
Design of Anonymous Endorsement System in Hyperledger Fabric

Subhra Mazumdar and Sushmita Ruj

Cryptology and Security Research Unit
Indian Statistical Institute

203 Barrackpore Trunk Road, Kolkata 700 108, India

Email : subhra.mazumdar1993@gmail.com, sush@isical.ac.in

June 5, 2019

Abstract

Permissioned Blockchain has become quite popular with enterprises forming consortium since it prior-
itizes trust over privacy. One of the popular platforms for distributed ledger solution, Hyperledger Fabric,
requires a transaction to be endorsed or approved by a group of special members known as endorsers
before undergoing validation. To endorse a transaction, an endorser mentions its identity along with the
signature so that it can be verified later. However, for certain transactions, difference in opinion may exist
among endorsers. Disclosing the identity of an endorser may lead to conflict within the consortium. In
such cases, an endorsement policy which not only allows an endorser to support a transaction discreetly,
but at the same time takes into account the decision of the majority is preferred. Thus we propose an
Anonymous Endorsement System which uses a threshold endorsement policy in order to address the is-
sue. To realize a t-out-of-n endorsement policy, using any of the existing threshold ring signature for our
endorsement system would have violated the privacy of endorsers as either the identity or the secret key of
the endorsers get revealed to the party who recombines the signature after collecting each signature share.
All these factors motivated us to design a new ring signature scheme, called Fabric’s Constant-Sized Link-
able Ring Signature (FCsLRS) with Transaction-Oriented linkability for hiding identity of the endorsers.
We have implemented the signature scheme in Golang and analyzed its security and performance by
varying the RSA (Rivest-Shamir-Adleman) modulus size. Feasibility of implementation is supported by
experimental analysis. Signature and tag generation time is quite fast and remains constant irrespective
of change in message length or endorsement set size for a given RSA modulus value, assuming all the
endorsers generates their signature in parallel. Each verifier is required to count and check individual
valid ring signature. If the aggregate is above the threshold value, stated by the endorsement policy, then
it confirms that the transaction is valid. This increases the verification time depending on the threshold
value, but has very little effect on the scalability since generally t << n. Lastly, we also discuss the
integration of the scheme on v1.2 Hyperledger Fabric.

This work got accepted for publication in IEEE Transactions on Emerging Topics in Computing, Manuscript Type: Tech-
nical Track (Regular Paper), DOI (identifier) 10.1109/TETC.2019.2920719

1

1 Introduction

In permissionless blockchains, the miners and other participants of the network can stay pseudonymous [7],[5].
The trust is decentralised with no single authority having full control over the functioning of the system[32].
However for political or business organizations, transparency is of utmost importance for fair governance,
hence anonymity of participants is not desired. Permissioned blockchain on the other hand offers a closed
ecosystem where participants needs permission to join the network and their identity is publicly revealed.
This sort of a blockchain is suitable for handling use cases of business network, guaranteeing transparency[15]
and scalability[43]. Economic incentives, code quality, code changes, and power allocation among peers for
such networks are based on the business dynamics.

Hyperledger Fabric is one of the most popular open-source permissioned blockchain frameworks[3]. It is
quite scalable and robust, hence used mainly for enterprise purpose. Its architecture is illustrated in Fig. 1
(inspired from the diagram in [37]). A Membership Service Provider (MSP) is responsible for maintaining the
identity of all the participants in the system - clients, orderer or ordering service and validator or peer [26]. It
issues credentials in the form of cryptographic certificates which are used for the purpose of authentication and
authorization. Fabric CA (Certification Authority) acts as a private root CA provider capable of generating
keys and certificates needed to configure an MSP[25]. In Fig. 1, Fabric CA is the default implementation of
MSP interface.

We define each network entity briefly given in Fig. 1 [26] - a Client acts on behalf of an end-user. It must
connect to a peer (of its choice or pre-defined) for communicating with the blockchain. Peers are important
entities of the network because they host ledgers and smart contracts. A peer can be a member of multiple
channels, and therefore maintain multiple ledgers. The Ordering Service or Orderers establishes the total
order of all transactions in Fabric by reaching a consensus among all peer nodes. Blocks are disseminated
to all the peer nodes via peer-to-peer gossip service. Shared communication channel is formed by members
of specific organization, anchor peers acting as leader node for each organization, shared ledger, chaincode
application/s and orderers. It allows these network entities to communicate securely. Any entity outside the
channel cannot view any activity or status of any member inside a channel. Data cannot be passed from one
channel to another [26].

1.1 Hyperledger Fabric

Up to version 0.6, Fabric used to follow the order-execute architecture which had several limitations. From
version 1.0 onwards, it has been revamped to execute-order-validate, ensuring resiliency, flexibility, scalability
and confidentiality. A distributed application for Fabric consists of two parts[3]:

• Set of logic encoding the rules for execution of transaction known as smart contract or chaincode. It
needs to be installed across the channel’s peer nodes and then instantiated in the channel itself by an
authenticated member of the network.

• Conditions formed by basic operations of Boolean Algebra - “AND” or “OR” is used to define which
endorser/s must endorse a transaction. This is called as Endorsement Policy. The policies can also
generalize to logical expressions on sets, such as t-out-of-n.

1.1.1 Transaction Flow

The transaction flow in Fabric involves three main phases - execution, ordering and validation [3]. A client
comes with transaction request and transmits it to the peer nodes which acts as endorsers. These peer

2

Application

(SDK)

Send Proposal

 Peer

> Endorser
> Committer or
Validator
> Chaincode
- State (KVS)

Fabric CA
(membership)

 Orderer

Order
transaction
 In a batch as
per
consensus
(Solo/PBFT)

Relay

Batch
Send ordered
transaction for validation

Enr
ol

Get proposal
response

Ledger

Validated tx put in ledger

Figure 1: Hyperledger Fabric Architecture
O

R
D

E
R

IN
G

 S
E

R
V

IC
E

S

Orderers

Endorsing
Peer 1Client

Endorsing
Peer 2

Endorsing
Peer 3 Validators/Comm

itters

tx=<clientID,
chaincodeID,
txPayload, time-
stamp,clientSig

<1>

Simulate
/Execute
tx ,Sign
Transact-
ion-
endorsed

<2>

<3>

Collect
Transaction-
Endorsed
messages
into a valid
endorsement
that satisfies
endorsement
policy

broadcast(endor-
sement)

<4>

Verify
endorse-
ment,
readset;
If OK
apply
writeset to
the state

<4>

Figure 2: Transaction flow in Hyperledger Fabric v1.1

3

nodes check the validity of the client’s signature and checks the compliance of the transaction with the
endorsement logic. If all these conditions gets satisfied, the peer endorses the transaction by executing it
based on the version of keys for the values used in the transaction. This is called the execution phase as
shown in step 〈1〉 and step 〈2〉 of Fig. 2. Transactions are executed in parallel by the endorsers to increase
the throughput. The executed transaction along with the endorser’s signature is sent back to the client node.
If the endorsement policy is satisfied, it is broadcasted to the orderers nodes. In the ordering phase (step
〈3〉 of Fig. 2), a pluggable consensus protocol is used to get a total ordering on the sequence of endorsed
transactions grouped into blocks. These are broadcasted to all peer nodes for validation (step 〈4〉 of Fig. 2).
All peers deterministically validate the transactions in the same order by checking satisfaction of endorsement
policy (inspect the identity and signature of each endorser) and version number of the keys present in the
local key-value store. Checking of the version number ensures that the data that was read during chaincode
execution did not change during endorsement. If it remains same then the transaction is marked valid and it
gets committed to the ledger state database. If not, then the transaction is considered as invalid and is not
applied to the ledger state database. The client gets information about the status of the transaction. For
invalid transaction, it can either apply error handler, retry it or abort it for the time being. Note that any
interaction among nodes occurs through messages send via the channels and are authenticated via digital
signatures.

1.1.2 Limitation of the existing architecture

Revealing the identity of an endorser to the peer nodes may not be suitable for sensitive transactions[35],[1].
Consider a referendum on allocation of funds by World Bank to a developing country, sharing hostile relation
with influential developed countries. The referendum succeeds if majority of them vote in favor of the motion.
However the voting process is biased. Donor countries, though less in number, have more influence on any
decision taken than any borrower country. Economically weaker countries have no role to play. If we deploy
the voting process on Hyperledger Fabric with countries forming the set of endorsers, the result will be biased
in favour of donor countries. Over here, the setup of Hyperledger Fabric fails to ensure a fair judgement as
it reveals the identity of the country involved in endorsement.

Blockchain was created to solve the specific problem of making a process or execution trustworthy even
when all participants remain anonymous. In permissionless setting, anyone can join the network without
credentials[32]. On the contrary, in the permissioned setting, a participant’s credential is important and
must be known by everyone within the network[43]. However, keeping in mind the requirement of certain use
cases, Hyperledger Fabric intends to integrate Identity Mixer MSP (Membership Service Provider) [12] in its
future releases where client and/or peer nodes can sign the transaction by remaining anonymous, generating
unlinkable signature. With the aid of zero-knowledge proofs[17], a peer node can prove the correctness of the
generated signature, without the verifier obtaining extra information. A privacy preserving distributed ledger,
zkLedger [33] claims to support strong transaction as well as participants privacy (for hiding transaction
value it uses Pedersen commitments) but at the same time ensures fast and provably correct auditing, with
the help of Schnorr-type non-interactive zero-knowledge proofs. But none of them have put their focus on
hiding the identity of endorser. This motivated us to design of a bias-free Anonymous Endorsement System,
allowing provision of an endorsement policy which reveals just the total count of the vote a referendum
or a policy proposed (termed as transaction in Fabric) by the client has received from the members of a
pre-specified endorsement set without explicitly specifying who has endorsed.

A threshold endorsement policy requires at least t-out-of-n endorsers to approve the transaction without
explicitly mentioning their identity. Any implementation of threshold cryptosystem might seem an obvious
answer, but it does not ensure anonymity of endorser [8] (explained later in Section 2). Instead, we use Ring

4

Signature based on Signature of Knowledge[13] (Definition 5). All the endorsers of the channel form the
group members and it is computationally infeasible to determine which endorser has produced the signature.
Detaching the identity of signer from the signature can lead to the problem of double-signing whereby a
member tries to endorse a transaction more than once. We prevent this by making multiple signatures
generated by a particular signer for a particular session linkable [4],[40]. Verifiers simply count each valid
endorsement in order to check whether a threshold endorsement policy is satisfied.

Our Contributions:

This paper makes the following contributions:

• We have proposed an Anonymous Endorsement System which implements a simple threshold endorse-
ment policy which requires at least t out of n (1 ≤ t ≤ n) endorsers to approve a transaction without
explicitly mentioning their identity.

• We have given the construction of a constant sized linkable ring signature, Fabric’s Constant-Sized
Linkable Ring Signature (FCsLRS), to hide the identity of an endorser.

• A new linking criterion, called as “transaction-oriented” linkability, is used, which prevents an endorser
from signing the same transaction more than once.

• We have implemented this scheme using Go Programming Language or Go, version 1.10 [22] and
analyzed its performance. Golang based smart contracts are fully supported by Hyperledger Fabric
[26]. The code for FCsLRS is available in [2].

• A detailed description of the integration of the scheme on v1.2 Hyperledger Fabric has been discussed.

1.2 Organization of the paper

Section 2 states the related works on various signature schemes and their application in blockchain system.
Mathematical notations and basic definitions have been discussed in Section 3. In Section 4, we describe
our proposed anonymous endorsement system. Construction of Fabric’s Constant-Sized Linkable Ring Sig-
nature (FCsLRS) scheme is stated in Section 4.1. Section 5 describes the security model. Performance
Analysis is given in Section 6. Section 7 elucidates, in detail, the steps needed to integrate the FCsLRS
scheme with Fabric. Section 7 elucidates, in details, the integration of FCsLRS scheme with Fabric. Finally
the paper is concluded in Section 9.

2 Related Work

Even though hiding identity using ring signature is a quite well studied area [10],[11],[36],[14], its applicability
in cryptocurrencies and blockchain is being recently explored.

Monero, an anonymous cryptocurrency, improves on its existing Cryptonote [42] protocol by using a new
efficient Ring Confidential Transactions protocol - RingCT 2.0 [39]. “Over here, the size of signature is
independent of the number of groups of input accounts in a transaction. It makes use of the following cryp-
tographic primitives - Pedersen commitment, accumulator with one-way domain and signature of knowledge
related to the accumulator[39].” However the protocol used for anonymizing sender and receiver identity and
also the transaction value, cannot be used for voting/endorsement policy.. ZCash requires a trusted set up
stage, but after that the system is entirely anonymous, making use of zero-knowledge proof for verification

5

[24]. But this violates the motivation of our scheme where we do not want to depend on any third party,
even during setup phase. Hardjono et al. [23] presented a new architecture called ChainAnchor, address the
issue of retaining user anonymity, introducing the concept of semi-permissioned blockchains but it makes use
of TPM tamper resistant hardware, which is not in the purview of our proposed system.

Existing ring signature schemes like Unique Ring Signature [18], Yuen et al. [45] have signature size
proportional to the size of ring. Threshold signature in Bresson et al. [8] does not ensure full anonymity.
Over here, the signature combiner (any trusted third party) needs to know the id and secret key of the signers
in order to combine the signature. t-out-of-n signature scheme by Tsang et al.[41] allows event-oriented
linkability which can result in double signing for our use case. Some are too complex to be implemented with
signature size being dependent on the ring size (as in Yuen et al. [45]). A detailed comparative analysis of
these signature schemes has been provided as supplemental material (labeled as Table 1) in tabular format.
Several threshold signature schemes for enhancing Bitcoin security has been proposed in Goldfeder et al.
[20], Gennaro et al. [19] and Kogias et al. [29] but these signature scheme suffers from the same problem of
trusting the signature combiner as was stated before.

To this day, the only work which has focused on threshold signatures in Hyperledger Fabric is [38].
They have identified numerous potential application of threshold signature which can be used for group of
Certificate Authorities, Byzantine Consensus protocols, chaincode applications and transaction validation.
For this they have compared the performance of threshold signature schemes - threshold RSA (Rivest-
Shamir-Adleman) signature/threshold BLS ((Boneh-Lynn-Sacham) signature, against multisignature. In
such schemes, a trusted third party is requested to generate the key shares and distribute them among
signing parties (Kate et al. [27] proposed a scheme for distributed key generation scheme but it comes with
fair amount of computation overhead). Any entity performing the task of signature combination in threshold
signature scheme must know id value of the signer so that it can compute the Lagrange coefficient. Verifier
verifies just one signature instead of verifying each signature submitted by the endorsers. However, it leaks
the identity of endorser to the entity who performs the task of recombining signature shares.

Our proposed anonymous t-out-of-n endorsement system allows a set of endorsers to endorse any trans-
action without revealing the identity of any of the endorsers to any member within the network, including
the other members of endorsement set. But since t such signatures are generated, a verifier needs to verify
it individually one at a time, unlike threshold signature where verifier needs to verify just one signature.
This increases the amount of verification time in total, although the time taken to verify one signature by an
endorser is constant, independent of the size of the ring. Since our problem statement demands anonymity on
the identity of endorsers and not efficient transaction validation, we consider use of linkable ring signature for
our anonymous endorsement system [30]. It avoids all the complexities associated with the implementation
of threshold cryptosystem.

3 Preliminaries

For the proposed endorsement system, we provide a construction of ring signature based on signature of
knowledge. It involves proving set of NP statements in zero knowledge [13]. We define some mathematical
terms used as well as hardness assumptions needed to prove the security of the scheme.

3.1 Mathematical Notations

We define the mathematical notations which will be used in our construction of FCsLRS scheme :

1Exponentiation operation is of the form ga for base g, multibase exponentiation operation is of the form ga.hb for base g, h.

6

Table 1: Comparison of Ring Signature Schemes

Scheme Signature Security Linking Signing 1 Verify 1 Problem
Size Notions Complexity Complexity Complexity Encountered

1-out-of-n O(1) Unforgeability, O(1): check Uses Signature based on 7 multibase
Ho. Au et al. [4] Linkable Anonymity, linkability tag Proof of Knowledge, (n+2) exponentiation Adversary can

Linkability, group oriented exponentiation and corrupt the
Non slanderability linkability 7 multibase signer S,

- all wrt adversarially exponentiation overhead of certificate
chosen keys check, need event

oriented linkability since
ring members are fixed

t-out-of-n[8] O(l.2tn log n) Unforgeability, unlinkable t.2t log n+ t symmetric t.2t log n symmetric
Bresson et al. t-CMA secure cipher operation, cipher op, Prover may

anonymity n.2t log n+ n t.2t log n exponen- be malicious,
exponentiation tiation t signers need

to share their
secret keys, compu-
tationally expensive,
double signing can’t

be prevented
t-out-of-n O(n) Unforgeability, O(n2) 2(n+d) exponentiations O(n) multibase

Tsang et al.[41] Linkable Anonymity, Event-oriented and 2(n-d) exponentiations Prover/Signer may
Event-oriented Linkability, Linkability multibase create 2 different

Non slanderability. exponentiation event-id (double
signing possible),

Problem of CDS [14]
scheme exists,

sharing of secret key
with prover P, when
P gets compro-

mised, is not desired
t-out-of-n[45] O(t.

√
n) Unforgeability, O(t log t), event- (8t+4t

√
n) exponentiation, (8t+8t

√
n) pairing, More complex than

Yuen et al. linkable anonymity oriented linka- (4t+2t
√
n) multibase 2t exponentiation, 1-out-of-n signa-

event-oriented link- bility exponentiation t one-time veri- ture scheme
ability, non- fication , dependence on

slanderability event id
URS O(n) Unforgeability, O(1) - tag is 2n-1 multibase 2n multibase Computationally expensive

Franklin,Zhang[18], secure linkability, hash of message, exponentiation and exponentiation scheme, not
[31] and restricted ring members and 1 exponentiation yet extended to

anonymity private key t-out-of-n
of signer scheme.

Our proposed O(1), Unforgeability O(1), 11 exponentiations 10 multibase Extension to
signature scheme constant size Linkability, transaction ori- and 5 multibase exponentiations t-out-of-n

FCsLRS Linkable Anonymity, ented linkability exponentiations and 6 exponentiation signature scheme
Non-slanderability, not efficient.

-all wrt adversarially chosen keys

• λ, l, µ ∈ N : λ > l − 2, l/2 > µ+ 1 be the security parameters.

• RSAλ be the set of RSA integers of size λ.

• A number p is a safe prime if p = 2p′ + 1 and both p and p′ are odd primes.

• A number N is an RSA integer if N = pq for distinct safe primes p and q where p = 2p′ + 1 and
q = 2q′ + 1. It is termed as a rigid integer |p| = |q|.

• Set of λ-bit rigid integers are denoted by Rigλ.

• QR(N) denotes the group of quadratic residues modulo N of order p′q′.

3.2 Hardness Assumptions

• Decisional Diffie-Hellman (DDH) Assumption. [4] “Consider a group G of order q, q is prime
and let g be generator of G. Given a, b, c ∈R Zq, there exists no probabilistic polynomial time (PPT)

7

algorithm that can distinguish two distributions 〈g, ga, gb, gab〉 and 〈g, ga, gb, gc〉 with non-negligible prob-
ability over 1/2 in time polynomial in q.”

• Strong RSA (SRSA) Assumption. [4] “Given input a random RSA integer N and a value z ∈R
QR(N), there exists no probabilistic polynomial time (PPT) algorithm which can return u ∈ Z∗N and
e ∈ N such that e > 1 and ue = z(mod N), with non-negligible probability and in time polynomial in
λ.”

• Link Decisional RSA (LD-RSA) Assumption.[4] “Given input a random RSA integer N , ĝ ∈R
QR(N), n0 = p0q0 and n1 = p1q1 where p0, q0, p1, q1 are sufficiently large random primes of size polyno-
mial in λ, ĝpb+qb where b ∈R {0, 1}, there exists no PPT algorithm which returns b′ = b with probability
non-negligibly over 1/2 and in time polynomial in λ.”

3.3 Building Blocks

For construction of Signature of Knowledge, we need help of sigma protocol which is defined below.

Definition 1 (Σ-Protocols.) [16] It is an efficient 3-round two-party protocol defined over an NP-relation
R. For every input (x, secret) given to prover P and x given to verifier V , the first round, initiated by
prover P , yields a commitment message COM. In the second round, verifier V replies with a random challenge
message CH. The last round by P concludes by sending response message RES. Finally, an honest verifier will
output a 0 or 1, provided the transcript π =(COM,CH,RES) is valid and prover P possesses the secret.

A Σ-protocol satisfies - Special Soundness and Special Honest-Verifier Zero-Knowledge property. This pro-
tocol can be efficiently constructed under the assumption that one way functions are easy to compute but
hard to invert.

A machine called knowledge extractor guarantees that the prover actually holds the witness i.e. success
probability of knowledge extractor extracting witness is proportional to the success probability of prover
convincing the verifier.

Definition 2 (Knowledge extractor). [21] On input x, auxiliary input z̃ and random input r : x ∈ LR,
where LR is the NP-language to R defined as LR = {x|(∃secret)[(x, secret) ∈ R]} and z̃, r ∈ {0, 1}∗,
let V outputs 1, after interacting with prover specified by Px,z̃,r with probability p(x, z̃, r) and κ(.) be error,
κ : N→ [0, 1]. A probabilistic oracle machine K is called a (universal) knowledge extractor, if on input
x (same as that given to V) and access to oracle Px,z̃,r, it outputs a solution y ∈ R(x) within an expected
number of steps bounded by

q(|x|)
p(x, z̃, r)− κ(|x|)

where q(.) is a positive polynomial, provided p(x, z̃, r) > κ(|x|).

Sphere Truncation of a group enables to prove that it is equally hard to break the discrete logarithm
hardness in spite of significant reduction in the size of group.

Definition 3 (Sphere Truncations of Quadratic Residues).[16] Given that N is a RSA integer where
N = pq, we define a sphere denoted by S(2l, 2µ) = {2l − 2µ + 1, . . . , 2l + 2µ − 1} for two parameters l, µ ∈ N
where |S(2l, 2µ)| = 2µ+1 − 1. Any random variable ax with x ∈R S(2l, 2µ) is indistinguishable from the

8

uniform distribution over QR(N) provided factoring is hard and sphere S(2l, 2µ) is sufficiently large but not
of the order of QR(N). In simple terms, this means that a probabilistic polynomial-time observer cannot
distinguish whether a value is selected from S(2l, 2µ) or QR(N).

In order to plan complex proofs of knowledge for protocols operating over groups of unknown order in general
like for group QR(N), discrete-log relation set are quite useful.

Definition 4 (Discrete-log Relation Sets). [16] For a group G of unknown order, a discrete-log relation
set R with z relations over r free variables, α1, . . . , αr, and m objects is a set of relations defined over the
objects A1, . . . , Am ∈ G, such that

- each free variable αj is assumed to take value in a finite integer range S(2lj , 2
µ
j) where lj , µj ≥ 0.

- ith relation in the set R is specified by a tuple 〈ai1, . . . , aim〉 so that each aij is selected to be one of the

free variables {α1, . . . , αr} or an element of Z. The relation is to be interpreted as Πm
j=1A

aij
j = 1.

A discrete-log relation set R is said to be triangular, if for each relation i involving the free variables
α1, α2, . . . αk, it holds that the free-variables α1, α2, . . . αk are contained in relations 1, . . . , i− 1.

Definition 5 (Signature of Knowledge). Instead of Challenger supplying the challenge value to Prover
in three-round Σ-protocols or Honest-Verifier-Zero-Knowledge (HVZK) Proof of Knowledge (PoK) protocols,
setting the challenge to the hash value of the commitment concatenated with the message to be signed [17] by
the Prover transforms it into a signature scheme known as Signature based on Proof of Knowledge or simply
‘Signature of Knowledge (SoK)’[11],[13]. Security of this scheme in the random oracle model is defined
in[34],[6].

Our objective is to design a signature scheme where the size of the endorser’s signature is independent to
the number of endorsers present. With the help of accumulator, we can accumulate the public key of all the
members in the endorsement set and proof membership of the endorser to that set.

Definition 6 (Accumulators with One-Way Domain). [16][40] An accumulator family is a pair ({Fλ}λ∈N, {Xλ}λ∈N),
where ({Fλ}λ∈N is a sequence of families of functions such that each f ∈ Fλ is defined as f : Uf ×Xext

f ← Uf
for some Xext

f ⊆ Xλ. It also satisfies the properties - efficient generation (in polynomial time in λ) and
efficient evaluation (in polynomial time in λ). For all λ ∈ N, f ∈ Fλ, u ∈ Uf , x1, x2 ∈ Xλ,

f(f(u, x1), x2) = f(f(u, x2), x1) (1)

{Xλ}λ∈N is referred to as the value domain of the accumulator. Due to the property of quasi-commutativity,
such value is independent of the order of the x′is and will be denoted by f(u,X). For any λ ∈ N, f ∈ Fλ and
X = {x1, . . . , xs} ⊂ Xλ, f(. . . f(u, x1), . . . , xs) is the accumulated value of the set X over u.

Based on the hardness assumption of Strong RSA, an accumulator with one-way domain[4] is a quadru-
ple ({Fλ}λ∈N, {Xλ}λ∈N, {Zλ}λ∈N, {Rλ}λ∈N), such that the pair ({Fλ}λ∈N, {Xλ}λ∈N) is a collision-resistant
accumulator, each Rλ is a relation over Xλ×Zλ with the following properties: (efficient verification). There
exists an efficient algorithm D that on input (x, z) ∈ Xλ×Zλ, returns 1 if and only if (x, z) ∈ Rλ. (efficient
sampling). There exists a probabilistic algorithm W that on input 1λ returns a pair (x, z) ∈ Xλ×Zλ such that

9

(x, z) ∈ Rλ, z is the pre-image of x. (one-wayness). It is computationally hard to compute any pre-image z′

of an x that was sampled with W . Formally, given a negligible value ν(λ), for any adversary A:

Pr[(x, z)
R←−W (1λ); z′

R←− A(1λ, x) | (x, z′) ∈ Rλ] = ν(λ) (2)

For λ ∈ N, the family Fλ consists of the exponentiation functions modulo λ-bit rigid integers :

f : QR(N)× ZN/4 → QR(N)
f : (u, x)→ ux mod N

(3)

where N ∈ Rigλ.
The accumulator domain {Xλ}λ∈N is defined by:

Xλ = {e prime | (
e− 1

2
∈ RSAl) ∧ (e ∈ S(2l, 2µ))} (4)

where S(2l, 2µ) is the integer range (2l− 2µ, 2l + 2µ) that is embedded within (0, 2λ) with λ− 2 > l and l/2 >
µ+ 1. The pre-image domain {Zλ}λ∈N and the one-way relation {Rλ}λ∈N are defined as follows:

Zλ =

{ (e1, e2) | e1, e2 are distinct l/2− bit
primes and e2 ∈ S(2

l
2 , 2µ)

Rλ = {(x, (e1, e2)) ∈ Xλ × Zλ | (x = 2e1e2 + 1)}

}
(5)

4 Our Proposed Anonymous Endorsement System

To address the problem of biased endorsement policy as well as ensuring privacy of endorsers, we have
designed an anonymous endorsement system. To ensure privacy of the system, we have proposed a new ring
signature scheme which is discussed in Section 4.1.

In Hyperledger Fabric, membership service provider (MSP) identifies the parties, who are the members of
a given organization in the blockchain network. The endorsement set for a particular chaincode is presumed
to be predefined and remains fixed for a long time, unless any of the members get revoked. The right measure
of “signature size” constructed for each transaction must not involve explicit description of the ring members
(endorsers for this case). A one-time computation of accumulation of public keys proportional to the size
of the ring needs to be performed by the Fabric CA and communicated to all the verifiers present in the
network. This constant-sized information allows signers to generate or verifiers to verify many subsequent
signatures in constant time.

Entities present in the network

Fabric CA(Certification Authority) Server 1 issuing enrolment certificates to all the peer nodes (endorser
and validators). Setup mentioned in [25].
Client : An entity lying outside the blockchain network, having a transaction request. A peer node, within
the network, acts as a proxy for the client node.
Endorser set E : A pre-defined set to be specified before instantiation of chaincode. Members of this set,
based on a given endorsement policy, decides on whether to endorse a transaction.

1It is a private root CA provider capable of managing digital identities of Fabric participants that have the form of X.509
certificates

10

Signer S : A member of the endorsement set E which executes the ring signature algorithm on the transaction
response packet for the endorsed transaction.
Verifier/Validator set V : Validator nodes verify whether the signature was generated by a valid member of
the endorsement set.

Requirement of the signature scheme

Signature and tag generated must be short. The signature generation and verification must be computation-
ally efficient. None of the entities must get access to any secret of the signer. Apart from this, the following
two properties must be ensured for the scheme :

- With negligible probability, valid signatures generated according to specification fails to get accepted
during verification.

- With negligible probability, two signatures signed according to specification, generated by the same
signer on the same transaction for a given set of endorsers fails to get linked.

4.1 Proposed construction of Fabric’s Constant-Sized Linkable Ring Signature
(FCsLRS)

In this section, we propose a new ring signature scheme called as Fabric’s Constant-Sized Linkable Ring
Signature(FCsLRS) for a fixed set of endorsers and discuss the construction details. Our construction is
inspired by the signature scheme obtained by applying Fiat-Shamir transformation to the Identification

Protocol suggested in Dodis et al.[16]. Previously, this identification protocol has been used as a short
signature scheme by Tsang, et al.[40] and Ho Au, et al.[4] for e-Cash, e-voting and attestation. But none
of them could have been used directly for our endorsement system, justification made later while describing
the algorithm Sign. A transaction level tag is needed here which prevents an endorser from endorsing a
transaction more than once but it can endorse two different transaction. This is not present in any of the
previous construction. In [16],[4],[40], the public values constructed by prover to prove validity of public key
in Signature of Knowledge allows an adversary to easily identify the endorser. This is because the public key
of all the endorsers is known to all network entities and hence the identity can be revealed in polynomial
time.

Considering n to be the number of members in the endorsement set and t (1 ≤ t < n) to be the threshold
value. FCsLRS is represented as a tuple (Init, KeyGen, AccumulatePubKey, GeneratePubKeyWitness,

Sign, Verify, Link) of seven polynomial time algorithms, which are described below.

- Init. On input of security parameters, Fabric CA (Certificate Authority) prepares a collision-resistant
accumulator with one-way domain. A generator u ∈ QR(N) is picked up uniformly at random, where
N ∈ Rigλ. Public parameters g, h, y, t, s, ζ ∈ QR(N), is also generated. These parameters remain same
across all the transactions.

- KeyGen. On input the system’s parameters generated in Init phase, each endorser Ei ∈ E , 1 ≤ i ≤ n
generates key pairs (pki, ski) = (yi, (pi, qi)), yi = 2piqi + 1, pi and qi being safe primes, by executing
the probabilistic sampling algorithm W of their accumulator2. The range of qi ∈ S(2l/2, 2µ). Upon
obtaining the key pair, endorser Ei submits its public key yi and verifiable credentials to Fabric CA. The

2All endorsers run the sampling algorithm of the accumulator in parallel

11

Fabric Certificate
Authority Endorser

Generates its own
 Public key and Private

key: (pk_i,sk_i)

Sends Public key pk_i

Certificate Revocation List
(CRL)

Checks whether endorser
was previously revoked or not

S
e

n
d

s
“y

e
s”

 o
r

“n
o

”
a

s
re

sp
o

n
se

Performs a Zero Knowledge
proof of whether pk_i is
product of 2 safe primes or not

Request enrolment
certificate

Send enrolment certificate

DB

Pk1 Cer1
Pk2 Cer 2
..
..

Figure 3: PKI

CA first checks whether such credentials matches with any of those present in Certificate Revocation
List (CRL). If yes, then its enrolment certificate was previously revoked and hence cannot be added as
a network entity. Else, Ei proves in zero-knowledge to CA the correctness of the value yi[9], [10]. If
endorser is able to prove, then CA issues an enrolment certificate to it. The identity of the endorser,
public keys yj , 1 ≤ j ≤ n along with enrolment certificate gets added to the public database DB (any
valid entity in the network has access to this database). The process has been illustrated in Fig 3.

- AccumulatePubKey. Fabric CA executes this algorithm for combining all the public keys in public
database DB. The accumulated value v calculated by using data from DB, is :

v = f(u, {yj |1 ≤ j ≤ n})
= f(f(. . . f(u, y1), y2), y3) . . . , yn)

.
= (. . . (((uy1 mod N)y2 mod N) . . .)yn mod N)

(6)

This value is generated and used for long time unless the endorsement set E changes. Hence the
computation can be said to be performed one time before instantiation of chaincode in all the peer
nodes of the network.

- GeneratePubKeyWitness. Each member e of set E computes witness we ← f(u, {yi|1 ≤ i ≤ n, i 6=
e}), 〈u〉 = QR(N) for public key ye, where accumulated value v can be generated by computing v ←
f(we, ye). When the endorser is willing to endorse or sign a transaction, it uses this value we for
construction of Signature based on Proof of Knowledge. As we have considered endorsement set to be
fixed, even this value can be pre-computed.

- Sign. Endorser Eπ ∈ E who wants to endorse a transaction is the Signer S. It obtains the public
key set DB = {y1, y2, . . . , yn}, possessing a valid enrolment certificate and has not been revoked (CA
performs the check and informs if any endorser has been put in CRL).

A new linking criterion called Transaction-Oriented linkability has been used in which one can tell
if two signatures are linked if and only if they are signed by a common signer for a given transaction
(similar to the concept of Event-oriented linkability in [41]). For this purpose we use a public parameter
gtid instead of simply using g ∈ QR(N). To construct gtid, we consider g ∈ QR(N) and a function

12

H̃ : N→ G, G ⊂ ZN/4 which generates t̃x = H̃(transaction-id), where transaction-id is unique for each

transaction, which is again the hash of the transaction payload txPayload. Thus, gtid = f(g, t̃x) = gt̃x

mod N , where f is the function defined as in Eq. 3.

For a given message m ∈M (which is the transaction-response) which has a transaction id transaction-
id, a private key skπ = (pπ, qπ) that corresponds to original public key, yπ, accumulated value v and
secret value wπ, signer S does the following (notations used as per [4]):

SPK

{(
wπ, yπ ,
pπ, qπ

)
:

wyππ = v mod N∧
yπ = 2pπqπ + 1 ∧ yπ ∈ S(2l, 2µ)

∧ qπ ∈ S(2
l
2 , 2µ) ∧

ỹ = θd(pπ, qπ)

}
(m) (7)

where θd defined as θd(pπ, qπ) = gpπ+qπtid mod N , is a one-way bijective mapping and ỹ is the tag
generated corresponding to the signature.

“Signature based on Proof of Knowledge is basically a signature scheme in which a signer can speak on
behalf of any NP statement (as stated in 7) to which he knows a witness/es without revealing all the
irrelevant information [13].” Here the witness values are wπ, yπ, pπ and qπ. Any person who knows a
satisfying assignment (that means posses the knowledge of witness) to the statements (in 7) has signed
the message.

A practical Σ-protocol for relation stated in Eq. 7 is constructed using the framework of discrete loga-
rithm sets over group QR(N). The public parameters gtid, h, y, t, s, ζ ∈ QR(N) with unknown relative
discrete logarithms alongwith the sequence of public values T1, T2, T3, T4, T5 such that

T1 = grtid , T2 = hrζx+r , T3 = srge2tid , T4 = wyr, T5 = trg2e1tid

where r
R←− [0, bN/4c − 1] is used for the construction of proof.

The public values T1 is for the free variable r, T2 is for the free variable x, T3 is for the free variable e2,
T4 is for the free variable w and T5 is for the free variable e1. Note that all the construction from T2 to
T5 satisfy the property of triangularity with respect to first relation T1. The construction of T2 cannot
be chosen of the form hrgxtid mod N since x belongs to the set DB whose size is negligible compared to

the size S(2
l
2 , 2µ), exponential order of the security parameter l. If prover P sends this value of T2 to

verifier V, it can figure out, in polynomial time, the public key of the endorser/signer during verification
phase.

The NP statements used for generating Signature based on Proof of Knowledge is given below:

T1 = grtid, (witness of r)
T2 = hr.ζr.ζx = hr.ζr+x, (witness of x ∈ S(2l, 2µ))

(T1)x = ga1tid, (witness of a1)
(T1)e2 = ga2tid, (witness of a2)

T3 = srge2tid, (witness of e2 ∈ S(2l/2, 2µ))
(T4)x = vya1 , (witness of x)

(T5)e2gtid = ta2 .gxtid (witness of e2 - a non-trivial factor of x)
(T3)2T5 = s2r.tr.ỹ2 (correctness of ỹ)

(8)

13

for the free variables r, x, e2, a1, a2 such that x ∈ S(2l, 2µ), e2 ∈ S(2l, 2µ), a1 = rx and a2 = re2. The
signer S gives a proof of knowledge for witness w, yπ, pπ and qπ by satisfying the above eight equations
corresponding to the given accumulated value v. The variables x, e1 and e2 is assigned value yπ (public
key of S), pπ and qπ respectively. It also proves that (x− 1)/2 can be factorized into two prime values,
one of which belongs to S(2l/2, 2µ) and each of them are non trivial factors[16].

Public Parameters : gtid, h, t, s, y, ζ, v ∈ QR(N), T1, T2, T3, T4, T5, ZN/4 ⊂ S(2l, 2µ).

1. Signer S computes

α1
R←− ZN/4 α2

R←− ZN/4

α3
R←− ZN/4, u1 ← gα1

tid mod N

u2 ← ζα1+α2 mod N, u3 ← hα1 mod N,

u4 ← gα1

tid mod N u5 ← gα3

tid mod N

u6 ← wα2 mod N, u7 ← g2e1.α3

tid mod N

u8 ← tα1 mod N, u9 ← gα2

tid mod N

(9)

2. S computes c = H1(m||u1||u2||u3||u4||u5||u6||u7||
u8||u9), H1 :M×QR(N)8 → C,
C ⊆ QR(N) and uses it to compute

α̃1 ← α1 + c.r, α̃2 ← α2 + c.x

α̃3 ← r.α2 + r.c.x, α̃4 ← α3 + c.e2

α̃5 ← r.α3 + r.c.e2

(10)

S sends the signature σ′ = (u1, u2, u3, u4, u5, u6, u7, u8, u9, α̃1, α̃2, α̃3, α̃4, α̃5, ỹ) where ỹ = gpπ+qπtid

to all the validators in set V.

Signature size : Values to communicated to the Verifier as Signature based on Proof of Knowledge
are σ = (u1, u2, u3, u4, u5, u6, u7, u8, u9, α̃1, α̃2, α̃3, α̃4, α̃5, ỹ),
u1, u2, . . . , u9, ỹ, α̃1, α̃2 and α̃4, each approximately being λ bits in size and α̃3, α̃5 each approximately
being 2λ bits in size. Hence the signature generated is of constant size, being O(λ) where λ is the
security parameter.

- Verify. To verify the signature
σ′ = (u1, u2, u3, u4, u5, u6, u7, u8, u9, α̃1, α̃2, α̃3, α̃4, α̃5, ỹ) on message m ∈M, all the validator nodes in
V computes c = H1(m||u1||u2||u3||u4||u5||u6||u7||u8||u9),
H1 : M× QR(N)8 → C, C ⊆ QR(N) and checks if all the statements in Eq. 11 is valid or not. For
1-out-of-n endorsement policy, if all check passes, then the verifier outputs accept; otherwise it outputs
reject and aborts. For t-out-of-n, t > 1, we need to perform the test for signature linkability (Link)
as well for final acceptance.

- Link. In [4], the tag generated is θd = ((e1, e2)) = ge1+e2 . θd being PK-bijective, it prevented double
signing on the same message. However as the endorsement set remains fixed, tag constructed must be
function of the secret key as well as the transaction payload. For (Transaction-Oriented linkability), tag
construction is modified by introducing transaction-id, a unique value associated with each transaction
payload. Since gtid ∈ QR(N), modified θd = ge1+e2tid remains PK-bijective. Given two valid signatures
σ′1 and σ′2 for a given transaction, validator node checks if ỹ1 = ỹ2. If yes, output linked. Otherwise,
output unlinked.

14

4.2 Extending to threshold endorsement policy

Given a threshold value t, if a validator node receives at least t out of n transaction-response with a valid,

pairwise unlinked signatures (after
(t
2

)
tests of linkability) whose responses (read set and write set) are the

same, then the endorsement policy is said to be satisfied. If each of at least |V|2 validator nodes in V reach
a consensus on receipt of at least t signatures for the given transaction, then one of the honest validator
node “broadcast” the transaction-response within a transaction message to the ordering service so that the
transactions can be ordered chronologically by the channel.

15

gα̃1

tid
?
= u1.T

c
1 ,

gα̃1

tid
?
= gα1

tid.g
r
tid
c mod N (∵ Eq. 8, 9, 10),

gα̃1

tid
?
= gα1+r.c

tid mod N

ζα̃2+α̃1hα̃1
?
= u2.u3.T

c
2 ,

ζα̃1+α̃2hα̃1
?
= ζα1+α2 .hα1 .(hr.ζx+r)

c
mod N, (∵ Eq. 8, 9, 10),

ζα̃1+α̃2hα̃1
?
= ζα2+α1+c.(x+r).hα1+r.c mod N

gα̃3

tid
?
= T α̃2

1 ,

gα̃3

tid
?
= (grtid)

α2+c.x mod N, (∵ Eq. 8, 10),

gα̃3

tid
?
= gr.α2+r.c.x

tid mod N.

gα̃5

tid
?
= T α̃4

1 ,

gα̃5

tid
?
= (grtid)

α3+c.e2 mod N (∵ ofEq.8, 10),

gα̃5

tid
?
= gr.α3+r.c.e2

tid mod N.

gα̃4

tid.s
α̃1

?
= T c3 .u4.u5,

gα̃4

tid.s
α̃1

?
= (srge2tid)

c.sα1 .gα3

tid mod N (∵ Eq. 8, 9, 10),

gα̃4

tid.s
α̃1

?
= gα3+c.e2

tid .sα1+c.r mod N

u6.v
c.yα̃3

?
= T α̃2

4 ,

wα2 .(wx)c.yα̃3
?
= (w.yr)α̃2 mod N (∵ Eq. 8, 9, 10),

wα2+c.x.yα̃3
?
= wα̃2 .yr.α̃2 mod N

tα̃5 .gα̃2

tid.u7
?
= T α̃4

5 .u9.g
c
tid

tα̃5 .gα̃2

tid.g
2.e1.α3

tid
?
= (tr.g2.e1tid)α̃4 .gα2

tid.g
c
tid mod N (∵ Eq. 8, 9, 10),

tα̃5 .gα̃2+2.e1.α3

tid
?
= tr.α̃4g

2.e1.(α3+c.e2)+α2+c
tid mod N

tα̃5 .gα̃2+2.e1.α3

tid
?
= tr.α̃4g2.e1.α3+2.c.e1.e2+α2+c

tid mod N

tα̃5 .gα̃2+2.e1.α3

tid
?
= tr.α̃4g

2.e1.α3+c.(x−1)+α2+c
tid mod N

ỹ2c.s2α̃1 .tα̃1
?
= (T 2

3 .T5)c.u24.u8

ỹ2c.s2α̃1 .tα̃1
?
= ((sr.ge2tid)

2.tr.g2.e1tid)c.(sα1)2.tα1 mod N(∵ Eq. 8, 9, 10),

ỹ2c.s2α̃1 .tα̃1
?
= s2.r.c.g2.c.e2tid .tr.c.g2.e1.ctid .s2.α1 .tα1 mod N

ỹ2c.s2α̃1 .tα̃1
?
= g2.c.e1+2.c.e2

tid .s2.r.c+2.α1 .tr.c+α1 mod N

(11)

16

5 Security Model

Assumptions made

Some assumptions made regarding the entities in Hyperledger Fabric are - all communication channels are
secure, Fabric CA is honest, members of endorsement set is fixed , all the peer nodes have their local copy of
database consistent with the world state, signature generation algorithm follows a Random Oracle Model. In
order to satisfy the threshold endorsement policy when at least t signers are willing to endorse, we assume
that at least half of the members in the verifier set and more than half (at least n/2 + 1) endorsers in an
endorsement set is honest. The security model defined here is similar to the one defined in [40],[4].

Syntax

A Linkable Ring Signature scheme is a tuple (Init, KeyGen, AccumulatePubKey, GeneratePubKey-
Witness, Sign, Verify, Link) of seven polynomial time algorithms. Instead of a single entity generating
keys for all the participants in the permissioned blockchain, we define KeyGen as an algorithm executed by
each individual user for the generation of the public and private key pair. Syntax is as follows :

- param← Init(1λ), the poly-time initialization algorithm which, on input a security parameter λ ∈ N,
outputs the system parameters containing, among other things, 1λ. All other algorithms implicitly use
λ as one of their inputs.

- (ski, pki) ← KeyGen(), the PPT (probabilistic polynomial time) key generation algorithm which
outputs a secret/public key pair (ski, pki). SK and PK denote the domains of possible secret keys and
public keys respectively. All the generated pki, 1 ≤ i ≤ n for n participants is made publicly available
along with system parameters.

- (v) ← AccumulatePubKey(), the deterministic poly-time algorithm which, on input a set Y of n
public keys in PK, where n ∈ N is of size polynomial in λ, produces the value v.

- (w) ← GeneratePubKeyWitness(), the deterministic poly-time algorithm which, on input a set
Y ′ = Y \ {pke} i.e. all public keys except that of the entity e who executes it (n ∈ N is of size
polynomial in λ), produces the value we such that f(we, pke) = wpkee = v.

- For a Signatures based on Proofs of Knowledge, the Σ-protocol between signer and verifier for the NP-
relation stated in Eq.7 has been converted into a signature scheme. It comprises the (Sign,Verify)
algorithm pair, executed on the signer and verifier side respectively. Execution of this protocol is
time independent from the number of public keys that gets aggregated in AccumulatePubKey or
GeneratePubKeyWitness.

- σ ← Sign(Y,M, x), the PPT signing algorithm which, on input a set Y of n public keys in PK,
where n ∈ N is of size polynomial in λ, a message M ∈ {0, 1}∗, and a private key x ∈ SK whose
corresponding public key is contained in Y, produces a signature σ. We denote by Σ the domain
of possible signatures.

- 1/0 ← Verify(Y,M, σ), the poly-time verification algorithm which, on input a set Y of n public
keys in PK, where n ∈ N is of size polynomial in λ, a message M ∈ {0, 1}∗ and a signature
σ ∈ Σ, returns 1 or 0 meaning accept or reject respectively. If the algorithm returns accept, the
message-signature pair (M,σ) is said to be valid. The signature scheme must satisfy Verification

17

Correctness, i.e. signatures signed by honest signer as per the specification must be accepted by
an honest verifier with overwhelming probability.

- 1/0← Link(σ0, σ1), the poly-time linking algorithm which, on input two valid signatures, checks their
corresponding tag and outputs 1 (if tags are same - signatures are linked) or 0 (if tags are different
- unlinked signature) meaning linked or unlinked respectively. The signature scheme must satisfy
Linking Correctness, i.e. any two signatures signed by a common honest signer on the same message
are linked with overwhelming probability. On the other hand, any two signatures signed by two
different honest signer must be unlinked with overwhelming probability.

Security Notions

Before defining the security notions, let us define the adversarial model and the possible attacks :

5.1 Adversarial Model

• Any corrupt endorser may launch insider attack (threat or use of influence) on the rest of the endorsers,
acquiring their private keys.

• Members (excluding the signer) belonging to the endorsement set may collude and reveal their secret
keys on receipt of signature.

• Validator may hold back the packets without verifying.

• Validator can act maliciously by randomly mark a transaction as valid/invalid without actually verify-
ing.

Any adversary is assumed to have the following oracle access:

• The Corruption Oracle, which outputs the corresponding secret key given a public key as input.

• The Signing Oracle, which returns a valid signature, on input a designated signer s, message M and
subring R (comprising subset of public keys). The signature is computationally indistinguishable from
one produced by Sign(Y,M, x) using the real secret key x of signer s on message M , Y being the set
of all public keys.

Note, that if endorsement logic gets corrupted by adversary then it needs a mechanism of formal verifi-
cation to check whether desired output is achieved or not. This is beyond our scope of work. Based on the
last two points, we discus the correctness and soundness property of the Σ-protocol as well as security of
signature scheme in the permissioned blockchain framework.

5.2 Correctness

For correctness, any execution of the Σ-protocol for the NP-relation given in Eq.7 will terminate with the
verifier outputting 1, with overwhelming probability, if and only if a prover or an endorser possess the correct
witness values (yπ, wπ, pπ, qπ) for the corresponding accumulated public value v.

18

5.3 Soundness

The Honest-Verifier Zero-Knowledge property of the Σ-protocol for NP-relations stated in Eq.7 guarantees
that the transcript generated out of the interaction between signer and verifier does not leak any information
to the adversary A that has no knowledge of the secret. The soundness property is formalized in terms of the
game played between Fabric CA and adversary A, assuming all endorsers, participating in ring formation,
are honest.

• Fabric CA runs the Init algorithm for security parameter λ and generates system parameters. All
endorsers executes KeyGen algorithm to generate the public key and private key pair and stored in
public database DB.

• A receives system parameters from Fabric CA and gets the transcript of prior runs of the protocol
between an honest signer and verifier. Given A has access to the corruption oracle, it can query for the
secret key of some but not all endorsers, who has put their public keys in database DB.

• A now select a set of endorsers E′ for which it has not queried their secret keys. It generates a value
v′ by accumulation of public keys of E′.

• A starts executing the Σ-protocol in the role of the signer and the probability of winning the game is
negligible. Following the correctness property, an honest verifier with output 1(accept) with overwhelm-
ing probability if and only if the A can produce the correct secret value (yπ, wπ, pπ, qπ) corresponding
to accumulated value v′.

Note that if A is not given access to a correct tuple (yπ, wπ, pπ, qπ) but still it wins the game, then it
must have generated it by himself/herself. This contradicts the one-wayness of accumulator’s domain.

5.4 Security Analysis of Signature Scheme

Since the architecture of Fabric is modular, the proposed signature scheme can be plugged-in as a feature.
Given that Fabric is secure (Security model discussed in [26],[3]), we need to argue on the security of the
proposed anonymous endorsement system based on the security of FCsLRS scheme.

Theorem 1 If FCsLRS scheme is unforgeable, linkable anonymous, linkable and non-slanderable, then the
scheme is secure and hence the proposed Anonymous Endorsement System also remains secure in the random
oracle model.

We have defined the security notions in details :

Unforgeability

The following construction of constant-sized linkable ring signature is unforgeable against “chosen endorser”
attacks (means a subset of set E is selected and only the public keys of those endorsers are taken into
consideration). The adversary is further allowed to corrupt endorsers and acquire their private keys using
corruption oracle.

Definition 7 (Unforgeability).[4] Any corrupt endorser acting as adversary A is given access to the public
keys of all the members belonging to endorsement set E as well as the signing oracle and corruption oracle.
A is allowed to query the signing oracle for signature on message of its choice for a given subset of endorsers
and use corruption oracle to get secret key for a set of corrupt endorsers denoted by C : C ⊂ E. A linkable

19

ring signature scheme is unforgeable if for any PPT adversary A and for any polynomial n(.), the probability
that A succeeds in forging signature on a message which it has not queried before, for a set of endorsers
including at least more than one honest member, is negligibly close to 1/2.

Linkable-Anonymity

If all the endorsers except one honest signer gets corrupted and reveals their secret key in order to frame
the signer ([4]), the scheme does not ensure anonymity anymore. But in FCsLRS, for t-out-of-n threshold
endorsement policy, since more than half of the endorsers in E is assumed to be honest, possibility of such
attacks is negligible. At least n/2 + 1 members in E will not reveal their secret keys .

Definition 8 (Linkable-anonymity).[4] Assuming that any corrupt endorser acting as adversary A has
the same advantage of obtaining signature on message of its choice and querying for secret keys as stated in
Definition 7. A now selects two public keys PKi0 , PKi1 of its choice (which has not been used for querying
the signing oracle or corruption oracle), a message M and subset of E denoted by Esub. The challenger now
selects any public key at random out of PKi0 , PKi1 and generates a signature of M over set Esub. After
this step, A is allowed to query the signing oracle and corruption oracle for any public key except PKi0 and
PKi1 . A linkable ring signature is linkably anonymous, if for any PPT adversary A and for any polynomial
n(.), the probability that A succeeds in guessing the correct public key (either PKi0 or PKi1), for which the
signature was generated by challenger, is negligibly close to 1/2.

Adversarially-chosen keys defines the power of A which allows it to select public keys outside the set E
for constructing set Esub (but PKi0 , PKi1 ∈ E) and allowing use of such externally chosen public keys for
querying the signing oracle. A linkable ring signature is linkably anonymous w.r.t adversarially-chosen keys,
if for any PPT adversary A and for any polynomial n(.), the probability that A succeeds in guessing the
correct public key (either PKi0 or PKi1), for which the signature was generated by challenger, is negligibly
close to 1/2.

Linkability

Under the SRSA assumption of Accumulators with one-way domain, it is hard to generate the secret keys
(e1, e2) for a given public key value x of an endorser. Thus the probability of producing a valid signature
for a given transaction(message) and secret key pair is negligible. Security is ensured even in presence of
adversarially-chosen keys.

Definition 9 (Linkability).[4] Assuming that any corrupt endorser acting as adversary A has the same
advantage of obtaining signature on message of its choice and querying for secret keys as stated in Definition
7. A linkable ring signature is linkable if for any PPT adversary A and for any polynomial n(.), the probability
that A succeeds in generating two different signature σ1, σ2 for the same message over same set of endorsers
defined by E without getting linked (by returning Link(σ1, σ2) = 0), is negligibly close to 1/2.

The signature scheme is also linkable w.r.t to adversarially-chosen keys.

Non-slanderability

It ensures that any corrupt endorser cannot produce a linkable signature on behalf of or frame an honest
endorser([44]). For our construction of FCsLRS, we consider a tag generation which provides Transaction-
Oriented linkability. Since each tag generated is dependent on the transaction id and secret key pair and

20

transaction id being unique for each transaction3 and assuming the function H̃ is a random oracle , it is hard
to produce two linked signatures for same transaction. Security is ensured even in presence of adversarially-
chosen keys.

Definition 10 (Non-slanderability).[4] Assuming that any corrupt endorser acting as adversary A has
the same advantage of obtaining signature on message of its choice and querying for secret keys as stated in
Definition 7. Given that an honest member of E with public key PK can generate a valid signature σ on a
message M for subset of E, a linkable ring signature is non-slanderable if for any PPT adversary A and for
any polynomial n(.), the probability that A succeeds in the generating a valid signature σ∗ corresponding to
the public key PK (provided this public key was not used while querying corruption oracle or signing oracle)
such that Link(σ∗, σ) = 0, is negligibly close to 1/2.

The signature scheme is also non-slanderable w.r.t to adversarially-chosen keys.
Now we define the theorems that justifies the security of FCsLRS and provide the security proofs as well

:

Theorem 2 “If the DDH in QR(N) problem, the LD-RSA problem, the Strong-RSA problem are hard and
the function H̃ is random oracle, our construction is unforgeable. [4]”

Proof. If the signature scheme is Non-Slanderable and Linkable then it is Unforgeable. That is, if a corrupt
endorser or malicious peer node can forge a signature, then he can even frame an honest endorser and sign
on his behalf or collude with other corrupted endorsers to break the linkability of the signature. Therefore,
theorems 4 and 5 together imply that the scheme is unforgeable.

Theorem 3 “Under the assumption that endorsement set has at least two honest members, if the DDH in
QR(N) problem, the LD-RSA problem, the Strong-RSA problem are hard and the function H̃ is random oracle
, then our construction is linkably-anonymous w.r.t. adversarially-chosen keys.[4]”

Proof Sketch. Here we proof the contrapositive of the theorem, i.e. if we can construct a simulator S from a
corrupt endorser A which succeeds in guessing the correct public key (either PKi0 or PKi1) corresponding to
the signature generated by challenger (as defined in Definition 8), then it can also solve the LD-RSA problem
under the DDH assumption.

Given the values n0 = p0.q0, n1 = p1.q1, a bit b ∈R {0, 1} is selected randomly and the value Tag = gpb+qbtid

is generated by challenger. The values (n0, n1, Tag) is transmitted to S. Using the system parameters, it
randomly generate a set of key pairs J = {(PKi, SKi)} 1 ≤ i ≤ |E| in order to simulate the actual situation.
Now S selects a bit b′ = 0 or 1 randomly and sets PK∗ to 2nb′ + 1. The set of public keys J∗ = J ∪ {PK∗}
is then given to A.

The adversary A may query the signing oracle for any of the public keys present in J∗. If the public key
belongs to set J , then simulator can straight away generate the signature, given that it posseses the secret
key. If the request comes from a public key not present in J (but not PK∗), S first asks the adversary to
submit a proof showing that it has correctly generated the key pair. Here, S can extract the secret key during
the proof of validity of public key. Now the signature generation can proceed as was stated before. If the
request comes for public key PK∗, then S sets tag ỹ = Tag and computes the signature of knowledge. The
simulated signature of knowledge (constructed as in Eq. 7.) is indistinguishable from the actual one under
the DDH assumption in QR(N), provided Tag is correctly formed. This is possible if and only if the bit b
selected by challenger is same as bit b′. Since the advantage of breaking linkable anonymity is non-negligibly
more than 1/2, advantage of S in generating a valid signature of knowledge will also be non-negligibly more
than 1/2, thereby solving the LD-RSA problem.

3transaction-id is the hash of the transaction payload

21

Theorem 4 “If the DDH in QR(N) problem, the LD-RSA problem, the Strong-RSA problem are hard and
the function H̃ is random oracle, then our construction is linkable w.r.t. adversarially-chosen public keys of
endorsers.[4]”

Proof Sketch. In order to break the linkability property, a corrupt endorser A has to convince a verifier to
accept a invalid tag ỹ with non-negligible probability. This is possible if A is successful in forging a signature
for a given message over a given set of endorsers or it can generate an incorrect proof of construction for the
invalid tag [16]. Either of the case is not possible, since forging a signature is hard under the Strong-RSA
assumption and generating an incorrect proof is hard under LD-RSA assumption.

Theorem 5 “If the DDH in QR(N) problem, the LD-RSA problem, the Strong-RSA problem are hard and
the function H̃ is random oracle, then our construction is non-slanderable w.r.t. adversarially-chosen public
keys of endorsers.[4]”

Proof Sketch. If a corrupt endorser A is able to output a signature which slanders an honest endorser with
public key PK∗ and the soundness property of Signature based on Proof of Knowledge (Eq. 7) holds, then
there exists a knowledge extractor (def. 2) which can extract the secret key (p′, q′) corresponding to the
public key PK∗ such that PK∗ = 2p′q′ + 1. Hence simulator S solves the LD-RSA problem.

6 Performance Analysis of FCsLRS 4

The (Sign,Verify) algorithm pair just involves the execution of the Σ-protocol which is time independent
from the number of public keys that were aggregated when constructing the accumulated value v and gener-
ation of witness value w. At the end of each protocol run, verifier V outputs a 0/1.

6.1 Theoretical Analysis

Table 2: Asymptotic complexity analysis of FCsLRS

Algorithm Operations performed Asymptotic complexity
Tag generation 2E O(λ)

Signature 11E + 5M O(λ)
Verification 6E + 10M O(λ)

Table 2. provides an asymptotic analysis of the signature scheme where we consider the following mathemat-
ical operations based on the Eq.9, 10 and 11 - E is an exponentiation (single base of the form ga) operation,
M is multibase exponentiation (of the form ga.hb) operation and λ is the security parameter.

6.2 Experimental Analysis

The performance of the signature scheme was measured on Intel Core i5-4200U CPU, quad core processor,

frequency 1.60 GHz, OS : Ubuntu-16.04 LTS (64 bit). The programming language used is Go 1.10 [22],
packages used is crypto, golang.org/x/ crypto/sha3, rand and math. The code for Cyclic Group Generator is
based on the one given under Project-iris5. For the analysis of the signature generation and verification

4Over here we analyze the performance for generation and verification of one signature
5https://github.com/project-iris/iris/blob/v0.3.2/crypto/cyclic/cyclic.go

22

time, the RSA modulus size, also the security parameter λ, has been varied as 1024 bits, 2048 bits and 3072
bits. The endorsement set size (number of participants, n) was varied as 4, 8, . . . , 256, in ascending powers
of 2 and message length was varied as 2KB, 4KB and 8KB respectively. The functions H1 and H̃ used is
SHA-3 producing a message digest of size 128 bits. The range of both the hash functions must be a subset
of QR(N), N is the RSA-modulus. Also as per Eq (4), any element in the group QR(N) when raised to the
power of a number in the group ZN/4, again returns an element which belongs to QR(N). Since N is varied
between 1024 bits to 3072 bits and least value of N/4 is 256 bits, so a message digest of 128 bit is definitely
falling in the range ZN/4 for any case. We had to do this approximation since selection of an element from
QR(N) when φ(N) is unknown is hard.

Time taken by the signature generation and verification algorithm with respect to number of endorsers
has been plotted in Fig. 4 and Fig. 5 respectively. The signature generation time and verification time
remains constant for a fixed value of RSA modulus size. On varying the λ value, increase in computation
time has been observed for both the algorithms. The Golang code for signature generation of 1-out-of-n
endorsement policy is available in [2]. The performance of the scheme measured through experiments also
supports the theoretic analysis in Table 2. For threshold value t, 1 ≤ t ≤ n, the signature generation time
and tag generation time is same as that recorded for one signer since every signer will generate signature in
parallel. The verification time becomes t times that of the time taken to verify a single signature. This is
because each verifier verifies t such valid signatures sequentially.

Table 3: Signature generation time for FCsLRS vs number of participants

Endorsement set Signature generation Signature generation Signature generation
size time(ms) for 1024 bit time(ms) for 2048 bit time(ms) for 3072 bit

RSA modulus RSA modulus RSA modulus
4 26.3810697 153.494131 460.1620130
8 25.9974438 156.6600916 460.5884873
16 25.9047032 153.3631163 461.7230385
32 26.0976248 153.1091731 463.5039483
64 25.9170626 153.0620514 462.9505392
128 25.187382 152.0527724 464.6665291
256 25.6127477 152.1151231 461.6722804

Table 4: Verification time for FCsLRS vs number of participants

Endorsement set Verification time(ms) Verification time(ms) Verification time(ms)
size for 1024 bit for 2048 bit for 3072 bit

RSA modulus RSA modulus RSA modulus
4 33.8444186 189.9202852 563.9633690
8 34.1522705 194.7279413 564.7610533
16 33.7478959 190.1404563 561.8273189
32 33.8859284 190.7751803 565.7962644
64 34.4397107 190.8586968 564.2824740
128 34.1952231 191.0990971 564.6969238
256 34.3507846 191.6187186 565.3521524

23

Figure 4: Signature Run time vs endorsement set size plot

Figure 5: Verification Run time vs endorsement set size plot

24

TX PROPOSE Optional [ANCHOR]

TX message format

Client id Chain-
code id

txPayload Timestamp clientSig

tid = hash(TX)

Metadata

txPayload format for deploy transaction

Source code of
chaincode

Policies : endorsement
policy id and parameters

(a) PROPOSE message format

TRANSACTION
ENDORSED

tid Trans-proposal Endorsing peer
signature : epSig

epID,tid,chaincodeID,txContentBlob,readset,writesetEndorsing tid chaincode
Peer ID id

txContentBlob
(tx.txPayload)

readset writeset

Tran-proposal message format :

(b) PROPOSAL RESPONSE message format

Figure 6

7 Integration of Constant-Sized Linkable Ring Signature module
in Hyperledger Fabric

In current workflow of transaction ([26]), to invoke a transaction, the client sends a “PROPOSE message” to the
endorsers mentioned in the endorsement policy, provided endorsers are also part of the given chaincodeID.
The format of a PROPOSE message is 〈PROPOSE,tx,[anchor]〉 as shown in Fig. 6a.

The endorser with identity epID, on receipt of the PROPOSE message message,verifies the client’s sig-
nature denoted by clientSig. It then executes the transaction (txPayload) by forwarding internally the
tran-proposal to the part of its logic that endorses a transaction. Currently, the endorsing logic by default
accepts the tran-proposal and signs the tran-proposal. However, one can change the endorsing logic as
per the requirement to reach a decision whether to endorse a transaction or not. After endorsing the transac-
tion, the peer sends a PROPOSAL-RESPONSE packet containing the message - 〈TRANSACTION-ENDORSED,
tid, tran-proposal,epSig〉 (as shown in Fig. 6b) to the submitting client, where: tran-proposal :=
(epID,tid,chaincodeID,txContentBlob, readset,writeset). txContentBlob denotes chaincode/transaction spe-
cific information and epSig denotes the endorsing peer’s signature on tran-proposal. If in case the endorsing
logic refrains from endorsing the transaction, an endorser may send a negative acknowledgment to the sub-
mitting client stating its decision of rejecting the transaction[26].

To integrate the Constant-Sized linkable ring signature module, we first have to change the PROPOSAL
RESPONSE format (as shown in Fig. 7). In the source code, under hyperledger/fabric/protos/peer/
proposal response.proto in the structure ProposalResponse, add a field called as Tag which will en-
able Transaction-oriented linkability. The structure Endorsement must be changed by deletion of the
field endorser (data type bytes[]) which reveals the endorsing peer ID. Create a FCsLRS6 package
under hyperledger/fabric/bccsp which can be used by the signer to sign the message. In the file hyper-
ledger/fabric/msp/identities.go, delete the field identity in the structure signingidentity. The Verify
function will just check the validity of the signature corresponding to a message. Instead of checking the
identity of signer, it will verify whether signer can give a Signature based on Proof of Knowledge of the secret

6Fabric’s Constant-Sized Linkable Ring Signature

25

TRANCTION
ENDORSED

tid Modified
Trans-proposal

Signature by a member of
endorsement set (E) :
identity of signer hidden.

Endorsement set E
(subset of Peer nodes)
Have their public key

registeredIn DB

tid ChainCode Id New txContentBlob
(tx.txPayload) readset writeset

Modified Tran-proposal message
format

Source of the
chaincode metadata

T out of N endorsement policy

New txPayload message format

Tag generated
(tx oriented link-
ability)

Figure 7: Modified PROPOSE message format

Client validator ep0 ep1 ep2 ep3 ep4 validator

Endorsement set

validator

<1>

<1> : tx=<clientID,
chaincodeID,
txPayload, time-
stamp,clientSig

ep2 decides to
endorse. Simulate
/Execute tx ,Sign
Transaction-
Endorsed using
FCsLRS

<2>
<2>

<2>

<2>
<2>

<2>

<3>

<2> : validator nodes
collect Transaction-Endorsed
messages into a valid
Endorsement that satisfies
Endorsement policy.

<3> : broadcast(endorsement)

<4>

<4>

<4>

<4>

<4>

<4>

<4>

<4>: Verify
endorsemen,
readset;
If OK, apply
writeset to
the state.

O
R

D
E

R
IN

G
 S

E
R

V
IC

E
S

orderers

Figure 8: Modified transaction flow diagram : 1-out-of-N endorsement policy

to prove its membership to the Endorsement set E .
The Transaction flow diagram for 1-out-of-N’ endorsement policy is given in Fig. 8. When endorsing

26

peer ep2 decides to endorse the transaction, it constructs a ring signature using public key of members in
the Endorsement set and the PROPOSAL RESPONSE format being same as that shown in Fig. 7. This is
broadcasted to all the Peer nodes (〈2〉 of Fig. 8). If majority of the nodes reach a consensus on receipt
of a valid endorsement, then one of the validator node forwards it to the Ordering Service(〈3〉 of Fig. 8).
Now ordering service broadcasts the packets to all peer nodes for validation (step 〈4〉 of Fig. 8). All peers
deterministically validate the transactions in the same order by checking satisfaction of endorsement policy
and version number of the keys present in the local key-value store.

8 Description of the Implementation

In this section, we give a high level description of the main methods for 1-out-of-n endorsement policy. As-
suming that a signer S wants to endorse a transaction with transaction id as tid = hash(transaction payload)
and transaction payload denoted by m ∈M, whereM∈ 0, 1∗, S ∈ E , E is the endorsement set, secret key is
skS = (pπ, qπ) and public key of S is pkS = 2pπ.qπ + 1. Since we consider the case of just one endorser, we
eliminate the code for check of linkability match as of now. But when it is integrated, check for linkability
must be added for each transaction.

1. Initialization. This step involves generation of the RSA Modulus integer N of size λ bits. This step
is executed by Fabric CA which generates the values by taking the security parameters as its input. To
find a generator of QR(N), we use the following lemma ([46]) :

Lemma 1 Let N = p.q be the product of two distinct safe primes, and u ∈ QR(N) a quadratic residue.
Then u is a generator for QR(N) if and only if gcd(u− 1, N) = 1.

Procedure 1: Initializations
Input : λ
Output: Public parameters : N, g, h, t, y, s, ζ

1. Generate 2 safe primes p, q : p = 2p′ + 1, q = 2q′ + 1, |p| = |q| = λ
2 .

2. Find N = p.q.

3. Find a generator of the group QR(N) using Lemma 1. Let that be u.

4. u generates g, h, t, y, s, ζ using some random discrete logarithm value
rdi, 1 ≤ i ≤ 6, 2 ≤ rdi ≤ |QR(N)| − 1 where |QR(N)| = p′.q′.

2. Key Generation. Given an input n, which is the number of endorsers, each of the endorsers generate
their own public key and private key pairs independently. (It only proves using zero-knowledge to
Fabric CA about the correctness of the public key generated 7). Upon key generation , these values are
made available in the public database DB. The procedure mentioned below must be run parallely for
each endorser present in endorsement set E .

3. Public Key accumulation. Fabric CA uses its accumulator with one-way domain to generate an
accumulated value of all the public keys in DB, each having valid enrolment certificate.

7In our implementation, since we have developed the signature scheme as an independent module without considering any
Public Key Infrastructure, so for the ease of implementation we have assumed the public keys generated by each endorser is
correct.

27

Procedure 2: Key Generation for endorser Ei

Input : λ, l, µ : λ > l − 2, l2 > µ+ 1, where E is the endorsement set
Output: Public Key : pki, Secret Key : ski

1. Generate 2 prime p, q, p 6= q : q ∈ (2
l
2 − 2µ + 1, 2

l
2 + 2µ − 1). ski = (p, q).

2. Generate pki : pki = 2p.q + 1.

3. Send pki to database DB .

Procedure 3: Accumulated value computation

Input : all pk’s in database DB, generator u, 〈u〉 = QR(N)
Output: Accumulated value : v

1 v ← u
2 for pki ∈ DB do
3 v ← vpki mod N
4 end

4. Witness Generation for Signer S. Signer S can generate the witness w using values of all public
keys forming the ring except its own public key.

Procedure 4: Witness value for signer S

Input : all pk’s in database DB, generator u, 〈u〉 = QR(N), Signer S public key : pkS
Output: witness value : w

1 w ← u
2 for pki ∈ DB : pki 6= pkS do
3 w ← wpki mod N
4 end

5. Tag Generation. To generate the tag, the signer S needs to compute gtid from g given the transaction
id tid.

6. Computation of public values for Signature based on Proof of Knowledge Construction.
Signer S computes public values T1, T2, T3, T4, T5 where

T1 = grtid mod N,T2 = (hrζpkS+r) mod N,T3 = (srgqπtid) mod N,T4 = (w.yr) mod N,T5 = (trg2pπtid)
mod N .

7. Signature Generation. Signer generates the challenge value which can be generated again at the
verifier side as well. This is the standard Fiat-Shamir Transformation which has been used. Send all
these value (mentioned in the output of Signature Algorithm along with tag ỹ to verifier v ∈ V.

8. Verification Algorithm. Verifier v computes c using the values sent to it by signer S. Using equations
under Eq. 11 it’s going to check whether the Signature based on Proof of Knowledge construction is
correct or not.

28

The main methods described in section 8 is illustrated here.

<<abstract>>

 Initialization
 - PrivateRSA : struct
- PublicRSA : struct
- PrivateKey : struct
- PublicKey : struct

 +GenerateRSAInt(rand.Reader) : (*PublicRSA,
*PrivateRSA, error)

+GenerateKey(rand.Reader) : (*PublicKey,
*PrivateKey, error)

 Public Data

 - N – RSA modulus
 - g1,h,t,y,s,ζ – element in QR(N)
 - mesg – the transaction response
 Message
 - tid – the transaction id
 - N’ - numbe r of endorsers
 - PublicKeyOriginal[] - set of
 public keys of endorsers
 - acc – accumulated value of the
 public keys.
- g_tid – element in QR(N)

 - T1, T2,T3,T4, T5 – values nee-
ded for Proof of Knowledge con-
struction.

ge
ne

ra
te

s

ge
ne

ra
te

s

Main Golang Packages Used

- crypto/rand
- golang.org/x/crypto/sha3
- math/big

U
se

s

 Signer(Method)

+ g_tid = new(big.Int).Exp(g1,txid,
 publicRSA.N)

+ witness(publicKeyOriginal []PublicKey,
 id int,publicRSA *big.Int) : (*big.Int)

+ GenPublicVal(random io.Reader,secret
 *big.Int,privateKey *PrivateKey,witness
 *big.Int, N *big.Int): ([]*big.Int,*big.Int)

+ proof_signer(f *os.File,mesg string,
 rand.Reader,T []*big.Int, witness *big.Int,
 acc *big.Int, r *big.Int, pub_key *big.Int,
 pri_key1 *big.Int,pri_key2 *big.Int,
 tag *big.Int, N *big.Int)

U
se

s

ge
ne

ra
te

s

Tag Generation

+ GenTag(privateKey *PrivateKey,
N *big.Int): (*big.Int)

U
se

s

Uses

Verifier (Method)

- verify_signature(f *os.File,mesg string,b1
*big.Int,b2 *big.Int,b3 *big.Int,
 b4 *big.Int,b5 *big.Int,u1 *big.Int,u2
*big.Int,u3 *big.Int,u4 *big.Int,u5 *big.Int,
 u6 *big.Int,u7 *big.Int,u8 *big.Int,u9 *big.Int,
 v *big.Int,T []*big.Int,tag *big.Int, N *big.Int)

- txid = hash_txid(tid string) : (*big.Int)

ge
ne

ra
te

s- privateKey (of Signer)
- g_tid

U
se

s

Uses

U
se

s

Link (Method)

+ Given two valid
signature pair , check if
tags are same or different.

U
se

s
U

se
s

Figure 9: Class Diagram

29

Procedure 5: Tag generation for signer S

Input : Signer S secret key : skS = (pπ, qπ), transaction id : tid
Output: tag value : ỹ

1 x← H̃(tid)
2 gtid ← gx mod N

3 ỹ ← gpπ+qπtid mod N

Procedure 6: Public value generation by signer S

Input : Signer S secret key : skS = (pπ, qπ), public key pkS , gtid, witness value : w
Output: Public values : T1, T2, T3, T4, T5

1 r
R←− ZN/4

2 Compute T1, T2, T3, T4, T5 as per equations mentioned above.

9 Conclusion and Future Work

Our proposed “Anonymous Endorsement System” addresses the problem of biased voting by endorsers in Hy-
perledger Fabric. We have given a construction of new constant sized linkable ring signature scheme, FCsLRS
which hides identity of each endorser involved in endorsement. The signature scheme can be independently
used in e-voting, using voter identity linkability where a single person cannot vote more than once. Similarly,
in public pages of social media, we can use this endorsement system for posts or digital content that needs
to be validated by moderators to prevent false propaganda leading to a negative impact in the society. The
moderators with certain reputation level may form the ring members and whoever amongst them supports
the view can endorse it. If the post acquires adequate number of votes it will get displayed publicly.

Since it is an RSA based scheme, it will require inclusion of RSA module for incorporating this module in
Hyperledger Fabric as currently ECDSA (Elliptic Curve Digital Signature Algorithm) is supported. Inclusion
of this module will allow us evaluate the performance in the actual setting.

The major limitation of the scheme is the verifiers are required to count individual valid ring signature
and check if the aggregate is above the threshold in order to implement threshold endorsement policy. This
increases the verification time depending on the threshold value. We would like to replace it with threshold
signature scheme which can guarantee the same level of anonymity as it is offered now by the proposed
system.

In our future work, we aim to provide a construction of short ring signature scheme, probably using

Procedure 7: Signature

Input : r,Signer S secret key : skS = (pπ, qπ), public key pkS , message m ∈M
Output: u1, u2, . . . , u9, α̃1, α̃2, . . . , α̃5

1. Generate αi, 1 ≤ i ≤ 3 : 0 < αi < N/4− 1.

2. Compute u1, u2, . . . , u9 as per Eq. 9.

3. Computes the challenge value c = H1(m,u1, u2, . . . , u9), where H1 is a random oracle.

4. Using c, compute α̃1, . . . , α̃5 as per Eq. 10.

30

pairing based cryptography. Since we prove the security of our construction in Random Oracle Model,
we would like to provide a construction in the standard model as well. Apart from that, we would like to
explore other permissioned blockchain systems and check whether the proposed scheme can be extended over
there as well.

10 Acknowledgement

This work is partially supported by Cisco University Research Program Fund, CyberGrants ID: #698039 and
Silicon Valley Community Foundation. The authors would like to thank Chris Shenefiel, Samir Saklikar and
Anoop Nannra for their comments and suggestions.

References

[1] Chile slams world bank for bias in competitiveness rankings. https://www.reuters.com/article/us-
chile-worldbank/chile-slams-world-bank-for-bias-in-competitiveness-rankings-
idUSKBN1F20SN (14 January, 2018)

[2] Golang code : Fcslrs. https://github.com/subhramazumdar/Code FCsLRS (2019)

[3] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Fer-
ris, C., Laventman, G., Manevich, Y., et al.: Hyperledger fabric: A distributed operating system for
permissioned blockchains. arXiv preprint arXiv:1801.10228 (2018)

[4] Au, M.H., Chow, S.S., Susilo, W., Tsang, P.P.: Short linkable ring signatures revisited. In: European
Public Key Infrastructure Workshop. pp. 101–115. Springer (2006)

[5] Barcelo, J.: User privacy in the public bitcoin blockchain. URL: http://www. dtic. upf.
edu/˜ jbarcelo/papers/20140704 User Privacy in the Public Bitcoin Blockc hain/paper. pdf (Accessed
09/05/2016) (2014)

[6] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols.
In: Proceedings of the 1st ACM conference on Computer and communications security. pp. 62–73. ACM
(1993)

[7] Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bitcoin p2p network. In:
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. pp.
15–29. ACM (2014)

[8] Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In:
Proceedings of the 22Nd Annual International Cryptology Conference on Advances in Cryptology. pp.
465–480. CRYPTO ’02, Springer-Verlag, London, UK, UK (2002)

[9] Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes.
In: International Conference on the Theory and Applications of Cryptographic Techniques. pp. 107–122.
Springer (1999)

[10] Camenisch, J., Michels, M., et al.: Separability and efficiency for generic group signature schemes. In:
Annual International Cryptology Conference. pp. 413–430. Springer (1999)

31

[11] Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Annual International
Cryptology Conference. pp. 410–424. Springer (1997)

[12] Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix anonymous credential
system. In: Proceedings of the 9th ACM conference on Computer and communications security. pp.
21–30. ACM (2002)

[13] Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Annual International Cryptology Confer-
ence. pp. 78–96. Springer (2006)

[14] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness
hiding protocols. In: Advances in Cryptology, CRYPTO ’94. pp. 174–187. Springer (1994)

[15] Davidson, S., De Filippi, P., Potts, J.: Economics of blockchain. Available at SSRN 2744751 (2016)

[16] Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques. pp. 609–626. Springer
(2004)

[17] Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of cryptology 1(2), 77–94
(1988)

[18] Franklin, M.K., Zhang, H.: A framework for unique ring signatures. IACR Cryptology ePrint Archive
2012, 577 (2012)

[19] Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-optimal dsa/ecdsa signatures and an application
to bitcoin wallet security. In: International Conference on Applied Cryptography and Network Security.
pp. 156–174. Springer (2016)

[20] Goldfeder, S., Gennaro, R., Kalodner, H., Bonneau, J., Kroll, J.A., Felten, E.W., Narayanan, A.:
Securing bitcoin wallets via a new dsa/ecdsa threshold signature scheme (2015)

[21] Goldreich, O.: Foundations of Cryptography: Volume 1. Cambridge University Press, New York, NY,
USA (2006)

[22] team at Google, A., many contributors from the open source community: Go 1.10 release notes.
https://golang.org/doc/go1.10 (February, 2018)

[23] Hardjono, T., Smith, N., Pentland, A.: Anonymous identities for permissioned blockchains. Technical
report (2014)

[24] Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Tech. rep., Tech. rep.
2016-1.10. Zerocoin Electric Coin Company (2016)

[25] IBM, L.F..: hyperledger-fabric-ca Documentation , Release master. Read the Docs (2018)

[26] IBM, L.F..: hyperledger-fabricdocs Documentation , Release master. Read the Docs (2018)

[27] Kate, A., Goldberg, I.: Distributed private-key generators for identity-based cryptography. In: Interna-
tional Conference on Security and Cryptography for Networks. pp. 436–453. Springer (2010)

[28] Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: International Conference on the Theory
and Applications of Cryptographic Techniques. pp. 571–589. Springer (2004)

32

[29] Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security
and performance with strong consistency via collective signing. In: 25th USENIX Security Symposium
(USENIX Security 16). pp. 279–296 (2016)

[30] Mazumdar, S.: M.tech thesis : Design of anonymous endorsement system in hyperledger fabric.
http://library.isical.ac.in:8080/jspui/bitstream/123456789/6956/1/Diss-390.pdf (2018)

[31] Mercer, R.: Privacy on the blockchain: Unique ring signatures. arXiv preprint arXiv:1612.01188 (2016)

[32] Nakamoto, S., et al.: Bitcoin: A peer-to-peer electronic cash system (2008)

[33] Narula, N., Vasquez, W., Virza, M.: zkledger: Privacy-preserving auditing for distributed ledgers.
auditing 17(34), 42 (2017)

[34] Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: International Conference on the
Theory and Applications of Cryptographic Techniques. pp. 387–398. Springer (1996)

[35] Promchertchoo, P.: Cambodia calls un human rights expert ’bi-
ased’ over election concerns. https://www.channelnewsasia.com/news/asia/

cambodia-calls-un-human-rights-expert-biased-over- election-10558274 (24 July, 2018)

[36] Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. Advances in Cryptology—ASIACRYPT 2001
pp. 552–565 (2001)

[37] Sean: Understanding hyperledger in a bit more details. https://decentralize.today/understanding-
hyperledgerin-a-bit-more-detail-3d40a37c74f2 (21 December, 2017)

[38] Stathakopoulou, C., Cachin, C.: Threshold signatures for blockchain systems.
https://domino.research.ibm.com/library/cyberdig.nsf/papers/CA80E201DE9C8A0
A852580FA004D412F/File/rz3910.pdf (2017)

[39] Sun, S.F., Au, M.H., Liu, J.K., Yuen, T.H.: Ringct 2.0: A compact accumulator-based (linkable ring
signature) protocol for blockchain cryptocurrency monero. In: European Symposium on Research in
Computer Security. pp. 456–474. Springer (2017)

[40] Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: ISPEC.
vol. 3439, pp. 48–60. Springer (2005)

[41] Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable linkable threshold ring
signatures. In: Indocrypt. vol. 3348, pp. 384–398. Springer (2004)

[42] Van Saberhagen, N.: Cryptonote v 2. 0 (2013)

[43] Vukolić, M.: Rethinking permissioned blockchains. In: Proceedings of the ACM Workshop on Blockchain,
Cryptocurrencies and Contracts. pp. 3–7. ACM (2017)

[44] Wei, V.K.: Tracing-by-linking group signatures. In: International Conference on Information Security.
pp. 149–163. Springer (2005)

[45] Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient linkable and/or threshold ring signature
without random oracles. The Computer Journal 56(4), 407–421 (2012)

[46] Micciancio, D.: The rsa group is pseudo-free. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 387–403. Springer (2005)

33

