bias of the required parity-check equations. Then a modified algorithm is presented based on this
new relationship, which can recover the LFSR initial state no matter what the round key bits are.
Under the condition that the LFSR initial state is known, an algorithm is given against the degraded
system and to recover the NFSR state at some time instant, along with the round key bits.
As cases study, we apply our cryptanalytic techniques to Plantlet, Fruit-v2 and Fruit-80. As a
result, for Plantlet our attack takes 273.75 time complexity and 273.06 keystream bits to recover
the full 80-bit key. Regarding Fruit-v2, 255.34 time complexity and 255.62 keystream bits are token
to determine the secret key. As for Fruit-80, 264.47 time complexity and 262.82 keystream bits are
required to recover the secret key. More flexible attacks can be obtained with lower data complexity
at cost of increasing attack time. Especially, for Fruit-v2 a key recovery attack can be launched with
data complexity of 242.38 and time complexity of 272.63. Moreover, we have implemented our attack
methods on a toy version of Fruit-v2. The attack matches the expected complexities predicted by
our theoretical analysis quite well, which proves the validity of our cryptanalytic techniques.

Keywords: Fast correlation attack · Stream cipher · Grain-like · Plantlet · Fruit-v2 · Fruit-80.

1 Introduction

Stream ciphers play an important role in symmetric-key cryptosystems. Commonly, they are used to
generate a keystream of arbitrary length from a secret key and initialization vector (IV). There are
many well-known stream ciphers, such as Grain-v1 [18], Trivium [8] both in the eSTREAM portfolio of
hardware category, and Grain-128a [1] standardized by ISO/IEC. Common to these stream ciphers is
that they have an internal state length of at least twice the size of the security margin to thwart time-
memory-data tradeoff (TMDTO) attacks [7]. A new line of research emerged with publication of Sprout
[2], which reduces the size of internal state of lightweight stream ciphers below the boundary induced by
TMDTO attacks. Sprout has a Grain-like structure and uses two 40-bit feedback shift registers (FSR).
In comparison to traditional stream ciphers, Sprout uses the 80-bit key not only for initializing internal
state during the initialization phase but also in the state update function of the non-linear feedback shift
register (NFSR) during the subsequent keystream generation phase. Unfortunately, Sprout was broken
[21] shortly after it was proposed and some more analysis against Sprout were given in [30, 3, 14]. However,
an increasing number of researchers’ interest is sparked in the underlying design principle of Sprout. So
far, there are several Grain-like small state stream ciphers, e.g., Plantlet [25], Fruit [28, 15], Lizard [16],
which are designed by following the above essential ideas. Due to the pseudo-linearity property of the weak
output function, Fruit-v0 was broken by the fast correlation attack (FCA) in [31]. Fruit-v1 is tweaked
to remove the vulnerability. However, there was a weak-key attack [17] against Fruit-v1 based on an
insecure choice of the round key function. A more recent version Fruit-v2 [28] and its final version Fruit-
80 [15] are proposed to implement fixes for the discovered vulnerabilities. The lack of a well-understood

2 S. Wang et al.

theoretical work in this design paradigm domain apparently restricts the confidence that people have on
such primitives. This motivates us to study the security of these Grain-like small state stream ciphers
against the well-tailored attacks for them.

In this paper, we study the security of these Grain-like small state stream ciphers by the fast correlation
attack, which is one of the most important cryptanalytic techniques against linear feedback shift register
(LFSR)-based ciphers. The initial idea of correlation attack was introduced by [26], and it exploited
the bias between sequences of the LFSR and keystream. If we guess the correct LFSR initial state, the
high bias is observed. Otherwise, we assume that the statistic of bias behaves at random. The simple
correlation attack takes a time complexity of N2n, where N is the length of keystream sequence and n is
the size of the LFSR. Following up the correlation attack, many algorithms called as the fast correlation
attack have been proposed to avoid the exhaustive search of the LFSR initial state by using parity-check
equations. The fast correlation attack algorithms are further divided into iterative algorithms and one-
pass algorithms. In iterative algorithms, starting from the keystream sequence, the parity-check equations
are used to modify the value of keystream bits in order to converge towards the LFSR sequence, and
recover the LFSR initial state [23, 19, 9]. But they have requirements such as the number of taps in the
LFSR is significantly small or the bias of parity-check equations is significantly high. Therefore, their
applications are limited to experimental ciphers and have not applied to modern concrete stream ciphers.
Regarding one-pass algorithms, the evaluation of parity-check equations enable us to directly compute the
correct value of the LFSR state [10, 20, 24], and they have been successfully applied to modern concrete
stream ciphers [6, 31, 27]. To avoid the exhaustive search of the LFSR initial state, several methods have
been proposed to decrease the number of unknown bits in the LFSR initial state involved by the parity-
check equations [11, 29]. Moreover, as showed in [11] the fast Walsh-Hadamard transform (FWHT) can
be applied to accelerate the one-pass algorithms when the guess and evaluation procedure is regarded
as a Walsh-Hadamard transform. Very recently, Todo et al. [27] found that the ”commutative” feature
of multiplication between n× n matrices and an n-bit fixed vector, which is generally used to construct
parity-check equations. With the new property, the traditional wrong-initial-state hypothesis does not
hold assuming there are multiple high-biasd linear masks. Therefore, they introduced a modified wrong-
initial-state hypothesis. In previous fast correlation attacks, the multiple linear approximate equations
are only useful to decrease the data complexity but not for the time complexity [6, 31]. Using the new
wrong-initial-state hypothesis, they proposed a new FCA algorithm where multiple linear approximate
equations can reduce both time and data complexities.

1.1 Our Contribution

Inspired by the new FCA algorithm exploiting new property against the Grain family of stream ciphers
when there are multiple linear masks [27], we derive a new relationship on the number and bias of required
parity-check equations, then present a modified FCA algorithm on Grain-like small state stream ciphers.
Under the condition that the LFSR initial state is known, we consider the degraded system and give an
algorithm to recover the NFSR state at some time instant, along with the round key bits.

– In traditional fast correlation attacks, the number of required parity-check equations is Ω = 4m ln 2
ε2

to identify the unique correct LFSR initial state [31, 6, 10], where m is the size of the LFSR state and
ε is twice as many as the bias of parity-check equations. Since the size of the LFSR is always much
small in Grain-like small state stream ciphers, no valid attack against them can be obtained by using
directly Proposition 1 proposed in [27]. We first observe that the number of required parity-check
equations can be reduced when there are multiple different parity-check equations. With exploiting
the Skellam distribution, we introduce a sufficient condition to identify the unique correct LFSR
initial state and derive a new relationship between the number and bias of required parity-check

equations as Ω = 4π(m+1) ln 2
rε2 , where r is the number of different parity-check equations. From the

new relationship, we can use fewer parity-check equations, about 1
r times, to identify the correct

LFSR initial state when there are r different parity-check equations.
– With the periodic property of the round key function RKF (·), we sample the parity-check equations

at a time interval equal to the period of the round key bits to reduce the dimension of unknown
variables from the secret key. Then we adjust the original algorithm proposed in [27] to make two
majority polls and the new algorithm (Algorithm 1) can recover the LFSR initial state no matter
what the round key bits are.

Fast Correlation Attacks on Grain-like Small State Ciphers 3

– We consider the degraded system assuming that the LFSR initial state is known and conclude that
the degraded system is feasible to be attacked. Since the size of the NFSR state is always much
smaller than the security margin, the exhaustive search of all the possible value of the NFSR state
is often feasible. With the periodic property of the RKF (·) and the technique described in Section
3.3.1, we present an algorithm (Algorithm 2) which calls the subroutine of state checking to recover
the NFSR state at some time instant, along with the round key bits.

Applications We apply our new cryptanalytic techniques to the Grain-like small state stream ciphers,
Plantlet [25], Fruit-v2 [28] and Fruit-80 [15]. As a result, for Plantlet our attack takes 273.75 time com-
plexity and 273.06 keystream bits to recover the full 80-bit key. Regarding Fruit-v2, our attack takes
255.34 time complexity and 255.62 keystream bits to determine the secret key. As for Fruit-80, 264.47 time
complexity and 262.82 keystream bits are required to recover the secret key. The data complexity of these
attacks can be cut down at cost of increasing attack time. The results are listed in Table 1. Especially
for Fruit-v2 the data complexity is cut down to 242.38 while time complexity is increased to 272.63.

Comparisons with Previous Results Next, we compare results of our algorithms with previous
attacks against Plantlet, Fruit-v2 and Fruit-80, and they are summarized in Table 1. The time complexity
of our attacks is measured by multiplication of matrices with dimension equal to the size m of the LFSR,
while the others are measured by cipher encryption. The former is about equivalent to updating the
LFSR for m times, and thus it much faster than the latter.

Table 1. Summary of attacks on Plantlet, Fruit-v2 and Fruit-80.

Stream cipher Type of attack Time Memory Data Ref.

Plantlet

distinguisher 255 261 261 [17]

key recovery 276.26 231.25 284.6† [4]
key recovery 273.75 245 273.06 Sect. 4.3
key recovery 279.74 251 267.06 Sect. 4.3

Fruit-v2

key recovery 276.67 − − [12]
key recovery 255.34 231 255.62 Sect. 5.3
key recovery 267.00 243 243.62 Sect. 5.3
key recovery 272.63 243 242.38 Sect. 5.3

Fruit-80
key recovery 264.47 237 262.82 Sect. 6.2
key recovery 269.99 243 256.82 Sect. 6.2

† It requires 254.6 IVs with 230 keystream bits for each IV,
totally 284.6 keystream bits.

Plantlet is a stronger version of Sprout [2] and some modifications are introduced in order to account
for attacks which have been discovered against Sprout [21, 30, 3, 14]. More precisely, the LFSR’s size is
increased from 40 bits to 61 bits and the round key function is a linear function such that sequentially
using one key bit at per clock. Before this paper, there is a distinguishing attack based on TMDTO against
Plantlet in [17], which takes 255 time complexity, 261 data complexity and 261 memory complexity. In a
distinguishing attack, the algorithm (or distinguisher) allows to distinguish the keystream produced by
the target cipher from a random bitstream with high probability, but no information of the secret key
can be obtained.

Before our results, there is no key recovery attack reported on Plantlet. In parallel and independently
with our work, Banik et al. [4] presented a key recovery attack on Plantlet with time complexity of 276.26

Plantlet encryption, data complexity of 284.6 keystream bits, and memory of 231.25 bits. More exactly,
for the data complexity it requires 254.6 IVs, with 230 keystream bits for each IV.

A more recent version of Fruit, Fruit-v2 [28], is proposed to implement fixes for the discovered vul-
nerabilities, which are found in Fruit-v0 [31, 13] and Fruit-v1 [17]. Since the designer of Fruit removed
the pseudo-linearity property of the filtering function from Fruit-v2, the previous fast correlation attack
methods in [31] are not applicable on Fruit-v2. Moreover, the key taps of the round key function in
Fruit-v2 were changed, and the same set of keys found in [17] are not weak any more. Nevertheless,

4 S. Wang et al.

our modified fast correlation attack algorithms can break Fruit-v2 thanks to our new observations and
techniques.

The divide-and-conquer method has been an important attack against the different versions of Fruit,
with exploiting the bias of the round key bits on the NFSR update function in [13, 12]. Especially and
very recently, Dey et al. in [12] give a attack against Fruit-v2, where the authors claim that the time
complexity is 276.67 Fruit encryption. Note that the unit of the time complexity is ”1 Fruit encryption”,
and every Fruit encryption contains 210 rounds of the stream cipher initial clock. The time complexity of
our fast correlation attack is 255.34, where the unit of the time complexity is at most one multiplication
with fixed matrices whose dimension is equal to the size of the LFSR, which is more efficient than the
unit given by the initialization of stream ciphers. Our attack is more than 221 times faster than the
attack given in [12], but it requires more data than their work. In the case of limited data, i.e., up to
243 keystream bits for each initialization with key and IV, our attack is still faster than [12], with time
complexity of 272.63 and data complexity of 242.38.

Fruit-80 [15] is the final version of Fruit. The most significant difference between Fruit-80 and its
previous versions is that the key bits are involving directly in producing every bit of the keystream bit.
As far as we know, there is no key recovery attack reported on Fruit-80 in the literatures.

1.2 Paper Organization

This paper is organized as follows. In Section 2, we present a generic model of Grain-like small state
stream ciphers and review the new property of the LFSR-based stream ciphers which was found in [27].
In Section 3, the divide-and-conquer fast correlation attacks are given against the generic model. First,
we show how to derive the desirable parity-check equations and modify the original algorithm in [27] to
recover the LFSR initial state no matter what the round key bits are in Section 3.1. In Section 3.2, we
derive the new relationship between the bias and number of required parity-check equations. Under the
LFSR initial state is known, an algorithm is proposed to recover the NFSR state at some time instant and
the round key bits in Section 3.3. In the subsequent subsection, we give an analysis for complexities of
our attacks against the generic model. As applications, we carry out our attack methods against Plantlet,
Fruit-v2 and Fruit-80 in Section 4, Section 5 and Section 6, respectively. Finally in Section 7, a practical
experiment is presented on a toy version of Fruit-v2.

2 Preliminaries

In this section, we give a generalized model of Grain-like small state stream ciphers and review the new
feature for the fast correlation attacks found in [27].

2.1 The Generalized Model of Grain-like Small State Stream Ciphers

Abstracting from the primitives such as Sprout, Fruit and Plantlet, we present the generalized model for
Grain-like small state stream ciphers as depicted in Fig. 1. In this unified framework, some properties
from Grain-like small state stream ciphers are discussed and our cryptanalytic techniques against them
will be presented in the subsequent section. The generic model is specified by the following items in the
keystream generation phase.

Components LFSR: Letm be the size of linear feedback shift register (LFSR) and L(t) = (lt, · · · , lt+m−1)
be the internal state of the LFSR at time instant t. The LFSR is updated recursively and independently
by a linear Boolean function f as L(t+1) = (lt+1, · · · , lt+m) with lt+m = f(L(t)). We assume this update
process is invertible, and the inverse process is L(t−1) = (lt−1, · · · , lt+m−2) with lt−1 = f ′(L(t)).

NFSR and Counter: Let m′ be the size of non-linear feedback shift register (NFSR) and N (t) =
(nt, · · · , nt+m′−1) be the internal state of the NFSR at time instant t. The NFSR is updated recursively
as defined in the following:

nt+m′ = k′t ⊕ ct ⊕ lt ⊕ g(N (t)), (1)

N (t+1) = (nt+1, · · · , nt+m′),

Fast Correlation Attacks on Grain-like Small State Ciphers 5

Fig. 1. The generic model for the Grain-like small state stream ciphers

where k′t is the round key bit at time instant t, ct is the counter bit from the counter Cc at time instant
t, lt is the output of the LFSR at time instant t and g(·) is a non-linear Boolean function. The round
key bit is generated by the round key function, which is explained below. Similarly, we assume that this
update process of the NFSR is invertible, and the inverse process is N (t−1) = (nt−1, · · · , ln+m′−2) with
nt−1 = k′t−1 ⊕ ct−1 ⊕ lt−1 ⊕ g′(N (t)).

The counter Cc is a counter register whose initial value and way of working are public.
Round Key Function: The round key function denoted by RKF (·) continuously generates the

round key bit which is provided as input to the update function of the NFSR. Namely, k′t = RKF (K, t),
where K = (k0, · · · , kκ−1) is the κ-bit secret key and κ is the security margin.

Output Function: The output function is determined by

zt = h
(
L
(t)
Th,L , N

(t)
Th,N

)
⊕
⊕
b1∈B1

lt+b1 ⊕
⊕
b2∈B2

nt+b2 , (2)

where h is a non-linear filtering function, L
(t)
Th,L = (lt+γ1 , · · · , lt+γs1) is a subset of L(t) and the input

variables of h from the LFSR with 0 ≤ γ1 < · · · < γs1 ≤ m−1, N
(t)
Th,N = (nt+δ1 , · · · , nt+δs2) is a subset of

N (t) and the input variables of h from the NFSR with 0 ≤ δ1 < · · · < δs2 ≤ m′−1, B1 = {σ1, · · · , σq1} and
B2 = {η1, · · · , ηq2} are the sets of the LFSR and NFSR taps respectively, with 0 ≤ σ1 < · · · < σq1 ≤ m−1
and 0 ≤ η1 < · · · < ηq2 ≤ m′ − 1.

Assumed Properties We assume that the generic model has the following two properties which are
exploited by our attack methods in the subsequent section.

1. Assuming that the RKF (·) is periodic, so are the round key bits. Let d be the least positive integer
such that k′t+d = k′t for any t ≥ 0, i.e., the round key bits repeat in a cycle of length d. Besides, our
generic model can also cover the case where the counter bits ct are unknown. In this case, we just
assume that ct is also periodic.

2. Assuming that the necessary condition holds for applying successfully Algorithm 1 of our attack
methods, i.e.,

π(m+ 1) ln 2 ≤2κ−2+s1×|Tz|+2((s2+1)×|Tz|+q2)

× ε2|Tz|h × ε2q2g∗ ,

6 S. Wang et al.

where Tz is a tap set of keystream bits which is needed to be determined later and |Tz| is the number
of elements in the set, s1 and s2 are the number of input variables of h from the LFSR and NFSR
respectively, q2 is the number of the NFSR masking variables of the output function, εh and εg∗ are
the biases of the linear approximations for the functions h and g respectively.

Our generalized model can cover Plantlet [25], Fruit-v2 [28] and Fruit-80 [15], but not Lizard [16].
Compared with the generic model, the difference of Fruit-80 is that the key bits are involved directly in the
output function. However, this would have no impact on applying our fast correlation attack algorithms
to Fruit-80. Regarding Lizard, there is no LFSR and two NFSRs of different sizes are used instead.

2.2 LFSR-Based Stream Ciphers

In this subsection, we review the new feature found in [27] which is directly useful to improve the efficiency
of the fast correlation attacks.

The target of the fast correlation attacks is the LFSR-based stream ciphers, which include the generic
model of Grain-like small state stream ciphers as a special case. Let the primitive polynomial

f(x) = c0 + c1x
1 + c2x

2 + · · ·+ cm−1x
m−1 + xm

be the feedback polynomial of the LFSR and L(t) = (lt, · · · , lt+m−1) be the m-bit internal state of the
LFSR at time instant t. Then, the LFSR outputs lt and the state is updated to L(t+1) as

L(t+1) = L(t) × F = L(t) ×


0 · · · 0 0 c0
1 · · · 0 0 c1
...

. . .
...

...
...

0 · · · 1 0 cm−2
0 · · · 0 1 cm−1

 ,

where F is the state transition matrix of the LFSR, the operator × represents the matrix multiplication
and here is multiplication between 1×m matrix and m×m matrix. Furthermore, any internal state of
the LFSR can be expressed by the initial state and the state transition matrix as

L(t) = L(0) × F t ∀ t ≥ 0, (3)

where F t is the t-th power of F .

Theorem 1 (New Feature [27]). Let F be the state transition matrix of the LFSR whose feedback
polynomial is the primitive polynomial f(x) = c0 +c1x

1 + · · ·+cm−1x
m−1 +xm and u is an m-bit column

vector, i.e.,

F =


0 · · · 0 0 c0
1 · · · 0 0 c1
...

. . .
...

...
...

0 · · · 1 0 cm−2
0 · · · 0 1 cm−1

 .

Then F t × u = Fu × gt, where F t is the t-th power of F , gt is the first column of matrix F t and

Fu =
[
u, F 1 × u, · · · , Fm−1 × u

]
Remark 1. Note that the notation gt is defined as the 1-st column vector of F t, and then the i-th column
vector of F t is represented as gt+i−1, 1 ≤ i ≤ n.

In [27], Todo et al. give the proof of the above theorem using a finite field GF (2m), where the primitive
polynomial is the feedback polynomial of the LFSR.

Fast Correlation Attacks on Grain-like Small State Ciphers 7

3 Divide-and-Conquer Fast Correlation Attacks

Here, we present a high-level review of our divide-and-conquer fast correlation attacks against the gen-
eralized model of Grain-like small state stream ciphers. Since the LFSR updates independently, we first
recover the LFSR initial state through the fast correlation attacks exploiting multiple linear masks. To
reduce the dimension of unknown variables from the secret key, the parity-check equations are sampled at
a time interval equal to the period of the round key bits. Then we modify the original algorithm proposed
in [27] to make two majority polls and the new algorithm (Algorithm 1) can recover the LFSR initial state
no matter what the round key bits are. The details of this procedure will be described in Section 3.1. No
valid attack against Grain-like small state stream ciphers can be obtained by using directly Proposition
1 proposed in [27], because the size of the LFSR is always much small in these small state ciphers. We
first observe that the number of required parity-check equations can be reduced when there are multiple
different parity-check equations. With exploiting the Skellam distribution, we derive a new relationship
between the number and bias of required parity-check equations for applying successfully Algorithm 1
to recover the correct value of the LFSR initial state in Section 3.2. Once the initial state of the LFSR
is determined, there is not protection of the internal state variables of the LFSR in the keystream bits.
We get a degraded system of equations on output keystream bits and the internal state variables of the
NFSR. We can relate these internal state variables by the update function of the NFSR involving the
round key bits. This leads to new increasing unknown internal state variables. We propose instead to use
the non-linear filtering function to derive relations between these variables, inspired by the observation
in [5]. Compared to their technique, we do not require the property of linearity of the filtering function or
the property of pseudo-linearity which is used to break Fruit-v0 in [31]. Further, we can run the update
function of the NFSR forwards to obtain the round key bits from the internal state variables of the
NFSR. Due to that the round key bits are periodic, we can carry out a state checking procedure where
we compare the round key bits of two different repetition cycles. Since the size of the NFSR in Grain-like
small state stream ciphers is always much smaller than the security margin, exhaustively searching all the
possible value of the NFSR state is often feasible. Through the state checking procedure, we can recover
the correct value of the NFSR state at some time instant which is consistent with the given keystream,
along with the round key bits. The above process will be specified as Algorithm 2 in Section 3.3. In the
subsequent subsection, we give the complexities analysis of our attack methods against the generic model.

3.1 Independent Recovery of the LFSR Initial State with Multiple Linear Masks

In this subsection, we will show how to recover independently the initial state of the LFSR by the fast
correlation attacks. First, we show how to derive the desirable parity-check equations for our generic
model. Inspired by the work on the Grain family of stream ciphers in [27], the linear approximate repre-
sentations are given for the generic model of small state stream ciphers. Compared to the analysis of the
Grain family, there are the round key bits involved in every linear approximate representation. To reduce
the dimension of unknown variables from the secret key, we sample the parity-check equations at a time
interval equal to the period of the round key bits. Then the original algorithm of [27] is modified to make
two majority polls such that the new algorithm (Algorithm 1) can recover the correct value of the LFSR
initial state no matter what the round key bits are. Another difference between small state stream ciphers
and the Grain family is that the size of the LFSR is always too small to obtain a valid attack by using
directly Proposition 1 proposed in [27]. Under the new observation, we use fewer parity-check equations
according to the new relationship of Section 3.2 in Algorithm 1 when there are multiple parity-check
equations.

Constructing the Parity-check Equations There are three steps to construct the desirable parity-
check equations, which are used in our modified fast correlation attack algorithms in subsequent content.

Step 1. Linear Approximate Representations The description of the generic model of Grain-like
small state stream ciphers can be found in Section 2.1. Due to the involvement of the NFSR masking bits
in the expression of zt, it is infeasible to derive any useful approximate representation involving only the
LFSR state bits when we consider one single keystream bit zt. Therefore, we expect to derive the linear
approximate representations for the sum of some keystream bits. Considering the sum of keystream bits
over the set of taps Tz, i.e.,

⊕
i∈Tz zt+i, we can use the LFSR and NFSR state bits to represent it due to

8 S. Wang et al.

the output function Eq.(2). Namely,

⊕
i∈Tz

zt+i =
⊕
i∈Tz

(
h
(
L
(t+i)
Th,L , N

(t+i)
Th,N

)
⊕
⊕
b1∈B1

lt+i+b1 ⊕
⊕
b2∈B2

nt+i+b2

)

=
⊕
i∈Tz

h
(
L
(t+i)
Th,L , N

(t+i)
Th,N

)
⊕
⊕
i∈Tz

(⊕
b1∈B1

lt+i+b1

)
⊕
⊕
b2∈B2

(⊕
i∈Tz

nt+b2+i

)
.

To eliminate the NFSR masking bits from
⊕

i∈Tz zt+i, an appropriate set of taps Tz is chosen such that⊕
i∈Tz nt+b2+i has a high bias. Considering the best linear approximation of the NFSR update function

Eq.(1) with bias εg∗ as follows,

nt+m′ ≈ k′t ⊕ ct ⊕ lt ⊕
⊕
i∈Ig

nt+i,

we choose the set of taps as Tz = Ig ∪ {m′}, for simplicity we continue to use the notation Tz in the
following. Then, the sum of the NFSR masking bits becomes⊕

i∈Tz

nt+b2+i =
⊕
i∈Ig

nt+b2+i ⊕ nt+b2+m′

= k′t+b2 ⊕ ct+b2 ⊕ lt+b2 ⊕ g
∗(N (t+b2)) ∀ b2,

where g∗(N (t)) =
⊕

i∈Ig nt+i ⊕ g(N (t)) and it has the same bias εg∗ , i.e., Pr[g∗(N (t)) = 0] = 1
2 + εg∗ .

Therefore, we have⊕
i∈Tz

zt+i =
⊕
i∈Tz

(⊕
b1∈B1

lt+i+b1

)
⊕
⊕
b2∈B2

lt+b2 ⊕
⊕
i∈Tz

h
(
L
(t+i)
Th,L , N

(t+i)
Th,N

)
⊕
⊕
b2∈B2

g∗(N (t+b2))

⊕
⊕
b2∈B2

k′t+b2 ⊕
⊕
b2∈B2

ct+b2 .

Next we consider the linear approximate representation of h(L
(t+i)
Th,L , N

(t+i)
Th,N). Let ai ∈ {0, 1}s1+s2 be

the input linear mask of h function at time instant t+ i, i.e., ai = (ai[1], · · · , ai[s1 + s2]). Then

h
(
L
(t+i)
Th,L , N

(t+i)
Th,N

)
≈ ai ·

(
L
(t+i)
Th,L , N

(t+i)
Th,N

)T
= ai[1, · · · , s1] ·

(
L
(t+i)
Th,L

)T
⊕ ai[s1 + 1, · · · , s1 + s2] ·

(
N

(t+i)
Th,N

)T
with bias εh,i(ai), where ai[x, · · · , y] denotes a subvector indexed from x-th bit to y-th bit, the operator
(·)T is the transpose of a row vector and the dot operator · between a row vector and a column vector repre-
sents the usual inner GF(2)-product. There are |Tz| active h functions which need to be approximated. Let
aTz ∈ {0, 1}(s1+s2)×|Tz| be the concatenated linear mask of all the ai satisfying i ∈ Tz. The total bias of all
the approximated h functions depends on aTz , and it is computed as εh,Tz (aTz) = 2|Tz|−1×

∏
i∈Tz εh,i(ai)

because of the piling-up lemma.
Under the bias εh,Tz (aTz), we get

⊕
i∈Tz

zt+i ≈
⊕
i∈Tz

(⊕
b1∈B1

lt+i+b1

)
⊕
⊕
b2∈B2

lt+b2 ⊕
⊕
i∈Tz

ai[1, · · · , s1] ·
(
L
(t+i)
Th,L

)T
⊕
⊕
b2∈B2

k′t+b2 ⊕
⊕
b2∈B2

ct+b2

⊕

(⊕
i∈Tz

ai[s1 + 1, · · · , s1 + s2] ·
(
N t+i

Th,N

)T
⊕
⊕
b2∈B2

g∗(N (t+b2))

)
.

All the terms involved in the internal states of the LFSR and the sum of the round key bits
⊕

b2∈B2
k′t+b2

will be guessed in our fast correlation attacks. Note that ct is a known constant bit. Therefore, if the
bias of last term in the above approximate representation is high, we could carry out our fast correlation
attacks. Let

εg∗,B2(aTz) = Pr

[⊕
i∈Tz

ai[s1 + 1, · · · , s1 + s2] ·
(
N t+i

Th,N

)T
⊕
⊕
b2∈B2

g∗(N (t+b2)) = 0

]
− 1

2

Fast Correlation Attacks on Grain-like Small State Ciphers 9

and the bias is independent on ai[1, · · · , s1] for all i ∈ Tz.
For any fixed aTz , we can derive the following linear approximate representation

⊕
i∈Tz

zt+i ≈
⊕
i∈Tz

(⊕
b1∈B1

lt+i+b1

)
⊕
⊕
b2∈B2

lt+b2 ⊕
⊕
i∈Tz

ai[1, · · · , s1] ·
(
L
(t+i)
Th,L

)T
⊕
⊕
b2∈B2

k′t+b2 ⊕
⊕
b2∈B2

ct+b2

(4)

and the bias is evaluated as 2× εh,Tz (aTz)× εg∗,B2(aTz).
Step 2. Linear Approximate Equations With Eq.(3) L(t) = L(0) × F t, for any fixed aTz , we

rewrite Eq.(4) as ⊕
i∈Tz

zt+i ≈ L(0) ·
(
F t × U(aTz)

)
⊕
⊕
b2∈B2

k′t+b2 ⊕
⊕
b2∈B2

ct+b2 ,

where

U(aTz) =
⊕
i∈Tz

⊕
b1∈B1

gi+b1 ⊕
⊕

j∈{1,··· ,s1}

ai[j]gi+Th,L[j]

⊕ ⊕
b2∈B2

gb2 ,

F is the state transition matrix of the LFSR, gq is the first column of the matrix F q and Th,L[j] is the
j-th element of Th,L = (γ1, · · · , γs1). From the above linear approximate representations, we can derive
the linear approximate equation with a fixed linear mask u⊕

i∈Tz

zt+i ≈ L(0) ·
(
F t × u

)
⊕
⊕
b2∈B2

k′t+b2 ⊕
⊕
b2∈B2

ct+b2 , (5)

where u ∈ {0, 1}m is a column vector. If different aTz ’s derive the same linear mask u, the corresponding
biases should be added up to get the bias of u, i.e., εu =

∑
{aTz |U(aTz)=u} 2× εh,Tz (aTz)× εg∗,B(aTz). As

a rough estimation for the generic cipher model, we can find r = 2s1×|Tz| different linear masks u with
the bias

ε = 2s2×|Tz|+1 ×
(

2|Tz|−1ε
|Tz|
h

)
×
(
2q2−1εq2g∗

)
= 2(s2+1)×|Tz|+q2−1 × ε|Tz|h × εq2g∗

where εh and εg∗ are the biases of the linear approximations for the functions h and g respectively, s1
and s2 are the number of input variables of h from the LFSR and NFSR respectively, q2 is the number
of the NFSR masking variables of the output function, i.e., q2 = |B2|.

Step 3. Building the Parity-check Equations Let ẑt =
⊕

i∈Tz zt+i, k̂t =
⊕

b2∈B2
k′t+b2 , ĉt =⊕

b2∈B2
ct+b2 and et,j be the random noise introduced by the corresponding linear approximation with

linear mask uj for the sum of keystream bits ẑt. From Eq.(5), we actually obtain a noisy system with r

different linear approximate equations on the unknown variables L(0) = (l0, · · · , lm−1) and k̂t, which is
rewritten as

L(0) ·
(
F t × uj

)
⊕ ẑt ⊕ ĉt ⊕ k̂t = et,j t ≥ 0, j = 1, · · · , r

where et,j are the random variables satisfying Pr[et,j = 0] = 1
2 + εj and εj ≈ ε.

From the Assumed Property 1 that the RKF (·) is periodic, we have that the unknown round key bits
k′t has a cycle of length d, i.e., k′t0+dt′ = k′t0 for t0 = 0, · · · , d− 1 and any t′ ≥ 0. Accordingly, we get that

L(0) ·
(
F t0+dt

′
× uj

)
⊕ ẑt0+dt′ ⊕ ĉt0+dt′ ⊕ k̂t0 = et0+dt′,j t′ ≥ 0, j = 1, · · · , r.

To reduce the dimension of unknown variables from the secret key, we sample parity-check equations at
a time interval equal to the period of the round key bits. Namely, by choosing t0 = 0, we receive a noisy
system on m+ 1 unknown variables L(0) = (l0, · · · , lm−1) and k̂0

L(0) ·
(
F dt

′
× uj

)
⊕ ẑdt′⊕ĉdt′ ⊕ k̂0 = edt′,j t′ = 0, · · · , Ω − 1, j = 1, · · · , r. (6)

10 S. Wang et al.

where Ω is a parameter to be determined later.
According to Theorem 1, we get L(0) · (F dt′ × uj) = (L(0) × Fuj) · gdt′ , thus Eq.(6) can be rewritten

as (
L(0) × Fuj

)
· gdt′ ⊕ ẑdt′⊕ĉdt′ ⊕ k̂0 = edt′,j t′ = 0, · · · , Ω − 1, j = 1, · · · , r. (7)

where Fuj defined in Theorem 1 can be computed from the linear mask uj and gt is the first column
vector of the matrix F t. Here the random noises are satisfying Pr[et,j = 0] = 1

2 + εj = 1
2 (1 + εj) and

εj ≈ 2ε = 2(s2+1)×|Tz|+q2 × ε|Tz|h × εq2g∗ for j = 1, · · · , r = 2s1×|Tz|.

Fast Correlation Attacks with Multiple Linear Masks At the former part, we have derived r
linear masks with bias about ε for the generic cipher model. In the cryptanalysis of the concrete Grain-
like small state stream ciphers, ε is usually chosen as a threshold for the bias of linear masks. Therefore,
we regard ε (ε > 0) as the lower bound for absolute value of the bias of linear masks in the following
discuss. Besides, we assume that there are r0 linear masks u1,u2, · · · ,ur0 with positive bias and r1 linear
masks ur0+1,ur0+2, · · · ,ur0+r1 with negative bias. Note that the threshold ε might be closed to even
smaller than 2−

κ
2 , and r = r0 + r1 << 2m.

To use the new wrong-initial-state hypothesis introduced in [27], we construct parity-check equations
from Eq.(7), i.e., using the linear mask gdt′ instead of F dt

′ × uj . Namely,

(l′0, · · · , l′m−1) · gdt′ ⊕ ẑdt′ ⊕ ĉdt′ ⊕ k̂0, t = 1, · · · , Ω

where L′(0) = (l′0, · · · , l′m−1) is the guessed value of the LFSR state L(0) × Fuj , gdt′ is the first column

of matrix F dt
′
, ẑdt′ , ĉdt′ and k̂0 are the sum of the keystream bits, counter bits and round key bits,

respectively. Here we introduce the indicator for every parity-check equation as

∆t′(l
′
0, · · · , l′m−1) = (l′0, · · · , l′m−1) · gdt′ ⊕ ẑdt′ ⊕ ĉdt′ ⊕ k̂0.

If the value of L′(0) = (l′0, · · · , l′m−1) is guessed as L(0) × Fuj and the sum of the round key bits k̂0
is correctly guessed, then ∆t′(L

′(0)) = edt′,j , j = 1, · · · , r and Pr[∆t′(L
′(0)) = 0] = 1

2 (1 + εj), where

|εj | ≥ ε = 2ε. Besides, if the value of L′(0) is guessed as L(0) × Fuj and the sum of the round key bits k̂0
is wrongly guessed, then ∆t′(L

′(0)) will flip the value of edt′,j , i.e., ∆t′(L
′(0)) = edt′,j ⊕ 1, j = 1, · · · , r,

thus Pr[∆t′(L
′(0)) = 0] = 1− 1

2 (1 + εj) = 1
2 (1− εj), where |− εj | ≥ ε. Therefore, no matter what the sum

of the round key bits k̂0 is guessed, we can get a highly biased indicator for every parity-check equation
which has the bias of possibly different sign. Hereinafter, we just ignore the sum of the round key bits k̂0
in the indicator, i.e., ∆t′(l

′
0, · · · , l′m−1) = (l′0, · · · , l′m−1) · gdt′ ⊕ ẑdt′ ⊕ ĉdt′ . Finally, if the guessed initial

state L′(0) is not in the set {L(0) × Fuj , j = 1, · · · , r}, ∆t′(L
′(0)) will always be assumed to behave at

random and Pr[∆t′(L
′(0)) = 0] = 1

2 .
For simplicity of the analysis, we just use ε instead of the true value of bias of the parity-check

equations, which is the lower bound for absolute value of all the εj , i.e., |εj | ≥ ε. Let Sh be the set of values
of the LFSR initial state that have a highly biased indicator when we construct parity-check equations
using gdt′ together with ẑdt′ ⊕ ĉdt′ and Sl the set of remaining values, i.e., Sh = {L(0)×Fuj , j = 1, · · · , r}
and Sl = {0, 1}m \ Sh. For the indicator of parity-check equations, we define the statistic E of its bias as

E(l′0, · · · , l′m−1) =

Ω−1∑
t′=0

(−1)∆t′ (l
′
0,··· ,l

′
m−1)

According to the central limit theorem, we have

E(L′(0)) ∼ N (Ωε,Ω(1− ε2)) ≈ N (Ωε,Ω)

or
E(L′(0)) ∼ N (−Ωε,Ω)

when L′(0) ∈ Sh, where ε2 is enough small to make the above approximation, and

E(L′(0)) ∼ N (0, Ω)

Fast Correlation Attacks on Grain-like Small State Ciphers 11

when L′(0) ∈ Sl, where N (·, ·) is the normal distribution with the specified expectation and variance. A
naive method of evaluating Ω parity-check equations for all the possible values of the LFSR initial state
has a time complexity of 2mΩ, which is quite inefficient. As Chose et al. have showed in [11], the fast
Walsh-Hadamard transform (FWHT) can be successfully applied to accelerate the guess and evaluation
procedure. According to the mask pattern of the parity-check equations, we regroup the parity-check
equations and define an integer-valued function w(·) : {0, 1}m → Z as

w(a) =
∑

t′∈{0,··· ,Ω−1|gdt′=aT }

(−1)ẑdt′⊕ĉdt′

where a ∈ {0, 1}m is a row vector and the sum is computed over the set of integers. Therefore, the
statistic at one value L′(0) = (l′0, · · · , l′m−1) can be computed as follows

E(l′0, · · · , l′m−1)

=

Ω−1∑
t′=0

(−1)∆t′ (l
′
0,··· ,l

′
m−1)

=

Ω−1∑
t′=0

(−1)(l
′
0,··· ,l

′
m−1)·gdt′⊕ẑdt′⊕ĉdt′

=
∑

a∈{0,1}m

 ∑
t′∈{0,··· ,Ω−1|gdt′=aT }

(−1)ẑdt′⊕ĉdt′

 ·
(−1)a·(l

′
0,··· ,l

′
m−1)

T

=
∑

a∈{0,1}m
w(a) · (−1)a·(l

′
0,··· ,l

′
m−1)

T

=W (l′0, · · · , l′m−1),

where W (l′0, · · · , l′m−1) is the Walsh transform of w(a) at the point (l′0, · · · , l′m−1). From the above, we
can use FWHT to evaluate Ω parity-check equations for all the possible value of the LFSR m-bit state
with time complexity Ω +m2m and memory complexity 2m.

Fortunately, for small state stream ciphers, the size m of the LFSR is always much smaller than the
security margin κ, thus guessing the whole of LFSR state is often feasible. To make our attacks more
flexible, we will ignore β bits of the LFSR state and guess its partial n−β bits by exploiting the technique
presented in [27]. With appropriately choosing a value for the parameter β, a more efficient attack can be
derived. The bypassed β bits can be fixed to any constant and we set them to all zeros in the following
discussion.

The original algorithm proposed in [27] is modified to make two majority polls at the last processing
step so that the LFSR initial state can be recovered no matter what the round key bits are. Besides, the
value with the maximum poll will be chosen as a candidate of the LFSR initial state. Now we present the
modified algorithm for recovering the initial state of the LFSR as Algorithm 1, where two cases of the
majority polls at Part 3 are corresponding to two possible values of k̂0. Note that the notation th (th > 0)
is the threshold of the statistical test, which will be determined in the following sections.

3.2 New Relationship Between the Number and Bias of Required Parity-Check Equations

In the traditional fast correlation attacks of [31, 6, 10], to identify the unique correct value of the LFSR
initial state with a high probability, the number of required parity-check equations Ω should be chosen

as Ω ≥ (2−ε2)2m ln 2

ε2 ≈ 4m ln 2
ε2 , where m is the size of the LFSR and ε is twice as many as bias of

the parity-check equations. Since the size of the LFSR is always much small in Grain-like small state
stream ciphers, no valid attack against them can be obtained by using directly Proposition 1 proposed
in [27]. We first observe that the number of required parity-check equations can be reduced when there
are multiple different parity-check equations. With exploiting the Skellam distribution, we introduce a
sufficient condition to identify the unique correct LFSR initial state and derive a new relationship between

the number and bias of required parity-check equations as Ω = 4π(m+1) ln 2
rε2 , where r is the number of

12 S. Wang et al.

Algorithm 1 Recovery of the LFSR Initial State

Input: Given keystream bits, {zt}; The state transition matrix of the LFSR from the target stream cipher, F ;
The inverse of matrices corresponding to all the highly biased linear masks, {F−1

uj }
r
j=1.

Parameters: The size of bypassed bits, β, 0 ≤ β < m; The number of parity-check equations, Ω; The
threshold for the statistical test, th.

Output: A set of candidates of the LFSR initial state.
/* Part 1: Prepare w(a) for evaluation of the parity-check equations */

1: Calculate and store the integer-valued function w(a) =
∑
t′∈{0,··· ,Ω−1|gdt′ [1,··· ,m−β]=aT } (−1)ẑdt′⊕ĉdt′ , ∀a ∈

{0, 1}m−β , where gdt′ is the first column of matrix F dt
′
, ẑdt′ =

⊕
i∈Tz zdt′+i is the sum of bits from the given

keystream bits and ĉdt′ =
⊕

b2∈B2
cdt′+b2 is the constant sum from the counter Cc of the target stream cipher.

/* Part 2: Filter the LFSR initial states with the fast Walsh-Hadamard transform */
2: Compute the Walsh spectrum of w(a) though the subroutine of the fast Walsh-Hadamard transform, i.e.,

[W (L′(0))] = FWHT ([w(a)]), where L′(0) ∈ {0, 1}m−β ;
3: if W (L′(0)) ≥ th then
4: Store L′(0) in the set V0.
5: end if
6: if W (L′(0)) ≤ −th then
7: Store L′(0) in the set V1

8: end if
/* Part 3: Identify candidates of the LFSR initial state with two majority polls */

9: Set C = ∅ and µmax = 0
10: for all α ∈ {0, 1} do
11: Set pollα[·] = 0.
12: for all i ∈ {0, 1} do
13: for all L′(0) ∈ Vi do
14: Compute L̄(0) = (L′(0)||0β) × F−1

uj , ∀j ∈ Ji⊕α, then pollα[L̄(0)] increment by 1, where J0 =

{1, · · · , r0}, J1 = {r0 + 1, · · · , r}.
15: end for
16: end for
17: if pollα[L̄(0)] > µmax then
18: Set µmax = pollα[L̄(0)] and C = {L̄(0)}.
19: else if pollα[L̄(0)] = µmax then
20: Set C = C ∪ {L̄(0)}.
21: end if
22: end for
23: return C.

different parity-check equations. Therefore, when there are r different parity-check equations, we can
reduce the number of required parity-check equations to about 1

r times of the traditional methods.

Let p1 be the probability that the random variable following N (0, Ω) is greater than th, and let
p2 be the probability that the random variable following N (Ωε,Ω) is greater than th. Let Q(x) be

the tail distribution function of the standard normal distribution, i.e., Q(x) = 1√
2π

∫∞
x
e−

y2

2 dy, thus the

probability that every value in Sl has an empirical statistic E(L′(0))) greater than th is approximately p1 =
Q(th√

Ω
) and the probability that every value with positive bias in Sh has an empirical statistic E(L′(0)))

greater than th is approximately p2 = Q(th−Ωε√
Ω

). Note that the probability that the random variable

following N (0, Ω) is smaller than −th is also p1 and the probability that the random variable following
N (−Ωε,Ω) is smaller than −th is also p2. Assuming that the values in Sh is random uniformly distributed,
then the expected number of values in Sh which pass the statistical test is about r02−βp2 + r12−βp2 even
when β bits are bypassed, where 0 ≤ β < log2(r

(m+1) ln 2). Moreover, there are about 2m−βp1 + 2m−βp1

values in Sl which pass the statistical test. Therefore, the expected size of V0 and V1 are 2m−βp1+r02−βp2
and 2m−βp1 + r12−βp2, respectively.

In Proposition 1 of [27], Todo et al. proposed to set Ω = (m− β)2m−β = r2n−βp1 to make a balance
between the complexities of three parts in Algorithm 1, and the probability of recovering successfully the
LFSR initial state was computed for different choices of β. Unfortunately, with setting Ω = (m−β)2m−β ,
the probability of recovering successfully the LFSR initial state is always 0 because the size m of the
LFSR is often too small in Grain-like small state stream ciphers. Therefore, when there are multiple

Fast Correlation Attacks on Grain-like Small State Ciphers 13

different parity-check equations, we need a new relationship between the number and bias of required
parity-check equations for applying successfully Algorithm 1 to recover the correct value of the LFSR
initial state.

Theorem 2. Let m be the size of the LFSR from the target stream cipher and β be the size of bypassed
bits, where 0 ≤ β < log2(r

(m+1) ln 2). Assuming that there are r different parity-check equations with

absolute value of bias greater than ε
2 , then the number Ω of required parity-check equations for Algorithm

1 to succeed is

Ω ≈ π2β+2(m+ 1) ln 2

rε2
,

more precisely,

Ω =
4
(
Q−1

(
1
2

(
1−

√
A(2−A)

)))2
ε2

,

where A = 2β(m+1) ln 2
r < 1 and Q−1 is the inverse of Q-function.

Proof. Here we only give details of the proof when the sum of the round key bits k̂0 is zero, and the
another situation can be argued in a similar way.

When α = 0, i.e., for the 0-th majority poll, every wrong value appears about

µ1 = (r2m−βp1 + (r20 + r21)2−βp2)2−m ≈ r2−βp1

times, where r2−βp1 >> (r20 + r21)2−(m+β)p2 holds in the useful attack parameters, and the correct value
L(0) appears

µ2 = (r0 + r1)2−βp2 = r2−βp2

times. Regarding the 1-th majority poll, the correct value does not appear and every wrong value appears
about µ1 times. Therefore, the number of occurrences that every wrong state value appears, denoted by
X1, follows the Poisson distribution with expected value µ1, and the number of occurrences that the
correct state value appears, denoted by X2, follows the Poisson distribution with expected value µ2, i.e.,
X1 ∼ Pois(µ1) and X2 ∼ Pois(µ2). Let Y = X1 − X2, the difference of X1 and X2, thus the random
variable Y follows a Skellam distribution assuming that X1 and X2 are two statistically independent
random variables, i.e., Y ∼ Skellam(µ1, µ2) with µ1 < µ2. With the property of Skellam distribution,
we get a upper bound for the probability that a wrong value has a better rank than the correct value,
i.e., Pr[X1 ≥ X2] = Pr[Y ≥ 0] ≤ exp(−(

√
µ1 −

√
µ2)2) = exp(−r2−β(

√
p1 −

√
p2)2). Thus to identify the

unique correct value L(0), we introduce the sufficient condition as

exp(−r2−β(
√
p1 −

√
p2)2) < 2−(m+1)

i.e.,

√
p2 −

√
p1 >

2
β
2

√
(m+ 1) ln 2√

r
(8)

From this sufficient condition, we can heuristically obtain that a good choice for the threshold of the
statistical test should make the difference

√
p2−

√
p1 as great as possible. With th = 1

2Ωε, the difference

p2 − p1 = Q(− 1
2

√
Ωε)−Q(1

2

√
Ωε) = 1− 2Q(1

2

√
Ωε) is largest and p1 + p2 = 1.

According to the sufficient condition Eq.(8), we derive that

p1 = Q

(
1

2

√
Ωε

)
<

1

2

(
1−

√
A(2−A)

)
,

which indicates

Ω >
4
(
Q−1

(
1
2

(
1−

√
A(2−A)

)))2
ε2

, (9)

where A = 2β(m+1) ln 2
r < 1, Q−1 is the inverse of Q-function.

14 S. Wang et al.

Note that the Q-function can be expressed in terms of the error function as Q(x) = 1
2 (1− erf(x/

√
2)).

For 0 < x < 1, the inverse error function erf−1(x) ≈ 1
2

√
πx, and therefore Q−1(1

2 (1−x)) =
√

2 erf−1(x) ≈√
π
2x. Then for 0 < A < 1, we have 0 <

√
A(2−A) < 1 and thus

Q−1(
1

2
(1−

√
A(2−A))) ≈

√
πA(2−A)

2
<
√
πA.

Accordingly, we get a new relationship as

Ω ≥ 4πA

ε2
=
π2β+2(m+ 1) ln 2

rε2
. (10)

We choose the values with the maximum poll as a candidate of the LFSR initial state and keep them
in the set C. Therefore, if th = 1

2Ωε and Ω is set as Eq.(10) or Eq.(9) in the precise mode, the probability

that a wrong value is chosen as a candidate of the LFSR initial state is less than 2−(m+1) and no wrong
value will be chosen as candidates of the LFSR initial state.

In conclusion, if th = 1
2Ωε and Ω satisfies Eq.(10) or Eq.(9), the output C of Algorithm 1 contains

and only contains the correct value of the LFSR initial state with probability of almost one. ut

3.3 Recovery of the NFSR State at some time instant and the Round Key Bits

Now we first consider the degraded system assuming that the LFSR initial state is known and derive
relations between the internal state variables of the NFSR. Then an algorithm of recovering the NFSR
state at some time instant and the round key bits will be proposed in the following.

The Degraded System Suppose that the attacker somehow knows the LFSR initial state L(0) =
(l0, · · · , lm−1) and has access to some keystream bits. Since the LFSR updates independently, the attacker
can clock the LFSR forwards and backwards to remove its protection over the keystream bits. The
resultant system becomes an NFSR which is nonlinearly updated, involving the periodic round key bits
and the output of this system is filtered by a nonlinear function h. Given the NFSR state N (t) =
(nt, · · · , nt+m′−1) at time instant t, we rewrite the keystream bit for the generic model as

zt =
⊕
b2∈B2

nt+b2 ⊕ h
(
L
(t)
Th,L , N

(t)
Th,N

)
⊕
⊕
b1∈B1

lt+b1 (11)

where any internal LFSR variable is known, Th,N = (δ1, · · · , δs2) and B2 = {η1, · · · , ηq2} are the sets of
the NFSR taps with 0 ≤ δ1 < · · · < δs2 ≤ m′ − 1 and 0 ≤ η1 < · · · < ηq2 ≤ m′ − 1.

In the following, we will show that with some probability any internal state variable of the NFSR can
be computed from the value of the NFSR state variables at a fixed time instant t0 and of some keystream
bits, under the condition that the LFSR initial state L(0) is known. To avoid the influence of masking
of the round key bit in the NFSR update function, we instead use recursively the output function, i.e.,
Eq.(11), to derive relationships between these variables and keystream bits, by extending the technique
in [5]. Compared to [31], the pseudo-linearity property of the filtering function h is not required in our
following process.

Here we only discuss the case ηq2 > δs2 to illustrate the process, while the other cases can be handled by
induction in a similar way. In this case, ηq2 is the highest tap value of the NFSR variables (nt, · · · , nt+m′−1)
involved in the keystream bit zt. Assuming that the LFSR initial state L(0) = (l0, · · · , lm−1) is known,
we will express each NFSR state variable ni, i ≥ t0 + m′, as a function of the NFSR state variables
N (t0) = (nt0 , · · · , nt0+m′−1) and of some keystream bits.

We first consider how to express nt0+m′ . According to Eq.(11), zt0+m′−ηq2 is the first keystream bit
which certainly depends on nt0+m′ , thus we have

nt0+m′ = zt0+m′−ηq2 ⊕
⊕

b2∈B2\{ηq2}

nt0+m′−ηq2+b2 ⊕ h
(
L
(t0+m

′−ηq2)
Th,L , N

(t0+m
′−ηq2)

Th,N

)
⊕
⊕
b1∈B1

lt0+m′−ηq2+b1 .

Next we assume that for all i with t0 +m′ ≤ i < t0 +m′+j, all the bits ni have be expressed as a function
of the NFSR state variables at time instant t0 and of some keystream bits. Note that zt0+m′−ηq2+j is the

Fast Correlation Attacks on Grain-like Small State Ciphers 15

first keystream bit which is certainly dependent on nt0+m′+j , which indicates that

nt0+m′+j = zt0+m′−ηq2+j
⊕

b2∈B2\{ηq2}

nt0+m′−ηq2+j+b2 ⊕ h
(
L
(t0+m

′−ηq2+j)
Th,L , N

(t0+m
′−ηq2+j)

Th,N

)
⊕
⊕
b1∈B1

lt0+m′−ηq2+j+b1 .

That is, the variables nt0+m′+j is expressed as a function of a keystream bit zt0+m′−ηq2+j and of the
NFSR variables nt0+m′+i with i < j. By induction assumption nt0+m′+j can be expressed as a function
of the NFSR state variables at time instant t0 and of keystream bits {zt0+m′−ηq2+j |j ≥ 0}.

If we perform recursively this substitution process over Θ times, we can compute the value of Θ
variables {nt0+m′+j | j = 0, · · · , Θ− 1} from the value of the NFSR state variables at time instant t0 and
of some keystream bits {zt0+m′−ηq2+j | j = 0, · · · , Θ − 1}, where Θ is a parameter to be determined later
and d ≤ Θ ≤ d+ (m′ +m).

Regarding the case that ηq2 ≤ δs2 , when we express nt0+m′ , some terms of h1(L
(t0+m

′−ηq2)
Th,L , N

(t0+m
′−ηq2)

Th,N)

contains the later internal state variables nt0+m′+j , j ≥ 1. To derive successfully relations by induction,
the outcome of these terms is guessed, by extending the technique proposed in [22]. Let pg be the prob-
ability of the most probable guess, and we simply search in the keystream for the place where this is
satisfied. In this case, the probability that all the guesses for these terms are right is ρ = pΘg and the

expect length of the keystream is around 1
ρ = p−Θg .

Algorithm of recovering the NFSR State and the Round Key Bits Now we present the process
of recovering the NFSR state at some time instant and the round key bits as Algorithm 2. Before giving
into details of the algorithm, let us take a little bit about how it works.

After identifying the candidates of the LFSR initial state by Algorithm 1, we can get the value of
{nt+m′+i| i = 0, · · · , d + m′ + θ − 1} from the value of the NFSR state variables at time instant t and
of some keystream bits with the technique described previously. Moreover, d + m′ + θ − 1 consecutive
round key bits {k′t+i| i = 0, · · · , d + m′ + θ − 1} can be computed from the full internal state by using
the NFSR update function. Due to the fact that the RKF (·) is periodic, we have k′t+i = k′t+d+i, for
i = 0, · · · ,m′ + θ − 1. Since the size of the NFSR state for small state stream ciphers is often much
smaller than its security margin, exhaustively searching over all the possible values of the NFSR state is
always feasible. Therefore, we will try out all the possible values of the NFSR state at time instant t and
carry out the above process to identify the correct value. To exclude 2m

′ − 1 wrong values of the NFSR
state, we need m′ ticks at most for the period checking of the round key bits and another θ ticks for the
LFSR initial state. Once we recover successfully the NFSR state at some time instant, the round key bits
will also be restored.

3.4 Analysis of Time and Data Complexities

In this subsection, we give the complexity analysis of our divide-and-conquer fast correlation attacks.
With the time complexity of Algorithm 1 and Algorithm 2 denoted by T1 and T2 respectively, we have
the following theorem to estimate the time and data complexities of recovering the full internal state and
the round key bits for the target stream cipher.

Theorem 3. Let m and m′ be the size of the LFSR and NFSR from the target stream cipher, respectively.
Assuming that for the sum of keystream bits ⊕i∈Tzzt+i, there are r linear approximate equations on
the LFSR bits with absolute value of bias greater than ε

2 (ε > 0), then the data complexity is D =

|Tz|π2
β+2(m+1) ln 2

rε2 and the time complexity is T = T1 + T2, T1 = π2β+2(m+1) ln 2
rε2 + r2m+1−βp1 and T2 =

p
−(d+m′)
g × 2m

′ × (d+m′),

where T1 and T2 is the time complexities of Algorithm 1 and 2 respectively, β (0 ≤ β ≤ log(r)) is the

size of bypassed bits of the LFSR initial state , p1 = Q((πr−12β(m + 1) ln 2)
1
2), pgis the probability that

one internal state variable of the NFSR is correctly computed in Algorithm 2, d is the period of the round

key bits and the threshold in Algorithm 1 is determined as th = π2β+1(m+1) ln 2
rε .

16 S. Wang et al.

Algorithm 2 Recovery of the NFSR State at Some Time Instant and the Round Key Bits

Input: A set of candidates for the LFSR initial state, C; Some keystream bits {zt}.
Parameter: The number of ticks for state checking, m′ + θ, and setting θ = log(|C|); The probability that

all the internal state variables of NFSR {nt+m′+i}d+m
′+θ−1

i=0 are correctly computed, ρ.
Output: The whole state of the NFSR at some time instant t0, N (t0); The round key bits, {k′t0+i}

d−1
i=0 ; The

correct initial state of the LFSR, L(0).
1: for all L̄(0) ∈ C do
2: for all t ∈ {0, · · · , 1

ρ
− 1} do

3: for all N (t) ∈ {0, 1}m
′
do

/* Subroutine for state checking */
4: for i = 0 to d− 1 do
5: Compute nt+m′+i from zt+m′−ηq2 , · · · , zt+m′−ηq2+i with the technique described in Section ??;

6: Compute k′t+i = nt+m′+i ⊕ lt+i ⊕ ct+i ⊕ g(N (t+i)) and store it at the i-th position of the array
ξ, i.e., ξ[i] = k′t+i.

7: end for
8: for i = 0 to m′ + θ − 1 do
9: Compute nt+m′+d+i from zt+m′−ηq2 , · · · , zt+m′−ηq2+d+i;

10: Compute ei = nt+m′+d+i ⊕ lt+d+i ⊕ ct+d+i ⊕ g(N (t+d+i));
11: if ei 6= ξ[i] then
12: goto Step 3.
13: end if
14: end for
15: t0 = t;
16: return The current guessed state of NFSR at time instant t0, N (t0); the current initial state of

LFSR, L(0); the round key bits, ξ[i], i = 0, 1, · · · , d− 1.
17: end for
18: end for
19: end for

Proof. For the data complexity, as illustrated in Theorem 2, with th = 1
2Ωε the sufficient condition

to identify the unique correct initial state of the LFSR is Ω ≥ π2β+2(m+1) ln 2
rε2 . Thus we can safely set

Ω = π2β+2(m+1) ln 2
rε2 . Accordingly, the data complexity is D = |Tz|Ω = |Tz|π2

β+2(m+1) ln 2
rε2 keystream bits.

For the time complexity, we first find all the linear masks with absolute value of bias greater than
ε
2 and compute the inverse of corresponding matrices {Fuj}rj=1 in preparation. Since the time cost in
preparation is practical, we will not add it into the following estimation of the time complexity. With
exploiting Theorem 1, we construct the parity-check equations like (L(0) × Fuj) · gdt′ ⊕ ẑdt′ ⊕ ĉdt′ ⊕ k̂0 =
edt,j , j = 1, · · · , r. For all the possible values of the LFSR initial state, the parity-check equations
constructed from gdt′ and ẑdt′ ⊕ ĉdt′ are evaluated and a threshold is introduced to filter these state
values. Subsequently, we multiply the inverse of matrices F−1uj into all the state values which pass the
statistical test and make two majority polls independently to identify candidates of the LFSR initial
state. This process is detailed in Algorithm 1 and the complexity cost is counted precisely as follows.
The preparation of w(a) at Part 1 will take a time complexity of Ω, while FWHT for w(a) needs time
complexity of (m−β)2m−β with memory 2m−β at Part 2. During Part 3 of Algorithm 1, there are in total
(2m−β×2p1+r2−βp2)×r operations to multiply the whole set of matrices {F−1uj }

r
j=1 to all the state values

which pass the statistical test for two majority polls. Therefore, the time complexity of Algorithm 1 is
computed as T1 = Ω+(m−β)2m−β+r2m+1−βp1+r22−βp2. According to Theorem 2, we can set th = 1

2Ωε

and Ω = π2β+2(m+1) ln 2
rε2 for Algorithm 1 to identify successfully the LFSR initial state. Then, we have

that th = π2β+1(m+1) ln 2
rε , p1 = Q(1

2

√
Ωε) = Q((πr−12β(m+ 1) ln 2)

1
2) and p2 = Q(− 1

2

√
Ωε) = 1− p1 . In

the useful attack parameters, since the size of the LFSR state is always much smaller in Grain-like small

state stream ciphers, (m−β)2m−β << r2m+1−βp1 and (m−β)2m−β << π2β+2(m+1) ln 2
rε2 always hold and

we regard it negligible. Therefore, we only need to set β such that a balance between time complexities
of Part 1 and Part 3 is achieved. Besides, in Part 3 of Algorithm 1, since r22−βp2 is significantly smaller
than r2m+1−βp1 in the useful attack parameters, we treat it as negligible. Therefore, the time complexity

becomes T1 = π2β+2(m+1) ln 2
rε2 + r2m+1−βp1. We choose the value with the maximum poll as a candidate

Fast Correlation Attacks on Grain-like Small State Ciphers 17

of the LFSR initial state in Algorithm 1. Therefore, the probability that a wrong value is chosen as a
candidate of the LFSR initial state is less than 2−(m+1) and only the correct value of LFSR state will be
inputted into Algorithm 2. Then, we need to exhaustively search all possible values of the NFSR state
at some time instant and perform the subroutine of state checking to find the correct one. Since d+m′

internal state variables are correctly computed with the probability ρ = pd+m
′

g , the expected length of the

keystream to search is 1
ρ = p

−(d+m′)
g , where pg is the probability that one internal variable of the NFSR

is correctly computed. After Algorithm 2 completes, the full internal state and d consecutive round key

bits can be restored. This process will take a time complexity of p
−(d+m′)
g × 2m

′ × (d+m′). ut

Remark 2. Here, we explain for the Assumed Property 2) of the generic model. When the size of bypassed

bits β is equal to 0, we need Ω = 4π(m+1) ln 2
rε2 parity-check equations to carry out Algorithm 1 of our

attack methods. To have a more efficient attack than exhaustively searching the secret key, the necessary

condition should be satisfied Ω = 4π(m+1) ln 2
rε2 ≤ 2κ. The Assumed Property 2) is derived by plugging the

rough estimation r = 2s1×|Tz| and ε = 2(s2+1)×|Tz|+q2 × ε|Tz|h × εq2g∗ in this inequality.

4 Applications: Plantlet Case

In this section, our divide-and-conquer fast correlation attacks will be applied to Plantlet. First, we show
how to derive the linear approximate equations which are used to construct the desirable parity-check
equations for Algorithm 1. Then under the condition that the LFSR initial state is known, we give a
cryptanalysis of the degraded system of Plantlet. At last, the complexities of recovering the secret key
are presented.

Before showing details of our attacks, we provide a brief description of Plantlet in the keystream gen-
eration phase. Plantlet is a bit-oriented stream cipher and utilizes an 80-bit secret key K = (k0, · · · , k79)
and a 90-bit public initial value IV = (iv0, · · · , iv89) to generate the keystream. For Plantlet, there are
four parts involved, a 61-bit LFSR whose state at time instant t is denoted by L(t) = (lt, · · · , lt+60), a
linked 40-bit NFSR whose state at time instant t is denoted by N (t) = (nt, · · · , nt+39), an 80-bit fixed
key register and a 9-bit counter register Cc = (c0t , · · · , c8t) allocated for the initialization/keystream gen-
eration. The first seven bits (c0t , · · · , c6t) of the counter are used to count cyclically from 0 to 79, i.e.,
it resets to 0 after 79 is reached. The two most significant bits realize a 2-bit counter to determine the
number of elapsed clock cycles in the initialization phase, i.e., it is triggered by the resets of the lower 7
bits.

The LFSR is updated independently and recursively by a linear function as lt+61 = f(L(t)) = lt ⊕
lt+14 ⊕ lt+20 ⊕ lt+34 ⊕ lt+43 ⊕ lt+54. The NFSR is updated as defined in the following:

nt+40 = k′t ⊕ c4t ⊕ lt ⊕ g(N (t))

= k′t ⊕ c4t ⊕ lt ⊕ nt ⊕ nt+13 ⊕ nt+19 ⊕ nt+35 ⊕ nt+39

⊕ nt+2nt+25 ⊕ nt+3nt+5 ⊕ nt+7nt+8 ⊕ nt+14nt+21

⊕ nt+16nt+18 ⊕ nt+22nt+24 ⊕ nt+26nt+32

⊕ nt+33nt+36nt+37nt+38

⊕ nt+10nt+11nt+12 ⊕ nt+27nt+30nt+31,

(12)

where k′t is the round key bit and c4t is the counter bit from Cc at time instant t. The round key function
simply cyclically selects the next key bit, i.e., k′t = RKF (K, t) = k(tmod 80), t ≥ 0.

The filtering function is defined as

h
(
L
(t)
Th,L , N

(t)
Th,N

)
= nt+4lt+6 ⊕ lt+8lt+10 ⊕ lt+32lt+17

⊕ lt+19lt+23 ⊕ nt+4lt+32nt+38,

where the two subsets
L
(t)
Th,L = (lt+6, lt+8, lt+10, lt+17, lt+19, lt+23, lt+32)

and N
(t)
Th,N = (nt+4, nt+38). The entire output function is determined by

zt = h
(
L
(t)
Th,L , N

(t)
Th,N

)
⊕ lt+30 ⊕

⊕
b∈B

nt+B, (13)

18 S. Wang et al.

where B = {1, 6, 15, 17, 23, 28, 34}.
It is obviously that the Assumed Property 1 holds for Plantlet and the RKF (·) is periodic with a

cycle of minimum length d = 80, i.e., kt+80 = kt. As for the Assumed Property 2, we give a more accurate
analysis in the following discuss.

4.1 Deriving Linear Approximate Equations

In this subsection, we expect to estimate the number and bias of different linear approximate equations
which are used to construct the desirable parity-check equations. First, we derive the linear approximate
representations for the sum of some keystream bits. Then, we can evaluate the number and bias of
different linear approximate equations by exhaustively searching all the possible representations.

Linear Approximate Representations Considering the best linear approximation of the NFSR up-
date function Eq.(12) with bias 2−9.02 as follows,

nt+40 ≈ k′t ⊕ c4t ⊕ lt ⊕ nt ⊕ nt+13 ⊕ nt+19 ⊕ nt+35 ⊕ nt+39,

we choose the set of taps as Tz = {0, 13, 19, 35, 39, 40}. Then, we have⊕
i∈Tz

zt+i =
⊕
i∈Tz

lt+i+30 ⊕
⊕
b∈B

lt+b ⊕
⊕
i∈Tz

h(L
(t+i)
Th,L , N

(t+i)
Th,N)⊕

⊕
b∈B

g∗(N (t+b))⊕
⊕
b∈B

k′t+b ⊕
⊕
b∈B

c4t+b,

where g∗(N (t)) = nt⊕nt+13⊕nt+19⊕nt+35⊕nt+39⊕g(N (t)) and it has the same bias, i.e., Pr[g∗(N (t)) =
0] = 1

2 + 2−9.02. Let ai ∈ {0, 1}9 be the input linear mask for h function at time instant t + i, i.e.,
ai = (ai[0], · · · , ai[8]). Then

h(L
(t+i)
Th,L , N

(t+i)
Th,N) ≈ ai[0 : 6] ·

(
L
(t+i)
Th,L

)T
⊕ ai[7, 8] ·

(
N

(t+i)
Th,N

)T
with bias εh,i(ai) = ±2−5 or 0 and ai[x : y] denotes subvector indexed from x-th bit to y-th bit. Due
to |T| = 6, there are 6 active h functions which need to be approximated. Let aTz ∈ {0, 1}9×6 be the
concatenated linear mask, i.e, aTz = (a0,a13,a19,a35,a39,a40). The total bias of all the approximated
h functions is computed as εh,Tz (aTz) = 26−1×

∏
i∈Tz εh,i(ai) because of the piling-up lemma. Note that

if we use ai such that εh,i(ai) = 0 for any i ∈ Tz, then εh,Tz is equal to zero. Otherwise, εh,Tz = ±2−25.
Let

εg∗,B(aTz) = Pr

[⊕
i∈Tz

ai[7, 8] ·
(
N

(t+i)
Th,N

)T
⊕
⊕
b∈B

g∗(N (t+b)) = 0

]
− 1

2

and the bias is independent on ai[0 : 6] for all i ∈ Tz. We expect that the bias εg∗,B(aTz) is high and only
care about the situation where the bias is not equal to zero. When ai[7, 8] = 0 for all i ∈ Tz, we have
εg∗,B(aTz) = Pr

[⊕
b∈B g

∗(N (t+b)) = 0
]
− 1

2 . To compute the bias, we choose some variables such that⊕
b∈B g

∗(N (t+b)) can be divided into some pieces which have fewer variables and no common variables
between them when the chosen variables are fixed. Then we evaluate the bias by applying the piling-up
lemma to all the pieces when we try out all the possible values of chosen variables. Therefore, the bias
εg∗,B(aTz) could be derived as soon as we add up the biases in all possible cases of the chosen variables.

Similarly, the bias εg∗,B(aTz) can be evaluated when ai[7, 8] 6= 0 for any i ∈ Tz. If one of a19[8],
a35[8], a39[8] and a40[8] is 1, the bias is always 0 because nt+57, nt+73, nt+77 and nt+78 are not involved
in
⊕

b∈B g
∗(N (t+b)). We summarize εg∗,B(aTz) when a19[8], a35[8], a39[8] and a40[8] are 0 in Table 2.

For any fixed aTz , we can derive the following linear approximate representation

⊕
i∈Tz

zt+i ≈
⊕
i∈Tz

lti+30 ⊕
⊕
b∈B

lt+b ⊕
⊕
i∈Tz

ai[0 : 6] ·
(
L
(t+i)
Th,L

)T
⊕
⊕
b∈B

k′t+b ⊕
⊕
b∈B

c4t+b

and its bias is evaluated as 2× εh,Tz (aTz)× εg∗,B(aTz).

Fast Correlation Attacks on Grain-like Small State Ciphers 19

Table 2. Summary of bias when ai[7, 8] is fixed. Let ∗ be the arbitrary bit.

a0[7] a0[8] a13[7] a13[8] a19[7] a35[7] a39[7] a40[7] εg∗,B
0 0 0 0 0 0 0 0 +2−21.87

1 0 0 0 0 0 0 0 +2−21.87

0 1 0 0 0 0 0 0 +2−21.87

1 1 0 0 0 0 0 0 +2−21.87

0 0 1 0 0 0 0 0 +2−21.87

1 0 1 0 0 0 0 0 +2−21.87

0 1 1 0 0 0 0 0 +2−21.87

1 1 1 0 0 0 0 0 +2−21.87

0 0 0 1 0 0 0 0 −2−25.61

1 0 0 1 0 0 0 0 −2−25.61

0 1 0 1 0 0 0 0 −2−25.61

1 1 0 1 0 0 0 0 −2−25.61

0 0 1 1 0 0 0 0 −2−25.61

1 0 1 1 0 0 0 0 −2−25.61

0 1 1 1 0 0 0 0 −2−25.61

1 1 1 1 0 0 0 0 −2−25.61

0 0 0 0 0 0 1 0 +2−22.31

1 0 0 0 0 0 1 0 +2−22.31

0 1 0 0 0 0 1 0 +2−22.31

1 1 0 0 0 0 1 0 +2−22.31

0 0 1 0 0 0 1 0 +2−22.31

1 0 1 0 0 0 1 0 +2−22.31

0 1 1 0 0 0 1 0 +2−22.31

1 1 1 0 0 0 1 0 +2−22.31

0 0 0 1 0 0 1 0 +2−24.29

1 0 0 1 0 0 1 0 +2−24.29

0 1 0 1 0 0 1 0 +2−24.29

1 1 0 1 0 0 1 0 +2−24.29

0 0 1 1 0 0 1 0 +2−24.29

1 0 1 1 0 0 1 0 +2−24.29

0 1 1 1 0 0 1 0 +2−24.29

1 1 1 1 0 0 1 0 +2−24.29

0 0 0 0 0 0 0 1 +2−21.87

1 0 0 0 0 0 0 1 +2−21.87

0 1 0 0 0 0 0 1 +2−21.87

1 1 0 0 0 0 0 1 +2−21.87

0 0 1 0 0 0 0 1 +2−21.87

1 0 1 0 0 0 0 1 +2−21.87

0 1 1 0 0 0 0 1 +2−21.87

1 1 1 0 0 0 0 1 +2−21.87

0 0 0 1 0 0 0 1 −2−25.61

1 0 0 1 0 0 0 1 −2−25.61

0 1 0 1 0 0 0 1 −2−25.61

1 1 0 1 0 0 0 1 −2−25.61

0 0 1 1 0 0 0 1 −2−25.61

1 0 1 1 0 0 0 1 −2−25.61

0 1 1 1 0 0 0 1 −2−25.61

1 1 1 1 0 0 0 1 −2−25.61

0 0 0 0 0 0 1 1 +2−22.31

1 0 0 0 0 0 1 1 +2−22.31

0 1 0 0 0 0 1 1 +2−22.31

1 1 0 0 0 0 1 1 +2−22.31

0 0 1 0 0 0 1 1 +2−22.31

1 0 1 0 0 0 1 1 +2−22.31

0 1 1 0 0 0 1 1 +2−22.31

1 1 1 0 0 0 1 1 +2−22.31

0 0 0 1 0 0 1 1 +2−24.29

1 0 0 1 0 0 1 1 +2−24.29

0 1 0 1 0 0 1 1 +2−24.29

1 1 0 1 0 0 1 1 +2−24.29

0 0 1 1 0 0 1 1 +2−24.29

1 0 1 1 0 0 1 1 +2−24.29

0 1 1 1 0 0 1 1 +2−24.29

1 1 1 1 0 0 1 1 +2−24.29

∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 0

Linear Approximate Equations From the linear approximate representations derived at the previous
part, we can derive the following linear approximate equation with some fixed linear mask u⊕

i∈Tz

zt+i ≈ L(0) ·
(
F t × u

)
⊕
⊕
b∈B

k′t+b ⊕
⊕
b∈B

c4t+b,

20 S. Wang et al.

where u ∈ {0, 1}61 is a column vector. If different aTz ’s derive the same linear mask u, the corresponding
biases should be added up to get the bias of u, i.e., εu =

∑
{aTz |U(aTz)=u} 2 × εh,Tz (aTz) × εg∗,B(aTz),

where

U(aTz) =
⊕
i∈Tz

((ai[0]gi+6 ⊕ ai[1]gi+8 ⊕ ai[2]gi+10 ⊕ ai[3]gi+17 ⊕ ai[4]gi+19 ⊕ ai[5]gi+23 ⊕ ai[6]gi+32)

⊕ gi+30)⊕
⊕
b∈B

gb.

Clearly, since the function U(aTz) is independent on ai[7, 8] for any i ∈ Tz, we need to sum up
all biases with a non-zero εg∗,B summarized in Table 2, where ai[0, · · · , 6] is identical and only ai[7, 8]
varies for i ∈ Tz. Let V be a subset of {0, 1}9×6 whose elements are 64 corresponding vectors aTz with
non-zero εg∗,B in Table 2. Moreover, there are some special relationships. When we focus on a0[4] and
a13[0], corresponding 61-bit column vectors are identical because g0+19 = g13+6 = g19. That means
(a0[4], a13[0]) = (0, 0) and (a0[4], a13[0]) = (1, 1) derive the same u, and (a0[4], a13[0]) = (1, 0) and
(a0[4], a13[0]) = (0, 1) also derive the same u. We have 7 such relationships as showed in the following.

- a0[4] and a13[0] (since g0+19 = g13+6 = g19).
- a0[5] and a13[2] (since g0+23 = g13+10 = g23).
- a0[6] and a13[4] (since g0+32 = g13+19 = g32).
- a13[5] and a19[3] (since g13+23 = g19+17 = g36).
- a13[6] and a35[2] (since g13+32 = g35+10 = g45).
- a35[2] and a39[0] (since g35+10 = g39+6 = g45).
- a35[5] and a39[4] (since g35+23 = g39+19 = g58).

Let w1, · · · ,w7 be the (9 × 6)-bit vectors generated by the above relationships with the corresponding
two positions are 1 but all the other positions are 0. Let W = span(w1, · · · ,w7) be the linear span
whose basis is w1, · · · ,w7. Therefore, the bias of u denoted by εu is estimated as εu =

∑
w∈W

∑
v∈V 2×

εh,Tz (aTz ⊕ v ⊕w)× εg∗,B(aTz ⊕ v).
Note that a40[0, · · · , 6] is not involved in W , and the absolute value of bias εu is invariable as far as

we use a40[0, · · · , 6] satisfying εh,0 = ±2−5. Therefore, we do not search a40[0, · · · , 6] any more. Finally,
we searched exhaustively 235 aTz [0, · · · , 6] with a40[0, · · · , 6] = 0 and there are 64 a40[0, · · · , 6] such that
εh,0 = ±2−5. As a result, we found r = 7077888 × 64 ≈ 228.76 u whose absolute value of bias is greater
than ε = 2−38.08.

4.2 The Degraded System

In the following, we will show that any internal state variable of the NFSR can be computed from the
value of the NFSR state variables at fixed time instant t0 and of some keystream bits, under the condition
that the LFSR initial state L(0) is known.

Forwards: We first consider how to express nt0+40. According to Eq.(13), zt0+6 is the first keystream
bit which certainly depends on nt0+40, thus we have

nt0+40 = zt0+6 ⊕ (nt0+7 ⊕ nt0+12 ⊕ nt0+21 ⊕ nt0+23 ⊕ nt0+29 ⊕ nt0+34)

⊕ (lt0+12nt0+10 ⊕ lt0+38nt0+10nt0+44)

⊕ (lt0+36 ⊕ lt0+14lt0+16 ⊕ lt0+38lt0+23 ⊕ lt0+25lt0+29),

where lt0+38nt0+10nt0+44 is a quadratic term which contains the later internal state variable nt0+44. To
derive successfully the linear relations by induction, the outcome of term lt0+38nt0+10nt0+44 is guessed.

The most probable guess would be that this term produces zero, since Pr[x&y&z = 0] = 7
8 . Next we

assume that for all i, t0 + 40 ≤ i < t0 + 40 + j, all the bits ni have be expressed as a linear combination
of the NFSR state variables at time instant t0 and of some keystream bits when the outcome of term
l(i−34)+32n(i−34)+4n(i−34)+38 is guessed t0 ≤ i < t0 + 40 + j. Note that zt0+6+j is the first keystream bit
which is certainly dependent on nt0+40+j , which indicates that

nt0+40+j = zt0+6+j ⊕ (nt0+7+j ⊕ nt0+12+j ⊕ nt0+21+j ⊕ nt0+23+j ⊕ nt0+29+j ⊕ nt0+34+j)

⊕ (lt0+12+jnt0+10+j ⊕ lt0+38+jnt0+10+jnt0+44+j)

⊕ (lt0+36+j ⊕ lt0+14+j lt0+16+j ⊕ lt0+38+j lt0+23+j ⊕ lt0+25+j lt0+29+j)

Fast Correlation Attacks on Grain-like Small State Ciphers 21

and the variable nt0+40+j is expressed as a function of the internal NFSR variables ni with i < t0+40+j,
nt0+44+j and of a keystream bit zt0+6+j . When we guess the outcome of term lt0+38+jnt0+10+jnt0+44+j ,
by induction assumption nt0+40+j can be expressed as a linear combination of the NFSR state variables
at time instant t0 and of keystream bits {zt0+6+j |j ≥ 0}.

Whenever the outcomes of terms {lt0+38+jnt0+10+jnt0+44+j |j = 0, · · · , Θ − 1} are guessed, we can
get the value of Θ variables {nt0+40+j | j = 0, · · · , Θ − 1} from the value of the NFSR state variables at
time instant t0 and of keystream bits {zt0+6+j | j = 0, · · · , Θ − 1}, where Θ = d + m′ + θ = 80 + 40 +
log(2m+1pw + 1) and pw is the probability that a wrong value is chosen as the LFSR initial state during

Algorithm 1. The probability that all the guesses for items are right is ρ =
(
7
8

)Θ
and the expect length

of the keystream is around 1
ρ =

(
7
8

)−Θ
.

Backwards: To get the value of Θ variables {nt0−j | j = 1, · · · , Θ = 80 + 40} from the value of the
NFSR state variables at time instant t0 and of keystream bits {zt0−2−j | j = 0, · · · , Θ − 1}, we need to
perform recursively the following equation Θ times

nt−1 = zt−2 ⊕ (nt+4 ⊕ nt+13 ⊕ nt+15 ⊕ nt+21 ⊕ nt+26 ⊕ nt+32)⊕ (lt+4nt+2 ⊕ lt+30nt+2nt+36)

⊕ (lt+28 ⊕ lt+6lt+8 ⊕ lt+30lt+15 ⊕ lt+17lt+21).

Similarly with Algorithm 2, we can carry out a process of state checking to recover the NFSR sate at
some time instant and the round key bits with time complexity 240 × (80 + 40) ≈ 246.91.

4.3 Analysis of Complexities for Attacking Plantlet

According to Theorem 3, we need Ω = π2β+2(61+1) ln 2
rε2 parity-check equations to identify the correct

LFSR initial state. Therefore, the data complexity is D = 6 × π2β+2(61+1) ln 2
rε2 keystream bits, the time

complexities of Algorithm 1 and Algorithm 2 are T1 = π2β+2(61+1) ln 2
rε2 + r261+1−βp1 and T2 = 240× (80 +

40) ≈ 246.91 respectively, where p1 = Q((πr−12β(61 + 1) ln 2)
1
2), r = 228.76 and ε = 2−37.08. Then, we can

get the following time and data complexities for attacking Plantlet with different choices of β, listed in
Table 3.

Table 3. Time, memory and data complexities of attacking Plantlet.

β Time Memory Data

10 279.74 251 267.06

11 278.73 250 268.06

12 277.72 249 269.06

13 276.70 248 270.06

14 275.69 247 271.06

15 274.68 246 272.06

16 273.75 245 273.06

17 273.09 244 274.06

As the size of bypassed bits β increases, the time complexity decreases temporarily, but more data
complexity is required for a successful attack. When β = 16, a balance between time and data complexity
is achieved, and the required time and data complexity are respectively 273.75 and 273.06. When β = 10,
the attack has the minimum data complexity 267.06 with time complexity of 279.74.

Remark 3. For Plantlet, the round key bits are the whole secret key ki, 0 ≤ i ≤ 79.

5 Applications: Fruit-v2 Case

In this section, we apply our divide-and-conquer fast correlation attacks to Fruit-v2. First, we show how to
derive the linear approximate equations. Then under the condition that the LFSR initial state is known,

22 S. Wang et al.

a cryptanalysis is given for the degraded system of Fruit-v2. As a result, the complexities of recovering
the secret key are presented.

Before showing details of our attacks, we provide a brief description of Fruit-v2 in the initialization
and keystream generation phases. Fruit-v2 is a bit-oriented stream cipher and utilizes an 80-bit secret
key K = (k0, · · · , k79) and a 70-bit public initial value IV = (iv0, · · · , iv69) to generate the keystream.
It is composed of a 43-bit LFSR whose state at time instant t is denoted by L(t) = (lt, · · · , lt+42), a
linked 37-bit NFSR whose state at time instant t is denoted by N (t) = (nt, · · · , nt+36), an 80-bit fixed
key register and two counter registers, a 7-bit Cr = (c0t , · · · , c6t) and an 8-bit Cc = (c7t , · · · , c14t) allocated
for the round key function and the initialization/keystream generation, respectively. These two counters
increase one by one independently at each clock, and work continually, i.e., after they becomes all ones,
counting from zeros to all ones again. Note that c6t and c14t are LSBs of the two counters respectively.

The LFSR is updated independently and recursively by a linear function as lt+43 = f(L(t)) = lt ⊕
lt+8 ⊕ lt+18 ⊕ lt+23 ⊕ lt+28 ⊕ lt+37. The NFSR is updated as defined in the following:

nt+37 = k′t ⊕ c3t ⊕ lt ⊕ g(N (t))

= k′t ⊕ c3t ⊕ lt ⊕ nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+12nt+3

⊕ nt+14nt+25 ⊕ nt+5nt+23nt+31

⊕ nt+8nt+18 ⊕ nt+28nt+30nt+32nt+34,

(14)

where k′t is the round key bit and c3t is the counter bit from Cr at time instant t. The round key bit
is generated by combining 6 bits of the key as k′t = RKF (K, t) = ksky+32 ⊕ kpku+64 ⊕ kq+16 ⊕ kr+48.
Here, the values of s, y, u, p, q and r are given as s = (c0t c

1
t c

2
t c

3
t c

4
t), y = (c5t c

6
t c

0
t c

1
t c

2
t), u = (c3t c

4
t c

5
t c

6
t),

p = (c0t c
1
t c

2
t c

3
t), q = (c4t c

5
t c

6
t c

0
t c

1
t) and r = (c2t c

3
t c

4
t c

5
t c

6
t).

The filtering function is defined as

h
(
L
(t)
Th,L , N

(t)
Th,N

)
= lt+6lt+15 ⊕ lt+1lt+22 ⊕ nt+35lt+27

⊕ lt+11lt+33 ⊕ nt+1nt+33lt+42,

where the two subsets are

L
(t)
Th,L = (lt+1, lt+6, lt+11, lt+15, lt+22, lt+27, lt+33, lt+42)

and N
(t)
Th,N = (nt+1, nt+33, nt+35). The entire output function is determined by

zt = h
(
L
(t)
Th,L , N

(t)
Th,N

)
⊕ lt+38 ⊕

⊕
b∈B

nt+B, (15)

where B = {0, 7, 13, 19, 24, 29, 36}.
During the initialization phase, the secret key bits are loaded to the NFSR and LFSR from LSB

to MSB, i.e., ni = ki, 0 ≤ i ≤ 36; li = k37+i, 0 ≤ i ≤ 42. Then the IV bits are padded to 130-bit
IV ′ = (iv′0, · · · , iv′129) by concatenating 1 bit one and 9 bits zeros to the head of IV , and 50 bits zeros
to the end of IV . In the first step of the initialization, Cr, Cc are set to 0 and the cipher is clocked
130 rounds as follows: the LFSR is updated as lt+43 = zt ⊕ iv′t ⊕ f(L(t)), while the NFSR is updated as
nt+37 = zt ⊕ iv′t ⊕ k′t ⊕ c3t ⊕ lt ⊕ g(N (t)), and no keystream is generated. Then, in the second step of the
initialization, all bits of Cr are set equal to the LSBs of the NFSR except the last bit that is equal to the
LSB of the LFSR, and also l130 is set to 1. Hereafter the cipher is clock 80 rounds without the feedback
in the LFSR and NFSR, i.e., the update function of the LFSR is changed to lt+43 = f(N (t)), while the
update function of the NFSR is changed to nt+37 = k′t⊕ c3t ⊕ lt⊕ g(N (t)), and no keystream is generated.
After the initialization phase of 210 rounds clocks, the cipher enters the keystream generation phase and
the keystream bits are produced.

Note that Cr is only known in the first step (130 rounds) of the initialization phase. Since Cr is fed
from the LFSR and NFSR after the first 130 rounds, it is not known any more. However, the counter bit
c3t is periodic with a cycle of length 24 = 16, i.e., c3t+16 = c3t , ∀t ≥ 0, and the cycle is 8 zeros followed by
8 ones.

It is obviously that the Assumed Property 1 holds for Fruit-v2 and the RKF (·) is periodic with a
cycle of minimum length d = 128, i.e., k′t+128 = k′t. Regarding the Assumed Property 2, we give a more
accurate analysis in the following discuss.

Fast Correlation Attacks on Grain-like Small State Ciphers 23

5.1 Deriving Linear Approximate Equations

In this subsection, we expect to estimate the number and bias of different linear approximate equations
which are used to construct the desirable parity-check equations. First, we derive the linear approximate
representations for the sum of some keystream bits. Then, we can evaluate the number and bias of
different linear approximate equations by exhaustively searching all the possible representations.

Linear Approximate Representations Considering the best linear approximation of the NFSR up-
date function Eq.(14) with bias 2−4.6 as follows,

nt+37 ≈ k′t ⊕ c3t ⊕ lt ⊕ nt ⊕ nt+10 ⊕ nt+20,

we choose the set of taps as Tz = {0, 10, 20, 37}. Then, we have⊕
i∈Tz

zt+i =
⊕
i∈Tz

lt+i+38 ⊕
⊕
b∈B

lt+b ⊕
⊕
i∈Tz

h(L
(t+i)
Th,L , N

(t+i)
Th,N)⊕

⊕
b∈B

g∗(N (t+b))⊕
⊕
b∈B

k′t+b ⊕
⊕
b∈B

c3t+b,

where g∗(N (t)) = nt ⊕ nt+10 ⊕ nt+20 ⊕ g(N (t)) and it has the same bias 2−4.6, i.e., Pr[g∗(N (t)) = 0] =
1
2 + 2−4.6.

Let ai ∈ {0, 1}11 be the input linear mask for h function at time instant t+ i, ai = (ai[0], · · · , ai[10]).
Then

h(L
(t+i)
Th,L , N

(t+i)
Th,N) ≈ ai[0 : 7] ·

(
L
(t+i)
Th,L

)T
⊕ ai[8 : 10] ·

(
N

(t+i)
Th,N

)T
with bias εh,i(ai) = ± 3

128 or ± 1
128 . Due to |T| = 4, there are 4 active h functions which need to be

approximated. Let aTz ∈ {0, 1}11×4 be the concatenated linear mask, i.e., aTz = (a0,a10,a20,a37). The
total bias of all the approximated h functions is computed as εh,Tz (aTz) = 24−1 ×

∏
i∈Tz εh,i(ai) because

of the piling-up lemma.
Let

εg∗,B(aTz) = Pr

[⊕
i∈Tz

ai[8 : 10] ·
(
N

(t+i)
Th,N

)T
⊕
⊕
b∈B

g∗(N (t+b)) = 0

]
− 1

2

and the bias is independent on ai[0 : 7] for all i ∈ Tz. If one of a0[8], a10[8] and a37[10] is 1, the bias is
always 0 because nt+1, nt+11 and nt+72 are not involved in

⊕
b∈B g

∗(N (t+b)). We summarize εg∗,B(aTz)
when a0[8], a10[8] and a37[10] are 0 in Table 4.

For any fixed aTz , we can derive the following linear approximate representation⊕
i∈Tz

zt+i ≈
⊕
i∈Tz

lti+38 ⊕
⊕
b∈B

lt+b ⊕
⊕
i∈Tz

ai[0 : 7] ·
(
L
(t+i)
Th,L

)T
⊕
⊕
b∈B

k′t+b ⊕
⊕
b∈B

c3t+b

and its bias is evaluated as 2× εh,Tz (aTz)× εg∗,B(aTz).

Linear Approximate Equations From the above linear approximate representations, we can derive
the linear approximate equation with some fixed linear mask u⊕

i∈Tz

zt+i ≈ L(0) ·
(
F t × u

)
⊕
⊕
b∈B

k′t+b ⊕
⊕
b∈B

c3t+b,

where u ∈ {0, 1}43 is a column vector. If different aTz ’s derive the same linear mask u, corresponding
biases should be added up to get the bias of u, i.e., εu =

∑
{aTz |U(aTz)=u} 2 × εh,Tz (aTz) × εg∗,B(aTz),

where

U(aTz) =
⊕
i∈Tz

((ai[0]gi+1 ⊕ ai[1]gi+6 ⊕ ai[2]gi+11 ⊕ ai[3]gi+15 ⊕ ai[4]gi+22 ⊕ ai[5]gi+27 ⊕ ai[6]gi+33

⊕ ai[7]gi+42)⊕ gi+38)⊕
⊕
b∈B

gb.

24 S. Wang et al.

Table 4. Summary of bias when ai[8 : 10], i ∈ Tz are fixed. Let ∗ be the arbitrary bit.

a0[9] a0[10] a10[9] a10[10] a20[8] a20[9] a20[10] a37[8] a37[9] εg∗,B
0 0 0 0 0 0 0 0 0 +2−15.08

1 0 0 0 0 0 0 0 0 +2−15.08

0 0 1 0 0 0 0 0 0 +2−15.35

1 0 1 0 0 0 0 0 0 −2−15.35

0 0 0 0 1 0 0 0 0 +2−19.87

1 0 0 0 1 0 0 0 0 +2−19.87

0 0 1 0 1 0 0 0 0 +2−20.19

1 0 1 0 1 0 0 0 0 −2−20.19

0 0 0 0 0 0 0 1 0 +2−15.08

1 0 0 0 0 0 0 1 0 +2−15.08

0 0 1 0 0 0 0 1 0 +2−15.35

1 0 1 0 0 0 0 1 0 −2−15.35

0 0 0 0 1 0 0 1 0 +2−19.87

1 0 0 0 1 0 0 1 0 +2−19.87

0 0 1 0 1 0 0 1 0 +2−20.19

1 0 1 0 1 0 0 1 0 −2−20.19

0 0 0 0 0 0 0 0 1 +2−17.89

1 0 0 0 0 0 0 0 1 +2−17.89

0 0 1 0 0 0 0 0 1 +2−18.15

1 0 1 0 0 0 0 0 1 −2−18.15

0 0 0 0 1 0 0 0 1 +2−22.68

1 0 0 0 1 0 0 0 1 +2−22.68

0 0 1 0 1 0 0 0 1 +2−23.00

1 0 1 0 1 0 0 0 1 −2−23.00

0 0 0 0 0 0 0 1 1 +2−17.89

1 0 0 0 0 0 0 1 1 +2−17.89

0 0 1 0 0 0 0 1 1 +2−18.15

1 0 1 0 0 0 0 1 1 −2−18.15

0 0 0 0 1 0 0 1 1 +2−22.68

1 0 0 0 1 0 0 1 1 +2−22.68

0 0 1 0 1 0 0 1 1 +2−23.00

1 0 1 0 1 0 0 1 1 −2−23.00

∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 0

Since the function U(aTz) is independent on ai[8, 9, 10], we need to sum up all biases with a non-
zero εg∗,B summarized in Table 4, where ai[0, · · · , 7] is identical and only ai[8, 9, 10] varies for i ∈ Tz.
Let V be subset of {0, 1}11×4 whose elements are 32 corresponding vectors aTz with non-zero εg∗,B in
Table 4. Moreover, there are some special relationships similar to the case of Plantlet, and we have three
relationships as showed in the following.

- a0[2] and a10[0] (since g0+11 = g10+1 = g11).
- a0[7] and a20[4] (since g0+42 = g20+22 = g42).
- a10[2] and a20[0] (since g10+11 = g20+1 = g21).

Let w1,w2,w3 be the (11 × 4)-bit vectors generated by the above relationships with the corresponding
two positions are 1 but all the other positions are 0. Let W = span(w1,w2,w3) be the linear span whose
basis is w1,w2,w3. Therefore, the bias of u is estimated as εu =

∑
w∈W

∑
v∈V 2× εh,Tz (aTz ⊕ v⊕w)×

εg∗,B(aTz ⊕ v).
As a result, we searched exhaustively 232 aTz [0, · · · , 7] and found r = 16777216 = 224 u whose

absolute value of bias is greater than ε = 2−29.52.

Remark 4. Since the counter bit c3t is unknown in Fruit-v2, there is slight difference in constructing
parity-check equations. We redefine d as the least common multiple of the two cycle lengths of k′t and c3t .
The round key bits k′t and the counter bits c3t have cycles of length 128 and 16, respectively. Therefore,
we have d = 128 and k′t0+dt′ ⊕ c3t0+dt′ = k′t0 ⊕ c3t0 . The parity-check equations are constructed as(
L(0) × Fuj

)
· gdt′ ⊕ ẑdt′ ⊕ (ĉ0 ⊕ k̂0), where ĉ0 =

⊕
b∈B c

3
b and k̂0 =

⊕
b∈B k

′
b. Then we treat the whole

unknown bit ĉ0 ⊕ k̂0 of Fruit-v2 same to the k̂0 of the generic model in the remaining discuss.

5.2 The Degraded System

In the following, we will show that any internal state variable of the NFSR can be computed from the
value of the NFSR state variables at fixed time instant t0 and of some keystream bits, under the condition
that the LFSR initial state L(0) is known.

Fast Correlation Attacks on Grain-like Small State Ciphers 25

Forwards: We first consider how to express nt0+37. According to Eq.(15), zt0+1 is the first keystream
bit which depends on nt0+37, thus we have

nt0+37 = zt0+1 ⊕ (nt0+1 ⊕ nt0+8 ⊕ nt0+14 ⊕ nt0+20 ⊕ nt0+25 ⊕ nt0+30)

⊕ (lt0+28nt0+36 ⊕ lt0+43nt0+2nt0+34)

⊕ (lt0+39 ⊕ lt0+7lt0+16 ⊕ lt0+2lt0+23 ⊕ lt0+12lt0+34),

i.e., nt0+37 has been expressed as a quadratic function of N (t0) = (nt0 , · · · , nt0+36) and of a keystream
bit zt0+1. Next we assume that for all i : t0 + 37 ≤ i < t0 + 37 + j, all the bits ni have be expressed as a
nonlinear function of the NFSR state variables at time instant t0 and of some keystream bits. Note that
zt0+1+j is the first keystream bit dependent on nt0+37+j , which indicates that

nt0+37+j = zt0+1+j ⊕ (nt0+1+j ⊕ nt0+8+j ⊕ nt0+14+j ⊕ nt0+20+j ⊕ nt0+25+j ⊕ nt0+30+j)

⊕ (lt0+28+jnt0+36+j ⊕ lt0+43+jnt0+2+jnt0+34+j)

⊕ (lt0+39+j ⊕ lt0+7+j lt0+16+j ⊕ lt0+2+j lt0+23+j ⊕ lt0+12+j lt0+34+j)

and the variable nt0+37+j is expressed as a function of the internal NFSR variables ni with i < t0 +37+ j
and of a keystream bit zt0+1+j . By induction assumption nt0+37+j can be expressed as a function of the
NFSR state variables at time instant t0 and of keystream bits {zt0+1+j |j ≥ 0}, under the condition that
the LFSR initial state L(0) is known.

Remark 5. For Fruit-v2, the subroutine of state checking will exploit the periodic property of the secret
information bits during Algorithm 2, i.e., k′128+i ⊕ c3128+i = k′i ⊕ c3i ,∀i = 0, · · · , 37 − 1. Therefore, the

output of Algorithm 2 will be the full initial state of the target stream cipher N (0), L(0) and the secret
information bits k′i ⊕ c3i with 0 ≤ i ≤ 127.

5.3 Analysis of Complexities for Attacking Fruit-v2

According to Theorem 3, we need Ω = π2β+2(43+1) ln 2
rε2 parity-check equations to identify the correct

LFSR initial state. Therefore, the data complexity is D = 4 × π2β+2(43+1) ln 2
rε2 keystream bits, the time

complexities of Algorithm 1 and Algorithm 2 are T1 = π2β+2(43+1) ln 2
rε2 +r243+1−βp1 and T2 = 237× (128+

37) ≈ 244.37 respectively, where p1 = Q((πr−12β(43 + 1) ln 2)
1
2), r = 224 and ε = 2−28.52. Then, we can

get the following time and data complexities for attacking Fruit-v2 with different choices of β, listed in
Table 5.

Table 5. Time, memory and data complexities of attacking Fruit-v2.

β Time Memory Data

0 267.00 243 243.62

1 266.00 242 244.62

2 264.99 241 245.62

3 263.99 240 246.62

4 262.99 239 247.62

5 261.98 238 248.62

6 260.98 237 249.62

7 259.97 236 250.62

8 258.96 235 251.62

9 257.95 234 252.62

10 256.95 233 253.62

11 256.01 232 254.62

12 255.34 231 255.62

13 255.24 230 256.62

As the size of bypassed bits β increases, the time complexity decreases temporarily, but more data
complexity is required for a successful attack. When β = 12, a balance between time and data complexity

26 S. Wang et al.

is achieved, and the required time and data complexity are respectively 255.34 and 255.62. When we
bypass no bit of the LFSR initial state, an attack could be launched with the minimum data complexity
D = 243.62 and the time complexity of 267.00.

Remark 6. Once we know the initial state (L(0), N (0)) and the secret information bits k′i ⊕ c3i with
0 ≤ i ≤ 127 through Algorithm 1 and 2, we can run the inverse process of the initialization phase
for 210 rounds and derive the secret key.

Less Data Complexity Next we try to use less data complexity to recover the secret key of Fruit-v2.
Let thp be the threshold of being chosen as candidates of the LFSR initial state, i.e., the value with
a poll greater than thp will be chosen as a candidate at Part 3 of Algorithm 1. If we use Ω = 236

parity-check equations, many values of the LFSR initial state will be chosen as the candidates and the
correct one might not appear. Let pw and pc be the probability that a wrong value and the correct

one are chosen as a candidate of the LFSR initial state in Algorithm 1, i.e., pw =
∑∞
x1=thp

µ
x1
1 e−µ1

x1!
and

pc =
∑∞
x2=thp

µ
x2
2 e−µ2

x2!
, where µ1 = rp1 = rQ(th√

Ω
), µ2 = rp2 = rQ(th−Ωε√

Ω
) and th is the threshold of

the statistic test at Part 2. Therefore, there are about 243+1pw values will be chosen candidates of the
LFSR initial state and the correct one appears with the probability pc in Algorithm 1. With exhaustively
searching (n0, · · · , n35) in Algorithm 2, we can carry out the subroutine of state checking to find the
correct value of LFSR and NFSR initial state, along with the secret information bits. To get the correct
value of LFSR initial state, we need to repeat Algorithm 1 and 2 about 1

pc
times with the total time

complexity T = 1
pc
× (Ω + r243+1p1 + 243+1pw × 236), where Ω = 236, r = 224.With appropriately

choosing the two thresholds as th = 204524 and thp = 3658579, we have p1 = 0.2176, pc = 0.0216 and
pw = 2−13.65, and the time complexity and data complexity to recover the secret key are T = 272.63 and
D = 242.38 respectively. More exactly, for each execution of Algorithm 1 with the parity-check equations
at time instant 128t′ + t0, 0 ≤ t′ ≤ Ω − 1 and 0 ≤ t0 ≤ 127, it requires |Tz|Ω keystream bits, where
Tz = {0, 10, 20, 37}, and thus the data complexity is about (1

pc
+ 37)× 236 ≈ 242.38 keystream bits.

6 Applications: Fruit-80 Case

In this section, we apply our divide-and-conquer fast correlation attacks to Fruit-80. Like Fruit-v2, we
first derive the linear approximate equations for Fruit-80. Then under the condition that the LFSR initial
state is known, the complexities of recovering the secret key are presented.

Before showing details of our attacks, we provide a brief description of Fruit-80 in the initialization
and keystream generation phases. Fruit-80 is a bit-oriented stream cipher and utilizes an 80-bit secret
key K = (k0, · · · , k79) and a 70-bit public initial value IV = (iv0, · · · , iv69) to generate the keystream.
It is composed of a 43-bit LFSR whose state at time instant t is denoted by L(t) = (lt, · · · , lt+42), a
linked 37-bit NFSR whose state at time instant t is denoted by N (t) = (nt, · · · , nt+36), an 80-bit fixed
key register and a 7-bit counter registers Cr = (c0t , · · · , c6t) allocated for the round key function.

The LFSR is updated independently and recursively by a linear function as lt+43 = f(L(t)) = lt ⊕
lt+8 ⊕ lt+18 ⊕ lt+23 ⊕ lt+28 ⊕ lt+37. The NFSR is updated as defined in the following:

nt+37 = k′t ⊕ lt ⊕ g(N (t))

= k′t ⊕ lt ⊕ nt ⊕ nt+10 ⊕ nt+20 ⊕ nt+12nt+3

⊕ nt+14nt+25 ⊕ nt+5nt+23nt+31

⊕ nt+8nt+18 ⊕ nt+28nt+30nt+32nt+34,

(16)

where k′t is the round key bit at time instant t. The round key bit for g function is generated by combining
3 bits of the key as k′t = RKF (K, t) = krkp+16kq+48⊕ krkp+16⊕ kp+16kq+48⊕ krkq+48⊕ kp+16. Here, the
values of r, p and q are given as r = (c0t c

1
t c

2
t c

3
t), p = (c1t c

2
t c

3
t c

4
t c

5
t) and q = (c2t c

3
t c

4
t c

5
t c

6
t).

The filtering function is defined as

h
(
L
(t)
Th,L , N

(t)
Th,N , k

∗
t

)
= k∗t (nt+36 ⊕ lt+19)⊕ lt+6lt+15

⊕ lt+1lt+22 ⊕ nt+35lt+27 ⊕ nt+1nt+24

⊕ nt+1nt+33lt+42,

Fast Correlation Attacks on Grain-like Small State Ciphers 27

where k∗t is the round key bit at time instant t, the two subsets are

L
(t)
Th,L = (lt+1, lt+6, lt+15, lt+19, lt+22, lt+27, lt+42)

and N
(t)
Th,N = (nt+1, nt+24, nt+33, nt+35, nt+36). The round key bit for h function is generated by combining

the same 3 bits of the key as k∗t = RKF ∗(K, t) = krkp+16 ⊕ kp+16kq+48 ⊕ krkq+48 ⊕ kr ⊕ kp+16 ⊕ kq+48,
where the values of r, p and q are defined in the above. The entire output function is determined by

zt = h
(
L
(t)
Th,L , N

(t)
Th,N , k

∗
t

)
⊕ lt+38 ⊕

⊕
b∈B

nt+B, (17)

where B = {0, 7, 19, 29, 36}.
In the initialization phase, Fruit-80 works in the same way as Fruit-v2 expect for only clocking 80

times in the first step of the initialization.
It is obviously that the Assumed Property 1 holds for Fruit-80 and the RKF (·) is periodic with a

cycle of minimum length d = 128, i.e., k′t+128 = k′t. Regarding the Assumed Property 2, we give a more
accurate analysis in the following discuss.

6.1 Deriving Linear Approximate Equations

In this subsection, we expect to estimate the number and bias of different linear approximate equations
which are used to construct the desirable parity-check equations. First, we derive the linear approximate
representations for the sum of some keystream bits. Then, we could evaluate the number and bias of
different linear approximate equations by exhaustively searching all the possible representations.

Linear Approximate Representations Like Fruit-v2, we consider the best linear approximation of
the NFSR update function Eq.(16) with bias 2−4.6 and choose the set of taps as Tz = {0, 10, 20, 37}.
Then, we have⊕

i∈Tz

zt+i =
⊕
i∈Tz

lt+i+38 ⊕
⊕
b∈B

lt+b ⊕
⊕
i∈Tz

h(L
(t+i)
Th,L , N

(t+i)
Th,N , k

∗
t)⊕

⊕
b∈B

g∗(N (t+b))⊕
⊕
b∈B

k′t+b,

where g∗(N (t)) = nt ⊕ nt+10 ⊕ nt+20 ⊕ g(N (t)) and it has the same bias 2−4.6, i.e., Pr[g∗(N (t)) = 0] =
1
2 + 2−4.6. Note that for Fruit-80, B = {0, 7, 19, 29, 36}.

Let ai ∈ {0, 1}12 be the input linear mask for h function at time instant t+ i, ai = (ai[0], · · · , ai[11]).
Then

h(L
(t+i)
Th,L , N

(t+i)
Th,N) ≈ ai[0 : 6] ·

(
L
(t+i)
Th,L

)T
⊕ ai[7 : 11] ·

(
N

(t+i)
Th,N

)T
with bias εh,i(ai) = ±2−6, ±2−7 or 0. Like Fruit-v2, there are 4 active h functions which need to be
approximated. Let aTz ∈ {0, 1}12×4 be the concatenated linear mask, i.e., aTz = (a0,a10,a20,a37). The
total bias of all the approximated h functions is computed as εh,Tz (aTz) = 24−1 ×

∏
i∈Tz εh,i(ai) because

of the piling-up lemma.
Let

εg∗,B(aTz) = Pr

[⊕
i∈Tz

ai[7 : 11] ·
(
N

(t+i)
Th,N

)T
⊕
⊕
b∈B

g∗(N (t+b)) = 0

]
− 1

2

and the bias is independent on ai[0 : 6] for all i ∈ Tz. If one of a0[7], a0[11], a10[7], a10[10], a10[11],
a20[10], a20[11], a37[10] and a37[11] is 1, the bias is always 0 because nt+1, nt+36, nt+11, nt+45, nt+46,
nt+55, nt+56, nt+72 and nt+73 are not involved in

⊕
b∈B g

∗(N (t+b)). Therefore, we only need to compute
εg∗,B(aTz) when a0[7], a0[11], a10[7], a10[10], a10[11], a20[10], a20[11], a37[10] and a37[11] are 0. Note that
there are totally 512 non-zero εg∗,B(aTz) and we only list 32 of them in Table 6 due to space limitations.

For any fixed aTz , we can derive the following linear approximate representation⊕
i∈Tz

zt+i ≈
⊕
i∈Tz

lti+38 ⊕
⊕
b∈B

lt+b ⊕
⊕
i∈Tz

ai[0 : 6] ·
(
L
(t+i)
Th,L

)T
⊕
⊕
b∈B

k′t+b

and its bias is evaluated as 2× εh,Tz (aTz)× εg∗,B(aTz).

28 S. Wang et al.

Table 6. Summary of bias when ai[7 : 11], i ∈ Tz are fixed. Let ∗ be the arbitrary bit.

a0[8] a0[9] a0[10] a10[8] a10[9] a20[7] a20[8] a20[9] a37[7] a37[8] a37[9] εg∗,B
0 0 0 0 0 0 0 0 0 0 0 +2−13.28

1 0 0 0 0 0 0 0 0 0 0 +2−17.80

0 1 0 0 0 0 0 0 0 0 0 +2−13.28

1 1 0 0 0 0 0 0 0 0 0 +2−17.80

0 0 0 1 0 0 0 0 0 0 0 +2−14.86

1 0 0 1 0 0 0 0 0 0 0 +2−19.39

0 1 0 1 0 0 0 0 0 0 0 +2−14.86

1 1 0 1 0 0 0 0 0 0 0 +2−19.39

0 0 0 0 1 0 0 0 0 0 0 +2−13.28

1 0 0 0 1 0 0 0 0 0 0 +2−17.80

0 1 0 0 1 0 0 0 0 0 0 −2−13.28

1 1 0 0 1 0 0 0 0 0 0 −2−17.80

0 0 0 1 1 0 0 0 0 0 0 +2−14.86

1 0 0 1 1 0 0 0 0 0 0 +2−19.39

0 1 0 1 1 0 0 0 0 0 0 −2−14.86

1 1 0 1 1 0 0 0 0 0 0 −2−19.39

0 0 0 0 0 1 0 0 0 0 0 +2−15.26

1 0 0 0 0 1 0 0 0 0 0 +2−18.06

0 1 0 0 0 1 0 0 0 0 0 +2−15.26

1 1 0 0 0 1 0 0 0 0 0 +2−18.06

0 0 0 1 0 1 0 0 0 0 0 +2−15.99

1 0 0 1 0 1 0 0 0 0 0 +2−18.80

0 1 0 1 0 1 0 0 0 0 0 +2−15.99

1 1 0 1 0 1 0 0 0 0 0 +2−18.80

0 0 0 0 1 1 0 0 0 0 0 +2−15.26

1 0 0 0 1 1 0 0 0 0 0 +2−18.06

0 1 0 0 1 1 0 0 0 0 0 −2−15.26

1 1 0 0 1 1 0 0 0 0 0 −2−18.06

0 0 0 1 1 1 0 0 0 0 0 +2−15.99

1 0 0 1 1 1 0 0 0 0 0 +2−18.80

0 1 0 1 1 1 0 0 0 0 0 −2−15.99

1 1 0 1 1 1 0 0 0 0 0 −2−18.80

· ·
∗ ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 0

Linear Approximate Equations From the above linear approximate representations, we can derive
the linear approximate equation with some fixed linear mask u⊕

i∈Tz

zt+i ≈ L(0) ·
(
F t × u

)
⊕
⊕
b∈B

k′t+b,

where u ∈ {0, 1}43 is a column vector. If different aTz ’s derive the same linear mask u, corresponding
biases should be added up to get the bias of u, i.e., εu =

∑
{aTz |U(aTz)=u} 2 × εh,Tz (aTz) × εg∗,B(aTz),

where

U(aTz) =
⊕
i∈Tz

((ai[0] · gi+1 ⊕ ai[1] · gi+6 ⊕ ai[2] · gi+15 ⊕ ai[3] · gi+19 ⊕ ai[4] · gi+22 ⊕ ai[5] · gi+27 ⊕ ai[6]

· gi+42)⊕ gi+38)⊕
⊕
b∈B

gb.

Since the function U(aTz) is independent on ai[7, · · · , 11], we need to sum up all biases with a non-
zero εg∗,B summarized in Table 6, where ai[0, · · · , 6] is identical and only ai[7, · · · , 11] varies for i ∈ Tz.
Let V be subset of {0, 1}12×4 whose elements are 512 corresponding vectors aTz with non-zero εg∗,B in
Table 6. Moreover, there are two special relationships similar to the case of Fruit-v2, as showed in the
following.

- a0[6] and a20[4] (since g0+42 = g20+22 = g42).
- a10[6] and a37[2] (since g10+42 = g37+15 = g52).

Let w1 and w2 be the (12×4)-bit vectors generated by the above relationships with the corresponding two
positions are 1 but all the other positions are 0. LetW = span(w1,w2) be the linear span whose basis is w1

and w2. Therefore, the bias of u is estimated as εu =
∑

w∈W
∑

v∈V 2×εh,Tz (aTz⊕v⊕w)×εg∗,B(aTz⊕v).
As a result, we searched exhaustively 228 aTz [0, · · · , 6] and found r = 1048576 = 220 u whose absolute

value of bias is greater than ε = 2−31.62.

Fast Correlation Attacks on Grain-like Small State Ciphers 29

6.2 Analysis of Complexities for Attacking Fruit-80

In this subsection, we give the analysis of time and data complexity for recovering the secret key of
Fruit-80.

In Algorithm 1, we choose the value with the maximum poll as a candidate of the LFSR initial
state. According to Theorem 2, the probability that a wrong value is chosen as a candidate of the
LFSR initial state is less than 2−(m+1) and only the correct value of the LFSR initial state would
be chosen as a candidate. Therefore, the sum of round key bits k̂0 can be recovered by setting it to
the order α0 of the α0-th majority poll where the correct value of the LFSR initial state is identified.
Similarly, k̂i with 0 ≤ i ≤ d − 1 = 127 can be recovered by carrying out 128 times Algorithm 1 with
the corresponding parity-check equations. Then we can get the round key bits k′i with 0 ≤ i ≤ 127 by

solving the linear system of k̂i. When we guess the value of the NFSR initial state, k∗i with 0 ≤ i ≤ 127
can be computed from k′i and some keystream bits under the condition that the LFSR initial state
is known. With exhaustively searching all the possible values of the NFSR initial state, we can find
the correct one through the additional keystream bits. Once we know the initial state (L(0), N (0)) and
the round key bits k′i and k∗i with 0 ≤ i ≤ 127, we can run the inverse process of the initialization
phase for 160 rounds and derive the secret key. In conclusion, according to Theorem 3 the total time

complexity of our attack is T = 128×T1 = π2β+9(43+1) ln 2
rε2 + r243+8−βp1 and the total data complexity is

D = 128×Ω = π2β+9(43+1) ln 2
rε2 ,where p1 = Q((πr−12β(43 + 1) ln 2)

1
2), r = 220 and ε = 2−30.62. Then, we

can get the following time and data complexities for attacking Fruit-80 with different choices of β, listed
in Table 7.

Table 7. Time, memory and data complexities of attacking Fruit-80.

β Time Memory Data

0 269.99 243 256.82

1 268.99 242 257.82

2 267.98 241 258.82

3 266.98 240 259.82

4 266.00 239 260.82

5 265.09 238 261.82

6 264.47 237 262.82

7 264.42 236 263.82

As the size of bypassed bits β increases, the time complexity decreases temporarily, but more data
complexity is required for a successful attack. When β = 6, a balance between time and data complexity
is achieved, and the required time and data complexity are respectively 264.47 and 262.82. When we do not
bypass any bit of the LFSR initial state, an attack could be launched with the minimum data complexity
D = 256.82 and the time complexity of 269.99.

7 Experimental Verification

We verify theoretical analysis of our attacks by applying the above Algorithm 1 and 2 to a toy Grain-like
small state stream cipher, a reduced version of Fruit-v2. This toy cipher consists of a 21-bit LFSR whose
state at time instant t is denoted by L(t) = (lt, · · · , lt+20), a linked 19-bit NFSR whose state at time
instant t is denoted by N (t) = (nt, · · · , nt+18), a 40-bit fixed key register denoted by K = (k0, · · · , k39),
and a 6-bit counter register denoted by Cr = (c0t , · · · , c5t). The 21-bit LFSR is updated independently by
a primitive polynomial as lt+21 = lt ⊕ lt+2. The 19-bit NFSR is updated recursively as follows, nt+19 =
k′t⊕ lt⊕ c3t ⊕ g(N (t)), where nonlinear function g(N t) = nt⊕nt+5⊕nt+10⊕nt+12nt+3⊕nt+2nt+13nt+15,
c3t is the 2-th LSB of the counter Cr, and k′t is the round key bit generated by the round key function. The
round key function is defined as k′t = RKF (K,Cr) = ksky+24⊕kpku+32⊕kq+12⊕kr+24, where the values
of s, y, p, u, q, r are defined from Cr as s = c0t c

1
t c

2
t c

3
t c

4
t , y = c2t c

3
t c

4
t , u = c3t c

4
t c

5
t , p = c0t c

1
t c

2
t c

3
t , q = c1t c

2
t c

3
t c

4
t

and r = c2t c
3
t c

4
t c

5
t . The keystream bit is generated as zt = h(L(t), N (t)) ⊕ lt+18 ⊕

⊕
b∈B nt+b, where the

30 S. Wang et al.

filtering function is h(L(t), N (t)) = lt+1lt+2⊕ lt+7lt+11⊕nt+1nt+17lt+20, and the set of the NFSR masking
bits is B = {0, 7, 18}.

7.1 Environment of experiments

Our attacks on the reduced version of Fruit-v2 have been fully implemented in C++ language on a single
PC with Intel Core i5-7600K CPU @ 3.80GHz and 32GB RAM, which is running with Linux 18.04.

7.2 Preparation of linear masks

First, we need to find all the highly biased linear masks and derive the corresponding inverse of matrices
{F−1uj }

r
j=1, which are inputs for Algorithm 1.

Just like the situation of Fruit-v2, considering the best linear approximation of the NFSR update
function with 2−2.42 bias nt+19 ≈ k′t ⊕ lt ⊕ c3t ⊕ nt ⊕ nt+5 ⊕ nt+10, the set of taps Tz is chosen as
{0, 5, 10, 19}. Then, the sum of the keystream bits becomes⊕

i∈Tz

zt+i =
⊕
i∈Tz

lt+i+18 ⊕
⊕
b∈B

lt+b ⊕
⊕
i∈Tz

h(L(t+i), N (t+i))⊕
⊕
b∈B

g∗(N (t+b))⊕
⊕
b∈B

(
k′t+b ⊕ c3t+b

)
,

where g∗(N (t)) = nt+12nt+3 ⊕ nt+2nt+13nt+15 and B = {0, 7, 18}. Consider linear approximate represen-
tations of h(L(t+i), N (t+i)) at time instant t+ i,

h(L(t+i), N (t+i)) ≈ ai[0 : 4] · (lt+i+1, lt+i+2, lt+i+7, lt+i+11, lt+i+20)⊕ ai[5, 6] · (nt+i+1, nt+i+17)

with bias εh,i(aTz) = ±2−3.42 or ±2−5.0. If one of a0[5], a0[6], a5[5], a10[5], a10[6], a19[6] is 1, the bias is
always 0 because

⊕
b∈{0,7,18} g

∗(N (t+b)) does not involve nt+1, nt+17, nt+6, nt+11, nt+27 and nt+36. There-

fore, we only evaluated biases of
⊕

b∈{0,7,18} g
∗(N (t+b)),

⊕
b∈{0,7,18} g

∗(N (t+b))⊕n22,
⊕

b∈{0,7,18} g
∗(N (t+b))⊕

n20 and
⊕

b∈{0,7,18} g
∗(N (t+b))⊕ n22 ⊕ n20, and they are 2−5.09, 2−7.42, 2−5.83 and −2−7.42 respectively,

i.e., εg∗,B only have the four above nonzero values.

For some fixed linear mask u ∈ {0, 1}21, we can derive the following linear approximate equation⊕
i∈Tz

zt+i ≈ L(0) ·
(
F t × u

)
⊕
⊕
b∈B

(
k′t+b ⊕ c3t+b

)
,

and it have the bias εu =
∑
{aTz |U(aTz)=u} 2 × εh,Tz (aTz) × εg∗,B(aTz), where εh,Tz (aTz) = 24−1 ×∏

i∈Tz εh,i(aTz) and

U(aTz) =
⊕
i∈Tz

((ai[0]gi+1 ⊕ ai[1]gi+2 ⊕ ai[2]gi+7 ⊕ ai[3]gi+11 ⊕ ai[4]gi+20)⊕ gi+18)⊕
⊕
b∈B

gb.

Moreover, there are some special relationships similar to the case of Fruit-v2, and we have six relationships
as showed in the following.

- a0[2] and a5[1] (since g0+7 = g5+2 = g7).

- a0[3] and a10[0] (since g0+11 = g10+1 = g11).

- a0[4] and a19[0] (since g0+20 = g19+1 = g20).

- a5[2] and a10[1] (since g5+7 = g10+2 = g12).

- a10[3] and a19[1] (since g10+11 = g19+2 = g21).

- a10[4] and a19[3] (since g10+20 = g19+11 = g30).

To find the linear masks u with high biases, we exhaustively searched 220 ai[0 : 4] for all i ∈ Tz and
summed up those which derive the same u. As a result, we found r = 1024 linear masks u whose absolute
bias is greater than ε = 2−12.03.

Fast Correlation Attacks on Grain-like Small State Ciphers 31

7.3 Practical Running Time of Algorithm 1

According to Theorem 2, to recover the unique correct LFSR initial state, we usedΩ =
4(Q−1(1

2 (1−
√
A(2−A))))2

ε2

parity-check equations and D = 4 × Ω keystream bits, where where A = 2β(21+1) ln 2
r , r = 210 and

ε = 2−11.03. The estimated time complexity of Algorithm 1 is T1 = Ω + r221+1−βp1, where p1 =
Q((πr−12β(21 + 1) ln 2)

1
2). Moreover, the value of the LFSR state whose poll is maximum will be chosen

as the correct one. With setting β = 0, we have the minimum data complexity D = 221.65 and the time
complexity T1 ≈ 230.73. In our experiment, Part 1 and Part 3 of Algorithm 1 took 6 seconds and 2395
seconds (about 39.9 minutes), respectively. At last, Algorithm 1 outputted the correct LFSR initial state.
When β = 5, we have the minimum time complexity T1 = 225.47 and the data complexity D ≈ 227.13.
In our experiment, Part 1 and Part 3 of Algorithm 1 took 238 seconds (4 minutes) and 14 seconds,
respectively. At last, Algorithm 1 outputted the correct LFSR initial state. In general, the experimental
results match the theoretical analysis quite well.

7.4 Practical Running Time of Algorithm 2

We inputted the correct LFSR initial state which is obtained from Algorithm 1 into Algorithm 2. From
the output function, we can derive that

nt0+19+j = zt0+1+j ⊕ (nt0+1+j ⊕ nt0+8+j)

⊕ nt0+2+jnt0+18+j lt0+21+j

⊕ (lt0+19+j ⊕ lt0+2+j lt0+3+j ⊕ lt0+8+j lt0+12+j) .

Like Fruit-v2, we can get the value for {nt0+19+j |j = 0, · · · , (26 + 19) − 1} from the value of N (t0) =
(nt0 , · · · , nt0+18) and of keystream bits {zt0+1+j |j = 0, · · · , (26 + 19) − 1} using recursively the above
equation. Therefore, we just exhaustively search out all the possible value of the NFSR 19-bit initial state
and carry out the subroutine of state checking to find the correct one. The estimation of theoretical time
complexity is 219 × (26 + 19) ≈ 225.38.

In our experiment, Algorithm 2 took less 1 second to output the correct NFSR initial state and the
secret information bits. In general, the experimental result matches the theoretical analysis.

8 Future Work

In cryptanalysis of Plantlet, Fruit-v2 and Fruit-80, an extremely large amount of data is need to carry
out our attack methods. However, the maximum lengths of the produced keystream for Plantlet, Fruit-v2
and Fruit-80 are 230, 243 and 243 bits in each initialization [25, 28, 15], respectively. In future work, we
expect to decrease the data complexity of our attacks. Besides, we are considering to propose a more
generic model of Grain-like small state stream ciphers which could cover Lizard.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants No. 61872359
and No. 61672516) and Youth Innovation Promotion Association CAS.

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-128 with optional authen-
tication. IJWMC 5(1), 48–59 (2011). https://doi.org/10.1504/IJWMC.2011.044106

2. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal states. In: Fast Software
Encryption - 22nd International Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected
Papers. pp. 451–470 (2015). https://doi.org/10.1007/978-3-662-48116-5 22

3. Banik, S.: Some results on sprout. In: Progress in Cryptology - INDOCRYPT 2015 - 16th International
Conference on Cryptology in India, Bangalore, India, December 6-9, 2015, Proceedings. pp. 124–139 (2015).
https://doi.org/10.1007/978-3-319-26617-6 7

32 S. Wang et al.

4. Banik, S., Barooti, K., Isobe, T.: Cryptanalysis of plantlet. Cryptology ePrint Archive, Report 2019/702
(2019), https://eprint.iacr.org/2019/702

5. Berbain, C., Gilbert, H., Joux, A.: Algebraic and correlation attacks against linearly filtered non lin-
ear feedback shift registers. In: Selected Areas in Cryptography, 15th International Workshop, SAC
2008, Sackville, New Brunswick, Canada, August 14-15, Revised Selected Papers. pp. 184–198 (2008).
https://doi.org/10.1007/978-3-642-04159-4 12

6. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of grain. In: Fast Software Encryption, 13th Interna-
tional Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers. pp. 15–29 (2006).
https://doi.org/10.1007/11799313 2

7. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream ciphers. In: Advances
in Cryptology - ASIACRYPT 2000, 6th International Conference on the Theory and Application of
Cryptology and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings. pp. 1–13 (2000).
https://doi.org/10.1007/3-540-44448-3 1

8. Cannière, C.D.: Trivium: A stream cipher construction inspired by block cipher design principles. In: Infor-
mation Security, 9th International Conference, ISC 2006, Samos Island, Greece, August 30 - September 2,
2006, Proceedings. pp. 171–186 (2006). https://doi.org/10.1007/11836810 13

9. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check equations of weight 4 and
5. In: Advances in Cryptology - EUROCRYPT 2000, International Conference on the Theory and Appli-
cation of Cryptographic Techniques, Bruges, Belgium, May 14-18, 2000, Proceeding. pp. 573–588 (2000).
https://doi.org/10.1007/3-540-45539-6 40

10. Chepyzhov, V.V., Johansson, T., Smeets, B.J.M.: A simple algorithm for fast correlation attacks on stream
ciphers. In: Fast Software Encryption, 7th International Workshop, FSE 2000, New York, NY, USA, April
10-12, 2000, Proceedings. pp. 181–195 (2000). https://doi.org/10.1007/3-540-44706-7 13

11. Chose, P., Joux, A., Mitton, M.: Fast correlation attacks: An algorithmic point of view. In: Advances in
Cryptology - EUROCRYPT 2002, International Conference on the Theory and Applications of Crypto-
graphic Techniques, Amsterdam, The Netherlands, April 28 - May 2, 2002, Proceedings. pp. 209–221 (2002).
https://doi.org/10.1007/3-540-46035-7 14

12. Dey, S., Roy, T., Sarkar, S.: Some results on fruit. Des. Codes Cryptography 87(2-3), 349–364 (2019).
https://doi.org/10.1007/s10623-018-0533-y

13. Dey, S., Sarkar, S.: Cryptanalysis of full round fruit. IACR Cryptology ePrint Archive 2017, 87 (2017)
14. Esgin, M.F., Kara, O.: Practical cryptanalysis of full sprout with TMD tradeoff attacks. In: Selected Areas

in Cryptography - SAC 2015 - 22nd International Conference, Sackville, NB, Canada, August 12-14, 2015,
Revised Selected Papers. pp. 67–85 (2015). https://doi.org/10.1007/978-3-319-31301-6 4

15. Ghafari, V.A., Hu, H.: Fruit-80: A secure ultra-lightweight stream cipher for constrained environments. En-
tropy 20(3), 180 (2018). https://doi.org/10.3390/e20030180

16. Hamann, M., Krause, M., Meier, W.: LIZARD - A lightweight stream cipher for power-constrained devices.
IACR Trans. Symmetric Cryptol. 2017(1), 45–79 (2017). https://doi.org/10.13154/tosc.v2017.i1.45-79

17. Hamann, M., Krause, M., Meier, W., Zhang, B.: Design and analysis of small-state grain-like stream ciphers.
Cryptography and Communications 10(5), 803–834 (2018). https://doi.org/10.1007/s12095-017-0261-6

18. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained environments. IJWMC 2(1), 86–93
(2007). https://doi.org/10.1504/IJWMC.2007.013798

19. Johansson, T., Jönsson, F.: Improved fast correlation attacks on stream ciphers via convolutional codes.
In: Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Applica-
tion of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding. pp. 347–362 (1999).
https://doi.org/10.1007/3-540-48910-X 24

20. Johansson, T., Jönsson, F.: Fast correlation attacks through reconstruction of linear polynomials. In: Advances
in Cryptology - CRYPTO 2000, 20th Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2000, Proceedings. pp. 300–315 (2000). https://doi.org/10.1007/3-540-44598-6 19

21. Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of full sprout. In: Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I.
pp. 663–682 (2015). https://doi.org/10.1007/978-3-662-47989-6 32

22. Maximov, A., Biryukov, A.: Two trivial attacks on trivium. In: Selected Areas in Cryptography, 14th In-
ternational Workshop, SAC 2007, Ottawa, Canada, August 16-17, 2007, Revised Selected Papers. pp. 36–55
(2007). https://doi.org/10.1007/978-3-540-77360-3 3

23. Meier, W., Staffelbach, O.: Fast correlation attacks on certain stream ciphers. J. Cryptology 1(3), 159–176
(1989). https://doi.org/10.1007/BF02252874

24. Mihaljevic, M.J., Fossorier, M.P.C., Imai, H.: Fast correlation attack algorithm with list decoding and an
application. In: Fast Software Encryption, 8th International Workshop, FSE 2001 Yokohama, Japan, April
2-4, 2001, Revised Papers. pp. 196–210 (2001). https://doi.org/10.1007/3-540-45473-X 17

25. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the non-volatile key. IACR
Trans. Symmetric Cryptol. 2016(2), 52–79 (2016). https://doi.org/10.13154/tosc.v2016.i2.52-79

Fast Correlation Attacks on Grain-like Small State Ciphers 33

26. Siegenthaler, T.: Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. Computers 34(1),
81–85 (1985). https://doi.org/10.1109/TC.1985.1676518

27. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revisited - cryptanalysis on full
grain-128a, grain-128, and grain-v1. In: Advances in Cryptology - CRYPTO 2018 - 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part II. pp. 129–159
(2018). https://doi.org/10.1007/978-3-319-96881-0 5

28. Vahid Amin Ghafari, H.H., Chen, Y.: Fruit-v2: Ultra-lightweight stream cipher with shorter internal state.
Cryptology ePrint Archive, Report 2016/355 (2016), https://eprint.iacr.org/2016/355

29. Zhang, B., Feng, D.: Multi-pass fast correlation attack on stream ciphers. In: Selected Areas in Cryptography,
13th International Workshop, SAC 2006, Montreal, Canada, August 17-18, 2006 Revised Selected Papers. pp.
234–248 (2006). https://doi.org/10.1007/978-3-540-74462-7 17

30. Zhang, B., Gong, X.: Another tradeoff attack on sprout-like stream ciphers. In: Advances in Cryptology
- ASIACRYPT 2015 - 21st International Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29 - December 3, 2015, Proceedings, Part II. pp.
561–585 (2015). https://doi.org/10.1007/978-3-662-48800-3 23

31. Zhang, B., Gong, X., Meier, W.: Fast correlation attacks on grain-like small state stream ciphers. IACR Trans.
Symmetric Cryptol. 2017(4), 58–81 (2017). https://doi.org/10.13154/tosc.v2017.i4.58-81

